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Abstract 

An elementary TeV topological hadron supermultiplet breaks 

into GeV-scale mesons, baryons and baryoniums and TeV-scale "hexons" 

(extremely-heavy bosons corresponding to six topological constituents). 

Phenomena on the GeV scale are describable by parton graphs which give 

meaning to constituent quarks of QCD type. Hexons are responsible --through 

mixing -- for electroweak-boson masses, may be responsible for cosmic-ray 

Centauro events, and promise novel TeV accelerator phenomena • 
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A. INTRODUCTION 

Recent application of topological bootstrap theory to electroweak 

interactions 1 ,2) has confirmed the capacity of embellished Feynman graphs 

(graphs with added structures) to overcome the usual arbitrariness of 

particle theory. The standard Weinberg-Salam model of electroweak interac­

tions has become interpreted as relevant to the lower portion of a unique 

boson spectrum springing from a Feynman momentum line accompanIed by 

fermion and antifermion lines whose intrinsic and inherited orientations 

correspond to spin, chirality and isospin. Physical leptons stem from 

a parallel electroweak pattern where one fermion line is replaced by a 

boson line. (Separate continuity of boson and fermion lines explains proton 

stability a fourth generation of leptons is predicted.) The present 

paper considers the hadronic content of topological bootstrap theory, 

one of our aims being to contact the QCD portion of standard theory. 

By "QCD" we mean not the local Lagrangian field theory that so 

far remains untestable but rather the collection of parton models, sharing 

certain quark degrees of freedom, which are described as "QCD inspired". 

The bag model 3 ) and the quark-antiquark potential model4 ) are examples, 

as are the Lund modelS) and representations of inclusive cross sections 

through quark distribution functions. A major goal is to explain the QCD 

meaning of a hadronic-constituent spin-1/2 quark -- carrying momentum as 

well as flavor, chirality, color and fractional electric charge. We will 

identify aspects of topological bootstrap theory which playa role parallel 

to QCD gluons. 

QCD-parton degrees of freedom will emerge from topological particle 

theory as those characteristic of a renormalized and contracted planar 

approximation which suppresses degrees of freedom whose threshold is ~ 1 TeV. 

The feasibili ty of using QCD-parton models to represent GeV data becomes 

understandable if masses of certain 6-consti tuent hadrons called "hexons" 

are larger than the lowest 2-constituent (meson) and 4-constituent (baryon) 

masses by a factor ~ 10). We shall identi fy a candidate mechanism for 

such a difference. Above the hexon threshold QCD-partons will lose meaning-­

phenomena un representable by QCD being anticipated. Centauro cosmic-ray 

events6 ) will be considered as candidate examples. We also will discuss 

hexons as the source of mass for electroweak bosons. 

Low-mass baryon i lime; ill the GeV range are expected but are shown 

Ii 
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to bear little relation to hexons. "Quarks" building the former are of QCD 

type while those building the latter have non-QCD electric charges and 

other "exotic" fe'atures associated with the TeV mass scale. 

B. TOPOLOGICAL "QUARKS" AND "DIQUARKS" 

In topological bootstrap theory any elementary particle --hadron 

or nonhadron-- corresponds to a cluster of fermion and boson line ends 

that accompany a Feynman-line end, all lines being embedded in an abstract 

2-dimensional surface7 ). Only a small collection of such line-end clusters 

is allowed by the consistency with unitarity of topological contraction 

rules. Each fermion-boson elementary-particle cluster of line ends divides 

into "half" and "antihalf" clusters, separated by a momentum-carrying 

Feynman-line end. All particle properties beside momentum reside in half 

and antihalf. There are two families of hadron halves, a fermionic family 

called "quark" halves and a bosonic family called "antidiquark" halves. 

Our use here of quotation marks calls attention to the fact that "quark" 

halves and "diquark" anti halves do not carry momentum --they are topologi­

cal constituents and automatically "confined". (Furthermore they carry 

integer, not fractional, electric charge.) A main object of this paper 

is to relate topological "quark" with QCD quark. 

There are four families of elementary hadron : "quark-antiquark" 

(qq), "antidiquark-diquark" (ad), "quark-diquark" (qd) and "antidiquark­

antiquark" (aq). Elementary hadrons all share a single nonzero mass m , 
o 

which we shall argue is much larger than the mass of the familiar physical 

hadrons (such as the proton). The parameter m sets the energy scale 
o 

for all of particle physics. Elementary hadrons, like elementary leptons 

and electroweak bosons in topological theory, constitute a finite family 

(spin 0,1/2,1, 3/2, 2) whereas physical hadrons are indefinite in number. 

