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ABSTRACT OF THE DISSERTATION 
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by 
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Doctor of Philosophy in Geography 
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Professor Kyle C. Cavanaugh, Chair 

 

 Climate change threatens the future of coastal wetlands, one of the most ecologically 

important, economically valuable ecosystems on earth. Changes to normal climatic and 

environmental conditions could throw off the delicate balance of these ecosystems with negative 

consequences to wetland biological response, productivity, and ultimately, resilience. Wetland 

response is controlled by biogeomorphic feedbacks relating plant productivity to environmental 

conditions, a complex interaction that can vary over space, within and among marshes, and over 

time, with tidal cycles and seasons. Wetland biomass serves as an important measure of spatially-

explicit and temporally-variable changes that could ultimately impact wetland resiliency to climate 

change. Southern California’s coastal wetlands are especially threatened by climate change due to 

other anthropogenic forces like coastal squeeze by urban development. The combination of threats 
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to these wetlands render them at-risk and call for improved understanding of how wetland response 

will vary across the region or within a given site as sea levels, precipitation, and temperatures 

change.  

 Remote sensing, fieldwork, and habitat response modeling approaches were combined to 

gain a holistic perspective of wetland vulnerability and resiliency at scales ranging from plant 

response to regional overviews of habitat change. This approach also spans temporal scales to 

investigate climate-related changes over time by predicting future impacts, capturing current, high-

resolution patterns of biomass production, and uncovering decades of past patterns and drivers of 

wetland health. In chapter one, we develop a sea level rise (SLR) response model that addresses 

the scale‐dependent factors controlling SLR response and accommodates different levels of data 

availability to improve regional predictions of SLR vulnerability. In chapters two and three, we 

test the application of Unmanned Aerial Vehicles (UAVs) in remotely estimating aboveground 

biomass in coastal saltmarshes and how such hyperspatial insights can aid in satellite-based 

approaches to biomass estimation. Lastly, chapter four reveals temporal patterns of productivity 

in salt marshes spanning the region, allowing us to determine the importance of regional versus 

local climatic controls on saltmarsh productivity. By quantifying impacts across time and space, 

we gain a better understanding of how climate change will determine the fate of wetlands 

throughout southern California. 
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INTRODUCTION 

The dynamic nature of coastal wetlands has long been recognized as a cornerstone trait of 

the world’s economically valuable and ecologically important ecosystems (Barbier et al. 2011). 

Coastal ecosystems, such as salt marshes and mangrove forests, occupy ~70% of the worlds 

coastlines and support 10.9% of the world’s population in low-elevation coastal zones (Neumann 

et al. 2015; McOwen et al. 2017; Bunting et al. 2018) with many services and benefits including 

water filtration, storm protection, recreation, and carbon storage (Zedler and Kercher 2005). 

Situated at the interface of land and sea, coastal wetlands are well-adapted to high environmental 

variability caused by both oceanic and terrestrial forces. Coastal wetlands have persisted for 

millennia through changes in past climatic conditions and sea levels (Jones and Mann 2004; Kemp 

et al. 2011; Fagherazzi 2013). Yet in the Anthropocene, the fate of coastal wetlands will not only 

be determined by their ability to react dynamically to the surrounding environment, but also to 

climate change and other direct human impacts (Kirwan and Megonigal 2013). 

Climate change has already affected coastal wetlands worldwide (Wong et al. 2014) and 

impacts are predicted to worsen in coming decades (Scavia et al. 2002; Church et al. 2013). 

Globally, temperatures will increase 2 – 6°C by the end of the century (Coumou et al. 2013), while 

precipitation events may become more intense (Trenberth 2011), and extreme events like storm 

surges and coastal flooding may also worsen (Mitchell et al. 2006). Sea levels are projected to rise 

anywhere from 0.26 – 0.82 m globally depending on Representative Concentration Pathway (RCP) 

scenarios of increasing atmospheric CO2 concentrations (Church et al. 2013; IPCC 2013). 

Although a future of global climate change is certain, the impacts of these global drivers to 

wetlands will be highly variable, as changes in temperature, precipitation, and sea level, will be 

locally and regionally variable (Muller and O’Gorman 2011; Gregory et al. 2013). Therefore, 
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uncertainty also plays a key role in the threat of climate change, which will inevitably disrupt and 

alter the normal climatic and environmental conditions that have direct impacts to coastal 

wetlands. 

