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Reminders of past choices bias decisions
for reward in humans
Aaron M. Bornstein1, Mel W. Khaw2, Daphna Shohamy3,4 & Nathaniel D. Daw1,5

We provide evidence that decisions are made by consulting memories for individual past

experiences, and that this process can be biased in favour of past choices using incidental

reminders. First, in a standard rewarded choice task, we show that a model that estimates

value at decision-time using individual samples of past outcomes fits choices and decision-

related neural activity better than a canonical incremental learning model. In a second

experiment, we bias this sampling process by incidentally reminding participants of individual

past decisions. The next decision after a reminder shows a strong influence of the action

taken and value received on the reminded trial. These results provide new empirical support

for a decision architecture that relies on samples of individual past choice episodes rather

than incrementally averaged rewards in evaluating options and has suggestive implications

for the underlying cognitive and neural mechanisms.
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H
ow do we use experience to guide our choices? One
approach is to use a simple heuristic: do what has worked
best recently. This idea is captured in prominent

reinforcement learning (RL) models, which build a running
average of the rewards received for each action taken, updating
this average incrementally as new rewards are experienced. Such
averages can be updated by error-driven learning, tying this
approach to observations of reward prediction errors (RPEs) in
the brain1,2. This approach is effective and efficient in the sorts of
tasks typically used to study reward learning, which usually
involve many repeated choices among a small number of options
whose only salient difference is how much or how often they are
rewarded2–5. A running average falls short, however, in more
naturalistic settings, where experience is sparse and relevant
evidence might concern only a single, or a small number, of
individual experiences6–12.

Here we provide evidence in favour of a more flexible
approach, in which choosers draw on memories for individual
instances of relevant previous choices and use them to predict
how the current decision might turn out. For example, when
deciding where to eat dinner, I might recall a particular evening
dining at a particular restaurant and make my decision based on
how much I enjoyed the meal I had that night. Making decisions
this way allows us to pick and choose the most relevant of
previous experiences, rather than relying on static summary
representations. The latter would be useless in considering a
brand new restaurant, whereas a richer memory representation of
each past experience could be used to develop an informed guess,
by generalizing from experiences at similar establishments. Along
these lines, Plonsky et al.13 showed that a similarity-based
approach to selecting past experiences capture a complex pattern
of dependencies of choice behaviour on rare, but impactful, past
experiences, leading to near-optimal performance in a wide range
of dynamic choice tasks. In this way, evaluating options by
sampling the most similar previous experiences resembles
non-parametric and kernel-based methods long employed in
statistics and machine learning, which draw on individual
samples of raw experience14,15. The effectiveness of these
estimation algorithms reinforces recent interest in the idea that
humans and animals draw on memory to flexibly compute
decision variables at choice time11,16–22 rather than relying on
precomputed averages. Indeed, recent work has shown that
associations formed during even a single experience can affect
later choice behaviour23,24.

We present results from two experiments in support of this
hypothesis. First, we develop and test a computational model of
sequential choice that estimates values by selecting and evaluating
individual memories of past trials. We show that this sampling
model is a better fit to trial-by-trial choice sequences than is a
standard incremental learning algorithm, even in the sort of
repeated choice task previously studied using RL models. In a
second study, we directly test the prediction that value estimation
draws on memories of individual trials, by demonstrating a causal
effect on choices of specific, selected experiences, brought to mind
by refreshing memories of individual past decision trials.

Results
Experiment 1. We first formally investigated whether a sampling
model could provide a better trial-by-trial fit to human choices
than standard incremental learning. To test this, we re-analysed
choice and neuroimaging data from a previously published
learning study4. Twenty participants (14 presented with
neuroimaging data previously and 6 additional behaviour-only
participants included here) performed a series of choices between
four virtual slot machines with time-varying payoffs (Fig. 1a,b).

Here we compared a standard incremental learning rule (of the
form tested in the original study) with a sampling model that
evaluates each option by retrieving the rewards received at
individual past choices of that option, stochastically sampled with
probabilities given by their temporal recency (see Methods).
These sampled rewards are averaged to compute a net value for
each option.

In the limit, when a potentially infinite number of samples is
considered, these sample-based averages would be identical to
those computed by the standard model, as the incremental
learning rule recursively computes a recency-weighted running
average of the experienced outcomes. When fewer samples are
considered, the predicted statistics of resulting choices differ
systematically. This is because although the value of the sample is,
in expectation, the same as the weighted average of the quantities
from which it was drawn, individual samples will fluctuate
around this mean. For this reason, choices arising from a
nonlinear (for example, max or softmax) comparison of these
sampled values across options, do not, in general, have the same
statistics as the max of the averages. For instance, the running
average approach predicts a fixed, vanishingly small influence of
long-past rewards, whereas in the sampling model events from
the far past could still have occasional, but sizable, influence on
choices. Furthermore, whereas standard incremental learning
models imply that the predicted choice distribution is invariant to
the particular sequence of outcomes that gave rise to the options’
values, given only their means, for sampling, even holding
constant the average outcomes, the choice distributions will differ
depending on the particular sequence (for example, variance) of
outcomes experienced. Our primary model of interest was a
sampling model that drew only one sample of past experience.
(We also considered variants that drew a greater number of
samples; none of these were superior to the one-sample version.)
Critically, the two models were carefully set up so as to be
matched in all respects other than the key feature of interest
(sampling versus averaging): in addition to recency weighting, the
choice rules and free parameters were identical.

We computed, for each trial and each participant individually,
the probability that each model would produce the choice
observed and estimated the parameter values that maximized
these choice likelihoods. Comparing these maximum-likelihood
estimates we found that, across the population and for all
20 participants individually, choices were better fit by our
sampling model than by the learning model (mean log Bayes
factor against temporal difference (TD) 8.8867, s.e.m. 1.0811,
exceedance probability 40.99 and Fig. 1c). Fit parameters for
each model are shown in Table 1.