We shall nevertheless find those physical hadrons corresponding to _a 

planar topological approximation to be divisible into qq, ad, qd and 

aq families. 

A shorthand notation for any strong-interaction embellished 

F h8) 1·· th H . R h 9) 1 eynman grap , genera lZlng e ararl- osner sc erne , emp oys an 

oriented "quark line" which carries an 8-valued flavor index f and whose 

ends each carry a 4-valued Dirac spinor index a . (A quark line is a 

fermion line with extra inherited orientations corresponding to 4 quark 

generations.) The four elem~ntdry hadrons are representable by the clusters 
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of line ends shown in Fig.1. A "diquark" antihalf is seen to be a cluster 
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Fig. 1 Elementary hadrons (here - - ~ - is a quark line, • , ':>0( • • 

is a boson line and is a Feynman (momentum) line). 

of 3 line ends -- 2 quark-line ends plus the enJ of a boson line. The boson 

line in strong-interaction topologies has all orientations frozen7) and 

consequently can be ignored in quantum-number bookkeeping<*). The shorthand 

notation nevertheless can be ambiguous if the boson line is dropped ; we 

keep it here to clarify the subtle but vital feature of bootstrap theory 

tha t quark and antidiquark halves of ele m entary hadrons maintain permanent iden­

tities even though individual quark lines switch between quark and diquark 

halves. The boson line never crosses the Feynmdn line, and the boson line 

always is accompanied by 2 quark lines in a diquark cluster. Whenever a 

quark line crosses from quark half to diauark antihal f, another must cross fro m 

diquark antihalf to a quark half, as shown in the embellished F eynman graph 

of Fig.2 where there are 5 quark lines, two of which exchange positions 

<*)The effective electric charge carried by one of the two quark-line ends 
within the diquark half is affected by its proximity to the boson-line10 ). 
See Sect.E. 

If 
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on quark and diquark sides of an intermediate qd. 

" 

Fig. 2 A 1 ++ 2 topological color. switch. 

" " "-
" " " 0<.3 

We have here an example of a topological color switch, whose signifi­

cance is described in Ref .11. Topological "color" describes the location 

of a quark line wi th respect to the F eynman line which it accompanies. 

If immediately adjacent to the Feynman line the quark line is said to have 

"color" # 1. A glance at Fig.1 shows that both the quark-line end and 

the antiquark-line end building an elementary qq have "color" # 1, while 

none of the quark-line ends and antiquark-line ends building an elementary 

ad have "color" # 1. 

"Color" # 2 is carried by a quark-line end adjacent to the boson 

line, while "color" # 3 is carried by a qu:>rk-line end adjacent neither to 

Feynman line nor boson line .. Thus Fig.2 repiesents a 1 ++ 2 "color switch". 

Although sharing the quality of "threeness" with QCD color, topological 

"color" is not identifiable with color in QCD, as one can see from the unsym­

metrical status of "color" # 1. The amplitudes accompanying strong-interaction 

embellished Feynman graphs exhibit 2 ++ 3 "color" symmetry (broken by electro­

weak interactions of hadrons as discussed below in Sect.E), but the distin­

guished status of topological color tt 1 is fundamental. Nevertheless we 

propose in this paper to elucidate a low-energy approximation to bootstrap 

theory where all 3 "colors" become equivalent so that contact can be made 

wi th QCD. The approximation also will provide a meaning for valence quark 

momentum. 
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We repeat now certain rules about "color switching" that were 

developed in Ref .S) : No more than a single "color switch" may occur between 

any two adjacent F eynman vertices (switches never occur at a vertex), but 

trivial vertices --with 2 incident lines-- must be included. The result 

is that between adjacent nontrivial Feynman vertices there may occur an 

indefinite number of "color switches". Five different "color switches" 

are possible at an intermediate point along a qd line, as shown in Fig. 3 a 

while 3 different color switches (only involving "colors" #2 and #3) are 

possible along a dd line, as shown in Fig. 3 b . Four of the five qd switches 

connect quark half with diquark-antihalf. None of the dd switches connects half 
with antlhal f. "Color switches" are impossible along a qq line. Although there 

is no SU(3) topological color symmetry, Fig.3 shows that topological color is 

conserved. 
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Fig. 3a) "Color" switches along a qd line. 
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Fig. 3b) "Color" switches along a dd line. 