Wetland response to climate change will be spatially and temporally variable, but emerging 

evidence suggests that changes to environmental drivers like temperature, rainfall, CO2 

concentration, sea levels, and extreme events will have cascading effects on wetland plant 

productivity, biomass, health, and resilience (Langley et al. 2009; Mckee et al. 2012; Kirwan and 

Megonigal 2013; Osland et al. 2016). For example, in response to rising seas wetlands can migrate 

laterally or vertically, the first depending on available upland migration space, and the second 

determined by accretion and elevation capital (Schuerch et al. 2018; Cahoon et al. 2019; 

Fagherazzi et al. 2020). These two generalized types of response, however, are founded on 

complex biogeomorphic feedbacks that exist between marsh vegetation and their surrounding 

environment. Biogeomorphic feedbacks describe how wetland macroflora bioengineer 

surrounding elevations to optimize productivity in relation to physical factors like inundation 

levels, nutrients, and soil salinity that are often correlated with elevation (Pennings et al. 2005; 

Traut 2005; Morris 2007; Moffett et al. 2012). By optimizing productivity, wetland plants are able 

to allocate aboveground and belowground biomass, which directly contributes to vertical accretion 

of soil organic matter through the decomposition of roots and detritus, and also indirectly by 

trapping inorganic sediments (Morris et al. 2002; Duarte et al. 2013). Net productivity in coastal 

wetlands represents the generation of plant biomass as the result of these complex interaction with 

the surrounding environment. Ultimately, plants and associated biological processes are important 

controls to wetland resilience (Cahoon et al. 2020). However, these biological plant-environment 
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feedbacks are variable in space, among species and along environmental gradients, and in time, 

with daily and seasonal fluctuations in sea levels, temperature, and precipitation. 

The complex biogeomorphic feedbacks that allow coastal wetland plants to remain 

productive will likely be altered or disrupted as environmental conditions change. The full extent 

of impacts from warming temperatures, rising seas, altered precipitation patterns, and intensifying 

extreme events remains to be seen (Osland et al. 2016), and the consequences to bioproductivity 

will be highly variable among wetland sites, zones and species (Boesch et al. 2000; Scavia et al. 

2002; Janousek et al. 2016). Temperature and precipitation have documented mixed linear and 

nonlinear impacts to wetland vegetation height, biomass, productivity, decomposition, soil carbon 

density, and soil carbon accumulation (Feher et al. 2017). Spatially-explicit and temporally-

variable changes to productivity could ultimately impact wetland resiliency to climate change by 

altering plant productivity and biomass (Fagherazzi et al. 2012; Kirwan and Megonigal 2013). 

Therefore, biomass may serve as an important indicator of the complex, fine-scale interactions 

occurring within wetlands that will determine overall response to environmental changes (Kirwan 

et al. 2016). Possible negative outcomes of changing environmental conditions on coastal wetlands 

can range from widespread wetland loss, local diebacks, to disruptions in annual phenological 

patterns and reductions in productivity (Mckee et al. 2012; Buffington et al. 2018). 

In order to preserve these valuable systems into the future, coastal management and 

adaptation efforts need a holistic perspective that accounts for spatial and temporal variability in 

both drivers and response across scales. Coordinated regional efforts are essential for developing 

a landscape-level understanding of current baselines and future impacts (Zedler 1996; Zedler and 

Callaway 1999). This is important as coastal wetlands also face direct and indirect human impacts 

like urban development, conversion from agriculture, coastal squeeze, altered freshwater inputs, 
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and eutrophication that will need to be managed to improve resiliency (Kennish 2001). Successful 

regional strategies must account for wetland ecology and dynamism (Boesch 2006; Armitage 

2014), and be designed based on understanding of past, present, and future conditions (Stein et al. 

2019). Ideally, regional efforts must reflect the sum of the parts, i.e., all wetlands must be 

accounted for and site-based management efforts must be conducted in light of the regional context 

(Simenstad et al. 2006). Fortunately, restoration efforts can be guided by the increasing amounts 

of publicly available data that can help inform past, present, and future conditions of coastal 

wetlands across spatial scales in a region. 

