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Shared Evidence: It all depends... 
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Abstract 

When reasoning about evidence, we must carefully consider 
the impact of different structures. For instance, if in the 
process of evaluating multiple reports, we find they rely on 
the same, shared evidence, then the support proffered by 
those reports is dependent on that evidence. Critically, 
normative accounts suggest that such a dependency results in 
redundant information across reports (reducing evidential 
support), relative to reports based on distinct items of 
evidence. In the present work we disentangle the structural 
and observation-based indicators of this form of dependency. 
In so doing, we present novel findings that lay reasoners are 
not only insensitive to shared evidence structures when 
updating their beliefs, but also that reasoners do not 
necessarily prefer more diverse sources of evidence. Finally, 
we replicate prior effects in reasoning under uncertainty, 
including conservative sequential updating, and difficulty in 
integrating contradictory reports. 

Keywords: evidential reasoning; probabilistic reasoning; 
dependence; Bayesian Networks; belief updating 

Introduction 

Over the course of an investigation, you are faced with the 

weighing up of contradicting reports. Two of your 

investigators confirm the hypothesis, whilst two disconfirm 

it. How do you discern which pair may carry more 

(evidential) weight? One important aspect is what evidence 

those investigators are relying upon. For instance, if your 

two confirming investigators are relying on the same piece 

of evidence to inform their reports, whilst the two 

disconfirming investigators are relying on separate, 

independent pieces of evidence, then, ceterus paribus, the 

standard intuition is to side with the disconfimers. 

This example highlights the traditional understanding of 

one form of dependency in evidential reasoning. 

Specifically, the notion of “shared” evidence (Schum & 

Martin, 1982; Schum, 1994), which is considered to be 

inferior to reports based on distinct (separate) evidence, i.e. 

dependence as a form of redundancy (Hogarth, 1989; 

Schum & Martin, 1982; Soll, 1999). 

How such information should be integrated is important 

to a number of areas, from everyday reasoning to 

investigative domains such as medicine (Eddy, 1982), law 

(Faigman & Baglioni Jr, 1988; Fenton & Neil, 2012, 

Fenton, Neil & Lagnado, 2013, Harris & Hahn, 2009; 

Lagnado, 2011; Pennington & Hastie, 1986; Schum, 1994), 

risk analysis (Fenton & Neil, 2012), and to the intelligence 

community (Heuer, 1999). Consequently, failures to account 

for such dependencies between evidence items – although 

easing computation (Pearl, 1988; Schum, 1994) – can lead 

to deleterious overweighting of the support provided by 

such evidence (e.g., naïve Bayes in medicine – where 

evidence is assumed to always be independent; Koller & 

Friedman, 2009; Kononenko, 1993). 

The notion of shared-evidence as a form of dependence 

fits with the correlation-based conceptualisation of 

dependencies as a form of redundancy in prediction errors 

(e.g. Soll, 1999). More precisely, when two sources are 

using the same evidence to inform their reports, vs the same 

two sources using two different items of evidence, the 

former case results in an “overlap” of information provided 

(Schum, 1994). It thus becomes more likely that reports in 

the former case rely on the same information, and the pair of 

reports therefore carry some redundant information. As a 

consequence, such correlated reports provide a lesser degree 

of support for the hypothesis being informed upon.  

In the present work, we seek to provide an empirical 

baseline for lay reasoners judgments regarding this form of 

dependence. We not only investigate whether belief-

updating is in line with the shared-evidence-as-inferior 

hypothesis proposed in formal work, but whether lay 

reasoners seek more diverse evidence in their search 

preferences. 

Formalising reasoning about shared evidence 

To illustrate what is meant by shared evidence, Fig. 1 below 

presents a directed acyclic graph (DAG) of an example case. 

Here there is a hypothesis under investigation (H), three 

pieces of evidence that inform that hypothesis (E1-3), and 

four sources (or witnesses) who in turn report on said 

evidence (R1-4). Crucially, the evidence itself remains 

unobserved, so we are instead trying to infer diagnostically 

about H (via E1-3) from the reports provided by R1-4, and 

notably how to judge R1 and R2 (who rely on the same 

evidence, E1), versus R3 and R4 (who rely on separate 

evidence, E2 and E3 respectively). 

