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ABSTRACT  

 

A Mnemonic Discrimination Account for the Behavioral and  
Neural Correlates Underlying the Other-Race Effect 

 
by 

Jessica L. Yaros 

Doctor of Philosophy in Neurobiology & Behavior 

University of California, Irvine, 2021 

Professor Michael A. Yassa, Chair 

 

People often recognize and remember faces of individuals within their own race 

more easily than those of other races. While behavioral research has long suggested that 

this so-called Other-Race Effect (ORE) is due to extensive experience with one’s own race 

group, the neural mechanisms underlying the effect remain unclear. Prior neuroimaging 

research has explored differences in perceptual processing of same and other-race faces, 

overlooking the important contributions of mnemonic processes in shaping the ORE. The 

work comprised in this dissertation attempts to fill this gap, characterizing a framework in 

which asymmetries in memory mechanisms give rise to the ORE. In a series of experiments 

employing mnemonic discrimination (pattern separation) paradigms based on 

computational models of episodic memory, we uncovered both behavioral and neural 

correlates of the ORE. In an initial set of studies, the ORE was demonstrated to be driven by 

differences in successful memory discrimination across races as a function of degree of 

interference between face stimuli. In follow-up studies we characterized different 

functional brain network properties conducive to successful same and other-race face 

recognition. Together these findings suggest that the ORE may emerge in part due to tuned 
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memory mechanisms that may enhance same-race, at the expense of other-race face 

detection. Furthermore, brain network connectivity during memorization that predicted 

successful same-race recognition was found to be maladaptive for other-race recognition, 

suggesting employment of different cognitive strategies may be optimal depending on the 

race of face being processed. Given that cross-race eyewitness identifications 

disproportionately contribute to wrongful convictions by the criminal justice system, this 

work should further motivate the development of procedures to mitigate the impact of the 

ORE on eyewitness testimony.
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Introduction 

The Other-Race Effect (ORE) is the tendency to be worse at recognizing and remembering 

faces outside of one’s own race group. The effect was first academically documented in 

1914, in an early study of environmental influence on visual discrimination1. Even then, it 

was anecdotally “well known that, other things being equal, individuals of a given race are 

distinguishable from each other in proportion to our familiarity, to our contact with the 

race as a whole.” Still, over a half-century passed before the effect was first empirically 

studied in 1969. Since then, the ORE has become one of the most replicated phenomena in 

face perception2,3. 

Researchers of the effect have never settled on a unified name. While I choose to use 

‘Other-Race Effect’ throughout this dissertation, the phenomenon has also been coined as 

the ‘own-race bias’, ‘own-race effect’, ‘cross-race effect’, ‘cross-race bias’, ‘own-group-bias’, 

and ‘own-ethnicity-bias’. Whichever name is subscribed to, one thing is agreed upon—the 

effect is dangerous. On an interpersonal and social level, being mistaken for someone else 

due to one’s race affiliation contributes to anxiety and social isolation4,5. But greater than 

that, the ORE can put individuals at risk when it manifests in the context of person 

identification. Verification of identity in airports, security-sensitive government or business 

buildings, and banks all rely on personnel accurately matching the face of a live person to a 

photograph. However, research continually demonstrates people struggle with this task, 

even when identifying same-race faces6. Identity matching of other-race faces becomes 

even more challenging7,8. And if matching a live face to a photo is difficult, making an 
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accurate identification from memory is even more challenging. Therefore eye-witness 

testimony can be a controversial topic. Research has shown that memory is fallible, and the 

ORE only serves to complicate matters. 

The first academic documentation of the ORE acknowledged this much, and it should be no 

surprise it was published in what is now called, the Journal of Criminal Law and 

Criminology1: 

“I admit that the identification of a foreigner in the same environment in which, not 
he, but a member of his race had been seen before, might result in false recognition1  
(50).” 

Despite a seeming public acknowledgement of the ORE, for years the lack of empirical 

evidence supporting it likely took a great toll on its victims. The Quincy Five was one such 

case in 1971 involving five Black men wrongfully convicted based solely on eyewitness 

testimony. Allegedly the presiding judge would not allow a prominent psychologist to serve 

as an expert witness since only three studies on the ORE had been conducted at the time3. 

Fortunately, the five were pardoned (several of whom became the US’s first ever cases of 

exoneration from death row) and the actual perpetrators charged. And yet today, with a 

wealth of research validating the ORE and signaling its risk in the context of eyewitness 

testimony, the impact of the effect is still quite apparent through the statistics of wrongful 

convictions.  

To date the legal organization, The Innocence Project reports that amongst 350 

exonerations by DNA evidence, 42% involved mistaken cross-race identifications9. 

Similarly The National Registry of Exonerations reports that 67% of overturned sexual 
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assault convictions involved mistaken identification, in half of which the defendant was 

Black and the victim was white10,11.  

There have been several attempts to quantify the damages caused by wrongful convictions. 

Unsurprisingly, exonerees’ lives are severely compromised. A comprehensive survey found 

that impacts include (but are not limited to) loss of identity, damage to reputation, post-

traumatic stress disorder, and physical health problems5. But damages are not restricted to 

exonerees and their families. Data has shown that even original crime victims (i.e. the 

original eye-witnesses) suffer, reporting feelings of guilt, fear, helplessness, devastation 

and depression12. Even the American taxpayer suffers. Numerous states across the US have 

put together reports of the economic burden associated with these convictions. For 

example, the cost of incarceration, civil settlements, and compensation over approximately 

a decade cost Illinois and California taxpayers 214 and 220 million dollars, respectively13,14. 

And finally, there are the unquantifiable damages caused to future victims of the actual 

perpetrators who remain at large and unpursued.  

Given the widespread and diffuse consequences of mistaken identification of other-race 

persons, it is imperative to better understand the ORE and its psychological and neural 

correlates. Fortunately, decades of perceptual and memory research have finally begun to 

impact certain policies in police institutions across the country. This is in part thanks to a 

2014 landmark report by the National Academies chronicling the wealth of research 

surrounding fallibility in eye-witness reports and providing data driven recommendations 

to improve testimony15. However, while the article mentions the ORE in several sections, it 

does not offer recommendations specific to combatting it.  
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A whole report itself could be written on the fallibility surrounding testimony where race is 

a factor, as it is far more complex and less well understood than many of the other 

variables discussed in the National Academies Report. As opposed to perceptual 

phenomena (viewing angle, brightness of lighting), race is convoluted by psychological 

phenomena such as stereotyping, sheer familiarity with faces, social categorization, etc. The 

report acknowledges this much, concluding: 

“Additional research is needed to identify procedures that may help estimate the 
degree of own-race biases in individual eyewitnesses following an identification 
procedure. Until the scientific basis for these effects is better understood, great care 
may be warranted when constructing lineups in instances where the race of the 
suspect differs from that of the eyewitness (97).”  

In keeping with this call for more research, the current dissertation comprises of two 

additional studies on the ORE. The first study (chapter 3) poses a mechanistic account for 

the ORE and provides a potential metric to measure its severity. The second (chapter 6) 

employs neuroimaging analysis to examine differences in brain connectivity when same 

and other-race faces are processed. The remaining chapters serve to introduce the current 

state of psychological and neuroscientific research on the ORE (chapter 1 and chapter 2), as 

well as outline the processes informing our neuroimaging analysis approaches (chapter 4 

and chapter 5). 
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Chapter 1: Cognitive Frameworks for the Other-Race Effect 

Early Explanatory Theories of the Other-Race Effect 

The Other-Race Effect (ORE) is a highly replicated phenomenon in face perception and 

memory research. It has been reproduced across a variety of paradigms including those 

testing standard recognition and working memory, as well as perceptual matching ability 

and gender and race categorization16. Across mnemonic variations of the task, the effect is 

often characterized by a deficit in other-race relative to same-race performance within the 

following four measures: i) decreased hits (reduction in correctly identifying a face as 

repeated), ii) increased false alarms (increase in falsely recognizing a new face as seen 

before), iii) decreased discriminability (reduced ability to discriminate between repeated 

faces and new faces) and a more liberal response criterion (increased willingness to 

identify a face as repeated). Put less academically, when a perceiver interacts with a 

member of another race, they are less likely to accurately remember the individual’s face 

later on, and more likely to falsely recognize a new face as belonging to the original 

identity. These coinciding factors manifest themselves in well-known phrases describing 

the experience, such as ‘They all look the same to me,’ and ‘All [Insert Group Here] Look 

Alike’. 

While today there is a general belief that no one race looks more alike than the other, this 

was not always the case. In the early days of research into this effect (circa 1969), the two 

dominant theories of its cause were divided into psychophysical and psychosocial camps.  
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Psychophysical explanations proposed that the reflectance of dark-skin and higher 

morphological similarity between non-white faces led to the observed reduction (in white 

individuals) of other-race recognition17. These theories were likely influenced by opinions 

in line with Social Darwinism which still to this day promote scientifically racist studies18. 

Even an early study finding evidence against the psychophysical account references 

Darwin: 

"From a Darwinian point of view, it could be argued that feature variability should 
be closely related to the ‘usefulness’ of the feature as a discriminant stimulus in 
everyday face recognition. Stated in another way, the degree of variance of facial 
features should be correlated with their ecological importance as discriminant 
stimuli for facial recognition in ordinary interpersonal interactions.19” 

Considering the discriminatory relevance of features from evolutionary point of view is 

valid. Later in this section, variation in featural importance will be discussed. However, it is 

interesting to consider the historical context of this statement, suggesting researchers who 

subscribed to the psychophysical hypothesis may have quietly considered non-white 

individuals less physically individuated and potentially less evolutionarily fit as result.  

In contrast to the psychophysical hypothesis, psychosocial explanations attributed 

decreased other-race recognition to prejudice and lack of familiarity with other-race faces 

due to relatively segregated and mono-race societies. Large support for psychosocial 

accounts came from the well-known anecdotal reciprocal nature of the effect 

(acknowledged as early as the year 19141) as well as experimental evidence beginning 

around the 1970s20,21.  Unfortunately, one of the inaugural experiments found that even 

Black individuals recognized White faces better, perpetuating the psychophysical theory22. 

The authors admitted that their stimuli were not controlled for physical homogeneity 
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across each race, which would be a necessary manipulation to test whether stimulus 

selection confounded their results. Therefore, their findings may have resulted from 

unintentional selection of Black faces that were less variable than White faces. The ORE is 

an interesting phenomenon, where its manifestation in experimenters themselves can 

unconsciously impact the study design, and in turn bias results. I believe the issue of non-

random stimulus selection and even lack of diverse stimulus availability likely accounts for 

discrepancies across many papers published on the ORE over the last half-century. 

Ten years from that initial study, the researcher quoted above as referencing Darwin set 

out to settle the psychophysical/psychosocial debate by analyzing craniofacial data. The 

proposed motivation for the study was that, although the evidence “weakly” favored the 

psychosocial theories, “enough residual doubt remains to warrant a study of the facial 

topography of various racial groups to explore the extent of within-group feature 

variability.” Data on the variation in facial feature measurements within specific races had 

already been collected in disparate facial anthropological studies. These were aggregated 

and compared across race, though not in a statistically rigorous manner. It was concluded 

that while the average values for facial features differed across the three races, the variance 

across means were matched across each race. I.e., faces were equally heterogeneous across 

races. It was therefore not likely that physical homogeneity of non-white faces was a 

contributing factor to the ORE. It was likely a combination of this study, replications of 

ORE’s reciprocal nature, and modernizing opinions that led the psychophysical theory to 

fade into history. 
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Current Theories Accounting for the Other-Race Effect 

As the psychophysical explanation of the ORE fell out of favor, the disparate explanations 

united under the psychosocial umbrella splintered into new factions. These competing 

theories evolved into the two dominant frameworks of today: the Perceptual Expertise and 

Social-Cognitive Hypotheses. 

Perceptual Expertise Theories 

The perceptual expertise model of the ORE is based in the observation that asymmetric 

experience with same-race relative to other-race groups manifests in differential abilities 

to recognize faces corresponding to these groups. A variety of models fall under the 

perceptual expertise umbrella – all sharing the core assumption that humans are experts in 

processing faces, but this expertise does not generalize to unfamiliar categories of faces23. 

A popular line of perceptual expertise research is in the developmental origins of the ORE. 

Findings indicate the development of facial processing has core similarities with language 

development in that both are quite egalitarian at first24; Just as newborns enter the world 

with an ability to process all possible units of sound (i.e. phonemes), they also 

indiscriminately process all categories of faces. However as early as 3 months of age, 

infants begin to pay more attention to faces within their race25. Other studies indicate the 

ORE in attention allocation emerges later, between 6 and 9 months of age26. Regardless of 

the granularity of timing, these observations support a perceptual narrowing account, in 

which sensitivity to visual information is broadly tuned at birth and then narrows rapidly 
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within the first year of life27. This tuning is believed to influence the persistence of the 

other-race recognition deficit into later childhood and adulthood.  

Because environmental interaction is core to the perceptual expertise hypothesis, multiple 

researchers in developmental psychology have tested how critical the early years of life are 

in establishing the ORE. A major line of interest being, if experience is so integral, perhaps 

perceptual narrowing may be mitigated or even reversed by exposure to other-race faces. 

Studies have resoundingly supported this logic. One case demonstrated that briefly 

habituating Caucasian three-month-olds to Asian faces resulted in their immediate ability 

to discriminate between familiar and novel Asian faces—i.e. an elimination of the ORE28. 

However, this study did not implement any follow-ups to determine the mitigation’s 

duration. A more recent experiment set out to test this longevity by exposing 6-month-old 

Caucasian infants to Asian faces in a picture book for a total of one-hour spread across a 3-

month period29. At 9-months of age, as opposed to the age-matched control group these 

infants displayed a strong novelty preference for new Asian faces, demonstrating they 

could discriminate individual exemplars from this race. Therefore, the ORE in infancy may 

be reduced with relatively simple but intermittent intervention. 

Results of such experimental intervention are bolstered by evidence that natural exposure 

to other-race faces improves recognition for those faces. For instance, in one study Korean 

children adopted into Caucasian European families between the age of 3 – 7 demonstrated 

a reversal of the ORE30: In a match to sample working memory paradigm, they remembered 

Caucasian faces better than Asian faces. This was not observed in a control group of non-

adopted Koreans. Given these individuals presumably preferred Asian faces prior to 
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adoption, these results suggest that the ORE can be tuned across child development, and 

even reversed/flipped by complete overhauls in environmental experience. More subtle 

evidence of facial recognition’s malleability comes from one study where children’s 

deviations in same-race/other-race recognition was associated with how racially 

integrated their home-neighborhood was. The more diverse the child’s community, the less 

extreme their ORE was.  

There is additional evidence that this experience-dependent ORE extends into adulthood. A 

meta-analytic study of 39 of the earliest experiment found that exposure accounted for a 

small but reliable amount of variation in the ORE16. More recent work has shown that 

length of stay in a non-native country predicted the magnitude of the ORE31. Furthermore, 

training studies have established that the ORE in adults, just like infants, is reduceable. 

Following several days of individuation training involving learning of face-name (or face-

letter) associations, participants demonstrated reduced OREs in recognition memory of 

novel exemplars relative to baseline performance32–34 . Meanwhile, a control condition 

found that mere exposure and categorization of faces was insufficient to reduce the ORE. 

This supports the opinion that in adulthood, the combination of face with identity 

information may be especially important in maintaining robust face representations in 

memory. One limitation of this work is the short timescale at which recognition is 

evaluated-- generally one day after successive days of training. To my knowledge the 

longevity of such trainings remains to be tested. A recent comprehensive study sheds doubt 

on the promise of such paradigms; Researchers found that self-reported contact with 

other-race people over participants’ lifetimes predicted the magnitude of the ORE, where 
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extensive contact with diverse communities prior to the age of 12 was the only factor 

associated with a reduction in the ORE. Furthermore, adults who had lived in new 

countries for several years with many other-race friends were not found to have reductions 

relative to controls. This serves as evidence that the ORE may be somewhat fixed after 

primary school, and that interventions should likely focus on children, rather than adults. 

Perceptual Expertise Mechanisms 

These studies lend strong evidence supporting the role of experience and development in 

modulating the magnitude of the ORE. But the cognitive processes underlying expertise in 

same relative to other-race faces is still up for debate. Dominant explanations tend to agree 

that asymmetrical experience leads to differential processing mechanisms or differential 

mental representations that give rise to the ORE in recognition memory 

Configural/Holistic Processing    

Much of the perceptual expertise literature posits that extensive experience within a 

category of objects elicits an enhanced ability to extract meaningful information and make 

fine discriminations between novel instances of those objects35. A foundational study found 

that bird and car experts’ abilities to discriminate differences in their respective objects of 

expertise were dramatically reduced when those objects were inverted36. In contrast, 

novice viewers with no expertise in birds or cars displayed relatively limited detriments in 

response to inversion. Object inversion is a manipulation known to impact configural 

processing which is the ability to extract spatial-relational information between features in 

visual input, allowing for more holistic mental representations37. The results of this 
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research therefore implicated configural processing as a candidate mechanism underlying 

visual expertise. Within several years the inversion effect was applied to study the ORE; 

The researchers believed if the ORE was actually an expertise effect for same-race faces, 

viewers would have a greater deficit in face discrimination upon inversion of same-race but 

not other-race faces38. The results supported this hypothesis, and helped solidify the 

perceptual expertise theory of the ORE. Within the framework, regular interaction with 

same-race individuals leads to expertise with same-race faces, enhancing the capacity to 

encode such faces in a configural manner. Meanwhile, other-race faces are encoded more 

similarly to non-face objects with a greater reliance on the individual components of the 

input, but not the spatial relations amongst these.  

The Whole/Parts paradigm is another experimental manipulation that supports the role of 

configural encoding in the ORE39,40.  The paradigm finds that after encoding same-race 

faces, participants have an advantage in discriminating subsequent changes in features 

when they are embedded within a whole face, rather than displayed in isolation. Because 

this observation is not as strong for other-race faces, this is interpreted as further evidence 

that same-race faces are processed in a more holistic manner. 

The relative difference in recruitment of configural processes for same-race relative to 

other-race faces is generally believed to give rise to the ORE in recognition memory. 

However, to date only a few studies have tested the association between configural/holistic 

encoding and the ORE. One such study40 reported the the same-race whole-part advantage 

in Caucasian participants was not correlated with the same-race memory advantage. 

Meanwhile, Chinese participants demonstrated no differences in holistic processing for 
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same-race and other-race faces, despite having a robust ORE in memory. However, a later 

similar whole/part study found the greater the advantage in holistic processing of same-

race relative to other-race faces, the greater the advantage in own-race recognition 

memory41. The researchers attributed their sensitivity in this study to a regression method 

employed, instead of the more traditional difference score used previously. A third study 

that instead used the inversion paradigm found that participant race and a cross-race 

difference score in configural processing could significantly predict 38% of variance in the 

ORE42. The results of these studies suggest that configural/holistic processing mechanism 

is likely tied to the ORE, though cannot account for it entirely.  

Face-space model 

The face-space model43,44, proposes that mental representations of learned faces are 

embedded within a multidimensional similarity space. The spatial location of faces is 

dependent on the distinctiveness of the face at encoding, where faces that are quite typical 

and similar to one another cluster together while distinct faces are situated more distantly. 