Many of the impacts to coastal wetlands can be observed using remote sensing. Remotely 

sensed imagery of the Earth’s surface has been useful in many wetland applications including 

mapping distributions, classifying habitats, estimating biomass and carbon storage, and valuing 

ecosystem services (Silva et al. 2008; Kuenzer et al. 2011; Klemas 2013b; De Araujo Barbosa et 

al. 2015; Klemas 2015a; Mahdavi et al. 2018). Data used in these wide-ranging applications can 

be acquired through several different types of platforms and sensors. Satellite remote sensing 

offers repeat, coverage of the globe suitable for investigating large geographic areas or monitoring 

changes through time (Ozesmi and Bauer 2002; Pettorelli et al. 2014). Landsat satellite imagery is 

often used for ecosystem monitoring because it provides the longest running archive of continuous 

global data (Pasquarella et al. 2016).  Manned aircraft have also been used to collect data at 

regional and subregional scales and at temporal scales appropriate for capturing the dynamic 

responses in wetlands, although this option can be costly (Klemas 2013a). More recently, 

unmanned aerial vehicles (UAVs) have been recognized as valuable tools for site-based 

applications due to their relatively low cost, and great flexibility in spatial and temporal data 

resolutions, and customization of payload sensors (Hugenholtz 2012; Anderson and Gaston 2013; 
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Whitehead et al. 2014a; Whitehead et al. 2014b; Klemas 2015b; Manfreda et al. 2018). In addition 

to these platforms, many types of sensors exist that can passively or actively acquire different data 

types, ranging from multispectral and hyperspectral optical imagery to radar and Light Detection 

and Ranging (LiDAR) data (Schmidt and Skidmore 2003; Adam et al. 2010; Guo et al. 2017). Care 

must be taken in selecting the appropriate data for coastal wetlands applications (Gallant 2015), as 

there are tradeoffs among the spatial, temporal, and spectral resolutions of remotely sensed data 

that determine what ecological properties can be observed (Kennedy et al. 2014).  

Remote sensing provides an approach for estimating wetland characteristics specifically 

related to productivity and biomass that may inform resiliency to climate change across spatial and 

temporal scales. Biophysical and biochemical properties of vegetation measured via remote 

sensing are important indicators of plant productivity (Hardisky et al. 1984; Hardisky et al. 1986; 

Klemas 2013b). Using vegetation indices to summarize the reflective properties of wetland plants 

is key to inferring the state of wetland systems from optical imagery (Mutanga and Skidmore 2004; 

Mishra and Ghosh 2015; Xue and Su 2017). Commonly used indices like the normalized difference 

vegetation index (NDVI; Rouse et al. 1974), tasseled cap greenness (TCG; Kauth and Thomas 

1976), and enhanced vegetation index (EVI; Jiang et al. 2008) can assess wetland health across a 

range of scales, from biophysical plant properties to large-scale ecosystem change (Adam et al. 

2010; Xue and Su 2017). Examples capitalizing on the information that can be gleaned from 

remotely sensed data include estimations of biomass and carbon storage (Klemas 2013b; Byrd et 

al. 2014; Byrd et al. 2018; Mo et al. 2018) and identification of patterns and drivers of wetland 

biomass, health, phenology, and overall greenness in both salt marsh and mangrove wetlands 

(Kearney et al. 2002; Mo et al. 2015; O’Donnell and Schalles 2016; Brooke et al. 2017; Wu et al. 

2017; Buffington et al. 2018; Cavanaugh et al. 2018; Mo et al. 2019). NDVI in particular has been 
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useful in assessing ecological response to environmental change (Pettorelli et al. 2005).  From 

these examples, it is clear that the data derived from remote sensed imagery can offer insights into 

the status of wetland distributions, greenness, biomass, productivity, and health. Time series of 

remotely sensed data could further inform a more synoptic understanding of coastal wetland 

ecology (Shanmugam 2013) and provide an invaluable view of ecological patterns and processes 

over space and time (Kennedy et al. 2014). 

In southern California, climate change and other globally relevant anthropogenic forces 

threaten coastal wetlands and warrant investigations into past response, current conditions, and 

future resiliency. The southern California region ranges from Point Conception to the US-Mexico 

border and is home to a diverse network of coastal and estuarine wetlands that range in size, setting, 

ecology and wetland type, or archetype (SCWRP 2018). Almost 48% of coastal wetlands in this 

region have been lost since ca. 1850 to habitat conversion (Stein et al. 2014; Stein et al. 2019). The 

remaining wetlands are remnants of larger historical wetlands, reduced in size and constrained by 

human development (Zedler 1982; Grossinger et al. 2011; Stein et al. 2014; Stein et al. 2019).  