We repeated these analyses on simulated data for which the
ground truth model was known to verify that these two models
were distinguishable from choice behaviour (Supplementary
Notes ‘Simulated model fits and simulated regression results’,
Supplementary Fig. 1 and Supplementary Table 1), and also
tested the generality of this conclusion under a different
specification of the softmax choice noise rule (Supplementary
Note ‘Alternative forms of choice noise’). We next examined
neural correlates of decision variables from the model (RPE and
chosen value (CV)), recorded using functional magnetic
resonance imaging (fMRI) collected on a subset of participants
and verified that, similar to the choices, both were better
accounted for by decision variable time series derived from the
Sampler model rather than the standard one (Supplementary
Note ‘Neuroimaging reanalysis’ and Supplementary Fig. 2).

Experiment 2. The above results concord with our hypothesis
that human decisions are guided by samples of individual past
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choices, even in a simple repeated choice task. However, one
disadvantage of applying sampling models to this type of task is
that trials are essentially similar; we cannot directly observe
(and must instead marginalize when computing model fit) which
individual trials participants have sampled. For this reason, our
conclusions are based on an overall comparison of model fit
rather than a test of clear qualitative features of either model.
Moreover, the experiment was correlational, rather than causal.
To address this, we performed a second behavioural experiment
to provide more direct support for the hypothesis by bringing the
sampling process under experimental control, so as to measure
the impact of a single, selected experience on choices. We
leveraged the fact that multiple aspects of the choice experience
can be bound together as a single representation. Therefore, we
used choice-incidental—but still trial-unique—information to tag
each choice as a unique event. Specifically, we modified the bandit
task from Experiment 1 so that each trial involved a uniquely
identifying photograph of an everyday object—a ‘ticket’ emitted
by the chosen slot machine (see also ref. 25). To simplify the task
and analysis, the number of choice options was reduced to two
from four and outcome values were limited to wins or losses of $5
(Fig. 2a). The probability that each machine would pay a winning
ticket varied from trial to trial (Fig. 2b). Other than the ticket

presentation, this task matches the sort of ‘two-armed bandit’
traditionally employed in RL studies.

Interspersed among the 130 choices were 32 recognition probe
trials on which participants were asked whether or not they
recognized a given ‘ticket’ image (Fig. 2c). These probes were
intended to bring to mind the specific trial on which the probed
image was first experienced—including the bandit chosen before
the ticket appeared and the outcome received after. We
hypothesized that this reminder would make the original
experience more likely to be sampled during the ensuing choice.
In contrast, standard running average models predict no such
effect, as they base choices only on the summary statistics. For
this reason, this experiment (unlike the previous one) exercises a
clear, qualitative prediction between the models: sensitivity to
probes evoking individual choices. Probes evoked choices that
were, on average, 39 trials in the past—a temporal horizon
minimizing both the influence of that reward on a recency
weighted running average, as well as the likelihood that the
reminded trial would still be present in working memory26. After
each probe, the choice task continued as before. To incorporate
reminded trials into the Sampler model, we added a free
parameter aevoked, specifying the likelihood of reminded trials
being incorporated into the sample-based value estimation
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Figure 1 | Restless bandit task and re-analysis. (a) Four-armed bandit from Daw et al. (2006). Participants chose between four slot machines to receive

points. (b) Payoffs. The mean amount of points paid out by each machine varied slowly over the course of the experiment. (c) Model comparison. Log

Bayes factors favouring sampling over the TD model.

Table 1 | Fit model parameters for Experiment 1.

Model a b bc Log Bayes

TD 0.7754 (0.0472) 8.7069 (0.9564) 0.6498 (0.0193) 8.8867 (1.0811)
Sampler 0.7277 (0.0447) 9.0130 (1.1012) 0.3046 (0.1288) -

TD, temporal difference.
The parameters shown are the mean (s.e.m.) across subjects. The final column shows the mean (s.e.m.) of the log Bayes Factor versus the Sampler model (smaller is better).
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process. Matching the first analysis, this Sampler model proved a
superior fit to choices than did an incremental learning model, for
19 out of 21 participants individually and across the population
as a whole, despite being penalized for the additional free
parameter (mean log Bayes factor against TD 6.9182, s.e.m.
1.3227, exceedance probability 40.99; Fig. 3a and model
parameters in Table 2).

However, the key qualitative test of our hypothesis is whether
choices following a recognition probe show an effect of the cued
trial. For example, if a given recognition memory probe evoked a
trial on which the participant chose the blue bandit and was

rewarded, then the participant should be more likely to choose
the blue bandit on the subsequent choice trial. Conversely, if the
choice had resulted in a loss, then they should be more likely to
choose the alternative bandit (in this example, red). Incremental
RL would be unaffected by the memory probes, because it does
not maintain memories for individual trials and because the
memory probe trials do not provide relevant direct reward
experience that could be used to update running average values
for the slot machines. Consistent with the sampling model, we
observed that choices following a memory probe were also
significantly influenced by the much older experience evoked by
the probed ticket (t(20)¼ 3.8749, P¼ 0.0009; Fig. 3b). The
magnitude of the increase in choice probability was comparable
to that of a reward directly received between two and three trials
in the past, suggesting that the reminder probe was effective in
bringing to mind the associated bandit-reward link, and that
reward information was then incorporated into choice, on a large
fraction of post-reminder trials. Simulations demonstrated that
the Sampler model does indeed capture this qualitative pattern of
data (Supplementary Fig. 1).

Discussion
These results establish that choices can be made by sampling
from individual trial memories, an architecture wholly different
from those traditionally envisioned to explain reward learning.
We showed that this model can capture the characteristic—and
behaviourally observed27—recency dependence of incremental
averaging approaches, yet provides a superior fit to behaviour and
decision-related neural signals even in a task originally designed
to induce such incremental value updating. This finding goes
beyond earlier work that showed that aggregate features of
choices—such as a chooser’s variable sensitivity to risky options—
are also consistent with a similar sampling model28,29. Critically,
the results of Experiment 1 imply that episodic sampling obtains
as an influence on choices even when participants are not
explicitly encouraged to encode memories of individual trials.
However, the results do not directly test the other part of
our hypothesis that choices are driven by memories of
individual trials. We therefore tested this idea more directly in
a second experiment. In Experiment 2, we strongly encouraged
participants to form memories of each trial, so that we could test
the influence these memories had on later choices. We brought
these past trials to mind by the use of incidental stimulus–
stimulus associations present at the time of the original decision
and showed that reward received on that individual trial had a
reliable effect on choices following the reminder.