In the context of a recognition experiment, a participant is more likely to accurately 

recognize a distinctive than typical face, since the former has carved out its own location in 

face-space, while the latter is positioned quite closely to other faces. The sparser spatial 

distribution of distinct faces allows for less confusability (or interference) at retrieval.  

When first developed, this model attempted to explain not just the distinctiveness memory 

advantage, but also the own-race advantage in memory, i.e. the ORE. Face-space fits well 

into the perceptual-expertise framework, because its dimensions are proposed to be 

selected and scaled to optimize discrimination within the population of faces that an 
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individual interacts with. Therefore, if an individual has only interacted with members of 

their own race, their face-space will be modeled to resolve interference only between faces 

of that race. The ORE is proposed to arise when other-race faces are encoded within a 

psychological space that was not tuned to the subtle variations in faces from that race. (The 

model assumes that different races have different dimensions upon which they vary most). 

This results in other-race faces being encoded more similarly, and are therefore more 

densely clustered and less discriminable despite their actual physiognomic variability. In 

this way, many other-race faces may suffer the similarity disadvantage found for only the 

most prototypical/average of same-race faces. 

Several simulation and behavioral experiments support the face-space model. One study 

trained two separate autoassociative neural networks on Caucasian and Asian faces 

respectively to test the perceptual expertise model of the ORE45. In such a system the 

neural network model learns faces by developing connection weights that optimize storage 

capacity of a matrix representing memory for those faces. Put another way, the model will 

learn features that are important for orthogonalizing face representations where 

discriminatory features are given more importance. After training the separate models, 

principal component analysis was used to reconstruct faces and calculate cosine similarity, 

showing that minority-trained faces were represented more similarly to one another than 

majority trained faces. Several years later a similar study that generated projections of 

reconstructed faces into three-dimensional space (corresponding to the first three 

eigenvectors), confirmed the spatial density assumptions of the face-space model46; Face 

vectors for the majority-trained race were more elaborated in space relative to densely 
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clustered vectors for the minority-trained race. Furthermore, both studies showed that 

models performed more poorly on minority trained races in simulated recognition memory 

and gender discrimination tasks respectively, supporting the hypothesis that 

representational spatial density is associated with the ORE.  

The face-space model is bolstered by findings in human behavioral studies as well. In one 

experiment participants rated the similarity between hundreds of same and other-race 

faces47. A multidimensional scaling technique was then used to derive spatial 

configurations of the faces within feature-space, confirming that--within the first 

dimension--other-race faces were densely clustered together and regionally distinct from 

same-race faces. In addition, similarity ratings were found to account for 80% of variance 

in performance in a subsequent individuation task. Interestingly the model seemed to rely 

more heavily on several race-agnostic dimensions of face-space-- evidence that 

individuation task-demands may shift reliance away from categorical race information. A 

second study taking a different approach used the reaction time from speeded pairwise 

face discriminations as an index of perceived similarity between faces48. The resulting first 

two dimensions of face-space reproduced greater inter-face distances between same-race 

faces, as well as a category boundary between races. Of note, there was no memory task 

employed so this study cannot comment on the ORE directly. Regardless, the similar 

findings across such different task paradigms suggest that differential distribution of faces 

in feature space may contribute behavioral differences in same-race and other-race face 

recognition. 



 

16 
 

Social-Cognitive Theories 

While perceptual expertise theories can account for many observations within the ORE, 

there are certain limitations. For instance, levels of interracial contact and holistic 

processing do not always map onto the measured ORE40,49. While one large metanalytic 

study found that race contact did account for the ORE, only 2% of variation in the effect 

was described. These results imply that a more complete accounting of the ORE likely 

involves factors beyond those described under the perceptual expertise model. 

The most popular alterative accounts for the ORE fall under the social-cognitive umbrella. 

Social-cognitive theories draw from psychological research on in-group/out-group 

membership. These models propose that in-group (or same-race) faces are processed in an 

individuated manner, while out-group (or other-race)  faces are processed in a categorical 

manner. In-group processing relies upon extracting identity-specific characteristics of 

input, while out-group processing relies on extracting group membership23. The ORE is 

therefore not as much about race in itself, but rather the identification with one group as 

opposed to another, thus influencing cognitive processing strategies.  

Evidence of the power of social categorization on recognition memory comes from 

experiments where manipulation of group-membership can generate disadvantages in 

memory like the ORE. In one experiment, an in-group memory advantage was found for 

faces that were labeled with an institution that participants attended50. A subsequent study 

employed a composite face paradigm and found that same-race faces with in-group 

university affiliation were processed more holistically than same-race faces with out-group 
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university affiliation51. A conceptually similar study found that racially ambiguous faces 

were processed holistically when labeled as same-race, rather than other-race faces52. 

Thus, holistic processing, previously only connected with perceptual expertise theories was 

demonstrated to be recruitable by merely altering category membership. This suggests 

engagement of configural mechanisms do not necessarily require years of perceptual 

tuning, and that the holistic processing mechanisms found in encoding same-race faces 

could reasonably be attributed to labeling them as in-group. 

Moreover, several studies have found that orthogonalizing relevant group membership 

away from race is enough to attenuate the ORE. For instance, participants who studied 

black and white faces grouped by university affiliation rather than race, not only had an 

advantage in memory for in-group university faces but displayed no differences in memory 

for same and other-race faces53. Additionally, memory for in-group other-race faces was 

greater than out-group same-race faces-- evidence that group membership overcame and 

even flipped the ORE. A similar study assigning high-power and low-power occupations to 

faces found that other-race faces with high-status jobs were as memorable as same-race 

faces54. Meanwhile in the low-power condition, the standard ORE was found. Collectively 

these studies suggest that a pure expertise model cannot account for the ORE entirely since 

lack of expertise may be overcome by shifting attention away from race-categorization.  
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Social-Cognitive Mechanisms 

While social-cognitive research has more recently found that holistic processing is not just 

under the purview of perceptual expertise models51, before elaborating on frameworks 

that accordingly integrate these disparate models, traditional social-cognitive mechanistic 

accounts will be reviewed.  

Feature-selection model 

The feature selection model posits that the out-group membership of other-race 

individuals leads their faces to be processed with more emphasis on category-relevant 

information55,56. This leads to an asymmetry in feature-selection when encoding faces, 

where race is treated as a visual feature exclusively in other-race faces. Furthermore, the 

focus on race-category comes at the expense of coding individuating details. Therefore, the 

ORE is caused by a selection of features important for classification, rather than subsequent 

recognition. Most of the experimental evidence for this theory comes from visual search 

experiments finding that participants can locate an other-race face in a constellation of 

same-race faces faster than they can perform the reverse scenario. An overemphasis on 

race information in out-group faces is believed to facilitate this speed advantage.  

This other-race categorization advantage has been associated with the ORE in recognition 

memory. In one study, subjects who demonstrated a greater ORE also had a larger speed 

advantage for detecting other-race faces in visual search55. Conceptually similar studies 

have described a speed advantage in merely labeling the race of an out-group face. One 

study identified a mirror image effect in the speed of categorization versus recognition: 
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Same-race faces are recognized faster than other-race faces, while other-race faces are 

categorized faster than same-race ones57. There is an inverse correlation between same-

race recognition speed, and same-race categorization speed. However, actual recognition 

memory was not correlated with the speed of categorization, and the authors concluded 

that the same-race recognition advantage in memory may not be clearly related to the 

other-race categorization advantage.  

Cognitive Disregard 

A separate social-cognitive account suggests that individuals deem individuating 

information of out-group faces as task-irrelevant and may not allocate cognitive resources 

beyond categorical information extraction. There is evidence that attention (as a proxy for 

allocation of resources) to faces is modulated by race membership. In one study, 

participants made fewer (but also longer) eye fixations, with greater pupil dilation for 

other-race faces58. They also focused on different features depending on race of face. 

Furthermore, as they were given more time to encode faces, participants reduced their 

relative time spent on other-race faces. However, another study found that when given the 

chance to self-pace their study, subjects spent as much time encoding other-race as same-

race faces59. Despite this, subjects still demonstrated robust OREs in memory. One caveat of 

this latter study was that it did not employ eye-tracking so it is still very possible that 

differences in eye fixations and saccades could have contributed to the ORE, despite no 

overall differences in processing time. Taken together, evidence for cognitive disregard in 

the context of the ORE is sparse, and mixed. Further, the model cannot rule out that 

perceptual expertise, rather than social categorization, contributes to cognitive disregard. 
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Integrated Theories 

While both perceptual expertise and social cognitive theories of the ORE account for 

certain observations in the experimental literature, neither alone can sufficiently 

characterize the effect. For instance, perceptual expertise models cannot easily refute 

evidence that social context alone can eliminate the ORE. Likewise, social-cognitive models 

struggle to account for the very early developmental emergence of the ORE, well before 

social constructs of category membership are believed to emerge. Because of the relative 

strengths of both models there have been several integrated theories that attempt to 

reconcile them. 

The Dual-Process model (drawing from dual process theory in memory research) suggests 

that the higher social-value placed on same-race faces results in more effortful encoding 

and subsequent recollection of episodic information from same-race faces60. In contrast, 

other-race faces are more shallowly encoded, leading to a reliance on feelings of familiarity. 

The standard behavioral measures of the ORE map onto well-established predictions of 

dual-process memory models: Same-race recognition is characterized by increased target 

recognition and decreased false alarms, consistent with recollection-based strategies. 

Meanwhile, other-race face recognition is characterized by prevalence of false alarms, 

consistent with familiarity strategies. Since recognition and familiarity are considered 

differentially taxing, the dual-process approach is in line with social-cognitive theories of 

differential allocation of cognitive/attentional resources. Meanwhile, perceptual expertise 

is nodded to with the proposed ease of extracting information from same-race faces, 

potentially improving the fidelity of encoded representations.   
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A strength of the next two integrative models is the incorporation of findings that in-group 

identification can engage holistic processing strategies51,52. The In-group/Out-group model 

proposes that by default, individuals encode faces in a configural manner61. However, if 

during presentation of a face, out-group membership is rapidly established, holistic 

processing may be bypassed in favor of categorical processing. This cue to out-group 

categorization could be physical, like race. However it could also be dictated by task 

demands, such as university affiliation in the case of the aforementioned studies 50,51,53. In 

line with perceptual expertise models, out-group faces will be processed more featurally, 

resulting in a subsequent memory disadvantage. 

The most recent proposal, the Categorization-Individuation model is similar to the  in-

group/out-group model in the importance placed on holistic processing during encoding of 

in-group faces62. The model outlines three factors that can influence recruitment of these 

processes in face recognition: At first, there is a tendency –especially for outgroup faces-- to 

attend to category specifying information, leading to perceptual homogenization of faces 

within a category. Because context can dictate category activation, same-race faces may 

also be processed categorically50,53.   Secondly, motivation (i.e. task demands or power 

dynamics54) can redirect attention towards extracting individuating (holistic) information, 

promoting subsequent accurate identity retrieval. Third, expertise within a category will 

promote extraction of identity diagnostic information. Therefore, several factors interact to 

direct elective attention towards configural information, ultimately dictating subsequent 

memory accuracy. 

… 
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To summarize, there are a wide range of theories and mechanisms that have been 

proposed to account for the ORE. Perceptual expertise theories can greatly describe the 

early emergence of the ORE in development. Social-cognitive theories can explain general 

biases related to in-group/out-group processing and have more power to explain the 

malleability of the ORE. Both frameworks have their strengths, resulting in the integration 

of each into more all-encompassing hybrid models.  
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Chapter 2: Neural Correlates of the Other-Race Effect 

Neuroscientific investigations of the Other-Race Effect (ORE) are sparse considering the 

size of the social-psychological corpus. They also have been less focused on settling the 

debate between the multiple theoretical accounts for the ORE. Instead, they are more 

focused on identifying anatomical regions that are differentially engaged for same and 

other-race faces, and their correspondence to behavioral metrics of the ORE. Despite the 

relative agnosticism on the theoretical accounts, these studies will be discussed and 

organized within the context of the prevailing cognitive frameworks, where possible.  

Also note that this review is focused on functional magnetic resonance imaging (fMRI) as 

opposed to electroencephalography (EEG) investigations, due to the employment of fMRI 

methods within my own research. There is an extensive body of research on the temporal-

neural components of face processing, and a smaller subset of studies on the deviations 

between same-race/other-race face processing within event-related potentials that is 

beyond the scope of this dissertation. 

Perceptual Expertise and Holistic Processing 

Early neuroscientific research on the ORE came at the heels of a debate on the evolutionary 

purpose of a highly face-preferential patch in the fusiform gyrus of the brain. A seminal 

study in 1997 coined this region the ‘Fusiform Face Area’ (FFA) due to its greater activation 

(i.e. oxygen consumption) when participants viewed pictures of faces relative to houses 

and hands63. After this finding, a competing hypothesis emerged influenced by the 
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observation that objects of expertise (i.e. birds and cars36), just like faces, were subject to 

inversion effects in experts (chapter 1). With the argument that faces were akin to objects 

with which people had extensive expertise, researchers demonstrated that the FFA was 

more engaged when experts as opposed to novices viewed such objects64,65. This triggered 

an ongoing debate whether the fusiform gyrus is specialized for face processing 

specifically, or rather serves a more general-purpose role of extracting information crucial 

to discrimination between instances of objects with which we have great experience66. This 

debate is beyond the scope of this dissertation, but from here-on I will refer to this face-

selective patch as the FFA, not because of adherence to the specialized face-processing 

theory, but due to its continued conventional use. 

Given the predominance of perceptual expertise theories in the ORE literature, it was not 

long before the FFA’s recruitment during processing of same-race and other-race faces was 

tested67. The researchers hypothesized that if the FFA was more engaged for objects of 

expertise, it would be more engaged during encoding of same-race relative to other-race 

faces. Participants were scanned while they passively viewed faces and were administered 

a surprise memory test afterwards. As predicted, the results confirmed differential 

recruitment of the right FFA. They further found that the magnitude of the left FFA signal 

was correlated with an advantage in memory for same-race relative to other-race faces. 

This served as strong evidence of the FFA’s role in the neurological basis of the ORE, 

however the differential observations in left and right FFA complicated interpretations. It 

should also be noted that traditional memory regions (hippocampus and parahippocampal 

gyrus) were also correlated with the ORE, with the strongest association in the 



 

25 
 

parahippocampal gyrus. Despite this finding, there has been relatively little attention paid 

to the role of medial-temporal lobe regions in the ORE. 

The discovery of the FFA further prompted hypotheses of its role in holistic processing, 

given its demonstrated importance in face and expertise tasks. Several studies have 

employed holistic processing paradigms testing FFA engagement during tasks believed to 

engage holistic as opposed to parts-based or featural processing. In one such study, 

participants performed a working memory task where they were shown whole faces or 

scrambled faces with features re-arranged into non-natural locations to disrupt holistic 

processing68. For whole face presentations, accuracy in performance was associated with 

similarity of multivariate patterns of activity in the FFA between initial and test faces. 

Meanwhile, earlier visual and face processing areas (such as the Occipital Face Area (OFA)) 

demonstrated more similar patterns associated with accuracy independent of whether 

faces were whole or scrambled. These results are interpreted as an emergent behaviorally 

relevant role for the FFA specific to processing whole faces – i.e. holistic processing. 

Several studies specifically investigated the role of holistic processing in the FFA as a 

neural correlate of the ORE. One experiment scanned subjects while they performed a 

simple 1-back recognition task during viewing of same and other-race faces69. Later they 

were administered a surprise memory test. The researchers then calculated same-race 

advantages in memory as well as neural signal activation by computing difference scores 

(other-race metrics subtracted from same-race.) The behavioral and neural same-race 

advantages for whole faces were strongly correlated in the FFA but not the lower-level 

feature processing OFA. This suggests that differential engagement of the FFA during 
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viewing of same-race and other-race faces may uniquely explain behavioral variation in 

subsequent memory. The lack of behavioral relevance in the OFA may also suggest that the 

ORE emerges based on higher-level holistic processing deficits, as opposed to lower-level 

facial feature processing. However, it should be noted that experimenters did not find 

statistically significant overall differences in same-race and other-race recognition memory 

in this study. 

Another study finding neural differences in response to same-race and other-race faces was 

designed to exploit repetition suppression, a reduction in magnitude of neural signal when 

stimuli are repeated70. The researchers scanned subjects during performance on the 

composite face paradigm, another classic technique that illuminates same-race relative to 

other-race reliance on holistic processing71. This paradigm often finds that participants 

cannot easily discriminate between two same-race faces that have duplicate top halves, 

unless the bottom halves are offset from center, disrupting holistic processing. Participants 

do not have the same discrimination difficulty between other-race composite faces that are 

aligned, suggesting that we rely more on additive featural than holistic processes for other-

race discrimination. In this study, the FFA demonstrated a release of suppression for 

aligned faces specific to the same-race condition. This suggests the FFA was more sensitive 

to identity changes of same-race faces. Meanwhile the OFA was sensitive to identity change 

in other-race but not same-race faces. Together this may suggest that the OFA’s role in 

feature processing may be especially important for identity recognition of other-race faces, 

while reliance on holistic processing in the FFA is more important for same-race 

recognition.  
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While most studies investigating neural correlates of holistic processing have been focused 

on face preferential regions like the FFA and OFA, one analysis expanded its scope to other 

regions72. The researchers employed a composite face task, defining additional regions 

known to be involved in processing of scenes and objects, as well as perceptual grouping. 

In contrasting activity during aligned and misaligned conditions, the authors found 

significant differences in the retrosplenial cortex and parahippocampal place area, but not 

the FFA.  

While the above72 study had no race manipulation, it importantly demonstrates that it is 

possible for more than one region to be involved in holistic processing, and that regions 

that are not highly and exclusively active to faces may still play a role in face cognition. For 

instance, note the observation of holistic processing in the parahippocampal place area. 

Recall that the first-ever fmri investigation of the ORE found that the parahippocampal 

gyrus was even more strongly correlated with the behavioral ORE than the FFA67. 

