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Chapter 1

Introduction

1.1 Problem Definition and Motivation

We formulate the problem of human pose estimation as determing the 3D locations of human

joints relative to root joint (usually pelvis of human). This is shown in Fig 1.1.

Accurate estimation 3D human pose from image data is a crucial task in computer vision as it

enables lots of useful daily applications like telecommunications, humanoid robots, automatic

grocery store, motion analysis, virtual try-on as in Fig 1.2.

Figure 1.1: Problem definition for 3D human pose estimation.
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Figure 1.2: Illustration of 3D human pose applications related to daily life

However, this problem remains a challenging task as it faces several corners cases like arbitrary

gesture, various skeleton size or rich background, self occlusion or object/scene occlusions

as in Fig 1.3. Technically, the difficulties lie in several aspects: It is hard to obtain the

groundtruth data as it requires 3D annotations; It is non-trival to represent the groundtruth

as training target for the neural network; Additionally, developing or utlizing existing priors

to get better pose estimation remain an open area; it is also demanding to integrate the

training/inference of 3D human pose estimation with modern deep learning.

1.2 Dissertation Outline and Contributions

The general outline of the rest of the dissertation is as follows: Chapter 2 introduces some

background knowledge, and related literature of 3D human pose estimation. Chapters 3-5

present the incorporation of camera pose priors, scene constraints, and parametric human

model to have a more robust 3D pose estimators. To be more specific:

Chapter 2: We discuss how existing 3D human pose datasets have been collected and curated.

In addition, we also discuss the design of networks and representations that incorporate
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Figure 1.3: Illustration of 3D human pose applications related to daily life

general priors to handle 3D human pose estimation in deep learning era. Lastly, we discuss

existing problems to be handled in 3D human pose estimation.

Chapter 3: We carry out a systematic study of the diversity and biases present in specific

datasets and their effect on cross-dataset generalization across a compendium of 5 pose

datasets. We specifically focus on systematic differences in the distribution of camera

viewpoints relative to a body-centered coordinate frame. Based on this observation, we

propose an auxiliary task of predicting the camera viewpoint in addition to pose. We find

that models trained to jointly to predict viewpoint and pose systematically show significantly

improved cross-dataset generalization.

The chapter is based on the work originally published in: Zhe Wang, Daeyun Shin, and

Charless Fowlkes “Predicting Camera Viewpoint Improves Cross-dataset Generalization for

3D Human Pose Estimation.” ECCVW 2020 [182].

Chapter 4: We explore the hypothesis that strong prior information about scene geometry

can be used to improve pose estimation accuracy. To tackle this question empirically, we have
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assembled a novel Geometric Pose Affordance dataset, consisting of multi-view imagery of

people interacting with a variety of rich 3D environments. We utilized a commercial motion

capture system to collect gold-standard estimates of pose and construct accurate geometric

3D models of the scene geometry. To inject prior knowledge of scene constraints into existing

frameworks for pose estimation from images, we introduce a view-based representation of

scene geometry, a multi-layer depth map, which employs multi-hit ray tracing to concisely

encode multiple surface entry and exit points along each camera view ray direction. We

propose two different mechanisms for integrating multi-layer depth information into pose

estimation: input as encoded ray features used in lifting 2D pose to full 3D, and secondly as

a differentiable loss that encourages learned models to favor geometrically consistent pose

estimates. We show experimentally that these techniques can improve the accuracy of 3D

pose estimates, particularly in the presence of occlusion and complex scene geometry.

The chapter is based on the work originally in: Zhe Wang, Liyan Chen, Shaurya Rathore,

Daeyun Shin, and Charless Fowlkes “Geometric Pose Affordance: 3D Human Pose with Scene

Constraints .” Arxiv 1905.07718 2019 [180].

Chapter 5: To better estimate and represent the full 3D shape of the human body, we

develop a framework with three consecutive modules. A dense map prediction module

explicitly establishes the dense correspondence between the image evidence and each part

of the body model. The inverse kinematics module refines the key point prediction and

generates a posed template mesh. Finally, an inpainting module relies on the corresponding

feature, prediction and the posed template, and completes the predictions of occluded body

shape. Our framework leverages the best of non-parametric and model-based methods and is

also robust to partial occlusion. Experiments demonstrate that our framework outperforms

existing 3D human estimation methods on multiple public benchmarks.

Chapter 6: Concludes this dissertation and presents several open directions for future

research.
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Chapter 2

Related Work

2.1 Introduction

3D human pose estimation is attracting increasing attention from industry due to its strong ap-

plication potential in entertainment such motion retargeting [172, 197], animation, hollywood

motion capture (3D Avatart), gaming (Netease, Blizzard, SandBox), sport analysis(Second

spectrum and Traceup); and also in health care [97] as Autism, Parkinson, physical rehabili-

tation, pressure generated matte [22] and emotion (Psychology); Beyond those applications,

3D human pose estimation is also strongly connected to other computer vision and robotics

topic such as robot learning [73], action anticipation, motion prediction, affordance learning,

self-driving cars (motion prediction, trajectories prediction), activity recognition and expla-

nation [125, 93], person generation, priors for segmentation [28], HCI(assist leaving), virtual

reality (Holelens2 and Tiotech 7D), Amazon Go, augmented reality, education [12], scene

understanding [178, 31], and proxemics recognition [44].

3D pose estimation has also drawn a large amount attention in academia as shown in Fig

2.1, due to its greater ambiguity when compared with 2d pose estimation. This ambiguity
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Figure 2.1: Number of 3D human pose paper every year from CVPR/ECCV/ICCV.

makes it easier to incorporate different priors such as geometrical model [113], kinematic

model [215] and body shape prior [92]. 3D human pose researchers have designed and

constructed datasets using different software and hardware (VICON, The Capture, IMU)

as well as different cameras (Kinect, commercial synchronized cameras). These datasets

are also captured in different environments (e.g. controlled lab environment and in the

wild environment). These datasets vary with respect to body sizes, camera intrinsic and

extrinsic parameters and body and background appearance. Deep learning experts have also

designed different architectures (1D convolutional neural network [121], graph convolutional

networks [213], fully-connected neural networks [98], recurrent neural networks [50] ) and

representations (point [98], heatmap [215] and voxel [118]) to not only improve 3D human

pose estimation performance, but also accelerate the inference time and reduce model size.

The current chapter is motivated by these rapid developments in the last several years.
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(a) HumanEva performance vs. years (b) Human36M performance vs. years

Figure 2.2: We plot performance vs. year from Paper-with-code, on HumanEva [145], and the
45x larger Human36M [52] dataset. We can see even though the performance has saturated
on both datasets, the monocular based methods still have about 20mm gap, showing the
complexity of Human36M datasets.

2.1.1 Scope of this chapter

This chapter focuses on major progress made in the last five years, and we restrict our

attention to monocular images, leaving the important subject of video pose / multi-view pose

as a topic for separate consideration in the future.

The main goal of this chapter is to offer a comprehensive survey of deep learning based 3D

human pose estimation techniques, and to present some degree of taxonomy, a high level

perspective and organization, primarily on the basis of popular datasets, representations,

evaluation metrics, priors, and problems not fully handled. The intention is to make our

categorization helpful for readers in obtaining an accessible understanding of similarities and

differences between a wide variety of strategies.

The remainder of this chapter is organized as follows. Popular datasets, datasets bias and

evaluation criteria are summarized in Section 2.2. We describe how researchers represent 3D

human pose in network in Section 2.3. We list and discuss details of the priors that can be

used to solve the ill-posed 3D human pose estimation problems in Section 2.4. Widely used

one-stage and two-stage architectures are discussed and compared in Section 2.5, and useful
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(a) Normal Pose
(b) Extreme Pose

Figure 2.3: 3D human pose estimation algorithm not only needs to handle normal pose cases,
but also tackle extreme scene such as rare view point, low lighting, strong scene occlusion,
motion blurry, person far from the camera, in the wild images, strong self-occlusion and rare
human pose.

codebase is also linked in 2.6. Finally, in the last section, we conclude the chapter with an

overall discussion of 3D human pose estimation, and state-of-the-art performance.

Dataset Frames Year Metric Feature
HumanEva [145] 80k 2010 MPJPE 1st synchronized 3D pose and image dataset
Human36M [52] 3.6M 2014 MPJPE most polular one, with MR test set
MPI-INF-3DHP [101] 1.3M 2017 MPJPE, PCK3D indoor and outdoor, markerless
Total Capture [164] 1.9M 2017 MPJPE with IMU information and 2d matte
SURREAL [171] 6M 2017 MPJPE, PVE SMPL model, depth, body parts segmentation
UnitePeople [77] 52k 2017 MPJPE, PVE dataset rich annotated with SMPL model
3DPW [173] 51k 2018 MPJPE, PVE IMUs and phone captured videos, in the wild
JTA [27] 460k 2018 MPJPE Game rendering in ubran scenes, multiple persons
GPA [180] 0.7M 2019 MPJPE affordance learning and full scene geometry
PROX [44] 180 2019 MPJPE geometry on point cloud, SMPLify-X model
GTA-1M [9] 3M 2020 MPJPE large scale pose and scene context
HUMBI [202] 26M 2020 MPJPE gaze, garment, more subjects, and rich camera views

Table 2.1: Comparison of existing popular datasets for training and evaluating 3D human
pose estimation. Larger datasets with more diverse features are proposed recently to facilitate
the development of 3D human pose estimation.

2.2 Datasets

Deep learning is data hungry; Therefore numerous amounts of images with humans in various

clothes, scenes, lighting conditions, view points, motion blur as in Fig 2.3a and different poses

as in Fig 2.3b are required to train a good 3D human pose estimator. Many 3D human pose
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datasets with diverse features were proposed after the year 2014 as described in Table 2.1. In

this section, we will discuss the differences, techniques and motivation behind the datasets

and compare them in details.

2.2.1 Getting groundtruth for datasets

Marker-based motion capture for ground-truth 3D pose The work of [145] offers the

first large-scale 3D human pose estimation dataset with synchronized images and ground-truth

3D keypoint locations. It was captured and solved using the commercial motion capture

software called VICON Blade. The VICON system is with cameras covering the capture

space. It is used to track the 3D coordinates of IR-reflective markers attached to the surface

of subjects and objects. The tracking maintains the label identity and propagates it through

time from an initial pose which is labeled either manually or automatically. A fitting process

uses the position and identity of each body label, as well as proprietary human motion

models, to infer accurate pose parameters. H36M [52] scales their dataset to 3.6 million

images covering a wider range of professional subjects and carefully enriches number of

actions. They also introduce 4 synchronized commercial high-resolution cameras enabling

multi-view study on human pose estimation. To alleviate the heavy dependency on mocap

systems, TotalCapture [164] is proposed with multiple viewpoint videos and IMU (inertial

measurement unit). This additional IMU sensor enables further study of multi-modal capture

of 3D human pose ground truth. A novel geometric pose affordance dataset (GPA) [180] is

assembled to explore the hypothesis that strong prior information about scene geometry can

be used to improve pose estimation accuracy. The dataset not only provides the 3D pose

ground truth, but also curates full scene geometry based on the mocap system. Similarly,

PROX [44] not only provides the 3D human joints ground truth but also scene geometry,

offering a promising test-bed for the research in 3D human pose estimation with geometric

affordance. The geometry provided by PROX is captured by Kinect point cloud while GPA
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dataset lets annotators create Maya mesh models which are aligned with the captured marker

location.

Marker-less motion capture for ground-truth 3D pose To overcome the limitations

of marker-based data collection, marker-less approaches are also used. 3DHP [101] relies on

the commercial marker-less motion capture software called ’the captury’. As they do not

have to rely on special suits and markers, they can capture motions wearing everyday apparel,

including loose clothing. They record in green screen studio to allow automatic segmentation

and augmentation. In addition, 3DHP covers a wide range of viewpoints including normal

camera viewpoints and extreme camera viewpoints as shown in Fig 2.3a and 2.3b, they also

capture outdoor images for evaluation. [217] explores motion capture both indoor and outdoor

using a Drone. The system only needs an autonomously flying drone with an on-board RGB

camera and is usable in various indoor and outdoor environments. Besides the capability

of tracking a moving subject, a flying drone also provides fast varying viewpoints, which is

beneficial for motion reconstruction. To make motion capture truly unconstrained (both in

the wild environment and to avoid moving around to cover full body), [141] uses multiple

micro-aerial-vehicles (MAVs), each equipped with a monocular RGB camera, an IMU, and

a GPS receiver module. Together with 2d joint detectors, 3D human body model, and a

powerful prior on human pose, they successfully demonstrate outdoor full-body, markerless

motion capture. However, the number of the views and diversity of race, skeleton size are

still limited. HUMBI [202] presents a large multiview dataset to facilitate modeling view

specific appearance and geometry of gaze, face, hand, body, and garment from assorted

people. 107 synchronized high-definition cameras (70 cameras facing at the front body) are

used to capture 772 distinctive subjects across gender, ethnicity, age, and physical condition.

26M images make HUMBI the largest dataset ever.
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Rendering for ground-truth 3D pose Rendering or game engine is the inverse procedure

of 3D reconstruction, which provides alternatives to get free supervision from video games

[74] or physical-based rendering. SURREAL [171] generates 6M images together with gruond

truth of 3D human shape, 3D body part segmentation, 2d human depth, 2d part segmentation,

clothing, camera parameters, human surface normals, optical flow of human motion and

even light conditions. This large scale new dataset opens up new possibilities for advancing

person analysis using cheap and large-scale synthetic data. However, this dataset lacks human

scene interaction (occlusion) and does not have multi-view information. JTA [27] dataset is

proposed with a vast number of different body poses, in several urban scenarios at varying

illumination conditions, viewpoints, especially occlusion annotation, by exploiting the highly

photorealistic video game Grand Theft Auto V developed by Rockstar North. However, JTA

dataset focuses more on urban scene, which is hard explore the affordance learning between

scene context and pose prediction. Thus, GTA [9] dataset is curated to predict person future

poses and locations, given the scene image and the person’s past pose and location history in

2D. The GTA dataset consists of 3M frames and 30k action segments.

Human-in-the-loop ground-truth 3D pose It is hard for humans to accurately annotate

poses in 3D, but humans can collaborate with pre-defined templates [7, 96] or generative models

to roughly annotate and get relatively small error datasets in 3D. In this sense, UnitePeople

[77] dataset is proposed based on the collaboration between SMPLify [6] extended with human

silhouette, and human annotators. This procedure can generate rich-annotated ground truth

labels on in-the-wild images with 3D human joint, 2d part segmentation and even 3D human

mesh model. UnitePeople dataset has 52k in-the-wild images. However, they do not cover

videos domain. With the introduction of IMU sensors in motion capture [164], 3DPW [173] is

able to capture in-the-wild 3D human pose ground truth (extreme lighting, interacting with

scene geometry, person far away from cameras). It relies on state-of-the-art 2d joint detector,

together with SMPL [92] model and IMU sensors to robustly fit to the image evidence. Even
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Dataset H36M GPA SURREAL 3DPW 3DHP
Imaging Space 1000 × 1002 1920 × 1080 320 × 240 1920 × 1080 2048 × 2048

or 1920 × 1080
Camera Distance 5.2 ± 0.8 5.1 ± 1.2 8.0 ± 1.0 3.5 ± 0.7 3.8 ± 0.8
Camera Height 1.6 ± 0.05 1.0 ± 0.3 0.9 ± 0.1 0.6 ± 0.8 0.8 ± 0.4
Focal Length 1146.8 ± 2.0 1172.4 ± 121.3 600 ± 0 1962.2 ± 1.5 1497.88 ± 2.8
Bone Length 3.9 ± 0.1 3.7 ± 0.2 3.7 ± 0.2 3.7 ± 0.1 3.7 ± 0.1

Table 2.2: Comparison of existing datasets commonly used for training and evaluating 3D
human pose estimation methods. We calculate the mean and std of camera distance, camera
height, focal length, bone length from training set. Focal length is in mm while the others
are in unit meters. 3DHP has two kinds of cameras.

though the ground truth has small errors, researchers can still evaluate their method on this

dataset.

2.2.2 Bias for each dataset

We select 5 representative datasets ranging from marker-based capture (H36M [52]), marker-

less capture (3DHP [101]), render-based (SURREAL [171]), model-based (3DPW [173]), and

with geometry features (GPA [180] (pose tends to be different with geometry around)). We

list the bias across different datasets in table 2.2 and Fig 2.4.

Imaging space Different datasets are captured with different cameras, which may result

in different size of images and distortion effect. For large images like H36M, GPA, 3DPW ,

3DHP, images should be first undistorted before sending to either multi-view algorithm or

monocular algorithm, to make the multi-view geometry feasible and neural network avoid

overfitting to this distortion effect. Images from SURREAL are in smaller size, thus, the zoom

in (SURREAL) and zoom out (3DPW, 3DHP, GPA, H36M) of original image may affect

the image quality sent to the neural network. This imaging size bias may harm cross-data

generalization. For two-stage algorithms, the different xy magnitude without normalization

will also follow the variation of imaging space varies, thus, harm the generalization.
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Camera space Cameras vary across different datasets, in focal length, camera center,

camera height, camera-person distance and view direction. Focal length and center is useful

when you back-project the 2d space and relative z prediction to absolute z prediction for

calculating MPJPE [107]. This differences lie in camera intrinsic parameter motivates us to

handle the back-projection problem without the pre-known camera center and focal length.

Camera-person distance determines how far the person is from the camera, and affects the

image quality if we want the person to show the same size in both training and evaluation.

Camera height correlates with view direction. We use the left shoulder, right shoulder and

pelvis to form the body-centered coordinate and treat the camera view point relative to this

body-centered coordinate frames. We factorize the view direction into azimuth histogram

as in Fig 2.4b and elevation histogram as in Fig 2.4c for 50k sample poses from each of the

5 datasets. We observe H36M has a wide range of view direction over azimuth with four

distinct peaks (−30 degree, 30 degree, −160 degree, 160 degree), it shows that during the

capture session subjects are always facing towards or facing away the control center while

the four RGB cameras captured from four corners. H36M has a clear bias towards elevation

above 0; GPA is more spread over azimuth compared with H36M, most of the views range

from −60 degree to 90 degree; SURREAL synthetically sampled camera positions with a

uniform distribution over azimuth, and also have a uniform distribution over elevation. The

viewpoint bias for 3DPW arises naturally from filming people in-the-wild from a handheld

or tripod mounted camera roughly the same height as the subject. Of the non-synthetic

datasets, 3DHP is the most uniform spread over azimuth and includes a wider range of

positive elevations, a result of utilizing cameras mounted at multiple heights including the

ceiling.

Pose space A standard approach is to treat 3D human pose estimation as regressing the

3D joint location relative to the root joint. We list the root joint, especially Z distance

(camera distance) in table 2.5. To characterize the variability in pose after the root-joint is
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Figure 2.4: (a). Distribution of view-dependent, view-independent body-centered pose,
visualized as a 2D embedding produced with UMAP [100]. (b-c). Distribution of camera
viewpoints relative to the human subject. We show the distribution of camera azimuth
(−180◦, 180◦) and elevation (−90◦, 90◦) for 50k poses sampled from each representative
dataset (H36M, GPA, SURREAL, 3DPW, 3DHP).

factored out, we used the coordinates of 14 joints common to all datasets expressed in the

root-relative coordinate frame. To visualize the resulting high-dimensional data distribution,

we utilize UMAP [100] to perform a non-linear embedding into 2D. Figure 2.4a shows the

resulting distributions which show a the posing difference across the datasets. We further

illustrates the skeleton size in table 2.2, which is another prior useful for back-projecting

from 2d prediction to 3D space.

Appearance bias We list the normal case and extreme case in Fig 2.3. These images

appearance differs because of view direction, clothing, lighting and background modeling.

The gender, ethnicity, and clothing in HUMBI [202] shows great diversity as HUMBI is

captured with numerous amount of subjects. However, in terms of lighting and natural

background scenes, images from 3DPW [173] show great variety. Images from JTA [27], GPA

[180], PROX [44] and GTA-1M [9] introduce lots of scene occlusion, self-occlusion and scene

affordance. Datasets captured in controlled environments (GPA, H36M, 3DHP, TotalCapture,

Panoptic Studio) [180, 52, 101, 164, 58] tend to have clean background, making it necessary

to train together with 2D datasets like COCO [91] and MPII [2] to make algorithm generalize
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(a) Original
Image

(b) Joints (c) Skeleton (d) Heatmap+depth map
(e) Voxel Map

Figure 2.5: The example image from GPA [180] with corresponding common representation
for 3D human pose: vector or coordinate (b), skeleton representation (c), 2d heatmap (d) +
depth map (e), and voxel map (f).

to in-the-wild images from 3DPW, UnitePeople [173, 77]. Sports images in UnitePeople [77]

may have motion blur while rendering image from SURREAL [171] may not be realistic

enough and lack of content showing the person interacting with scene context.

2.3 Representations

Researchers has proposed different representation as regression target to address 3D human

pose estimation problem. The optimization goal of these representation lies in three per-

spectives: (i), to leverage pictorial structure. (ii), to reduce the memory consumption. (iii),

to use the extra 2d pose data. Along this line are point/vector representations in Fig 2.5b,

skeleton representation in Fig 2.5c, heatmap + depth map representation in Fig2.5d, and

voxel map in Fig 2.5e.

2.3.1 Point/Vector/Matrix

Notation Given an image I with a human subject in the center as shown in Fig 2.5a,

we aim to estimate the 3D human pose represented by a set of 3D joint coordinates of the

human skeleton as shown in Fig 2.5b, P ∈ RJ×3 where J is the number of joints. We follow

the convention of representing each 3D coordinate in the local camera coordinate system
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associated with I. The first two coordinates are given by image pixel coordinates and the

third coordinate is the joint depth in metric coordinates (e.g., millimeters) relative to the

depth of a specified root joint. We use PXY and PZ respectively as short-hand notations for

the components of P .

One stage methods One stage methods directly regress the P ∈ RJ×3 given the image I

mentioned above. [83] regress the relative distance of one joint relative to its parent Ji−JP (i),

and another branch to detect the 2D joint location. Both detection and regression branches

are based on fully connected layers, which do not leverage the image structure. [215] initially

implement their network to detect PXY using heatmap while regressing PZ as a normalized

vector according to bone length. PoseNet [107, 190] later on leverages integral techniques

to convert voxel map differentiably to regress PX , PY separately in image space and PZ

normalized by pre-defined max person range value (1000 mm) and camera intrinsic parameter

(focal length and camera center).

