
UCLA
UCLA Previously Published Works

Title
CGC

Permalink
https://escholarship.org/uc/item/4zz33975

Journal
ACM Transactions on Knowledge Discovery from Data, 10(4)

ISSN
1556-4681

Authors
Cheng, Wei
Guo, Zhishan
Zhang, Xiang
et al.

Publication Date
2016-07-27

DOI
10.1145/2903147
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4zz33975
https://escholarship.org/uc/item/4zz33975#author
https://escholarship.org
http://www.cdlib.org/


CGC: A Flexible and Robust Approach to Integrating Co-
Regularized Multi-Domain Graph for Clustering

Wei Cheng,
UNC at Chapel Hill

Zhishan Guo,
UNC at Chapel Hill

Xiang Zhang, and
Case Western Reserve University

Wei Wang
University of California, Los Angeles

Abstract

Multi-view graph clustering aims to enhance clustering performance by integrating heterogeneous 

information collected in different domains. Each domain provides a different view of the data 

instances. Leveraging cross-domain information has been demonstrated an effective way to 

achieve better clustering results. Despite the previous success, existing multi-view graph clustering 

methods usually assume that different views are available for the same set of instances. Thus 

instances in different domains can be treated as having strict one-to-one relationship. In many real-

life applications, however, data instances in one domain may correspond to multiple instances in 

another domain. Moreover, relationships between instances in different domains may be associated 

with weights based on prior (partial) knowledge. In this paper, we propose a flexible and robust 

framework, CGC (Co-regularized Graph Clustering), based on non-negative matrix factorization 

(NMF), to tackle these challenges. CGC has several advantages over the existing methods. First, it 

supports many-to-many cross-domain instance relationship. Second, it incorporates weight on 

cross-domain relationship. Third, it allows partial cross-domain mapping so that graphs in 

different domains may have different sizes. Finally, it provides users with the extent to which the 

cross-domain instance relationship violates the in-domain clustering structure, and thus enables 

users to re-evaluate the consistency of the relationship. We develop an efficient optimization 

method that guarantees to find the global optimal solution with a given confidence requirement. 

The proposed method can automatically identify noisy domains and assign smaller weights to 

them. This helps to obtain optimal graph partition for the focused domain. Extensive experimental 

results on UCI benchmark data sets, newsgroup data sets and biological interaction networks 

demonstrate the effectiveness of our approach.
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1. INTRODUCTION

Graphs are ubiquitous in real-life applications. A large volume of graph data have been 

generated, such as social networks [Leskovec et al. 2007], biology interaction networks 

[Fenyo 2010], and literature citation networks [Sun and Han 2012]. Graph clustering has 

attracted increasing research interest recently. Several effective approaches have been 

proposed in the literature, such as spectral clustering [Ng et al. 2001], symmetric Non-

negative Matrix Factorization (symNMF) [Kuang et al. 2012], Markov clustering (MCL) 

[van Dongen 2000].

In many applications, graph data may be collected from heterogeneous domains (sources) 

[Gao et al. 2009]. For example, the gene expression levels may be reported by different 

techniques or on different sample sets, thus the gene co-expression networks built on them 

are heterogeneous; the proximity networks between researchers such as co-citation network 

and co-author network are also heterogeneous. By exploiting multi-domain information to 

refine clustering and resolve ambiguity, multi-view graph clustering methods have the 

potential to dramatically increase the accuracy of the final results [Bickel and Scheffer 2004; 

Kumar et al. 2011; Chaudhuri et al. 2009]. The key assumption of these methods is that the 

same set of data instances may have multiple representations, and different views are 

generated from the same underlying distribution [Chaudhuri et al. 2009]. These views 

should agree on a consensus partition of the instances that reflects the hidden ground truth 

[Long et al. 2008]. The learning objective is thus to find the most consensus clustering 

structure across different domains.

Existing multi-view graph clustering methods usually assume that information collected in 

different domains are for the same set of instances. Thus, the cross-domain instance 

relationships are strictly one-to-one. This also implies that different views are of the same 

size. For example, Fig. 1(a) shows a typical scenario of multi-view graph clustering, where 

the same set of 12 data instances has 3 different views. Each view gives a different graph 

representation of the instances.

In many real-life applications, it is common to have cross-domain relationship as shown in 

Fig. 1(b). This example illustrates several key properties that are different from the 

traditional multi-view graph clustering scenario.

• An instance in one domain may be mapped to multiple instances in another 

domain. For example, in Fig. 1(b), instance Ⓐ A in domain 1 is mapped to two 
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instances ➀ and ➁ in domain 2. The cross-domain relationship is many-to-

many rather than one-to-one.

• Mapping between cross-domain instances may be associated with weights, 

which is a generalization of a binary relationship. As shown in Fig. 1(b), each 

cross-domain mapping is coupled with a weight. Users may specify these 

weights based on their prior knowledge.

• The cross-domain instance relationship may be a partial mapping. Graphs in 

different domains may have different sizes. Some instance in one domain may 

not have corresponding instance in another. As shown in Fig. 1(b), mapping 

between instances in different domains is not complete.

One important problem in bioinformatics research is protein functional module detection 

[Hub and de Groot 2009]. A widely used approach is to cluster protein-protein interaction 

(PPI) networks [Asur et al. 2007]. In a PPI network, each instance (node) is a protein and an 

edge represents the strength of the interaction between two connected proteins. To improve 

the accuracy of the clustering results, we may explore the data collected in multiple 

domains, such as gene co-expression networks [Horvath and Dong 2008] and genetic 

interaction networks [Cordell 2009]. The relationship across gene, protein and genetic 

variant domains can be many-to-many. For example, multiple proteins may be synthesized 

from one gene and one gene may contain many genetic variants. Consider another 

application of text clustering, where we want to cluster journal paper corps (domain 1) and 

conference paper corps (domain 2). We may construct two affinity (similarity) graphs for 

domains 1 and 2 respectively, in which each instance (node) is a paper and an edge 

represents the similarity between two papers (e.g., cosine similarity between term-frequency 

vectors of the two papers). Some journal papers may be extended versions of one or multiple 

conference papers. Thus the mappings between papers in two domains may be many-to-

many.

