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Abstract14

Many classic exploratory data analysis tools in quantitative geography, designed to measure global15

and local spatial autocorrelation (e.g. Moran’s I statistic), have become standard in modern GIS16

software. However, there has been little development in amending these tools for visualization and17

analysis of patterns captured in spatiotemporal data. We design and implement a new open-source18

Python library, VASA, that simplifies analytical pipelines in assessing spatiotemporal structure of19

data and enables enhanced visual display of the patterns. Using daily county-level social distancing20

metrics during 2020 obtained from two different sources (SafeGraph and Cuebiq), we demonstrate21

the functionality of the developed tool for a swift exploratory spatial data analysis and comparison22

of trends over larger administrative units.23

1 Introduction27

Many political, social, and economic processes are geographical in nature and are, therefore,28

subject to first order non-stationary effects (spatial heterogeneity) and second order stationary29

effects (spatial autocorrelation), which may be scale-specific [8]. These effects invalidate30

two assumptions of classic inferential (confirmatory) statistics, namely independence and31

identical distribution, making usage of traditional statistical tools problematic. In classical32

statistical modeling, these violations may lead to instability in parameter estimation and33

biasedness. To account for these spatial effects, different methods from spatial statistics34

were devised, including tools for exploratory spatial data analysis, such as local indicators of35

spatial association (LISA) [3]. ESDA, an extension of conventional exploratory data analysis36

(EDA), combines various graphic and numerical statistical techniques designed to generate37

hypothesis and detect spatial patterns in data.38

Currently, there are many software implementations designed to gauge spatial associations39

in areal data [7]. Recent progress in computational methods and advances in locational40
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data acquisition technologies have made calculation of local multivariate spatial association41

[4, 5] and spatio-temporal pattern mining [10, 9] more manageable. However, the graphic42

display for many of the outlined tools has not changed within the last 10 years and is not43

ideally suited for spatial-temporal analysis on multivariate data sets. In fact, many current44

research investigations rely on static two-dimensional choropleth maps, space-time cubes,45

and Moran’s scatter plots. In this study, we develop three visualization techniques that46

help identify spatiotemporal structure of the data. These techniques which are developed47

as a Python package are based on conventional LISA and are ideally suited for analysis of48

spatiotemporal areal data. The developed Python package, named VASA, will be accessible49

at https://github.com/move-ucsb/VASA. To demonstrate the applicability of the designed50

visualizations, the variability in spatiotemporal structure of human mobility patterns during51

COVID-19 pandemic in the United States is assessed.52

2 Methods53

VASA offers three novel multivariate visualizations: A stacked recency and consistency map,54

a line-path scatter plot, and a categorical strip (dot) plot. All three techniques use LISA as55

the base and utilize local Moran’s I and permuted p-values. The techniques are best suited56

for analysis of areal data at two levels of analysis: the object-level and the summary-level.57

The object-level of analysis receives the data at the finest available scale (e.g. county, census58

blocks, etc.), whereas the summary-level (e.g. state) refers to the less granular spatial59

units that contain object-level units. The stacked recency and consistency map allows to60

ascertain the spatiotemporal structure of data at both object- and summary-level. The61

categorical strip plot allows for comparison of trends at the summary-level. The line-path62

visualization is better suited for a fine-detail analysis of individual object-level trajectories63

within a specified summary-level. The developed visualizations can be made interactive and64

web-based, allowing user interaction to enhance user exploration performance2.65

Algorithm 1 Recency and consistency mapping algorithm.

set spatial (e.g. county) and temporal (e.g. week) unit for aggregation;
for each aggregate spatial (i) and temporal unit (j) do

calculate local Moran’s I (Iij) and permuted p-value;
recode statistically significant values (α = 0.05) of Iij according to Moran’s
scatterplot quadrants (i.e. hotspots and coldspots);
calculate cumulative sum of classifications for coldspots (Sc) and hotspots (Sh).;
retain the week number the county was classified as either coldspot (Wc) or
hotspot (Wh).;

end
map county polygons to centroids and display as a marker;
map retained hotspots to red color and coldspots to blue color;
map the cumulative sums (Sc, Sh) to the size of the marker;
map retained week numbers (Wc, Wh) to the intensity of marker color;

2 See https://move-ucsb.github.io/covid19-mobility-vis/ for some examples.
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2.1 RECO: the stacked recency and consistency map66