The fact that there was such a strong incentive to encode
individual trial memories in Experiment 2 could, in principle,
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(c) Memory probes. Participants encountered 32 recognition memory

probes. On 26 of these probe trials, participants were shown objects that

were either received on a previous choice trial (‘valid’), whereas on others

they were shown new objects that were not part of any previous trial

(‘invalid’). Participants were asked only to perform a simple old/new

recognition judgement—to press ‘yes’ if they had seen the image previously

in this task and ‘no’ if they had not. After each recognition probe, the

sequence of slot machine choices continued as before.
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affect the decisions that subjects made. However, just as
Experiment 2 extends the results of Experiment 1, Experiment
1 supports the findings of Experiment 2, by showing that the
same model obtains on choices in a standard sequential choice
experiment (indeed, one that was carried out without reference to
the episodic sampling model). Episodic memory is characterized
by the formation of stimulus–stimulus associations during a
single experience. Therefore, this result suggests a key role in
sampling decisions for the episodic memory system.

Episodic sampling is a potentially powerful mechanism for
choice, as it allows generalizing past experience to apply to novel
situations in which decision makers can rely on neither learned
action values nor structured, semantic knowledge. In these
situations, the episodic memory system could use what features
partially overlap with past experience to pattern complete and
make predictions for entirely new outcomes using elements of old
ones10,12. Importantly, episodic sampling allows these sorts of
generalizations to be made at the time of choice, rather than
needing to rely on links inferred before the decision at hand30.
Although the latter sort of generalization during encoding can
account for many putatively ‘model-based’ generalization
phenomena (for example, ref. 10), retrieval of episodes or
semantic information at the time of a choice is necessary for
evaluating unanticipated options12 and to make use of additional
information learned between initial encoding and choice22.
Such an ability to flexibly generalize—as in latent learning and
other revaluation tasks—has previously been associated with a
‘model-based’ learning system, distinct from the ‘model-free’
reward averaging approach6. However, although a common
assumption is that such behaviours arise from more semantic
representations—similar to cognitive maps—learned over
multiple experiences8, it is possible that samples of individual
episodes (for example, spatial trajectories) might play an
analogous role. Thus, it remains unclear whether episodic
sampling similar to that considered here supports model-based
learning in other tasks, or if it represents yet a third way of
deciding18,22. Suggestively, we have previously shown that BOLD
signal in the hippocampus at the time of choice scales with
the difficulty of making these sorts of ‘latent learning’ decisions—
consistent with a sampling process that draws on a wider range of
memories when associative information is less decisive about the
right action to take12. Relatedly, we have shown that enhanced
hippocampal–striatal functional connectivity in a bandit task is
associated with reduced influence of incremental reward learning
on striatal RPEs and choices, and with enhanced episodic
encoding for choice options25.

One open question is the similarity or priority function by
which samples are selected from episodic memory. In the terms
of non-parametric statistical models, this function corresponds to
the kernel and may itself be modifiable by experience22. Here, for
simplicity and because of the relative lack of structure in the task,
we assumed that samples were drawn according to the recency of
the experience. Hertwig and Erev31 have shown this is a
reasonable approximation when the underlying similarity
structure of experiences is unknown. However, this recency
may only be an approximation and, in environments with more

definite structure than the one we use here, different functions or
additional dimensions of similarity may obtain. (Indeed, the
selection function shown here is likely to be an ineffective learner
of tasks in which simple temporal similarity is violated, such as
those with payoff rules that alternate from trial to trial.) For
instance, Plonsky et al.13 showed that across several kinds of
sequential, binary choice tasks, a model that used the recent
sequence of outcomes as a template for selecting past experiences
had superior performance to one that selected on temporal
recency alone. Connecting these sampling procedures to episodic
memory opens up the possibility that these effects, and others,
can be tied to well-known features of that memory system.

Indeed, the link between reward-guided choice and episodic
memory brings into contact two areas of study with well-
developed bodies of computational theory and widespread
impacts for cognition more broadly32 and opens the door for
leveraging many other features of episodic memory to explain—
and perhaps alter—decisions. Although in the present study we
focus exclusively on the direct association between action and
reward outcome, as the choice trials contain little other useful
information, decisions in the real world take place in contexts
laden with associative information that could be of relevance to
decisions. It seems reasonable to suspect that adaptive decision-
makers can leverage this information to support value estimation.
Along these lines, in a follow-up study33, we provide behavioural
and neuroimaging evidence that the context in which a sampled
experience was first learned predicts the identity of the next
experience to be sampled. Further work will be necessary to
understand the way in which the episodic nature of memory
samples affects the process by which they are sampled.

A related question is to what extent episodic sampling is
separate from ‘model-free’ prediction error mechanisms
associated with dopamine and its targets in striatum1,2. The
finding here that neural RPE signals are captured by expectations
formed using associative memories concords with our previous
observation that RPE signals during goal-directed decision tasks
were better explained by expectations derived from
hippocampally linked associative information11 and fit with a
series of observations that the nucleus accumbens (NAcc)
RPE signal reflects a mixture of value signals beyond simple
model-free TD learning9,11,34. One possible unifying explanation
for these and the previous findings of model-free RPE is that the
systems partly overlap, with samples from memory used to train
an average-value representation that guides action selection35. In
this way, rather than computing sampled values separately, direct
and sampled experiences might be mixed freely, buffered through
a single prediction error signal and net value store36,37. Notably,
RPE signals in striatum are influenced by ‘model-based’
and hippocampally linked stimulus–stimulus information11,34

and are disrupted when participants successfully form episodic
memories for task-irrelevant incidental material25, suggesting an
ongoing, trial-by-trial interaction. (We fit this sort of hybrid
model to the data collected in Experiment 2, but the results
were equivocal; see Supplementary Notes ‘Adding evoked trials to
the TD model and hybrid sampler and TD model’, and
Supplementary Tables 2 and 3).

Table 2 | Fit model parameters for Experiment 2.

