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Apoptosis (programmed cell death) plays a major role in development and tissue regeneration. 
Basement membrane extracellular matrix (ECM), but not fibronectin or collagen, was shown to 
suppress apoptosis of mammary epithelial cells in tissue culture and in vivo. Apoptosis was 
induced by antibodies to I?1 integrins or by overexpression of stromelysin-1, which degrades 
ECM. Expression of interleukin-1 p converting enzyme (ICE) correlated with the loss of ECM, 
and inhibitors of ICE activity prevented apoptosis. These results suggest that ECM regulates 
apoptosis in mammary epithelial cells through an integrin-dependent negative regulation of ICE 
expression. 
 
Growth, differentiation, and apoptosis are alternative cellular pathways that are each crucial to 
normal development and the establishment of tissue-specific function. Like growth and 
differentiation, apoptosis requires active and coordinated regulation of specific genes. In 
mammalian cells, these genes include BCL-2, a homolog of the Caenorhabditis elegans ced-9 
gene, which is a potent suppressor of death (1), and ICE, a homolog of the ced-3 gene, which can 
actively kill cells (2). The products of the BCL-2 and ICE genes also appear to function like their 
C. elegans counterparts (1-3). 
 
The nature of the ECM can influence the apoptotic program in mammalian cells. Establishment 
of mammary gland alveolar morphology and expression of milk-specific genes are absolutely 
dependent on deposition of a laminin-rich ECM (4). In addition, involution of the gland, which 
follows expression of the lactational phenotype, is characterized by degradation of this ECM by 
metalloproteinases (5) and is accompanied by apoptosis (6, 7). Cell attachment, mediated by 
integrin-ECM interactions, can suppress apoptosis in shortterm two-dimensional cultures for up 
to 30 hours (8). 
 
To determine whether ECM regulates apoptosis, we compared the response of CID-9 mammary 
epithelial cells (MECs) plated directly on tissue culture plastic, in the absence of serum, with 
those plated on an exogenous basement membrane ECM. Unlike plastic, fibronectin, or type I 
collagen, this Englebreth-Holm-Swarm (EHS) matrix directs the cells to differentiate, as 
manifested by the formation of three-dimensional alveolar structures and expression of milk 
proteins (9). After 4 to 5 days on plastic, despite strong adhesion and spreading, the cells began 
to display characteristics of apoptosis including nucleosomal DNA laddering (Fig. 1A), 
expression of the apoptosis-associated gene SGP-2 (7) (Fig. 1B), and nuclear condensation (Fig. 
1C). In situ analysis revealed that fragmented DNA was present in 10 to 20% of cells (Fig. iD). 
In contrast, the cells plated on ECM did not display these apoptotic features for up to 10 days 
(Fig. 1, A, B, and E). Similar results were observed when the ECM was pretreated with 
ammonium sulfate to remove growth factors (10). To eliminate the possibility that suppression of 
apoptosis was due to residual growth factors in the EHS matrix, we plated MECs on porous 
filters (11), whereupon the cells deposited their own basement membrane. This endogenous 
basement membrane also suppressed apoptosis in long-term cultures (Fig. iF). 
 
To demonstrate that ECM-derived signals suppress apoptosis, we disrupted cell-ECM 
interactions by addition of an antibody to β1 integrin (12). Two days after addition of this 
antibody, a substantial increase in nucleosomal DNA laddering was observed, even in cells still 
adherent to their endogenous matrices (Fig. 1G). MECs that were attached to culture dishes 
coated with either fibronectin or type I collagen displayed a degree of apoptosis similar to MECs 



cultured on plastic (Fig. 1H), indicating that suppression of apoptosis required an intact basement 
membrane ECM. 
 
To determine whether proteolytic destruction of an existing basement membrane could induce 
apoptosis, we established a culture model of mammary gland involution. CID-9 cells were 
cotransfected with an inducible expression vector encoding a stromelysin-1 autoactivating 
mutant under control of the Rous sarcoma virus (RSV) promoter linked to a lac repressorbinding 
intron and with a vector encoding the lac repressor-binding protein (13). MECs were cultured on 
filters for 3 days, and stromelysin-1 expression was induced by addition of 5 mM isopropyl-β-D-
thiogalactopyranoside (IPTG). Within 72 hours, there was a substantial increase in apoptosis- 
associated DNA laddering in the cells expressing stromelysin-1 but not in the uninduced controls 
(Fig. 2A). Apoptosis depended on proteolytic activity of the stromelysin-1 because it was 
inhibited by the addition of the metalloproteinase inhibitor GM6001 (14). 
 
We then examined apoptosis in vivo in transgenic mice expressing the stromelysin-1 gene under 
control of the whey acidic milk protein promoter (15), which is activated in mid- to late 
pregnancy. DNA anal-ysis revealed that unlike the MECs in normal animals (Fig. 2B), at least 10 
to 15% of MECs in the transgenics were apoptotic in midpregnancy (Fig. 2C). Thus, degradation 
of ECM by stromelysin-1 results in apoptosis both in culture and in vivo. 
 