Two stage methods Two stage methods first extract 2d joint location from images, and

then regress these P ∈ RJ×3. Different networks use different normalization methods to

process the 2d input and 3D output. Simple-baseline [98] treats the task which lift 2d image

location to 3D camera coordinates as a machine learning problem. Both input and target

are pre-processed with mean subtraction and standard deviation. They also apply advanced

residual connection to enhance the simple network. [13] build a 3D pose library to match

the detected 2d pose to the nearest 3D pose. [109, 126] represent both the 2D and 3D

human poses using N × N distance matrices, and formulate the problem as a 2D-to-3D

distance matrix regression. By enforcing positivity and symmetry of the predicted matrices,

the approach also has the advantage of naturally handling missing observations and allow

to hypothesize the position of non-observed joints. Graph neural network [213] builds the

connection between joints and leverages the state-of-the-art graph convolutional network to

16



Figure 2.6: The sample image with corresponding 2d distance matrix. (Image credit: [109])

refine them. Videopose [121] leverages 243 frames and 1D dilated convolution architecture

to model the poses in temporal domain. Similar temporal modeling based on pose vector

representation is also seen in LSTM [79] and Fully-connected neural network [50, 23]. We

will compare these architectures in detail in Section 2.5.

Distribution Lifting from 2d to 3D is an ill-posed problem because of depth ambiguity

and occluded joints. [80] propose a novel approach to generate multiple feasible hypotheses

of the 3D pose from 2D joints. By modeling the 3D pose space with guassian mixture model

(mixure density), they predict prior, mean, and covariance of the pre-cluster 3D pose mixture.

[148] employs the multimodal distributions prediction idea in a one-stage method and train

on image with 2d joint label and 3D joint label together.

Root joint Most 3D pose estimation methods always treat root joint (pelvis) as known

location. However, this is not true in real scenarios. RootNet [107] uses ResNet [46] with

deconvolution and pin-hole camera model to localize the root joint (X, Y, Z location of pelvis

in camera coordinate). Videopose [121] uses both 2D data and 3D data to predict root

location in a semi-supervised way. Concurrent work [5] also estimates the root joint and
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resolves the ambiguities/uncertainties in outdoor KITTI dataset using monte carlo dropout

and Laplace distribution priors.

2.3.2 Heatmaps

Following the 2d pose estimation work trend, 3D pose regression also moves from joint

regression using fully-connected layer [163] to joint heatmap [161] regression. Fig 2.5d shows

a target distribution created from ground-truth P by placing a Gaussian with σ = 3 centered

at each joint location. At inference stage, the 2d joint heatmaps are decoded to x,y joint

locations using an argmax function. It is either used together with Starmap (canonical

view heatmap as shown in Fig 2.5d) [216] in the second implementation in [215], or with a

location map as in VNect [104]. Both Starmap and location map are proposed to have the

3D pose prediction linked more strongly to the 2D appearance in the image. The PX , PY , PZ

values are read off from their respective location-maps at the position of the maximum of the

corresponding joint’s 2D heatmap. [160] takes an integrated approach that fuses probabilistic

knowledge of 3D human pose with a multi-stage CNN architecture and uses the knowledge of

plausible 3D landmark locations to refine the search for better 2D locations.

2.3.3 Voxels

Even though heatmap and depth map is related in space (xy aligned), their correlation in

z space is not carefully exploited. Then, how about defining a 3D spherical gaussian voxel

as regression target (as shown in Fig 2.5e)? [118] is the first work applying voxel in deep

3D human pose estimation, they propose a fine discretization of the 3D space around the

subject and train a ConvNet to predict per voxel likelihoods for each joint. They also employ

coarse-to-fine prediction scheme, multi-task learning to leverage 2d pose data, and achieve

promising results on in-the-wild images. However, quantizing 3D location into a heatmap has

18



Figure 2.7: Standard deviations of bones and joints for the 3D Human3.6M dataset and 2D
MPII dataset. (Image credit: [150])

Mean(cm) Max(cm) Std(cm)

6D 1.9 28.7 1.2
5D 2.0 33.3 1.4
Quat 3.3 87.1 3.1
AxisA 3.0 120.0 2.3
Euler 2.7 48.7 2.1
Matrix 22.9 53.6 4.0

Table 2.3: Empirical results for human body inverse kinematics test. It shows that the 6D
representation performs the best with the lowest errors and fastest convergence. Table credit
[221].

its inherent quantizing error and the voxel target is very memory consuming. [151] solves the

quantizing error by introducing soft-argmax to make the voxel to joint process differentiable.

[112] marginalizes the xyz voxel to xy, yz, xy heatmap space. They reduce the memory

consumption significantly while achieving better performance.

2.3.4 Skeleton Representation

”Bones are more stable than joints and easier to learn.” – claimed by [150]. They propose

a structure-aware (representing target as bone) regression method and demonstrate its

effectiveness on both 2d and 3D pose datasets. They reparameterize the joint as the bone

following Bk = Jparent(k) − Jk, in addition, they also enforce long-range geometric constraint

by training with both bone ground truth and joint ground truth. Similarly, [218] formulates
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a person as a kinematic tree: starting from the root joint, the child joint is represented with

rotation matrix and translation. With the developed kinematic layer, they can train together

with motion parameters (rotation and translation), joint loss and model fitting loss.

Rotation representation [218] regress rotation uses the euler angle, however, rotation

angle itself is not numerically stable. [124] discuss several rotation representations and

drawbacks: rotation matrices, euler angles, quaternions, axis-angle, for the corresponding

kinematic chain. Recently, a new 6D rotation representation [221] is proposed, and demon-

strates numerical stablily and continuous both in theory and practical for neural network to

learn. In terms of rotation representation selection, [182] and [223] selects quaternions but

treat loss differently; [6, 69] uses rotation matrix; [116, 44] picks up axis-angle while [68, 64]

votes for 6D representation.

2.3.5 Multi Person Association

Bottom-up approaches [204] propose a bottom-up method called MubyNet and deep

volume encoding to handle body joint detection, person grouping, and pose and shape

estimation together by integrating representation based on 3D reasoning at all stages. This

avoids suboptimality resulting from separate 2d and 3D reasoning, and uses the combined

representation for grouping. [26] compress the multi joint voxel into one voxel, thus making

the memory consumption 1/number joint of original voxels [118] representation. They also

extend this representation to a multi-person setting.

Top-down approaches Unlike MubyNet, LCRNet [139] is a top down method and

proposes joint anchors. LCRNet is an end-to-end architecture for joint 2D and 3D human

pose estimation in natural images. The ability of generation and scoring of a number of

pose proposals per image, allows LCRNet to predict 2D and 3D poses of multiple people
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simultaneously. By treating pose anchors as class centers, it can also handle joints that are

partially visible. [107] follow the top down pipeline and breaks it into two problems: root

prediction and pose prediction. It can handle the root joint prediction without the need

for camera intrinsic parameters and instead bases prediction on the pinhole camera model

and mask-rcnn detection area. They also propose a new metric called MRPE. [103] propose

multi-person interaction and occlusion dataset: MuCo-3DHP and MuPoTS-3D, and novel

occlusion-robust read-out pose-maps which enable full body pose inference even under strong

partial occlusions by other people and objects in the scene. [102] divide the multi-person 3D

human pose estimation into 3 stages: 2D key point detection, part affinity field [10]; person

localization; identity tracking and temporal kinematic fitting. Their network can handle

partial occlusion, generalizes to diverse scenes, and runs real time. Their 3D pose encodes

local kinematic context, which contains person-person interaction and interaction between

parent joints and child joints.

2.4 Priors

Estimating 3D human pose from monocular images or videos is an ill-posed problem which can

benefit from prior constraints on prediction. In this section, we will talk about constraints from

temporal smoothness, human shape, human kinematics, to more modern scene constraints.

2.4.1 Temporal Modeling

[172] utilize cycle consistency and velocity smoothness to stabilize the motion retargeting.

[86] use sparse annotations and automatically collect the annotations across the entire video

by solving the 3D trajectory completion problem. By fine tuning the model, they get decent

performance in this semi-supervised setting. [50] explore temporal information by designing
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Methods Frames Input Networks

[90] 10/5s Images CNN
[121] 243/5s Keypoints CNN
[62] 10/0.4s Features CNN
[19] 128/2.6s Keypoints CNN

[23] 20/0.4s Keypoints NN

[50] 5/0.1s Keypoints RNN
[79] 3/0.3s Keypoints RNN

Table 2.4: Temporal length, input and neural network type to model 3D human pose. For
[23, 50] we did not find whether they downsample the videos or not, so we assume they use
the 50hz H36M videos for training.

a sequence-to-sequence network composed of layer-normalized LSTM units with shortcut

connections connecting the input to the output on the decoder side and impose a temporal

smoothness constraint during training. They also show their model better than traditional

smoothing algorithms like median filter and that their model is robust to gaussian noise. [79]

propose a new long short-term memory (LSTM)-based deep learning architecture, where

each LSTM is connected sequentially to reconstruct 3D depth from the centroid to edge

joints through learning the intrinsic joint dependency. [23] present a simple temporal network

that exploits temporal and structural cues present in predicted pose sequences to temporally

harmonize the pose estimations. [90] exploit rich spatial and temporal long-range dependencies

among body joints for accurate 3D pose sequence prediction and presents a Recurrent 3D Pose

Sequence Machine (RPSM) to automatically learn the image-dependent structural constraint

and sequence-dependent temporal context by using a multi-stage sequential refinement.

Many kinds of networks are able to incorporate temporal information to the learning: CNN

[121], RNN [79] and NN [23]. However, the difference of the length of temporal dependency

depends on the input and network type. We list how many frames each method can cover

in Table 2.4. From the table, we can see images input [90] can model more sparse frames

compared to keypoints input [121]. 1D CNN always models longer than RNN.
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Methods
Paired sup. Unpaired Sup. for

(MV: multi-view) 2D/3D pose latent to
MV Cam. 2D Supervision 3D pose
pair extrin. pose mapping

[133] ✔ ✔ ✗ ✗ ✔

[66] ✔ ✗ ✔ ✗ ✗

[16] ✔ ✗ ✔ ✗ ✔

[174] ✗ ✗ ✔ ✔ ✗

[14] ✗ ✗ ✔ ✔ ✗

[75] ✗ ✗ ✗ ✔ ✗

Table 2.5: Characteristic comparison of weakly-supervised human 3D pose estimation works,
in terms of access to direct (paired) or indirect (unpaired) supervision levels. (Table credit:
[75])

2.4.2 Multi-view Constraint

Although this chapter focuses on monocular 3D human pose estimation, there are numerous

research collecting supervision from others views, self-supervised learning or weakly-supervised

/ unsupervised learning. This research is worth discussing as these setting launch the

connection between geometry and learning. [198] propose a new differentiable representation

of the epipolar constraint called epipolar divergence – a generalized distance from the

epipolar lines to the corresponding keypoint distribution. Epipolar divergence defines how

big the error is when it is projected on the other view. [134] propose a method to estimate

camera pose jointly with human pose, which enables utilizing multi-view footage where

calibration is difficult, by utilizing the view consistency from multi-view cameras they make

it effective in predicting 3D human pose. [133] use known camera transformation matrix

and implicitly disentangle the foreground and background using unsupervised learning, and

this representation is easily transferred to 3D human pose task. [132] comprise three layers

of abstraction to represent human subjects: spatial layout in terms of bounding-boxes and

relative depth; a 2D shape representation in terms of an instance segmentation mask; and

subject-specific appearance and 3D pose information. By collecting supervision from multi-

view data, it works for multiple persons and full-frame images, and can then be effectively
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leveraged to train a 3D pose estimation network from small amounts of annotated data.

Instead of segmenting foreground and background in image space, [16] rely on 2d human pose

for self-supervised learning with the same flavor. [66] use off-the-self 2d pose detectors to detect

2d pose in each view and use epipolar geometry to collect supervision from two views. [75]

leverage the prior knowledge on human skeleton and poses in the form of a single part based

2D puppet model, human pose articulation constraints, and a set of unpaired 3D poses. Their

differentiable formalization, bridging the representation gap between the 3D pose and spatial

part maps, not only facilitates discovery of interpretable pose disentanglement, but also allows

us to operate on videos with diverse camera movements. We also list the table from [75] as

in Table 2.5 illustrating several weakly-supervised approaches utilizing varied set of auxiliary

supervision other than the direct 3D pose supervision. There are also several works directly

working on fusing information from multiple views [127, 165, 119, 54, 191, 212, 130, 94],

however, not in the scope of this chapter.

2.4.3 Human Structure Prior

Human shape prior SMPL (a skinned multi-person linear model) [92] model is proposed

with population of captured human mesh (CAESAR dataset). SMPL is a skinned vertex-

based model that accurately represents a wide variety of body shapes in natural human

poses. The parameters of the model M(β, α, γ) are learned from data including the rest pose

template, blend weights, pose-dependent blend shapes, identity-dependent blend shapes, and

a regressor from vertices to joint locations. The body model is parameterized by shape β,

pose α, and translation γ. The output of the function is a triangulated surface M with 6,890

vertices. [6] first propose an optimized-based approach to directly reconstruct 3D human mesh

from a single image with 2d key point detection. [77] fit the human mesh model [92] with in

the wild images, together with sihoutte and human-in-the-loop data cleaning, and presents

UP3D dataset. [114] integrate SMPL within a CNN, leveraging reliable bottom-up semantic
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body part segmentation and robust top-down body model constraints. [51] fit SMPL to

multi-view videos. [61, 120] introduce deep learning based end-to-end training models, which

can directly predict the SMPL parameters from monocular images. A couple of methods based

on HMR further exploit the temporal context to help build more precision and smoothness

in a human mesh model. [3] harvest internet videos, and train their model on unlabeled

video with pseudo-ground truth 2D pose obtained from an off-the-shelf 2D pose detector.

By modeling the feature evolution with temporal encoder and hallucinated motion, they get

smoother mesh predictor. [152] build the self-attention based temporal convolution network

to efficiently exploit the short and long-term temporal cue. [68] combine optimized-base

and learning-based methods by constructing the model-fitting loop. [64] leverage large-scale

human mesh datasets (AMASS [95]) to serve as a motion regularizer instead of directly

modelling dynamic tissues. Recently, [116] build SMPL-X model to holistically model face,

body and hands.

Kinematics Human kinematics includes two problems: forward kinematics (FK) and

inverse kinematics (IK). FK regards the human skeleton as a kinematic tree composed

of fixed-length bone and rotation between bones. [1] explore joint angle constraints in

3D to penalize unnatural rotation. [218] model the kinematics with introduced motion

parameter and kinematic layers. [215] improve the performance by adding constant bone ratio

constraint and generalizing 3D human pose estimation to in-the-wild images. [196] propose

an anthropometrically adversarial network as a regularizer. [29] model these kinematics,

symmetry between left/right human part and motor control skeletons using an RNN when

predicting 3D human joints directly from 2D key point. [150] supervise the training of the

network with another bone representation. This representation share the same flavor as part

affinity field [10], however, in the same person. [23] proposes two anatomically inspired loss

functions to penalize illegal human poses. IK is the inverse process of FK: given the set-up

pose and skeleton, FK solves the rotation between these skeletons. [172] leverage adversarial
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priors to correct unreleastic animation. [174] avoid the overfiting for lifting from 2D to 3D by

ignoring 2D to 3D correspondences. They learn a mapping from a distribution of 2D poses to

a distribution of 3D poses using an adversarial training approach. By additionally consider

estimating cameras, they generalize well to unknown data. [168] propose adversarial inverse

graphics networks (AIGNs): weakly supervised neural network models that combine feedback

from rendering their predictions, with distribution matching between their predictions and

a collection of ground-truth factors. They apply AIGNs to 3D human pose estimation and

3D structure and egomotion estimation, and outperform models supervised by only paired

annotations.

2.4.4 Pose Templates

[13] build a large 3D human pose set, and treat lifting from 2d to 3D as a matching problem.

[137] utilize cmu-mocap data, part-based pixels, and mosaic to composite synthetic datasets

and train a robust 3D human pose estimator. [138, 139] use the datasets generated in [137]

and cluster the 2d poses/ 3D poses using kmeans. They treat the pose clusters the same

as object detection ‘anchors’, by proposing, classifying, and regressing, they get a robust

multi-person 3D human pose estimator. To generate scene afforded poses, [178, 85] treat

each pose cluster center as a hidden state in the variational auto encoder. Pose template

ideas also apply for egocentric pose estimation when majority part of human is out of view

[55]. [158] introduce a Deep Learning regression architecture for structured prediction of 3D

human pose from monocular images that relies on an overcomplete auto-encoder to learn a

high-dimensional latent pose representation and account for joint dependencies.
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2.4.5 Ordinal Constraints

Ordinal constraints constrain pose prediction with some reference. It can be a physical space

like some key point should be within range of -1000 mm to 1000 mm, or an embedding

constraint. [117] uses ordinal depth between joints as reference. They annotate each image

and all joints pairs with relative depth. By integrating this information and relying on

additional MPII and LSP datasets, they achieve better performance. [214] relax this relative

depth by only modeling pairs with local triplet heatmaps. Their HEMLet representation

leverage both image structure and weak depth information. [84] train image-pose embedding

and score function together with a maximum-margin cost function, the positive pairs will have

a higher score compared to negative pairs, which share similar flavor of ordinal constraint in

embedding space, which is also shown in [84].

2.4.6 Viewpoint Constraints

Number of views in each mocap dataset is limited as shown in Fig 2.4b, 2.4c. [113] utilize

traditional structure from motion and explicitly factors viewpoint changes to improve 3D

human pose estimation performance in self-supervised setting. [42] embed local regions into

a learned viewpoint invariant feature space. Their multi-task framework is able to selectively

predict partial poses in the presence of noise and occlusion, however, they work on depth

map instead of rgb images. [182] cluster viewpoint from five popular datasets and generate

quaternion clusters. By predicting these quaternion cluster and 3D human pose together,

they achieve state-of-the-art performance in several datasets and decrease error by a large

margin on cross-dataset evaluation setting. There are also recent works [191, 123] formulating

viewpoint selection/fusion as a reinforcement learning or meta learning problem.
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2.4.7 Scene Constraints

This general notion of scene affordance has been explored as a tool for understanding functional

and geometric properties of a scene. [43] first reconstruct the static background and the

position of each camera using structure-from-motion (SfM). Then they capture 3D human

pose in three carefully selected scene: indoor-climbing, dancing in a halfpipe, and running and

jumping in an outdoor scene. These pre-captured geometry helps to resolve the ambiguities

induced by impossible views from the back side of the climbing wall, partial occlusion and

fast movement. [55] exploit cues from the dynamic motion signatures of the surrounding

scene and introduces a novel energy minimization scheme to infer the pose sequence to infer

the ”invisible pose” of a person behind the egocentric camera. [85] build a fully automatic 3D

pose synthesizer that fuses semantic knowledge from a large number of 2D poses extracted

from TV shows as well as 3D geometric knowledge from voxel representations of indoor

scenes. And they introduce a 3D pose generative model to predict semantically plausible

and physically feasible human poses within a given scene based on the constructed data.

[203] leverage multi-task learning as well as parametric human and scene modelling, to guide

semantic representations at both model and image level, and integrate scene constraints

including ground plane support and detecting simultaneous volume occupancy by multiple

people. [44] capture PROX dataset (180 images) which have point cloud representation of

scene geometry and fit the SMPL [92] model with segmented point cloud. By considering

inter-penetration and contact constraints, the estimated accuracy of vertex (human mesh)

and joint is largely improved. [180] collect Geometric Pose Affordance dataset with 0.7 million

images. The dataset has multi-view video and is captured in motion capture studio. Subjects

interact with scene geometry in various ways and scene geometry is represented as novel

multi-layer depth. [180] is end-to-end trainable and runs much faster than [44].
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2.5 Architecture

This section provides an overview of some of the most prominent deep learning architectures

used by 3D pose estimation community, including single-stage (Hourglass [111], SimpleBase-

line [98], and HRNet [149]) as well as two-stage architectures (CNN/RNN/GCN).

2.5.1 Single-stage networks

Single-Stage CNN [83, 163]: Singe-stage CNNs (before 2016) 2.8 follow how image

classification use the network [46], and translate the images into a vector. After that they use

the fully connected layer to regress the root-relative coordinate or parent-relative coordinate

[84].

Figure 2.8: Early stage network.

Hourglass [111]: The design of the hourglass network ( as shown in Fig 2.9) is motivated

by the need to capture information at every scale. While local evidence is essential for

identifying features like feet and hands, a final pose estimate requires global context. The

person’s orientation, the arrangement of their limbs, and the relationships of adjacent joints

are among the many cues that are best recognized at different scales in the image. The

hourglass captures information at every scale. This way, global and local information are

captured completely and are used by the network to learn the predictions. Several 3D human
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pose estimation frameworks are based on hourglass backbones. [215] build their network

on top of the hourglass network, with two head modules: 2d pose estimation module and

depth regression module. They normalize the 2d keypoint ground truth and 3D relative

depth consistently to generalize their network to in-the-wild images. [196] treat hourglass

network as the backbone to generate 3D human pose while adding a following discriminator

for adversarial learning. [118] utilize the strong power capacity of hourglass network to lift

2d heatmaps to 3D voxels in a coarse-to-fine manner.

Figure 2.9: Hourglass Network.

Simple Baseline [190]: The network structure (as shown in Fig 2.10) is quite simple and

consists of a ResNet + few deconvolutional layers at the end. While the hourglass network

uses upsampling to increase the feature map resolution and puts convolutional parameters in

other blocks, this method uses deconvolutional layers and combines with Resnet [46] backbone

in a very simple way. [190] demonstrate its strong power in both 2d pose estimation and

pose tracking. [138] originally adopted VGG [146] as the backbone, but later developed a

newer version which is based on ResNet [46] backbone, to build a multi-person robust 3D

human pose estimator. The code base of [215] is originally based on Hourglass, but they

turned to simple baseline later. [104] utilize resnet to extract features and smooth them using

kinematics constrain. They also propose spatial-aware location map to regress, making their

network robust without referring to voxel representation. [151] is the first attempt combining

simple baseline backbone with 3D human pose, and serves as the backbone for the winning

solution in ECCV 2018 3D human pose estimation challenges [154]. [107] extend this solution
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to estimate both relative 3D human pose and the root position using the pin-hole camera

model. [214] hack the feature upsampling part in the simple baseline backbone and propose

part-centric heatmap triplets to enforce local depth constraint between parent-children joints.