Furthermore, there is a large body of object-recognition research focused on identifying 

brain areas that integrate feature information into holistic representations.  Medial-

temporal lobe (MTL) regions are often implicated, including the parahippocampal, 

perirhinal and entorhinal cortices as well as the hippocampus73,74. Given the role of MTL in 

memory encoding and feature integration that is often overlooked in the context of face 

recognition, a potential role for the MTL’s involvement in the ORE will be outlined in the 

third chapter of this dissertation.   
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Attentional and Social Modulation 

Despite evidence that holistic processing can be dictated by task demands and that 

attentional allocation may differ between same and other-race faces, there has been 

relatively little focus on brain regions involved in attention. As evidenced in the prior 

section, fMRI research has greatly focused on studying visual or face-preferential regions 

within the context of the ORE. However, one novel study tested the relation between 

attentional and cognitive control regions, and the ORE in memory75. While in the scanner 

participants were tasked with creating elaborate stories for faces during encoding to 

promote successful and more ecologically realistic recognition than typically studied in the 

lab setting.  The next day subjects performed a recognition test, so that encoding activity 

could be sorted based upon subsequent accurate or inaccurate performance. The analysis 

found differential engagement of attentional and control regions for same and other-race 

faces. Specifically, reduced activity in the cognitive control network was associated with 

failure to recognize other-race but not same-race faces. Furthermore, functional 

connectivity between the FFA and Dorsal Attention networks was more predictive of 

success for same-race recognition. These results demonstrate not only the importance of 

attentional and executive control regions during encoding, but also a disparity between 

how same-race and other-race faces are successfully processed. Less engagement of these 

regions could be consistent with the shallower encoding processes proposed in social-

cognitive and integrated accounts. Meanwhile, greater top-down attention and cognitive 

control could give rise to more elaborated representations of same-race faces subserving 

subsequent mnemonic discrimination, as predicted by the face-space model (chapter 1).  
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A quite different study demonstrates the interaction between implicit social attitudes and 

the neural representation of faces76. Because the FFA is associated with holistic processing 

and identity encoding, the authors wondered whether patterns of activity in the FFA 

represent race, or if solely lower-level feature processing regions reflected race-categorical 

information. They were also curious whether implicit attitudes towards Black people 

would influence how white participants represented Black faces. They reasoned that social 

bias might change the way faces are encoded, such that people with higher bias might have 

larger differences in representation of white and Black faces. The authors used a logistic 

regression classification algorithm to test how discriminable neural face representations 

were across a series of early visual processing regions as well as a variety of brain regions 

implicated in face processing (including amygdala, posterior superior temporal sulcus, 

inferior frontal gyrus, orbital-frontal cortex, etc). They found that the race of the faces was 

only predictable based on patterns in the visual occipital pole, the OFA, and FFA. However, 

in the FFA, increasing accuracy of the algorithm was correlated with increasing bias in the 

subjects. When subjects were split at the median and the logistic classifier was retrained, 

neural patterns in the FFA were only separable in the high-bias group, while race was still 

discriminable in the occipital pole and OFA in both groups. These results suggest that 

preservation of race-diagnostic information in the later visual processing stream may be 

socially modulated. Within the context of the face-space model (see perceptual expertise 

mechanisms), it is interesting to consider that along a dimension of race, faces may have 

clustered into separate neighborhoods and were separable in the occipital pole, OFA, and 

FFA until implicit bias was considered. Once subjects were separated by bias, the face-

space of the FFA in the low-bias group no longer had distinct enough neighborhoods of 
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clusters to be discriminable by race. While this finding is incredibly interesting, it is unclear 

whether the separability of race representations impacts memory for faces, because the 

ORE in recognition was not tested. Furthermore, despite the reported accuracies in the 

logistic regression model being statistically above chance, they are quite low (with 

accuracy levels around 60%) and results would be strengthened by selecting a stronger 

classification algorithm. 

… 

To summarize, the ORE has not been extensively studied with fMRI. When it has been 

investigated, there is often only interest in testing the role of a select few preferential face 

processing regions. Furthermore, studies have not always been able to reproduce an ORE 

in behavior, or they have been more focused on underscoring differences in neural activity 

independent of demonstrating behavioral relevance. Importantly, only a few studies have 

identified the involvement of regions beyond the putative face processing network in 

holistic and same-race/other-race face processing. There is therefore a great need for 

exploring the ORE from perspectives not exclusively focused on face preferential and visual 

processing regions.  
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Chapter 3: A Memory Model of the ORE: Differential Mnemonic 
Discrimination of Same and Other-Race Faces 

A large portion of the content in this chapter was originally published under the title ‘A 

Memory Computational Basis for the Other-Race Effect’ in 2018 in Scientific Reports. The full 

citation and list of authors is included in the Vita and References 77. 

Introduction 

It may be apparent from the preceding chapters that the theoretical frameworks of the 

Other-Race Effect (ORE) are highly focused on perceptual and social mechanisms, rather 

than memory mechanisms. Despite this, the ORE is considered a memory deficit and is 

indexed by performance on recognition paradigms. Only three of the studies discussed in 

chapter 2 employed memory tasks, and this is representative of neuroimaging research as 

a whole67,69,75. Therefore, it is unclear how many of the findings on differential neural 

representation and processing of same and other-race faces relate to the ORE in memory.  

Since the ORE is defined as a recognition deficit, attempts to understand it can benefit from 

considering the wealth of research in the field of learning and memory. The dual-process 

framework proposed sixteen years ago (chapter 1), is one of the only attempts at 

characterizing and reconciling the ORE with the findings in memory literature, proposing 

differential recruitment of recognition and familiarity strategies for same and other-race 

faces.60. This framework remains obscure to my knowledge; I only discovered it when 

conducting the extensive literature review for this dissertation. What follows in this 

chapter is our group’s similarly motivated effort to propose and test a memory-informed 

model of the ORE. We suggest that the potential contributions of not only perceptual and 

attentional, but also mnemonic (memory-based) processing should be assessed for its 
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impact on the ORE. We address this gap using models of mnemonic interference reduction 

that are becoming increasingly popular in memory research due to backing by strong 

neurobiological evidence78. 

Our approach to studying the ORE is fundamentally informed by computational models of 

hippocampal contributions to episodic memory. The hippocampus as well as the 

surrounding medial-temporal neocortical regions of the brain play a well-established role 

in the formation of episodic memories79. Computational and rodent work suggests that the 

hippocampus --and more recently the perirhinal cortex-- are involved in pattern 

separation, a neurocomputational process that allows for detailed encoding of similar 

experiences by reducing overlapping mnemonic ‘interference’ across similar inputs78,80–91. 

Functional MRI studies have also shown distinct patterns of activity in the hippocampus 

perirhinal, parahippocampal and entorhinal cortices during memory encoding, consistent 

with pattern separation92–99.  

Behaviorally, pattern separation is thought to underlie the ability to discriminate among 

similar experiences, or more simply put, to assist in the individual recall of similar items.100 

For example, remembering where you parked your car today versus yesterday requires 

pattern separation; these two experiences are largely similar and need to be stored 

independently of each other. Mnemonic discrimination tasks have been used frequently to 

assess this capacity to remember similar experiences, by testing subjects’ memory for 

various common objects that have been independently rated for relative similarity to one 

another78. Like highly similar objects, faces share a general configuration of features, with 

no one component ideal for consistent successful differentiation. To efficiently remember 
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faces despite this baked-in ambiguity, a facial processing system must have mechanisms in 

place to resolve high interference between distinct experiences (i.e. pattern separation).  

A critical facet of the pattern separation computation indexed by mnemonic discrimination, 

is that it operates as an input-output transfer function that is nonlinear. The input to the 

system is similar sensory experiences (e.g. similar faces), and the output is the response of 

the system (e.g. whether the faces are stored as distinct from one another or as instances of 

the same face). Ideally, an efficient memory system should be able to discriminate among 

faces that are similar but belong to different individuals (i.e. pattern separate) but also be 

tolerant of variability in inputs of the same face across encounters despite minor context-

dependent differences (i.e. pattern complete). These two conditions demonstrate the need 

in facial recognition for a nonlinear input-output transfer function that allows for distinct 

enough stimuli to be separable from one another but is also stable (robust to change) when 

stimuli belong to the same identity. Several studies have used input-output transfer 

functions to characterize visual and mnemonic discrimination for both object and facial 

recognition. Neuroscience literature suggests that rodents’ discrimination behavior in 

response to manipulated environmental contexts is best described by a sigmoidal 

transformation.80 Facial recognition has also been described as sigmoidal in both 

behavioral and neural computational work101,102. Other research has characterized object 

mnemonic discrimination using more curvilinear input-output transfer functions103,104. 

Traditional face-recognition tasks used to assess the ORE do not manipulate mnemonic 

interference—or similarity—and therefore cannot produce input-output transfer 

functions. However, mnemonic discrimination tasks parametrically vary the similarity of 
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lure stimuli allowing a thorough characterization of the transformation between stimulus 

similarity (experience) and neurobehavioral responses (representation). Thus, mnemonic 

discrimination tasks are an ideal tool for characterizing facial recognition amidst 

mnemonic ambiguity in facial processing. The paradigm further accommodates 

visualization and comparison of input-output transfer functions for different experimental 

groups or stimulus types. For instance, if mnemonic discrimination of same-race and other-

race faces is not comparable, we would expect the emergence of diverging transfer function 

trends. This would allow us to pinpoint where recognition fails for other-race relative to 

same-race faces along the spectrum of mnemonic overlap, and to infer MTL computational 

differences in processing faces across race.  

In addition to developing a mnemonic discrimination face task, we created a match-to-

sample task, where subjects held one face in memory briefly before being prompted to 

make same/different discriminations on repeated or lure faces with the same manipulated 

parametric interference presented in the mnemonic discrimination task. This allowed us to 

compare performance on same-race and other-race discriminations as a function of 

similarity between face-pairs when subjects were required to internally represent and 

maintain only one face in memory at a time for several seconds. This paradigm therefore 

reduces the proactive interference found in the mnemonic discrimination task that occurs 

naturally with generation and storage of increasing information. Furthermore, this task 

allowed us to establish the extent to which deficits in resolving interference between other-

race faces might arise in perception or attention, without placing strong demands on 

episodic memory mechanisms such as pattern separation. 
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In the current study, we hypothesized that mnemonic discrimination is altered in facial 

recognition of one's own relative to another race, and therefore is characterized by distinct 

input-output transfer functions for same-race and other-race faces. We predicted the same-

race input-output transfer function would be significantly higher than the other-race 

function at high mnemonic interference levels. In other words, when faces are highly 

similar, subjects should perform significantly better on same-race relative to other-race 

mnemonic discriminations. However, when interference is low enough, or faces are more 

distinct from one another, same-race and other-race discriminations should be comparable 

in accuracy. Meanwhile in a match-to-sample task we expected subjects to demonstrate 

relatively little or no differences in input-output transfer functions for same-race and 

other-race faces. That is, the two transfer functions should be relatively similar if we 

believe that the ORE is dependent on the compounding effects of mnemonic in addition to 

perceptual and attentional processes. Meeting these predictions would suggest that altered 

efficiency of computational pattern separation processes for same-race relative to other-

race faces may promote the emergence of the ORE. 

Methods 

Participants 

This study protocol was approved by the Institutional Review Board (IRB) at the University 

of California, Irvine, and complies with IRB guidelines and regulations. Participants 

provided informed consent in accordance with the board and received course credit or 

monetary compensation. Ninety-nine healthy volunteers (77 Female; 22 Male; mean age of 



 

36 
 

20.62, SD 2.83) were recruited from the University of California, Irvine community. All 

participants were between 18 and 36 years of age and were screened for major 

neurological and psychiatric conditions (exclusionary criteria). These subjects performed a 

mnemonic discrimination facial recognition task. Seven participants were excluded for 

missing over 10% of test trials. An additional three participants were excluded due to very 

poor performance on the task (two or more standard deviations below the group mean), 

suggesting a lack of engagement or misunderstanding of the instructions. Performance was 

measured using the sensitivity index, d’, calculated as z(target hit rate) - z(lure false alarm 

rate). These exclusions resulted in a final sample of 89 subjects (68 Female, 21 Male; mean 

age 20.63, SD 2.92). These subjects were divided into three groups according to their self-

identified race: (75 Asian, 12 Caucasian and 2 Black). Due to the small sample size of non-

Asian participants, the analysis presented focuses on Asian subjects’ performance for a 

total sample of 75 subjects between 18 and 36 years of age. (57 Female, 18 Male; mean age 

of 20.47, SD 2.59). Though more females volunteered for this study, there were no gender 

differences in performance. 

To control for perceptual and attentional contributions to the ORE, we also conducted a 

match-to-sample task in an independent sample that included 34 subjects between the 

ages of 18 and 31 (26 Female, 8 Male; mean age of 21.62, SD 2.53) who were subjected to 

the same screening procedures as the experimental subjects above. Again, all subsequent 

analysis is restricted to the Asian participant data for a total sample of 24 subjects between 

the ages of 18 to 25 (19 Female, 5 Male, mean age of 21.04, SD 1.85).  
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Stimuli 

A database of face stimuli was created using FaceGen Modeller 3.5. A set of 272 faces were 

generated, evenly distributed across gender and two races: Asian and Black. (Caucasian 

faces were also generated but were not included in the version of the task administered to 

Asian subjects.) For each race, 88 faces were created using the FaceGen Generate function. 

Of the 88 faces, 48 were randomly selected as 'parent faces' to serve as templates for 48 

face lures. Lures were created by running the Genetic Randomness algorithm on parent 

faces, to apply normally distributed perturbations with means proportional to an inputted 

value. Equal numbers of lure stimuli were generated to create four lure bins at 20%, 30%, 

40%, and 50% perturbations from parent faces. A 20% perturbation results in a face lure 

that is highly similar, or nearly identical to the parent face, whereas a 50% perturbation 

generates a more dissimilar- looking face (Fig. 3.1).  

Behavioral Tasks 

The following procedures were designed to present participants with both faces of their 

own race and another race. In the remainder of this chapter, Asian faces are referred  to as 

same-race and black faces as other-race.  

Mnemonic Discrimination Task  

All experiments were programmed in PsychoPy v1.85.2. Participants performed a blocked 

task, where each of 8 blocks included an encoding, followed by a test phase (Fig. 3.1a). In 

the encoding phase, subjects were asked to explicitly memorize each of 22 presented faces. 

Faces were randomized, presented consecutively and evenly divided amongst same-race 
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and other-race categories. In a following test phase, participants viewed a second series of 

faces, half of which were identical to the memorized faces. The remaining faces were lures 

spread across all four bins. Participants were asked to identify which faces were ‘same’/ 

‘old’ (Target Repeats), and which were ‘different’/ ‘new’ (Lure Distractors), using 

corresponding button presses on the keyboard. A response of ‘same’ to a target repeat 

indicated successful recognition, while ‘different’ for a lure distractor indicated successful 

mnemonic discrimination, or a correct rejection. In both encoding and test phases, stimuli 

were presented for 3.0 seconds with a 1.5s ITI. After completion of 4 blocks, subjects were 

given a short break. 

Match-to-Sample Task 

A separate group of participants performed a match-to-sample task, which required 

minimal long-term memory retention. In each of 8 blocks subjects were shown one face, 

followed by a 2.5 second dynamic mask, and a second face that received subject input (Fig. 

3.1b). The test faces were divided evenly into Target Repeat and Lure Distractor trials. 

Subjects were asked to make the same ‘old’/’new’ judgments described above. The exact 

same stimulus dataset, trials per block, trial durations and ITI were used for the match-to-

sample as the mnemonic discrimination task.  
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Figure 3. 1   Mnemonic Discrimination and Match-to-Sample task designs. 
(A) The mnemonic discrimination task comprised of an initial encoding phase followed by a test phase. 
Stimuli at test were either exact Target Repeats or similar Lure Distractors deviated from faces at encoding by 
20%, 30%, 40%, or 50% perturbations. Subjects indicated whether test faces were the same or different from 
faces presented in the encoding phase. (B) The match-to-sample task comprised of only one phase where 
subjects saw a face followed by a mask for 2.5 s, followed by either a Target Repeat or Lure Distractor. They 
indicated whether the second face was the same or different from the face prior to the mask. On both 
mnemonic discrimination and match-to-sample tasks, stimulus duration = 3.0 s and ITI = 1.5 s. 

Results 

For both mnemonic discrimination and match-to-sample tasks, performance was 

calculated using subjects’ proportions of target hits (‘Same’| Target Repeat) and false 

alarms (‘Same’| Lure Distractor).  The sensitivity index (d') was calculated as z(target hit 

rate) - z(lure false alarm rate) to evaluate the ability to discriminate between old repeated 

faces and new distractor faces. First, we confirmed the canonical measures of the ORE: a 

reduced d' and increased proportions of false alarms for other-race faces. Mnemonic 
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discrimination accuracy (d') for same-race faces was significantly greater than for other-

race faces [t(74) = 4.755, p <0.0001, r2 = .234] (Fig. 3.2a). In addition, subjects false 

alarmed more to other-race than same-race faces [t(74) = 4.166, p <.0001, r2 = .19]. A 2 X 2 

repeated measures ANOVA revealed significant main effects of stimulus race [F(1,74) = 

22.26, p <.0001, η2 = .05] and mnemonic interference [F(3,222) = 51.38, p <.0001, η2 = .14] 

as well as an interaction [F(3,222) = 9.868, p<.0001, η2 = .03] (Fig. 3.2b). Post hoc Sidak 

multiple comparison tests revealed that same-race performance was better than other-race 

performance for the first three interference levels [20% p = .0011, 30% p <.0001, 40% p = 

.0001] (Fig. 3.2b). The same analyses were run on the match-to-sample version of the task 

demonstrating no effect of stimulus race on performance [t(23) = 0.8563, p =.4007, r2 =.03; 

(F(1,23) = .7332, p =.4007, η2 = .00] and a main effect of interference, as expected. [F(3,69) 

= 70.08, p <.0001, η2 = .4] (Fig. 3.2c-d). 
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Figure 3. 2   Discriminability Results from Mnemonic Discrimination and Match-to-Sample Tasks. 
The ORE is present in a mnemonic discrimination but not match-to-sample task, suggesting increasing 
proactive and mnemonic interference may contribute to the effect. (A) In the mnemonic discrimination task, 
accuracy for same-race faces was significantly greater than for other-race faces (p < 0.0001).  (B) In the 
mnemonic discrimination task subjects performed more accurately on same-race faces for all but the highest 
interference level ([20% p =    0.0011, 30% p <    0.0001, 40% p = 0.0001]).  (C) In the match-to-sample task 
subjects recognize other-race faces as well as same-race faces. (D) In the match-to-sample task subjects 
perform equally on same-race and other-race faces, regardless of mnemonic interference level. 

Due to increased recruitment of female relative to male subjects, we confirmed that the 

gender skew did not impact results. There were no significant differences between female 

and male lure discrimination performance for same-race [t(74) = 1.241, p = .22, r2 = .02] or 

other-race faces [t(74) = .3914, p = .70, r2 = .00]. Additionally, a 2x2 ANOVAs revealed no 

main effect of gender on performance across interference levels for same-race [F(1,74) = 

1.961, p = .17, η2 = .07] or other-race discrimination [F(1,74) = .33, p = .57, η2 = .01]. 
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To further investigate the modulation of the ORE by task type, we collapsed d’ across 

interference levels and ran a 2 X 2 ANOVA with task type as the between-subject factor and 

stimulus race as the within-subject factor. This analysis revealed significant main effects of 

task-type, [F(1,97) = 154.88, p <0.0001, η2 = 0.64], stimulus race [F(1,97) = 4.60, p= 

0.0345, η2 =51.12] as well as a significant interaction of the two [F(1,97) = 7.14, p = 0.0089, 

η2 = 0.99] (Fig. 3.3a). A post hoc Sidak comparison indicates a significant difference in 

same-race and other-race performance for the mnemonic discrimination (p <.0001), but 

not the match-to-sample task (p = .9437). Because the group sizes differ between task 

types, we ran an additional linear analysis that is robust to sample size and variance 

differences across groups, to confirm these results. A model was fit using generalized 

estimating equations, where d’ was modeled as a linear combination of race, task, and the 

interaction or race and task. This produced similar results to the analysis of variance (Table 

3.1), including significant differences in the estimated d’ means for same-race and other-

race faces in the mnemonic discrimination task [Table 3.1a: β' = .22, S.E. = .05, 95% CI = 

(0.13, 0.31), p < .0001] but not match-to-sample task [Table 3.1b: β' = -.02, S.E. = .07, 95% 

CI = (-0.16, 0.12), p = .73], Further, there remains a significant interaction between task and 

race; In the mnemonic discrimination task, the difference in the estimated d’ between 

participant’s recognition of same-race and other-race faces was .25 larger than the 

difference in the estimated d’ between same-race and other-race faces in the match-to-

sample task [Table 3.1c: β' = .25, S.E. = .09, 95% CI = (0.08,0.42), p <.005]. 
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Figure 3. 3   Comparison of ORE in Mnemonic Discrimination and Match-to-Sample tasks 
Both d’ and Area Under the Curve measures find ORE in Mnemonic Discrimination but not Match-to-Sample 
(MTS) tasks. (A) An Analysis of Variance finds significant main effects of task (p < 0.0001), stimulus race, (p = 
0.0345) and an interaction of the two (p < 0.0089) on performance. A post hoc multiple comparisons test 
finds a significant difference in performance for same-race and other-race faces only during mnemonic 
discrimination (p < 0.0001, labeled on figure A). (B) Comparing area under the curves (AUCs) for same-race 
and other-race faces in both mnemonic discrimination and match-to-sample tasks reveals a strong ORE only 
in the mnemonic discrimination task. The larger the significant difference in same-race and other-race AUCs, 
the greater the ORE. Analysis revealed significant main effects of both task type (p < 0.0001) and stimulus 
race (p < 0.05) on performance, as well as a significant interaction of the two (p < 0.005). A post hoc test 
found significant AUC differences for same-race and other-race input-output transfer functions for the 
mnemonic discrimination but not match-to-sample tasks (p < 0.0001, labeled on figure B). Abbreviations: MD 
– mnemonic discrimination; MTS – match to sample. 