To determine whether apoptosis of MECs was mediated by ICE, a known inducer of apoptosis in 
mammalian cells, we transfected CID-9 cells with a vector encoding crmA, a viral gene product 
that specifically inhibits the enzymatic activity of ICE (16). The crmA transfectants showed an 
80% reduction in apoptosis-associated DNA laddering compared to control cells (Fig. 3, A and 
B). We also treated cells plated on plastic with BACMK, an inhibitor directed at the active site of 
ICE (17). BACMK reduced DNA laddering in CID-9 cells by up to 80% after 5 days as 
compared to uninhibited controls (Fig. 3B). These results indicate that in the absence of ECM, 
apoptosis of MECs occurs largely through the activity of ICE. 
 
We also investigated the expression of ICE in the mammary gland in vivo. The 1.6-kb ICE 
mRNA (18) was not expressed in the lactating gland but was induced during involution (Fig. 
4A), when apoptosis occurs in this tissue (7). To determine whether the regulation of ICE 
expression was directly related to the presence of ECM, we examined ICE mRNA expression in 
CID-9 cells. CID-9 cells cultured on plastic contained large amounts of ICE mRNA and the 45-
kD ICE precursor protein and enzymatically active 20-kD subunit (19), whereas those plated on 
ECM contained little or no ICE mRNA or protein (Fig. 4, B and C). 
 
We conclude that three-dimensional ECM, acting through integrin receptors, not only directs 
committed MECs to establish and maintain the differentiated state but also suppresses the 
expression of ICE and prevents apoptosis. Consequently, the proteolytic degradation of ECM 
such as occurs during mammary gland involution leads to the loss of the differentiated state, 
induction of ICE expression and activity, and ultimately apoptotic cell death both in vivo and in 
culture. Although our data cannot distinguish between ICE and as yet unidentified ICE gene 
family members that might also be blocked by active site-directed inhibitors or recognized by 
antibodies to ICE, we show that survival requires not only adhesion, but also specialized P 
integrin-mediated signals derived from specific ECM components. The nature of these signals 



and their ability to modulate the expression of ICE remain to be elucidated, as do the in vivo 
substrates for ICE or related enzymes and the mechanism or mechanisms by which they 
influence cell death. 
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Figures 
 
FIGURE 1 
 

 
 
Characteristics of apoptosis in CID-9 cells. (A) Electrophoretic analysis of total DNA (20 µg) 
from cells cultured for 7 days on plastic (P) or EHS basement membrane (E). (B) RNA blot 
hybridized with a probe that detects the 2.4-kb mRNA for the apoptosis-associated gene SGP-2. 
(C) Acridine orange staining of cultured cells on plastic (arrow points to apoptotic cells). Scale 
bar, 58 µm. In situ analysis of DNA fragmentation in individual cells cultured on plastic (D) or 
EHS basement membrane (E) detected by fluorescein isothiocyanate-digoxigenin nucleotide 
labeling of 3'-OH DNA ends (Apoptag, Oncor). Scale bar, 90 µm. Electrophoretic analysis of 
total DNA (20 µg) from CID-9 cells (F) cultured on EHS (E) or allowed to form endogenous 
basement membrane (BM) for 5 days, (G) treated with normal rabbit serum (control) or anti-β1 
integrin for 2 days, or (H) cultured on plastic (P), type collagen (200 µg/ml) (Col), or fibronectin 
(50 µg/ml) (FN) for 5 days. 
 
 
 
 
 
 
 
 
 
 



FIGURE 2 
 

 
 
Apoptosis in cells overexpressing stromelysin-1. (A) Electrophoretic analysis of total DNA (20 
µg) from control (C) and IPTG-induced cells (I) after 72 hours. Corresponding RNA blot (20 µg 
per lane) hybridization with a probe that detects a 1.9-kb stromelysin-1 mRNA. In situ analysis 
of DNA from mammary gland of normal mice in midpregnancy (B) and in transgenics 
expressing stromelysin-1 (14) (C). Note the increase in the number of epithelial cells undergoing 
apoptosis and the collapsed alveoli in the transgenics compared to normal mice. Scale bar, 33 
µm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



FIGURE 3 
 

 
 
Inhibition of apoptosis in CID-9 cells. (A) Electrophoretic analysis of DNA (20 µg) from 
CID-9 untransfected control cells (P) or cells transfected with crmA and cultured on plastic for 7 
days. (B) Quantitation of fragmented DNA from untransfected CID-9 cells (control), cells 
transfected with crmA, or cells treated with 0.5, 3.5, or 5.0 µM BACMK. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



FIGURE 4 
 

 
 
ICE mRNA and protein expression in mammary epithelium. (A) RNA blot (20 µg per lane) 
hybridized with a probe that detects a 1.6-kb ICE mRNA in mammary tissue from normal mice 
lactating for 9 days (L) or after involution for 2, 4, and 8 days (21, 41, 81). (B) RNA blot for ICE 
mRNA in CID-9 cells after 5 days of culture on ECM (E) or tissue culture plastic (P). (C) 
Immunoblot analysis of ICE protein in lysates from corresponding cells with a polyclonal 
antibody that detects the 45-kD precursor, the active 20-kD subunit, and processing 
intermediates (19). 
 
 