Figure 2.10: Simple Baseline Network.

HRNet [149]: Another popular model in this category is the recently developed pose

estimation network, high-resolution network (HRNet, as shown in Fig 2.11). Other than

recovering high resolution representations as done in Simple-Baseline, HRNet maintains

high-resolution representations through the encoding process by connecting the high-to-low

resolution convolution streams in parallel, and repeatedly exchanging the information across

resolutions. As HRNet is relatively new, there are few 3D human pose estimation works

using HRNet as the backbone to exploit contextual information such as self-attention.

Figure 2.11: Structure of high-resolution network.

Pre-training Selection: Pre-training secures a good initialization and helps the networks

optimize to a better solution. [190] are pre-trained on ImageNet, which is target for general

image classification. [111] are pre-trained on MPII to generalize to articulated human pose
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FLOPs(G) Network Pre-training MPJPE

9.06 Hourglass No -
9.06 Hourglass MPII -
5.37 ResNet50 No 125.4
5.37 ResNet50 ImageNet 99.1
5.37 ResNet50 MPII -
5.37 ResNet50 MPII+ImageNet -
10.24 HRNet-W32 MPII+ImageNet 81.2

Table 2.6: The computation complexity (Flops, all input image size as 256 × 256, only
calculate backbones), and how choice of pre-training and backbone selection influence 3D
human pose estimation. Training and testing details follow [107]

estimation. 3D human pose estimators are always trained together with MPII [2] datasets to

make the network more robust to different human viewpoints, occluded joints, etc. To work

on harder datasets such as PoseTrack which includes lots of small person and motion blur,

[190] is pre-trained on COCO dataset. It is shown pre-train gives better pose estimation in

[149] and the same applies for larger image input size.

We run [107] baseline and list the performance with different backbones and pre-training

as in table 2.6. It is both trained and tested on 3DPW dataset, with number of training

images 22,375 and test images 35,515. Additionally, we calculate the computation burden

(FLOPS) as in the same table. The training and testing follows the original PoseNet [107]

paper, which uses ground truth bounding box, with extra MPII dataset to train together.

During testing, we have the ground truth intrinsic parameters. During training and testing

we make it consistent with input image height and width as 256.

2.5.2 Two-stage networks

Two stage architectures build upon the pre-trained 2d detection network which can provide 2d

keypoint detection in 2d image coordinates. The second stage networks utilize the 2d single

frame keypoint or key points within a video sequence to lift to 3D keypoints in root-relative
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Model Parameters FLOPs MPJPE

[98] 4.29M 4.29M 42.5 (62.9)
[213] 0.43M 0.43M 43.8 (60.8)
[21] 1.85M 1.85M 57.80

[49] 16.96M 33.88M 41.6
[121] 16.95M 33.87M 37.8

Table 2.7: The second stage models, the computation complexity (FLOPS), number of
parameters and the corresponding MPJPE in mm.

coordinates.

Single frame lifting networks [98] is the first lifting network that lift 2d image keypoints

location to 3D root-relative space. They apply the state-of-the art batch normalization,

relu, dropout to build basic blocks, and use skip-connection between basic blocks. These

networks achieve state-of-the-art performance without seeing any visual information. They

also do an interesting ablation study showing how networks perform with noisy or perfect 2d

keypoint detection. However, this network treats input 2d pose and output 3D pose as vector

without considering the kinematics constraint between them. [29] propose pose grammar

which are built by a hierarchy of Bi-directional RNNs (BRNN) to explicitly incorporate a

set of knowledge regarding human body configuration (i.e., kinematics, symmetry, motor

coordination). By augmenting training samples with virtual views, they achieve state-of-

the-art performance. Graph convolutional neural networks [213, 21] are proposed later on

to represent each semantic keypoint as nodes, and the kinematics connection as edges. To

model the uncertainty in the lifting process, [80] train guassian mixture models using the

lifting network.

Sequence lifting networks [50] design a sequence-to-sequence network composed of layer-

normalized LSTM units with shorcut connections. They also apply temporal smoothness

constraint during training for both input and output. The temporal consistency can help
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Figure 2.12: Temporal dependency and inter-joint dependency from temporal posenet (TP-
Net). Image credit [23]

recover pose even when 2d pose detector fails. TPNet [23] build upon [215] while adding

structure loss and builds temporal modeling on the top. TP-net can help diagnosis which

frames the current frame relied on, and which joint it relies on most (as shown in Fig 2.12).

Based on joint interdependency (JI), [79] propose a new long short-term memory (LSTM)

based network called propagating LSTM to reconstruct 3D depth from the centroid to edge

joints through learning the intrinsic JI. [121] utilize 1D dilated convolution to model long-term

dynamics of the lifting process. This network is semi-supervised use the projection loss and

can be extended to estimate root joint location.

We also report the number of parameters, and computational complexity in table 2.7 if code

is available.

2.6 Benchmarks

In this section, we list the common benchmark and performance comparison on the five

representative datasets: Human36M (table 2.8 and 2.9), GPA (table 2.10), SURREAL (table
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2.11), 3DPW (table 2.13), and 3DHP (table 2.12). We list the attributes of each method:

evaluation metric, backbones, stages, whether they use extra data for training as well as the

highlights of each method. We rank the methods with the corresponding evaluation metric.

The evaluation metric for H36M, GPA and SURREAL is MPJPE (Mean Per Joint Position

Error, in mm unit); 3DHP is evaluated with PCK3D (MPJPE with a threshold of 150mm)

with threshold of 150 mm; To cover more methods in the table, 3DPW is evaluated using

PA-MPJPE (in mm unit).

For video-based methods We can observe the MPJPE decrease from 126.5 in 2016 to

40.1 in 2020 on H36m, the PCK3D increase from 79.4% in 2017 to 93.2% in 2020 on 3DHP,

the PA-MPJPE decrease from 92.3 mm in 2018 to 51.9 mm in 2020 on 3DPW, with the

introduction of more powerful temporal modeling 1D dilated convolution, more datasets as

training (AMASS, Instavariety, Kinetics) and stronger augmentation.

For image-based methods MPJPE on H36M decreases from 121.3 in 2015 to 39.9 in 2019,

due to the more powerful backbones and stronger constraint and intermediate representation.

For GPA dataset, viewpoint matters to improve the performance to state-of-the-art, which is

the same for SURREAL datasets. For 3DHP datasets, PCK3D increases from 72.9% in 2017

to 93.2% in 2020 due to the usage of the state-of-the-art backbones and more image-aligned

supervision (limb depth map). However, for 3DPW datasets, the error reduction is more

attributed to more datasets and more powerful models (SMPL).

2.7 Conclusions

In this chapter we discuss how 3D human pose experts curate datasets from different

aspects. In addition, we also discuss how deep learning experts design networks, propose
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representations, incorporate genetic priors to handle 3D human pose estimation in deep

learning era. We have a web link that is updated regularly with awesome 3D human pose

papers: 1

1Awesome-3D-human-pose: https://github.com/wangzheallen/awesome-human-pose-estimation#

3D-pose-estimation
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Method (H36M) MPJPE Backbone Stages Extra data Highlights
Video Sequence as Input

[18] 40.1 1DCNN Two N/A Occlusion Augmentation
[19] 42.9 1DCNN Two N/A Occlusion modeling, cylinder model
[87] 46.6 MLP Two N/A matrix factorization for

sequential 3D human poses
[199] 46.7 MLP,RNN,CNN Two N/A chirality transform
[121] 46.8 1DCNN Two N/A first 1D dilated for convolution

sequential 3D human poses
[8] 48.8 GCN Two N/A loca-to-global GCN
[23] 52.1 Hourglass One MPII generate rotation-valid pose

and explore temporal dependence
[79] 52.8 RNN Two N/A explore temporal/joint dependence
[93] 53.2 Inception-V4 One MPII multi-task with action/2d pose
[152] 59.1 Resnet50 One MPII,LSP skeleton-disentangled representation

AICH,Penn Action
[3] 63.3 Resnet50 One 3DHP, COCO In the wild human shape

LSP, MPII, Flickr reconstruction
[102] 63.6 CNN One MPII, LSP memory-efficient representation

3DHP, COCO single/multiple persons
[64] 65.6 RNN Two InstaVariety Motion Discriminator

PennAction, Kinetics Temporal encoder/decoder
3DHP, AMASS single/multiple persons

PoseTrack,3DPW
[49] 66.1 RNN Two N/A Simple temporal model
[14] 68.0 MLP Two Kinetics unsupervised learning

with GAN loss
[90] 71.4 CNN One MPII recurrent refine 3D pose
[104] 80.5 Resnet50 One MPII, LSP, 3DHP location map,kinematics fitting
[86] 88.77 Hourglass One MPII trajectory optimization
[113] 101.8 Hourglass One N/A extract 3D from 2d annotations
[219] 113.01 CNN One PennAction EM algorithm over heatmaps
[159] 124.97 CNN One N/A 3D Hog features
[60] 126.5 CNN Two N/A Height-map
[133] 131.7 Resnet18 One N/A muti-view supervision
Single Image as Input

[214] 39.9 Resnet50 Oen MPII part-centric heatmap triplets
[68] 41.1 Resnet50 One LSP-Extended Model-fitting in the loop

MPII, COCO
3DHP, LSP

[21] 42.2 GCN Two N/A Local-connected GCN
[80] 42.6 MLP Two N/A multimodal mixture

density networks
[188] 43.2 HRNet One MPII Limb Depth Map
[213] 43.8 GCN Two N/A first apply GCN to 3D human pose
[117] 44.7 Hourglass One LSP,MPII use ordinal information

between joints
[98] 45.5 MLP Two N/A simple yet effective baseline
[16] 46.3 Hourglass Two N/A View synthesis, latent representation.
[142] 46.8 MLP Two CMU-mocap CVAE model, joint-ordinal relations
[194] 48.0 Resnet50 One MOCA, 3DHP Differential Renderer, IUV map

LSP,MPII, COCO
[150] 48.3 Resnet50 One MPII additional bone length loss
[151] 49.6 Resnet50 One MPII Integral of voxel
[75] 50.8 Resnet50 One YTube bride gap between 3D pose

and spatial part maps
[174] 50.9 MLP Two N/A estimate both 3D pose and cameras
[182] 52.0 Resnet50 One MPII handle cross-dataset evaluation
[112] 53.2 Inception v4 One MPII Marginalized voxels

Table 2.8: Methods on Human36M and the corresponding highlights and performance.
Methods based on single frames are at bottom while methods based on videos are at top.
Models are trained with subjects 1,3,5,7,8, and tested with subjects 9,11. Unit is in mm. No
PA alignment.
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Method (H36M-continue) MPJPE Backbone Stages Extra data Highlights
Single Image as Input-continue

[154] 54.2 Resnet50 One MPII winning solution for
the H36M challenge

[107] 54.4 Resnet50 One MPII Multi-person, root estimation
[61] 56.8 Resnet50 One MPII, LSP, COCO end2end shape estimation

LSP-extended
CMU-mocap

3DHP, PosePrior
[59] 57.0 Resnet50 One MPII, LSP, COCO face/hand/body shape estimation
[189] 58.3 VGG One Panoptic Studio first method to capture the

STB, COCO 3D total motion of a target person
D+O from a monocular view input.

[196] 58.6 Hourglass One MPII adversarial training
geometric descriptor

[114] 59.9 Resnet101 One UP-3D conditioned on part segmentation
[38] 60.27 Resnet50 One MPII, COCO 2d/3D keypoints

part, densepose
[26] 61.0 InceptionV3 One N/A compressed voxels
[139] 61.2 Resnet50 One CMU-mocap Mask-CNN version 3D pose
[215] 64.9 Hourglass One MPII 2d/3D bone length constraint
[40] 65.7 Resnet50 One LSP,MPII,H36M disentangle 2d/3D information
[118] 71.9 Hourglass One MPII voxel representing 3D pose
[120] 75.9 Hourglass One CMU Mocap, UP-3D first one refer to human shape

SURREAL, MPII, LSP to predict pose with networks
[109] 76.47 CNN Two N/A euclidean distance matrix
[66] 76.6 Resnet50 One MPII self-supervised learning
[77] 80.7 DeeperCut One MPII, LSP The first in the wild

LSP-extended dataset with mesh annotation
[13] 82.37 MLP Two CMU-mocap exemplar-based method
[138] 83.0 VGG-16 One MPII, LSP-extended extend faster RNN to

CMU-mocap, pose prior 3D human pose
[160] 88.39 CNN One N/A fuse heatmap to get 3D pose
[168] 97.2 VGG One N/A Adversarial Inverse Graphics
[69] 113.2 GCN Two N/A direct regress vertex location
[137] 121.2 CNN One N/A mocap-guided data augmentation
[84] 121.3 CNN One N/A embedding of poses and images

Table 2.9: Methods on Human36M and the corresponding highlights and performance.
Methods are based on single frame input.

Method (GPA) MPJPE Backbone Stages Extra data Highlights

Single Image as Input

[182] 52.0 Resnet50 One MPII body-center coordinates
rotation loss

[107] 53.2 Resnet50 One MPII root joint estimation
[180] 64.6 MLP Two N/A geometric affordance
[98] 68.2 MLP Two N/A simple yet effective baseline
[215] 96.5 Hourglass One MPII bone length constraint

Table 2.10: Methods on GPA and the corresponding highlights and performance. Methods
are based on single frame input.
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Method (SURREAL) MPJPE Backbone Stages Extra data Input Highlights
[182] 37.1 Resnet50 One MPII Image body-center coordinates

rotation loss
[107] 37.2 Resnet50 One MPII Image root joint estimation
[170] 49.1 MLP Two N/A Image volumetric body shape estimation
[169] 64.4 MLP Two N/A Video self-supervised differentiable rendering

Table 2.11: Methods on SURREAL and the corresponding highlights and performance.
Methods are based on single frame input.

Method (3DHP) PCK3D Backbone Stages Extra data Highlights
Video Sequence as Input

[18] 93.2 1DCNN Two N/A Occlusion Augmentation
[64] 89.3 RNN Two InstaVariety,PoseTrack Motion Discriminator

PennAction, Kinetics Temporal encoder/decoder
3DHP, AMASS,3DPW single/multiple persons

[87] 83.6 MLP Two N/A matrix factorization for
sequential 3D human poses

[102] 82.8 CNN One MPII, LSP memory-efficient representation
3DHP, COCO single/multiple persons

[23] 76.7 Hourglass One MPII generate rotation-valid pose
and explore temporal dependence

[14] 64.3 MLP Two Kinetics unsupervised learning
with GAN loss

[104] 79.4 Resnet50 One MPII, LSP, 3DHP location map,kinematics fitting
Single Image as Input

[188] 93.2 HRNet One MPII Limb Depth Map
[68] 92.5 Resnet50 One 3DHP, LSP-Extended Model-fitting in the loop

LSP,MPII, COCO
[112] 88.3 Inception v4 One MPII Marginalized voxels
[75] 84.6 Resnet50 One YTube bride gap between 3D pose

and spatial part maps
[182] 84.3 Resnet50 One MPII body-center coordinates

rotation loss
[174] 82.5 MLP Two N/A estimate both 3D pose and cameras
[66] 77.5 Resnet50 One MPII self-supervised learning
[194] 76.9 Resnet50 One MOCA, 3DHP Differential Renderer, IUV map

LSP,MPII, COCO
[16] 75.9 Hourglass Two N/A View synthesis, latent representation.
[214] 74.3 Resnet50 Oen MPII part-centric heatmap triplets
[21] 74.0 GCN Two N/A Local-connected GCN
[80] 72.5 MLP Two N/A multimodal mixture

density networks
[117] 71.9 Hourglass One LSP,MPII use ordinal information

between joints
[40] 70.4 Resnet50 One LSP,MPII,H36M disentangle 2d/3D information
[61] 72.9 Resnet50 One MPII, LSP, COCO end2end shape estimation

LSP-extended, 3DHP
PosePrior, CMU-mocap

Table 2.12: Methods on 3DHP and the corresponding highlights and performance. Methods
are based on single frame input. It is worth noticing the metric for PCK3D is the higher the
better.
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Method (3DPW) PA-MPJPE Backbone Stages Extra data Highlights
Video Sequence as Input

[64] 51.9 RNN Two InstaVariety,PoseTrack Motion Discriminator
PennAction, Kinetics Temporal encoder/decoder
3DHP, AMASS,3DPW single/multiple persons

[152] 69.5 Resnet50 One MPII, LSP skeleton-disentangled
AICH, Penn Action representation

[18] 71.8 1DCNN Two N/A Occlusion Augmentation
[3] 72.2 Resnet50 One 3DHP, COCO In the wild human shape

LSP, MPII, Flickr reconstruction
[62] 72.6 1DCNN Two NBA, Penn Action Two stage mesh estimation

InstaVariety
[102] 80.3 CNN One MPII, LSP memory-efficient representation

3DHP, COCO single/multiple persons
[23] 92.3 Hourglass One MPII generate rotation-valid pose

and explore temporal dependence
Single Image as Input

[68] 59.2 Resnet50 One 3DHP, LSP-Extended Model-fitting in the loop
LSP,MPII, COCO

[182] 65.2 Resnet50 One MPII, PASCAL VOC handle cross-dataset evaluation
[61] 76.7 Resnet50 One MPII, LSP, COCO end2end shape estimation

LSP-extended, 3DHP
PosePrior, CMU-mocap

Table 2.13: Methods on 3DPW and the corresponding highlights and performance. Methods
are based on single frame input.
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Chapter 3

Predicting Camera Viewpoint

Improves Cross-dataset Generalization

for 3D Human Pose Estimation

3.1 Introduction

A large swath of computer vision research increasingly operates in playing field which is

swayed by the quantity and quality of annotated training data available for a particular

task. How well do you know your data? Fig 3.1 presents a sampling images from 5 popular

datasets used for training models for 3D human pose estimation (Human3.6M [52], GPA

[180], SURREAL [171], 3DPW [173] , 3DHP [101]). We ask the reader to consider the game

of “Name That Dataset” in homage to Torralba et al. [162]. Can you guess which dataset

each image belongs to? More importantly, if we train a model on the Human3.6M dataset

(at Fig 3.1 left) how well would you expect it to perform on each of the images depicted?

Each of these datasets were collected using different mocap systems (VICON, The Capture,
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Figure 3.1: In this chapter we consider the problem of dataset bias and cross-dataset
generalization. Can you guess which human pose dataset each image on the right comes from?
If we train a model on H36M data (left) can you predict which image has the lowest/highest
3D pose prediction error? (answer key below)1

IMU), different cameras (Kinect, commercial synchronized cameras, phone), and collected in

different environments (controlled lab environment, marker-less in the wild environment, or

synthetic images) with varying camera viewpoint and pose distributions (see Fig 3.3). These

datasets contain further variations in body sizes, camera intrinsic and extrinsic parameters,

body and background appearance. Despite the obvious presence of such systematic differences,

these variables and their subsequent effect on performance have yet to be carefully analyzed.

In this chapter, we study the generalization of 3D pose models across multiple datasets

and propose an auxiliary prediction task: estimating the relative rotation between camera

viewing direction and a body-centered coordinate system defined by the orientation of the

torso. This task serves to significantly improve cross-dataset generalization. Ground-truth

for our proposed camera viewpoint task can be derived for existing 3D pose datasets without

requiring additional labels. We train off-the shelf models [107, 215] which estimate the

camera-relative 3D pose, augmented with a viewpoint prediction branch. In our experiments,

we show our approach outperforms the state-of-the-art PoseNet [107] and [215] baseline by

1Answer key: Metric: MPJPE, the lower the better. 1) GPA: 69.7 mm 2) H36M: 29.2 mm, 3) 3DPW,
71.2 mm, 4) 3DHP 107.7 mm, 5) 3DPW 66.2 mm, 6) SURREAL 83.4 mm, H36M image performs best while
3DHP image performs worst.
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a large margin across 5 different 3D pose datasets. Perhaps even more startling is that

the addition of this auxiliary task results in significant improvement in cross-dataset test

performance. This simple approach increases robustness of the model and, to our knowledge,

is the first work that systematically confronts the problem of dataset bias in 3D human pose

estimation.

To summarize, our main contributions are:

• We analyze the differences among contemporary 3D human pose estimation datasets and

characterize the distribution and diversity of viewpoint and body-centered pose.

• We propose the novel use of camera viewpoint prediction as an auxiliary task that system-

atically improves model generalization by limiting overfitting to common viewpoints and can

be directly calculated from commonly available joint coordinate ground-truth.

• We experimentally demonstrate the effectiveness of the viewpoint prediction branch in

improving cross-dataset 3D human pose estimation over two popular baseline and achieve

state-of-the-art performance on five datasets.

3.2 Related Work

Cross-Dataset Generalization and Evaluation 3D human pose estimation from monoc-

ular imagery has attracted significant attention due to its potential utility in applications such

as motion retargeting [172], gaming, sports analysis, and health care [97]. Recent methods

are typically based on deep neural network architectures [17, 70, 71, 98, 107, 118, 122, 151,

181, 184, 215, 185, 179, 183, 72, 72] trained on one of a few large scale, publicly available

datasets. Among these are [98, 118, 151] evaluated on H36M, [101, 215] work on both H36M

43



[52] and 3DHP [101], [173, 164] work on TOTALCAPTURE [164] and 3DPW[173], [180]

work on the GPA dataset [180]. [171] works on both SURREAL [171] and H36M [52] dataset.