Table 3. 1   Linear Analysis Results 
 Estimate Standard 

Errora* 
95% CI p 

a. Mnemonic Discrimination: 
Same-race vs. Other-race face 

0.22 0.05 (0.13, 0.31) <0.0001 

b. Match-to-Sample:  
Same-race vs. Other-race face 

-0.02 0.07 (-0.16, 
0.12) 

0.7308 

c. Interaction between task 
and race 

.25 0.09 (0.08,0.42) <0.005 

A linear analysis was run to account for differences that may be attributable to unmatched sample sizes. The 
model was fit using generalized estimating equations, which are robust to sample size differences across 
groups. d’ was modeled as a linear combination of race, task, and the interaction of the two. (A) and (B) The 
analysis reveals significant differences in estimated population means for same-race and other-race faces in 
the mnemonic discrimination but not match-to-sample task. (C) There is a significant interaction between 
task and race with the difference in the estimated d’ between participant’s recognition of same-race and 
other-race faces 0.25 larger in the mnemonic discrimination task than the difference in the estimated d’ 
between same-race and other-race faces in the match-to-sample task. a* Heteroscedasticity-consistent 
“sandwich” standard errors are used to allow for differences in the variance of model errors across different 
participant subgroups. 
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In addition, we tested whether subject-specific input-output transfer functions could be 

used to calculate a metric of the ORE by calculating the areas under the same-race and 

other-race curves in both tasks. We did this by using the summed average of d’ at each 

interference level, added to the prior level for both same-race and other-race functions in 

every subject.  The larger the net AUC (area under the curve) value, the more accurate the 

performance. t-tests comparing AUC for same-race and other-race functions indicated a 

strong ORE in the mnemonic discrimination [t(74) = 5.869, p <.0001, r2 = .31], but not the 

match-to-sample task [t(23) = .3208, p =.75, r2 = .00]. In further support, a 2 X 2 repeated 

measures ANOVA with task type as the between-subject factor and stimulus race as the 

within-subject factor and the AUC values as the outcome measure revealed significant main 

effects of task type [F(1,194) = 211.6, p <.0001, η2 = .50] and stimulus race, [F(1,194) = 4.3, 

p <.05, η2 = .01] as well as a significant interaction between the two [F(1,194) = 5.968, p 

<0.005, η2 = .01]. A post hoc Sidak comparison indicates a significant difference in same-

race and other-race performance for the mnemonic discrimination (p <.0001), but not the 

match-to-sample task (p = .9718) (Fig. 3.3b). 

The ORE was also apparent in the mnemonic discrimination task when using reaction time 

(RT) as the outcome measure. In general, subjects required more time to correctly reject 

other-race than same-race lures. [t(74) = 2.533, p<.05, r2 = .08]. On average same-race 

faces were correctly rejected after 1.43 seconds, while other-race faces were correctly 

rejected after 1.48 seconds. Further, RT was associated with better lure discrimination 

performance for other-race faces but not same-race faces. T-tests show that subjects spent 

significantly more time on other-race lure correct rejections (μ = 1.48 s) than false alarms 
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(μ = 1.40 s) [t(74) = 3.435, p = .0010, r2 = .14]. No such RT relationship was found for same-

race lure correct rejections and false alarms [t(74) = 1.677, p = .0978, r2 = .04]. These 

results were recapitulated using a 2 X 2 repeated measures ANOVA, reporting main effects 

of race [F(1,74) = 4.31, p = .0414,  η2 = .0034], and correctness F(1,74) = 9.26, p = .0032,  η2 

= .016] on reaction time means, but no interaction F(1,74) = 2.908, p = .0923, η2 = .0023 

(Fig. 3.4a). Mean reaction times were longer overall for other-race faces [μ = 1.44 s] than 

same-race faces [μ =1.41 s], and correct responses were longer on average [μ= 1.46 s] than 

incorrect ones [μ = 1.39 s]. Post hoc Sidak comparisons revealed that reaction time 

averages were significantly different between correct rejections and false alarms for other-

race [p = .0002] but not same-race faces [ p = .2262]. 

 

Figure 3. 4   Reaction Time Differences 
Reaction time differences found for same-race and other-race recognition in Mnemonic Discrimination task 
and to a lesser extent in the Match-to-Sample task. (A) Race (p <    0.05) and correctness (p <    0.005) 
significantly affect reaction time means in the mnemonic discrimination test, however there is no interaction 
of the two. A post hoc multiple comparisons test finds reaction time differences are associated with accuracy 
for other-race but not same-race face discriminations, where longer responses are linked to correct 
discriminations (labeled as ***). (B) An analogous Analysis of Variance of the Match-to-Sample data finds only 
a main effect of correctness on reaction time (p <    0.05) However, a post-hoc test finds reaction times are 
associated with accuracy for other-race but not same-race faces (p <    0.05), where quicker responses are 
linked to accuracy (labeled as *). 
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Though the ORE was not detectable in the match-to-sample task using accuracy measures 

(Fig. 3.3), we tested whether reaction time could detect early differences in same-race and 

other-race face processing. In a 2 x 2 repeated measures ANOVA (analogous to that run in 

the mnemonic discrimination task) there was a main effect of correctness [F (1, 23) = 

6.015, p=0.0222, η2 = .05], where subjects spent less time on correct rejections [μ = 1.234] 

than false alarms [μ = 1.327] (Fig. 3.4b). Interestingly, this trend was the reverse of the 

mnemonic discrimination findings, where longer reactions times were associated with 

correct responses. In addition, there was no main effect of race on response time [F (1, 23) 

= 0.849, p=0.3664, η2 = .0014], nor an interaction of race and correctness [F (1, 23) = 

0.1448, p=0.7070, η2 = .00]. Despite this, a post hoc Sidak comparison echoed the 

mnemonic discrimination results though to a lesser extent, finding reaction times differed 

more greatly between correct and incorrect other-race (p = 0.0196) relative to same-race 

faces (p = 0.0679). This was the only deviation found between same-race and other-race 

behavior in the match-to-sample task. In a final analysis, we tested whether there was a 

reaction time difference in same-race and other-race faces across the mnemonic 

discrimination and match-to-sample tasks by running a 2 x 2 repeated measures ANOVA 

with stimulus race as a within-subject factor and task as between-subject factor. Unlike the 

d’ analysis, there was no main effect of race on reaction time across tasks [F (1, 97) = 2.812, 

p=0.0968, η2 = .00]. There was a main effect of task type [F(1,97) = 8.912, p = .0036, η2 = 

.08] but no interaction of task and race [F(1,97) = .2619, p = .61, η2 =.00]. 
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Discussion 

We characterized the ORE using a mnemonic discrimination task, which unlike standard 

recognition tasks introduced face lures of varying similarity from previously presented 

faces. This task is sensitive to pattern separation, a neural computation that supports 

discrimination among similar experiences. This afforded us the opportunity to characterize 

recognition accuracy in terms of the ability to resolve mnemonic interference between 

prior face memories and new experiences of faces. Specifically, we found that facial 

recognition is modulated by race and stimulus similarity. Our results supported our 

prediction that subjects would demonstrate enhanced recognition accuracy for same-race 

over other-race stimuli at intermediate interference levels, and even at the highest 

interference levels where distractor faces were maximally similar to the originals. Same-

race recognition was significantly better than other-race recognition at all but the lowest 

interference level; Only when faces were as little as 50% similar to one another, could 

subjects discern differences in other-race faces as readily as same-race faces.  

A major question we sought to answer was whether reducing proactive interference would 

reduce or abolish the ORE.  In contrast to the clear ORE we observed in the mnemonic 

discrimination task, subjects demonstrated equal accuracy on same-race and other-race 

face recognition judgments in a match-to-sample task. Performance increased as face pairs 

became more distinct from one another, however this was independent of stimulus race. 

Subjects therefore demonstrate no deficit in resolving interference between other-race face 

representations when faces were internally represented and maintained one at a time for 

several seconds. The ORE was only observable when proactive interference was increased 
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by the generation and storage of multiple overlapping face representations in memory. 

These results support the hypothesis that the ORE is related to deficits in interference 

resolution during episodic memory processing for other-race relative to same-race faces.   

It is possible that this interpretation of our results is limited by non-matched task difficulty 

across the mnemonic discrimination and match-to-sample paradigms. That is, more taxing 

demands in the mnemonic discrimination task could be giving rise to the ORE, and perhaps 

a similar effect could be produced by a match-to-sample paradigm if it were made 

comparably challenging. However, even when performance (as an index of task difficulty) 

is matched across both tasks at approximately d’ of 0.5 (Fig. 3.2b,d), there is no ORE 

present in the match-to-sample task, indicating difficulty alone does not elicit an ORE. 

Additional support comes from a similar study to ours, which did not detect an ORE in a 

match-to-sample task, even with retention intervals of over 12 seconds and high face-pair 

similarity.105 Their results also suggest that long retention intervals alone may not generate 

enough proactive interference to elicit an ORE. Only when their study disrupted 

maintenance of internal representations with trivia questions did an advantage for same-

race recognition emerge.  

We are not suggesting that perceptual and attentional encoding processes do not play a 

role in the emergence of the effect. For instance, in the match-to-sample data, a post hoc 

reaction time analysis captured what could be an indicator of the ORE in attention— where 

reaction time was related to accuracy in other-race but not same-race faces. These results 

suggest that while perceptual and attentional processes may not always facilitate an ORE in 

early behavior, they may still give rise to qualitative differences in face processing or 
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representations. For instance, studies finding no behavioral differences in working memory 

for same-race and other-race faces still find differences in EEG components during 

maintenance of those faces106,107. And as discussed in chapter 2, numerous studies have 

found neural differences in same-race and other-race face processing in perceptual tasks. 

Such differences may contribute an emergence of the ORE in recognition memory, though 

this has not been extensively tested. Furthermore, there are several studies where OREs 

were behaviorally detectable in traditional working memory tasks 108,109. In these cases, it 

is possible there is no involvement of mnemonic mechanisms, in line with the classic view 

that working memory does not recruit brain regions associated with long-term memory. 

However, it is also possible that under certain task demands and/or growing proactive 

interference, the same mnemonic mechanisms implicated in long-term memory tasks could 

be engaged. There is certainly emerging evidence that selective attention processes during 

maintenance may act on mnemonic in addition to perceptual representations, recruiting 

the long-term memory associated medial-temporal lobe (MTL) when the task demands 

it110–113. 

Reconciliation with prior ORE frameworks 

Our suggestion of a mnemonic component to the ORE is not incompatible with perceptual 

expertise and social cognitive theories (see chapter 1). Expertise accounts suggest 

specialized holistic processing mechanisms are tuned exclusively to same-race faces, while 

social-cognitive accounts suggest automatic processing  of race categories leads to more 

deeply encoded and higher fidelity same-race representations relative to shallowly 

encoded and impoverished other-race representations16,23. Our results suggest that the 
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tuning of same-race relative to other-race representations extend to mnemonic 

mechanisms, and that this tuning allows for same-race representations to be more 

discriminable than other-races ones at retrieval. Our study presents a novel approach to 

study this. We plotted multiple levels of mnemonic interference against accuracy to 

produce input-output transfer functions for facial recognition. The ORE was 

operationalized as the disparity between same-race and other-race transfer functions. 

Higher same-race performance along the input-output transfer function is likely reflective 

of memory mechanisms that have been tuned via years of predominant interaction with 

and privileged social individuation of one’s own race group to optimally discriminate and 

generalize between same-race faces. At the same time, experience with other-race 

individuals may be impoverished and compounded by suboptimal attentional encoding due 

to implicit labeling as “other”, resulting in an other-race input-output transfer function 

much reduced from the same-race one. This divergence may reflect a system sub-optimally 

tuned for other-race face recognition.  

It is worth noting that the nonlinear tuning of input-output transfer functions we observed 

here are similar to results in another recent study examining the relationship between 

physical fitness and mnemonic discrimination103. The researchers found a curvilinear 

input-output transfer function for highly fit relative to more sedentary subjects. The 

authors interpreted this finding as a possible enhancement of pattern separation processes 

resulting from long-term physical activity and exercise. By the same logic, our results could 

highlight an enhancement of pattern separation processes for same-race relative to other-

race faces resulting from increased experience with and attention paid to same-race 
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individuals. If this is the case, the ORE may emerge in part as a result of altered efficiency 

for neural pattern separation of faces from distinct race groups.  

Because our study highly controlled the amount of interference between every face pair, it 

appears that other-race face pairs that are more physiologically distinct than same-race 

ones, are still often encoded and remembered as more similar, leading to deficits in 

mnemonic discrimination. These findings, and the backing of computational and 

experimental  mnemonic discrimination and pattern separation literature are interestingly 

consistent with the face-space model43,44 (chapter 1). This model suggests that within 

latent psychological space, same-race faces are encoded with a widespread spatial 

distribution while other-race faces are clustered and more confusable. Our proposed 

mnemonic discrimination separation model similarly suggests that same-race face 

representations are more effectively separated/disentangled than other-race ones. A 

greater ability to orthogonalize same-race representations would result in the non-

overlapping and distinct same-race face representations proposed by the face-space model. 

Similarly, a reduced ability to disentangle and discriminate between other-race 

representations is highly consistent with the proposal that other-race faces are clustered 

and therefore confusable in face-space. Pattern separation could plausibly serve as one 

mechanism contributing to the unique organization of representations within face-space. 

An interesting line of future work could be to test whether spatial distance within 

experimentally determined face-space is associated with mnemonic discrimination 

performance as well as neuronal indices of pattern separation.  
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Suggestions for future neuroimaging research 

Characterizing the ORE in terms of mnemonic in addition to perceptual and attentional 

mechanisms paves the way for a more inclusive neurobiological approach to uncovering 

the neural basis of the ORE. The majority of neuroimaging studies of the ORE focus on 

visual processing regions alone – specifically the fusiform face area (FFA, lateral fusiform 

gyrus) of the inferior temporal cortex. However, while the FFA seems greatly involved in 

differential representations of race 67,76,114,115 its activity has not consistently predicted 

recognition accuracy– the behavioral metric of the ORE (chapter 2). Given the role of 

assessing the ORE using memory tasks, it is surprising that studies have not explored the 

involvement of the medial temporal lobe. At the root of this may be a widespread modular 

perspective on visual and memory processing regions in the brain, where occipito-

temporal areas are associated with perception and medial temporal regions with memory. 

However, there is growing evidence that the functional boundaries of perceptual and 

mnemonic processes are blurred across anatomical lines, and that regions are recruited 

based on the complexity of representations and information they contain, which are 

necessary to complete the task at hand73,116–121. This ‘Representational Hierarchical73’ 

perspective is supported by work finding that the perirhinal cortex (a region traditionally 

involved in memory processing) is integral to facial recognition,116,120,122–126 and has been 

shown to be sensitive to facial discrimination accuracy regardless of the perceptual or 

mnemonic nature of the task120,124. With these results in mind, we propose that regions 

typically associated with episodic memory, including the hippocampus and rhinal cortex 

play a role in generating the ORE. Due to the mnemonic discrimination task’s tendency to 
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engage the medial temporal cortex, our results here suggest the ORE may be in part 

facilitated by the different extent to which perirhinal or hippocampal pattern separation 

mechanisms may be recruited for same-race and other-race faces. We suggest that future 

studies focus on the role of the hippocampus and perirhinal cortex in generating the ORE. 

… 

In conclusion, we developed a mnemonic discrimination paradigm that evaluates the role 

of memory processes in the ORE. Our findings suggest that the ORE is not a purely 

perceptual or attentional phenomenon and is exacerbated when faces must be held in 

memory amidst temporal and visual interference. Our task additionally improves upon 

standard ORE recognition paradigms by evaluating accuracy as an incremental function 

rather than a single measure, which offers a richer means by which to quantify the ORE and 

how it changes with training. These results pave the path to a more detailed 

neurobiological investigation of the ORE (addressed in the remaining chapters of this 

dissertation), as well as interventional studies attempting to reduce or eliminate the impact 

of the ORE.  
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Chapter 4: Transitioning from the Medial-Temporal Lobe to the 
Whole Brain in Investigating Neural Correlates of the Other-

Race Effect 

Nonoptimal Behavioral Results for Testing Pattern Separation Hypotheses 

As outlined in the neuroimaging section of chapter 3’s discussion, we were interested in 

testing whether mnemonic-processing regions involved in pattern separation (including 

the perirhinal cortex and hippocampus) were differentially engaged with same-race and 

other-race faces.  

To test this, the behavioral study was adapted for use in the MRI scanner, and data was 

collected for 27 subjects. (Details are reported in chapter 6.) However, in reviewing the 

data, it became clear that the distribution of behavioral responses across the four 

interference levels (20%, 30% 40%, and 50%) were not ideal. In the analysis approach 

generally used for MRI data, there should be at least 10 instances of a condition to reliably 

model its impact on the blood-oxygen response from the brain. However, participants 

performed more poorly in the MRI version of the task, often resulting in too few target hits 

(‘Same’| Target Repeat) and correct rejections (‘Different’ | ‘Lure Distarctor’) in the higher 

interference trials (20% and 30%). The reverse was sometimes found in the low 

interference conditions (40% and 50%) with too few target misses (‘Different’ | Target 

Repeat) and false alarms (‘Same’| Lure Distractor). Even when trials were binned together 

into high (20% and 30%) and low (40% and 50%) interference conditions, enough subjects 

showed a skewed distribution of trial counts that it was not tenable to continue with an 

analysis specific to mnemonic interference. To improve distribution of conditions in future 
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studies, I would recommend reducing the number of lure bins and increasing trial counts 

per bin. Alternatively, one could maintain four lure bins and increase the number of trials 

in each, but this which would require lengthening the study – a risk in an already difficult 

and fatiguing task. 