The 4-valued spin-chirality (Dirac) index on the end of each quark 

line is not conserved; spin-chiral switches --corresponding to y.p propa­

gator factors-- may occur between Feynman verticesS). This paper wilJ focus 

li 
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on the dynamics of topological color switching which, wi th no counterpart 

in Lagrangian field theory provides unprecedented features. Spin-chiral 

swi tching from y. p propagator factors along quark lines is a dynamical 

element familiar from QCD. We remark, nevertheless, that the nonzero mass 

m of elementary hadrons follows from the requirement that graphs without o 
complexi ty --"zero entropy,,7) graphs-- have neither "color" nor spin -chiral 

switching. The concept of zero entropy finds no QCD counterpart. 

C. MAXIMAL-PLANAR HADRON TOPOLOGIES 

Because the multiplicity of a quark line is 32 = 2 spins x 

2 chiralities x 8 flavors, the largest components of the topological expansion 

are those where each Feynman closed loop is accompanied by two closed quark­

line loops ; loss of any quark-line loop costs a factor 32. Only planar 

topologies with a boson-line loop "inside" each F eynman loop have a chance 

to achieve the maximum number of quark-line loops. An example is given 

in Fig.4. Notice that in such a "maximal" topology only a perimeter Feynman 

, 

... , 

, ~~~---~~~ , ...... " ..... 
..., /--1- __ ... ----..... ' ..... 
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Fig. 4 A maximal-planar graph. Open circles on quark lines 

indicate chiral switches. 
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line can be crossed by a quark line and then only when the perimeter line 

is a qd whose "quark" half lies outside the Feynman perimeter. 

Because a boson line never crosses a Feynman line, one may distinguish 

2..!:!.Y planar Feynman loop as one of two types : "quark" or "diquark". Maximal 

topologies, such as that of Fig.4, contain only Feynman loops of the "diquark" 

type. In the following section we consider the "maximal-planar" approximation 

to the topological expansion --the sum over all planar topologies where 

every Feynman loop not only is of the "diquark" type but contains two closed 

quark-line loops. In this approximation any "valence quark line" --not 

part of a closed loop-- passes all nontrivial Feynman-perimeter vertices 

on the outside. In other words valence quark lines are "stuck" to the Feynman 

perimeter. The graphs in question are ld "fishnets" with a fishnet perimeter 

which may be either qd or ad. 

Feynman rules for strong-interaction graphs are given in Ref.8). 

The rules parallel familiar Feynman rules and imply Landau-Cutkosky disconti­

nui ty formulas corresponding to uni tari ty order by order wi thin the topolo­

gical expansion. In this paper we present heuristic arguments for the result 

that could emerge from a maximal-planar calculation. The conjecture is 

motivated partly by the sum of ladder graphs --a sum that can be performed 

by solving either a Bethe-Salpeter or an ABFST equation. We do not propose 

that such a partial sum of maximal-planar graphs is quantitatively adequate, 

but certain qualitative features are suggestive and we recall that many 

general features of Regge theory became )preciated via ladder models. 

O. MAXIMAL-PLANAR SUM OF LADDER GRAPHS 

Using the ABFST equation12 ) Espinosa13 ) has studied the ladder sum 

of "zero-entropy" Landau-Cutkosky discontinuities indica ted by the Fig. 5 

graphs·, 

+ + ... 

Fig. 5 Sum of zero-entropy discontinuities. 
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making the further approximation that the cubic-vertex function is a constant 

2 mg. When the Regge boundary condition connects discontinuities with o 0 

amplitudes, this computation is equivalent to solving a Bethe-Salpeter 

equation --i.e .. · to summing a ladder series of amplitudes-- although at 

zero entropy, because of contraction, it is not generally meaningful to 

sum ampli tudes. 

"Zero-entropy" means absence of "color" swi tches or spin-chiral 

switches. The bootstrap condition is that real poles of zero-entropy amplitu-

~ des correspond to elementary hadrons7 ,13,14). Absence of spin-chiral or 
I 

.. 

... 

"color" switching allows quark lines to be factored out of zero-entropy 

graphs, each quark line being decoupled not only from other quark lines 

but also from tte momentum-carrying Feynman graph. Zero-entropy supersymmetry 

between all four families of elementary hadron is a consequence1S ). 