Model a aevoked b bc Log Bayes

TD 0.5552 (0.0862) – 1.7551 (0.6845) �0.0930 (0.2354) 6.9182 (1.3227)
Sampler 0.5393 (0.0583) 0.4386 (0.0990) 2.2869 (0.4943) 0.5855 (0.3215) –

TD, temporal difference.
The parameters shown are the mean (s.e.m.) across subjects. The final column shows the mean (s.e.m.) of the log Bayes Factor versus the Sampler model (smaller is better).
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Altogether, although we show here that episodic sampling can
explain choice behaviour and neural signals better than incre-
mental learning alone, normative frameworks support the idea
that multiple forms of value learning coexist and their influence
on each given choice fluctuates according to momentary
demands6,38,39. This finding concords with those cooperative
frameworks by showing that the sampling mechanism may
contribute to decision-making continually, not just in situations
of low experience or uncertain associative structure (c.f. ref. 18).
A superposition of two recency-weighted processes may be one
reason why several studies have observed that actions exhibit a
double-exponential form of dependence on past outcomes27,40—
with components that have been linked to separate activity in
striatum and hippocampus11,41. The results also connect to a
known role for episodic memory in ongoing elaborative
prospection about future situations42.

More broadly, an explicit link between episodic memory and
adaptive instrumental control may serve as one rationalization for
why it is that organisms encode rich, associatively dense
memories of individual events in the first place43. An open
question is to what degree the content and persistence of certain
memories, rather than others, can be attributed to the potential
usefulness of those memories for later decision-making.

Methods
Experiment 1: Four-armed bandit from Daw et al. (2006). Participants
completed a four-choice bandit task, choosing in each of 300 trials between four
different slot machines and receiving a payoff (between 0 and 100 points) for their
choice. The data analysed comprise choice timeseries for the 14 fMRI participants
reported previously4 and for behavioural analyses are augmented with 6 additional
behavioural-only pilot participants collected for (but not reported with) that study.
Over the experiment, the mean payoffs for the machines diffused according to
independent Gaussian random walks.

For a detailed description of the experimental methods, materials and previous
analyses, see the prior report4. This section describes the new analyses we
performed.

Choice behaviour. Two distinct types of models were compared in their effec-
tiveness at explaining each participant’s time series of choices. The first imple-
mented a TD learning approach that kept a running average estimate of action
values. The second followed a strategy of sampling from previous experiences to
estimate these values at the time of decision.

The standard TD model maintains a value QTD
t ðaÞ for each option a, updating it

following each choice of a according to the difference, r�QTD
t ðaÞ, between

obtained and expected rewards. The amount of update is controlled by a step-size
(learning rate) parameter aTD. Formally, on each timestep we updated the value
estimate of each action according to equation (1):

QTD
t acð Þ ¼ QTD

t� 1 acð Þþ aTD½rt �QTD
t� 1 acð Þ� ð1Þ

where rt is the reward received at trial t, ac is the chosen action and au is the
unchosen action.

Indexing the previous choices of a as i¼ 1, 2yt� 1 choices into the past, this
rule can easily be shown44 at each step to make QTD

t ðaÞ a weighted average of the
rewards previously received for that choice:

QTD
t acð Þ ¼ aTD�

X
i

ð1� aTDÞiri� 1 ð2Þ

with weights decaying exponentially (by in the choice lag i. The resulting decision
variable QTD is linked to choice probabilities according to the standard softmax
function with inverse temperature parameter bTD. A third parameter, bc, modelled
any perseverative effect of the previous trial’s choice, irrespective of reward
received41,45. Choice probabilities were therefore estimated via the combined
softmax as:

pt a ¼ Að Þ ¼ eb
cIc

t þ bTDQTD
t ðAÞP

i eb
cIc

t þbTD QTD
t ðaiÞ

ð3Þ

where Ic
t is an indicator function returning 1 if the previous choice (at trial t� 1)

was identical to that on the current trial (t) and 0 otherwise.
A similar sort of temporally decaying dependence on past rewards can also arise

from a strategy of recency-based sampling. Instead of maintaining a running
average, the sampling model stochastically samples one previous reward for each

option with probability given by the same form of weighting:

P Qsample
i að Þ ¼ ri

� �
¼ asampleð1� asampleÞt� i ð4Þ

In this model, the most recent experience is most likely to be sampled and previous
trials are successively exponentially less likely to be sampled. (We also considered a
version of the model that samples k rewards, with replacement, and averages them
to produce Qsample

t ðaÞ; this model limits to the standard TD model as k-N). The
models were equated in all aspects other than the functions they used to aggregate
past experience.

For the sampling model, this probability is computed as the likelihood-weighted
expectation of equation (3). One sample is drawn for each bandit at each trial,
independently according to equation (4) within that bandit’s reward history. This
expectation is taken over every possible individual sample ri, with weighting

P Qsample
i að Þ ¼ ri

� �
, as given by equation (4). One sample is drawn for each bandit

at each trial and so the full choice probability is computed as a vector across
bandits, over all possible combinations of samples across bandits (four bandits in
Experiment 1, and two bandits in Experiment 2). For illustration, in Experiment 2,
the computation of pi a ¼ Aið Þ is written as equation (5):

Xt� 1

j¼1

PðQsample
t Aið Þ ¼ rjÞ?

Xt� 1

k¼1

P Qsample
t A 6¼ i

� �
¼ rk

� � eb
cIc

t þbsample rj

eb
c Ic

t þ bsamplerj þ eb
c Ic

t þ bsamplerk

ð5Þ

For Experiment 1, the expression is analogous but contains four (rather than two)
nested sums, corresponding to the reward sampled for each bandit. In both models,
initial conditions (QTDð�Þ, r0) were set to the median payout value
(50 for Experiment 1 and 0 for Experiment 2). In the sampling model, any sample
probability not assigned to trials t¼ 1, 2... was assigned to r0.