These emerging applications call for novel cross-domain graph clustering methods. In this 

paper, we propose CGC (Co-regularized Graph Clustering), a flexible and robust approach 

to integrate heterogenous graph data. Our contributions are summarized as follows.

1. We propose and investigate the problem of clustering multiple heterogenous 

graph data, where the cross-domain instance relationship is many-to-many. This 

problem has a wide range of applications and poses new technical challenges that 

cannot be directly tackled by traditional multi-view graph clustering methods.

2. We develop a method, CGC, based on collective symmetric non-negative matrix 

factorization with co-regularized penalty to manipulate cross-domain 

relationships. CGC allows weighted cross-domain relationships. It also allows 

partial mapping and can handle graphs with different sizes. Such flexibility is 

crucial for many real-life applications. We also provide rigid theoretical analysis 

of the performance of the proposed method.

3. We develop an efficient optimization method for CGC by population-based Tabu 

Search, and further extended it into a parallel algorithm. It guarantees to find the 

global optimum with a given confidence requirement.
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4. We develop effective and efficient techniques to handle the situation when the 

cross-domain relationship contains noise. Our method supports users to evaluate 

the accuracy of the specified relationships based on single-domain clustering 

structure. For example, in Fig. 1(b), mapping between (Ⓑ – ➂) in domains 1 

and 2, and (➄ – ⓐ) in domains 2 and 3, may not be accurate as they are 

inconsistent with in-domain clustering structure. (Note that each domain contains 

two clusters, one on the top and one at the bottom.)

5. We provide effective techniques to automatically identify noisy domains. By 

assigning smaller weights to noisy domains, the CGC algorithm can obtain 

optimal graph partition for the focused domain.

6. We evaluate the proposed method on benchmark UCI data sets, newsgroup data 

sets and various biological interaction networks. The experimental results 

demonstrate the effectiveness of our method.

2. PROBLEM FORMULATION

Suppose that we have d graphs, each from a domain in { 1, 2,..., d}. We use nπ to denote 

the number of instances (nodes) in the graph from domain π (1 ≤ π ≤ d). Each graph is 

represented by an affinity (similarity) matrix. The affinity matrix of the graph in domain π 

is denoted as . In this paper, we follow the convention and assume that A(π) 

is a symmetric and non-negative matrix [Ng et al. 2001; Kuang et al. 2012]. We denote the 

set of pairwise cross-domain relationships as ℐ = {(i, j)} where i and j are domain indices. 

For example, ℐ = {(1, 3), (2, 5)} contains two cross-domain relationships (mappings): the 

relationship between instances in 1 and 3, and the relationship between instances in 2 

and 5. Each relationship (i, j) ∈ ℐ is coupled with a matrix , indicating the 

(weighted) mapping between instances in i and j, where ni and nj represent the number of 

instances in i and j respectively. We use  to denote the weight between the a-th 

instance in j and the b-th instance in i, which can be either binary (0 or 1) or quantitative 

(any value between [0,1]). Important notations are listed in Table I.

Our goal is to partition each A(π) into kπ clusters while considering the co-regularizing 

constraints implicitly represented by the cross-domain relationships in ℐ.

3. CO-REGULARIZED MULTI-DOMAIN GRAPH CLUSTERING

In this section, we present the Co-regularized Graph Clustering (CGC) method. We model 

cross-domain graph clustering as a joint matrix optimization problem. The proposed CGC 

method simultaneously optimizes the empirical likelihood in multiple domains and take into 

account the cross-domain relationships.

3.1. Objective Function

3.1.1. Single-Domain Clustering—Graph clustering in a single domain has been 

extensively studied. We adopt the widely used non-negative matrix factorization (NMF) 

approach [Lee and Seung 2000]. In particular, we use the symmetric version of NMF 

Cheng et al. Page 4

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2017 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[Kuang et al. 2012; Ding et al. 2006] to formulate the objective of clustering on A(π) as 

minimizing the objective function:

(1)

where || · ||F denotes the Frobenius norm, H(π) is a non-negative matrix of size nπ × kπ, and 

kπ is the number of clusters requested. We have , 

where each  represents the cluster assignment (distribution) of the a-th 

instance in domain π. For hard clustering,  is often used as the cluster 

assignment.

3.1.2. Cross-Domain Co-Regularization—To incorporate the cross-domain 

relationship, the key idea is to add pairwise co-regularizers to the single-domain clustering 

objective function. We develop two loss functions to regularize the cross-domain clustering 

structure. Both loss functions are designed to penalize cluster assignment inconsistency with 

the given cross-domain relationships. The residual sum of squares (RSS) loss requires that 

graphs in different domains are partitioned into the same number of clusters. The clustering 
disagreement loss has no such restriction.

A). Residual sum of squares (RSS) loss function: We first consider the case where the 

number of clusters is the same in different domains, i.e. k1 = k2 = ... = kd = k. For simplicity, 

we denote the instances in domain π as { }. If an instance  in i is 

mapped to an instance  in j, then the clustering assignments  and  should be 

similar. We now generalize the relationship to many-to-many. We use  to denote 

the set of indices of instances in i that are mapped to  with positive weights, and 

 represents its cardinality. To penalize the inconsistency of cross-domain cluster 

partitions, for the l-th cluster in i, the loss function (residual) for the b-th instance is

(2)

where

(3)

is the weighted mean of cluster assignment of instances mapped to , for the l-th cluster.
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We assume every non-zero row of S(i,j) is normalized. By summing up Eq. (2) over all 

instances in j and k clusters, we have the following residual of sum of squares loss function

(4)

B). Clustering disagreement (CD) loss function: When the number of clusters in different 

domains varies, we can no longer use the RSS loss to quantify the inconsistency of cross-

domain partitions. From the previous discussion, we observe that S(i,j)H(i) in fact serves as a 

weighted projection of instances in domain i to instances in domain j. For simplicity, we 

denote the matrix H(̃i→j) = S(i,j)H(i). Recall that  represents a cluster assignment over kj 

clusters for the a-th instance in j. Then  corresponds to  for the a-th instance in 

domain j. The previous RSS loss compares them directly to measure the clustering 

inconsistency. However, it is inapplicable to the case where different domains have different 

numbers of clusters. To tackle this problem, we first measure the similarity between 

and , and the similarity between  and . Then we measure the difference 

between these two similarity values. Taking Fig. 1(b) as an example. Note that Ⓐ and Ⓑ; in 

domain 1 are mapped to ➁ in domain 2, and Ⓒ is mapped to ➃. Intuitively, if the 

similarity between clustering assignments for ➁ and ➃ is small, the similarity of clustering 

assignments between Ⓐ and Ⓒ and the similarity between Ⓑ; and Ⓒ should also be 

small. Note that symmetric NMF can handle both linearity and nonlinearity [Kuang et al. 