The stacked recency and consistency map (RECO) improves traditional graphic representation67

of local Moran’s I using several visual variables (e.g. color hue and value, shape, size, texture,68

transparency) [6] to better illustrate spatial and temporal structure of data. The mapping69

algorithm is described in Algorithm 1. An example of the generated RECO map is illustrated70

in Figure 1, and explained later in the Case Study section. Note that the RECO map is a71

snapshot and static representation of the accumulative patterns up to the last data frame. To72

represent changes over time dynamically, the RECO can be animated for various timelines.73

Figure 1 The stacked recency and consistency map of mobility. The color represents hotspots (red)
and coldspots (blue). The hue denotes the week number, and not the intensity of hotspot/coldspot.
For cases when the county was a hotspot/coldspot for more than one week, the hue intensity denotes
the hue for the most recent week. The size of the marker corresponds to the number of weeks the
county was classified as either a hotspot/coldspot.

Algorithm 2 The line-path scatter plot algorithm.

set spatial (e.g. county) and temporal (e.g. week) unit for aggregation;
for each aggregate spatial (i) and temporal unit (j) do

calculate local Moran’s I (Iij) and permuted p-value;
recode statistically significant values (α = 0.05) of Iij according to Moran’s
scatterplot quadrants (i.e. hotspots and coldspots);
calculate cumulative sum of classifications for coldspots (Sc) and hotspots (Sh).;
retain the week number the county was classified as either coldspot (Wc) or
hotspot (Wh).;

end
plot the cumulative sums (Sc, Sh) against the week number;
map retained hotspots to red color and coldspots to blue color;
mark the cumulative sum on the last week number of classification with a circle;

2.2 Line-path scatter plots74

To provide an analyst with a better view of trends for individual counties (or, potentially, any75

other spatial units) the line-path scatter plots (Algorithm 2) is developed. This visualization76
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Figure 2 Line-path of social distancing metrics for counties in Florida (top row) and counties in
California (bottom row). Each line traces the cumulative number of times a county is identified as a
hotspot or coldspot.

uses a line for each county to represent the cumulative number of times it has been identified77

as a hotspot or coldspot. Compared to RECO, this representation has the advantage of78

being able to show county behavior over time (e.g. at each week), instead of just the final79

time point. Figure 2 illustrates an example of the line-path scatter plot (see Case Study).80

2.3 The categorical strip (dot) plot81

Figure 3 Strip (dot) categorical plot for mobil-
ity metrics.

The primary purpose of the categorical strip82

plot is to combine the LISA clusters with83

a categorical locational variable, such as84

U.S. states. Unlike RECO, this visualiza-85

tion provides an aggregate aspatial view of86

the data to ease the comparison between87

different variables or data sources. The al-88

gorithm that creates visualization is detailed89

in Algorithm 3. An example of the categor-90

ical strip (dot) plot is provided in Figure 3,91

and further explained in Case Study.92
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Algorithm 3 Categorical strip (dot) plot algorithm.

set spatial (e.g. county) and temporal (e.g. week) unit for aggregation;
for each aggregate spatial (i) and temporal unit (j) do

calculate local Moran’s I (Iij) and permuted p-value;
recode statistically significant values (α = 0.05) of Iij according to Moran’s
scatterplot quadrants (i.e. hotspots and coldspots);

calculate cumulative percentage of classifications for coldspots (Pc) and hotspots
(Ph).;

end
aggregate cumulative percentage (Pc, Ph) at the state level into Psc, Psh;
map aggregated percentages (Psc, Psh) on the x-axis;
map states on the y-axis;
map retained hotspots to red color and coldspots to blue color;

3 Case study: investigating93

spatiotemporal structure of mobility during COVID-19 pandemic94

3.1 Data95

In order to demonstrate the applicability of the developed visualization techniques, two social96

distancing mobility metrics are used. These indices include % sheltered in place, weekly rolling97

average3 obtained from Cuebiq and % sheltered, weekly average obtained from SafeGraph.98

The choice of these two sources is intentional: Cuebiq [1] provides data by subscription, while99

SafeGraph [2] provides data free of charge through an open data consortium. Both data100

sources are widely used in COVID-19 related research. More importantly, they provide a full101

coverage across the U.S. and throughout 2020 which make them easily comparable. The data102

are collected daily4 at the county level for all of the United States for a total of 12 months of103

observation in 2020. Figure 4 below plots the time series of 7-days rolling national average104

for the observation period. Both metrics illustrate sharp increase in the percentage of people105

staying home at the start of the pandemic and initiation of governmental cordoning policies106

in March 2020, followed by a steady decline over the summer. However, some differences are107

observed in the captured patterns using these indices.108

Figure 4 Mobility metrics from Cuebiq and SafeGraph used for demonstration purposes

3 % sheltered indicator measures the percentage of population, staying at home, where the location of
home is identified computationally based on proprietary algorithms of Cuebiq and SafeGraph.

