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JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 97, NO. D15, PAGES 16,731-16,746, OCTOBER 30, 1992 

Atmospheric Chemistry in the Arctic and Subarctic' 
Influence of Natural Fires, Industrial Emissions, and Stratospheric Inputs 

S.C. WOFSY • , G. W. SACHSE 2, G. L. GREGORY 2, D. R. BLAKE 3, J. D. BRADSHAW'*, 
S. T. SANDHOLM'*, H. B. SlNGH s, J. A. BARRICK 2, R. C. HARRISS 2'6, R. W. TALBOT 2'6, 

M. A. SHIPHAM 2, E. V. BROWELL 2, D. J. JACOB • , AND J. A. LOGAN • 

Haze layers with perturbed concentrations of trace gases, believed to originate from tundra and forest wild 
fires, were observed over extensive areas of Alaska and Canada in 1988. Enhancements of CH4, C2H2, C2H6, 
C3H8, and C`*H•0 were linearly correlated with CO in haze layers, with mean ratios (mole hydrocarbon/mole 
CO) of 0.18 (+ 0.04 (1 o)), 0.0019 (+ 0.0001), 0.0055 (+ 0.0002), 0.0008 (+ 0.0001), and 1.2 
x10 4 (_+0.2x104), respectively. Enhancements of NOy were variable, averaging 0.0056 (+ 0.0030) mole 
NOy/mole CO, while perturbations of NOx were very small, usually undetectable. At least 1/3 of the NOy in the 
haze layers had been converted to peroxyacetyl nitrate (PAN), representing a potential source of NOx to the glo- 
bal atmosphere; much of the balance was oxidized to nitrate (HNO3 and particulate). The composition of sub- 
Arctic haze layers was consistent with aged emissions from smoldering combustion, except for CH4, which 
appears to be partly biogenic. Inputs from the stratosphere and from biomass fires contributed major fractions 
of the NOy in the remote sub-Arctic troposphere. Analysis of aircraft and ground data indicates relatively little 
influence from mid-latitude industrial NOy in this region during summer, possibly excepting transport of PAN. 
Production of 03 was inefficient in sub-Arctic haze layers, less than 0.1 03 molecules per molecule of CO, 
reflecting the low NOx/CO emission ratios from smoldering combustion. Mid-latitude pollution produced much 
more 03, 0.3 - 0.5 03 molecules per molecule of CO, a consequence of higher NOx/CO emission ratios. 

1. INTRODUCTION 1988], with only a few investigations in the boreal zone [Cofer et 
al., 1989]. 

The Arctic and sub-Arctic regions of Alaska, Canada, and The present paper investigates layers with enhanced concentra- 
Greenland represent a vast wilderness with extremely low levels tions of trace gases intercepted by the NASA Electra aircraft over 
of human activity, one of the largest such land areas remaining in Alaska during the Arctic Boundary Layer Expedition (ABLE 3A) ' 
the world. Anthropogenic emissions are negligible over most of in July-August 1988. The summer of 1988 was notably hot and 
the region, except for oil operations on the North Slope [Blake et dry over Alaska and the haze layers are believed to have originat- 
al., this issue]. Atmospheric composition is regulated mainly by ed from natural fires that were widespread in the region [Shipham 
natural processes and by long-range transport of pollution. Natur- et al., this issue]. Data from the haze layers are examined to de- 
al influences include stratosphere-troposphere exchange [Gregory fine primary emission factors from boreal wild fires and to del- 
et al., this issue; Browell et al., this issue], tundra and forest wild incate the course of chemical aging. The chemical signatures of 
fires, and uptake of reactive chemical species by vegetation [Jacob these haze layers are found to be remarkably consistent with emis- 
et al., this issue]. Anthropogenic pollutants have been observed at sions from smoldering combustion observed in the laboratory 
particularly high levels in late winter and spring, during the "Arc- [Lobert et al., 1991], and notably different from emissions from 
tic haze" period [Rahn, 1981; Rahn and McCaffrey, 1980; Barrie flaming combustion. 
and Hoff, 1985; Hansen et al., 1989]. We also assess the relative importances of natural and anthropo- 