Wetlands experiencing such “coastal squeeze”, or a lack of migration space due to ocean 

encroachment against the human-built environment (Pontee 2013), are especially vulnerable to 

climate change impacts (Torio and Chmura 2013; Borchert et al. 2018). The combined threats to 

southern California wetlands render them at-risk and call for improved understanding of how 

wetland response will vary across the region or within a given site as sea levels, precipitation, and 

temperatures change. Ultimately, our understanding of how vulnerable, or resilient, wetlands in 

this region may be to climate change requires consideration of the spatial and temporal variability 

of drivers and impacts across a large, diverse region. 
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The overarching goal of this work is to uncover spatial and temporal patterns and 

variability in the past response of wetlands to environmental change, in the current state of wetland 

biomass, an important link to resilience, and in the future predictions of climate change impacts 

across the southern California region. In the following chapters, I rely on fieldwork for insights 

straight from the wetland plants, UAV remote sensing for detailed, bird's-eye views of individual 

wetlands, the Landsat archive for decades of satellite images across a large geographic region, and 

many other publicly available datasets. In chapter 1, I predict future regional losses in wetland 

habitats by developing a SLR response model that is suitable for large geographic regions 

containing diverse wetland types. This effort directly informed regional management strategies 

(SCWRP, 2018), but also highlighted data and knowledge gaps in our understanding of future 

response of wetlands to climate change in southern California. Chapters 2 and 3 aim to fill some 

of these gaps, by using UAVs to map seasonal and spatial patterns in aboveground biomass and 

comparing this method of remote biomass estimation against Landsat imagery for a few select 

sites in the region. These chapters provide valuable insights into how the scale of remotely sensed 

imagery can influence the detection of patterns and variability of wetland aboveground biomass. 

Chapter 4 uncovers decades of past patterns in wetland greenness and identifies correlations with 

changing environmental condition. Together, these chapters use insights from the past, present, 

and future to gain a holistic regional perspective of wetland vulnerability and resiliency to climate 

change. 
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CHAPTER 1: Evaluating regional resiliency of coastal wetlands to sea level rise through 

hypsometry-based modeling1 

1.1 Abstract 

Sea level rise (SLR) threatens coastal wetlands worldwide, yet the fate of individual 

wetlands will vary based on local topography, wetland morphology, sediment dynamics, 

hydrologic processes, and plant‐mediated feedbacks. Local variability in these factors makes it 

difficult to predict SLR effects across wetlands or to develop a holistic regional perspective on 

SLR response for a diversity of wetland types. To improve regional predictions of SLR impacts to 

coastal wetlands, we developed a model that addresses the scale‐dependent factors controlling 

SLR response and accommodates different levels of data availability. The model quantifies SLR‐

driven habitat conversion within wetlands across a region by predicting changes in individual 

wetland hypsometry. This standardized approach can be applied to all wetlands in a region 

regardless of data availability, making it ideal for modeling SLR response across a range of scales. 

Our model was applied to 105 wetlands in southern California that spanned a broad range of 

typology and data availability. Our findings suggest that if wetlands are confined to their current 

extents, the region will lose 12% of marsh habitats (vegetated marsh and unvegetated flats) with 

0.6 m of SLR (projected for 2050) and 48% with 1.7 m of SLR (projected for 2100). Habitat 

conversion was more drastic in wetlands with larger proportions of marsh habitats relative to 

subtidal habitats and occurred more rapidly in small lagoons relative to larger sites. Our assessment 

can inform management of coastal wetland vulnerability, improve understanding of the SLR 

drivers relevant to individual wetlands, and highlight significant data gaps that impede SLR 

 
1 This chapter was published as Doughty CL, Cavanaugh KC, Ambrose RF, Stein ED. Evaluating regional resiliency 

of coastal wetlands to sea level rise through hypsometry-based modeling. Glob Chang Biol. 2019; 25(1): 78–92. It is 

reproduced here with minor formatting changes to comply with University of California dissertation specifications. 
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response modeling across spatial scales. This approach augments regional SLR assessments by 

considering spatial variability in SLR response drivers, addressing data gaps, and accommodating 

wetland diversity, which will provide greater insights into regional SLR response that are relevant 

to coastal management and restoration efforts. 

1.2 Introduction 

Sea level rise (SLR) and its impacts to coastal areas have been documented throughout the 

world (Wong et al. 2014) and are predicted to worsen in the coming decades (Church et al. 2013). 

Global sea levels are increasing, yet our ability to predict SLR impacts to coastal systems is 

complicated by variability in the factors driving SLR and system response (Stammer et al. 2013). 

The climatic, geologic and hydrologic processes that contribute to the relative SLR experienced 

along a coast are highly variable in time and space (Cazenave and Cozannet 2013). At continental 

or regional scales, these factors include the gravitational properties and movement of the earth’s 

surface (Bamber and Riva 2010; King et al. 2012; Riva et al. 2010), and the circulation and volume 

of the ocean due to shifting surface winds, melting land ice contributions, and the thermal 

expansion of seawater (Church et al. 2013; Rhein et al. 2013). Sub-regional and local processes 

include tectonics, coastal geomorphology, and hydrology (Behrens et al. 2015; Cahoon et al. 2006; 

Rich and Keller 2013). 