Conclusions related to pattern separation in the brain require comparing brain regional 

activity across different levels of mnemonic interference, since pattern separation is the 

ability to resolve interference. Generally, pattern separation-consistent activity is reflected 

when the brain’s signal in response to a lure is similar to signal in response to an entirely 

new item – suggesting that the lure is neurologically being represented as new. In contrast, 

a relative reduction in signal to a lure is analogous to the reduction in signal found in 

response to a repeated item, suggesting the lure is being represented as old.  

Much of the face recognition literature exploits these novelty signals to index when a new 

identity is detected70,127–129 127. However, to my knowledge no study has tested whether 

novelty signals (also referred to as signal facilitations) to lures in the FFA differs between 

stimuli with lower or higher confusability from originally encoded faces. We anticipated 

that the perirhinal cortex and hippocampus would demonstrate unique novelty facilitation 

to high interference lures at retrieval, suggesting an involvement of pattern separation in 

MTL regions for difficult face recognition contexts that the FFA may not support on its own. 

Furthermore, we expected a decrement in medial-temporal lobe novelty facilitation for 

other-race lures – evidence of reduced pattern separation that might predict the other-race 

recognition deficit. However, without sufficiently distributed data across interference 
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levels, it was not possible to test these hypotheses. Therefore, the hypothesis that pattern 

separation is reduced in other-race relative to same-race faces remains an open question.  

Novelty of Mnemonic Discrimination Paradigm 

While data could not be analyzed across interference levels, once levels were binned 

together there was more than enough trials to analyze neural activity differences between 

accurate and inaccurate encoding and retrieval of same and other-race faces. Even with all 

the interference levels collapsed, our paradigm preserves its novelty relative to many past 

studies of the ORE because of the inclusion of lures. Traditional ‘old’/’new’ recognition 

studies of the ORE test memory via inclusion of directly repeated images (‘old’/’same’), or 

entirely new images (‘new’/’different’) during a test phase. This allows researchers to 

contrast activity during encoding that leads to successful or unsuccessful responses to the 

repeated faces67. A common finding in recognition memory literature is that there are 

certain brain regions that display ‘subsequent memory effects’ where greater activity 

during encoding is associated with better subsequent recognition performance. The 

novelty of our study, (which already allows us to test the subsequent memory effect) is the 

inclusion of lures making possible identification of regions integral to “subsequent 

mnemonic discrimination effects,” i.e. encoding activity associated with successful correct 

rejections of distractor lures.  

Furthermore, independent of the novel lure condition, the mere inclusion of a recognition 

paradigm in a neuroimaging study of the ORE is surprisingly rare (see chapter 2). Only 

three fMRI studies of the ORE to my knowledge have employed traditional memory 
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tasks67,69,75, and exclusively scanned participants during face encoding but not retrieval. 

The recording of retrieval activity during face recognition is therefore another unique 

contribution of our study.  

Exploratory Data Analysis Informing Subsequent Analysis Methods 

In transitioning the question of interest away from neurologically validating the pattern 

separation hypothesis, I performed a whole-brain exploratory data analysis to visually 

compare activity in participants brains when they performed same versus other-race task 

conditions. Observations from this analysis will be briefly discussed given their pivotal role 

in motivating my ultimate approach. However detailed methods are not reported as they 

are not central to this dissertation. For details on the task design, subject population and 

final analysis, refer to the study presented in chapter 6. 

Several group-level contrasts of brain activity were modeled in AFNI130,131 to visualize 

brain areas that were more active for accurate than inaccurate conditions across subjects. 

We contrasted encoding trials within each race based upon subsequent performance at 

retrieval. This produced four statistical maps (Fig. 4.1) of the difference in encoding activity 

for: same-race target hit - same-race target miss (4.1a, top); other-race target hit - other-

race target miss (4.1a, bottom); same-race lure correct rejection - same-race lure false 

alarm (4.1b, top); other-race lure correct-rejection - other-race lure false alarm (4.1b, 

bottom). Put another way, these maps can be conceptualized as tracking the same-race 

subsequent memory advantage, other-race subsequent memory advantage, same-race 

subsequent discrimination advantage, and other-race subsequent discrimination 
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advantage, respectively. Within these maps the values in each voxel indicate the extent to 

which the stimulus conditions account for the signal variation across subjects. For instance, 

in the same-race memory advantage map, a larger positive value indicates a voxel is more 

responsive during the accurate condition across subjects, while a larger negative value 

indicates a voxel is more responsive during the inaccurate condition. These maps were 

loaded and visualized in the AFNI Graphical User Interface. For visualization purposes an 

arbitrary liberal threshold was applied to mask out voxels that responded similarly to both 

conditions within a contrast. This resulted in visualizations where orange and blue blobs 

correspond to encoding activity that was later associated with successful or inaccurate 

performance, respectively. Therefore, regions that may support subsequent memory 

effects and subsequent mnemonic discrimination effects appear orange. What was most 

striking was the relatively sparse activity in the other-race contrasts (Fig. 4.1 bottom 

panel) compared to the same-race ones (Fig. 4.1 top panel). Regardless of the accuracy or 

the trial type the same-race conditions appeared to maintain more voxels at the applied 

threshold.  
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Figure 4. 1   Contrasts of encoding activity for successful and unsuccessful subsequent trials 
(A) Contrasts of target hits and target misses for same-race (top) and other-race (bottom) faces. (B) Contrasts 
of lure correct rejections and false alarms for same-race (top) and other-race (bottom) faces. Legend: Orange 
- greater activity during accurate trials; Blue - greater activity during incorrect trials. 

While laying out the contrasts and comparing them side-by-side emphasizes differences 

between them, it is important to highlight that these maps were liberally thresholded. A 

much higher threshold would be needed to determine the regions that are significantly 

more active in accurate relative to inaccurate conditions. This threshold increase is 

necessary, given the possibility of falsely determining a voxel is highly active given the vast 

number of statistical tests that are run in whole-brain analysis. To determine the threshold 

at which significance can be established, a multiple comparison correction will generally 

need to be applied. This makes whole-brain analysis a conservative approach that may be 

underpowered to detect subtle differences in same and other-race face processing. 

This prompted an investigation of alternative and more sensitive methods for whole-brain 

analysis. For the last decade plus, the emerging field of network neuroscience has 

pioneered methods well suited to analyze the brain as a large complex system132. These 

approaches are informed by graph theory, a mathematical framework that allows for 
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modeling pairwise relations between objects in a system. Within the context of 

neuroscience, the pairwise relationships between regions of the brain can be modeled 

using functional connectivity analysis. Importantly many algorithms have been developed 

that reduce the dimensionality of complex systems into metrics reflecting various aspects 

of network organization. In this way it is possible to test how brain regions coordinate 

activity to facilitate complex behavior. Such metrics can be used to compare whole-brain 

(as well as region-of-interest) function across task-conditions. By removing the need for 

statistical tests at the voxel level, it is possible to circumvent the stringent and prohibitive 

multiple comparison corrections associated with traditional whole-brain analysis. Such an 

approach may therefore be more sensitive to detect significant differences in how the brain 

interacts with information from same and other-race faces.  

… 

In summary, the results of the MRI version of the mnemonic discrimination task were not 

optimal for testing our original hypotheses of pattern separation’s role in producing the 

ORE. An exploratory whole-brain analysis was performed, motivating an ultimate interest 

in analyzing the brain from a graph theoretical perspective. The following chapter reviews 

current applications of graph theory in neuroscience to understand how the brain 

functionally reorganizes to support diverse behavioral tasks. 
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Chapter 5: Review of Relevant Works in Network Neuroscience 

The wealth of brain imaging methodologies designed to measure functional connectivity 

reflects a growing acknowledgement that no brain region works alone. Functional 

connectivity is defined as the temporal coincidence of spatially distant neurophysiological 

events, where regions demonstrate connectivity if there is a statistical relationship 

between them133. For instance, a large body of research finds that the at rest, the brain 

functionally segregates into separate  ‘intrinsic connectivity networks,’ where spatially 

distant regions couple with one another134. A focus on magnitude of activity in individual 

regions (as performed in the whole-brain exploratory analysis in chapter 4), is unable to 

capture crucial information on how regions of the brain are coordinated with one another. 

The growing field of network neuroscience is focused on this connectivity between brain 

regions, exploiting powerful tools provided by the mathematical framework of graph 

theory. 

Network neuroscience draws its methods from the more general field of network science – 

a discipline exploring how the organization of component parts of a system leads to 

emergent and complex properties. Network science uses mathematical algorithms from 

graph theory to understand complexity across systems as diverse as transportation 

networks, the power grid, social networks, and brain networks.  

At the core of graph theory is the modeling of some complex entity using graph 

representations132,135. A graph is made up of a series of nodes that are connected by edges. 

In certain domains, the definition of nodes and edges are relatively simple; For instance, in 
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transportation a metro connection between two neighborhoods is binary – it either exists, 

or it does not. In contrast, modeling the brain requires more complex decisions about what 

constitutes a brain region and furthermore, when we can infer that brain regions are 

connected. Nodes can be defined with varying granularities, from segments as small as one 

voxel, to multiple anatomical regions grouped together. Edges may be structural and based 

on fiber tracts, or functional and based on a variety of functional connectivity methods 

including resting state connectivity, generalized psychophysiological interaction or mutual-

information-based analyses, to name a few. There are further decisions to be made 

regarding the use of binary or weighted graph representations, and a variety of algorithms 

developed and optimized for only one or the other, often requiring hyperparameter 

selection. Therefore, the field of network neuroscience is still developing its own best 

practices, and gold standards do not yet exist132,135.  

Regardless of the network neuroscientist’s methodology of choice, an area of great interest 

has been the discovery that the brain demonstrates small-world network topology. A 

landmark paper found that many types of complex and effective systems are characterized 

by high clustering of nodes, but also relatively short path lengths between nodes136. This 

topology lies somewhere in between networks that had already been formalized in graph 

theory – regular lattices with high clustering of nodes and random graphs with short path 

lengths between unconnected nodes. With an integration of the structural qualities of these 

former graph configurations, small-world networks provide a cost-efficient configuration 

that maintains an ability to quickly integrate information between distinct and distant 

regions. It is perhaps unsurprising that so many networks demonstrate small-world 
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topology, from the brain structure of C. Elegans to the Western US power grid and the 

collaboration of film actors. 

Shortly thereafter a seminal paper introduced algorithms that quantify clustering and path 

length qualities of small-world networks into metrics approximating how efficiently 

systems exchange information at both global and local levels137. The authors defined 

efficiency in communication between a pair of nodes as inversely proportional to the 

shortest path length between those nodes. I.e., the shorter the path (or number of steps) 

between two nodes, the greater efficiency with which those can exchange information. This 

calculation can be applied to characterize how well all nodes within a network are 

integrated with one another (global efficiency), but also how fault tolerant a network’s 

various modules of nodes are to perturbation (local efficiency). (The formal equations for 

these metrics are introduced in the methods section of chapter 6.) Small-world topology is 

characterized by both high global and high local efficiency, demonstrating an ability to 

easily integrate, but also segregate information when necessary.  

 Graph theoretical metrics like efficiency may help serve as biomarkers of clinical 

conditions. Numerous studies have found topological metrics can distinguish between 

subjects with healthy brains and those with conditions known to alter brain structure and 

function. For instance, Alzheimer’s disease is associated with reduced small-world 

topology, showing reductions of clustering coefficients and increased path lengths and 

reduced global efficiencies138–140. Patients with epilepsy have been shown to have reduced 

global and local efficiencies relative to healthy controls, indicating compromised network 

integration and segregation141. In Autism Spectrum disorder, patients have overly 
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integrated networks, indicated by increased global efficiency at the expense of reduced 

local efficiency142. The opposite has been observed in children with ADHD with overly 

segregated brain networks having high local efficiency but low global efficiency. The 

deviations in small-world topology found across these conditions underscore the 

importance of this configuration to healthy cognitive function. 

However not all alterations in small-worldness are maladaptive. Healthy brains rely on 

dynamic reconfigurations of network integration and segregation to meet shifting 

behavioral demands143. One study demonstrating this interplay compared brain 

connectivity at rest to connectivity during motor sequence tapping and working memory n-

back tasks144. Local efficiency was greater at rest, whereas global efficiency was uniquely 

high during working memory relative to resting state and sequence tapping tasks. 

Furthermore, higher local efficiency predicted poorer performance in both tasks, while 

higher global efficiency was associated with increased working memory. A separate study 

using an n-back test similarly found better working memory performance is associated 

with decreased local efficiency across young and older populations145. However only young 

subjects showed a positive relationship between global efficiency and working memory 

capacity; In fact, such integration was related to slight performance decrements in the 

aging group. Overall, these studies suggest that more cognitively demanding tasks may rely 

on greater information integration across the brain via a reduction in local efficiency and 

facilitation in global efficiency. Furthermore aging, known to alter brain topology may also 

dictate the topological organizations conducive for certain task demands. 
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Studies on the topological correlates of longer-term memory storage and retrieval are 

rarer, though they have demonstrated a similar relationship between network integration 

and performance. One study had subjects memorize words, and later scanned them during 

retrieval146. Reduced brain modularity (a metric of segregation) was associated with 

improved memory and tracked individual differences in behavior.  

These studies paint a picture that global integration is key in complex tasks that require 

maintenance and memory retrieval. One might instead argue that increased global 

integration may be associated with high task difficulty in experimental relative to control 

conditions, rather than the recruitment of memory-specific mechanisms. However, one 

highly difficult task found that functional connectivity demonstrated increased modularity 

prior to subjects successfully perceiving hard to hear sounds147. While this task paradigm is 

incredibly different than the memory paradigms, it serves to highlight that not all 

behaviors benefit from more integrated network architectures, and that task difficulty is 

not always synonymous with increased integration. 

In fact, there is evidence that improved performance on difficult tasks is associated with 

increased modularity over time. A recent study tested whether longitudinal training on a 

working memory paradigm would shift network topology from more integrated to 

segregated configurations148. The results of a six-week training supported this hypothesis, 

finding a relationship between increasing network segregation and behavioral 

improvements. The authors suggest that increasing modularity may be associated with 

greater experience and task automation rather than reduced complexity of tasks. The 
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authors suggested that experiential tuning towards a more modular network may provide 

a more cost effective and efficient functional network configuration over time. 

… 

The application of network neuroscience to task-related connectivity is still quite nascent. 

While integrated functional network architectures tends to be associated with successful 

memory performance, there is also evidence that training and task automation is 

associated with increasing network segregation. To my knowledge no study has 

investigated the role of topological organization during successful encoding and retrieval of 

faces. Because the ORE is experientially tuned and involves recruitment of complex 

mechanisms, it may very well be associated with alterations in global and local efficiency. 

The following chapter discusses the application of these graph theoretical metrics to 

characterize network topologies supporting same and other-race face processing.  
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Chapter 6: Graph Theoretical Analysis Reveals 
Reconfigurations in Network Efficiency across                          

Same- and Other-Race Facial Recognition 

Introduction 

As reviewed in chapter 5, the brain functionally reorganizes across resting state, 

visuomotor, and working memory tasks to meet the demands of shifting behavioral 

contexts143,144,148,149. However, no study to my knowledge has tested network 

reconfigurations on two contexts as similar as same and other-race face recognition. One 

might argue that face recognition, regardless of the race of a face, involves a very similar set 

of cognitive processes, such that no differences would be evident in whole-brain functional 

architecture. However as previously discussed, memory performance is associated with 

brain topological changes, and it is therefore plausible that differences in same-race/other-

race memory are associated with altered network topologies. Furthermore, the cognitive 

frameworks (chapter 1) and neuroscientific evidence (chapter 2) in the other-race effect 

(ORE) literature find mechanistic and neural differences which would plausibly result in 

network alterations on the systems level. We therefore set out to test whether differentials 

in brain-wide network efficiency correspond to the ORE in behavior.  

While no study to our knowledge has explored the contributions of efficiency in network 

topology to the ORE, several experiments have employed graph theoretical methods to 

study the brain’s face network. The face network is comprised of a series of regions that 

demonstrate preferential activity-- i.e. more oxygen consumption during presentation of 

faces than other image categories-- across a variety of neuroimaging paradigms150. These 
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include a core system containing the most face selective regions-- the Occipital Face Area 

(OFA), Fusiform Face Area (FFA), and posterior superior temporal sulcus (pSTS). These 

areas have been implicated in both featural (OFA) and holistic processing (FFA) as well as 

allocation of attention towards faces (pSTS). However, many other regions across the brain 

have been identified as important for face processing. For instance, areas crucial to spatial 

attention including the intraparietal sulcus and frontal eye fields are implicated in 

extracting identity-relevant information from faces. The amygdala, and insula are involved 

in tracking emotional content of faces. Temporal lobe regions like the ventral anterior 

temporal face patch are recruited during processing of semantic and biographical 

information related to face identities151,152.  

Network neuroscientific studies of face-processing have tended to focus on the connectivity 

between these highly face-selective regions. One study tested how the face network is 

reconfigured across development by scanning the brains of subjects ranging in age from 

childhood to early adulthood153.  They found that face regions grouped into several 

submodules that significantly reorganized across development, demonstrating both 

network segregation and integration at different timepoints. In later childhood and 

adulthood, a stable module formed that included early visual regions (primary visual 

cortex) and temporal and frontal regions (hippocampus and inferior frontal gyrus). 

Because these latter regions are involved in domain-general memory and biographical 

semantic face processing, the authors suggested this submodule might support the 

development of perceptual expertise known to be tuned into adulthood. 
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While the prior study observed integration in the face network across the lifespan, the 

authors acknowledge they focused on the face network in isolation. Therefore, its plausible 

that these regions might form a unified network that becomes more segregated from the 

rest of the brain during development. A separate study, while still focused on face 

preferential regions, tested the relationship between these regions and the rest of the brain 

by calculating graph theoretical centrality measures for each face node154. Centrality 

indicates a region’s relative importance within an entire network, based on how connected 

it is to other nodes. Nodes with high centrality play a role in integrating information across 

different modules155. Between childhood and early adulthood, there was a decrease in 

centrality of eight out of eleven face-preferential regions. The authors speculated that these 

nodes played a greater role in information dissemination in childhood, but then become 

more segregated from the rest of the brain allowing for improved domain-specific 

processing of face information. However, three nodes did increase their centrality --- 

evidence that face regions are not uniformly segregated from other brain networks. It is 

therefore plausible that a reduction in centrality of certain regions reflects cost-efficient 

developmental pruning, given that the more central nodes in adulthood may be able to 

propagate information to the remainder of nodes in the face network. This likely reflects a 

more efficient topological configuration overall. 

These two studies demonstrate that across development the face network is topologically 

reconfigured. As discussed in chapter 1, perceptual expertise theories suggest such tuning 

is selective to the visual input we are most experienced with. Therefore, we can begin to 

ask questions relevant to our topic of interest: If the topological configuration of the face 
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network is tuned for same-race recognition, will it still be effective in relaying information 

relevant to other-race recognition? Would the network reconfigure for other-race face 

processing, or just perform less optimally?  

Moreover, how would studying the brain as an entire network during face processing differ 

from analyzing the connectivity of a select few highly face-selective regions? One study 

reviewed in chapter 2 found that the extent of connectivity between the FFA and cognitive 

control and attention networks was more predictive of same-race than other-race memory. 