Natural fires occur throughout the boreal zone during summer, genie sources in regulating trace gas concentrations over southern 
representing a potentially dominant source of hydrocarbons, NO,,, Alaska. Analysis of data for background air indicates that input 
and particulates. Most previous studies of fires have focussed on from the stratosphere provided a dominant source for O3 [Gregory 
mid-latitudes or on tropical burning [e.g., Hegg et al., 1990; Seiler et al., this issue]. We argue that the stratosphere provided a signi- 
and Crutzen, 1980, Andreae et al., 1988; Crutzen et al., 1985; ticant source for NO• and that natural fires were also important. 
Ward and Hardy, 1991; Greenberg et al., 1984; Cofer et al., Long-range transport of pollution from mid-latitudes may have af- 

• Division of Applied Science and Department of Earth and Planetary Sci- 
ence, Harvard University, Cambridge, Massachusetts. 

2NASA Langley Research Center, Hampton, Virginia. 
3 Department of Chemistry, University of California at Irvine. 
`*School of Earth and Atmospheric Science, Georgia Institute of Technolo- 

gy, Atlanta. 

fected vertical distributions of C2-C4 alkanes and CO but could 
not be detected unambiguously for NO• or 03. 

2. SLrMMERTtME HAZ• LAYERS IN TI-m SUB-ARCTIC 

Plate 1 shows lidar images from several flights during ABLE 
3A, and Figure 1 shows the corresponding flight paths and loca- 

Copyright 1992 by the American Geophysical Union. 
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SNASA Ames Research Center, Moffett Field, California. tions of fires on the day of Flights 14 and 20/21. Flight 14, on 
6Present address: Complex Systems Research Center, University of New July 26, 1988 (Plate la), shows an extensive haze layer between 2 

Hampshire, Durham. and 3kin altitude, as indicated by dark areas in the aerosol image. 
This layer was sampled near 2-km and again at 4-km altitude in a 
vertical profile at point 2 (see Figure 2). Weak ozone enhance- 
ment may have been associated with the aerosol layer (for exam- 
ple, examine the lidar data near Point 1). A fire covering several 
square kilometers was burning about 100 km to the north, and a 
number of very large fires were burning to the east; visibility had 
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Plate 1. LIDAR images of aerosol extinction at 1 pm (upper panels) and 
ozone mixing ratio (lower panels) for (a) Flight 14 (July 26, 1988, and (b) 
Flight 21 (August 4, 1988), showing haze layers in the region near Bethel, 
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Alaska. (•) Data for Flight 33 (August 17, 1988) cover the coastal transect 
from Portland, Maine, to Wallops Island, Virginia. 

been reduced by smoke during the previous few days in Bethel 
[Shipham et al., this issue]. The high aerosol burden suggests that 
a biomass fire was the main source; however the origin cannot be 
uniquely traced. Elevated NO, (see S.T. Sandholm et al., Sum- 

'mettime Arctic troposphere observations related to N. Oy dis•ibu- 
tion and partitioning: ABLE 3A, submitted to Journal of Geophy- 
sical Research, 1991) for experimental detail) was observed (see 
Figure 2 and Table 1), indicating relatively recent emissions, and 
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Plate 1 (continued) 

the town of Bethel (population 4000, 30 - 100 km distant) may Back trajectories passed over numerous and extensive fires idenfi- 
have contributed. fled in satellite images 200 - 1000 km to the east and northeast 

On Flights 20 and 21 (August 3, 1988) a haze layer was ob- (see Figures 34 and 35 in Shipham et al. [this issue]. Enhance- 
served between 3 and 4.Skm altitude (Plate lb and Figure 3). ments of CO and C2 hydrocarbons were similar on Flights 14 and 
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Fig. 1. Flight tracks for (a) Flight 14 and 0a) Flight 20/21 near Bethel, 
Alaska, and (c) Flight 33 along the east coast of the United States. The 
numbers correspond to points in the LIDAR images in Plate 1. The loca- 
tions of spirals are indicated by D (first spiral, descending) and U (second 
spiral, ascending). The tower site is denoted by X; locations of major ac- 
tive fires by crosses. The arrow denotes direction of motion of air parcels 
from trajectory calculations for Flights 20/21 [Shipham et al., this issue], 
for the 300 K level (close to the haze layer altitude). 