The variability associated with these SLR drivers makes it difficult to predict how SLR 

will affect coastal wetlands across broad spatial scales. The fate of individual wetlands will be 

determined by local rates of SLR, local topography and wetland morphology, but SLR response 

will be further mediated by biogeomorphic feedbacks among inundation, plant growth, organic 

matter accretion and sediment deposition (Kirwan et al. 2010; Mueller et al. 2016). Biogeomorphic 

feedbacks control vertical accretion and wetland elevation, and so are important in determining 
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response to SLR (Morris et al. 2002).  These complex interactions determine which wetland sites 

may be able to keep pace with rising sea levels and which will not (Kirwan et al. 2016). 

Consideration of the spatial variability in both SLR drivers and SLR response mechanisms is 

necessary to compare SLR effects across individual wetlands.  

The ability of SLR assessments to accommodate spatial variability in driver and response 

mechanisms is determined by data availability and computational modeling capability. Large-scale 

assessments, i.e., regional, national, continental, or global (Gornitz 1991; Klein and Nicholls 1999; 

Spencer et al. 2016), are purposefully designed to provide synoptic insights to SLR impacts by 

lowering computational expense and simplifying representation of the processes driving SLR 

(Fagherazzi et al. 2012). Large-scale assessments are often conducted at spatial resolutions of 1 

km2 or greater (Passeri et al. 2015) or characterize sites or segments of coastline under a broad 

classification scheme (Lentz et al. 2016; Nicholls 2004; Spencer et al. 2016). Using broad classes 

and coarse spatial scales can obscure entire systems and some wetland types within a region, 

potentially biasing overall conclusions of wetland change. 

Conversely, fine-scale assessments are better equipped to capture spatial variability at local 

scales (meters to 10s of meters) within individual wetlands. For example, process-based models 

such as the Wetland Accretion Rate Model for Ecosystem Resilience (WARMER) (Swanson et al. 

2014), the Sea Level Affecting Marshes Model (SLAMM) (Clough et al. 2012), the Marsh 

Equilibrium Model (MEM) (Morris et al. 2002), and the integrated Hydro-MEM (Alizad et al. 

2016) incorporate biogeomorphic feedbacks associated with inundation, plant growth, organic 

matter accretion and sediment deposition. When used in conjunction with site-specific data on 

vegetation and/or elevation, the results can provide insights into SLR response at high spatial 

resolutions (e.g., Alizad et al. 2016; Thorne et al. 2018). However, such comprehensive modeling 
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efforts are often specific to a single wetland site and are difficult to replicate over broad geographic 

ranges for a variety of wetlands due to time and resource constraints. 

The limitations inherent to large-scale and fine-scale assessments have led to geographical 

gaps in our understanding of SLR response. The availability and accessibility of relevant data, as 

well as bias in assessment design caused by stakeholder incentives and resource availability, also 

contribute to these gaps (Preston et al. 2011). As a result, modeling efforts are normally conducted 

in well-studied and data-rich regions, wetland types or specific sites. The remaining, less-studied 

areas warrant attention, given that SLR response is highly context dependent. However, coastal 

wetland types with similar origin, geomorphology, dynamics, sediment balance, biogeochemistry 

and ecology will respond similarly to SLR and can therefore be grouped into a typology to provide 

a framework for the transfer of knowledge from data-rich to data-poor wetlands (Vafeidis et al. 

2008). Here, coastal wetland typology reflects general classes like small deltas, tidal systems, 

lagoons, large rivers, estuaries and bays (Dürr et al. 2011). Inclusion of all wetlands and wetlands 

types would provide a more holistic regional perspective on SLR response that is required by both 

local and regional management efforts to ensure the resiliency of coastal ecosystem networks in 

the future (Gilmer et al. 2012; Stralberg et al. 2011). 