Given the powerful capabilities of CNNs to overfit to specific data, we are inspired to

revisit the work of [162], which presented a comparative study of popular object recognition

datasets with the goals of improving dataset collection and evaluation protocols. Recently,

[76] observed characteristic biases present in commonly used depth estimation datasets and

proposed scale invariant training objectives to enable mixing multiple, otherwise incompatible

datasets. [225] introduced the first large-scale, multi-view unbiased hand pose dataset as

training set to improve performance when testing on other dataset. Instead of proposing

yet another dataset or resorting to domain adaptation approaches (see e.g., [177]), we focus

on identifying systematic biases in existing data and identifying generic methods to prevent

overfitting in 3D pose estimation.

Coordinate Frames for 3D Human Pose In typical datasets, gold-standard 3D pose is

collected with motion capture systems [52, 145, 164, 180] and used to define ground-truth 3D

pose relative one or more calibrated RGB camera coordinate systems [52, 173, 101, 171, 180].

To generate regression targets for use in training and evaluation, it is typical to predict the

relative 3D pose and express the joint positions relative to a specified root joint such as the

pelvis (see e.g.,[107, 151]). We argue that camera viewpoint is an important component of the

experimental design which is often overlooked and explore using a body-centered coordinate

system which is rotated relative to the camera frame.

This notion of view-point invariant prediction has been explored in the context of 3D object

shape estimation [20, 37, 105, 135, 143, 156, 167, 195] where many works have predicted

shape in either an object-centered or camera-centered coordinate frame [143, 157, 211]. Closer

to our task is the 3D hand pose estimator of [224] which separately estimated the viewpoint

and pose (in canonical hand-centered coordinates similar to ours) and then combine the two
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to yield the final pose in the camera coordinate frame. However, we note that predicting

canonical pose directly from image features is difficult for highly articulated objects (indeed

subsequent work on hand pose, e.g. [53], abandoned the canonical frame approach). Our use

of body-centered coordinate frames differs in that we only use them as a auxiliary training

task that improves prediction of camera-centered pose.

3D Human Pose Estimation With the recent development of deep neural networks

(CNNs), there are significant improvements on 3D human pose estimation [41, 98, 118,

190]. Many of them try to tackle in-the-wild images. [215] proposes to add bone length

constraint to generalize their methods to in the wild image. [139] seeks to pose anchors as

classification template and refine the prediction with further regression loss. [41] propose a a

new disentangled hidden space encoding of explicit 2D and 3D features for monocular 3D

human pose estimation that shows high accuracy and generalizes well to in-the-wild scenes,

however, they do not evaluate its capacity on indoor cross-dataset generalization. To the

best of our knowledge, our work is the first to exploit cross-dataset task not only towards

in-the-wild generalization but also across different indoor datasets.

Multi-task Training There have has been a wide variety of work in training deep CNNs

to perform multiple tasks, for example: joint detection, classification, and segmentation [45],

joint surface normal, depth, and semantic segmentation [67], joint face detection, keypoint,

head orientation and attributes [129]. Such work typically focuses on the benefits (accuracy

and computation) of jointly training a single model for two or more related tasks. For example,

predicting face viewpoint has been shown to improve face recognition [200]. Our approach to

improving generalization differs in that we train models to perform two tasks (viewpoint and

body pose) but discard viewpoint predictions at test time and only utilize pose. In this sense

our model is more closely related to work on “deeply-supervised” nets [78, 192] which trains

using losses associated with auxiliary branches that are not used at test time.
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Dataset H36M GPA SURREAL 3DPW 3DHP
Year 2014 2019 2017 2018 2017
Imaging Space 1000 × 1002 1920 × 1080 320 × 240 1920 × 1080 2048 × 2048

or 1920 × 1080
Camera Distance 5.2 ± 0.8 5.1 ± 1.2 8.0 ± 1.0 3.5 ± 0.7 3.8 ± 0.8
Camera Height 1.6 ± 0.05 1.0 ± 0.3 0.9 ± 0.1 0.6 ± 0.8 0.8 ± 0.4
Focal Length 1146.8 ± 2.0 1172.4 ± 121.3 600 ± 0 1962.2 ± 1.5 1497.88 ± 2.8
No. of Joints 38 34 24 24 28 or 17
No. of Cameras 4 5 1 1 14
No. of Subjects 11 13 145 18 8
Bone Length 3.9 ± 0.1 3.7 ± 0.2 3.7 ± 0.2 3.7 ± 0.1 3.7 ± 0.1
GT source VICON VICON Rendering SMPL The Captury
No. Train Images 311,951 222,514 867,140 22,375 366,997
No. Test Images 109,764 82,378 507 35,515 2,875

Table 3.1: Comparison of existing datasets commonly used for training and evaluating 3D
human pose estimation methods. We calculate the mean and std of camera distance, camera
height, focal length, bone length from training set. Focal length is in mm while the others
are in unit meters. 3DHP has two kinds of cameras and the training set provide 28 joints
annotation while test set provide 17 joints annotation.

3.3 Variation in 3D Human Pose Datasets

We begin with a systematic study of the differences and biases across 3D pose datasets.

We selected three well established datasets Human3.6m (H36M), MPI-inf-3Dhp (3DHP),

SURREAL, as well as two more recent datasets 3DPW and GPA for analysis. These are large-

scale datasets with a wide variety of characteristics in terms of capture technology, appearance

(in-the-wild,in-the-lab,synthetic) and content (range of body sizes, poses, viewpoints, clothing,

occlusion and human-scene interaction). In this chapter, we focus on characterizing variation

in geometric quantities (pose and viewpoint) which can be readily quantified (compared to,

e.g., lighting and clothing).

We list some essential statistics from 5 datasets in Table 3.1. For these datasets, gold-

standard 3D pose is collected with motion capture systems [52, 145, 164, 180] and used

to define ground-truth 3D pose relative one or more calibrated RGB camera coordinate

systems [52, 173, 101, 171, 180]. To generate regression targets for use in training and
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evaluation, it is typical to predict the relative 3D pose (see e.g.,[107, 151]) and express the

joint positions relative to a specified root joint (typically the pelvis) and crop/scale the input

image accordingly. This pre-processing serves to largely “normalize away” dataset differences

in camera intrinsic parameters and camera distance shown in Table 3.1. However, it does not

address camera orientation.

Figure 3.2: Distribution of view-independent
body-centered pose, visualized as a 2D embed-
ding produced with UMAP [100]

To characterize the remaining variability, we

factor the camera-relative pose into camera

viewpoint (the position of the camera rela-

tive to a canonical body-centered coordinate

frame defined by the orientation of the per-

son’s torso) and the pose relative to this

body-centered coordinate frame.

Computing Body-centered Coordinate

Frames To define a viewpoint-independent

pose, we need to specify a canonical body-

centered coordinate frame. As shown in Fig

3.9a, we take the origin to be the camera-

centered coordinates of root joint (pelvis)

pp = (xp, yp, zp) and the orientation is defined

by the plane spanned by pp, the left shoulder

pl and the right shoulder pr. Given these

joint positions, we can compute an orthog-

onal frame consisting of the front direction

f , up direction u and right direction r are
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(a) Viewpoint Azimuth (b) Viewpoint Elevation

Figure 3.3: Distribution of camera viewpoints relative to the human subject. We show the
distribution of camera azimuth (−180◦, 180◦) and elevation (−90◦, 90◦) for 50k poses sampled
from each representative dataset (H36M, GPA, SURREAL, 3DPW, 3DHP).

defined as:

u = (pl + pr)/2− pp (3.1)

f = (pl − pp)× (pr − pp) (3.2)

r = f × u (3.3)

The rotation between the body-centered frame and the camera frame is then given by the

matrix R = −[r, u, f ]. We find it useful to represent rotations using unit quaternions (as have

others, e.g. [172, 166]). The corresponding unit quaternion representing R has components:

q =
1

4q0
[4q20, u2 − f1, f0 − r2, r1 − u0], q0 =

√
(1− r0 − u1 − f2) (3.4)

Distribution of Camera Viewpoints Fig 3.3 shows histograms capturing the distribution

of camera viewing direction in terms of azimuth (Fig 3.3a) and elevation (Fig 3.3b) relative

to the body-centered coordinate system for 50k sample poses from each of the 5 datasets.

We observe H36M has a wide range of view direction over azimuth with four distinct peaks
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(−30 degree, 30 degree, −160 degree, 160 degree), it shows during the capture session subjects

are always facing towards or facing away the control center while the four RGB cameras

captured from four corners. H36M has a clear bias towards elevation above 0; GPA is more

spread over azimuth compared with H36M, most of the views range from −60 degree to 90

degree; SURREAL synthetically sampled camera positions with a uniform distribution over

azimuth, and also have a uniform

distribution over elevation. The viewpoint bias for 3DPW arises naturally from filming

people in-the-wild from a handheld or tripod mounted camera roughly the same height as

the subject. Of the non-synthetic datasets, 3DHP is the most uniform spread over azimuth

and includes a wider range of positive elevations, a result of utilizing cameras mounted at

multiple heights including the ceiling.

These differences are further highlighted in Fig 3.9 which shows the joint distribution of

camera views and reveals the source of non-uniformity of the azmuthal distribution for 3DHP

and H36M due to subjects tending to face a canonical direction while performing some

actions. For example, in H36M in Fig 3.9b, actions in which the subject lean over or lie down

(extreme elevations) only happen at particular azimuths. Similarly, in 3DHP (Fig 3.9f), the

14 camera locations are visible as dense clusters at specific azimuths indicating a significant

subset of the data in which the subject was facing in a canonical direction relative to the

camera constellation.

Distribution of Pose To characterize the remaining variability in pose after the viewpoint

is factored out, we used the coordinates of 14 joints common to all datasets expressed in

the body-centered coordinate frame. We also scaled the body-centered joint locations to a

common skeleton size (removing variation in bone length shown in Table 1). To visualize the

resulting high-dimensional data distribution, we utilized UMAP [100] to perform a non-linear

embedding into 2D. Figure 3.2 shows the resulting distributions which show a substantial
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degree of overlap. For comparison, please see the figure 3.8 which show embeddings of the

same data when bone length and/or viewpoint are not factored out.

We also trained a multi-layer perceptron to predict which dataset a given body-relative pose

came from. It had an average test accuracy of 20% providing further evidence of relatively

little bias in the distribution of poses across datasets once viewpoint and body size are

factored out.

3.4 Learning Pose and Viewpoint Prediction

To overcome biases in viewpoint across datasets, we propose to use viewpoint prediction as an

auxiliary task to regularize the training of standard camera-centered pose estimation models.

3.4.1 Baseline architecture

Our baseline model [107, 215] consists of two parts: the first ResNet [46] backbone which

takes in images patches cropped around the human; followed by the second part which takes

the resulting feature map and upsamples it using three consecutive deconvolutional layers

with batch normalization and ReLU. A 1-by-1 convolution is applied to the upsampled feature

map to produce the 3D heatmaps for each joint location. The soft-argmax [151] operation is

used to extract the 2D image coordinates (x̂j, ŷj) of each joint j within the crop, and the

root-relative depth ŷj . At test time, we can convert this prediction into into a 3D metric joint

location pj = (xj, yj, zj) using the crop bounding box, an estimate of the root joint depth or

skeleton size, and the camera intrinsic parameters.

The loss function of the coordinate branch is the L1 distance between the estimated and
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Figure 3.4: Flowchart of our model. We augment a model which predicts camera-centered 3D
pose using the human pose branch with an additional viewpoint branch that selections
among a set of quantized camera view directions.

groud-truth coordinates.

Lpose =
1

J

J∑
j=1

||pj − p∗j ||1 (3.5)

3.4.2 Predicting the camera viewpoint

To predict the camera viewpoint relative to the body-centered coordinate frame we considered

three approaches: (i) direct regression of q, (ii) quantizing the space or rotations and

performing k-way classification, and (iii) a combined approach of first predicting a quantized

rotation followed by regressing the residual from the cluster center. In our experiments, we

found that the classification-based loss yields less accurate coordinate frame predictions but

yielded the largest improvements in the pose prediction branch (see Table 3.4).

To quantize the space of rotations, we use k-means to cluster the quaternions into k=100

clusters. The clusters are computed from training data of a single dataset (local clusters) or

from all five datasets (global clusters). We visualize the global cluster centers in azimuth and

elevation space in Fig 3.9 b-f, as well as randomly sampled quaternions from H36M, GPA,

SURREAL, 3DPW and 3DHP datasets.
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(a) Body-centered coordinate
(b) H36M (c) GPA

(d) SURREAL (e) 3DPW (f) 3DHP

Figure 3.5: a: Illustration of our body-centered coordinate frame (up vector, right vector
and front vector) relative to a camera-centered coordinate frame. b-f : Camera viewpoint
distribution of the 5 datasets color by quaternion cluster index. Quaternions (rotation
between body-centered and camera frame) are sampled from training sets and clustered using
k-means. They are also visualized in azimuth / elevation space following Fig 3.3.

To regress the quaternion q we simply add a branch to our base pose prediction model

consisting of a 1x1 convolutional layer to reduce the feature dimension to 4 followed by global

average pooling and normalization to yield a unit 4-vector. We train this variant using a

standard squared-Euclidan loss on target q∗. For classification, we use the same prediction

q but compute the probability it belongs to the correct cluster using a softmax to get a

distribution over cluster assignments:

p(c|q) = exp(−µT
c q)∑k

i=1 exp(−µT
i q)

(3.6)

where {µ1, µ2, . . . , µk} are the quaternions corresponding to cluster centers computed by
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k-means. We use the negative log-likelihood as the training loss,

Lq = −log(p(c∗|q)) (3.7)

where c∗ is the viewpoint bin that the training example was assigned during clustering. Our

final loss consists of both quaternion and pose terms: L = λLq + Lpose.

3.5 Experiments

Data and evaluation metric. To reduce the redundancy of the training images (30 fps

video gives lots of duplicated images for network training), we down sample 3DHP, SURREAL

to 5 fps. Following [107, 215], we sample H36M to 10 fps, and use the protocol 2 (subject

1,3,5,7,8 for training and subject 9,11 for testing, and here we report MPJPE over samples

instead of over classes, which is a harder setting based on our experience) for evaluation. As

GPA is designed as monocular image 3D human pose estimation, which is already sampled,

we follow [180] and directly use the released set. Number of images in train set and test set is

shown in Table 3.1. In addition, we use the MPII dataset [2], a large scale in-the-wild human

pose dataset for training a more robust pose model. It contains 25k training images and 2,957

validation images. We use two metrics, first is mean per joint position error (MPJPE), which

is calculated between predicted pose and ground truth pose. The second one is PCK3D [101],

which is the accuracy of joint prediction (threshold on MPJPE with 150mm).

Implementation Details. As different datasets have diverse joint configuration, we select

a subset of 14 joints that all datasets share to eliminate the bias introduced by different

number of joints during training.

We normalize the z value from (−zmax, +zmax) to (0, 63) for integral regression. zmax is 2400
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MPJPE (in mm, lower is better)
Testing \Training H36M GPA SURREAL 3DPW 3DHP

Baseline

H36M 53.2 110.5 107.1 125.1 108.4
GPA 105.2 53.9 86.8 111.7 90.5
SURREAL 118.6 103.2 37.2 120.8 108.2
3DPW 108.7 116.4 114.2 100.6 113.3
3DHP 111.8 123.9 120.3 139.7 91.9

Our Method

H36M 52.0 102.5 103.3 124.2 95.6
GPA 98.3 53.3 85.6 110.2 91.3
SURREAL 114.0 101.2 37.1 113.8 107.2
3DPW 109.5 112.0 112.2 89.7 105.9
3DHP 111.9 119.7 118.2 136.0 90.3

Same-Dataset Error Reduction ↓ 1.2 0.6 0.1 10.9 1.5
Cross-Dataset Error Reduction ↓ 10.6 18.6 9.1 13.1 20.4

Table 3.2: Baseline cross-dataset test error and error reduction from the addition of our
proposed quaternion loss. Bold indicates the best performing model on each the test set
(rows). Blue color indicates test set which saw greatest error reduction. See appendix for
corresponding tables of PCK and Procrustese aligned MPJPE.

mm based all 5 set. We use PyTorch to implement our network. The ResNet-50 [46] backbone

is initialized using the pre-trained weights on the ImageNet dataset. We use the Adam [63]

optimizer with a mini-batch size of 128. The initial learning rate is set to 1 × 10−3 and

reduced by a factor of 10 at the 17th epoch, we train 25 epochs for each of the dataset. We

use 256 × 256 as the size of the input image of our network. We perform data augmentation

including rotation, horizontal flip, color jittering and synthetic occlusion following [107]. We

set λ to 0.5 for the quaternion loss which is validated on 3DPW validation set.

3.5.1 Cross-dataset evaluation

We list the cross-dataset baseline and our improved results in Table 3.2. The bold numbers

indicate the best performing model on the test set. As expected, the best performance occurs

when the model is trained and evaluated on the same set. The numbers marked with blue

color indicate the test set where the error reduction is most significant, using our proposed

quaternion loss.
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Figure 3.6: We visualize viewpoint distributions for train (3DHP) and test (H36M) overlayed
with the reduction in pose prediction error relative to baseline

Training on H36M. Adding the quaternion loss reduces total cross-dataset error by 10.6

mm (MPJPE), while the same-dataset error reduction is 1.2 mm (MPJPE). This may be

explained by the error on H36M already being low. The largest error reduction is on GPA

(6.9 mm) which we attribute to de-biasing the azimuth distribution difference as shown in

Fig 3.3a.

Training on GPA. The total cross-dataset error reduction is 18.6 mm (MPJPE), and the

same data error reduction is 0.6 mm (MPJPE). We attribute this to the bias during capture

[180]: the coverage of camera viewing directions is centered in the range of −60 to 90 degrees

azimuth (as in Fig 3.3a). The largest cross-data set error reduction occurs for H36M, with

8.0 mm. This further demonstrates that the view direction distribution is largely different

from H36M.

Training on SURREAL. Adding the quaternion loss reduces the cross-dataset error by

9.1 mm (MPJPE), while the same-dataset error reduction is 0.1 mm (MPJPE). We attribute

this to the fact that viewpoint distribution on SURREAL itself is already uniform as in Fig

3.3a. We can see distribution over azimuths is quite uniform. Thus adding more supervision

in the form of quaternion loss helps little. The most error reduction (2.0mm) is observed on
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MPJPE (in mm, lower is better)
Metric \Training Set H36M GPA SURREAL 3DPW 3DHP
Same-Dataset Error Reduction ↓ 0.6 4.2 0.2 7.6 1.2
Cross-Dataset Error Reduction ↓ 2.4 12.3 1.9 10.1 9.3

Table 3.3: Retraining the model of Zhou et al. [215] using our viewpoint prediction loss yields
also shows significant decrease in prediction error, demonstrating the generality of our finding.
See appendix for full table of numerical results.

Datasets Baseline C R C+R C+local cluster C+cannonical pose
3DPW (MPJPE (mm)) 100.6 89.7 94.0 93.2 93.1 100.3

Table 3.4: Ablation analysis: we compare the performance of our proposed camera view-point
loss using classification (C), regression (R), using both (C+R); using per-dataset clusterings
(local) rather than the global clustering; and adding a third branch which also predicts pose
in canonical body-centered coordinates.

3DPW. We attribute this to the fact that 3DPW is strongly biased dataset in terms of view

direction, and the quaternion loss helps reduce the view difference between SURREAL and

3DPW.

Training on 3DPW. The error is reduced by 10.9 mm (MPJPE) on itself (also the most

error reduction one with model trained on 3DPW), and the cross-dataset error reduction

is 13.1 mm (MPJPE). From the Fig 3.3a we can see, in terms of azimuth, 3DPW has a

strong bias towards −30 degree to 60 degree. As during capture, the subject is always facing

towards the camera to make it easier for association between the subject (there are multiply

persons in crowded scene) and IMU sensors, this bias seems inevitable and quaternion loss is

helpful for this kind of in the wild dataset to reduce view direction bias. It is also verified in

3DHP, where half of the test set is in the wild, and have view direction bias.

Training on 3DHP. Adding the quaternion loss reduces the total cross-dataset error by

20.4 mm, while the same-dataset error reduction is 1.5 mm (MPJPE). During the capture,

3DHP capture images from a wide range of viewpoints. We can see from the Fig 3.3 that

the azimuth of 3DHP is the most uniformly distributed of the real datasets. Thus treating

it as training set will enable the network to be robust to view direction. We also calculate
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MPJPE↓: lower is better PCK3D↑: higher is better
H36M GPA SURREAL 3DPW 3DHP H36M GPA SURREAL 3DPW 3DHP

Mehta [101] 72.9 - - - - - - - - 64.7
Zhou [215] 64.9 96.5 - - - - 82.9 - - 72.5
Arnab[3] 77.8 - - - - - - - - -
Kanazawa [61] 88.0 - - - 124.2 - - - - 72.9
Kanazawa [62] - - - 127.1 - - - - 86.4∗ -
Moon [107] 54.3 - - - - - - - - -
Kolotouros [69] 78.0 - - - - - - - - -
Tung[169] 98.4 - 64.4∗ - - - - - - -
Varol[170] 51.6∗ - 49.1 - - - - - - -
Habibie [41] 65.7 - - - 91.0 - - - - 82.0
Yu [201] 59.1 - - - - - - - - -
Ours 52.0 53.3 37.1 89.7 90.3 96.0 96.8 97.3 84.6 84.3

Table 3.5: Comparison to state-of-the-art performance. There are many missing entries,
indicating how infrequent it is to perform multi-dataset evaluation. Our model provides a
new state-of-the art baseline across all 5 datasets and can serve as a reference for future work.
* denotes training using extra data or annotations (e.g. segmentation). Underline denotes
the second best results.

error reduction conditioned on azimuth and elevation on the H36M test set (Fig 3.6). The

blue/black line is azimuth and elevation histogram distribution for H36M/3DHP training sets

while the red line shows relative error reduction for H36M. We can see the error is reduced

more where H36M has fewer views relative to 3DHP.

3.5.2 Effect of Model Architecture and Loss Functions

To demonstrate the generalization of our approach to other models, we also added a viewpoint

prediction branch to the model of [215] which utilizes a different model architecture. We

observe similar results in terms of improved generalization (see Table 3.3 and appendix).

We note that while our primary baseline model [107] uses camera intrinsic parameters to

back-project, [215] utilizes an average bone-length estimate from the training set which results

in higher prediction errors across datasets.