20/21, but NO was not perturbed and NOy was only slightly 
elevated on Flights 20/21. 

Carbon monoxide, measured continuously by the differential 
absorption CO measurement (DACOM) insmament [Harriss et al., 
this issue], provides the most sensitive indicator for combustion, 
to which other concentrations may be ratioed to obtain emission 
factors. Correlations between CO and C2H6, and between CO and 
C2H2, were remarkably uniform for the haze layers. Figure 4 
shows linear regressions for composite data from Flights 14, 20 
and 21 (20 grab samples analyzed for hydrocarbons [Blake et al., 
this issue]), giving r2= 0.97 for both, i.e., linear dependence on 
CO could account for 97% of the variance observed for C2H2 and 
C2H6. Propane was more variable than acetylene and ethane, rela- 
tive to CO, but a significant correlation (r2=0.82) was still ob- 
tained in the composite data set (Figure 4c) and for individual 
haze layers (see Table 1). The uniformity of hydrocarbon/CO ra- 
tios in Flights 14 and 20/21 argues strongly for a similar origin for 
haze layers encountered on these flights. 

Concentrations of butane were not correlated with CO in the 

(c) 

I I ! 

-76 -74 -72 .70 

Longitude 

composite set, however consistent correlations, with similar pro- daytime, and layers more than a day old might lose the signature 
portionality coefficients, were found in individual layers (Table 1). of primary emissions. 
The variable results likely reflect the difficulty in making meas- We define emission factors from fares by focussing on haze 
urements at very low concentrations, and atmospheric losses could layers with well-defined boundaries, believed to represent fare 
also play a role. The lifetime for C4Hx0 is only a few hours in the plumes. Primary emission ratios are preserved within the haze 
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Fig. 2. Vertical profiles for trace gases on Flight 14, at Point U (spiral 2) in Plate la. Data for CO, CH4 and 03 represem 10-s 
averages; data for NO and NOy are l-rain averages, and data for nonmethane hydrocarbons represem grab samples. 

layer as clean air is entrained. The uniform ratios obtained for 21) and over the Bering Sea (Flight 23). Linear correlations 
C2H2 and C2H6 support the validity of this framework. between trace gases and CO were derived from the slope of the re- 

Table 1 summarizes observations of trace gas concentrations in gression of Ai against ACO, where A denotes the excess of i over a 
haze layers encountered in the Bethel region (Flights 14, 20, and background obtained by linear interpolation between altitude lim- 
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Fig. 3. (a and b) Vertical profiles on Flight 21 at Point 3 (descending) in Plate lb. (c and d) Profiles on Flight 21 at point 2 (as- 
cending) in Plate 1 b. 

its for the polluted layer defined by the CO enhancement. For of r 2 for 0 3 were relatively low, and ratios AO3/ACO were vari- 
each intercepted layer, results for two profiles were averaged (des- able. 
cending and ascending spirals). Relationships between CO and nonmethane hydrocarbons were 

Examples of regressions against ACO are given in Figure5 for remarkably consistent with laboratory data for smoldering 
the vertical profile at Pt. D on Flight 14 (Plate la). Values of r 2 combustion of biomass material [Crutzen and Andreae, 1990; 
for hydrocarbons and NO• typically exceeded 0.7 and in many Cofer et al., 1989; Lobert et al., 1991]. In fact, observed ratios 
cases, were larger than 0.9. Small enhancements of NO were ob- fell within 10% of laboratory means for C2H2/CO and C2H6/CO. 
served for Flights 14 and 23, but none for Flights 20/21. Values Laboratory data for flaming combustion show more than 3 times 



WOFSY ET AL.: INFLUENCES ON SUBARCTiC ATMOSPHERIC CHEMISTRY 16,737 

F__. 3ooo 

2000 

5000 

4500 

4000 

350O 

25oo 

2000 

1500 

lOOO 

500 

! 