Yet the areas in these latter networks are not associated with face-preferential activity. 

Clearly that does not negate their involvement in facial memory and the ORE. This is 

evidence that regions need not be highly selective to faces to play a mediating role in face 

memory. Therefore, it may be somewhat limiting to study only the topology of the face-

preferential network, at least in the context of the ORE. 

This evidence in the literature, as well as our own exploratory observations of group-wide 

whole-brain differences in regional engagement between same and other-race faces 

(chapter 4) poses the question of how the brain as a system interacts with information to 

make complex decisions about different categories of faces. By pairing whole-brain graph 

theoretical analysis with our mnemonic discrimination study (chapter 3), we tested 

whether the ORE can be described by alterations in efficiency of information processing in 

the brain. The exact nature of topological differences across same and other-race faces is 

hard to predict owing to conflicting results in the literature surrounding when segregation 

versus integration is behaviorally adaptive (see chapter 5). Therefore, I propose several 

possible topologies that could be observed. 
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1. Because small-world architecture has been associated with healthy and improved 

cognition, processing of same-race faces might be supported by more small-world 

network configurations. This would be apparent with higher local and global 

efficiencies during accurate same-race relative to other-race face recognition.   

2. Because accuracy on complex tasks has been associated with increased integration 

and decreased segregation, same-race recognition could be associated with 

relatively high global efficiency and low local efficiency. Because other-race 

recognition is not as accurate, we might expect relative deviations from this 

configuration, such as reduced global efficiency, and increased local efficiency.  

3. Because developmental tuning and behavioral training evidence have been 

associated with increased segregation reflecting task automation, the expertise 

participants have for same-race faces could be associated with a more locally 

efficient network overall. Meanwhile other-race recognition which might be more 

difficult and less automated for subjects, may still require a more integrated and 

globally efficient network to achieve success. 

Methods 

Participants 

This study protocol was approved by the Institutional Review Board (IRB) at the University 

of California, Irvine, and complies with IRB guidelines and regulations. Participants were 

screened for eligibility through a secure online questionnaire using REDCap electronic data 

capture tools156. Strict inclusionary criteria required participants to be right-handed with 
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normal corrected vision, self-identify as East Asian or Southeast Asian, have no MRI 

contraindications such as metal implants, and no major neurological, psychiatric, or 

substance-use conditions. 27 recruited subjects (14 Female, 13 Male; mean age 19.93; SD 

1.36; age range 18 -22) provided written informed consent and were compensated for their 

participation. During the study, the participants filled out a series of questionnaires before 

and after scanning, as well as performed facial recognition tasks in the scanner. Because 

awareness of the true nature of the study could bias performance157,158, participants were 

only informed that they would be administered a facial recognition task, with no mention 

of the race component of the study. After the scan they were debriefed about the full study 

purpose and consented once again. 

Of the initial sample, five participants were excluded from the analysis. Reasons for 

exclusion included participants not meeting final inclusionary criteria, demonstrating 

chance performance, missing 20% or more of trials, as well as technical difficulties with the 

scanner. This yielded a final sample of 22 subjects (11 Female, 11 Male; mean age 19.52, SD 

1.29; age range 18 - 22). Of the final participants, 9 identified as East Asian and 13 as 

Southeast Asian. Two of these subjects only completed three of the four scan runs.  

Mnemonic Discrimination Task 

This experiment was designed to test participants’ retrieval memory for faces of their own 

and another race. The task was designed for a previous study and adapted for use in the 

MRI scanner77. Research from unpublished pilot studies found that Asian participants 

displayed greater memory deficits for Black faces than white faces. We therefore limited 
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our design to include only Asian and Black faces to focus on the larger behavioral 

differential in our sample. Since all subjects identified as Asian, for the purposes of this 

manuscript we refer to Asian faces as 'Same-Race' (SR) and Black faces as ‘Other-Race’ 

(OR). 

Stimulus Set 

This experiment used the same stimulus set developed for our prior study77. All faces were 

generated using FaceGen Modeller 3.5. Asian and Black faces were created using the 

‘Generate’ tool within sub-groups for ‘Asian’ and ‘African’ racial origins. Half of the faces 

were randomly selected as ‘parent’ stimuli to serve as templates for lure distractors. These 

lures were created by running the Genetic Randomness algorithm on the parent faces, to 

apply normally distributed perturbations with means proportional to inputted values of 

20%, 30%, 40%, and 50%. This introduced variation in how similar lure faces were to 

‘parent’ faces. The current study groups all similarity levels together to increase trial 

counts for subsequent neuroimaging analysis.  
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Figure 6. 1   Mnemonic Discrimination and Perceptual Discrimination Task Designs  
(A) The Mnemonic Discrimination task contained 8 blocks, with each block containing a Study and Test Phase. 
During the Study Phase participants memorized consecutively presented faces. They simultaneously 
indicated whether faces were shifted to the Left or the Right of the screen’s center (not displayed). During the 
immediately following retrieval phase they were asked if each of the presented faces were shown during the 
Study phase. Half of the faces were previously shown during Study (target repeats), and the other half were 
new (lure distractors). (B) 3 perceptual discrimination trials were randomly displayed during each phase of 
the Mnemonic Discrimination task. In these trials participants indicated which of two gaussian blurred 
spheres were brighter (Left or Right). If correct, the brightness of the spheres became more similar, and thus 
more difficult to discriminate. If incorrect, the spheres would become more distinct in brightness, and hence 
more discriminable. Participants performed these discriminations for the entire trial duration. For all trial 
types, stimulus duration was 3.0 s and ITI was 1.5s. 

Task Design 

This task, programmed in PsychoPy v1.85.2159, was structured as an event-related design 

with 8 interleaved study and test phases (Fig 6.1a). In Study Phases, participants were 

instructed to memorize each of 22 consecutively presented faces. They were 

simultaneously expected to indicate via button press whether faces were shifted to the left 

or right of the screen, to ensure they were attending to the task. In each Test Phase 

participants were again shown a series of 22 consecutive faces, half of which were directly 

repeated (target repeats) from the Study Phase just prior. The other half of the faces were 
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new (lure distractors). For each Test trial participants were asked to identify via button 

press whether the face was an exact repeat from the preceding Study Phase (‘Same’/’Old’) 

or whether they had never seen it before (‘New’/’Different’). A response of ‘same’ to a 

repeated face indicated successful recognition (i.e., target hit) while a response of 

‘different’ to a new face indicated successful mnemonic discrimination (i.e., lure correct 

rejection). Across both Study and Test Phases, face stimuli were pseudorandomized and 

evenly divided amongst race and gender categories. Each stimulus was presented for 3.0s 

with a 1.5s intertrial interval (ITI).  

In addition to trials of interest, the task also employed perceptual discrimination trials to 

serve as an implicit baseline when subsequently modeling the fMRI BOLD response (Fig 

6.1b)160. The perceptual discrimination trials required subjects to indicate which of two 

gaussian-blurred circles appeared ‘brighter’. The trials were adaptive, adjusting based on 

participant response during a 3-second trial duration. When answered correctly, the circles 

would become more similar in luminosity, and hence more difficult to discriminate. When 

incorrect, the circles would diverge in luminosity. Three perceptual baseline trials were 

pseudorandomly presented per phase.  

MRI Data Acquisition 

Neuroimaging data were acquired on a 3.0 Tesla Siemens MAGNETOM Prisma scanner, 

using a 32-channel head coil at the Facility for Imaging and Brain Research (FIBRE), part of 

the Campus Center for Neuroimaging (CCNI) at the University of California, Irvine. A high-

resolution three-dimensional (3D) magnetization-prepared rapid-gradient echo (MP-
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RAGE) structural scan was acquired at the beginning of the session, with the following 

parameters: 2300 ms repetition time (TR), 2.38 ms echo time (TE), 240 slices, 0.8 mm 

isotropic resolution, 256 mm field of view (FoV), and 8-degree flip angle. Parallel 

acquisition was conducted in the GRAPPA mode with reference line phase encoding (PE) of 

24 and an acceleration factor of 3. Each of four functional MRI scans were acquired using a 

multiband echo-planar imaging (EPI) sequence with the following parameters: TR = 1500 

ms, TE = 34 ms, 64 slices, 2.1 mm isotropic resolution, 202 mm FoV, 75-degree flip angle, 

and multiband acceleration factor of 8. Visual stimuli were presented on a BOLDScreen32 

LCD monitor mounted onto the back of the bore. Participants viewed the monitor via a 

single mirror attached to the head coil. 

During the session, structural scans were collected first, and used to align all subsequent 

scans to the anterior commissure - posterior commissure line (AC-PC line). Following that, 

two blocks of study and test phases were presented during each functional run. Half-way 

between the four runs, subjects were given a break from the task during collection of a 

resting state scan.  

Preprocessing and Denoising 

Structural and functional scans were preprocessed and denoised using the CONN 

Toolbox161. Functional scans were realigned and unwarped, centered, slice-time corrected, 

flagged for outliers, segmented, aligned to MNI space, and smoothed using a spatial 

convolution Gaussian kernel of 4mm full width half maximum (FWHM). Structural scans 

were skull-stripped, segmented, and aligned to MNI space. A denoising pipeline was 
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implemented on each scan run to create regressors for potential confounding effects. These 

nuisance regressors included: CSF and white matter noise components using anatomical 

component-based noise correction (aCompCor)162; Parameters to minimize motion-related 

variability via 6 realignment regressors and their first order derivatives; Censoring 

covariates using ART-based flagging of outlier volumes with framewise displacement 

above 0.9 mm or global signal change above 5 standard deviations from the mean163.  

Additionally, regressors were created for the experimental task effects by convolving 

stimulus onset and duration with a canonical hemodynamic response function (HRF). 

These included regressors for each of 16 conditions of interest corresponding to the unique 

combinations of race (Same-Race or Other-Race), phase (Study or Test), trial type (Target 

Pair or Lure Pair) and accuracy (Correct or Incorrect), as well as task effects of no interest 

(Non-response trials, and task instruction reminders). Perceptual discrimination trials 

were not explicitly modeled, serving as an implicit baseline against which to compare 

increases or decreases in connectivity during the event types of interest160. Lastly a linear 

component was added to model scanner drift. After regression, high-frequency information 

was preserved using a high-pass temporal filter [0.008 inf]. 

Quality control checks were run after preprocessing and denoising was complete. We 

found that across all subjects and runs, motion and global signal change were minimal. 

Mean framewise displacement was .13 mm with a standard deviation of .04 and mean 

global signal change was .83 with a standard deviation of .03. Because two subjects were 

missing one run due to scanner glitches, they were outliers for quantity of included 

volumes. However, they both maintained enough trials to safely model each condition 
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(means of 16.19 and 15.89 and minimums of 9 and 12 trials per condition, respectively). 

Additionally, using the IQR outlier detection method two subjects were established as 

potential outliers for mean motion (.23 and .24 mm). Given that these are still relatively 

low mean framewise displacements, we chose to include all data from these subjects as 

well.  

Whole-brain Generalized Psycho-Physiological Interaction Analysis  

In order to derive whole-brain task-modulated connectivity data for subsequent graph 

theoretical analysis, we ran a generalized Psycho-Physiological Interaction Analysis 

(gPPI)164 on seed and target regions of interest (ROIs) across the entire brain165,166. The 

brain was partitioned into 246 ROIs using the Human Brainnetome Atlas parcellation 

scheme167. The fully preprocessed and denoised timeseries for each voxel were 

concatenated across runs, and then averaged within each of the ROIs. Next a general linear 

model (GLM) was fit for each target ROI including as predictors: a) the HRF-convolved 

main task effects (i.e., the psychological factors), b) the timeseries for the seed ROI (i.e., the 

physiological factor), and c) the product of the psychological factors and the physiological 

factor (i.e., the interaction term). Modeling task-dependent connectivity for all pairs of ROIs 

required constructing 245 GLMs for each of 246 target ROI, for a total of 60,270 separate 

regressions. PPI terms for the 16 conditions of interest were then assembled into separate 

246x246 connectivity matrices. 

Because the estimated effects of a seed ROI on a target ROI are not necessarily equal to the 

effects of the reverse couplings, gPPI functional connectivity matrices are not symmetric. 
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This quality distinguishes gPPI models from the traditional bivariate-correlation weighted 

GLMs used in resting state connectivity analysis. This lack of symmetry cannot be used to 

infer directionality of information flow between source and target ROIs, or whether 

coupling is direct or mediated by other ROIs 168. Because there is no consensus on how to 

interpret this directedness in gPPI estimates, we followed the example of several other 

studies and symmetrized all connectivity matrices by averaging the estimates across the 

matrix diagonal169,170.  

Graph Representation 

In graph theory, a graph is a mathematical structure that models pairwise relations 

between objects. Graphs (or networks) are defined as sets of nodes connected by edges. In 

the context of network neuroscience, we can model brain regions as nodes and associations 

between regions as edges 132.  

Graphs are represented by adjacency matrices, which are square matrices with quantities 

of rows and columns equal to the number of brain regions (here, 246). The values of 

elements in a matrix corresponds to the associations between each pair of brain ROIs. Here, 

our associations are the interactions between brain regions during task conditions. 

Because those interactions are symmetric, these networks are considered undirected, such 

that only one edge is possible between any pair of ROIs.  

Commonly in network analysis, adjacency matrices are binarized to contain only values of 

1 and 0, indicating whether an association (or edge) exists. This requires an a priori 

decision regarding what constitutes a meaningful, or strong enough connection strength to 
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be represented within a network. Rather than choosing an arbitrary cut-off connection 

strength, we instead thresholded each individual connectivity matrix at five distinct costs 

from 5% - 25% in 5% increments 135,144,171,172.  For each subject, each of the 16 connectivity 

matrices were described by five binarized adjacency matrices representing the strongest 

5%, 10%, 15%, 20%, and 25% of functional interactions in the network. This range of costs 

was selected because complexity and non-random topology of the brain is most observable 

at lower connection densities135. This allowed us to calculate network topological metrics, 

while ensuring that the number of edges per graph was consistent and comparable across 

conditions and subjects172. Once topological metrics were calculated, they were averaged 

across costs to derive single measures per each condition144. Matrix manipulation and 

analysis was all performed in MATLAB R2020A173.  

Graph Metrics 

Graph theoretical metrics were calculated using the Brain Connectivity Toolbox174 (brain-

connectivity-toolbox.net), a MATLAB toolbox for network analysis of structural and 

functional brain connectivity data. Our analysis focused on characterizing global and local 

efficiency of networks during the task conditions137.  

In graph theory, the efficiency of a pair of nodes is defined as the multiplicative inverse of 

the shortest path between that pair137.  The global efficiency of each brain network was 

calculated by taking the average efficiency of all combinations of node pairs. This 

computation is formalized in Eq. 1, where N is the number of nodes in graph G, and 1/dij is 

the inverse shortest path length between a given pair of nodes, i and j. In contrast. the local 
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efficiency of each network was calculated by computing the average efficiency of each 

node’s subgraph (a node’s immediate neighbors) and meaning across all nodal subgraphs 

for a network wide metric. This is represented in Eq. 2, where Gi is the subgraph of a given 

node i. While both metrics characterize efficiency of information exchange, global efficiency 

reflects how well integrated a network is, while local efficiency is a segregation metric that 

reflects how fault tolerance a network is to removal of individual nodes. 
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Results 

Behavior   

There are several common behavioral indices of the ORE. These include greater target hits 

to same-race faces, greater false alarms to other faces, greater sensitivity (d’) to same-race 

faces, and more liberal response criterion (c) to other-race faces. Because we expected 

effects to take on these directions, we ran 1-tailed paired t-tests. Participants accurately 

identified faces as repeated (target hits) for same-race (SR) and other-race (OR) faces with 

the following mean proportions: [SR: x̄ = .552, σ = .111; OR: x̄ = 0.577, σ = .109]. Subjects 

incorrectly recognized lure distractors as repeated (lure false alarms) with the following 

proportions: [SR: x̄ = .485, σ = .097; OR: x̄ = 0.536, σ = .093]. While it was not expected that 

the mean proportions for target hits would be larger for other-race than same-race faces, 
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lure false alarm ratios followed the anticipated pattern. The proportions were used to 

calculate sensitivity (eq. 3) and response criterion (eq. 4) indices from signal detection 

theory: 

d′ =  z(target hit rate) −  z(lure false alarm rate)        (3) 

𝑐 =  −
 z(target hit rate) + z(lure false alarm rate) 

2
     (4) 

The sensitivity, or discriminability index d’ corrects for the tendency to respond 

“old/same” inaccurately, providing a measure of participants’ ability to discriminate 

between old repeated and new distractor faces. The mean d’ for the subjects were [SR: x̄ = 

0.1726, σ = 0.183; x̄ = 0.1047, σ = 0.2253] (Fig. 6.2a). A paired t-test finds that same-race 

discriminability trends slightly larger than OR discriminability [t(21) = 1.542, p = 0.069, r2 

=.102, 95% CI = -0.1594 to 0.02364]. The response criterion, independent from sensitivity 

indicates participants’ biases towards responding “old/same”. The mean response 

criterions were [SR: x̄ = -0.047, σ = 0.257; x̄ = -0.148, σ = 0.239] (Fig. 6.2b). Overall, subjects 

were more likely to respond that a face was remembered for both races as evidenced by 

negative mean criterion values. However this bias was significantly greater for other-race 

than same-race faces [t(21) = 1.733,  p = 0.0489. r2 = 0.1251, CI = -0.2227 to 0.02023], 

though the effect was small. 
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Figure 6. 2   Differences in Recognition Memory for Same and Other-Race faces 
While this task proved difficult for participants, behavioral patterns consistent with the ORE still emerged. 
(A) Sensitivity d’ trended higher for same-race faces [t(21) = 1.542, p = 0.069, r2 =.102, 95% CI = -0.1594 to 
0.02364]. (B) Response criterion was significantly more liberal for other-race faces [t(21) = 1.733,  p = 
0.0489. r2 = 0.1251, CI = -0.2227 to 0.02023]. 

Taken together these results indicate that this task was difficult – more so than the 

behavioral version reported in chapter 377, but that differences consistent with the 

canonical ORE still emerge. Decreased performance on this task may have resulted from the 

increases in time commitment, discomfort and fatigue associated with studies employed in 

MRI scanners. Furthermore, there were several amendments to this task that may have 

increased difficulty including requiring indication of left/right face position during 

encoding as well as the addition of perceptual discrimination trials.  Despite this, 

participants were significantly more likely to answer that they had seen other-race faces 

before, and they demonstrated a trending improved ability to discriminate between old 

and new same-race faces. Furthermore, increased difficulty may have impacted same-race 

more than other-race recognition, as we may infer based on differences in discriminability 

performance on the earlier version of this task. In the behavioral task (see chapter 3 

results), the mean d’ for same and other-race recognition were .3719 and .1484, 
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respectively. Therefore, in the scanner version of the task there was a 53.59% decrease in 

same-race discriminability and a smaller 29.45% decrease in other-race discriminability. 

(Though, it can be argued that this is less meaningful since other-race performance was 

already closer to floor.) Furthermore, as difficult as the scanner version of the task was, 

subjects’ average same-race discriminability was 14.02% greater than the average other-

race discriminability in the easier behavioral task. (Response criterion was not calculated 

for the behavioral task and is therefore not compared.) This highlights that even in 

incredibly difficult contexts, same-race recognition may be superior to other-race 

recognition in less demanding contexts.  