Model comparison. The likelihood of the sequence of obtained choices
(each conditional on the rewards and choices up to that point) is then computed as
the product over trials of the softmax probabilities, averaging over all combinations
of samples in the sampling model and optimizing the free parameters (ax, bx, bc,
with the number of samples k¼ 1 for the sampling models) separately for each
participant and model to maximize this likelihood (minimize the negative log
likelihood). We compared the fit of candidate models to the choice data using
Bayes factors (ref. 46; the ratio of posterior probabilities of the model given the
data). We approximated the log Bayes factor using the difference between scores
assigned to each model via the Laplace approximation to the model evidence47. In
participants for whom the Laplace approximation was not estimable for any model
(due to a non-positive definite value of the Hessian of the likelihood function with
respect to parameters), we approximated the log Bayes factor using the difference
in likelihoods penalized using the Bayesian Information Criterion48. Model
comparisons are reported both on the log Bayes factors as estimated for each
individual and as aggregated across the population. Parameters were estimated
using a maximum a posteriori method, accounting for priors over the
parameters47. The posterior evidence calculations assumed the following prior
distributions, chosen to be unbiased over the parameter ranges seen in previous
studies35, and to roll off smoothly at parameter boundaries: for the learning rate
parameters, we employed a prior of Beta(1.1, 1.1); for the softmax temperatures
and perseveration parameters, we employed a prior of Normal(0, 10). We also
report the ‘exceedance probability’—the posterior probability that one model is the
most prevalent among a set, across a population, as computed using the spm_BMS
function included in SPM8 (ref. 49).

fMRI. Region of interest definition. Based on prior studies, we identified regions of
interest (ROIs) for each neural decision variable of interest: CV, in the ven-
tromedial prefrontal cortex and RPE, in the NAcc. The NAcc ROI was defined
anatomically according to known structural boundaries using the procedure out-
lined by Breiter et al.50 and used in our previous studies of reward-guided choice;
specifically, defining the nucleus’ superior border by a line connecting the most
ventral point of the lateral ventricle to the most ventral point of the internal capsule
at the level of the putamen11,35,50. In the case of ventromedial prefrontal cortex,
functional and anatomical boundaries are less well-defined; we defined the
current ROI as a 10 mm sphere centred on the peak coordinate identified as
uniquely responding to ‘Goal Value’ (defined identically to CV here) by Hare
et al.51.

Regression analysis. Candidate timeseries for each variable of interest (CV and
RPE) were generated according to each of the two models: TD learning and
Sampler. The trial-by-trial predictors were first convolved with a haemodynamic
response function for each bandit and then (to account for the hemodynamic lag)
we selected the volume two TRs (approximately six and a half seconds) following
the relevant event of interest—at decision onset for CV, at outcome receipt for
RPE. To account for correlation between the two variables, the time series derived
from the Sampler model were then orthogonalized against their TD counterparts.
Both variables were then entered into a simultaneous linear regression, which
computed their relative contribution to explaining the time series extracted from
each of the ROIs. The design matrix also contained twelve participant motion
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regressors of no interest. The resulting regression weights were treated as random
effects and tested against zero across the population by two-tailed t-test.

Experiment 2. Participants. Thirty individuals (1 left-handed; 14 female; ages 18–
38 years, mean 23.0) participated in the study. Participants were recruited from the
New York University community as well as the surrounding area, and gave
informed consent in accordance with procedures approved by the New York
University Committee on Activities Involving Human participants. All had normal
or corrected-to-normal vision. All participants received a fixed fee of $5, unrelated
to performance, for their participation in the experiment. Additional compensation
of between $0 and $18 depended on their performance on the in-task recognition
memory probes ($0.25 each of 32 probes), two pseudorandomly selected choice
trials ($5 each) and a post-task recall test. Average total compensation was $12.

Exclusion criteria. Data from nine participants were excluded from analysis due
to their being unusable, leaving 21 participants analysed here. Seven participants
were excluded due to response biases that indicated they did not attempt to learn
the rewards associated with each bandit—specifically, that their choices were more
than 90% to either option in either block of the experiment. Two participants were
excluded due to below-threshold performance on the in-task memory probes
(below the 90% confidence level, or four or more incorrect).

Task design. Participants performed a two-armed restless bandit task—a series
of 130 choices between two slot machines—with 32 interspersed memory probe
trials, for a total of 162 trials. A compulsory rest period of participant-controlled
length was inserted after the 81st trial. The experiment was controlled by a script
written in Matlab (Mathworks, Natick, MA, USA), using the Psychophysics
Toolbox [53]. Before the experiment, participants were given written and verbal
instructions as to the types of trials, the buttonpresses required of them, the slot
machine payoff probabilities and the rules for determining final payout.
Instructions emphasized that there was no pattern linking the content of the ticket
photographs to their dollar value or slot machine. Participants were not told that
the memory probe trials should have an effect on their choices, nor was any effect
implied. They were, however, told that memorizing the content, source (which slot
machine the ticket came from) and dollar value of the tickets would impact their
total payout after a post-task memory test.

To aid memory, participants were offered a mnemonic strategy. Specifically,
they were told that the photographs could be treated as tickets, which could be
placed in one of four imaginary ‘pockets’: left or right, depending on the slot
machine, and front or back, depending on the dollar value. During practice, the
keypresses required to advance each trial were instructed in the context of this
mnemonic strategy (for example, ‘Press ‘a’ to put the ticket in your left hand, now
press ‘a’ again to put the ticket in your front pocket.’). Participants completed two
practice trials before beginning the main experiment.

Choice trials. On each choice trial, participants were presented with two slot
machines, each on either side of the upper third of the screen (Fig. 2a). The slot
machines paid out tickets worth either $5 or � $5. Participants were instructed to
press a key corresponding to the slot machine they felt had the best chance of
paying out a winning (þ $5) ticket rather than a losing (� $5) ticket on that trial.
They could choose either the lefthand (key ‘a’) or righthand (key ‘b’) slot machine.
The slot machines were visually identical, except for their colour (blue and red) and
side of the screen, both of which remained fixed throughout the task. The
probability of each machine paying a winning ticket changed independently on
each trial according to a diffusing Gaussian random walk with reflecting bounds at
30 and 70% (Fig. 2b). At each timestep t, pi

t —the probability that machine i would
pay out a winning ticket—diffused according to: pi

tþ 1 ¼ pi
t þ n for each i. The

diffusion noise v was selected from a zero-mean Gaussian with standard deviation
sd ¼ 0:1. The initial payoff probabilities were set to 60% and 40%, with the identity
(side, colour) of the superior starting bandit psuedorandomly assigned for each
participant.