50 lOO 15o 20 17oo 

CO 

1740 1780 1820 186 0 10 

CH4 

20 3O 40 

NO 

50 0 2O0 600 1000 

NOy 

(c) 

20 40 60 80 1 O0 12C 

03 

650 750 850 950 

0 i • i 

40 60 80 100 130 160 1050 11!60 

, 
ß 

ß 

':. 
ß 

ß 
ß 

;. 
,, 

ß 

ß 

80 100 120 140 160 18( 5 10 15 20 25 30 35 40 45 

C2H2 C2H6 C•H8 C4H]o 

Fig. 3. (continued) 

higher emissions of C2H2, and 3 times lower of C2H6, relative to very low in the Arctic, and the small yields of NOy from tundra 
CO [Lobert et al., 1991]. fires can nevertheless represent a significant source. 

Arctic haze layers contained less NOy than observed in associa- Enhancements of ozone are small in the haze layers, even nega- 
tion with fires in the Amazon or at mid-latitudes (see Table la), tive in some, reflecting the low NO,, emissions typical of smolder- 
consistent with a dominant role for smoldering combustion. Most ing fires [Jacob et al., this issue]. Significant positive correlation 
NOy from biomass fires evolves during flaming combustion, by between 03 and CO was observed only in a layer with detectable 
oxidation of fuel nitrogen [Lobert eta/., 1991]. Arctic vegetation enhancement of NO x and relatively high ANO•/ACO (Flight 14). 
is notably low in nitrogen [Chapin and Shaver, 1985]. The vari- The small values for AO3/ACO in Arctic haze layers, about 0.1 
ance of NO• ratios to CO suggests variable contributions from (Table la), may be contrasted with values averaging 0.4 in 
small areas of flaming combustion. Background levels of NO• are urban/industrial pollution (Table 2 and Figure 7). 
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TABLE la. Enhancement Ratios in Biomass Burning and Pollution Humes 

Flight NOy NO C2H2 C2H6 C3H8 C4Hlo CH4 03 PAN 
14(Bethel) 0.0084 0.0003 0.0020 0.0057 0.0006 0.00011 0.23 0.175 0.31 
20(Bethel) 0.0036 <0.00002 0.0019 0.0054 0.0008 0.00010 0.17 (0.076) 0.23 
21 (Bethel) 0.0032 <0.0001 0.0019 0.0055 (0.0009) 0.00015 0.19 (0.040) 0.38 

Mean 0.0056 <0.0001 0.0019 0.0055 0.0008 0.00012 0.18 0.095 0.30 
Bethel x•'0.0003 -+0.0001 x•'0.0002 +.0001 +.00002 +.04 +0.06 -+0.05 

23 (Bering) 0.023 0.0002 0.0020 0.0096 0.0043 0.0046 0.41 0.137 NA 
29(80øN) ...... 0.44 -0.9 - 
Amazon* 0.016 0.014 0.03•' 0.007 0.0014 NA 0.08 0.056(.042•) NA 

N. America* 0.042 0.042 0.0026 0.00516 0.00264 0.0011 0.032 0.037 

All ratios are given relative to CO (mole/mole) except PAN, which is ratioed to NOy. Flights 14, 20, 21 were near Bethel, Alaska, Flight 23 over the 
Bering Sea, Flight 29 over polar sea ice north of Greenland. Proportionality coefficients were computed by averaging results for two plume encounters 
on each flight. "Mean Bethel" is the average of the coefficients from individual flights. Marginally significant correlations are given in parentheses. 
C 2 H 2 :C 2H6 =0.3 (in Anchorage, C2H2 :C2H6 = 1.15). 

*Previous data for forest and savanna fires. Mean values for the Amazon from Andreae et al. [1988] for NO and NOy (computed as 4 (ANO/ACO) 
for fresh plumes) and from Greenberg et al. [ 1984] for hydrocarbons. Data for forest and brush fires in the United States and Canada from Hegg et al. 
[ 1990], with NO,`-NO• assumed in fresh plumes. 