Ablation study To explore whether our methods are robust to different k-means initializa-

tion, we repeat k-means 4 times and report performance on 3DPW. We find the range of the
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Figure 3.7: Model predictiosn on 5 datasets from model trained on Human3.6M dataset. The
2d joints are overlaid with the original image, while the 3D prediction (red) is overlaid with
3D ground truth (blue). 3D prediction is visualized in body-centered coordinate rotated
by the relative rotation between ground truth camera-centered coordinate and body-centered
coordinate. From top to bottom are H36M, GPA, SURREAL, 3DPW and 3DHP datasets.
We rank the images from left to right in order of increasing MPJPE.

MPJPE is within 90± 0.4 ([89.9, 89.6, 90.2, 89.7]) mm. We also vary the number of clusters

to select the best k ∈ {10, 24, 50, 100, 200, 500}, with corresponding errors [93.0, 95.2, 92.3,

89.7, 93.0,93.2]. We find k=100 is the best number with at most 6 mm reduction compared

to k=24. In Table 3.4, the error of global clusters is 3.4 mm error less than local, per-dataset

clusters, demonstrating training on global clusters is better than local clusters which are

biased towards the training set view distribution. In terms of choice for quaternion regression,

k-way classification reduced error by 4.3 mm compared to regression. While utilizing both

classification and regression losses gives error than regression only.

Finally, we also consider adding a third branch and loss function to the model which also

predicts the 3D pose in the body-centered coordinate system. This is related to the hand
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pose model of [224], although we don’t use this prediction of canonical pose at test time.

This variant performs global pooling on the ResNet feature map after upsampling followed by

a two layer MLP that predicts the viewpoint q and canonical pose. When training with this

additional branch we find the camera-centered pose predictions show no improvement over

baseline (Table 3.4). We also observe that the canonical pose predictions have higher error

than the camera-centered predictions which is natural since the the model can’t directly exploit

the direct correspondence between the 2D keypoint locations and the 3D joint locations.

3.5.3 Comparison with state-of-the-art performance

Table 3.5 compares the proposed approach with the state-of-the-art performance on all

5 datasets. Note that our method is the first to evaluate 3D human pose estimation on

the five representative datasets reporting both MPJPE and PCK3D, which fills in some

blanks and serves as a useful baseline for future work. As can be seen, our method achieves

state-of-the-art performance on H36M/GPA/SURREAL/3DPW/3DHP datasets in terms of

MPJPE. While [62] uses additional data (both H36M and 3DHP, and LSP together with

MPII) to train, they have slightly better performance on 3DHP in terms of PCK3D.

Qualitative Results: We visualize the prediction on the 5 datasets with model trained

on H36M using our proposed method in Fig 3.7. The 2d joint prediction is overlaid with

cropped images while the 3D joint prediction is visualized in our proposed body-centered

coordinates. From top to bottom are H36M, GPA, SURREAL, 3DPW and 3DHP datasets.

We display the images from left to right in ascending order by MPJPE.
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(a) UMAP with only root-
subtraction

(b) UMAP with root-
subtraction and L2
normalization

(c) UMAP body-centered
coordinates with only
root-subtraction

Figure 3.8: Distribution of view-dependent, view-independent body-centered pose, visualized as a
2D embedding produced with UMAP [100].

3.6 UMAP Visualization

We visualize the UMAP [100] embedding of view-dependent coordinate (root-relate coordinate)

of H36M [52], GPA [180] , SURREAL [171], 3DPW [173] and 3DHP [101] datasets in Fig

3.8a. We further normalize out skeleton size and visualize in Fig 3.8b. To compare with view-

independent coordinate (body-center coordinate), we visualize them before L2 normalization

in Fig 3.8c. We can see the body-centered, size normalized pose distribution (main chapter)

shows much higher overlap across datasets while the root-relative coordinates implicitly which

encode camera orientation provide distinguishable information (dataset bias).

3.7 Alternative Model with our quaternion loss

We provide PMPJPE in Table 3.6 and PCK3D in Table 3.7 to demonstrate the effectiveness

of adding quaternion loss to PoseNet [107]. To demonstrate the utility of our quaternion loss

on other models, we also show results based on retraining the model of [215] in Table 3.8

with MPJPE metric.
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PA-MPJPE (in mm, lower is better)
Testing \Training H36M GPA SURREAL 3DPW 3DHP

Baseline

H36M 43.4 75.0 69.6 91.3 75.0
GPA 75.4 41.7 66.3 84.4 70.2
SURREAL 76.5 73.5 31.8 85.8 77.9
3DPW 68.0 66.9 64.3 68.7 68.1
3DHP 88.5 91.2 86.9 111.3 71.4

Our Method

H36M 42.5 69.5 67.5 91.4 72.6
GPA 71.4 40.9 65.6 81.4 70.6
SURREAL 75.9 71.7 31.7 82.1 76.9
3DPW 68.3 65.1 63.8 65.2 66.4
3DHP 89.0 89.7 85.9 109.2 70.6

Same-Dataset Error Reduction ↓ 0.9 0.8 0.1 3.2 0.8
Cross-data Error Reduction ↓ 2.9 10.6 4.3 8.7 4.7

Table 3.6: Baseline cross-dataset test error and error reduction (Procrustese aligned MPJPE)
from the addition of our proposed quaternion loss. Bold indicates the best performing model
on each the test sets (rows). Blue color indicates test set which saw greatest error reduction.

PCK3D (accuracy, higher is better)
Testing \Training H36M GPA SURREAL 3DPW 3DHP

Baseline

H36M 95.7 75.7 52.3 70.6 77.8
GPA 78.3 96.3 58.8 76.2 84.5
SURREAL 76.4 84.5 97.2 73.6 81.0
3DPW 83.2 78.7 54.5 82.1 81.7
3DHP 76.1 70.3 44.8 68.4 84.2

Our Method

H36M 96.0 78.9 52.6 72.8 78.3
GPA 81.5 96.8 59.3 76.4 84.8
SURREAL 80.0 84.8 97.3 76.2 81.3
3DPW 83.2 80.8 54.7 84.6 81.7
3DHP 76.1 73.5 45.1 70.3 84.3

Same-Dataset Accuracy Increase ↑ 0.3 0.5 0.1 2.5 0.1
Cross-data Accuracy Increase ↑ 6.8 8.8 1.3 6.9 1.1

Table 3.7: Baseline cross-dataset test accuracy and accuracy increases (PCK3D) from the
addition of our proposed quaternion loss. Bold indicates the best performing model on each
the test set (rows). Blue color indicates test set which saw greatest accuracy increase.

3.8 Quaternion and cluster centers

Instead of colorizing each quaternion with cluster index, we directly visualize quaternion with

the same color within each dataset in Fig 3.9, and also plot the cluster centers in the azimuth

and elevation space.
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MPJPE (in mm, lower is better)
Testing \Training H36M GPA SURREAL 3DPW 3DHP

Baseline

H36M 72.5 126.0 116.6 135.5 118.0
GPA 110.5 76.6 97.3 116.2 100.6
SURREAL 129.6 116.0 54.1 132.3 118.7
3DPW 120.1 121.9 120.2 108.5 119.8
3DHP 122.9 133.6 128.5 148.0 104.5

Our Method

H36M 71.9 122.2 115.4 134.4 109.9
GPA 109.9 72.4 97.8 115.3 102.0
SURREAL 129.2 113.5 53.9 126.5 119.4
3DPW 119.1 119.3 119.9 100.9 116.5
3DHP 122.5 130.2 127.6 145.7 103.3

Same-Dataset Error Reduction ↓ 0.6 4.2 0.2 7.6 1.2
Cross-data Error Reduction ↓ 2.4 12.3 1.9 10.1 9.3

Table 3.8: Retraining the model of Zhou et al. [215] using our viewpoint prediction loss also
shows significant decrease in prediction error, demonstrating the generality of our finding.

3.9 Sampled images from five datasets

Sampled images from H36M We sample images from the interesting azimuth/elevation

pattern from H36M. We can see the images from Fig 3.10a are facing right while images from

Fig 3.10b are facing left. The index in the azimuth/elevation images corresponds with the

index on top of images sampled and placed around the center figure.

Sampled images from GPA/SURREAL We sample images from SURREAL and GPA

with uniform azimuth from left to right, and place some randomness on elevation during

sampling. We can see the patterns of sampled images from left to right: facing towards back

and rotating to facing right, and facing towards the camera, and then facing back again in

Fig 3.11.

Sampled images from 3DHP We sample images from 3DHP with uniform azimuth from

left to right as shown in Fig 3.12b, uniform elevation from top to down as shown in Fig 3.12c,

and from camera center as shown in Fig 3.12a, during sampling we add some randomness on

sampled elevation/azimuth around camera centers.
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(a) Body-centered coordinate
(b) H36M (c) GPA

(d) SURREAL (e) 3DPW (f) 3DHP

Figure 3.9: a: Illustration of our body-centered coordinate frame (up vector, right vector
and front vector) relative to a camera-centered coordinate frame. b-f : Camera viewpoint
distribution of the 5 datasets overlaid with quaternion cluster centers. Quaternions (rotation
between body-centered and camera frame) are sampled from training sets and clustered using
k-means.

Sampled images from 3DPW We sample images from 3DPW with extreme elevation as

shown in Fig 3.13a, and randomly as shown Fig 3.13b.

3.10 Qualitative Results

Qualitative Results trained on four datasets We visualize the prediction on the 5

datasets with model trained on GPA, SURREAL, 3DPW, 3DHP separately on using our

proposed method in Fig 3.14,3.15,3.16,3.17. The 2d joint prediction is overlaid with cropped

images while the 3D joint prediction is visualized in our proposed body-centered coordinates.
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(a) H36M with index 0-17 (b) H36M with index 18-35

Figure 3.10: H36M and sampled images.

From top to bottom are H36M, GPA, SURREAL, 3DPW and 3DHP datasets. We rank the

images from left to right in MPJPE increasing order.

Qualitative Results tested on the same images We further visualize the models

trained on 5 datasets, and test on images from the dataset H36M in Fig 3.18, GPA in Fig 3.19,

SURREAL in Fig 3.20, 3DPW in Fig 3.21 and 3DHP in Fig 3.22. The results from left to

right are models trained on H36M, GPA, SURREAL, 3DPW, and 3DHP. The RGB images

are overlaid with 2d joint prediction from model trained on each dataset.

3.11 Conclusions

In this chapter, we observe strong dataset-specific biases present in the distribution of cameras

relative to the human body and propose the use of body-centered coordinate frames. Utilizing

the relative rotation between body-centered coordinates and camera-centered coordinates as

an additional supervisory signal, we significantly reduce the 3D joint prediction error and
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(a) GPA with sampled images. (b) SURREAL with sampled images

Figure 3.11: GPA and SURREAL sampled images.

improve generalization in cross-dataset 3D human pose evaluation. Out model also achieves

state-of-the-art performance on all same-dataset evaluations. We hope that our cross-dataset

analysis is useful for future work and serves as a resource to guide future dataset collection.
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(a) 3DHP with images sampled from camera center.

(b) 3DHP with sampled images in uniform azimuth space.

(c) 3DHP with sampled images in uniform elevation space.

Figure 3.12: 3DHP sampled images.
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(a) 3DPW with extreme elevation sampled images.

(b) 3DPW with random sampled images.

Figure 3.13: 3DPW sampled images.
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Figure 3.14: Our prediction on 5 diverse dataset with model trained on GPA dataset. The 2d
joints are overlaid with the original image, while the 3D prediction (red) is overlaid with 3D
ground truth (blue). 3D prediction is visualized in body-centered coordinate rotated
by the relative rotation between ground truth root-relative coordinate and body-centered
coordinate. From top to bottom are H36M, GPA, SURREAL, 3DPW and 3DHP datasets.
We rank the images from left to right in MPJPE increasing order.
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Figure 3.15: Our prediction on 5 diverse datasets with model trained on SURREAL dataset.

Figure 3.16: Our prediction on 5 diverse datasets with model trained on 3DPW dataset.
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Figure 3.17: Our prediction on 5 diverse datasets with model trained on 3DHP dataset.

Figure 3.18: Model trained on 5 models tested on the same images from H36M, from left to
right (model trained on H36M, GPA, SURREAL, 3DPW, 3DHP).
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Figure 3.19: Model trained on 5 models tested on the same images from GPA, from left to
right (model trained on H36M, GPA, SURREAL, 3DPW, 3DHP).

Figure 3.20: Model trained on 5 models tested on the same images from SURREAL, from
left to right (model trained on H36M, GPA, SURREAL, 3DPW, 3DHP).
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Figure 3.21: Model trained on 5 models tested on the same images from 3DPW, from left to
right (model trained on H36M, GPA, SURREAL, 3DPW, 3DHP).

Figure 3.22: Model trained on 5 models tested on the same images from 3DHP, from left to
right (model trained on H36M, GPA, SURREAL, 3DPW, 3DHP).
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Chapter 4

Geometric Pose Affordance:

Monocular 3D Human Pose

Estimation with Scene Constraints

4.1 Introduction

Accurate estimation of human pose in 3D from image data would enable a wide range of

interesting applications in emerging fields such as virtual and augmented reality, humanoid

robotics, workplace safety, and monitoring mobility and fall prevention in aging populations.

Interestingly, many such applications are set in relatively controlled environments (e.g., the

home) where large parts of the scene geometry are relatively static (e.g., walls, doors, heavy

furniture). We are interested in the following question, “Can strong knowledge of scene

geometry improve our estimates of human pose from images?”.

Consider the images in Fig. 4.1 a. Intuitively, if we know the 3D locations of surfaces in the

scene, this should constrain our estimates of pose. Hands and feet should not interpenetrate
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Figure 4.1: a: Samples from our data set featuring scene constrained poses: stepping on the
stairs, sitting on the tables and touching boxes. b: Sample frame of a human interacting with
scene geometry, and visualization of the corresponding 3D scene mesh with captured human
pose. c: Motion capture setup. We simultaneously captured 3 RGBD and 2 RGB video
streams and ground-truth 3D pose from a VICON marker-based mocap system. Cameras are
calibrated with respect to a 3D mesh model of scene geometry.

scene surfaces, and if we see someone sitting on a surface of known height we should have

a good estimate of where their hips are even if large parts of the body are occluded. This

general notion of scene affordance 1 has been explored as a tool for understanding functional

and geometric properties of a scene [39, 31, 178, 85]. However, the focus of such work has

largely been on using estimated human pose to infer scene geometry and function.

Surprisingly, there has been little demonstration of how scene knowledge can constrain pose

estimation. Traditional 3D pose estimation models have explored kinematic and dynamic

constraints which are scene agnostic and have been tested on datasets of people freely

performing actions in large empty spaces. We posit one reason that scene constraints have

not been utilized is lack of large-scale datasets of annotated 3D pose in rich environments.

Methods have been developed on datasets like Human3.6M [52] and MPI-INF-3DHP [101],

which lack diverse scene geometry (at most one chair or sofa) and are generally free from

1“The meaning or value of a thing consists of what it affords.” -JJ Gibson (1979)
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scene occlusion. Recent efforts have allowed for more precise 3D pose capture for in-the-wild

environments [173] but lack ground-truth scene geometry, or provide scene geometry but lack

extensive ground-truth pose estimates [44].

Instead of tackling human pose estimation in isolation, we argue that systems should take

into account available information about constraints imposed by complex environments. A

complete solution must ultimately tackle two problems: (i) estimating the geometry and

free space of the environment (even when much of that free space is occluded from view),

(ii) integrating this information into pose estimation process. Tools for building 3D models

of static environments are well developed and estimation of novel scene geometry from

single-view imagery has also shown rapid progress. Thus, we focus on the second aspect

under the assumption that high-quality geometric information is available as an input to the

pose estimation pipeline.

The question of how to represent geometry and incorporate the constraints it imposes with

current learning-based approaches to modeling human pose is an open problem. There are

several candidates for representing scene geometry: voxel representations of occupancy [118]

are straightforward but demand significant memory and computation to achieve reasonable

resolution; Point cloud [11] representations provide more compact representations of surfaces

by sampling but lack topological information about which locations in a scene constitute free

space. Instead, we propose to utilize multi-layer depth maps [144] which provide a compact

and nearly complete representation of scene geometry that can be readily queried to verify

pose-scene consistency.

We develop and evaluate several approaches to utilize information contained in the multi-layer

depth map representation. Since multi-layer depth is a view-centered representation of

geometry, it can be readily incorporated as an additional input feature channel. We leverage

estimates of 2D pose either as a heatmap or regressed coordinate and query the multi-layer

depth map directly to extract features encoding local constraints on the z-coordinates of joints
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that can be used to predict geometry-aware 3D joint locations. Additionally, we introduce

a differentiable loss that encourages a model trained with such features to respect hard

constraints imposed by scene geometry. We perform an extensive evaluation of our multi-layer

depth map models on a range of scenes of varying complexity and occlusion. We provide both

qualitative and quantitative evaluation on real data demonstrating that these mechanisms for

incorporating geometric constraints improves upon scene-agnostic state-of-the-art methods

for 3D pose estimation.

To summarize our main contributions: 1. We collect and curate a unique, large-scale 3D

human pose estimation dataset with rich ground-truth scene geometry and a wide variety

of pose-scene interactions (see e.g. Fig. 4.1) 2. We propose a novel representation of scene

geometry constraints: multi-layer depth map, and explore multiple ways to incorporate

geometric constraints into contemporary learning-based methods for predicting 3D human

pose. 3. We experimentally demonstrate the effectiveness of integrating geometric constraints

relative to two state-of-the-art scene-agnostic pose estimation methods.

Dataset Frames Scenes Characteristics
HumanEva (2010) 80k ground plane marker-based pose and video
Human36M (2014) 3.6M chairs marker-based, human body scans
MPI-INF-3DHP (2017) 3k chairs, sofa marker-less, indoor and outdoor backgrounds
TotalCapture (2017) 1.9M ground plane marker-based pose, IMU and video
Surreal (2017) 6M ground plane synthetic renderings of CMU Mocap data
Ski-Pose (2018) 10k ski slope marker-less using multi-view 2D annotation
3DPW (2018) 51k in the wild IMU-based capture with mobile camera
GPA (2019) 0.7M boxes, chairs, stairs scene interaction, geometry ground-truth

Table 4.1: Comparison of existing datasets commonly used for training and evaluating 3D
human pose estimation methods. Previous datasets have primarily focused on capturing a
diverse range human motions, actions, abd subjects using optical markers and/or IMUs to
establish ground-truth pose. Our dataset focuses on interactions between humans and static
scene geometry and includes both ground-truth 3D pose and a complete description of the
scene geometry.
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4.2 Related Work

Motion capture for ground-truth 3D pose The work of [145] introduced one of the first

large-scale 3D human pose estimation datasets with synchronized images and ground-truth

3D keypoint locations. [52] scaled their dataset up to 3.6 million images covering a range

of subjects and actions along with depth images and 3D body scans of the human subjects.

To overcome the limitations of marker-based data collection such as constrained clothing

and capture environment, several marker-less approaches have also been used. [59] utilize an

indoor ”panoptic studio” to capture poses from 10 calibrated RGBD cameras. [101] utilized

multi-view marker-less capture to collect pose data for subjects wearing a variety of clothing

against both indoor and outdoor backgrounds. [134] utilized calibrated PTZ cameras and

human annotators to triangulate joint locations skiers over a large area of a ski-slope. [217]

also explores motion capture both indoor and outdoor using a Drone. Synchronized inertial

measurement sensor (IMU) data can be used to further enhance marker-less capture. [164]

develop an approach to fusing inertial measurement sensors with multi-view recording in a

studio environment. [101] use an IMU-based system along with a single synchronized mobile

camera video stream to capture 3D human pose ”in the wild”.

These data collection efforts have largely focused on covering a diverse range of poses and

actions, but actions take place in simple environments (i.e., an empty room) which minimize

occlusion and impose very few geometric affordance constraints on human pose. Recent ”in

the wild” markerless capture data such as [101] encompass much richer environments, but the

scene geometry is unknown. In contrast, our dataset provides gold-standard, marker-based

3D pose of subjects in richer environments with ground-truth scene geometry, offering a

controlled test-bed for research in 3D human pose estimation with rich geometric affordance.

[155] collects a dataset for grasping, with the markers placed both on hands and on bodies to

capture whole-body pose during grasping and object manipulation. This is complementary

to our dataset as it provides object geometry and grasping contacts while our dataset
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samples whole-body affordance. We provide a summary comparison of recent 3D human pose

estimation datasets in Table 4.1.

Modeling scene affordances The term “affordance” was coined by J Gibson [33] to

capture the notion that the meaning and relevance of many objects in the environment are

largely defined in relation to the ways in which an individual can functionally interact with

them. For computer vision, this suggests scenarios in which the natural labels for some types

of visual content may not be semantic categories or geometric data but rather functional

labels, i.e., which human interactions they afford. [39] present a human-centric paradigm

for scene understanding by modeling physical human-scene interactions. [31] rely on pose

estimation methods to extract functional and geometric constraints about the scene and

use those constraints to improve estimates of 3D scene geometry. [178] collects a large-scale

dataset of images from sitcoms which contains multiple images of the same scene with

and without humans present. Leveraging state-of-the-art pose estimation and generative

model to infer what kind of poses each sitcom scene affords. [85] build a fully automatic

3D pose synthesizer to predict semantically plausible and physically feasible human poses

within a given scene. [106] applies an energy-based model on synthetic videos to improve

both scene and human motion mapping. [9] construct a synthetic dataset utilizing a game

engine. They first sample multiple human motion goals based on a single scene image and 2D

pose histories, plan 3D human paths towards each goal, and finally predict 3D human pose

sequences following each path. Rather than labeling image content based on observed poses,

our approach is focused on estimating scene affordance directly from physical principles and

geometric data, and then subsequently leveraging affordance to constrain estimates of human

pose and interactions with the scene.

Our work is also closely related to earlier work on scene context for object detection. [48, 47]

used estimates of ground-plane geometry to reason about location and scales of objects in
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an image. More recent work such as [176, 24, 99] use more extensive 3D models of scenes

as context to improve object detection performance. Geometric context for human pose

estimation differs from generic object detection in that humans are highly articulated. This

makes incorporating such constraints more complicated as the resulting predictions should

simultaneously satisfy both scene-geometric and kinematic constraints.