This study aims to develop a nested SLR response assessment model that can be used to 

estimate SLR-induced habitat change across large geographic regions containing diverse wetland 

types. Our work augments current regional SLR assessments, bridging the gap between coarse 

regional and detailed site-specific models by addressing 1) the spatial variability of SLR drivers 

and response, 2) the ability to assess wetlands of different sizes and typologies using a common 

approach and 3) the need to accommodate differences in data availability across sites. We 

conducted our assessment in the southern California region, which has a diverse range of wetland 
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typologies representing many of the wetland types found globally, including Mediterranean areas, 

which have often been overlooked by previous SLR assessments. In addition, data availability 

varies a great deal for wetlands across southern California. Model outputs provide relative 

estimates of change in habitat composition for local (site-specific) and regional scales, which are 

necessary to inform regional SLR adaptation efforts in southern California. Our goal is to estimate 

overall wetland losses for the region due to future SLR and explore how relative losses would vary 

among wetland types. The modeling approach is also highly relevant to other coastal regions 

throughout the world where predicting future SLR response is complicated by habitat 

heterogeneity and limited data availability. 

 

Figure 1-1. Conceptual diagram of the SLR response habitat change model.  Model drivers (sea level rise, 

accretion, and mouth dynamics) represent the processes inducing change in water levels and elevation. 

Elevation change (ΔEt) raises the current marsh hypsometry (t0, light brown) to future hypsometry ((tx), 

dark brown). Water level changes (Δƞt) alter the marsh zones (subtidal, mudflat, and vegetated marsh) 

delineated by elevation (horizontal lines). Habitat change is calculated as the difference in area under the 

curve for each marsh zone under current and future conditions. 
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1.3 Materials and Methods 

1.3.1 Model Overview 

We developed a rule-based model that quantifies SLR-driven habitat conversion caused by 

the combined effects of SLR, accretion, and changes in water levels due to estuary mouth dynamics 

(Figure 1-1). The model uses hypsometric data, the measure of land elevation in relation to sea 

level, as a standardized basis for quantifying habitat change within individual wetlands across a 

region. Data gaps are addressed by incorporating the best available data at local to regional scales 

and by developing a wetland archetype framework to extrapolate data across similar wetland types. 

We conducted our assessment in southern California, and parameterized our model using data 

collected for the 105 coastal wetlands found in the region (Table 1-1). The model was executed 

for two SLR projections, 0.6 m by 2050 and 1.7 m by 2100, based on regional guidelines 

(California Coastal Commission 2015; Griggs et al. 2017; National Research Council 2012). 

Wetlands were constrained to their current boundaries, i.e., no upland migration was allowed, due 

to the uncertainties associated with predicting wetland migration (Anisfeld et al. 2017). Modeling 

was conducted in R (R Foundation for Statistical Computing, Vienna, Austria). 

1.3.2 Regional Background 

Southern California is emblematic of many coastal regions worldwide in that it contains a 

large number of wetlands of various sizes and types. Historically, this region contained over 300 

coastal wetlands occupying approximately 19,591 ha of wetland habitat (Stein et al. 2014). Since 

ca. 1800, close to 50% of wetland areas in this region have been converted to open water or non-

estuarine habitat, i.e., developed, agricultural, or open space land uses (Stein et al. 2014). The 

existing wetland remnants are geographically isolated and constrained due to human modification  
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Table 1-1. Data inputs required to inform and parameterize the SLR habitat change model. 

Input Scale Value (units) Source 

Relative Sea Level Rise 

SLR 2050 Projection Regional 12.2 (mm yr-1) NRC 2012,  

Griggs et al., 2017 

SLR 2100 Projection Regional 16.6 (mm yr-1) NRC 2012,  

Griggs et al., 2017 

t
0, t1, t2

  2016, 2050, 2100 

(yr) 

 

Accretion 

Measured Accretion ± Error Site, Archetype mm yr-1 SCCWRP Literature 

Review 

Mouth Dynamics 

Daily Water Levels Sub-regional m NOAA 

Daily Wave Height, Period, 

Direction 

Sub-regional m, s, degrees CDIP  

Watershed Run-off Estimates Sub-regional m3 s-1 SCCWRP 

Estuary Mouth Width Site m SCCWRP 

Estuary Closure Estimates Site % SCCWRP 

Estuary Area  Site km2 SCCWRP 

Habitat Change 

Current Habitat Extent Site m2 SFEI/SCCWRP 

Habitat Elevation 

Relationships 

Sub-regional  SCCWRP/SFEI 

Literature Review 

LiDAR-derived DEM Regional m2 2009-2011 CA Coastal 

Conservancy Coastal 

Topobathy Project 

Estuary Hypsometry Site km2 / z* This study 

Abbreviations: National Resource Council (NRC), Southern California Coastal Water Research Project 

(SCCWRP), National Oceanic and Atmospheric Association (NOAA), Coastal Data Information 

Program (CDIP), San Francisco Estuary Institute (SFEI) 

 

of the landscape to serve urban development, military uses, industrial and agricultural expansion, 

recreation and tourism (Zedler 1982). 