•'For all alkynes, from Greenberg et al. [1984]. 
AO3 

:•The A-•-•- ratio in heavy pollution over the eerrado was 0.056 [Greenberg et al., 1984], the average value was lower (0.042 _+.030) in aged plumes 
over the Amazon Basin lAndteac et al., 1988]. 

TABLE lb. Acid and Aerosol Concentrations (pptv) in Plumes and Background 

Gaseous Acids Aerosol Components 

Flight HNO3 HCOOH CH3COOH NO• SO• C20• MSA* Na + K + NH• [NO•]•' 
14(plume, 2.2 km) 335 350 540 103 169 20 11 33 33 577 1030 
14(4-5 km) 110 230 255 27 23 5 <1 7 3 67 600 
AC 235 120 295 76 146 15 10 26 30 490 430 

23(plume, 3-4 km) 375 295 350 17 18 13 <1 <10 3 56 1150 
23(3-5 km) 90 180 240 20 66 6 <1 50 10 50 690 
AC 285 115 110 -3 -48 7 <1 <-40 -7 6 460 

*Methane sulfonic acid. 

•'Total nitrogen oxides (gaseous and aerosol). 

Peroxyacetyl nitrate (PAN) is an important reservoir for odd ni- I Hudson's Bay [Singh, 1991; Bradshaw et al., 1991] found NO,, in 
trogen, representing up to half the NO• above 4 km [Singh et al., a smoke plume converted to nonradicals within minutes, apparent- 
this issue]. Much of the NO,` emitted by fires appears to be con- ly due to the overwhelming quantities of reactive hydrocarbons 
verted to PAN, which accounted for 30(+5)% of the NO• enhance- emitted by smoldering fires. 
ment in haze layers (Table la). This efficient conversion to PAN The aerosol data in Table lb show that the the haze layer in 
can be explained by the low NO,`/hydrocarbon emission ratios in Flight 14 is rich in NH•, K +, and Na +. Ammonium more than 
the fires and the low atmospheric temperatures [Jacob et al., this offsets the acidity associated with HNO3, HCOOH, and 
issue]. Decomposition of this PAN provided a small but potent CH3COOH, as observed also in haze layers attributed to Amazo- 
source of NO,,, mainly in warmer layers of the atmosphere at low nian fires [Andreae et al., 1988] and in laboratory studies of 
altitude [Singh et al., this issue; Jacob et al., this issue]. smoldering fires [Loberr et al., 1991]. These observations support 

Samples integrated over 30-60 min were obtained for gaseous the view that large biomass fires may be recorded as spikes of am- 
acids and aerosols [Talbot et al., this issue] on Flights 14 and 23, monium and acetate in Greenland ice cores [Legrand et al., 1992]. 
in haze layers and in unperturbed air. Concentrations and Enhancements observed for CH,,, 0.17-0.23 mole CH,,/mole 
enhancements are summarized in Table lb. Concentrations of CO, were significantly higher than emission ratios observed in the 
HNO3 were elevated by factors of 2-3 in the haze layers, account- laboratory from either flaming or smoldering combustion ([0.03 or 
ing for 55 and 65% of the enhancement of NOy. The sum of PAN 0.08 mole/mole, respectively [Lobert et al. 1991), in Amazon 
and HNO3 accounted for-85% of NO• on Flight 14, with the bal- fires (0.08, [Greenberg et al., 1984]) or in boreal forest fires 
ance due to particulate NO•. Conversion of NO,` to reservoir (0.097 [Cofer et al., 1989]). The data suggest that methane associ- 
species is evidently very rapid: recent results obtained near ated with tundra fires could represent in part biogenic methane 
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Fig. 5. Relationships between ACO and (a) ACH4, (b), ANOy, and (c) AO a 
for the haze layer encountered at point 1 on Flight 14 (Plate la). 

dustrial pollutants were observed to be advected off the northeast 
coast of Canada during ABLE 3B [Blake et al., this issue]. The 
high ACH4/ACO ratio in Figure 6, 0.5, suggests episodic transport 
of industrial pollution to this remote area. 