4 We aggregate data by week to make computations more manageable for demonstration purposes.
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3.2 Experimental results109

Figure 1 illustrates the recency and consistency map of the produced spatial clusters, assessed110

via LISA. In this figure, Cuebiq is depicted on the left and SafeGraph is plotted on the right.111

Cluster ‘recency’ (i.e. how recent a cluster appeared towards the end of 2020) is mapped to112

the color gradient. That is, the hotspots/coldspots occurring in the beginning of 2020 are113

denoted in lighter shades of red/blue. Conversely, more recent clusters are visualized in darker114

shades. Cluster consistency (i.e. how frequently a cluster appeared throughout 2020), defined115

as the number of weeks the county was consistently ranked as either a hotspot or coldspot,116

is mapped to the centroid marker size. That is, the higher consistency values correspond to117

proportionally larger marker sizes. While the location of coldspots in both sources is centered118

in the South for both data sets, with the core in Northern Texas, Mississippi, Alabama,119

Louisiana and Georgia, a higher cluster consistency (i.e. bigger markers) is observed in120

Cuebiq data for Nebraska, Iowa and Kansas. The location of hotspots is similar in the121

Northeastern states, Great Lakes region, and in Western United States for both data sources,122

but the recency and consistency is higher (i.e. darker and bigger markers) for Cuebiq data in123

Wisconsin and Michigan. In both sources, the states with some of the least recent hotspots124

are situated in Indiana and Ohio. It is necessary to remark that here, the hotspots represent125

a lower mobility in the area (higher percentage of sheltered-in-place population).126

Figure 2 illustrates individual trajectories for counties in Florida and California. These127

two states are selected for illustration purposes because they had different non-pharmaceutical128

policies. Top row shows the spatiotemporal paths of counties in Florida. As we can see,129

there are counties that remained hotspots (higher percentage staying home) and coldspots130

(lower percentage of people staying home) during the observation period. Both SafeGraph131

and Cuebiq show consistent hotspot behavior for counties starting from week 10 to week 40,132

when the governor opened the Florida’s economy. On the other hand, only a few counties133

were consistent coldspots. California (bottom row Figure 2) is a completely different story:134

none of the counties were classified as coldspots, and a lot more counties were consistent135

hotspots starting from week 10, when the stay-at-home order was issued. These group of136

counties remained consistent until the end of 2020, which can be seen from the slope of the137

lines, where the slope of 1 indicates that the county was classified as either a hotspot or a138

coldspot each week for each particular segment.139

Figure 3 illustrates the resulting summaries as a series of scatter plots, where each state140

is marked on the y-axis, and there is a separate column for each data source5). The location141

of each marker on the horizontal axis denotes the percentage of coldspots/hotspots (from the142

total number of counties within a state). The blue markers indicate coldspots and the red143

markers indicate hotspots. It is not uncommon for some states to include counties of both144

cluster types. In such cases, two markers (blue and red) per line are visualized. The primary145

goal of this visualization is to summarize and communicate the differences in spatial structure146

across various mobility indices or data sources for different states. The visualization can be147

read vertically and horizontally. Vertically, it allows to assess the overall split between the148

hotspots and coldspots, and to identify the states which are primarily hotspots, coldspots or149

a combination of both. Horizontally, it allows a comparison in three dimensions: state-level,150

source-level, and indicator-level.151

5 For demonstration purposes and due to limitation on the size of the submission only a subset of states
is selected
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4 Conclusion152

This paper demonstrated the applicability of three developed visualization techniques for153

assessing spatiotemporal structure of mobility during COVID-19. When combined, these154

techniques provide an effective visual analytic tool to identify micro and macro patterns in155

data at different scales by identifying consistent spatial clusters with statistically significant156

observed spatial dependence. By adding a temporal component, the presented mapping157

techniques will help identify primary interest areas for further more detailed and fine-grained158

analysis. Furthermore, these tools provide enough flexibility to switch between the level159

of detail and efficiently track individual trajectories of various administrative units. These160

package can be further extended to allow aggregation and analysis of various geographic161

processes on irregular lattice. In the course of the next few months, user studies will be162

conducted to improve the interface and assess the effectiveness of the tool.163
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