After selection, the unchosen slot machine was covered and the chosen machine
remained alone on the screen for 0.25 s. Then, a trial-unique photograph appeared
and remained on the screen until participants again pressed the key corresponding
to their chosen slot machine—in the instructions, this corresponded to the
mnemonic memory strategy of selecting the left or righthand side ‘pockets’ for your
ticket. When the correct key was pressed, a grey box appeared around the
photograph and remained there for at least 500 ms or additional time up to two
seconds depending on when the participants pushed the correct key.

At the end of the timeout, the box disappeared and the dollar value associated
with the ticket—either � $5 or $5—was displayed, as a photograph of a $5 bill,
with a green ‘þ ’ or a red ‘� ’ to the left of the bill image. The bill photograph
remained on the screen—along with the chosen slot machine and the trial-unique
‘ticket’ photograph—until the participant pressed a key corresponding to the value:
either ‘a’ for � $5 or ‘b’ for $5. In the instructions, this was referred to as ‘putting
the ticket in your front or back pocket’, on the side indicated by the slot machine
identity. Once the correct key was pressed, the bill photograph was surrounded by
a grey box and remained on the screen for two seconds. After each trial, a blank
screen was displayed for an inter-trial interval of two seconds.

In-task recognition memory probes. Beginning after the tenth choice trial,
32 memory probe trials were interspersed at pseudorandom intervals throughout
the task (Fig. 3c). Each probe trial consisted of a single photograph and the
question: ‘Is this your ticket? (yes/no)’. Twenty six of these photographs were

chosen pseudorandomly without replacement from the list of previously seen
images; these trials are referred to as valid memory probe trials. The remaining six
photographs were novel; these trials are referred to as invalid memory probe trials.
Participants were instructed to press ‘a’ if they remembered seeing that image and
‘b’ if they did not remember seeing that exact image before.

Correct responses—‘yes’ for previously seen images and ‘no’ for images that
were not displayed on a previous bandit trial—were rewarded with $0.25 added to
the participant’s total payout. This additional reward was indicated by a
photograph of a US quarter with a green ‘þ ’ to the left. Incorrect responses
resulted in $0.25 being deducted from the participant’s total payout, indicated by a
red ‘� ’ to the left of an image of a US quarter. Memory probe rewards were
displayed for two seconds.

Rewards for memory probes accumulated over the course of the entire task,
rather than for randomly selected rounds—so the total payout could be reduced or
increased by as much as $8.00. Probe images remained on the screen for up to four
seconds—if no answer was entered in that time, the trial was scored as incorrect.

Post-task recall memory probes Before the experiment began, participants
were instructed to remember as many complete bandit-outcome-ticket triplets as
they could. Their memory for these triplets was tested in 21 post-task memory
probes.

Post-task memory probes were drawn only from the images tested during the
experiment as valid in-task memory probes. This time, participants were queried as
to their recall of each detail associated with the presented probe image: which slot
machine it came from and which dollar value it was associated with. Participants
were incentivized to answer correctly by the fact that their total payout in the
experiment was predicated on their performance in this memory task. Specifically,
payouts for winning ($5) tickets were reduced, to $0, if either post-task recall
question was answered incorrectly. Payouts for losing (� $5) tickets were increased,
to � $2.50, if both post-task recall questions were answered correctly (Table 3).
(The asymmetry in the final values of the winning and losing tickets was intended
to encourage participants to attend to both tasks; if losing tickets could be
improved to $0 by correct memory task responses, then participants would have
less incentive to track the payout values of the bandits—in this case, simply
choosing the same option on every trial would have a net positive EV; similarly,
if incorrect memory responses only reduced winning tickets to some positive value,
then there would be less incentive to remember the ticket images.)

Analysis. Our analysis of choice behaviour in this task addressed the hypothesis
that memory probe images affect choices in subsequent bandit trials, by evoking
the rewards received by choices on past bandit trials.

Choice kernel regression. To test this hypothesis, we first examined the effect of
past trials—both bandit trials directly experienced and those evoked by valid
memory probes—on choices. Specifically, we entered into a logistic regression one
regressor for the rewards received on each of the previous ten trials. If a positive
reward was received after choosing the right bandit on trial t� t, this was coded as
a 1 in regressor t, element t. If a negative reward was received after choosing the
right bandit, this was coded as a � 1. These values were flipped for lefthand
bandits: � 1 for positive rewards and 1 for negative rewards.

Next we included ten regressors coding rewards from past choices that were
evoked by valid memory probes over the past ten trials. Specifically, if trial t� t
was a valid memory probe that evoked a trial on which the participant received a
positive reward for the right bandit, this was coded as a 1 in the regressor t,
element t, and so forth, following the same coding scheme as directly experienced
rewards.

We also entered into the regression matching sets of ten regressors each
specifying the identity of the bandit chosen on each of the previous ten trials:
� 1 for left, 1 for right. In addition, similarly, for the identity of the bandits evoked
by any valid memory probes during the previous ten trials.

Choices of the current bandit were entered as the dependent variable, and coded
as � 1 (for left) and 1 (for right). The resulting regression weights—indicating the
degree to which the current choice was influenced by choices and rewards on a
given evoked or directly experienced trial in the past—were tested against zero
across the population by two-tailed t-test.

Table 3 | Ticket values are modified by performance on a
post-task recall memory probe.

Probe outcome $5 ticket �$5 ticket

Correct on both questions $5 � $2.5
Incorrect on one question $0 � $5

After the main slot machine task, ‘tickets’ paid out by the machines were presented to the
participant again. The participant was asked to recall two specific details associated with the
ticket: the machine that paid it out (left or right) and the value of the ticket (� $5 or $5). To
encourage participants to encode the ticket-machine-value triplet, they were told that the final
value of the tickets would depend on both the original value of the ticket and the participant’s
performance on two post-task recall questions. If they answered either question incorrectly,
$5 tickets were modified to be worth $0. If they answered both questions correctly, � $5 tickets
were modified to be worth � $2.5. The payout values of each ticket after the memory tests are
described in this table. Values altered by the results of the memory tests are highlighted in bold.
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The final regression was thus in the following form:

log
pright;t

pleft;t
�
X10

i¼1

bDR
i DRt� i þ

X10

i¼1

bER
i ERt� i þ

X10

i¼1

bDI
i DIt� i þ

X10

i¼1

bEI
i EIt� i ð6Þ

where DR is ‘directly experienced reward’, ER is ‘evoked reward’, DI is ‘directly
experienced identity’ and EI is ‘evoked identity’—each specified over the
immediately preceding ten trials.