2012]. Thus in this paper, we choose a linear kernel to measure the in-domain cluster 

assignment similarity, i.e., . The cross-domain clustering 

disagreement loss function is thus defined as

(5)

3.1.3. Joint Matrix Optimization—We can integrate the domain-specific objective and 

the loss function quantifying the inconsistency of cross-domain partitions into a unified 

objective function

(6)
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where (i,j) can be either  or . λ(i,j) ≥ 0 is a tuning parameter balancing between 

in-domain clustering objective and cross-domain regularizer. When all λ(i,j)= 0, Eq. (6) 

degenerates to d independent graph clusterings. Intuitively, the more reliable the prior cross-

domain relationship, the larger the value of λ(i,j).

3.2. Learning Algorithm

In this section, we present an alternating scheme to optimize the objective function in Eq. 

(6), that is, we optimize the objective with respect to one variable while fixing others. This 

procedure continues until convergence. The objective function is invariant under these 

updates if and only if H(π)’s are at a stationary point [Lee and Seung 2000]. Specifically, the 

solution to the optimization problem in Eq. (6) is based on the following two theorems, 

which is derived from the Karush-Kuhn-Tucker (KKT) complementarity condition [Boyd 

and Vandenberghe 2004]. Detailed theoretical analysis of the optimization procedure will be 

presented in the next section.

Theorem 3.1: For RSS loss, updating H(π) according to Eq. (7) will monotonically decrease 

the objective function in Eq. (6) until convergence.

(7)

where

(8)

and

(9)

Theorem 3.2: For CD loss, updating H(π) according to Eq. (10) will monotonically decrease 
the objective function in Eq. (6) until convergence.

(10)
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where

(11)

and

(12)

where ∘,  and  are element-wise operators.

Based on Theorem 3.1 and Theorem 3.2, we develop the iterative multiplicative updating 

algorithm for optimization and summarize it in Algorithm 1.

Algorithm 1

Co-regularized Graph Clustering (CGC)

3.3. Theoretical Analysis

3.3.1. Derivation—We derive the solution to Eq. (6) following the constrained 

optimization theory [Boyd and Vandenberghe 2004]. Since the objective function is not 
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jointly convex, we adopt an effective alternating minimization algorithm to find a locally 

optimal solution. We prove Theorem 3.2 in the following. The proof of Theorem 3.1 is 

similar and hence omitted.

We formulate the Lagrange function for optimization

(13)

Without loss of generality, we only show the derivation of the updating rule for one domain 

π (π ∈ [1, d]). The partial derivative of Lagrange function with respect to H(π) is:

(14)

Using the Karush-Kuhn-Tucker (KKT) complementarity condition [Boyd and Vandenberghe 

2004] for the non-negative constraint on H(π), we have

(15)

The above formula leads to the updating rule for H(π) in Eq. (10).

3.3.2. Convergence—We use the auxiliary function approach [Lee and Seung 2000] to 

prove the convergence of Eq. (10) in Theorem 3.2. We first introduce the definition of 

auxiliary function as follows.

Definition 3.1: Z(h, h̃) is an auxiliary function for L(h) if the conditions

(16)

are satisfied for any given h, h̃ [ Lee and Seung 2000].
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Lemma 3.1: If Z is an auxiliary function for L, then L is non-increasing under the update 
[Lee and Seung 2000].

(17)

Theorem 3.3: Let L(H(π)) denote the sum of all terms in L containing H(π). The following 
function

(18)

is an auxiliary function for L(H(π)), where  and Q(j) 
= (H̃(π))T(S(π,j))TS(π,j)H̃(π)(H̃(π))T(S(π,j))TS(π,j). Furthermore, it is a convex function in H(π) 

and has a global minimum.

Theorem 3.3 can be proved using a similar idea to that in [Ding et al. 2006] by validating 

Z(H(π), H̃(π)) ≥ L(H(π)), Z(H(π), H(π)) = L(H(π)), and the Hessian matrix ∇∇H(π)Z(H(π), 
H̃(π)) ⪰ 0. Due to space limitation, we omit the details.

Based on Theorem 3.3, we can minimize Z(H(π), H̃ (π)) with respect to H(π) with H̃(π) 

fixed. We set ∇H(π)Z(H(π), H̃(π)) = 0, and get the following updating formula

which is consistent with the updating formula derived from the KKT condition 

aforementioned.

From Lemma 3.1 and Theorem 3.3, for each subsequent iteration of updating H(π), we have 

L((H(π))0) = Z((H(π))0, (H(π))0) ≥ Z((H(π))1, (H(π))0) ≥ Z((H(π))1, (H(π))1) = L((H(π))1) 

≥ ... ≥ L((H(π))Iter). Thus L(H(π)) monotonically decreases. This is also true for the other 

1Although the global minimum is also a local one, we refer to local as non-global in this section.
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variables. Since the objective function Eq. (6) is lower bounded by 0, the correctness of 

Theorem 3.2 is proved. Theorem 3.1 can be proven with a similar strategy.