3. NO,,, NOy, AND HYDROCARBONS OVER THE EASTERN UNITED STATES 

Strong pollution influence was observed in the middle tropo- 
sphere between Portland, Maine. and Wallops Island, Virginia., on 
Flight 33 (see Plate lc), as summarized in Figure 7 and Table 2. 
Trajectories indicated probable origin from industrial midwestern 
regions [Shipham et al., this issue]. Polluted layers were rich in 
CI-I4 and O3 (both enhanced by 40-60 ppb) and in CO (elevated 
by 60-80 ppb), except in the boundary layer where ozone was ap- 
parently depleted by surface deposition. The average molar ratio 
AO3/ACO was 0.4 (excluding the boundary layer), similar to 
values observed elsewhere over the continental United States, 

released from the ground, e.g., in response to heating. (Note that [Pickering et al., 1989] and in marine areas influenced by poilu- 
this CI-I4 would be depleted in 13C relative to combustion-derived tion inputs [Fishman and Seiler, 1983; Chameides et al., 1987]. 
methane.) 

The Electra encountered several layers with anomalous trace 
gas concentrations that did not appear to be from biomass fares, for 
example, on Flight 23 between 3 and 4 km (Table 1). Trajectory 
calculations suggest a distant source, in central Siberia, and pollu- 
tion aerosols were absent (see Table lb). However, NO levels 

The average molar ratio ACH4/ACO was about 0.5, twice as large 
as in Alaskan haze layers but similar to observations over the ice 
cap (Figure 6) and over the Bering Sea (Table 1). 

Enhancements of NOy on Flight 33 were small, about 0.8 ppb, 
corresponding to 0.007 moles Nfimole CO (see Figure 7). Con- 
centrations of NO,, were typically less than 100 ppt, and were not 

were enhanced, consistent with recent emissions, and ozone was correlated with CO. The observed ANO•/ACO is much smaller 
elevated as in Flight 14. The origin of the pollution observed in than found near urban complexes [Parrish et al., 1991]. For ex- 
this area remains unclear. ample, at Niwot Ridge [Fahey et al., 1986], NO• concentrations 

Figure 6 shows anomalous data obtained during another flight, exceeded 5 ppb when O3 exceeded 70 ppb, nearly an order of 
over the polar ice cap at 80øN. Concentrations of CH4 and CO magnitude more NO• than observed in Flight 33. In rural central 
were markedly enhanced, and O3 apparently depressed. There Massachusetts, ANOy/ACO is typically 0.03-0.05 when pollution 
were no data for NOy or hydrocarbons for this segment. It is ap- is advected from New York City (J. W. Munger, P.S. Bakwin, B. 
parent from Flight 33 (Table 2) that industrial pollution contains C. Daube, S.-M. Fan, and S.C. Wofsy, unpublished data, 1992). 
about twice as much methane, relative to CO, as haze layers attri- Most of the nitrogen oxide radicals (NO,,) and (-75%) of the NO• 
buted to biomass burning. Conway and Steele [ 1989] and Hansen were apparently removed in transit from industrial sources to the 
et al. [1989] previously reported a strong association of CH4 with aircraft, demonstrating the potential for rapid oxidation followed 
combustion products over the high Arctic, and relatively fresh in- by deposition. 



WOFSY ET AL.' INFLUENCES ON SUBARCTIC ATMOSPHERIC CHEMISTRY 16,741 

TABLE 2. Convariance Ratios (Relative to CO) Over 
the Northeastem United States (Flight 33) 

Flight Segment NOy C2H2 C2H6 C3H8 CH4 03 
A 3-4 km .... 0.48 0.32 

A 2.8-4.2 km .... 0.48 0.47 

A <1.5 km .... 0.55 -0.16 

B >4.5km 0.0081 0.0017 0. 0. 0.57;0.27 0.63;0.17 

C 1-4.5km 0.0089 0.0017 0.037 0.015 0.76 0.43 

A, spiral departing from Portland; covafiance of CO with 03 differed in 
the mixed layer from alttiutdes above; 
B, transit, Portland to Wallops Island; Two distinctly different values were 
noted for the covafiance of CH4 and 03 with CO, with higher values north 

of about 40øN; C, descent into Wallops Island. 
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Fig. 6. Enhancements of CH 4 and dO, and reduction of 03 observed during level flight at BOøN latitude over the polar ice cap on 
Flight 29. Concentrations of H20 were high [see also Gregory et al., this issue]. 