 

 
Figure 1. Graphical representation of a hypothesis (H), 

evidence items that inform upon it (E1-E3), and sources 

informing their reports upon said evidence (R1-R4).  
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To understand how reasoners should update their beliefs 

given these observed reports, we use a Bayesian Network 

(BN) formalism, wherein a DAG is supplemented by 

conditional probabilities and the use of Bayes theorem, so as 

to make optimal (i.e. inaccuracy minimization) inferences 

(Pearl, 1988; 2009). This computational framework for 

reasoning under uncertainty has been used effectively to 

model (and shed light on human inferences by comparison) 

direct dependencies between sources (Pilditch, Hahn & 

Lagnado, 2018), and dependencies as shared-backgrounds 

among sources (Madsen, Hahn & Pilditch, 2018), and 

integration across sources of differing reliabilities (Phillips, 

Hahn, & Pilditch, 2018). 

If we assume, in the above example, that all evidence 

items are equally diagnostic1, and all sources are equally 

reliable2, then the sole difference-maker between sources is 

the structural difference entailed by the shared evidence 

(E1). To best illustrate the impact of shared evidence, we 

first consider the point at which we have only observed a 

confirmatory report from R1. Via conditionalization, E1 is 

now already more likely to be confirmatory than E2 and E3. 

Given this, if we are to decide whether we want to see a 

report from R2 (who also relies on E1), or a report from R3, 

a confirming report from the latter provides more potential 

information regarding H, given that P(E1) – which is 

already more probable, given the report from R1 – increases 

less given R2 than P(E2) does, given R3. 

 

Present research We seek to empirically test the degree to 

which lay reasoners are sensitive to the impact of shared 

evidence structures on belief updating. More precisely, we 

use the above formalism to provide an empirical baseline for 

lay reasoning regarding such dependencies, and notably 

whether participant probability estimates fit with normative 

predictions of dependence inferiority. Additionally, we 

explore two research questions that the formalism allows us 

to investigate, via the separation of structural dependencies 

from dependencies inferred from (correlated) observations: 

First, how do reasoners deal with contradiction across a 

shared evidence item (as opposed to contradiction across 

different evidence items)? Recent research that exploits the 

capacity to tease apart the structural form of a dependency 

from the dependency inferred from (correlated) observation 

– as possible in the present work – exposes lay reasoner 

difficulties in accurately updating (both qualitatively and 

quantitatively) when an observed contradiction occurs 

across a structural dependency (i.e. information is directly 

shared from one source to another equally reliable source, 

yet those sources then disagree; Pilditch, Hahn, & Lagnado, 

2018). We predict the same difficulty here. 

Second, the present work allows for the investigation into 

evidence diversity preferences. The computational 

framework underpinning this work allows for the 

                                                         
1 I.e. P(E1|H) = P(E2|H) = P(E3|H), and P(E1|¬H) = P(E2|¬H) = 

P(E3|¬H).  
2 I.e. P(R1|E1) = P(R2|E1) = P(R3|E2) = P(R4|E3), and 

P(R1|¬E1) = P(R2|¬E1) = P(R3|¬E2) = P(R4|¬E3). 

calculation of the predicted informative value of evidence 

items, for which we calculate the Kullback-Liebler 

Divergence (KL-D; a measure of entropy reduction; 

Kullback & Liebler, 1951)3.  

  

𝐾𝐿(𝐸𝑗) =  ∑ 𝑃(ℎ𝑖|𝑒𝑗) ∗ log (
𝑃(ℎ𝑖|𝑒𝑗)

𝑃(ℎ𝑖)
) 

 

where Ej is a set of items of evidence {E1, E2…Ej}, ei the set 

of possible states of the evidence, {e1, e2, ei}, and hi is a set 

of hypotheses, {h1, h2…hi}. In the present case, we compute 

the information provided by R2 in reference to the 

hypothesis (H; given we have already observed R1) when a) 

R2 also relies on E1, vs b) R2 relies on E2, taking a 

difference measure between these two values. 