3.3.3. Complexity Analysis—The time complexity of Algorithm 1 (for both loss 

functions) is  (Iter · d|ℐ|(ñ3 + ñ2k̃)), where ñ is the largest nπ (1 ≤ π ≤ d), k̃ is the largest kπ 
and Iter is the number of iterations needed before convergence. In practice, |ℐ| and d are 

usually small constants. Moreover, from Eq. (10) and Eq. (7), we observe that the ñ3 term is 

from the matrix multiplication (S(π,j))TS(π,j). Since S(π,j) is the input matrix and often very 

sparse, we can compute (S(π,j))TS(π,j) in advance in sparse form. In this way, the complexity 

of Algorithm 1 is reduced to  (Iter · ñ2k̃).

3.4. Finding Global Optimum

The objective function Eq. (6) is a fourth-order non-convex function with respect to H(π). 

The achieved stationary points (satisfying KKT condition in Eq. (15)) may not be the global 

optimum. Many methods have been proposed in the literature to avoid local optima, such as 

Tabu search [Glover and McMillan 1986], particle swarm optimization (PSO) [Dorigo et al. 

2008], and estimation of distribution algorithm (EDA) [Larraanaga and Lozano 2001]. Since 

our objective function is continuously differentiable over the entire parameter space, we 

develop a learning algorithm for global optimization by population-based Tabu Search. We 

further develop a parallelized version of the learning algorithm.

3.4.1. Tabu Search Based Algorithm for Finding Global Optimum—In Algorithm 

1, we find a local optima for H(π)(0 ≤ π ≤ d) from the starting point initialized in lines 6 to 

8. Here, we treat all H(π)’s as one point H (for example, converting them into one vector). 

Then, the iterations for finding global optimum are summarized below.

1. Given the probability ϕ that a random point converges to the global minimum 

and a confidence level α, set termination threshold cϕ according to equation (23). 

Initialize counter c := 0, and randomly chose one initial point; then use 

Algorithm 1 to find the corresponding local optima.

2. Mark this local optima point as a Tabu point Tc, and keep track of the “global 

optimum” found so far in H*, set counter c := c + 1.

3. If c ≥ cϕ, return;

4. Randomly choose another point far from the Tabu points, and use Algorithm 1 to 

find the corresponding local optima, go to Step 2.

In the above steps, we try to avoid converging to any known local minimums by applying the 

dropping and re-selecting scheme. The nearer a point lies to a Tabu point, the less likely it 

get selected as a new initial state. As more iterations are taken, the risk that all iterations 

converge to local optima drops substantially. Our method not only keeps track of local 

information (KKT points), but also does global search so that the probability of finding the 

optimal minima significantly increases. Such Markov chain process ensures that the 

algorithm converges to the global minimum with probability 1 when cϕ is large enough.
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3.4.2. Lower Bound of Termination Threshold cϕ—To find the global optimum with 

confidence at least α, the probability of all searched cϕ points in local minimum should be 

less than 1 − α, i.e.,

(19)

Given ϕ, the probability of a random point that converges to global minimum, we know that 

the first point has probability 1 − ϕ to converge to a local1 one. If the system is lack of 

memory and never keeps records of existing points, all points would have the same 

converging probability to the global minimum. However, we mark each local optima point as 

a Tabu point, and try to locate further chosen ones far from existing local minima. Such 

operation decreases the probability of getting into the same local minimum. It results in an 

increasing of the global converging probability by a factor of 1 − ϕ in each step, i.e., p(point 
i converges to local minima) = (1 − ϕ)p(point i − 1 converges to local minima).

Substituting this and p(first point converges to local minima) = 1 − ϕ into equation (19), we 

have

(20)

Thus we have

(21)

Table II shows the value of cϕ for some typical choices of ϕ and α. We can see that the 

proposed CGC algorithm converges to the global optimum with a small number of steps.

3.4.3. Parallelizing the Global Optimum Search Process—Assume that we have N 
processors (which may not be identical) that can run in parallel. A simple version is to 

randomly choose N (N >1) points in each step (that are all far from Tabu points), and to find 

N local optima in parallel using Algorithm 1 (i.e., population size = N). The termination 

threshold can be derived in a similar way. Initially, the probability of all N nodes converging 

to local minima is (1 − ϕ)N, and such probability is decreasing by a factor of (1 − ϕ)N for 

each step. Thus, the termination threshold cϕ should agree with the following equation:

(22)
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This results in the following expression of the threshold:

(23)

This algorithm can speedup by a factor of  (with N being the number of processors).

3.5. Re-Evaluating Cross-Domain Relationship

In real applications, the cross-domain instance relationship based on prior knowledge may 

contain noise. Thus, it is crucial to allow users to evaluate whether the provided relationships 

violate any single-domain clustering structures. In this section, we develop a principled way 

to archive this goal. In fact, we only need to slightly modify the co-regularization loss 

functions in Section 3.1.2 by multiplying a confidence matrix W(i,j) to each S(i,j). Each 

element in the confidence matrix W(i,j) is initialized to 1. For RSS loss, we give the modified 

loss function below (the case for CD loss is similar).

(24)

Here, ∘ is element-wise product. By optimizing the following objective function, we can 

learn the optimal confidence matrix

(25)

Eq. (25) can be optimized by iteratively implementing following two steps until 

convergence: 1) replace S(π,j) and S(i,π) in Eq. (7) with (W(π,j) ∘ S(π,j)) and (W(i,π) ∘ S(i,π)) 

respectively, and use the replaced formula to update each H(π); 2) use the following formula 

to update each W(i,j)

(26)

Here,  is element-wise square root. Note that many elements in S(i,j) are 0. We only update 

the elements in W(i,j) whose corresponding elements in S(i,j) are positive. In the following, 

we only focus on such elements. The learned confidence matrix minimizes the inconsistency 

between the original single-domain clustering structure and the prior cross-domain 

relationship. Thus for any element , the smaller the value, the stronger the 
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inconsistency between  and single-domain clustering structures in i and j. Therefore, 

we can sort the values of W(i,j) and report to users the smallest elements and their 

corresponding cross-domain relationships. Accurate relationship can help to improve the 

overall results. On the other hand, inaccurate relationship may provide wrong guidance of 

the clustering process. Our method allows the users to examine these critical relationships 

and improve the accuracy of the results.