The effective multiplicity of each closed Feynman loop is 

N = (32) 2 - 32 
o 

(1) 

because a bosonic (diquark) loop has mul ti plicity (32) 2 while each fermionic 

(quark) loop, with its minus sign, has multiplicity 32. Espinosa 13) found 

that to generate a single real pole (bound state;) at p2 = m2 
, by the sum o 

of Fig.5, requires 

(2 ) 

Although the correct zero-entropy vertex function rather than being constant 

is expected to decrease asymptotically, the scale of decrease is set by 

(2m )2 --the location of the lowest-lying singularity in the vertex functions. 
o 

Because propagator poles in the ladder locate at m2
, the principle of "nearest-o 

singularity" dominance allows hope for a rough approximation through constant 

vertex functions. The ladder sum, in any event, mistreats singularities 

at (3m )2, (4m )2 ••• (*) . 
o 0 

Corrections to zero entropy are sums of planar and non-planar 

Feynman graphs where each internal line contains at least one spin-chiral 

(*)Indication of the error involved is given by the residue of Espinosa's 
zero-entropy bound-state pol~ at m , which corresponds to a value of g about 
twice that of formula (2). en theO other hand a more eldborate zero-gntropy 
bootstrap model with consistent input-output coupling strength, studied 
by Balazs, Gauron and Nicolescu14), gave a g value 3 times smaller than formu­
la (2). The latter model is not easily adaOpted to the needs of the present 
paper. 
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or "color" switch. Suppose we sum the planar Feynman graphs of Fig.6, where 

internal-line "color" switches are compatible with "maximali ty" --2 closed 

quark-line loops for each Feynman loop. The first two terms of this series 

p-x+ 
Fig. 6 

+ + + ... 

Schematic sum of maximal-planar graphs. Crosses indicate 

qua~k-line switches. 

have poles at p2 = m2, Ref.8) showing how the net residue is symmetric 
o 

in "color" permutations. The remaining terms individually have no p2 poles 

but, if the coupling associated with maximal-planar switching corresponds 

to a sufficiently-attractive Bethe-Salpeter kernel (potential), the infinite 

sum will diverge at isolated values of p2, say 

( ad) 2 

m1 ' (3) 

corresponding to bound-state poles of the S matrix. We now show that the 

spectrum of such "first-stage renormalized" non-elementary hadrons abandons 

supersymmetry between qq, qd, aq and ad and may extend down to masses close 

to zero on the m scale. 
o 

Although valence quark lines remain stuck to the sides of the 

Bethe-Salpeter ladder, they are allowed to cross the Feynman perimeter 

if they return before reaching the next rung of the ladder (see Fig.4). 

Such excursions, however, are impossible for any valence quark line accompa­

nied by a valence boson line (see Fig.3b). Thus no such crossings occur in a 

ladder that might generate an m~d bound state, and fewer crossings occur 

for qd (and aq) than for qq. Supersymmetry is broken. 

Can the "switching potential", if at tractl ve, generate bound states 

of mass close to zero? Here we need to keep in milld tilclt, although a Bethe­

Saipeter ladder sum produces poles at negative p2 (tachyons) for sufficiently­

large attractive coupling, the full planar Sllm respects unitarity in the 
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"crossed" channel (whose momentum runs vertically in Fig.6). Negative-p2 

poJcs would violate unitarity in the crossed channel. One may say that 

vertlcal ladders not included in Fig.~ contribute a "repulsion" which prevents 

lowering of bound-state energies below zero. Let us nevertheless assume 

that the Fig.6 ladder provides an estimate of holY large a maximal-planar 

swi tch coupling is needed to give an m
1 

close to 

foulld that for coupling~ in the neighborhood of g 
I 0 

(4:; ) - 1 

S· E' 13) zero. Ince spInosa 

(4 ) 

any g1 larger than about 1.2 g~ can be expected to generate an m1 near zero. 

Such switch coupling strengths are easily achievable at the maximal 

planar level where the mul tiplici ty of each Feynman loop is (32) 2 '\, N , 
'\, 0 

especially if valence quark lines cross the Feynman perimeter. In the absence 

of a believable maximal-planar calculation, we lean on a collection of 

qualitative experimental facts explaIned in the following section to infer 

that for qq and qd or aq the switch coupling is attractive and generates 

masses m~q and m~d = m~q much smaller than mo' For ad we infer, on the con-

trary, tha t the maximal-planar switch coupling is insuff iciently attractive 
ad 

to generate a value of m1 much smaller than mo' 

We shall describe the low-mass m
1 

poles as "bare" mesons and baryons. 

Although not elementary (with mass m
o
)' these m

1 
poles are still far from 

physical hadrons because of their residues. The associated vertex functions 
-1 still correspond to a "radius" m even though the mass has shifted. Bare me-
o 

sons and baryons are "small" and will be associated with Feynman's idea of a 

"parton,,16). Section F will discuss approximations to physical mesons and 

baryons generated by the next level of the topological expansion --which 

we shall associate with the thoroughly-GeV domain of QeD-parton models. 