Constraints in 3D human pose estimation Estimating 3D human pose from monocular

image or video is an ill-posed problem that can benefit from prior constraints. Recent

examples include [29] who model kinematics, symmetry and motor control using an RNN

when predicting 3D human joints directly from 2D key points. [196] propose an adversarial

network as an anthropometric regularizer. [175, 220] construct a graphical model encoding

priors to fit 3D pose reconstruction. [139, 13] first build a large set of valid 3D human poses

and treat estimation as a matching or classification problem. [1, 133] explore joint constraints

in 3D and geometric consistency from multi-view images. [215] improve joint estimation by

adding bone-length ratio constraints.

To our knowledge, there is relatively little work on utilizing scene constraints for 3D human

pose. [203] utilize an energy-based optimization model for pose refinement which penalizes

ankle joint estimates that are far above or below an estimated ground-plane. The recent work

of [44] introduces scene geometry penetration and contact constraints in an energy-based

framework for fitting parameters of a kinematic body model to estimate pose. In our work,

we explore a complementary approach which uses CNN-based regression models that are

trained to directly predict valid pose estimates given image and scene geometry as input.
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4.3 Geometric Pose Affordance Dataset (GPA)

To collect a rich dataset for studying interaction of scene geometry and human pose, we

designed a set of action scripts performed by 13 subjects, each of which takes place in one of

6 scene arrangements. In this section, we describe the dataset components and the collection

process.

Figure 4.2: The 5 camera views from the same scene with the first 3 layers of corresponding
multi-layer depth map (for visualization clarity, we plot inverse depth). 2nd column corre-
sponds to a traditional depth map, recording the depth of the first visible surface in the scene
from the camera viewpoint of 1st column. 3rd column is when the multi-hit ray leaves the
first layer of objects (e.g. the backside of the boxes). 4th column is when the multi-hit ray
hits another object.
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4.3.1 Human Poses and Subjects

We designed three action scripts that place emphasis on semantic actions, mechanical dynamics

of skeletons, and pose-scene interactions. We refer to them as Action, Motion, and Interaction

Sets respectively. The semantic actions of Action Set are constructed from a subset of

Human3.6M [52], namely, Direction, Discussion, Writing, Greeting, Phoning, Photo, Posing

and Walk Dog to provide a connection for comparisons between our dataset and the de facto

standard benchmark. Motion Set includes poses with more dynamic range of motion, such

as running, side-to-side jumping, rotating, jumping over obstacles, and improvised poses

from subjects. Interaction Set mainly consists of close interactions between body parts and

surfaces in the scene to support modeling geometric affordance in 3D. There are three main

poses in this group: Sitting, Touching, Standing on, corresponding to typical affordance

relations Sittable, Walkable, Reachable [31, 39]. The 13 subjects included 9 males and 4

female with roughly the same age and medium variations in heights approximately from

155cm to 190cm, giving comparable subject diversity to Human3.6M.

4.3.2 Image Recording and Motion Capture

This motion capture studio layout is also illustrated in Fig. 4.1 c. We utilized two types

of camera, RGBD and RGB, placed at 5 distinct locations in the capture studio. All 5

cameras have a steady 30fps frame rate but their time stamps are only partially synchronized,

requiring additional post-processing described below. The color sensors of the 5 cameras

have the same 1920x1080 resolution and the depth sensor of the Kinect v2 cameras has a

resolution at 640x480. The motion capture system was a standard VICON system with

28 pre-calibrated cameras covering the capture space which are used to estimate the 3D

coordinates of IR-reflective tracking markers attached to the surface of subjects and objects.
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Figure 4.3: Overview of model architecture: we use ResNet-50 as our backbone to extract
features from a human centered cropped image. The feature map is used to predict 2D
joint location heatmaps and is also concatenated with encoded multi-layer depth map. The
concatenated feature is used to regress the depth (z-coordinate) of each joint. The model is
trained with a loss on joint location (joint regression loss) and scene affordance (geometric
consistency loss). The 2d joint heatmaps are decoded to x,y joint locations using an argmax.
The geometric consistency loss is described in more detail in Fig 4.6 (a) and Section 4.2.

4.3.3 Scene Layouts

Unlike previous efforts that focus primarily on human poses without other objects present

(e.g. [52, 101]), we introduced a variety of scene geometries with arrangements of 9 cuboid

boxes in the scene. The RGB images captured from 5 distinct viewpoints exhibit substantially

more occlusion of subjects than existing datasets (as illustrated in Fig 4.1 and Fig 4.2) and

constrain the set of possible poses. We captured 1 or 2 subjects interacting with each scene

and configured a total of 6 distinct scene geometries.

To record static scene geometry, we measured physical dimension of all the objects (cuboids)

as well as scanning the scene with a mobile Kinect sensor. We utilized additional motion-

capture markers attached to the corners and center face of each object surface so that we

could easily align geometric models of the cuboids with the global coordinate system of

the motion capture system. We also use the location of these markers, when visible in the

RGB capture cameras, in order to estimate extrinsic camera parameters in the same global

coordinate system. This allows us to quickly create geometric models of the scene which are

well aligned to all calibrated camera views and the motion capture data.
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Figure 4.4: Illustration of multi-layer depth map. For each image pixel we record the depth
of all surface intersections along the view ray (e.g., D1, D2, D3, D4, D5 ).

4.3.4 Scene Geometry Representation

Mesh models of each scene were initially constructed in global coordinates using modeling

software (Maya) with assistance from physical measurements and reflective markers attached

to scene objects. To compactly represent the scene geometry from the perspective of a

given camera viewpoint, we utilize a multi-layer depth map. Multi-layer depth maps are

defined as a map of camera ray entry and exit depths for all surfaces in a scene from a given

camera viewpoint (illustrated in Fig 4.4). Unlike standard depth-maps which only encode

the geometry of visible surfaces in a scene (sometimes referred to as 2.5D), multi-layer depth

provides a nearly2 complete, viewer-centered description of scene geometry which includes

occluded surfaces.

The multi-layer depth representation can be computed from the scene mesh model by

performing multi-hit ray tracing from a specified camera viewpoint. Specifically, the multi-hit

ray tracing sends a ray from the camera center towards a point on the image plane that

corresponds to the pixel at (x, y) and outputs distance values {t1, t2, t3, ..., tk} where k is the

total number of polygon intersections along the ray. Given a unit ray direction r and camera

viewing direction v, the depth value at layer i is Di(x, y) = tir · v if i <= k and Di(x, y) = ∅
2Surfaces tangent to a camera view ray are not represented

83



if i > k. In our scenes, the number of multi-layer depth maps is set to 15 which suffices to

cover all scene surfaces in our dataset. We visualize 5 camera viewpoints together with first 3

layers of depth map in the same scene in Fig 4.2.

4.3.5 Data Processing Pipeline

The whole data processing pipeline includes validating motion capture pose estimates, camera

calibration, joint temporal alignment of all data sources, and camera calibration. Unlike

previous marker-based mocap datasets which have few occlusions, many markers attached to

the human body are occluded in the scene during our capture sessions due to scene geometry.

We spent 4 months on pre-processing with help of 6 annotators in total. There are three

stages of generating ground truth joints from recorded VICON sessions: (a) recognizing

and labeling recorded markers in each frame to 53 candidate labels which included three

passes to minimize errors; (b) applying selective temporal interpolation for missing markers

based on annotators’ judgement. (c) removing clips with too few tracked markers. After

the annotation pipeline, we compiled recordings and annotations into 61 sessions captured

at 120fps by the VICON software. To temporally align these compiled ground-truth pose

streams to image capture streams, we first had annotators to manually correspond 10-20

pose frames to image frames. Then we estimated temporal scaling and offset parameters

using RANSAC [30], and regress all timestamps to a single global timeline.

The RGB camera calibration was performed by having annotators mark corresponding image

coordinates of visible markers (whose global 3D coordinates are known) and estimating

extrinsic camera parameters from those correspondences. We performed visual inspection

on all clips to check that the estimated camera parameters yield correct projections of 3D

markers to their corresponding locations in the image. With estimated camera distortion

parameters, we correct the radial and lens distortions of the image so that they can be
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treated as projections from ideal pinhole cameras in later steps. Finally, the scene geometry

model was rendered into multi-layer depth maps for each calibrated camera viewpoint. We

performed visual inspection to verify that the depth edges in renderings were precisely aligned

with object boundaries in the RGB images.

After temporal and geometric calibration, we generated a unified dataset by using an adaptive

sampling approach to select non-redundant frames. We consider frames with sufficiently

different poses from adjacent ones as “interesting”. Here, the measure of difference between

two skeleton poses is defined as the 75th percentile of L2 distances between corresponding

joints (34 pairs per skeleton pair). This allows us to retain frames where only a few body

parts moved significantly while being robust to inter-frame differences due to noise or missing

markers. With the measure of difference defined, we select the frames by choosing the change

threshold as the 55th percentile, retaining 45% of total frames from the original sequences.

This final dataset, which we call Geometric Pose Affordance (GPA) contains 304.9k images,

each with corresponding ground-truth 3D pose and scene geometry3.

4.3.6 Dataset Visualization and Statistics

A video demonstrating the output of this pipeline is available online 4. The video shows

the full frame and a crop with ground-truth joints/markers overlayed, for 10 sample clips

from the ’Action’ and ’Motion’ sets. The video also indicates various diagnostic metadata

including the video and mocap time stamps, joint velocities, and number of valid markers

(there are 53 markers and 34 joints for VICON system). Since we have an accurate model

of the scene geometry, we can also automatically determine which joints and markers are

occluded from the camera viewpoint.

Fig. 4.5 summarizes statistics on the number of occluded joints as well as the distribution of

3The dataset is available online: https://wangzheallen.github.io/GPA
4Video Link: https://youtu.be/ZRnCBySt2fk
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Figure 4.5: Top: Distribution of the number of joints occluded in training and testing frames.
Bottom: Distribution of the index of the depth layer closest to each pose. High index layers,
which often correspond to hidden surfaces such as the bottom side of platforms, seldom
constrain pose.

which multi-depth layer is closest to a joint. While the complete scene geometry requires 15

depth layers, as the figure shows only the first 5 layers are involved in 90% of the interaction

between body joints and scene geometry. The remaining layers often represent surfaces which

are inaccessible (e.g., bottoms of cuboids).

4.4 Geometry-aware Pose Estimation

We now introduce two approaches for incorporating geometric affordance in CNN-based pose

regression, building on the baseline architecture of [215]. Given an image I of a human
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subject, we aim to estimate the 3D human pose represented by a set of 3D joint coordinates

of the human skeleton, P ∈ RJ×3 where J is the number of joints. We follow the convention

of representing each 3D coordinate in the local camera coordinate system associated with I.

The first two coordinates are given by image pixel coordinates and the third coordinate is the

joint depth in metric coordinates (e.g., millimeters) relative to the depth of a specified root

joint. We use PXY and PZ respectively as short-hand notations for the components of P .

4.4.1 Pose Estimation Baseline Model

We adopt one popular ResNet-based network described by [190] as our 2D pose estimation

module. The network output is a set of low-resolution heat-maps Ŝ ∈ R64×64×J , where each

map Ŝ[:, :, j] can be interpreted as a probability distribution over the j-th joint location. At

test time, the 2D prediction P̂XY is given by the most probable (argmax) locations in S.

This heat-map representation is convenient as it can be easily combined (e.g., concatenated)

with the other spatial feature maps. To train this module, we utilize squared error loss

ℓ2D(Ŝ|P ) = ∥Ŝ −G(PXY )∥2 (4.1)

where G(·) is a target distribution created from ground-truth P by placing a Gaussian with

σ = 3 at each joint location.

To predict the depth of each joint, we follow the approach of [215], which combines the 2D

joint heatmap and the intermediate feature representations in the 2D pose module as input

to a joint depth regression module (denoted ResNet in the experiments). These shared

visual features provide additional cues for recovering full 3D pose. We train with a smooth ℓ1

loss [131] given by:
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ℓ1s(P̂ |P ) =


1
2
∥P̂Z − PZ∥2 ∥P̂Z − PZ∥ ≤ 1

∥P̂Z − PZ∥ − 1
2

o.w.

(4.2)

Alternate baseline: We also evaluated two alternative baseline architectures. First, we

used the model of [98] which detects 2D joint locations and then trains a multi-layer perceptron

to regress the 3D coordinates P from the vector of 2D coordinates PXY . We denote this

simple lifting model as SIM in the experiments. To detect the 2D locations we utilized the

ResNet model of [190] and also considered an upper-bound based on lifting the ground-truth

2D joint locations to 3D. Second, we trained the PoseNet model proposed in [107] which

uses integral regression [151] in order to regress pose from the heat map directly.

4.4.2 Geometric Consistency Loss and Encoding

To inject knowledge of scene geometry we consider two approaches, geometric consistency loss

which incorporates scene geometry during training, and geometric encoding which assumes

scene geometry is also available as an input feature at test time.

Geometric consistency loss: We design a geometric consistency loss (GCL) that specif-

ically penalizes errors in pose estimation which violate scene geometry constraints. The

intuition is illustrated in Fig. 4.6. For a joint at 2D location (x, y), the estimated depth z

should lie within one of a disjoint set of intervals defined by the multi-depth values at that

location.

To penalize a joint prediction P j = (x, y, z) that falls inside a region bounded by front-back

surfaces with depths Di(x, y) and Di+1(x, y) we define a loss that increases linearly with the
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penetration distance inside the surface:

ℓG(i)(P̂
j|D) = min(max(0, P̂ j

Z −Di(P̂
j
XY )), max(0, Di+1(P̂

j
XY )− P̂ j

Z)) (4.3)

Our complete geometric consistency loss penalizes predictions which place any joint inside

the occupied scene geometry

ℓG(P̂ |D) =
∑
j

max
i∈{0,2,4,...}

ℓG(i)(P̂
j|D) (4.4)

Assuming {Di} is piece-wise smooth, this loss is differentiable almost everywhere and hence

amenable to optimization with stochastic gradient descent. The gradient of the loss “pushes”

joint location predictions for a given example to the surface of occupied volumes in the scene.

Encoding local scene geometry: When scene geometry is available at test time (e.g.,

fixed cameras pointed at a known scene), it is reasonable to provide the model with an

encoding of the scene geometry as input. Our view-centered multi-depth representation of

scene geometry can be naturally included as an additional feature channel in a CNN since

it is the same dimensions as the input image. We considered two different encodings of

multi-layer depth. (1) We crop the multi-layer depth map to the input frame, re-sample to

the same resolution as the 2D heatmap using nearest-neighbor interpolation, and offset by

the depth of the skeleton root joint. (2) Alternately, we consider a volumetric encoding of the

scene geometry by sampling 64 depths centered around the root joint using a range based on

the largest residual depth between the root and any other joint seen during training (approx.

+/− 1m). For each (x, y) location and depth, we evaluate the geometric consistency loss ℓG

at that point. This resulting encoding is of size H ×W × 64 and encodes the local volume

occupancy around the pose estimate.

For the joint depth regression-based models (ResNet-*) we simply concatenated the encoded

89



OR

OR

Geometric Consistency Loss
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Figure 4.6: (a) is the illustration of the geometry consistency loss as a function of depth
along a specific camera ray corresponding to a predicted 2D joint location. In (b) the green
line indicates the ray corresponding to the 2D location of the right foot. Our multi-depth
encoding of the scene geometry stores the depth to each surface intersection along this ray
(i.e., the depth values Z0, Z1, Z2, Z3, Z4). Valid poses must satisfy the constraint that the
joint depth falls in one of the intervals: ZJ < Z0 or Z1 < ZJ < Z2 or Z3 < ZJ < Z4. The
geometric consistency loss pushes the prediction ZJ towards the closest valid configuration
along the ray, ZJ = Z2 .

multi-depth as additional feature channels. For the lifting-based models (SIM-*), we query

the multi-depth values at the predicted 2D joint locations and use the results as additional

inputs to the lifting network.

In our experiments we found that the simple and memory efficient multi-layer depth encoding

(1) performed the same or better than volumetric encoding with ground-truth root joint

offset. However, the volumetric encoding (2) was more robust when there was noise in the

root joint depth estimate.

90



4.4.3 Overall Training

Combining the losses in Eq. 4.1, 4.2, and 4.4, the total loss for each training example is

ℓ(P̂ , Ŝ|P,D) = ℓ2D(Ŝ|P ) + ℓ1s(P̂ |P ) + ℓG(P̂ |P,D)

We follow [215] and adopt a stage-wise training approach: Stage 1 initializes the 2D pose

module using 2D annotated images (i.e., MPII dataset); Stage 2 trains the 3D pose estimation

module, jointly optimizing the depth regression module as well as the 2D pose estimation

module; Stage 3 of training adds the geometry-aware components (encoding input, geometric

consistency loss) to the modules trained in stage 2.

Set Number of Images

Full Test Set 82,378

Action 44,102
Motion 22,916

Interaction 15,360

Cross Subject (CS) 58,882
Cross Action (CA) 23,496

Occlusion 7,707
Close-to-Geometry (C2G) 1,727

Table 4.2: Numbers of frames in each test subset. We evaluate performance on different
subsets of the test data split by the scripted behavior (Action/Motion/Interaction), subjects
that were excluded from the training data (cross-subject) and novel actions (cross-action).
Finally, we evaluate on a subset with significant occlusion (Occlusion) and a subset where
many joints were near scene geometry (Close-to-Geometry).

4.5 Experiments

Training data: Our Geometric Pose Affordance (GPA) dataset has 304.8k images of which

82k images are used for held-out test evaluation. In addition, we use the MPII dataset [2],

a large scale in-the-wild human pose dataset for training the 2D pose module. It contains
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25k training images and 2,957 validation images. For the alternative baseline model (SIM),

we use the MPII pre-trained ResNet [190] to detect the 2D key points. We also evaluate

performance when using the ground truth 2D human pose, which serves as an upper-bound

for the lifting-based method [98].

Implementation details: We take a crop around the skeleton from the original 1920×1080

image and isotropically resize to 256 × 256, so that projected skeletons have roughly the

same size. Ground-truth target 2D joint location are adjusted accordingly. For ResNet-based

method, following [215], the ground truth depth coordinates are normalized to [0, 1]. The

backbone for all models is ResNet-50 [46]. The 2D heat map/depth map spatial resolution is

64 × 64 with one output channel per joint. For test time evaluation, we scale each model

prediction to match the average skeleton bone length observed in the training. Models are

implemented in PyTorch with Adam as the optimizer. For the lifting-based method we use

the same process as above to detect 2D joint locations and train the lifting network using

normalized inputs and outputs by subtracting mean and dividing the variance for both 2D

input and 3D ground-truth following [98].

Evaluation metrics: Following standard protocols defined in [101, 52], we consider two

evaluation metrics for experiments: MPJPE (mean per-joint position error) and the 3DPCK

(percent correctly localized keypoints) with a distance threshold of 150 mm. In computing

the evaluation metrics, root-joint-relative joint locations are evaluated according to the each

method original paper evaluation protocol.

Evaluation subsets: In addition to the three subsets – Action, Motion, and Interaction –

that are inherited from the global split of the dataset based on script contents, we also report

test performance on 4 other subsets of the test data: cross-subject (CS), cross-action (CA),

occlusion, and close-to-geometry (C2G). These are non-orthogonal splits of the test data
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Figure 4.7: We adopt Grabcut [140] and utilize the ground truth (joints, multi-layer depth,
and markers) we have to segment subjects from background. If the joints and markers are
occluded by the first-layer of multi-layer depth, we set them as background, otherwise they
are set as foreground in grabcut algorithm.

which allow for finer characterizations of model performance and generalization in various

scenarios: (1) CS subset includes clips from held-out subjects to evaluate generalization

ability on unseen subjects and scenes; (2) CA subset includes clips of held-out actions from

same subjects from the training set; (3) Occlusion subset includes frames with significant

occlusions (at least 10 out of 34 joints are occluded by objects); (4) Close-to-geometry subset

includes frames where subjects are close to objects (i.e. at least 8 joints have distance less

than 175 mm to the nearest surface).

Statistics of these testing subsets are summarized in Table 4.2.

Ablative study: To demonstrate the contribution of each component, we evaluate four

variants of each model: the baseline models ResNet / SIM-P / SIM-G where G stands

for ground-truth 2D joint input while P stands for predicted 2D joint input; ResNet-E

/ SIM-P-E / SIM-G-E / PoseNet-E , models with encoded scene geometry input;
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Figure 4.8: Distribution of prediction error (MPJPE) for ResNet-F and the baseline on the
close-to-geometry test set. Examples are sorted in increasing order of baseline MPJPE (red)
with corresponding ResNet-F performances (GCL + encoding, in blue). We also highlight 3
qualitative results, from left to right: (a) case shows ResNet-F improve over the baseline with
respect to the depth prediction. (b,c) cases show ResNet-F improves over the baseline in all
x, y, z axes. Furthermore, (b) demonstrates ResNet-F can even resolve ambiguity under heavy
occlusions with the aid of geometry information. We show the image with the estimated 2D
pose (after cropping), 1st layer of multi-layer depth map and whether the joint is occluded or
not. Legend: hollow circles: occluded joints; solid dots: non-occluded joints; dotted lines:
partially/completely occluded body parts; solid lines: non-occluded body parts.

ResNet-C / SIM-P-C / SIM-G-C / PoseNet-C, the models with geometric consistency

loss (GCL); ResNet-F / SIM-P-F / SIM-G-F /PoseNet-F, our full model with both

encoded geometry priors and GCL.