3.6. Assigning Optimal Weights Associated with Focused Domain

In Section 3.1.3, we use parameter λ(i,j) ≥ 0 to balance between in-domain clustering 

objective and cross-domain regularizer. Typically, the parameter is given based on the prior 

knowledge of the cross-domain relationship. Therefore, the more reliable the prior cross-

domain relationship, the larger the value of λ(i,j). In real applications, such prior knowledge 

may not be available. In this case, we need an effective approach to automatically balance 

different cross-domain regularizers. This problem, however, is hard to solve due to the 

arbitrary topologies of relationships among domains. To make it feasible, we simplify the 

problem to the case where the user focuses on the clustering accuracy of only one domain at 

a time.

As illustrated in Fig. 2, domain π is the focused domain. There are 5 other domains related 

to it. These related domains serve as side information. As such, we can do a single domain 

clustering for all related domains to obtain each H(i), (1 ≤ i ≤ 5), then use these auxiliary 

domains to improve the accuracy of graph partition for domain π. We make a reasonable 

assumption that the associated weights sum up to 1, i.e., . Formally, if domain 

π is the focused domain, then the following objective function can be used to automatically 

assign optimal weights

(27)

where λ = [λ(π,t1), λ(π,t2), ..., λ(π,tR)]T are the weights on the R regularizers for related 

domains, 1 ∈ ℝR×1 is a vector of all ones, γ > 0 is used to control the complexity of λ. By 

adding the l2-norm, Eq. 27 avoids the trivial solution. Eq. 27 can selectively integrate 

auxiliary domains and assign smaller weights to noisy domains. This will be beneficial to 

the graph partition performance of the focused domain π.

Eq. 27 can be solved using an alternating scheme similar as Algorithm 1, in which H(π) and 

λ are iteratively considered as constants. Specifically, in the first step, we fix λ and update 

H(π) using similar strategy as in Algorithm 1, then we fix H(π) and optimize λ. For 

simplicity, we denote μ = [μt1, μt2, ..., μtR]T, where μr =  (π, tr). Since we fix H(π) at this 

step, the first term in Eq. 27 is a constant and can be ignored, then we can rewrite 27 as 

follows:
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(28)

Eq. 28 is a quadratic optimization problem with respect to λ, and can be formulated as a 

minimization problem

(29)

where β = [β1, β2, ..., βR]T ≥ 0 and θ ≥ 0 are the Karush-Kuhn-Tucker (KKT) multipliers 

[Boyd and Vandenberghe 2004]. The optimal λ* should satisfy the following four 

conditions:

1. Stationary condition: ∇λ*𝒪̂(λ*, β, θ) = μ + 2γ λ* − β − θ1 = 0

2.
Feasible condition: 

3. Dual feasibility: βr ≥ 0, 1 ≤ r ≤ R

4. Complementary slackness: , 1 ≤ r ≤ R

From the stationary condition, λr can be computed as

(30)

We observed that λr depends on the specification of βr and γ, similar as in [Yu et al. 2013], 

we can divide the problem into three cases:

1. When θ − μr > 0, since βr ≥ 0, we get λr > 0. From the complementary slackness, 

we know that βrλr = 0, then we have βr = 0, and therefore, .

2. When θ − μr < 0, since λr ≥ 0, then we have βr > 0. Since βrλr = 0, we have λr = 

0.

3. When θ − μr = 0, since βrλr = 0 and , then we have βr = 0 and λr = 0.

Therefore, if we sort μr by ascending order, μ1 ≤ μ2 ≤ ... ≤ μR, then there exists θ̃ > 0 such 

that μ̃ − μp > 0 and θ̃ − μp+1 ≤ 0. Then λr can be calculated with following formula:

(31)

Eq. 31 implies the intuition of the optimal weights assignment. That is when μr is large, 

which means the clustering inconsistency is high between domain π and tr. The 
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inconsistency may come from either the noisy data in domain kr or noise in cross-domain 

relationship matrix S(π,tr). At this time, Eq. 31 will assign a small weight λr so that the 

model is less likely suffer from those noisy domains and get the most consensus clustering 

result.

Considering that , we can calculate θ as follows

(32)

Thus, we can search the value of p from R to 1 decreasingly [Yu et al. 2013]. Once θ −μp > 
0, then we find the value of p. After we obtain the value of p, we can assign values for each 

λr(1 ≤ r ≤ R) according to Eq. 31. We observe that when γ is very large, θ will be large, and 

all domains will be selected, i.e., each λr will be a small but non-zero value. In contrast, 

when γ is very small, at least one domain (domain t1) will be selected, and other λr’s (r ≠ 1) 

will be 0. Hence, we can use γ to control how many auxiliary domains will be integrated for 

graph partition for domain π. Specifically, the detailed algorithm for assigning optimal 

weights associated with focused domain π is shown in Algorithm 2.

Algorithm 2

Assigning Optimal Weights Associated with Focused Domain π
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Algorithm 2 alternatively optimizes Hπ (line 7) and λ (line 8–22). Since both step decrease 

the value of objective function 27 and the objective function is lower bounded by 0, the 

convergence of the algorithm is guaranteed.

4. EMPIRICAL STUDY

In this section, we present extensive experimental results on evaluating the performance of 

our method.

4.1. Effectiveness Evaluation

We evaluate the proposed method by clustering benchmark data sets from the UCI Archive 

[Asuncion and Newman. 2007]. We use four data sets with class label information, namely 

Iris, Wine, Ionosphere and Breast Cancer Wisconsin (Diagnostic) data sets. They are from 

four different domains. To make each data set contain the same number of (e.g., two) 

clusters, we follow the preprocessing step in [Wang and Davidson 2010] to remove the 

SETOSA class from the Iris data set and Class 1 from the Wine data set. The statistics of the 

resulting data sets are shown in Table III.