Neuroimaging 

After running through the pipeline described in methods, each of the 16 unique conditions 

per participant were characterized by global and local efficiency metrics. Collapsed across 

conditions, the mean and standard deviation and range of the measures were [Global 

efficiency: x̄ = 0.5402, σ = 0.0060, range = 0.0476; Local Efficiency: x̄ = 0.4977, σ = 0.0289, 

range = 0.2144]. Amongst the dataset there was one subject with an outlier condition that 

was 6.36 standard deviations below the global efficiency mean, and 4.05 standard 

deviations above the local efficiency mean. This was the only condition present as an 

outlier for both metrics and was 2.68 and 1.27 standard deviations removed from the next 

largest outliers for global, and local efficiency, respectively. Furthermore, it had large 

influence over the relationship between global and local efficiency, inducing a trending 

correlation which was not present with its removal. [With outlier, r = -0.0909, p = .0885; 

Without outlier, r= -.0192, p = .7201). Therefore, the extreme outlier was removed, 
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resulting in final descriptive statistics of [Global efficiency: x̄ = 0.5403, σ = 0.0056, range = 

.03172; Local Efficiency: x̄ = 0.4974, σ = 0.0283, range = 0.1778].  

Each of the 16 task conditions corresponds to a distinct phase of the task (study or test), 

and trial type (target pair or lure pair). Data were sub-grouped based on these conditions 

to create four distinct categories: A) Study Target, B) Study Lure, C) Test Target, D) Test 

Lure. Respectively these categories correspond to the conditions under which subjects A) 

studied faces that would later be repeated, B) studied faces that would later have similar 

looking lure distractors, C) were tested for memory of repeated faces, and D) were tested 

for ability to correctly reject similar but never-before-seen faces. Within each of these four 

conditions, data were divided into factors of stimulus race (same-race (SR) or other-race 

(OR)) and accuracy (correct or incorrect).  Because each face at study had a paired repeat 

or lure during the Test phase, we were able to evaluate both brain connectivity during 

memorization as a function of subsequent performance and during retrieval. The mean and 

standard deviations of global and local efficiency for each of these conditions are reported 

in Table 6.1. 
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Table 6. 1 Descriptive statistics for global and local efficiency during each task condition  
Task Condition Accuracy Global Efficiency Local Efficiency 

mean std mean std 
Study   Target   SR Subsequently correct 0.5392 0.0071 0.5013 0.0293 
Study   Target   OR 0.5404 0.0045 0.4934 0.0216 
Study   Target   SR Subsequently 

incorrect 
0.5421 0.0048 0.5082 0.0293 

Study   Target   OR 0.5391 0.0071 0.5127 0.0268 
Study    Lure      SR Subsequently correct 0.5423 0.0052 0.4886 0.0314 
Study    Lure      OR 0.5387 0.0072 0.5079 0.0221 
Study    Lure      SR Subsequently 

incorrect 
0.5419 0.0031 0.4996 0.0279 

Study    Lure      OR 0.5413 0.0040 0.4906 0.0222 
Test      Target   SR 

Correct 
0.5382 0.0055 0.4961 0.0247 

Test      Target   OR 0.5404 0.0050 0.4849 0.0300 
Test      Target   SR 

Incorrect 
0.5398 0.0063 0.5038 0.0224 

Test      Target   OR 0.5392 0.0067 0.5122 0.0289 
Test       Lure      SR 

Correct 
0.5380 0.0071 0.4885 0.0323 

Test       Lure      OR 0.5422 0.0037 0.5019 0.0225 
Test       Lure      SR 

Incorrect 
0.5406 0.0053 0.4868 0.0251 

Test       Lure      OR 0.5411 0.0035 0.4816 0.0337 
Statistics are organized by task phase (Study or Test), Trial type (Target or Lure), Race (Same-race (SR) or 
Other-race (OR)), and Accuracy (Correct or Incorrect). For the Study conditions, Target and Lure assignment 
is based upon whether the face shown was part of a target pair, where the face was later repeated at Test, or a 
lure pair, where a similar distractor lure was shown at Test. Therefore, accuracy during the study phase is 
based upon performance on the corresponding item in the pair during the test phase. 

Within each of the four major categories, a separate regression was run on global and local 

efficiency data, resulting in 8 models. Specifically, the effects of stimulus race and accuracy 

on the topological metrics were estimated using generalized linear models (GLMs) with 

generalized estimating equations (GEEs)175. GLMs do not assume normality of dependent 

variables, and can handle missing values (i.e., the removed outlier), and when implemented 

with GEEs can handle repeated measures data. We characterized the correlated measures 

in our data using an exchangeable covariance matrix indicating that all observations per 

subject were equally correlated to one another. Each regression analysis modeled the 

linear combination of race, accuracy, and the interaction of race and accuracy on the 

dependent graph metric (Eq. 5).  

𝑌𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑚𝑒𝑡𝑟𝑖𝑐 = β0 + β1X𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + β2X𝑅𝑎𝑐𝑒 +  β3X𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦∗𝑅𝑎𝑐𝑒     (5)  
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Because the ORE is behaviorally characterized by differences in performance relative to the 

race of faces, we were specifically interested in identifying whether efficiency of 

information processing in the brain is modulated by race and accuracy. We therefore 

directed our focus to the interaction of race and accuracy (β3 XAccuracy*Race). Given the small 

sample size (22 observations per factor), we ran permutation analysis for each model to 

reduce the likelihood that results were due to chance. For each observed dataset, 10,000 

randomized datasets were generated where each of the four corresponding condition 

labels were shuffled within each subject.  The 10,000 null datasets were then modeled 

using the same pipeline described above. To evaluate significance, we calculated the 

proportion of times that the permutation analysis estimated larger interaction test 

statistics, z, than those produced when modeling the true data. All 8 uncorrected p-values 

were then subjected to the Benjamini-Hochberg procedure to control the false discovery 

rate. Table 6.2 includes a summary of estimates for the interaction terms across conditions, 

including beta coefficients, z-scores, 95% confidence intervals, puncorrected and padjusted.  
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Table 6. 2 Estimates for the interaction of race and accuracy across all conditions.  
Phase Trial Type Graph Metric β z 95% CI puncorrected padjusted 
Study Target, 1st 

Presentation 
Global 
efficiency 

 0.0042  1.674 [-0.001,  0.009] 0.0586 0.0937
6 

Local 
efficiency 

-0.0123 -1.332 [-0.030,  0.006] 0.102 0.1099 

Lure, 1st 
presentation 

Global 
efficiency 

-0.0029 -1.468 [-0.007,  0.001] 0.0869 0.1099 

Local 
efficiency 

 0.0282  3.088 [ 0.010,  0.046] 0.0028 0.0224 

Test Target 
Repeat 

Global 
efficiency 

 0.0028  1.279 [-0.002,  0.007] 0.1099 0.1099 

Local 
efficiency 

-0.0196 -2.026 [-0.039, -
0.001] 

0.029 0.0773
3 

Lure 
Distractor 

Global 
efficiency 

 0.0037  1.800 [-0.000,  0.008] 0.0457 0.0914 

Local 
efficiency 

 0.0186  2.402 [ 0.003,  0.034] 0.0154 0.0616 

The columns for β, z, and 95% CIs are results from the original models. In glm/gee models, the z-score 
statistics are calculated by dividing the beta estimates by robust standard errors, which are larger and more 
conservative than traditional standard errors. puncorrected were calculated by permutation analysis, while 
padjusted reflect FDR corrections after the Benjamini-Hochberg procedure. 

As indicated in Table 6.2, four of the eight models had significant interaction terms prior to 

FDR correction. After adjustments, only the Study Lure condition maintained a significant 

interaction effect on network local efficiency [puncorrected = .0028, padjusted = .0224, z = 3.088, 

β = .0282, SErobust = .009, CI = [ 0.010, 0.046]]. While the other three effects remained 

trending, they corresponded to retrieval conditions, and have much reduced test statistics 

relative to the Study Lure condition [Test Targetlocal, z = -2.026; Test Lureglobal, z = 1.800; 

Test Lurelocal, z =  2.402]. Given this, the remainder of our analysis is post-hoc, focusing on 

efficiency of brain networks while subjects studied faces that were part of lure pairs. 

Figure 6.3a depicts the modulation of local efficiency during encoding by both race and 

accuracy factors. For faces that were encoded well enough to avoid false alarms at retrieval, 

mean local efficiency was greater for Other-race faces [x̄SR = .4886; x̄OR = 0.5079]. 

Meanwhile the opposite trend is demonstrated for encoding resulting in false alarms, with 

greater local efficiency for same-race faces [x̄SR = .4996; x̄OR = 0.4906]. (Refer to table 6.1 
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for descriptive statistics for all conditions.) This cross over interaction suggests that same-

race and other-race recognition are supported by different local properties of brain 

connectivity and information exchange. Encoding of other-race faces was most successful 

when the brain network was organized to enhance fault tolerance via greater 

interconnections of nodes in local modules across the brain.  

In contrast, encoding of same-race faces was more successful when local efficiency was 

decreased. This means that local modules contained less redundant pathways than in the 

other-race context. Given that all networks were kept comparable by maintaining equal 

edge counts, this poses the question of how edges were distributed during same-race 

memorization, and whether they might be rearranging into a more globally integrated 

network. Though permutation analysis established there was no interaction of race and 

accuracy on global efficiency during lure encoding, we tested a post-hoc hypothesis that 

same-race encoding might be characterized by a more globally integrated network in this 

condition (Fig 6.3b). We reran the regression analysis on the study lure global efficiency 

data and extracted the estimates for the main effect of race, rather than the interaction. The 

results suggest that race had a slight impact on global efficiency during the study lure 

condition [z = 2.067, β = 0.0036, SErobust = .002, p = 0.039, CI = [0.000, 0.007]]. Figure 6.3b 

displays this main effect, where global efficiency is enhanced during encoding of SR relative 

to OR faces. [x̄SR_Corr = 0.5423;  x̄OR_Corr = 0.5387; x̄SR_Incorr = 0.5419;  x̄OR_Incorr = 0.5413] (Table 
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6.1). Despite this being a main effect, it appears more strongly driven by the correct 

rejection condition. 

 

Figure 6. 3   Local and Global Efficiency during Encoding of faces with subsequent distractors 
Network efficiency in the brain during encoding of faces that later resulted in correct rejections or false 
alarms. (A) There was a robust interaction of race and subsequent accuracy on mean local efficiency 
[puncorrected = .0028, padjusted = .0224, z = 3.088, β = .0282, SErobust = .009, CI = [ 0.010, 0.046]]. B) A post-hoc 
analysis found a main effect of race on global efficiency [z = 2.067, β = 0.0036, SErobust = .002, p = 0.039, CI = 
[0.000, 0.007]]. 

Thus far, all data reported have been whole-brain network level metrics. Recall, to calculate 

local efficiency node-level efficiencies were averaged together for the entire network. 

Because each node has its own local efficiency, we additionally tested whether the 

observed pattern of greater network segregation during accurate face encoding of other-

race faces was uniform across discrete intrinsic connectivity networks of the brain, or 

whether any one network particularly drove the overall higher local efficiency. Research 

has shown that at rest, the brain demonstrates a segregated functional connectivity that 

results in separate modules144. The integrity of these modules, often called intrinsic 

connectivity networks (ICNs), are associated with varying cognitive functions such as 
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visual perception, bottom up and top down attention, cognitive control, etc134. It was 

therefore of interest to test whether networks associated with certain perceptual and 

attentional capacities might be differentially engaged for same and other-race encoding.   

To test this each node was assigned to an ICN using a preexisting mapping between the 

Brainnetome atlas and Yeo ICN parcellations134,167. The ICNs included in this parcellation 

are the Dorsal Attention Network (DAN), Default Mode Network (DMN), Frontoparietal 

Network (FPN), Limbic Network, Somatomotor (SOM) Network, Ventral Attention Network 

(VAN), and Visual Network. In the mapping, 207 out of the full sample of 243 nodes 

corresponded to one of the 7 ICNs. The remaining 36 nodes were removed from the 

analysis, 33 of which were subcortical and not included in the Yeo Parcellation. The final 3 

nodes that were removed corresponded to portions of the cingulate gyrus and insula.  The 

final number of nodes per ICN are described in Table 6.3.  

Table 6. 3 Descriptive Statistics for Local Efficiency Across Intrinsic Connectivity Networks 
Intrinsic Connectivity Network (ICN) Number of Nodes Mean Local 

Efficiency 
Standard 
deviation local 
efficiency 

Dorsal Attention Network (DAN) 30 0.5019 0.02713 
Default Mode Network (DMN) 36 0.504 0.02588 
Frontoparietal Network (FPN) 26 0.5085 0.02086 
Limbic Network  26 0.4878 0.02047 
Somatomotor (SOM) 33 0.5129 0.03139 
Ventral Attention Network (VAN) 22 0.5056 0.03261 
Visual Network 34 0.4979 0.02405 

Of the 246 nodes in the Brainnetome brain networks, 207 mapped onto known intrinsic connectivity 
networks (ICNs) from the Yeo parcellation. The number of nodes included in each network is shown above, as 
well as the mean and standard deviation of local efficiency within each network. 

Next, ICN-level mean local efficiencies were computed for each subject, by averaging 

together the local efficiency of nodes within each ICN across the four study lure conditions. 

It should be noted that mean local efficiency of an ICN reflects the mean efficiency with 
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which its nodes’ direct neighbors are coupled, independent of the neighbors’ ICN affiliation. 

That is, mean efficiency of an ICN should be interpreted as the overall fault tolerance of 

modules containing at least one node from the given ICN. This calculation does not 

comment on the efficiency with which nodes within a shared ICN are coupled. Mean 

efficiency was calculated for each separate condition, plotted in Figures 6.4 and 6.5 to 

emphasize differences across the race and accuracy factors.  

Figure 6.4a highlights that the brain-wide increase in local efficiency during accurate 

encoding of other-race relative to same-race faces (see Fig. 6.3a) was pervasive across 

intrinsic connectivity networks. Meanwhile, efficiency during inaccurate encoding (Fig. 

6.4b) across networks is not as consistently different between same and other-race 

conditions. The previously observed cross-over interaction between race and accuracy is 

reproduced in a 3-way repeated measures ANOVA with factors of race, accuracy, and ICN. 

There are both main effects of ICN [(F(6,588) = 3.33, p = .0031 η2 = .03] and an interaction 

between race and accuracy [F(1,588), =17.56, p<.0001, η2 = .03] but no three-way 

interaction [F(6,588) = 0.3758, p = .89, η2 = 0].  

We next tested whether specific subnetworks were driving whole-network differences, 

since certain ICNs display non-overlapping standard errors of means across the race 

conditions (Fig 6.4a,b). To do this, two-way repeated measures ANOVAS with factors of 

race and ICN were applied separately on the correct rejection and false alarm conditions. 

Post-hoc Sidak corrections were then applied to test which subnetworks showed the 

greatest deviation in local efficiency across race. For subsequent correct rejections there 

were main effects of race [F(1,21) = 7.72, p =.011, η2 = .05]  and ICN [F(6,126) = 2.92, p 
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=.011,  η2 = .04]. After correcting for multiple comparisons across the eight networks, the 

difference between SR and OR efficiency remained significant in the DAN [SR x̄ = .50, OR x̄ = 

.52, p = .04, 95% CI = [-.05 to 0]] and VAN [SR x̄ = .49, OR x̄ = .53, p = 0.005, 95% CI = [-0.06 

to -0.007]]. For the ANOVA applied to the subsequent false alarm condition, there was no 

effect of race, but the effect of ICN remained [[F(6,126) = 2.43, p =.03,  η2 = .03]. Despite no 

main effect of race, the FPN demonstrated a significant difference across race after Sidak 

correction [SR x̄ = .52, OR x̄ = .49, p = 0.02, 95% CI = [0 to 0.05]]. The overall lack of effect of 

race in the inaccurate condition suggests that the differences observed in local efficiency 

across race in the accurate condition may be specifically important to promote successful 

same and other-race memory. 
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Figure 6. 4   Race differences in local efficiency across networks during accurate and inaccurate 
encoding 
A) Across intrinsic networks (ICNs), encoding promoting subsequent correct rejections was associated with 
greater local efficiency for other-race faces. After an ANOVA and multiple comparison correction, DAN and 
VAN efficiency remain statistically different across race. B) There is less consistency in encoding promoting 
subsequent false alarms. Same-race encoding tends to, but does not always demonstrate higher local 
efficiency. After multiple comparison correction the FPN efficiency remains significantly different across race. 
Abbreviations: DAN - Dorsal Attention Network; DMN - Default Mode Network; FPN - Frontoparietal 
Network; SOM -Somatomotor (SOM) Network; VAN - Ventral Attention Network. 

We additionally tested whether specific ICNs drove differences within race across accuracy 

conditions. Figure 6.5 displays local efficiency across accurate and inaccurate encoding 

conditions for both same -race (Fig. 6.5a), and other-race (Fig. 6.5b) faces. Because the 

standard error of mean bars overlap for all networks in the same-race condition, no follow-

up tests were run. Because network efficiency across accuracy appears more distinct in the 

other-race condition, a two-way repeated measures ANOVA was applied with factors of 

accuracy and ICN followed by a post-hoc Sidak correction for multiple comparisons. This 

resulted in main effects of accuracy [F(1,21) = 8.21, p = .009, η2 = .04] and ICN [F(6,126) = 

3.09, p =.007, η2 = .05]. In addition differences in efficiency across other-race accuracy 



 

95 
 

conditions survived for the DAN [CR x̄ = .52, FA x̄  = .49, p = .002, 95 % CI = [0.01 to 0.06]] 

and the Visual network [CR x̄ = .51, FA x̄  = .49, p = .045, 95 % CI = [0 to 0.05]]. 

 

Figure 6. 5   Accuracy differences in local efficiency across networks during same and other-race face 
encoding.  
(A) Across intrinsic connectivity networks (ICNs), there appears little difference in local efficiencies during 
accurate and inaccurate encoding of same-race faces. (B) Meanwhile there is an effect of accuracy on local 
efficiency in the other-race condition, with higher efficiency for accurate trials. After multiple comparison 
correction the DAN and Visual networks maintain significantly greater efficiencies for the correct rejection 
condition. Abbreviations: DAN - Dorsal Attention Network; DMN - Default Mode Network; FPN - 
Frontoparietal Network; SOM -Somatomotor (SOM) Network; VAN - Ventral Attention Network. 

Considering whole-brain and ICN-level efficiencies together, the result of this study 

suggests that functional reorganization of the brain during encoding influences subsequent 

capacity to correctly reject face lures. Distinct brain network topologies supported 

behavior relative to the race of presented faces. Successful same-race encoding was related 

to a more integrated network infrastructure, while accurate other-race encoding was 

associated with more network segregation. Greater segregation during successful other-

race than same-race encoding was widely distributed across sub-networks of the brain. 
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Furthermore, local efficiency during encoding across subnetworks provided an accuracy 

advantage in other-race faces, but not same-race faces.  

Discussion 

The present study provides the first demonstration that successful same-race and other-

race face recognition are supported by different functional brain network topologies. 