1.3.3 Wetland Archetype Classification 

We have grouped wetlands in this region into archetypes to facilitate extrapolation of data 

between wetlands to fill the gaps in our knowledge of the region. Archetypes represent wetlands 

with similar physical structure and ecosystem drivers that are expected to react in similar ways to 

SLR. To develop the archetypes, we compiled data on the physical structure and processes for 
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each wetland in the region; these variables fell into five general categories including catchment 

properties, wetland dimensions (e.g., size and slope), proportion of subtidal to intertidal areas, inlet 

dimensions and area, and wetland volume and capacity. Of the 105 wetlands, 46 had sufficient 

data to be included in a K-Means cluster analysis where cluster numbers ranging from 4 – 8 were 

tested to maximize separation and minimize misclassification rates.  

The resulting archetypes were further refined using a discriminant function analysis to 

identify the key predictor variables that generated the greatest accuracy of classification. Key 

predictors included wetland area, erosion area (area/depth), slope from mouth to head, integrated 

slope, mouth elevation, mean mouth width, total area inundated at spill height, percent wetland at 

low tide and total percent subtidal. Finally, we mapped habitat data from the National Wetlands 

Inventory (NWI) and the Classification and Assessment with Landsat of Visible Ecological 

Groupings (CalVeg) system onto the clusters to produce habitat associations for each archetype. 

Validity of the resulting archetypes were tested by performing a bias analysis on the key predictor 

variables and the remaining 59 systems not included in the cluster analysis. Archetypes were also 

qualitatively assessed by regional experts who were allowed to add modifiers to each wetland 

based on mouth armoring, mouth migration potential, and/or presence of engineered channels. 

The resulting archetypes include small creeks, small lagoons, intermediate estuaries, large 

lagoons, large river valley estuaries, fragmented river valley estuaries, and open bays and harbors 

(SCWRP 2018). Intermediate estuaries, commonly referred to as intermittently opening and 

closing estuaries or bar-built estuaries, are note-worthy because they represent a significant 

component of coastal wetlands in southern California (Zedler 1996). Each of the 105 wetlands in 

the analysis was classified as one of the seven archetypes (Figure 1-2). 
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Figure 1-2. Archetype classification and projected percent difference in combined wetland habitat 

(vegetated marsh and unvegetated mudflat) for individual wetland sites for 1.7 m SLR (2100) in the 

southern California region. 

1.3.4 Model Components 

1.3.4.1 Sea Level Rise 

Sea level projections for the Los Angeles area range from 12.7 – 60.8 cm for the year 2050, 

and from 44.2 – 166.5 cm for 2100 (National Research Council 2012). We selected the maximum 

of the projected SLR ranges for 2050 and 2100 (0.6 m and 1.7 m, respectively). We converted 

these projected levels of inundation to SLR rates (mm yr-1) by dividing by the difference in time 

period between our modeling time points (2050, 2100) and the reports’ baseline (2000), resulting 

in SLR rates of 12.2 mm yr-1 for 2050 and 16.6 mm yr-1 for 2100. A regional default value for SLR 

was selected to provide a standardized baseline for comparison across wetlands and also to align 

with ongoing regional efforts (SCWRP 2018). 
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1.3.4.2 Accretion 

Empirical estimates of accretion in coastal wetlands in southern California were obtained 

through a review of published literature (Table S1-1). The records included in the analysis were 

derived from radiocarbon dating, radiocesium dating, and paleoenvironmental soil core analysis 

of pollen and cover periods ranging from ~30 to 10,000 years. Accretion estimates were 

standardized to millimeters per year (mm yr-1). Records reflecting short term (< 10 yr) accretion 

and episodic sediment deposition from storms were excluded from the analysis to ensure that 

model inputs reflect long-term accretion rates on temporal scales comparable to SLR projections. 