For each data set, we compute the affinity matrix using the RBF kernel [Boyd and 

Vandenberghe 2004]. Our goal is to examine whether cross-domain relationship can help to 

enhance the accuracy of the clustering results. We construct two cross-domain relationships: 

Wine-Iris and Ionosphere-WDBC. The relationships are generated based on the class labels, 

i.e., positive (negative) instances in one domain can only be mapped to positive (negative) 

instances in another domain. We use the widely used Clustering Accuracy [Xu et al. 2003] 

to measure the quality of the clustering results. Parameter λ is set to 1 throughout the 

experiments. Since no existing method can handle the multi-domain co-regularized graph 

clustering problem, we compare our CGC method with three representative single-domain 

methods: symmetric NMF [Kuang et al. 2012], K-means [Späth 1985] and spectral 

clustering [Ng et al. 2001]. We report the accuracy when varying the available cross-domain 

instance relationships (from 0 to 1 with 10% increment). The accuracy shown in Fig. 3 is 

averaged over 100 sets of randomly generated relationships.

We have several key observations from Fig. 3. First, CGC significantly outperforms all 

single-domain graph clustering methods, even though single-domain methods may perform 

differently on different data sets. For example, symmetric NMF works better on Wine and 

Iris data sets, while K-means works better on Ionosphere and WDBC data sets. Note that 

when the percentage of available relationships is 0, CGC degrades to symmetric NMF. CGC 

outperforms all alternative methods when cross-domain relationships are available. This 

demonstrates the effectiveness of the cross-domain relationship co-regularized method. We 

also notice that the performance of CGC dramatically improves when the available 

relationships increase from 0 to 30%, suggesting that our method can effectively improve the 

clustering result even with limited information on cross-domain relationship. This is crucial 

for many real-life applications. Finally, we can see that RSS loss is more effective than CD 

loss. This is because RSS loss directly measures the weights of clustering assignment, while 

the CD loss does this indirectly by using linear kernel similarity first (see Section 3.1). Thus, 
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for a given percentage of cross-domain relationships, the method using RSS loss gains more 

improvements over the single-domain clustering than that using CD loss.

4.2. Robustness Evaluation

In real-life applications, both graph data and cross-domain instance relationship may contain 

noise. In this section, we 1) evaluate whether CGC is sensitive to the inconsistent 

relationships, and 2) study the effectiveness of the relationship re-evaluation strategy 

proposed in Section 3.5. Due to space limitation, we only report the results on Wine-Iris data 

set used in the previous section. Similar results can be observed in other data sets.

We add inconsistency into matrix S with ratio r. The results are shown in Fig. 4. The 

percentage of available cross-domain relationships is fixed at 20%. Single-domain 

symmetric NMF is used as a reference method. We observe that, even when the 

inconsistency ratio r is close to 50%, CGC still outperforms the single-domain symmetric 

NMF method. This indicates that our method is robust to noisy relationships. We also 

observe that, when r is very large, CD loss works better than RSS loss, although when r is 

small, RSS loss outperforms the CD loss (as discussed in Section 4.1). When r reaches 1, the 

relationship is full of noise. From the figure, we can see that CD loss is immune to noise.

In Section 3.5, we provide a method to report the cross-domain relationships that violate the 

single-domain clustering structure. We still use the Wine-Iris data set to evaluate its 

effectiveness. As shown in Fig. 5, in the relationship matrix S, each black point represents a 

cross-domain relationship (all with value 1) mapping classes between the two domains. We 

leave the bottom right part of the matrix blank intentionally so that the inconsistent 

relationships only appear between instances in cluster 1 of domain 1 and cluster 2 of domain 

2. The learned confidence matrix W is shown in the figure (entries normalized to [0,1]). The 

smaller the value is, the stronger the evidence that the cross-domain relationship violates the 

original single-domain clustering structure. Reporting these suspicious relationships to users 

will allow them to examine the cross-domain relationships that are likely resulting from 

inaccurate prior knowledge.

4.3. Binary v.s. Weighted Relationship

In this section, we demonstrate that CGC can effectively incorporate weighted cross-domain 

relationship, which may carry richer information than binary relationship. The 20 

Newsgroup data set2 contains documents organized by a hierarchy of topic classes. We 

choose 6 groups as shown in Table IV. For example, at the top level, the 6 groups belong to 

two topics, computer (groups {3,4,5}) or recreation (groups {9,10,11}). The computer 

related data sets can be further partitioned into two subcategories, os (group 3) and sys 

(groups {4, 5}). Similarly, the recreation related data sets consist of subcategories 

motocycles (group 9) and sport (groups 10 and 11).

We generate two domains, each contains randomly sampled 300 documents from the 6 

groups (50 documents from each group). To generate binary relationships, two articles are 

2http://qwone.com/jason/20Newsgroups/
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related if they are from the same high-level topic, i.e., computer or recreation, as shown in 

Fig. 6(a). Weighted relationships are generated based on the topic hierarchy. Given two 

group labels, we compute the longest common prefix. The weight is assigned to be the ratio 

of the length of the common prefix over the length of the shorter of the two labels. The 

weighted relationship matrix is shown in Fig. 6(b). For example, if two documents come 

from the same group, we set the corresponding entry to 1; if one document is from 

rec.sport.baseball and the other from rec.sport.hockey, we set the corresponding entry to 

0.67; if they do not share any label term at all, we set the entry to 0.

We perform experiments using binary and weighted relationships respectively. The affinity 

matrix of documents is computed based on cosine similarity. We cluster the data set into 

either 2 or 6 clusters and results are shown in Fig. 7. We observe that when each domain is 

partitioned into 2 clusters, the binary relationship outperforms the weighted one. This is 

because the binary relationship better represents the top-level topics, computer and 

recreation. On the other hand, for the domain partitioned into 6 clusters, the weighted 

relationship performs significantly better than the binary one. This is because weights 

provide more detailed information on cross-domain relationships than the binary 

relationships.