Connectivity in the brain during encoding was greatly modulated by the race of presented 

faces. This suggests that the context of race alters the behavioral adaptivity of network 

configurations. Other-race face encoding promoting correct rejections was subserved by a 

more locally efficient network, while reduced local efficiency was associated with false 

identifications.  In contrast, same-race recognition was associated with the opposite 

pattern: Reduced local efficiency during encoding supported later correct rejections, while 

greater local efficiency was related to false alarms. The connection between same-race 

accuracy and reduced segregation was further underscored by greater global efficiency 

during encoding of same-race relative to other-race faces. Together these data suggest that 

a more functionally integrated network is important for same-race correct rejections, while 

a more segregated network is optimal for other-race correct rejections.  

These findings suggest that there is not a one-size fits all network topology for face 

recognition. Across study and retrieval conditions tested, we found four of eight conditions 

demonstrated interactions between race and accuracy, though only the study lure 

condition survived post-hoc correction. This pattern suggests that accuracy in a complex 

memory task is not unilaterally associated with a more integrated network infrastructure, 
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in contrast to some past graph theoretical findings144–146. Another study supporting this  

conclusion found that a working memory task was initially associated with integrated brain 

networks but with longitudinal training improvements in performance were related to 

more modular network configurations148. These findings suggest that integrated networks 

may be important for novel tasks, but that segregation may support learning over time.  

Reconciling our findings with perceptual expertise accounts of the ORE, we might expect a 

more specialized and segregated network during same-race face processing afforded by 

years of tuned expertise with this category of faces. But instead, we saw a more globally 

integrated network. While this seems counterintuitive, it is still likely that the face network 

itself is more segregated from the brain as shown in developmental work154, but that as a 

larger system overall the brain functionally organizes in a way to promote more ‘bridges’ 

between functionally distinct regions during same-race encoding. This could reflect more 

ease with which information about same-race faces can be propagated across the brain.  

In addition to analyzing whole-brain efficiency metrics, we found that specific intrinsic 

connectivity networks drove network-wide local efficiency differences during same and 

other-race face encoding. The ventral attention network (VAN) showed the largest increase 

in local efficiency for successful other-race relative to same-race face encoding. However, 

all subnetworks demonstrated higher local efficiency to other-race faces, suggesting that 

widespread reorganization promoting network redundancy may be especially important 

for other-race encoding. Furthermore, visual and dorsal attention networks (DAN) were 

more locally efficient in accurate than inaccurate other-race encoding, while local efficiency 
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across networks during same-race encoding seemed to have less bearing on overall 

performance. 

It is validating that the subnetwork-level analysis implies that network redundancy in 

visual, top-down (DAN) and bottom up (VAN) attentional networks are specifically 

important during encoding of other-race faces. Visual regions have been most greatly 

explored in the context of the ORE (Fusiform Face Area, Occipital Face Area), however 

nodes within the VAN and DAN are also included in the core and extended face processing 

networks. For instance, the posterior superior temporal sulcus in the VAN is considered a 

core face region involved in directing attention during face encoding, and has 

demonstrated differential activity to same and other-race faces176. Other VAN regions like 

the insula and cingulate gyrus are involved in salient emotional face processing177,178. 

Furthermore, the VAN is globally involved in stimulus-driven attentional control and is 

likely recruited to orient attention divergently across the same-race and other-race 

conditions. Meanwhile DAN nodes like the intraparietal sulcus and the middle temporal 

gyrus are implicated in goal-directed eye gaze and familiar face processing 

respectivitely176. Furthermore, the DAN is involved in biasing responses from lower-level 

visual regions. These roles are vital for face recognition, so it is possible that specialized 

and redundantly organized modules may form between nodes of these networks, enabling 

more successful encoding of other-race faces.  

It is interesting that there were no major differences in local efficiency across networks 

associated with accurate and inaccurate same-race encoding. It is possible that perceptual 

expertise reduces the need to encode information as redundantly, since a more integrated 
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network could compensate for reduced local fault tolerance. This integration could involve 

highly central nodes/ hubs which could computationally lead to reduced local efficiency 

due to an inability for networks to be resilient to their removal. However, the extent to 

which several hubs could influence mean efficiencies in entire sub-networks is unclear. A 

separate analysis would be needed to test whether certain hubs exist during same-race but 

not other-race recognition, and whether this results in reduced local efficiency during 

same-race face processing.  

The intrinsic connectivity level results found here are bolstered by findings from a study 

testing the importance of top-down attentional and control networks in shaping the ORE75. 

Differences in activity in the intraparietal sulcus (associated with DAN and Fronto-parietal 

cognitive control networks) were particularly related to failures to remember other-race 

faces. Furthermore, functional connectivity between the right fusiform cortex and 

intraparietal sulus regions in the DAN were significantly greater for same-race than other-

race faces. It is important to note the study design, analyses and results diverge from ours 

in that success was defined as target recognition (as opposed to lure correct rejection), and 

analyses were not explored from a graph theoretical perspective. Still, both studies find 

that there is altered behaviorally relevant recruitment of the DAN during encoding of same 

and other-race faces. Our more exploratory study contributes the novel observation that 

altered topology in the VAN and visual intrinsic connectivity networks may also play a role 

in the ORE. Future studies may be designed to focus on whether the interactions (or lack-

there-of) of these networks might relate to the emergence of same-race and other-race 

recognition disparities.  
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It is important to note that the main findings of this study are specific to memory encoding 

that supported successful correct rejections relative to false alarms at retrieval. While our 

analysis produced three other trending interactions, we did not explore their directionality 

and can therefore not comment on whether they took on the same pattern of results. It is 

possible that same-race recognition is always supported by integrated networks and other-

race by segregated networks during encoding. It is also possible that task demands at 

retrieval modulate the most optimal network configuration during encoding, such that 

successful memorization of targets could be altered by race quite differently than found in 

the lure condition. Teasing apart the relative contributions of functional connectivity to the 

ORE, given the competing demands of recognition and mnemonic discrimination will 

require additional examination.  

In hindsight, future network neuroscientific investigations of the ORE will benefit from the 

following considerations. While the simultaneous inclusion of encoding, retrieval, target, 

and lure conditions was novel it greatly reduced our power to detect significant effects 

given the need for stringent post-hoc corrections. Subsequent studies should consider 

more targeted hypotheses and experimental designs. In addition, the large number of 

conditions increased the length of this study, likely contributing to it being overly difficult 

for participants. Despite low performance, a highly conservative analysis found that 

differences in brain network topologies across encoding lure contexts were likely not due 

to chance. Still, future studies can be improved by shortening the task design and 

increasing physiognomic differences between faces in lure pairs. Furthermore, while there 

are a variety of ways to analyze task-based connectivity in the brain, no large systematic 
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study has looked at differences in resulting graph topologies based on choice of functional 

connectivity method. Because graph theoretical analysis may be sensitive to selection of 

brain atlas, preprocessing methods, and functional connectivity analysis, it is important to 

study the network-based correlates of the ORE across a variety of paradigms and methods 

to ensure that the findings reported here are reliable and reproducible. 

--- 

In conclusion, participants performed a mnemonic discrimination paradigm in the MRI 

scanner, allowing us to evaluate the role of face recognition memory processes on the 

functional network organization of the brain. Our findings suggest that same-race and 

other-race face encoding are supported by distinct network topologies. The ability to not 

mistakenly recognize faces at retrieval was supported by redundantly organized modules 

during encoding of other-race faces, and a more integrated network during encoding of 

same-race faces. The relatively greater importance of network segregation for other-race 

faces was supported by greater efficiency in visual, bottom-up, and top-down attentional 

networks during accurate compared to inefficient encoding. As the first graph theoretical 

analysis specific to the ORE, these results demonstrate that same and other-race face 

recognition differentially tap into multiple networks, instigating largescale whole-brain 

differences in functional architecture. These findings should serve to motivate research 

beyond face-preferential regions to understand how system-wide connectivity differences 

promote the ORE. 
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Conclusion 
Summary 

Within the present dissertation, factors in both the behavioral Other-Race Effect (ORE) and 

neural correlates underlying same and other-race face processing were examined.  

Chapters 1 and 2 present a comprehensive literature review of theoretical frameworks and 

neural research on the ORE. Both historical as well as current explanatory models were 

discussed, highlighting the importance of developmental experience and social-attentional 

modulation in the emergence of the effect. While the ORE is defined as a recognition 

memory deficit for other-race faces that may be modulated by attentional and motivational 

contexts, studies into the neural correlates have focused on a select few visual processing 

regions that cannot account for its complexity. Furthermore, many of these studies do not 

employ recognition paradigms, and can therefore only stipulate how perceptual correlates 

of same and other-race face processing impact subsequent memory. For the few studies 

that have evaluated memory, results indicate involvement of traditional mnemonic67 and 

attentional processing75 regions in addition to face-preferential regions.  

Motivated by the lack of a focus on memory in the literature, we developed a theoretical 

framework that positions the ORE as a deficit in mnemonic interference resolution for 

other-race faces (chapter 3). This was influenced by a large body of computational and 

neurobiological work studying the conditions under which similar objects are successfully 

discriminated from one another in memory78–91. This so called ‘mnemonic discrimination’ 

is believed to rely upon a pattern separation mechanism in the hippocampus and some 

surrounding medial-temporal cortices92–99. A failure to mnemonically discriminate 
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between similar objects results in false alarms. Because one of the hallmark indices of the 

ORE is an increased ratio of false alarms for other-race (relative to same-race) faces, it is 

plausible that a reduction in successful pattern separation is partially to blame. Such a 

failure to disentangle other-race neural representations from one another could underly 

the phenomenological experience of ‘all other-race faces looking alike.’  

To test this, we adapted a traditional mnemonic discrimination paradigm for use with face 

instead of object stimuli. Participants were asked to study a series of faces, followed by a 

test phase where they responded whether a separate set of faces had been seen before. 

Lure distractor faces in the Test Phase were varied in similarity to originally presented 

‘parent’ faces, allowing us to characterize discrimination ability as a function of mnemonic 

interference. The results demonstrated a mnemonic discrimination deficit for other-race 

faces that persisted for all but the lowest interference trials. To counter claims that this 

deficit could be accounted for by deficits in initial perceptual encoding we employed a 

control procedure requiring participants to maintain faces in working memory for several 

seconds before identifying whether a second presentation was the same or a new face. The 

findings confirmed no performance differences for same and other-race faces, suggesting 

that the ORE is not accounted for simply by differences in visual encoding. It is possible that 

behaviorally irrelevant differences at perceptual encoding may be temporally exacerbated 

during consolidation and retrieval processes. Taken together these findings suggest that 

other-race faces do not all look alike, but rather are remembered alike.   

To confirm whether pattern separation-consistent mechanisms are involved in the 

mnemonic homogenization of other-race faces, we ran this task on a separate group of 
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subjects in the MRI scanner. For methodological reasons discussed in chapter 4, the 

behavioral results were not optimal to test the pattern-separation hypothesis.  We 

therefore provided recommendations for improving future experimental paradigms to 

examine this question more successfully in the future. Fortunately, the inclusion of lure 

pairs in our study is still new to the ORE field, allowing us to make novel contributions even 

with an analysis where the interference levels were collapsed together.  

Thereafter our approach to this data evolved greatly, shifting focus from very specific 

regions in the medial temporal lobe to the entirety of the brain. Based on theories that the 

ORE results from greater optimization of processing for same-race faces we tested the 

hypothesis that the brain operates less efficiently when processing other-race information. 

This hypothesis was motivated by literature in the burgeoning field of network 

neuroscience, reviewed in chapter 5. 

To test this, we employed graph theoretical analysis to construct graph representations of 

the entire brain during performance of each face condition, where regions demonstrating 

strong functional connectivity were connected by edges (see chapter 6). For each graph, we 

calculated metrics characterizing both global and local efficiency in how these edges were 

distributed during each context. Our major findings were specific to encoding of faces that 

were paired with similar looking distractors in the test phase. Same-race and other-race 

face memorization were supported by entirely inverted network configurations; Successful 

same-race encoding was characterized by lower local efficiency and higher global 

efficiency. Successful other-race encoding in contrast was supported by higher local 

efficiency and lower global efficiency. This implies that the network topology optimal for 
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encoding of one race, was detrimental to encoding of the other. Successful mnemonic 

discrimination seemingly required rapid network reconfigurations, with greater 

integration for same-race faces and greater segregation for other-race faces. 

We additionally found that the segregated functional architecture supporting other-race 

mnemonic discrimination, while distributed across subnetworks, was driven most by 

visual, top-down, and bottom-up attentional processing networks. This suggests that 

redundant connectivity in modules involving visual and attentional processing regions 

might be integral for other-race face recognition. Perhaps these regions were engaged 

during more effortful encoding of other race faces by participants.  

Future Neuroimaging Research 

The research included in this dissertation poses a variety of further questions worth 

exploring. As mentioned, the pattern-separation account of the ORE remains to be tested. 

But perhaps even more interesting would be an integration of pattern separation with the 

face-space model (further explored in chapter 3’s discussion). While computational and 

experimental evidence supports more elaborated encoding of same-race faces and more 

clustered encoding of other-race faces43–48, there have been no mechanisms proposed to 

account for these diverging spatial distributions. Because pattern separation78,80–99 is 

involved in disentangling representations, it is therefore plausible that it could promote the 

more orthogonalized and spatially distinct same-race representations and more 

overlapping other-race representations predicted by face-space. Furthermore, face-space 

models explain excessive false alarms for other-race faces based on the co-activation of 
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overlapping representations. Certainly, this may be reconciled with computational work on 

pattern completion and its role in generalization. Representational similarity analysis and 

multi-dimensional scaling would be powerful tools in testing these predictions 

neurologically.  

Our graph theoretical approach is the second study to relate differential recruitment of 

attentional networks to the ORE75. This occurred despite quite different methods employed 

in the two studies and helps to validate our use of graph theoretical methods. The 

interaction between visual, memory, bottom-up and top-down attentional networks should 

be further explored to flesh out the neural correlates underlying this effect. 

Additionally, the cross-over interaction (i.e. mirror image) results we found on the 

behavioral adaptiveness of oppositional topologies suggests that an ability to rapidly 

reconfigure between integrated and segregated networks is associated with a reduction in 

the ORE. There is evidence that dynamic reconfiguration of networks – i.e., network 

flexibility-- supports learning179. To test this dynamic hypothesis, single trial analysis could 

be performed to examine whether getting ‘stuck’ in a configuration optimal for recognition 

of one race is maladaptive for another. Then, relative flexibility across subjects could be 

correlated with behavioral metrics of the ORE. Because face recognition performance tends 

to be quite variable, it is possible that individuals who recognize both same and other-race 

faces well can rapidly adjust network topology, reflecting an ability to shift strategies to 

meet the demands of different race contexts. 
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Indexing Improved Outcomes in Training Paradigms 

In addition to future imaging studies, the current study can inform research focused on 

developing training paradigms to mitigate the ORE. Numerous studies have found that 

training can reduce the ORE—at least temporarily180–182. First, longitudinal paradigms are 

necessary to determine whether training results in lasting change. There is further room 

for improvement in outcomes assessments. The preexisting paradigms have used 

traditional performance measures that are less able to capture patterns of improvement 

over time. The mnemonic discrimination task offers a suitable alternative paradigm by 

evaluating performance across a range of stimulus difficulties, allowing observation of a 

more complex underlying structure of the ORE. In practice, a person’s baseline ORE may be 

established using the other-race transfer function. Across training, a shift in the other-race 

function towards the same-race function would indicate improved recognition. This could 

be summarized by taking the difference in same-race and other-race areas under the curve 

(AUC). If training is robust, participants should demonstrate reduced and stable AUC 

differences across periods without practice. 

There are myriad applications for facial recognition training paradigms and appropriate 

evaluation metrics. The ORE arises as young as infancy and just like language, is subject to 

sensitive learning periods26,183–185. Exposing children to diverse faces as early as possible in 

their environment or schooling could lead to reduction or elimination of the ORE.  In the 

absence of such experience, it is possible that training paradigms may be regularly 

employed to reduce the impact of the ORE, especially in situations where the ORE can 

result in severely negative consequences, e.g. law enforcement.   
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Mnemonic Discrimination Relevance to the Criminal Justice System 

I was initially motivated to study the ORE because of its negative societal impacts. Those of 

us who study it hope that understanding and publicizing its mechanisms will ultimately 

influence eyewitness policies in the criminal justice system. Up until now most studies of 

the ORE have focused on disparities between correctly remembering same-race and other-

race faces16,30–34,40,41,53,54,60. Within eyewitness procedures a failure to remember a face may 

lead to a perpetrator being overlooked. However, an arguably greater consequence is a 

wrongful conviction, which instead occurs when witnesses mistakenly recognize a face as 

belonging to a perpetrator. In other words, they fail to mnemonically discriminate (or 

correctly reject) the face. Mnemonic discrimination studies therefore are more focused 

than traditional recognition studies on the very behavior that the justice system should be 

trying to mitigate.  That is, if we are to believe that the system still upholds the Blackstone 

Formulation186, a cornerstone of the American Legal system that “it is better that ten guilty 

persons escape than that one innocent suffers.”  

A 2014 report from the National Academies on the fallibility of eye-witness testimony 

called for the establishment of procedures to estimate the severity of the ORE in individual 

eyewitnesses following identification of a cross-race person. A mnemonic discrimination 

task could be well-suited to the task, specifically given the inclusion of multiple 

interference levels allowing for a more nuanced picture of the recognition deficit as a 

function of facial similarity. Still, no test alone should be relied upon. Instead, a battery of 

procedures could be administered drawing from the corpus of existing experimental 

paradigms in the ORE literature. This would be quite an undertaking, requiring designing 
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and optimizing tasks for multiple races, validating test-retest reliabilities, a creation of a 

global scoring system, etc. Furthermore, there are ethical considerations of administering 

such tasks to victims, and it is possible that the stress of proving one’s own validity could 

call into question testimony that is otherwise accurate, and negatively impact the mental 

health of witnesses. While great care and further research would be necessary in 

implementing such policies, they could be vital in preventing wrongful incarcerations in the 

future.  

… 

In conclusion, the research included in this dissertation evaluates the role of memory 

processes in the behavioral and neural ORE. Other-race recognition was shown to be 

disproportionately affected by demands to resolve mnemonic interference, suggesting a 

potential role of altered pattern-separation in shaping the ORE. Furthermore, brain 

network topology during encoding of faces promoting successful mnemonic discrimination 

was modulated by race, suggesting differential functional connectivity profiles are adaptive 

for same and other-race face processing. Together these findings should motivate more 

investigations of the crucial role of mnemonic discrimination in giving rise to the ORE. 
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Abbreviations 

 

ANOVA  analysis of variance 

CR  correct rejection 

DAN  Dorsal Attention Network 

DMN   Default Mode Network 

FA  False alarm 

FFA  Fusiform face area 

fMRI  Functional magnetic resonance imaging 

FPN  Fronto-Parietal Network 

gPPI  Generalized psychophysiological interaction analysis 

ICN  Intrinsic Connectivity Network 

LCR  Lure correct rejection 

LFA  Lure false alarm 

MTL  Medial temporal lobe 

OFA  Occipital face area 

OR  Other-race 

ORE  Other-race effect 

ROI  Region of interest 

SOM  Somatomotor Network 

SR  Same-race 

TH  Target hit 

TM  Target miss 

VAN  Ventral Attention Network 
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