As such, in asking lay reasoners for their preference for a 

forthcoming report to be based on shared evidence (i.e. 

based on an item of evidence already informed by one 

report) or new evidence, we may observe whether lay 

reasoning (if in line with normative expectations) predicates 

an evidence selection preference for more diverse items. 

 

In sum, the present work uses a BN formalism to 

disentangle the structural vs observation-based forms of 

shared evidence dependencies. In so doing we are able to 

not only establish an empirical baseline of when the two 

forms agree (and thus whether reasoners fit with standard 

normative expectations), but also examine how reasoners 

deal with cases of disagreement (where observations appear 

uncorrelated, but a structural dependence remains), and use 

structural relations to determine (diversity-based) evidence 

preferences. 

Method 

Participants 200 US participants were recruited and 

participated online through Amazon Mechanical Turk. 

Three participants were removed for incomplete data, and 1 

for not being a native English speaker. Of the 196 remaining 

participants, 84 identified as female, and the median age 

was 34 (SD = 9.8). All participants gave informed consent, 

and were paid for their time (Mdn = 8.74 minutes, SD = 

6.63). 

Procedure & Design Participants were presented with a 

scenario in which a patient, “RN”, may have a disease 

“MTL” (“H” in Fig. 1). The participant is placed in the role 

of a diagnostician, attempting to confirm the above 

diagnosis. They are informed that the patient has had a 

number of cell samples taken (these can be considered E1-3 

in Fig. 1), both independently, and of equal diagnosticity. 

More precisely, that each cell sample may contain a 

biomarker, which has a 90% chance of being due to MTL 

                                                         
3 Other information measures exist, such as impact (see Nelson, 

2005), information gain (Lindley, 1956), and Bayesian 

diagnosticity (Good, 1950), though empirical work suggests such 
measures are highly correlated (Nelson, 2005), and are thus 

considered interchangeable for the present work.  
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(hit rate), but also a 10% probability of being a false 

positive. 

Participants are then informed that they are unable to 

examine the cell samples themselves, but must rely on lab 

technicians (R1-4 in Fig. 1), who will independently 

examine the cell samples and provide a report of whether 

biomarkers are present or absent. Crucially, all the lab 

technicians are indicated as equally reliable, in that they 

have an 80% chance of detecting and reporting a biomarker 

(irrespective of whether it is due to MTL), when a 

biomarker is present (hit rate), and a 20% chance of a false 

positive. 

Lastly, participants were informed that prior to receiving 

any reports from their lab technicians, given the facts of the 

case so far, they should assume a prior probability of patient 

RN having MTL of 50% (“Finally, prior to getting the 

reports, you can assume an initial probability of 50% that 

patient RN has MTL, based on the facts of the diagnostic 

process so far… Before you start finding out reports, please 

answer the following question … What is the probability 

that patient RN has MTL?”). This prior probability was 

then immediately elicited from participants, for use in 

individual model fitting (see results section below). 

Elicitation Stages Participants then received reports from 

each of 4 lab technicians in turn (resulting in a total of 4 

elicitation stages). Following each new report, participants 

were asked to provide a new probability estimate of patient 

RN having MTL – given everything they now know (i.e. 

background + gradually accumulating reports). These 

probability estimates were the main dependent variable. 

Each report statement took the form “Based on their 

assessment of cell sample [1/2/3], lab tech [1/2/3/4] reports 

that the biomarker is [present/absent].” 

Crucially, there were two independent, between-subject 

variables employed, making a 2x2 design. The first of these 

was the evidence used by the second lab technician 

(“R2Evidence”). Whilst the first lab technician always used 

cell sample 1, the third cell sample 2, and the fourth cell 

sample 3, the second lab technician used cell sample 1 in 

one condition (R2E1), and cell sample 2 in the other 

(R2E2). This allowed for a) the between-subject comparison 

of 2 reporters using independent (R2E2) vs shared evidence 

(R2E1), and b) allowed for the disentanglement of structure 

(i.e. dependency relations) from order of observations (i.e. 

is over/under updating due to the second report relying on 

shared evidence, or simply because it is the second report). 