Models. As in Experiment 1, we tested the fit to behaviour of computational
models capturing our hypothesis and the competing, incremental learning
hypothesis.

In the TD model, estimated action values were updated only on bandit choice
trials; memory probe trials were not considered to have any impact on the values of
the slot machines. This model is identical to equation (2) from Experiment 1, with
the exception that the initial value QTDð�Þ is set to zero, the mean payout on this
experiment. In the second model, estimated values were based on one sample
drawn from past experience. In this experiment, the sampling model was
augmented with an additional parameter, aevoked, specifying the likelihood that a
reminded trial is drawn as a sample. Formally, we distinguish between direct and
evoked rewards ri according to:

P Qsample
i að Þ ¼ ri;direct

� �
¼ asample 1� asample

� �t� i

P Qsample
i að Þ ¼ ri;evoked

� �
¼ aevokedð1� aevokedÞt� i

ð7Þ

The original Sampling model of Experiment 1, with no impact of reminded trials,
is nested within the sampling model and realized when aevoked equals zero.)

This formulation was used in computing choice probabilities for all models. These
models were otherwise identical to those used in the analysis of Experiment 1.

Models were compared following an identical procedure as used in Experiment 1.

Data availability. Data for Experiment 2 are available upon reasonable request to
the corresponding author (A.M.B.).
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8. Gläscher, J., Daw, N., Dayan, P. & O’Doherty, J. P. States versus rewards:
dissociable neural prediction error signals underlying model-based and model-
free reinforcement learning. Neuron 66, 585–595 (2010).

9. Simon, D. A. & Daw, N. D. Neural correlates of forward planning in a spatial
decision task in humans. J. Neurosci. 31, 5526–5539 (2011).

10. Wimmer, G. E. & Shohamy, D. Preference by association: how memory
mechanisms in the hippocampus bias decisions. Science 338, 270–273 (2012).

11. Bornstein, A. M. & Daw, N. D. Cortical and hippocampal correlates of
deliberation during model-based decisions for rewards in humans. PLoS
Comput. Biol. 9, e1003387 (2013).

12. Barron, H. C., Dolan, R. J. & Behrens, T. E. J. Online evaluation of novel choices
by simultaneous representation of multiple memories. Nat. Neurosci. 16,
1492–1498 (2013).

13. Plonsky, O., Teodorescu, K. & Erev, I. Reliance on small samples, the wavy
recency effect, and similarity-based learning. Psychol. Rev. 122, 621–647 (2015).

14. Fan, J. & Gijbels, I. Local Polynomial Modelling and its Applications:
Monographs on Statistics and Applied Probability (CRC Press, 1996).

15. Ormoneit, D. Kernel-based reinforcement learning. Machine Learn. 49,
161–178 (2002).

16. Erev, I. & Barron, G. On adaptation, maximization, and reinforcement learning
among cognitive strategies. Psychol. Rev. 112, 912–931 (2005).

17. Stewart, N., Chater, N. & Brown, G. D. A. Decision by sampling. Cogn.
Psychol.gy 53, 1–26 (2006).

18. Lengyel, M. & Dayan, P. Hippocampal contributions to control: the third way.
Adv. Neural Inform. Process. Syst. 20, 889–896 (2008).

19. Krajbich, I., Armel, C. & Rangel, A. Visual fixations and the computation and
comparison of value in simple choice. Nat. Neurosci. 13, 1292–1298 (2010).

20. Giguere, G. & Love, B. C. Limits in decision making arise from limits in
memory retrieval. Proc. Natl Acad. Sci. USA 110, 7613–7618 (2013).

21. Woodford, M. Stochastic choice: an optimizing neuroeconomic model. Am.
Econ. Rev. 104, 495–500 (2014).

22. Gershman, S. J. & Daw, N. D. Reinforcement learning and episodic memory in
humans and animals: an integrative framework. Annu. Rev. Psychol. 68,
101–128 (2017).

23. Duncan, K. D. & Shohamy, D. Memory states influence value-based decisions.
J. Exp. Psychol. Gen. 145, 1420–1426 (2016).

24. Murty, V. P., FeldmanHall, O., Hunter, L. E., Phelps, E. A. & Davachi, L.
Episodic memories predict adaptive value-based decision-making. J. Exp.
Psychol. Gen. 145, 548–558 (2016).

25. Wimmer, G. E., Braun, E. K., Daw, N. D. & Shohamy, D. Episodic memory
encoding interferes with reward learning and decreases striatal prediction
errors. J. Neurosci. 34, 14901–14912 (2014).

26. Collins, A. G. E. & Frank, M. J. How much of reinforcement learning is working
memory, not reinforcement learning? A behavioral, computational, and
neurogenetic analysis. Eur. J. Neurosci. 35, 1024–1035 (2012).

27. Lau, B. & Glimcher, P. W. Dynamic response-by-response models of matching
behavior in rhesus monkeys. J. Exp. Anal. Behav. 84, 555–579 (2005).

28. Denrell, J. & March, J. G. Adaptation as Information Restriction. Organization
Science 12, 523–538 (2001).

29. Erev, I., Ert, E. & Yechiam., E. Loss aversion, diminishing sensitivity, and the
effect of experience on repeated decisions. J. Behav. Decision Making 21,
575–597 (2008).

30. Berens, S. C. & Bird, C. M. The role of the hippocampus in generalizing
configural relationships. Hippocampus 35, 591–598 (2017).

31. Hertwig, R. & Erev, I. The description-experience gap in risky choice. Trends
Cogn. Sci. 13, 517–523 (2009).

32. Shohamy, D. & Turk-Browne, N. B. Mechanisms for widespread hippocampal
involvement in cognition. J. Exp. Psychol. Gen. 142, 1159–1170 (2013).