Baryonium ad states will appear at the GeV level of parton models 
'.. ad but must not be confused with ad physical hadrons of mass m

1 
; these latter 

we sha 11 call "hexons" so as to emphasize their lack of connection with 

baryon-antibaryon bound states. The name "hexon" is remindful that in the 

corresponding elementary hadron there are 6 line ends (6 topological consti­

tuent s) accompanying the Feynman-line end. Hexons are closer to elementary 

hadrons than are physical mesuns and baryons. 

What has happened to elementary hadrons as a result of maximal-planar 

switching? The graphical summation of Fig.6 leaves m poles (present in the 
o 
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first two terms) unshifted but there will be coupling between Bethe-Salpeter 

m1 poles and mo poles of the same "quark" content, corresponding to graphs 

such as Fig.7. Such interaction will shift the poles originally at m1 and mo 

Fig. 7 Example of coupling between Bethe-Salpeter ladder and 
elementary hadron. 

but, further, the shifting of channel thresholds in a complete sum over 

maximal-planar graphs will cause the more massive of a pair of communicating 

poles to become complex. In other words the higher state will be unstable 

already at the maximal planar level --meaning a width comparable to the 

mass. Only the lower state need be recognized as a "parton". We shall under­

stand m1 to denote the lower mass after all maximal-planar graphs have been 

summed. 

E. TOPOLOGICAL COLOR AND ELECTRIC CHARGE OF QUARK LINES ACCOMPANYING 

"BARE" FEYNMAN LINES 

Summing planar topologies can only proiuce poles labellable as 

qq, qd, aq, or ad, but the topological color content of the poles is ge~erally 

di fferent from that of elementary hadrons because of the "color" switching 

that contributed to the pole formation. If quark lines are added to Fig.6 

and Fig.7 in the sense of Figs.2,3 and 4, one sees that each of the flavors 

f d f ' b I' b meson (qq-) mf
1

, f' , d I . f . an ,e onglng to a are spen s equa portlons 0 ltS 

I ine history in each of the 3 "color" locations with respect to a Feynman 

line. A similar statement applies to all three flavors f, f' , f" belonging to 
f f'f" a bare baryon (qd) m1 ' • Now Ref .10) has ShOWl that "quarks" with color 

# 1 or # 3 have the "normal" connection between ~lectric charge and isospin : 

Q = 1 

o 
13 = + 1/2 

- 1/2 

whereas for color # 2 the connection is "abnormal" 

(5) 

" 



Q = 0 

- 1 

13 = + 1/2 

- 1/2 

13 

(6 ) 

Taking an average, all valence "quarks" building bare mesons and baryons 

have electric charge 2/3 of (5) plus 1/3 of (6), or 

Q = 2/3 

-1/3 

This is the familiar QeD rule. 

The 

bare hexons. 

story, however, 

Each of the 4 

13 = + 1/2 

- 1/2 

is different for the valence quark lines of 
ff' f"f" , 

flavors f, f' ,f", f'" belonging to m1 ' 

spends equal portions of its history in "colors" #~ and # 3 but none of 

its history in "color" # 1. The consequence is an electric charge 1/2 of (5) 

plus 1/2 of (6) 

Q = + 1/2 

- 1/2 

13 = + 1/2 

- 1/2 

The "quarks" building bare hexons in this sense are "exotic". 

(8) 

Although the boson line for a bare baryon continues to distinguish 

the "diquark" side of the F eynman line from the "quark" side, all quark 

lines accompanying (renormalized) bare meson or baryon Feynman lines must 

be understood as uniformly superposing the 3 topological colors. In contrast 

quark lines accompanying bare hexon lines are 50/50 mixtures of "colors" #2 

and # 3, with no admixture of "color" # 1. 

F. PHENOMENOLOGY 

Seven distinct phenomenological considerations support the assump-

tion of bare meson and baryon masses much smaller than m (with lowest o 
bare masses after flavor-symmetry breaking being {, 1 GeV), while bare 

hexon masses remain of order m » 1 GeV. The considerations are as follows 
o 

1) The observed dependence of physical-hadron mass on quark flavor 
17) 

the experimental lower bounds for the top-quark mass has shown the dif-

ference between lowest and highest physical bdryon or meson mass squared 

to be ~ 104 GeV 2
• In topolu<jical theory, because fldvor symmetry is sustained 
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by all strong-interaction graphs, symmetry breaking --by electroweak inter-

actions of hadrons-- should be at the 1 % level. To understand the observed 

degree of symmetry breaking we thus need m~ .t 106 GeV 2 (or mo .t 1 TeV). 