4.4. Evaluation of Assigning Optimal λ’s Associated with Focused Domain π

In this section, we evaluate the effectiveness of the algorithm proposed in Section 3.6 to 

automatically balance different cross-domain regularizers. We perform evaluation using the 

same setting as in Fig. 2. We have 6 different domains, each contains randomly sampled 300 

documents from the 6 groups (50 documents from each group). Domain π is the one that the 

user focuses on. There are 5 other domains related to it. Each has randomly selected 20% 

available cross-domain instance relationships.

Fig. 8 shows the clustering accuracy of the 5 auxiliary domains and the focused domain π 
using different methods. We observed that for the focused domain π, the CGC algorithm 

with equal weights (λr=1/5) for regularizers outperforms the single domain clustering 

(NMF). The CGC algorithm with optimal weights inferred by the algorithm in Section 3.6 

outperforms the equal weights setting. This demonstrates the effectiveness of the proposed 

algorithm.

Fig. 9 reports the optimal weights (λr) and the corresponding clustering inconsistency μr of 

each auxiliary domain when γ = 0.05. Clearly, the higher clustering inconsistency between 

domains r and π, the smaller weight will be assigned to r. These auxiliary domains with 

large μr are treated as noisy domains. In Fig. 9, only domain 1 and 4 are left when γ is 0.05.

We can further use γ to control how many auxiliary domains will be integrated for graph 

partition for domain π. Fig. 10 shows the optimal weights assignments when γ = 0.1 and γ 
= 0.15 respectively. We observed that when γ is large, all domains will be selected, i.e., each 

λr will be a small but non-zero value. In contrast, when γ is small, less domains will be 

selected such as shown in Fig. 9. This is consistent with what has been discussed in Section 

3.6.
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4.5. Performance Evaluation

In this section, we study the performance of the proposed methods: the number of iterations 

before converging to a local optima and the number of runs needed to find the global optima.

Fig. 11 shows the value of the objective function with respect to the number of iterations on 

different data sets. We observe that the objective function value decreases steadily with more 

iterations. Usually, less than 100 iterations are needed before convergence. We next study 

the proposed population-based Tabu search algorithm for finding global optima. Using the 

newsgroup data sets. Fig. 12 shows the objective function values (arranged in ascending 

order) of 100 runs with randomly selected starting points. It can be seen that most runs 

converge to a global minimum. This observation is consistent with Table II. For example, 

according to Table II, only 4 runs are needed to find the global optima with confidence 

0.999. Thus, the possibility ϕ that a random point converge to a global minimum is very 

high. Fig. 13 shows the number of runs used for finding global optima on various data sets. 

We find that only a few runs are needed to find the global optima.

4.6. Protein Module Detection by Integrating Multi-Domain Heterogenous Data

In this section, we apply the proposed method to detect protein functional modules [Hub and 

de G-root 2009]. The goal is to identify clusters of proteins that have strong interconnection 

with each other. A common approach is to cluster the protein-protein interaction (PPI) 

networks [Asur et al. 2007]. We show that, by integrating multi-domain heterogeneous 

information, such as gene co-expression network [Horvath and Dong 2008] and genetic 

interaction network [Cordell 2009], the performance of the detection algorithm can be 

dramatically improved.

We download the widely used human PPI network from BioGrid3. Three Hypertension 

related gene expression data sets are downloaded from Gene Expression Ominbus4 with ids 

GSE2559, GSE703, and GSE4737. In total, 5412 genes included in all three data sets are 

used to construct gene co-expression network. Pearson correlation coefficients(normalized 

between [0 1]) are used as the weights on edges between genes. The genetic interaction 

network is constructed using a large-scale Hypertension genetic data [Feng and Zhu 2010], 

which contains 490032 genetic markers across 4890 (1952 disease and 2938 healthy) 

samples. We use 1 million top-ranked genetic marker-pairs to construct the network and the 

test statistics are used as the weights on the edges between markers [Zhang et al. 2010]. The 

constructed heterogenous networks are shown in Fig. 14. The relationship between genes 

and genetic markers is many-to-many, since multiple genetic markers may be covered by a 

gene and each marker may be covered by multiple genes due to the overlapping between 

genes. The relationship between proteins and genes is one-to-one.

We apply CGC (with RSS loss) to cluster the generated multi-domain graphs with two 

different settings: (1) equal weights for each cross-domain regularizer; (2) optimal weights 

for each cross-domain relationship. For the first setting, we simply set weights for each 

cross-domain regularizer to 1. For the second setting, we consider Fig. 14 as the 

3http://thebiogrid.org/download.php
4http://www.ncbi.nlm.nih.gov/gds
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combination of the two star networks. They have been shown in Fig. 15. In the first star 

network, genetic interaction network is the focused domain. In the second star network, PPI 

network is the focused domain. Then, we execute the algorithm proposed in Section 3.6 on 

the two star networks respectively to assign optimal λ’s. Finally, we use these optimal λ’s 

for clustering.

We use the standard Gene Set Enrichment Analysis (GSEA) [Mootha et al. 2003] to evaluate 

the significance of the inferred clusters. In particular, for each inferred cluster (protein/gene 

set) T, we identify the most significantly enriched Gene Ontology categories [The Gene 

Ontology Consortium 2000; Cheng et al. 2012]. The significance (p-value) is determined by 

the Fisher’s exact test. The raw p-values are further calibrated to correct for the multiple 

testing problem [Westfall and Young 1993]. To compute calibrated p-values for each T, we 

perform a randomization test, wherein we apply the same test to 1000 randomly created 

gene sets that have the same number of genes as T.

The calibrated p-values of the gene sets learned by CGC and single-domain graph clustering 

methods, symmetric NMF [Kuang et al. 2012], Markov clustering [van Dongen 2000] and 

spectral clustering, when applied on PPI network, are shown in Fig. 16. The clusters are 

arranged in ascending order of their p-values. As can be seen from the figure, by integrating 

three types of heterogenous networks, CGC achieves better performance than the single-

domain methods. Table V shows the number of significant (calibrated p-value ≤ 0.05) 

modules identified by different methods. We find that CGC reports more significant 

functional modules than the single-domain methods. The CGC model using optimal weights 

reports more significant functional modules than that using equal weights. We also apply 

existing multi-view graph clustering method [Kumar et al. 2011; Tang et al. 2009] on the 

gene co-expression networks and PPI network. Since these four networks are of the same 

size, multi-view method can be applied. In total, less than 20 significant modules are 

identified. This is because the gene expression data are very noisy. Multi-view graph 

clustering methods forced to find one common clustering assignment over different data sets 

and thus are more sensitive to noise.