The second between subject factor was the order of 

positive (biomarker present) and negative (biomarker 

absent) reports (“RepOrder”). More precisely, either the first 

lab technicians 1 and 2 gave positive reports (and 3 & 4 

gave negative reports; “PosFirst”), or the reverse 

(“NegFirst”). This general structuring, when taken in 

conjunction with the R2Evidence factor, allowed for the 

assessment of the influence of shared evidence when 

reporters agree about the same evidence (R2E1) or disagree 

(R2E2 – as lab technicians 2 & 3 will always disagree, yet 

will share cell sample 2). Additionally, this allows for the 

further disentanglement of observation type from shared 

evidence (structural) influences. For instance, in R2E1 

conditions, the reports from shared evidence (lab 

technicians 1 & 2) will half the time be positive, and the 

reports from independent evidence (lab technicians 3 & 4) 

will half the time be negative, and vice versa. Thus, one 

may discern the influence of (dis)confirming observations 

vs structural differences. 

Dependent variables Along with the probability estimates 

elicited at each elicitation stage (0-100% slider, no default)4, 

one further qualitative question was asked after the first lab 

technician provided a report (i.e. elicitation stage 1): 

“Given the choice, would you rather Lab Tech 2 also 

independently investigated cell sample 1 for a 

biomarker, or investigated a different cell sample (cell 

sample 2)?” [“Same cell sample (cell sample 1)” / 

“Different cell sample (cell sample 2)” / “There is no 

difference.”] Forced choice, randomized order of 

presentation. 

The purpose of this question was to assess participant 

preferences for diversity (independence in this case) in their 

observations. 

Taken together, the probability estimates and evidence 

preference judgment allow for the assessment of the impact 

of shared evidence, both in terms of predicted support, and 

consequent reasoning (and belief-updating), whilst taking 

into account the influence of observation types and orders. 

To concretize the research questions into hypotheses, we 

predict: 

H1. Shared Evidence Structure - Shared evidence will 

result in estimates of reduced impact of affected reports, in 

comparison to reports from distinct items of evidence, 

ceterus paribus. Tested via the between subject comparison 

of the impact of lab technician 2 at the second elicitation 

stage when lab technician 2 does/does not share cell sample 

1 with lab technician 1 (i.e. R2E1 vs R2E2 conditions). 

H2. Contradictions and Dependence – Reasoners will 

find the integration of two contradicting reporters using the 

same evidence (i.e. within a shared evidence item) more 

difficult than when contradictions are based on separate 

evidence items. Tested via the comparison to normative 

expectation at third elicitation stage (when lab technician 1, 

lab technician 2, and lab technician 3 have reported) in 

R2E2 condition in comparison to R2E1 condition, where 

contradiction cuts across (rather than within) evidence 

items. Such a prediction is informed by previous work that 

has found lay reasoners struggle with inferences from 

contradicting reports across a dependency (Pilditch, Hahn, 

& Lagnado, 2018). 

H3. Diversity Preference - Participants (correctly) prefer 

more diverse evidence (prefer lab technician 2 to use 

evidence cell sample 2. 

i. An additional question of interest is whether 

diversity preferences will be lower when lab 

                                                         
4 Open text reasoning responses were also collected at the end of 

each elicitation stage, but for the sake of brevity are not reported 

here. 
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technician 1 provides negative evidence (NegFirst 

condition), than when lab technician 1 provides 

positive evidence (PosFirst)? 

Fig. 2 below shows the different structural and report order 

comparisons for the 2x2 design (each cell is a between 

subject condition), with T1 to T4 within each cell as the 

within-subject order of evidence. Thus, H1 is investigated 

by comparing T2 in the top row (when R2 is reliant on the 

same evidence as R1) with T2 on the bottom row (when R2 

is using different evidence). We can then assess H2 by 

comparing T2 to T3 in the top row (contradiction based on 

separate items) to the bottom row (contradiction based on 

shared evidence. H3 is assessed having seen the report at T1 

(and is asked prospectively about T2), and H3i. is based on 

the comparison of responses to the H3 question in left 

versus right columns of Fig. 2. 

 

 
Figure 2. Underlying networks, split by R2Evidence 

(rows) and RepOrder (columns) conditions. T1 to T4 reflect 

sequence of reports (within-subjects). 