2) The approximate chiral symmetry observed in some GeV hadronic pheno­

mena (e. g., PCAC). Topological theory exhibits no chiral symmetry at the 

elementary-hadron m level, but a zero-mass solution of a fermion-anti fermion o 
Bethe-Salpeter equation enjoys a special Lorentz symmetry which includes 

part and perhaps all of the content of PCAC 18 ). 

3) The observed '" 100 GeV mass of W ± and Z bosons 19) , together with 
o 

the inference from weak-interaction data that right-handed boson masses 

are .t 400 GeV20 ). (Topological theory predicts both right and left-handed 

vectors1 ).) Ref.10) shows how the coupling of massless elementary electroweak 

bosons to diquark halves breaks parity and SU(2) isospin symmetry. Mass will 

thereby be given to all physical electroweak bosons except the photon. 

The dynamics here may alternatively be described as a mixing between electro­

weak bosons and hexons of corresponding quantum numbers, which "attracts" 

the former toward the latter. (Because hexons are much more numerous than 

electroweak bosons, the center of gravity of their mass distribution does 

not shift much.) Consistency requires physical hexon masses to exceed physical 

electroweak-boson masses, although not by an enormous factor. Hexon masses 

in the TeV range are indicated. 

4) Lack of evidence for hexons in data from the CERN pp collidei1 ). 

Hexon masses {200 GeV thereby appear to be unlikely. 

5) Centauro cosmic-ray events6 ), with hadron multiplicity '" 100 but 

few nO's. In Sect.H we interpret such events as production and decay of 

hexons with TeV masses. 

6) The success 

electroweak-hadron 

achieved by QCD-parton models in representing GeV-range 

data by assigning (2/3) electric charge to quarks. 
-1/3 

This charge pattern we have seen to be understandable in topological theory 

to the extent that bare-hexon partons are suppressed by their large mass. 

7) The success of QCD-parton models in describing purely strong-inter­

action GeV-range data22 ). In the following section we show how renormalized 

F eynman graphs from topological theory, with lines corresponding to bare 

mesons and baryons of masses extending down to {1 GeV, but with no bare 

hexon lines, promise to reproduce and extend successes of QCD-parton models. 

Bootstrap theory in its extreme form is not supposed to rely on 

experimental data, being based on internal consistency, but in 

," 
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practice hints from experiment are always helpful in formulating 

partial bootstrap approaches. So· let us proceed, in the tempo-

rary absence of reliable methods for summing fishnet graphs, to take from 

experiment the. following qualitative properties for maximal-planar corrections 

to zero-entropy 

m , 
o 

1 TeV (10 ) 

We furthermore assume that, after flavor symmetry breaking, the lowest 

bare hadron masses are ~ 1 GeV. We assume, in other words, that remaining 

components of the topological expansion, such as planar graphs containing 

Feynman loops with a single quark-line loop, will generate effects less 

drastic than that of maximal planar topologies. Higher-order corrections 

are nonetheless essential for quantitative physics on the 1-GeV scale, 

and we shall argue that QCD-parton models represent an approximation to 

the next level of the topological expansion --just above the maximal planar 

level, where the controlling parameters are bare-meson and bare-baryon 

masses. These quantities will determine both the constituent quark mass 

and the equivalent of the QCD scale parameter. We shall also find meaning 

for constituent diquark mass. 

We have described in Section D a ladder-graph mechanism for the 

bare-hadron mass pattern (9),(10) in which the switch coupling strength 

exceeds zero-entropy coupling by a factor greater than 1.2 for qq and qd 

while less than 1.2 for ad, but we do not depend on this mechanism for 

the remainder of our reasoning. What is important i.:; the "bare" hadron 

(i.e., parton) mass pattern. 

G. CONTRACTED PLANAR PARTON GRAPHS FOR GeV-SCALE STRONG INTERACTIONS 

We now conjecture meaning for renormalized planar graphs where all 

lines correspond to partons --bare (m1) hadrons. For GeV-scale physics 

it is further an appropriate simplifying approximation to contract all 

nonperimeter Feynman lines whose masses are »1 GeV. Bare hexon lines then 

disappear, and to maximize simplicity of discussion let us suppose all 

noncontracted internal lines to be bare mesons carrying flavors u,d,s and 

with a single (bare) mass ~1. All Feynman loops then contain single closed 
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quark-line loops, double quark loops which accompany a boson-line loop 

hav ing been contracted into lines and vertices. Although for simplicity we 

ignore internal boson lines as well as "heavy-flavor" internal quark lines, 

a perimeter Feynman line mayor may not be accompanied by a valence boson 

Ii rle, and valence quark lines may carry any of the 8 flavors. 