5. RELATED WORK

To our best knowledge, this is the first work to study co-regularized multi-domain graph 

clustering with many-to-many cross-domain relationship. Existing work on multi-view 

graph clustering relies on a fundamental assumption that all views are with respect to the 

same set of instances. This set of instances have multiple representations and different views 

are generated from the same underlying distribution [Chaudhuri et al. 2009]. In multi-view 

graph clustering, research has been done to explore the most consensus clustering structure 

from different views [Kumar and III 2011; Kumar et al. 2011; Tang et al. 2009]. Another 

common approach in multi-view graph clustering is a two-step approach, which first 

combines multiple views into one view, then does clustering on the resulting view [Tang et 

al. 2012; Zhou and Burges 2007]. However, these methods do not address the many-to-many 

cross-domain relationship. Note that our work is different from transfer clustering [Dai et al. 

2008], multi-way clustering [Banerjee et al. 2007; Bekkerman and Mccallum 2005] and 
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multi-task clustering [Gu et al. 2011]. These methods assume that there are some common 

features shared by different domains. They are also not designed for graph data.

Clustering ensemble approaches also aim to find consensus clusters from multiple data 

sources. Strehl and Ghosh [Strehl et al. 2002] proposed instance-based and cluster-based 

approaches for combining multiple partitions. Fern and Brodley [Fern and Brodley 2004] 

developed a hybrid bipartite graph formulation to infer ensemble clustering result. These 

approaches try to combine multiple clustering structures for a set of instances into a single 

consolidated clustering structure. Similar to multi-view graph clustering, they cannot handle 

many-to-many cross-domain relationships.

There are many clustering approaches based on heterogeneous information networks [Sun et 

al. 2009a; Sun et al. 2009b; Zhou and Liu 2013]. The problem setting of these approaches is 

different from ours. In our problem, the cross-domain relationships are incomplete and 

noisy. The clustering approaches on heterogeneous information networks typically require 

the complete relationships between different information networks. In addition, they can not 

evaluate the accuracy of the specified relationships. Moreover, our model can distinguish 

noisy domains and assign smaller weights to them so that the focused domain clustering can 

obtain optimal clustering performance.

6. CONCLUSION AND DISCUSSION

Integrating multiple data sources for graph clustering is an important problem in data mining 

research. Robust and flexible approaches that can incorporate multiple sources to enhance 

graph clustering performance are highly desirable. We develop CGC, which utilizes cross-

domain relationship as co-regularizing penalty to guide the search of consensus clustering 

structure. By using a population-based Tabu Search, CGC can be optimized efficiently while 

guarantee finding the global optimum with given confidence requirement. CGC is robust 

even when the cross-domain relationships based on prior knowledge are noisy. Moreover, it 

is able to automatically identify noisy domains. By assigning smaller weights to noisy 

domains, the CGC algorithm is able to obtain optimal graph partition performance for the 

focused domain. Using various benchmark and real-life data sets, we show that the proposed 

CGC method can dramatically improve the graph clustering performance compared with 

single-domain methods.
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Fig. 1. 
Multi-view graph clustering vs co-regularized multi-domain graph clustering (CGC)
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Fig. 2. 
Focused domain i and 5 domains related to it
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Fig. 3. 
Clustering results on UCI datasets(Wine v.s. Iris, Ionosphere v.s. WDBC)
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Fig. 4. 
Clustering with inconsistent cross-domain relationship
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Fig. 5. 
Relationship matrix S and confidence matrix W on Wine-Iris data set)
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Fig. 6. 
Binary and weighted relationship matrices
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Fig. 7. 
Clustering results on the newsgroup data set with binary or weighted relationships
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Fig. 8. 
Clustering accuracy of auxiliary domains 1–5 and the focused domain π with different 

methods (γ = 0.05)

Cheng et al. Page 32

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2017 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Optimal weights (λr) and the corresponding clustering inconsistency μr of auxiliary domain 

1–5 (γ = 0.05)
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Fig. 10. 
Optimal weights (λr) of auxiliary domains 1–5 with different γ
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Fig. 11. 
Number of iterations to converge (CGC)
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Fig. 12. 
Objective function values of 100 runs with random initializations (newsgroup data)
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Fig. 13. 
Number of Runs Used for Finding Global Optima

Cheng et al. Page 37

ACM Trans Knowl Discov Data. Author manuscript; available in PMC 2017 October 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 14. 
Protein-protein interaction network, gene co-expression network, genetic interaction 

network and cross-domain relationships
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Fig. 15. 
Two star networks for inferring optimal weights
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Fig. 16. 
Comparison of CGC and single-domain graph clustering (k = 100)
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Table I

Summary of symbols and their meanings

Symbols Description

d The number of domains

π The π-th domain

nπ The number of instances in the graph from π

kπ The number of clusters in π

A(π) The affinity matrix of graph in π

ℐ The set of cross-domain relationships

S(i,j) The relationship matrix between instances in i and j

W(i,j) The confidence matrix of relationship matrix S(i,j)

H(π) The clustering indicator matrix of π
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Table III

The UCI benchmarks

Identifier #Instances #Attributes

Iris 100 4

Wine 119 13

Ionosphere 351 34

WDBC 569 30
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Table IV

The newsgroup data

Group Id Label

3 comp.os.ms-windows.misc

4 comp.sys.ibm.pc.hardware

5 comp.sys.mac.hardware

9 rec.motorcycles

10 rec.sport.baseball

11 rec.sport.hockey
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Table V

Gene Ontology (GO) enrichment analysis of the gene sets identified by different methods

Method Number of significant modules

Markov Clustering 21

Spectral Clustering 44

Symmetric NMF 77

CGC(equal weights) 84

CGC(optimal weights) 87
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