Results 

Bayesian statistics were employed throughout5 using the 

JASP statistical software (JASP Team, 2018). Using the 

gRain package in R (Højsgaard, 2012), the elicited priors 

from each participant were used to individually fit BNs for 

each participant. Remaining parameters were as specified in 

the background information presented to participants. The 

posterior probabilities at each elicitation stage generated 

from each BIBN model (representing each participant) were 

used in subsequent comparison analyses. 

Probability Estimates 

The hypothesis-directed analyses used to unpack a) the 

influence of when shared evidence is introduced (H1), and 

b) the influence of contradiction within/outside a 

                                                         
5 For all analyses, an uninformed prior was used. Wherever 

possible, sample sizes for a given analysis (N), and Bayesian 

Credibility Intervals (95% CI) are indicated. 

dependency (H2), first employed an RM-ANOVA on 

participant estimates alone (including between subject 

factors), so as to determine participant behavior, followed 

by a further analysis that compared these estimates to BIBN 

predictions, to determine the “correctness” of this 

behaviour.   

H1. Firstly, to assess H1, an RM-ANOVA on participant 

estimates from T1 to T2, found participants were insensitive 

to R2Evidence condition overall, BFInclusion = 0.102, or in 

interaction with elicitation stage, BFInclusion = 0.105. This 

was despite participants updating in light of new evidence in 

general, BFInclusion > 10000, and whether that evidence was 

positive or negative, BFInclusion > 10000. This was further 

evidenced by the interaction of elicitation stage and 

RepOrder (participants decreased estimates as negative 

reports came in, and increased as positive reports came in), 

BFInclusion > 10000. Consequently, the model of participant 

estimates without R2Evidence yielded the strongest fit, BFM 

= 63.2, and was decisive overall, BF10 > 10000. 

Consequently, by subsequent inclusion of the BIBN 

predictions for each participant (the Observed vs Predicted 

factor), this insensitivity to shared evidence (i.e. the 

influence of R2Evidence, was shown to be insufficient 

relative to (fitted) normative expectation. This was 

evidenced by a main effect of Observed vs Predicted, 

BFInclusion = 5479.38, and critically, strong evidence for the 

interaction of R2Evidience and Observed vs Predicted 

(BIBN predictions changed with R2Evidence, whilst 

participant estimates do not), BFInclusion = 11.72. 

 In sum, these analyses revealed participants were 

insensitive to impact of shared evidence structures, as 

compared to their fitted Bayesian predictions (H1). 

 
Figure 3. Probability estimates across elicitation stages, 

split by condition. Error bars reflect standard error. 

 

H2. Secondly, to assess H2, the same analytical protocol 

was used on elicitation stages T2 to T3. This corroborated 

H1 findings, in that the insensitivity to the influence of 
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R2Evidence (this time via the presence of shared evidence 

in concert with contradicting reports either outside, R2E1, 

or within, R2E2, the same shared evidence) persisted both 

overall, BFInclusion = 0.315, and in interaction with elicitation 

stage, BFInclusion = 0.321. However, once again participants 

were sensitive to the introduction of new evidence in 

general, BFInclusion > 10000, its valence, BFInclusion > 10000, 

and the interaction of these factors (newly introduced 

positive reports lead to increased estimates, whilst newly 

introduced negative reports lead to decreased estimates), 

BFInclusion > 10000. As with the H1 analysis, the model of 

participant estimates without R2Evidence yielded the 

strongest fit, BFM = 20.425, and was decisive overall, BF10 

> 10000. 

To again determine whether this insensitivity was 

erroneous, BIBN predictions for each participant were 

included as another within subject factor (Observed vs 

Predicted). Again, participant estimates were shown to not 

only be generally insufficient in comparison to BIBN 

predictions, BFInclusion > 10000, but that this insensitivity 

extended to shared evidence (R2Evidence x Observed vs 

Predicted; BIBN estimates change with condition, 

participant estimates do not), BFInclusion > 10000. 

In conclusion, the above analyses corroborate the 

insensitivity findings of H1, extending them to the issue of  

contradiction (of reports) being based on the same or 

different evidence items (H2). 

 

Taken together, H1 and H2 findings suggest participants 

were insensitive to the impact of shared evidence, both 

when reporters are corroborating with, and contradicting 

each other. 