Even though lines and vertices of such renormalized graphs reveal 

elementary-hadron substructure if examined on the m scale, we may regard 
o 

the lines as structure less "partons" for phenomena at energies well below 

m. Suppose we are interested in properties of physical mesons carrying 
o 

flavors f and fl. The example of Fig.8 reveals general features of any 

relevant renormalized planar graph. 

f 
--~--.", ....... 

/ "-
/ " / \ 

/ 
I \ 

I 
---- ....... / 

- - ----..." 

" \ 
\ 

\. 

" "- ....... / --_-c:-- ./ 

f' 

/ 
/ 

/ 

I 
I 

---
~----/ 

Fig. 8 Renormalized graph for ueson dynamics. 

One sees firstly how valence quark lines associc·te with Feynman-perimeter 

momentum lines meaning is thereby given. to constituent-quark momentum. 

The mass of a consti tuent quark of flavor f is the mass of a bare meson 

one of whose flavors is f while the other is u,d or s. 

Fig.8 further shows that the "potential" acting between constituent 

quark and antiquark is independent of· flavor. We also see how the sum over 

all planar graphs parallels the large-N I approximation to QeD --which co or 
has been argued to yield features of the "potential" needed for fitting 

"soft" dat/ 3 ). The low-mass flavors in topological renormalized planar 

graphs function similarly to the colors of QeD. The bare-meson mass ~1 may 

b(~ regarded as the analogue of the QeD scale parameter and we note that, 

a I though bare mesons have both spin 0 and spin 1, vector mesons will be 
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the more important contributors to the "potential". In short, we expect 

flavored bare vector mesons carrying a symmetrical superposition of 3 topolo­

gical "colors" to do the job of colored QeD gluons. 

I f we are interested in baryon properties, a typical planar graph 

is that of Fig.9(*), which corresponds to a "potential" acting between 

-------
• • I I , , ------,' 
-----, , .. 

\ 
\ 

f 

'-._----
I I I I 

'------

(f" 
I 

Fig. 9 Renormalized graph for baryon dynamics. 

constituent quark of flavor f and constituent diquark of flavors f' ,f". (**) 

The mass of the latter is that of a bare baryon with flavors f' ,fIt and 

u,d, or s. The potential is the same (up to a calculable factor) as between 

constituent quark and antiquark. 

Figure 10 exhibits the third type of planar renormalized graph, 

this one corresponding to a "potential" between constituent diquark and 

antidiquark. We expect such a potential to nenerate bound states whose lower 

members have spin, parity 0+,1+ and 2+. II{ tice that such quantum numbers 

do not correspond to 1 = 0 physical baryon-antibaryon bound states, a fact 

reflecting the difference between the planar dynamics of bare hadrons and 

(*)Remember that, despite the way quark lines here are drawn, both valence 
and internal lines are "color" symmetric. The two lines on the diquark side 
are not ordered. 

(**)The physical baryon with flavors f,f' ,fIt is the lowest state of a coupled 
3-channel dynamics. Each channel is characterized by the flavor of the 
constituent quark and that pair of flavors carried by the constituent diquark. 
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Fig. 10 Renormalized graph for baryonium dynamics. 

the ordinary nuclear-physics dynamics of physical baryons. Although the 

physical hadrons corresponding to Fig .10 --usually called "baryoniums"-­

have status parallel to that of physical mesons (Fig.8) and physical baryons 

(F ig. 9), they must not be confused wi th hexons. Baryoniums are part of 

CeV-scale strong interactions. 

Recently a very narrow st.·te of mass '".620 ± 0.001 GeV (below 

the nucleon-anti nucleon threshold) has neen reported by the LEAR experiment 

PS 183 24). From the topological viewpoint the most probable interpretation 

is an I = 2, JP = 1+ baryonium. A previous calculation in the planar approxi-
. 25) 

mation has predicted such baryonium states near the reported mass • 

We see no reason why the phenomenologically-successful features 

of "hard" QeD (e.g., in deep inelastic scattering)22) should fail to be 

sustained by renormalized-contracted Feynman graphs from topological theory. 

We sha 11, however, not here pursue this Issue --which requires detailed 

examination of how electroweak bosons couple to bare hadrons. 