4.5.1 Baselines

To evaluate the difficulty of the GPA and provide context, we trained and evaluated a variety

of recently proposed architectures for pose estimation including: DOPE [186], Simple baseline

[98], ResNet-Baseline [215], PoseNet [107], and I2L [108]. As data and code for training

DOPE was not available, we evaluated their released model. To account for systematic

differences in the body joint definitions, we utilized the average of hip joints as the DOPE

coordinate origin (H36M-based models typically use the pelvis root joint as the origin). For

94



MPJPE Baseline ResNet-E ResNet-C ResNet-F

Full 96.6 94.6 95.4 94.1

Action 97.2 95.8 96.6 95.1
Motion 99.6 97.0 97.9 96.5
Interaction 89.7 87.5 88.3 87.4

CS 99.4 98.1 98.8 97.8
CA 89.2 85.8 86.7 85.6

Occlusion 120.5 116.1 117.9 115.1
C2G 118.1 113.2 116.3 111.5

Table 4.3: Prediction error (MPJPE) for ResNet-based models over the full test set as
well as different test subsets. Our proposed geometric encoding (ResNet-E) and geometric
consistency loss (ResNet-C) each contribute to the performance of the full model (ResNet-F).
Most significant reductions in error are for subsets involving significant interactions with
scene geometry (Occlusion,C2G)

MPJPE Baseline PoseNet-E PoseNet-C PoseNet-F

Full 62.8 62.3 62.5 62.0
C2G 69.8 69.1 69.0 68.5

Full 78.8 78.5 78.2 78.1
C2G 91.9 91.4 91.6 89.4

Table 4.4: Prediction error (MPJPE) for ResNet-based models over the full test set as
well as different test subsets. Our proposed geometric encoding (PoseNet-E) and geometric
consistency loss (PoseNet-C) each contribute to (PoseNet-F).

Method Full set C2G

Lifting [98] 91.2 112.8
ResNet-Baseline [215] 96.6 118.1
PoseNet [107] 62.8 70.7
I2L [108] 68.1 80.4
DOPE [186] 126.0 150.2

PoseNet (masked background) 64.4 78.7

Ours (PoseNet-F) 62.0 68.9

Table 4.5: We evaluated MPJPE (mm) for several recently proposed state-of-the-art architec-
tures on our dataset. All models except DOPE were tuned on GPA training data. We also
trained and evaluated PoseNet on masked data (see Fig. 7) to limit implicit learning of scene
constraints.
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Dataset tested on / trained on GPA H36M

H36M [52] 118.8 61.4
GPA 62.8 110.9
SURREAL [171] 126.2 142.4
3DPW [173] 125.5 132.5
3DHP [101] 150.9 154.0

Table 4.6: PoseNet models trained on our GPA dataset generalize well to other test datasets,
outperforming models trained on H36M despite ∼ 30% fewer training examples [182]. We
attribute this to the greater diversity of poses, occlusions and scene interactions present in
GPA.

PCK3D Baseline ResNet-E ResNet-C ResNet-F

Full 81.9 82.5 82.3 82.9

Action 81.4 81.8 81.6 82.0
Motion 80.7 81.5 81.6 82.0
Interaction 85.2 86.0 85.7 86.1

CS 81.3 81.7 81.5 82.0
CA 83.6 84.7 84.5 84.8

Occlusion 72.2 73.9 73.7 74.2
C2G 71.4 73.7 72.1 74.7

Table 4.7: Localization accuracy (PCK3D) follows similar trends to the mean errors reported
in Table 4.3.

96



the other architectures, we train and test on the GPA dataset following the original authors’

hyperparameter settings. The results are illustrated in Table 4.5. We can see a range of

performance across different architectures, ranging from 62.8 to 91.2 mm in MPJPE metric.

Our full model built on the PoseNet architecture achieves the lowest estimation error.

We break down the performance of the ResNet-based joint regression baseline on different

subsets of data in Table 4.3. We also list the corresponding PCK3D in Table 4.7, which

follows a similar pattern. The motion, occlusion and close-to-geometry subsets prove to be

the most challenging as they involve large numbers of frames where subjects interact with

the scene geometry.

Cross-dataset Generalization We find that pose estimators show a clear degree of over-

fitting to the specific datasets on which they are trained on [182]. To directly verify whether

the model trained on GPA generalizes to other datasets, we trained the high-performing

PoseNet architecture using GPA and MPII [2] data, and tested on several popular benchmarks:

SURREAL [171], 3DHP [101], and 3DPW [173]. To evaluate consistently across test datasets,

we only consider error on a subset of 14 joints which are common to all. The MPJPE (mm) is

illustrated in Table 4.6. We can see the model trained on GPA generalizes to other datasets

with similar or better generalization performance compared to the H36M trained variant.

This is surprising since H36M train is roughly 30% larger. We attribute this to the greater

diversity of scene interactions, poses and occlusion patterns available in GPA train.

4.5.2 Effectiveness of geometric affordance

From Table 4.3 we observe that incorporating geometric as an input (ResNet-E) and penal-

izing predictions that violate constraints during training (ResNet-C) both yield improved

performance across all test subsets. Not surprisingly, the full model (ResNet-F) which is

97



trained to respect geometric context provided as an input achieves the best performance.

We can see from Table 4.3 that the full model, ResNet-F decreases the MPJPE by 2.1mm

over the whole test set. Among 4 subsets, the most significant improvement comes on the

occlusion and close-to-geometry subsets. Our geometry-aware method decreases MPJPE in

occlusion and C2G set by 5.4mm / 6.6mm and increase the PCK3D about 2% / 3%. Similar

results hold for the SIM model. The MPJPE is reduced when using either the predicted

(SIM-P-F) or ground-truth 2D joint locations (SIM-P-F) by 3mm and 3.6mm respectively

(PCK3D improves 1.2% and 1.1%). The improvement from SIM-G model is overall larger

than SIM-P model due to the more accurate 2D location and better geometry information

provided to the network.

Controlling for Visual Context One confounding factor in interpreting the power of

geometric affordance for the ResNet-based model is that while the baseline model doesn’t use

explicit geometric input, there is a high degree of visual consistency between the RGB image

and the underlying scene geometry (e.g., floor is green, boxes are brighter white on top than

on vertical surfaces). As a result, the baseline model may well be implicitly learning some of

the scene geometric constraints from images alone and consequently decreasing the apparent

size of the performance gap.

To further understand whether the background pixels are useful or not for 3D pose estimation,

we utilize Grabcut [140] to mask out background pixels. Specifically, we label the pixel

belonging to markers, joints that are not occluded by the first-layer of multi-layer depth

map as foreground, and occluded ones as background. Additionally, we dilate the skeleton

constructed by all the joints and markers, use the inverse area as background area. We

send these labels together with the image to OpenCV implementation Grabcut and get the

foreground mask. We set the background color as green for better visualization as shown

in Fig 4.7. We use the model [107], and train and test on the masked background images.
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MPJPE (mm) Predicted Root Ground Truth Root

C2G Full C2G Full

ResNet 118.1 96.5

ResNet-E 116.0 95.4 113.2 94.6

ResNet-F 115.1 94.7 111.5 94.1

SIM-P-B 112.8 91.2

SIM-P-E 106.9 89.2 105.2 89.1

SIM-P-F 105.1 88.9 104.2 88.2

SIM-G-B 79.8 68.2

SIM-G-E 76.3 65.3 74.2 64.8

SIM-G-F 74.9 65.0 72.8 64.6

Table 4.8: The root joint depth is needed to offset the multi-layer depth map when encoding
the scene geometry for relative pose estimation. Inaccurate root joint prediction limits but
does not eliminate the benefits of the geometric encoding.

We observe increased error on C2G from 70.7 mm to 78.7 mm MPJPE, which suggests that

baseline models do take significant advantage of visual context in estimating pose.

Errors by joint type: We partition the 16 human joints into the limb joints which are more

likely to be interacting with scene geometry (out group) and the torso and hips (in group).

The performance on these two subsets of joints as well as individual joints is illustrated for

the SIM model in Table 4.9. This verifies our assumption that limb joint estimation (wrist,

elbow, knees, ankles) benefits more from incorporating geometric scene affordance.

Error in predicted root joint: Since our models predict joint depths relative to the

root joint, it is necessary to offset the multi-layer depth map values when encoding them

as input. To make our evaluation more realistic, we also evaluated models using predicted

root joint locations instead of using the ground-truth. To estimate the (absolute) root joint

depth, we utilize the model and training procedure from [107] which estimates root joint

depth based on the person bounding-box size and image features. This yields a mean root

position error (MRPE) of 136.6mm with a mean z-coordinate (depth) error of 116.8mm and

x- and y-coordinate errors of 41.6mm and 35.2mm respectively. Table 4.8 shows the result of
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MPJPE (mm) SIM-G SIM-G-F SIM-P SIM-P-F

righthip 17.1 15.5 22.5 20.7

lefthip 17.3 15.8 22.9 21.4

spine1 48.3 44.9 63.5 62.4

head 55.1 51.7 70.4 69.0

rightshoulder 58.5 54.1 75.9 74.2

leftshoulder 61.0 56.7 78.7 75.4

leftknee 64.1 60.6 88.9 84.9

rightknee 64.6 61.3 91.8 87.2

rightelbow 81.4 75.1 108.5 103.6

leftforeelbow 84.5 81.8 104.1 102.9

neck 86.1 81.3 102.0 98.8

rightankle 86.6 83.2 127.5 122.1

leftankle 88.9 86.2 131.0 125.8

rightwrist 102.5 96.1 140.1 135.7

leftwrist 107.1 104.8 138.5 138.3

in-group 49.1 45.7 62.4 60.3

out-group 85.0 81.1 116.3 112.6

all joints 68.2 64.6 91.2 88.2

Table 4.9: Performance of the lifting network-based model [98] broken down by individual
joints and joint subsets. Baseline prediction error is higher for extremities (e.g., wrists and
ankles) which are inherently more difficult to localize. These same joints typically show the
largest reduction in error from introducing geometric context.

using this predicted root joint depth during encoding to offset the multi-depth map. Using

predicted depth results in a loss of performance of about 1% over the three methods (with

the largest effect for ResNet) but does not eliminate the benefits of geometric context.

Computational Cost: We report the average runtime over 10 randomly sampled images

on a single 1080Ti in Table 4.10. Timings for SIM do not include 2D keypoint detection.

For comparison, we also include the run time for the PROX model of [44] which uses an

optimization-based approach to perform geometry-aware pose estimation.

Qualitative results: We show qualitative examples that high-light interaction with ge-

ometry in Fig 4.8 along with the distributions of the mean prediction error for the baseline

and ResNet-F model over the close2geometry subset. The geometry aware model is able
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Method Average Run Time

SIM [98] 0.57 ms

SIM-F 0.64 ms

ResNet [215] 0.29 s

ResNet-F 0.36 s

PROX [44] 47.64 s

Table 4.10: We compare the running time for our baseline backbone, our method, and another
geometry-aware 3D pose estimation method PROX [44] averaged over 10 samples evaluated
on a single GPU.

to show most improvement for hard examples where the baseline error is large. Further

visualization of model predictions along with scene geometry encodings are shown in Fig

4.9. These examples demonstrate that ResNet-F has better accuracy in both xy localization

and depth prediction and is often able to resolve ambiguity under heavy occlusion where the

baseline fails.

4.6 Discussion and Conclusion

In this work, we introduce a large-scale dataset for exploring geometric pose affordance

constraints. The dataset provides multi-view imagery with gold-standard 3D human pose and

scene geometry, and features a rich variety of human-scene interactions. We propose using

multi-layer depth as a concise camera-relative representation for encoding scene geometry, and

explore two effective ways to incorporate geometric constraints into training in an end-to-end

fashion. There are, of course, many alternatives for representing geometric scene constraints

which we have not yet explored. We hope the availability of this dataset will inspire future

work on geometry-aware feature design and affordance learning for 3D human pose estimation.

Broadly speaking, our techniques for encoding geometry yielded only modest reductions joint

localization error (∼ 2− 6% depending on the base model). We might have hoped for greater

gains, but we expect that even the baseline models are implicitly learning something about
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Figure 4.9: Visualization of the input images with the ground truth pose overlaid in the
same view (blue and red indicate right and left sides respectively). Columns 2-4 depict the
first 3 layers of multi-layer depth map. Column 5 is the baseline model prediction overlaid
on the 1st layer multi-layer depth map. Column 6 is the ResNet-F model prediction. The
red rectangles highlight locations where the baseline model generates pose predictions that
violate scene geometry or are otherwise improved by incorporating geometric input.

scene constraints that are common across our dataset. Indeed, masking out the background

yielded an ∼ 11% increase in baseline error. There has been substantial success in training

models that predict scene depth (2.5D) from monocular RGB inputs [25, 15] as well as full
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3D representations such as voxels [147, 166] or multilayer depth [144]. This suggests that

when geometric supervision is available, it may be useful to explore training systems that

jointly estimate scene structure and 3D human pose in a multi-task setup.

In our experiments we focused on a setting where the scene geometric constraints were

available as input and highly accurate. While such prior knowledge is not available in general

(e.g., for a random photo on the web), we believe such data is readily accessible in many

practical scenarios. The successful development of robust structure from motion, SLAM,

and specialized stereo or time-of-flight depth sensors makes geometric scene information

increasingly prevalent and easy to acquire. Assuming known camera and scene geometry as

input appears practical in commercial applications where, e.g. robots navigate a well-mapped

environment interacting with people or fixed cameras monitor human activity in a static

workspace. We expect finding better techniques to incorporate such “side information” will

offer a way to improve cross-scene/cross-dataset generalization and avoid some of the common

over-fitting we currently observe when training and testing on individual datasets.
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Chapter 5

Combining Model-based and

Nonparametric Approaches for 3D

Human Body Estimation

5.1 Introduction

The 3D estimation of the human body pose and shape from a monocular image is a fundamental

task for various applications such as VR/AR, virtual try-on, metaverse and animations. It

is challenging mostly due to the depth ambiguity and lack of evidence from single image.

There are several ways to solve this ambiguity such as leveraging multi-view or video data

to fuse image evidence from more images and infer occluded parts. For the case of single

images, researchers used parametric models such as SMPL [92] to fit 2D image evidence [68]

or use human pose prior [61, 116, 64] to penalize problematic human pose / mesh prediction

in combination with modern deep learning techniques. However, these model-based methods

are prone to produce corrupted results when severe occlusion happens.
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Nonparametric methods use non-compressed representations like voxels [118], heatmaps [108]

and joint location [151, 88, 89] as the target for modern deep learning. However, to estimate

dense meshes they are computationaly expensive and consume lots of memory. They either

use integral methods to estimate normalized joint location [108] or simplify meshes [89]

to reduce the number of vertices. Without post-processing, these methods also generate

qualitatively non-pleasing results. The dense correspondence methods [206, 205, 207], which

are based on template SMPL human mesh surface and have been proven for various tasks.

Connecting nonparametric methods and model-based methods is hard due to the difficulty in

localizing the corresponding feature. [38, 209, 108] utilize bounding boxes or keypoints location

to find the related features to estimate necessary SMPL parameters. While [65, 88] learn the

feature-parameter correspondence (attention) implicitly through neural networks. [205, 208]

consider the correspondence between the mesh representation and pixel representation based

on human surface mapping (UV coordinate system). However, they estimate the SMPL

parameter through a light weight FC network and treat this simple optimization process as a

post process. Their methods also do not convey the advantages of nonparametric methods

such as robustness to occlusion.

To leverage the advantages from both worlds, we propose a 3D human body estimation

framework that consists of three modules: Dense Map Prediction module (DMP), Inverse

Kinematics module (IK ) and UV Inpainting module (UVI ). DMP explicitly predicts per-pixel

human 3D joint location, 3D surface location in root relative coordinates, 3D displacement

between the joint location and surface location, and also predicts UV coordinates which

represent the human surface in a 2D grid. This module is robust to partial occlusion when

predicting joint, as all the image evidence belongs to this part will contribute to the prediction

explicitly. IK module connects the nonparametric prediction to model-based method. We

first warp the DMP dense prediction to UV space and get the joint prediction based on the

part-segmentation in UV space. Then we use a two-stage multi-layer perceptron, where the
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first stage inpaints and refines the joint prediction, while the second stage estimates SMPL

parameters and eventually produces a posed mesh. With all the predictions in UV space

from DMP and IK, UVI inpaints and refines the 3D body pose and mesh in UV space.

In summary, our contributions are three fold:

• We propose a 3D body estimation framework from single image that seamlessly leverages

the best of the both worlds (model-based and nonparametric).

• The method is robust to occlusions and can self-correct wrong poses from Dense Map

Prediction module.

• We achieve state-of-the-art performance on H36M and 3DOH datasets.

5.2 Related Work

3D human shape estimation from monocular images SMPL [92] has been widely used

for 3D human mesh reconstruction. To boost its power in practice, a number of deep learning

frameworks have been proposed by using SMPL as regression targets [61, 68, 116, 205, 108].

[61] regresses SMPL parameters directly from input images by end-to-end training. Following

this research direction, [108] add spherical Gaussian attention joint based on initial joint

estimation, and the use the the attended feature to learn the vertices location. [68] combine

learning and optimization[116] in the same framework but cannot handle occlusions. [205]

uses the template UV mapping from SMPL and transforms 3D mesh reconstruction to

decomposed UV estimation and position map inpainting problems. However, the way to

get 3D human joint from SMPL mesh is based on the pre-trained joint regressor, which will

induce intrinsic errors and usually does not generalize to other datasets.

3D human pose estimation from monocular images Deep learning approaches have

shown success in regressing 3D pose from a single image [107, 139, 190, 98, 213, 118]. Basically,

106



most current models can be categorized into two frameworks. The first is to directly estimate

3D pose from images, based on volumetric representation [118, 107]. But these approaches

may involve in high memory consumption and complex post-processing steps. Based on the

explosive improvement in 2D pose estimation [190], another framework is to estimate 2D

pose from images and then lift 2D pose to 3D pose [213, 98]. Since these approaches take

2D joint locations as input, 3D human pose estimation simply focuses on learning depth of

each joint. This releases learning difficulty and leads to better 3D pose. However, there are

few methods on systematically handling occlusion in the first framework while the second

framework cannot recover information if the joint detector fails. Additionally, how to get

human surfaces from the joint prediction remains a problem.

Inverse Kinematics The inverse kinematics (IK) problem has been extensively studied

in robotics [4, 187] and graphics [34] and its techniques have been used in 3D human pose

estimation [172, 81, 65, 222, 223]. Numerical solutions [4, 34, 187] rely on time-consuming

iterative optimization. [172] uses temporal sequence to resolve IK ambiguity. [81] decomposes

the IK rotation to the product of swing rotation and twist rotation and solve swing rotation

analytically from predicted joint locations. Feed forward solution like [223, 222] propose

BodyIKNet to regress SMPL [92] pose and shape parameters from 3D joint location, However,

it leads to a sub-optimal solution when partial occlusion happens.

Occlusion [153] presented a systematic study of various types of synthetic occlusions in

3D human pose estimation from a single RGB image. Since synthetic data can not fully

depict the real occlusion, [35] learns from real data and uses grammar models with explicit

occluding templates to reason about occluded people. To avoid specific design for occlusion

patterns, [32] presents a method for modeling occlusion that aims at explicitly learning the

appearance and statistics of occlusion patterns. They also synthesizes a large corpus of

training data by compositing segmented objects at random locations over a base training
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Figure 5.1: Our 3D body estimation framework consists of three part: Dense Map Prediction
module (DMP), Inverse Kinematics and SMPL module (IK ) and UV Inpainting Module
(UVI ).

image. [19] utilizes a cylinder model and confidence maps to filter out the occluded joints and

uses flow warped joint in the same video to approximate the missing joints. [128] integrates

depth information about occluded objects into 3D pose estimation. To provide full-geometry

information to handle occlusion scenarios, [180] and [44] provide 3D scene geometry as multi-

layer depth maps or signed distance fields into the inference stage. [136] proposes a simple but

effective self-training framework to adapt the model to highly occluded observations. To fully

utilize the holistic human body model (e.g. SMPL [92]), [210] represents the target SMPL

human mesh as UV location map and converts the full-body human estimation as an image

inpainting problem. However, these frameworks either rely on nonparametric estimation or

pure model-based regression, how to leverage the best of both worlds seamlessly remain an

unexplored problem.
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5.3 Method

As shown in Figure 5.1, our framework consists of three consecutive modules, including a

dense map prediction module (DMP), which extract dense semantic maps (e.g. 3D joint

location, surface location and their displacements) and correspondence UV position, an

inverse kinematics and SMPL module (IK ), which inpaint 3D joint location and estimate

the smpl parameters, as well as a UV map inpainting module, which estimate the final joint

location and mesh location in UV space.

5.3.1 Dense Map Prediction Module

Our dense map prediction module is an encoder-decoder architecture and is used to extract

the IUV images Mi, as well as dense semantic maps including dense joint map Mj, dense

location map Ml and dense displacement maps Md. They are further illustrated in Fig. 5.2.

Mi is generated from the continuous UV map from [205], it is continuous in both image space

and UV space, thus, easier to learn compared with original UV map [92]. It is used to convert

the dense local features as well as these semantic maps to UV space. For location map Ml, it

represents the position of each vertices from the SMPL human mesh surface in root-relative

coordinates. To construct Ml groundtruth, we first use the SMPL model, SMPL parameters

and camera parameters to generate the vertices location in root-relative coordinate, and

generate the full UV space location map UVl using barycentric interpolation (The mesh faces

correspondence is defined by [205]). After that we use the Mi to fetch values from UVl to

get the dense location map in image space. For the generation of dense joint map Mj, we

first rely on T-pose SMPL mesh and assign each vertex to the nearest joints (14 LSP joints

setting), after which we use barycentric interpolation to get the UV space assignment, and

further refine the assignment by make it symmetric in UV space (e.g. left hip and right hip

has symmetric shape in UV space, as illustrated in Fig 5.3). We term the part assignment
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in UV space as Auv . After setting the assignment in UV space, we use the Mi to query

values from UVj to get the dense joint map in image space. UVj stores the root-relative joint

location. We define displacement as the residual between vertex location and the assigned

joint location, thus UVd = UVl − UVj and Md = Ml −Mj. As our human bodies are usually

left-right symmetric (e.g. left hand has symmetric shape with right hand and the size and

the distance between joint and surface is almost the same.), the magnitude of left part and

right part of UVd should be the same.

These semantic maps are aligned with the human in the images. Thus we are able to train

a encoder-decoder network to estimate directly from image space. Dense image space joint

prediction shares the similar flavor with [193, 115].

The objective for the dense map prediction module is

ℓDMP = ℓMi
+ ℓMl

+ ℓMj
+ ℓMd

(5.1)

ℓMi
is composed of two parts: a binary mask loss ℓMib of human body, which distinguishes

pixels from those at the background, and the human pixels. The loss function of ℓMib is

binary cross entropy loss. our CNN further outputs the UV coordinates and uses L1 loss

ℓMiuv
.