Evidence Preference 

The BIBN models for each participant, having taken into 

account the elicited prior for the hypothesis, generated the 

expected information gained in KL-D, having observed the 

positive/negative report from the first lab technician, for two 

models; one in which the second lab technician used the 

same evidence as the first (E1), and one where the second 

lab technician used different evidence (E2). The difference 

in expected information gain between these two models was 

used to generate a normative preference (based on 

maximum expected information) for the second lab 

technician using E1, E2, or them being equivalent 

(“NoPref”). 

To assess the observed evidence preferences, a Bayesian 

binomial test was conducted on observed preferences (dark 

grey bars of Fig. 4), comparing them to chance responding 

(0.33). Preferences for the second lab technician to use the 

same evidence as the first lab technician (E1) were found to 

be at chance level (0.36, 95% CI: [0.293, 0.426]; N = 196), 

BF10 = 0.118, whilst diversity preferences (second lab 

technician to use E2) were found to occur decisively above 

chance (0.51, 95% CI: [0.441, 0.579]; N = 196), BF10 > 

10000, lending some support to the diversity preference 

predicted (H3). The frequency of participants opting for “no 

preference” was decisively below that expected by chance, 

(0.13, 95% CI: [0.092, 0.187]; N = 196), BF10 > 10000. A 

Bayesian contingency table revealed these frequencies to 

not be influenced by whether the first lab technician had 

made a positive (right-hand facet of Fig. 4) or negative (left-

hand facet of Fig. 4) report (N = 196), BF10 = 0.045, 

speaking against hypothesis H3i.  

Crucially, participant preferences for the second lab 

technician to use the same evidence as the first lab 

technician are substantially higher than that predicted by 

BIBN models (i.e. 0; see light grey bars of Fig. 4). This is 

corroborated by the decisive deviation in frequencies 

between observed and predicted preferences (N = 392), BF10 

> 10000. Put another way, and contrary to predictions of 

H3, approximately 1/3rd of participants retain an explicit 

preference for the information-poorer reports that “confirm” 

(i.e. are based on evidence that has already formed the basis 

of an observed report), rather than a diversity preference or 

lack of preference.  

 

 
Figure 4. Evidence Preferences, split by condition. 

Dashed line represents chance level (33%). 

 

Conclusions 

When reasoning under uncertainty, an important 

consideration is the impact of dependencies among evidence 

items. More precisely, seemingly separate reports, which in 

fact stem from the same source (or evidence basis), carry 

redundant information, relative to truly separate reports 

(based on distinct information). To mistake the former for 

the latter can lead to overweighting support for a given 

hypothesis, to deleterious consequences (Dror et al., 2006; 

Koller & Friedman, 2009). 

Here, we show that lay reasoners seem rather insensitive 

to the impact of this form of dependency and consider the 

two cases equivalent when estimating degrees of support for 

a hypothesis. At the same time, our findings corroborate 

prior research in terms of both a) the consistent under-

weighting of introduced evidence (see e.g. Faigman & 
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Baglioni, 1988; Nance & Morris, 2005), and b) more 

substantial deviations when having to deal with 

contradictory reports (Pilditch et al., 2018). 

Finally, we present a second novel finding in lay 

reasoners preferences for further reports based on shared 

(i.e. previously informed upon) evidence (a “confirmatory” 

preference) or separate (unseen) evidence (a “diversity” 

preference). Though the majority of participants conform to 

a diversity preference in line with maximising expected 

information, approximately 1/3rd of lay reasoners have a 

confirmatory preference. While failures to appreciate 

diversity have been reported before (e.g., Soll, 1999), there 

are clear preferences for diversity in other inferential 

contexts (e.g., Rips, 1979; Osherson et al., 1990), even in 

children (Heit & Hahn, 2001). Hence further work will be 

required to pinpoint exactly for when, where and why 

diversity is appreciated and when it is not. It is worth note in 

this context that where the reliability of the reporting 

sources is not exactly known (unlike the lab technicians in 

the present study), diverse evidence is arguably not always 

normatively superior (see Bovens & Hartmann, 2003). 

Whether lay reasoners have any understanding of the 

different circumstances where a diversity advantage does 

and does not obtain remains to be seen.  
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