H. HEXONS 

We have seen how topological bootstrap theory, in conjunction 

with certain experimental facts, predicts a large family of 0+, 1+, 2+ hexons 

.. ' 
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wi th masses in the TeV range. Thorough understanding of electroweak-boson 

coupling to hadrons will eventually allow 0+ and 1+ hexon masses to be 
+ 

calculated from a knowledge of electroweak-boson masses (such as W- and Z ). o 
In the present absence of such capability, certain observations may still 

be made 

a) SU (8) flavor symmetry of hexon masses and couplings should be broken 
+ + + by only a few percent. There will be three 1296-plets --of 2 ,1 and 0 

+ + hexons, one 2016-plet of 1 and one 784-plet of 0 • 

b) For a hexon unable to decay into 2 other hexons, a preliminary estimate 

of a typical width/mass ratio is 1/32. This statement will be elaborated 

below. 

c) The primary hexon decay should be to 2 bare baryons as shown in Fig.11, 

wi th subsequent cascade development of 2 large jets of physical hadrons. 

Fig. 11 
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- .. 
Hexon decay into (qrl; L' i 1us (C I) 1 . 

The cascade will favor physical baryons over physical mesons because there 

are more bare baryons than bare mesons, smaller mass for bare mesons being 

of less consequence than multiplicity with so much energy in the jet. (Analo­

gously to QCD-parton models22 ), we expect hadrons in the cascade to remain 

"bare" until their pZ has dropped to the GeV level.) 

If we associate hexons with the Centauro events of cosmic radiation6 ) 

(characterized by sparcity of nO's), the observed total hadron multiplicity 

~ 100 agrees with our rough estimate of hexon mass if we use the Lund modelS) 

as a guide. 

d) The vertex of Fig .11 (interpreted as "bdre", not elementary) also 

appears in the mechanism for hexon production by a "soft" collision of 

a high-energy baryon with some other physical hadron. One may say that. 

a valence bare-baryon constituent of the physical baryon at sufficiently-
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high energy emits a hexon before colliding with the other hadron --as shown 

in Fig.12. The impact parameter is controlled by the bare baryon mass, 

Fig. 12 
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Hexon production in baryon-hadron collision. 

not by the hexon mass, so the cross section can reach the millibarn 

range as soon as the p2 of the intermediate bare baryon reaches the 

GeV range. Such will be possible when the center of mass energy is a few 

times larger than the hexon mass. Thus we expect a large collection of 

novel events to appear in Tevatron experiments. 

I t may seem contradictory to expect a "large" cross section for 

hexon production while the width for hexon decay is "small", since both 

depend on the vertex of Fig.11. In the production process of Fig.12, however, 

one sums over .£ quark lines in the final state while in the decay process 

of Fig .11, one sums over only .1. final quark line. Hence a factor of 32 

suppresses decay relative to production. Alternatively the effect is attribu­

table to there being more hexons than baryon~ : the production cross section 

sums over different produced hexons while the decay rate sums over different 

baryons. 

SUMr~ARY 

This paper has suggested that, because quark multiplicity is large 

(2), two widely-separated scales--TeV and GeV-- develop for strong interac­

tions. The TeV scale associates with planar Feynmarl loops that carry 2 closed 

,w. 
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quark loops, while the GeV scale associates with single quark loops(*). 

Parton models for GeV-scale phenomena are thereby explained, the partons 

being 3-"color"-symmetrized "bare" mesons and baryons. Partons along the 

perimeters of planar Feynman graphs are interpretable as valence quarks 

and diquarks we have explained the origin of standard fractional charges 

for quarks as well as the meaning of constituent-quark mass . 

We predict a large new family of "almost-elementary" hadrons called 

hexons, with masses in the TeV range. With respect to the "classical bootstrap" 

idea that hadrons are bound states of each other, held together by a hadron­

exchange "force", the following simplified summary of planar dynamics is 

possible 

Hadrons ("radius") Constituents "Force" 

hexon (TeV- 1 ) hexon plus hexon hexon 

bare baryon (TeV- 1 ) hexon plus bare baryon hexon 

bare meson (TeV- 1) bare baryon plus bare antibaryon hexon 

physical baryon (GeV- 1) bare meson plus bare baryon bare meson 

physical meson (GeV- 1) bare meson plus b- , ., 
Ch ' meson bare meson 

physical baryonium (GeV- 1) bare baryon plus ')are anti baryon bare meson 

The role of the gluon in QCO-parton mGdels is played in topological 

bootstrap theory by the bare meson, symmetrized in topological color, the 

gluon color degree of freedom being replaced by bare-meson flavor. 
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