4. DISCUSSION represents the dominant ozone source in this region during sum- 
mer. Photochemical production of 0 3 is small or negative, in the 

Figure 8 shows average vertical profiles for the Bethel area, us- background atmosphere and also in haze layers (see above and 
ing data only for flights where no distinct haze layers were en- Jacob et al. [this issue]). We were unable to detect significant 
countered (11-13, 15-17, and 25) to define the background atmos- correlations between 03 and CO outside of haze layers (see Fig- 
pheric composition over sub-Arctic Alaska. Flights over the Bet- ures 8b, 9b, and Gregory et al. [this issue]). These data differ 
ing Sea were not included, due to the pollution encountered there. markedly from aircraft observations over the North Pacific and the 
Steep gradients, extending over the entire altitude range, were ob- North Ariantic, which indicate positive correlations between 03 
served for NOy (Figure 8a) and 03. Strong evidence indicates that and CO [Fishman and Seiler, 1983; Fishman et al., 1987; 
vigorous stratosphere-troposphere exchange [Gregory et al., this Chameides et al., 1987, 1989; Marenco and Said, 1989]. 
issue; Browell et al., this issue; Danielsen and Hipskind, 1980] Mean profiles for CO, C2H2, and C2-C• alkanes show signifi- 
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TABLE 3. Relationships Among NO•, Hydrocarbons, 
CO, and O3 (Equation (1)) 

Grabsample Subset 

Species al (ppt/ppb) a2(ppt/ppb) r 2' Flights 
x 03 x CO 

NO• 5.2 (:[-0.4) 3.4 (:[-0.6) 0.43 { 0.38 } 
C2H6 1.6 (:[0.4) 6.0 (_+0.14) 0.74 {0.27} 11-17,20,21,25 
C2H2 0.12 (_+0.03) 2.4 (_+0.05) 0.89 {0.13} (includes haze layers, 
C3H8 0.05(:[0.04) 1.6(:[0.09) 0.5{0.10} no Bering Sea data) 

NOy 5.1 (:[0.5) 2.9 (+1.3) 0.34 {0.33} 11-13,15-17,25 (no haze, no Bering) 

NO• 11.2 (:k-0.8) 4.6 (+1.2) 0.46 {0.43} 19,22,23 (Bering Sea) 

Full Data Set 

Species al (ppt/ppb) a2(ppt/ppb) r 2' Rights 

NOy 5.7 (_+0.27) 4.0 (_+0.7) 0.47 11-13,15-17,25 
NO• 6.05 (_+0.26) -- { 0.44 } (no haze, no Bering) 

CH4 -- 0.4 0.02 

CH 4 -0.5 0.4 0.02 

NO• 5.5 (+1.3) -5.4 (+_2.9) 0.47 
NO• 5.0 (_+0.9) -- { 0.38 } 
CH 4 -- 1.1 0.58 

11-13,15-17,25 (5-6 km only) 

NO• 7.2 (+1.0) -- { 0.91 } mean vertical gradient 

* Value for r 2, fraction of the variance removed by the two parameter fit. If in braces, r 2 for 03 the only independent variable. 

ground levels that may be attributed to biomass fares, industrial including haze layer data. Flights over the Bering Sea are con- 
emissions, and inputs from the stratosphere. If travel times are 
short compared to loss rates, ratios to CO should reflect the emis- 
sion ratios for principal combustion sources. Correlation analysis 
cannot uniquely identify a source, since sinks can be quite dif- 
ferent, as in the case of wet deposition which removes NO• but 
leaves CO unchanged. Nevertheless, near sources CO and NO• 
are correlated (see Figures 2,3, 5b and 7a) and analysis of NO•/CO 

sidered separately. Results in braces denote fits using only ozone 
as an independent variable, indicating how much of the variance 
(?) is associated with 03. 