ℓMi
= ℓMib

+ ℓMiuv
(5.2)

For ℓMl
, ℓMj

and ℓMd
, we use L1 loss to directly regress the real value. As these values are

already in root-relative coordinate and in unit meters, thus their data range is −1 to +1, we
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Figure 5.2: Semantic maps aligned with image space. From left to right: IUV image Mi,
Dense jointmap Mj, dense location map Ml and dense displacement map Md. (Best viewed
in Color)

Figure 5.3: Warped Images in UV space based on IUV images Mi. From left to right: Part
segmentation in UV space Auv, UV space jointmap UVj, UV space location map UVl and
UV space displacement map UVd. (Best viewed in Color)

do not further normalize them.

Our dense map prediction module not only predicts these semantic maps, but also extracts

both global feature to estimate camera parameter and local feature for the UV impainting

module.

Figure 5.4: Full groundtruth in UV space. From left to right: UV space jointmap UVj, UV
space location map UVl and UV space displacement map UVd. (Best viewed in Color)
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5.3.2 Inverse Kinematics Module

Estimate Joint Location from DMP After warping the semantic maps (Ml,Mj,Md)

from image space to uv space, we get the incomplete uv joint map UVj. Based on the uv

space joint assignment Auv (as shown in Fig 5.3), we aggregate the dense prediction UVj for

each joint and average them if they are not fully occluded. Thus we have a coarse prediction

for each joint Jinitial.

Joint Inpaint and Refine Module Even though each human pixel contributes to joint

prediction, there are still cases where some joints have no assigned vertex/pixel available from

the image evidence. Thus we propose the joint inpainting module to inpaint these missing

joints. This network is pretty flexible and can be MLP [98], GCN [213] or even modern

transformers [88]. For the ease of implementation we use simple multi-layer perceptron. Our

joint inpainting net is inspired by [98], which is simple, deep and a fully-connected network

with six linear layer with 256 output features. It includes dropout after every fully connected

layer, batch-normalization and residual connections. The model contains approximately 400k

training parameters. The goal of this network is not only to inpaint the joints but also to

refine the joints prediction that is not occluded. It takes the Jinitial as input and the output

of the network is the joint in root-relative coordinates Jrefine. We use L1 loss Lji to train

joint inpaint and refine module. The structure of the joint inpainting and refine module is

shown in Fig 5.5.

Inverse Kinematics Module After getting the sparse 3D human keypoints. We want

to repose the template SMPL meshes based on the predicted joints location. To solve

this problem we leverage inverse kinematics (IK). Typically, the IK task is tackled with

iterative optimization methods [4, 34, 187], which requires a good initialization, more time

and case-by-case optimization method. Here we propose a global inverse kinematics neural

112



Figure 5.5: Structure of GIKNet. (Best viewed in Color)

network GIK-Net. This network is constructed by the basic fully connected neural network

module with residual connection, batch normalization and relu activation similar to [98]. In

particular, GIK-Net takes the refined keypoint coordinates Jrefine in root-relative space and

outputs joint rotations θ and β which serve as the input for SMPL layer. As we also use

the Mocap dataset (AMASS [95], SPIN[68] and AIST++ [82]), our GIK-Net can learn the

realistic distribution of human kinematics rotation and human shape implicitly. The use of

the additional Mocap dataset serves the same purpose as the factorized adversarial prior [61],

variational human pose prior [116] and motion discriminator [64]. We use L1 loss Lθ and Lβ

to train GIK-Net. The structure of GIK-Net is shown in Fig 5.5.

SMPL revisits and Reposing Module SMPL [92] represents the body pose and shape

by pose θ ∈ R72 and shape β ∈ R10 parameter. Here we use the gender-neural shape

model following previous work [65, 61, 68]. Given these parameters, the SMPL module is

a differentiable function that outputs a posed 3D mesh M(θ, β) ∈ R6890×3. The 3D joint

locations J3D = WM ∈ RJ×3, while J are computed with a pretrained linear regressor W .

After getting the θ and β from the GIK-Net we send them to SMPL layer to get the body

mesh prediction.

We also augment the joints input for GIK-Net from Mocap dataset with guassian noise and

random synthetic occlusion (30%). The augmentation helps our GIK-Net generalize to more

realistic noisy input. We use L1 loss Lvi to train the mesh prediction from SMPL module.
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The objective for the inverse kinematics and smpl module is

ℓIK = ℓθ + ℓβ + ℓji + ℓvi (5.3)

5.3.3 UV Inpainting Module

The goal of UV inpainting module is to regress 3D joint and mesh location directly based on the

feature / semantic output (UVl, UVj, UVd) from DMP and semantic output (UVl, UVj, UVd)

from IK.

Inevitable Fitting Error introduced by SMPL model and Joint regressor The

advantage of directly regressing joint/mesh location over model-based method is that model-

based method will introduce intrinsic fitting error. Specifically, if we use the SMPL layer,

groundtruth SMPL parameters (from Mosh), and the joint-regressor [68] to obtain fitted

joint for the whole Human3.6M dataset, we get average fitting error as 24.1 mm (MPJPE)

when compared with the Human3.6M joint from Mocap system. This means that even if we

predict perfect SMPL mesh we still have about 24.1 mm fitting error. Thus we argue directly

training and estimating joint location from UV space is a better alternative solution.

UV inpainting module After getting the refined joint location Jrefine from IK module,

we distribute the refined joint location in UV space based on UV space joint assignment map

Auv and generate refine UV joint map UVjrefine. We also have the reposed template mesh

and the corresponding reposed UV location map UVl (through barycentric interpolation).

Additionally, we have features UVf , location map UVl, joint map UVj and displacement UVd

from DMP. We combine the best of both worlds ( DMP and IK ) feature through aggregation
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and send it to our UV inpainting module. The UV inpainting module is a light UNet with

skip connections.

For the training of the UV inpainting module, we have

ℓmap = ∥ÛV map − UVmap∥1 (5.4)

Note the ‘map’ represents location map, joint map and displacement map in uv space.

Addtionally, we have 3D joints and 2d joint loss based on the predicted camera parameter.

Our camera parameters consist of scale and offset parameter to map the xy in J3D to J2d.

ℓj3D = ∥Ĵ3D − J3D∥1 (5.5)

ℓj2d = ∥Ĵ2d − J2d∥1 (5.6)

As we know, the distance between the human surface to the joints are left-right symmetric,

thus we also apply symmetric loss on the magnitude of displacement.

ℓdismag = ∥∥ÛV d∥ − ∥ÛV
flip

d ∥∥1 (5.7)

To align the predicted mesh surface with image aligned IUV images Mi, we also adopt

consistent loss from [205]. It is enabled by the camera parameter predicted by our model

(scaling and offset parameter).

The objective for the uv inpainting module is
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ℓUV I = ℓdismag + ℓj2d + ℓj3D + ℓmap + ℓcon (5.8)

Thus we have all the losses as

ℓall = ℓDMP + ℓIK + ℓUV I (5.9)

Inference We do inference of 3D joint location from UVj and based on the uv assignment

Auv for each joint. We average all the prediction for the specific joints if this pixel prediction

is valid. For human mesh prediction we use the barycentric interplatation from the UV space

location map UVl.

5.3.4 Implementation Details

The proposed framework is trained on the ResNet-50 [46] backbone pre-trained on ImageNet.

It takes a 224 × 224 image as input, and input resolution for UVI is 64 × 64 and the output

resolution is 128 × 128. We train three modules separately. We first train our DMP, and

based on the output of DMP and Mocap data we train our IK ; We finally fix and concat

DMP and IK, and train UVI module. We apply synthetic occlusion [154] when train DMP.

The training data is augmented with randomly scaling, rotation, flipping and RGB channel

noise. We use the Adam optimizer. The training data for each module is illustrated in table

5.1.
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Stages Training Datasets

DMP H36M, MPI-INF-3DHP, MPII, COCO, LSP
IK H36M, MPI-INF-3DHP, AMASS, AIST++
UVI H36M, 3DOH

Table 5.1: Training datasets for each module.

5.4 Experiments

5.4.1 Dataset and Evaluation Metric

Human3.6M [52] is commonly used as the benchmark dataset for 3D human pose estima-

tion, consisting of 3.6 millions of video frames captured in the controlled environment. It has

11 subjects, 15 kinds of action sequences and 1.5 million training images with accurate 3D

annotations. Similar to [61], we use MoSH to process the marker data in the original dataset,

and obtain the ground truth SMPL parameters to generate the groundtruth for UVl. For a

fair comparison, we use 300K data in S1, S5, S6, S7, S8 for network training, and test in S9,

S11.

3DOH [210] utilize multi-view SMPLify-X [116] to get the 3D ground truth. The dataset is

designed to have object occlusion for subjects. It contains 50,310 training images and 1,290

test images. It provides 2D, 3D annotations and SMPL parameters to generate meshes. We

use the test set for evaluation purposes and the training set to train the UVI module.

LSP [56] dataset is a 2D human pose estimation benchmark. In our work, we use the [77]

SMPL parameter to render the Mi to train DMP module.

MPI-INF-3DHP [101] is a dataset captured with a multi-view setup mostly in indoor

environments. No markers are used for the capture, so 3D pose data tend to be less accurate

compared to other datasets. We use the provided training set (subjects S1 to S8) for training.

We use the it to train DMP and IK module.

Mocap dataset We use [95] AMASS, AIST++ [82] and SPIN [68] dataset to train our

occlusion aware GIKNet.
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Figure 5.6: Different part segmentation choice in UV space. (Best viewed in Color)

H36M

Method MPJPE MPJPE-PA

HMR [61] 88.0 56.8
DaNet [207] 61.5 48.6
HoloPose [38] 60.3 46.5
SPIN [68] 62.5 41.1
I2L [108] 55.7 41.1
DetNet [222] 64.8 50.3
PHMR [81] - 41.2
DecoMR [205] 60.5 39.3
PyMaf [208] 57.7 40.5

Ours DMP -14 69.7 51.7
Ours IK -14 67.3 50.6
Ours UVI -14 54.7 38.4

Table 5.2: Reconstruction errors on Human3.6M dataset.

Evaluation We evaluate our method on H36M [52] dataset and 3DOH [210] datasets. We

report Procrustes-aligned mean per joint position error (MPJPE-PA) and mean per joint

position error (MPJPE) in mm. For 3DOH we also report mean per vertex error (MPVE) in

mm.

5.4.2 Ablation Study

14 joints vs 24 joints setting Another way to get 24 joints prediction from DMP is to

have a 24 joints segmentation Auv in UV space following SMPL setting. As shown in Fig 5.6
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3DOH

Method MPJPE MPJPE-PA MPVE

SMPLify-X - 156.4 177.3
OOH [206] - 58.5 63.3
SPIN [68] 104.3 68.3 113.4
PyMAF[208] 96.2 - 107.3
HMR-EFT⋆ [57] 75.2 53.1 -
PARE⋆ [65] 63.3 44.3 -

Ours DMP -14 128.4 109.8 -
Ours IK -14 112.9 80.8 133.5
Ours UVI -14 58.3 44.6 72.3

Table 5.3: Comparison with SOTA performance on 3DOH dataset. ⋆ denotes the model
trained on better ground truth data from EFT [57].

we define 14 joints setting and 24 joints setting. We run DMP -24 and DMP -14 and evaluate

on the predicted Jinitial. We observe the error of DMP -24 is much higher than DMP -14 as in

table 5.4. The main reason is that over-segment of body parts may distribute less visible

pixels to certain parts (feet, hand) and will lead to higher error.

Occlusion vs Non-occlusion When computing the MPJPE for Jinitial, the results for

visible parts (part with any pixel belong to them visible) and invisible parts differ a lot. We

compare the DMP-14 and DMP-14-Nonoccluded in table 5.4. We find visible parts with

87.3 mm MPJPE while the MPJPE counting invisible parts yield 128.4 mm. It tells us if

the joints are visible, our DMP can predict relative good initial results. Thus, synthetic

occlusion helps for our DMP module. When we remove the data augmentation techniques

like synthetic occlusion [154], DMP-14 increase to 135.4 mm.

GIK-Net data augmentations We also try to remove the gaussian noise or random

mask out joints data augmentation techniques for MOCAP data, which serve as input for

the GIK-Net, to see how is the MPJPE varying. As shown in table 5.4, IK-14 w/o gaussian

noise and IK-14-w/o random zero yield larger error (2.8 mm and 3.9 mm ) compared with

IK-14. It demonstrate these data augmentation makes the GIK-Net more robust to noise

119



Figure 5.7: Pose and shape prediction from DMP module, IK module and UVI module.
(Best viewed in Color)
.

and helps generalize to real data input.

UVI ablations As the magnitude of our UVd should be symmetric, we introduce the

magnitude error for UVd and its flip version. We run a model without this ℓdismag and observe

there is 4.5 mm error increase in MPJPE metric. This is shown in table 5.4.
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3DOH

Method MPVE MPJPE PMPJPE

DMP -24 - 246.4 208.5
DMP -14 w/o synthetic occlusion - 135.4 115.7
DMP -14-Nonoccluded - 87.3 64.7
DMP -14 - 128.4 109.8

IK -14 w/o gaussian noise 138.2 115.7 82.8
IK -14 w/o random zero 139.5 116.8 83.2
IK -14 133.5 112.9 80.8

UVI -14 w/o IK -14 82.9 69.4 58.1
UVI -14 w/o DMP -14 80.1 67.8 55.1
UVI -14 w/o ℓdismag 75.5 63.8 47.3
UVI -14 72.3 58.3 44.6

Table 5.4: Ablation study about reconstruction errors on 3DOH test set. 14 and 24 denotes
the number of joints setting for training and evaluations. Nonoccluded denotes when we
calculate error we are not counting the part without any visible image evidence.

Each stage performance DMP module is a nonparametric method, while IK module

is a model-based method which refines the output of the DMP model. UVI module relies

on both nonparametric output and model-based output to predict the final body joint and

mesh. Based on table 5.4, DMP-14 estimate from raw images and gives inferior performance.

IK -14 corrects the output from DMP-14 and reduce the error by 15.5 mm. UVI -14 relies on

both IK-14 and DMP-14 and further reduce MPJPE to 58.3 mm. However, if any of the

previous stage output is missing, MPJPE increase by 11.1 mm (w/o IK-14 ) or 8.5 mm (w/o

DMP-14 ).

5.4.3 Qualitative Results

We present qualitative results in Fig 5.7 including the joints prediction from DMP, IK, UVI

modules and mesh prediction from IK, UVI modules.

Limitations We also show failure cases in Fig 5.8. Typical failure cases can be attributed

to challenging poses (a,b,d), and crowded scenarios (c).
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Figure 5.8: Failure cases. (Best viewed in color)

5.5 Conclusion

We propose a framework that combine the best of both worlds (nonparametric and SMPL

model-based method). It predicts the initial 3D body pose from the DMP module, refine

the predicted pose and repose the template SMPL meshes using IK module. Based on the

nonparametric prediction from DMP module and model-based prediction from IK module,

the UVI module inpaints and refines the prediction. To alleviate the intrinsic error introduced

by joint regressor (fitting), we regress joint (UVj) and mesh (UVl) separately in different

maps in UV space. We also introduce the magnitude loss ℓdismag to encourage predictions of

symmetric body shape (UVd). Our framework achieves state-of-the-art performance among

3D mesh-based methods on several public benchmarks. Future work can focus on extending

the framework to the reconstruction of full body surfaces including hands and faces.
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Chapter 6

Conclusions and Future Directions

6.1 Our Contributions

This dissertation focuses on techniques for estimation of 3D human pose from a single view,

especially under occlusion and cross-dataset domain shift.

In chapter 2 we discuss how existing 3D human pose datasets have been collected and curated.

In addition, we also discuss the design of networks and representations that incorporate

general priors to handle 3D human pose estimation in deep learning era.

Based on the survey we do in chapter 2, in chapter 3 we carry out a systematic study of the

diversity and biases present in specific datasets and its effect on cross-dataset generalization

across a compendium of 5 pose datasets. We specifically focus on systematic differences in

the distribution of camera viewpoints relative to a body-centered coordinate frame. Based on

this observation, we propose an auxiliary task of predicting the camera viewpoint in addition

to pose. Our model shows significantly improved cross-dataset generalization.

To fill in the blank that the existing datasets have no scene geometry groundtruth, then
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in chapter 4 we explore the hypothesis that strong prior information about scene geometry

can be used to improve pose estimation accuracy. We assemble Geometric Pose Affordance

dataset, consisting of multi-view imagery of people interacting with a variety of rich 3D

environments. We utilized a commercial motion capture system to collect gold-standard

estimates of pose and construct accurate geometric 3D models of the scene geometry. To

inject prior knowledge of scene constraints into existing frameworks for pose estimation from

images, we introduce a view-based representation of scene geometry, a multi-layer depth

map, which employs multi-hit ray tracing to concisely encode multiple surface entry and

exit points along each camera view ray direction. We propose two different mechanisms for

integrating multi-layer depth information into pose estimation: input as encoded ray features

used in lifting 2D pose to full 3D, and secondly as a differentiable loss that encourages learned

models to favor geometrically consistent pose estimates. We show experimentally that these

techniques can improve the accuracy of 3D pose estimates, particularly in the presence of

occlusion and complex scene geometry.

Finally, in chapter 5, to explore better human geometric model we propose a framework of

three consecutive modules. A dense map prediction module explicitly establishes the dense

UV correspondence between the image evidence and each part of the body model. The

inverse kinematics module refines the key point prediction and generates a posed template

mesh. Finally, a UV inpainting module relies on the corresponding feature, prediction and

the posed template, and completes the predictions of occluded body shape. Our framework

leverages the best of non-parametric and model-based methods and is also robust to partial

occlusion. Experiments demonstrate that our framework outperforms existing 3D human

estimation methods on multiple public benchmarks.
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6.2 Limitations

In chapter 4, our dataset has limited background (mainly green background), this may lead

to inferior performance if trained on and tested on in the wild images. Additionally, it would

be better if we can fit a SMPL-X [116] model and together respect the scene geometry.

In chapter 5, as we use the renderer that is based on scaling orthographic camera, the

generated IUV images may not align well with the silhouette of original images. It would be

better if we have a differentiable renderer that not only provides projective camera but also

rendered all the graphic property like surface normal, lighting and materials so that we can

train.

6.3 Future Directions

Apart from the progress discussed above, there are still many interesting topics that we want

to explore in future work.

Joint annotations uncertainty Different datasets are annotated using different systems

or algorithms. Thus, the number of joints and each joint definition may vary. How to calibrate

the variance in joint definition across datasets remain unsolved. We have seen similar work

in human challenges [36] and 2d dense pose [110].

Data augmentation We can observe that the best video based methods on H36M model

the self-occlusion in 3D human pose [18, 19], while the H36M challenges winning solution

heavily really on synthetic occlusion [154] to make the model more robust to object-occlusion.

How to generate more realistic or scene-aware occlusion will be a future direction which may

further boost the accuracy.
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Efficient training Most state-of-the-art algorithms [214, 151] train on 10fps-version Hu-

man36M dataset, which has 300k images. Even though it is already sub-sampled, they still

need to be trained on 4 1080TI for 2 days as in [107]. Too many redundant images will

make the iteration of algorithm slow and this task GPU-consuming. We thus train using

different number of images (from H36M, GPA, 3DHP, 3DPW) and test on its own test set.

We visualize the results in Fig 6.1. Half of the 3DHP training images are able to saturate the

performance. We observe similar findings on H36M, GPA, which saturates performance with

number of images around e10 = (22, 000) to e11 = (60, 000). We have not observe 3DPW with

performance saturation as number of training images has not reached e10 = (22, 000). There

are certainly better ways to select important samples to make the size of training set small

and error on test size improved. People may select training samples based on viewpoint, key

points distribution (kmeans, T-sne, CMAP as in Fig 2.4a), or active-learning.

Figure 6.1: MPJPE with different number of training images. Number of images is in log
scale.

Cross-dataset evaluation Model trained on one dataset cannot generalize well to the

other dataset. As systematically studied in section 3. We illustrate how a model performs
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on the other datasets if trained on a specific dataset as in Table 6.1, and also list the root

prediction (how far it is between root joint and camera center.) on the same setting as in

Table 6.2. We follow the same experiments setting as [107]. This is a pretty new setting.

Even though evaluated by several previous work [80, 174], there is still a big bias to be solved.

MPJPE (in mm, lower is better)
Te \Tr H36M GPA SURREAL 3DPW 3DHP
H36M 53.2 110.5 107.1 125.1 108.4
GPA 105.2 53.9 86.8 111.7 90.5
SURREAL 118.6 103.2 37.2 120.8 108.2
3DPW 108.7 116.4 114.2 100.6 113.3
3DHP 111.8 123.9 120.3 139.7 91.9

Table 6.1: Cross-dataset evaluation based on [107]. Te stands for testing set and Tr stands
for training set. Table credit [182]

MRPE (in mm, lower is better)
Te \Tr H36M GPA SURREAL 3DPW 3DHP

H36M 132.3 429.8 334.1 1214.8 1041.9
GPA 588.0 142.5 308.6 1003.1 744.8
SURREAL 1664.2 1153.5 119.1 1619.8 2227.2
3DPW 526.4 497.1 410.8 615.5 738.8
3DHP 524.7 417.6 411.9 810.0 288.6

Table 6.2: RootNet [107] cross-dataset evaluation (MRPE, unit in mm). Te stands for testing
set and Tr stands for training set.

Robust testing Even though we [182] reduce the model bias on cross-dataset setting by 4

mm per dataset, a large gap remains. How do we correctly evaluate our model with less bias?

We make a MIX test set to test these model ability as in Fig 6.2. For GPA, We select part of

occlusion + close2geometry set, which is hard in general. For H36M we uniformly sample 1/64

of original test set (this is the same with some of the chapter testset). For SURREAL/3DHP

we use the original test set. For 3DPW we uniformly sample 1/4 of original testset. In total

our MIX test set has 29,699 samples. The MPJPE of each model is shown in 6.2. We expect

more researchers working on this direction to reduce the cross dataset evaluation bias.
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Figure 6.2: MPJPE with different number of training images while evaluating on the same
MIX test set. Number of images is in log scale.
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