33. Bornstein, A. M. & Norman, K. A. Reinstated episodic context guides sampling-
based decisions for reward. Nat. Neurosci., doi: 101038/nn.4573.

34. Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P. & Dolan, R. J. Model-based
influences on humans’ choices and striatal prediction errors. Neuron 69,
1204–1215 (2011).

35. Bornstein, A. M. & Daw, N. D. Multiplicity of control in the basal ganglia:
computational roles of striatal subregions. Curr. Opin. Neurobiol. 21, 374–380
(2011).

36. Sutton, R. S. Dyna, an integrated architecture for learning, planning, and
reacting. ACM SIGART Bull 2, 160–163 (1991).

37. Gershman, S. J., Markman, A. B. & Otto, A. R. Retrospective revaluation in
sequential decision making: a tale of two systems. Journal of experimental
psychology. General 143, 182–194 (2014).

38. Keramati, M., Dezfouli, A. & Piray, P. Speed/accuracy trade-off between the
habitual and the goal-directed processes. PLoS Comput. Biol. 7, e1002055
(2011).

39. Simon, D. A. & Daw, N. D. in Advances in Neural Information Processing
Systems Vol. 24 (eds Shawe-Taylor, R. S. et al.) Curran Associates, 127–135
(2011).

40. Corrado, G. S., Sugrue, L. P., Seung, H. S. & Newsome., W. T. Linear-nonlinear-
poisson models of primate choice dynamics. J. Exp. Anal. Behav. 84, 581–617
(2005).

41. Bornstein, A. M. & Daw, N. D. Dissociating hippocampal and striatal
contributions to sequential prediction learning. Eur. J. Neurosci. 35, 1011–1023
(2012).

42. Buckner, R. L. & Carroll, D. C. Self-projection and the brain. Trends Cogn. Sci.
11, 49–57 (2006).

43. Anderson, J. R. in Varieties of Memory and Consciousness: Essays in Honor of
Endel Tulving (eds Roediger III, H. L. & Craik, F. I. M.) 195–210 (Erlbaum,
1989).

44. Bayer, H. M. & Glimcher, P. W. Midbrain dopamine neurons encode a
quantitative reward prediction error signal. Neuron 47, 129–141 (2005).

45. Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).
46. Mackay, D. J. C. Information Theory, Inference, and Learning Algorithms

(Cambridge Univ. Press, 2003).
47. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464

(1978).
48. Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J. & Karl, J. Bayesian

model selection for group studies. NeuroImage 46, 1004–1017 (2009).
49. Breiter, H. C. et al. Acute effects of cocaine on human brain activity and

emotion. Neuron 19, 591–611 (1997).
50. Hare, T. A., O’Doherty, J. P., Camerer, C. F., Schultz, W. & Rangel, A.

Dissociating the role of the orbitofrontal cortex and the striatum in the
computation of goal values and prediction errors. J. Neurosci. 28, 5623–5630
(2008).

51. Brainard, D. H. The psychophysics toolbox. Spatial Vision 10, 433–436
(1997).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15958

8 NATURE COMMUNICATIONS | 8:15958 | DOI: 10.1038/ncomms15958 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


Acknowledgements
A.M.B. was supported by National Institute of Mental Health predoctoral research
fellowship F31MH095501 and a grant from the John Templeton Foundation (Grant
ID #57876). D.S. and N.D.D. acknowledge support by National Institute for Drug Abuse
R01DA038891 and National Institute for Neurological Disorders and Stroke
R01NS078784, and N.D.D. acknowledges support by a Scholar Award from the
James S. McDonnell foundation. We thank John O’Doherty, Ben Seymour, Peter Dayan
and Raymond J. Dolan our collaborators on the study reanalysed here, Yael Niv for
helpful suggestions and Aubrey Clark-Brown for discovering a bug in an early version of
the experiment.

Author contributions
N.D.D. contributed data from Experiment 1. M.W.K. and A.M.B. performed the rea-
nalysis of Experiment 1. A.M.B., N.D.D. and D.S. contributed to conceptualizing a role
for episodic memory in decision-making. A.M.B. and N.D.D. designed Experiment 2.
A.M.B. ran Experiment 2. A.M.B. analysed the data from Experiment 2. A.M.B. and
N.D.D. wrote the paper, with input from M.W.K. and D.S.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Bornstein, A. M. et al. Reminders of past choices bias decisions
for reward in humans. Nat. Commun. 8, 15958 doi: 10.1038/ncomms15958 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/

r The Author(s) 2017

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15958 ARTICLE

NATURE COMMUNICATIONS | 8:15958 | DOI: 10.1038/ncomms15958 | www.nature.com/naturecommunications 9

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Experiment 1
	Experiment 2

	Figure™1Restless bandit task and re-analysis.(a) Four-armed bandit from Daw et al. (2006). Participants chose between four slot machines to receive points. (b) Payoffs. The mean amount of points paid out by each machine varied slowly over the course of th
	Table 1 
	Discussion
	Figure™2Ticket bandit task.(a) The ticket-bandit task. Each slot machine (’banditCloseCurlyQuote) delivered tickets--trial-unique photographs--associated with a dollar value--either -dollar5 or dollar5. (b) Payoff probabilities. The probability of each ba
	Figure™3Ticket bandit results.(a) Model comparison. Log Bayes factors favouring sampling over the TD model. (b) Impact of probes. As in standard RL models, choices are affected by previously observed rewards (black points). Here, memory probes evoking pas
	Table 2 
	Methods
	Experiment 1: Four-armed bandit from Daw et™al. (2006)
	Choice behaviour
	Model comparison
	fMRI
	Experiment 2

	Table 3 
	Data availability

	BartoA. C.in Models of Information Processing in the Basal Ganglia (eds Houk, J. C., Davis, J. L. & Beiser, D. G.) 215-232 (MIT Press, 1995)SchultzW.MontagueP. R.DayanP.A neural substrate of prediction and rewardScience275159315991997SugrueL. P.CorradoG. 
	A.M.B. was supported by National Institute of Mental Health predoctoral research fellowship F31MH095501 and a grant from the John Templeton Foundation (Grant ID #57876). D.S. and N.D.D. acknowledge support by National Institute for Drug Abuse R01DA038891 
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