Figure 9a shows the correlation between NO• and 03 for all 
"background" observations. As much as 30-45% of the variance 
of NO• is linearly related to 03 in the Bethel area, but there is no 
significant correlation with CO. Particularly striking is the result 

correlations provides useful constraints on possible sources of for level flight legs at high altitude, where nearly half the variance 
NO•. 

We examine correlations among various species measured over 
southern Alaska using the linear form 

Y = a o + al [03] + a2[CO]. 

Here Y is the concentration of the species, and the coefficients at 

can be explained by correlation with 03 alone (see rows labeled 
"5-6 km only" in the lower panel of Table 3). The average molar 
ratio, ANOy/AO3, lies between 0.005 and 0.007, strikingly close to 
the ratio in the lower stratosphere [Hubler et al., 1990; Kawa et 
al., 1990]. 

Input of NO• from biomass fires could be detected on days 
when distinct haze layers were encountered (Table 1), but on other 

are determined by linear regression. The indicator species CO and days, only a small part of the NOy variance was correlated with 
03 are uncorrelated (Figure 9b). If concentrations correlate CO. The behavior of NO• over southern Alaska contrasts with the 
strongly with 03, we suspect a contribution from the stratosphere, hydrocarbons, all of which correlated strongly with CO but weak- 
or perhaps from high-flying aircraft, while correlations with CO ly, or not at all, with 03. 
suggest a combustion component. These results point to the stratosphere as an important source 

Table 3 shows best fit coefficients in Eq. (1)obtained using data for NO• in this region, just as it is the main source of ozone 
for the Bethel area. The top panel of the table uses data [Danielsen and Hipsla'ncl, 1980; Gregory et al., this issue; 
corresponding to available hydrocarbon measurements (grab sam- Browell et al., this issue]. Levy et al. [1980] and Liu et al. [1980] 
ple set, 130 data points), and the lower panel employs the larger proposed that the stratosphere should provide a major fraction of 
subset (700 data points) with data available for 03, CO, and NO•. tropospheric NO•, while Logan [1983] and Kasibhatla et al. 
Results are shown for "background" air (no identifiable haze [1991] concluded that stratospheric input could account for only a 
layers on the flight: Flights 11-13, 15-17, 25), for "background" small fraction of the NO• deposition flux at the surface. In ABLE 
air plus flights with haze layers (14 and 20/21), but with data ex- 3A, the measured NO• deposition flux was 2-5 x109 cm-2s -• 
cluded from the haze layers themselves, and for all these flights [Jacob et al., this issue; Bakwin et al., this issue], about 10x larger 
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than the global mean flux of NOy from the stratosphere. Dry PAN, thus facilitating long-range transport of NOy with resulting 
deposition, a major fraction of the total, occurs mostly over land, perturbation to NO x in the remote amaosphere [Crutzen, 1979; 
hence the mean stratospheric input could account readily for 15- Kasting and Singh, 1986]. 
20% of the total. Stratosphere-troposphere exchange at high lati- If areas burned in tundra fires increase, as noted in response to 
tudes is more vigorous than the mean [Browell et al., this issue; climate warming in northern Ontario between 1960 and 1990 
Danielsen and Hipskind, 1980], and it seems reasonable for the [Schindler et al., 1990], enhancements might be expected in levels 
stratosphere to supply 40% or more of NO•. Analysis of fire oc- of O3 and NO•. Should climate warm in response to global in- 
curfence during the summer of 1988 indicated that -30% of the creases in greenhouse gases, we can expect increased fires and as- 
regional deposition flux could be provided by NO• from biomass sociated perturbations to oxidant and aerosol chemistry to be 
fires [Jacob et al., this issue]. We argue therefore that NO• is pro- among the diverse environmental impacts. 
vided mainly by stratospheric inputs and by biomass fires. If these 
inferences axe correct the anthropogenic component of NOy would Acknowledgments. This work was supported by NASA grants to parti- 
be smaller than natural influences in this region during summer. cipating institutions for ABLE 3A, by NSF grants ATM 84-13153 and 
We could rationalize this result by citing the rapid removal of in- 89-21119 to Harvard University, and by the Packard Foundation. 
dustrial NOy demonstrated by the data from Flight 33 (Figure 7). 
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