Because of the limited availability of published accretion records specific to this region 

(see Results), we used the archetype framework to extrapolate data from well-studied sites to data-

poor sites. When empirical data was available for a given wetland, we used site-wide averages 

across all intertidal marsh zones as accretion input. For wetlands lacking empirical data, we 

calculated archetype accretion estimates from our literature review by aggregating records first by 

marsh zone within a site, then by site and finally by archetype to provide inputs for similar sites 

specific to this region (Table 1-2). Accretion rates for small creeks and lagoons were set to 0 mm  

Table 1-2. Archetype accretion rates estimated from the literature review 

Archetype Zone 

Accretion ± SD (mm yr-1) 

n By Zone Total 

Small Creek No Data 0 

Small Lagoon No Data 0 

Intermediate Estuary Low 3.63 3.63 1 

Large Lagoon 
Mid 

High 

12 

21.8 
9.55 ± 9.40 4 

Large River Valley 

Estuary 

Low 

Mid 

4.8 

4.83  ± 5.49 
4.68 ± 2.94 5 

Fragmented River 

Valley Estuary 

Low 

Mid 

1.38 

0.49 
1.2 ± 0.65 3 

Open Bay/Harbor 

Low 

Mid 

High 

2.83 

3.24  ± 2.82 

7.13 

3.84 ± 2.32 5 
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yr-1 because of a lack of empirical data and to avoid additional uncertainty associated with 

modeling fluvial sediment discharge. Contributions to accretion from both allochthonous and 

autochthonous inputs are relatively low for these systems given the variable precipitation patterns 

in southern California, small catchments sizes and the small vegetated areas associated with these 

systems. 

1.3.4.3 Mouth Dynamics 

We included an estuary mouth dynamics component in our assessment to address the 

intermittently opening and closing state of estuary mouths common to southern California and 

throughout the world (Rich and Keller 2013). Changing mouth state is a product of marine and 

fluvial drivers, such as wave energy and river discharge, which contribute to changes in estuary 

water levels by altering the height and position of terminal estuary bars.  As estuary bars rise with 

sea level, the flood risk associated with estuary closure is expected to worsen (Behrens et al. 2015). 

These changes can in turn affect extent and duration of inundation and therefore, habitat 

distributions. To inform our model, we conducted a separate modeling analysis which includes a 

closure index (PWA 2003; Williams and Cuffe 1995) and a water balance model (Behrens et al. 

2013; Behrens et al. 2015).  

These analyses were conducted to estimate the probability of changing mouth state and the 

subsequent changes to estuary water levels for individual sites. We hypothesize that increased sea 

levels will increase the frequency of estuary closure, inducing a shift in dominant mouth state, and 

will ultimately increase water levels within a site.  To test our hypothesis, we created a synthetic 

daily time series for current, 2050 and 2100 sea levels using local NOAA tide level data, Coastal 

Data Information Program (CDIP) water level and wave data, and Southern California Coastal 

Water Research Project (SCCWRP) coastal watershed run-off data for the last 20 years (Table 1-
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1). To predict future closure indices, we manipulated wave and tidal inputs to reflect SLR 

projections of 0.6 m for 2050 and 1.7 m for 2100.  

In order to estimate the probability of changing mouth state, we used the closure index (S) 

metric used by Williams and Cuffe (1995) and PWA (2003): 

S = Pw/Pt                      (1) 

Pw = 0.5ρgHsC            (2) 

Pt = (γhT)/b * (Ω/T+Q)                (3) 

Where Pw is wave power, ρ is the constant 1 kg L-1 for water density, g is the constant 9.81 

m s2 for acceleration by gravity, Hs is significant wave height and C is wave group velocity 

(C=1.56*s, where s is wave period). Tidal power (Pt) is also described above, where γ is the 

constant 1000 kg unit weight of water, hT is the tidal range, b is the estuary mouth width, Ω is tidal 

prism (Ω= hT*A, where A is the water surface area of the basin), T is the ebb tide period and Q is 

fluvial discharge. We estimated the daily likelihood of closure for each estuary over the entire time 

series.  

Next, we estimated how water levels may change in a given system when it is predicted to 

be open (S < 0.1) or closed (S > 0.1). In doing so, we made the assumption that every time closure 

risk is above the threshold, the system closes. This likely over-predicts mouth closure; however, 

we wanted to calculate the percent increase in predicted closure associated with SLR and the 

hypothetical changes to system water level based on the time series data. Also, this mouth 

dynamics response threshold allowed us to repeat this process and compare outcomes for all 

systems where data was available. We estimated daily system water levels for systems with both 

“open” and “closed” conditions using a simplified model based on the work of Behrens et al. 
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(2013; 2015). When the system was at low risk of closure (S < 0.1), we assumed the system would 

be open and that system water level (η) would track mean seal level (MSL): 

η = MSL                                                                        (4) 

When the system was at high risk of closure (S > 0.1), we assumed the system would be 

closed and that system water level (η) would be largely determined by the starting conditions of 

the estuary mouth and net fluvial inputs (Qnet): 

ηt+1 = ηt + Qnet/Areaη                 (5) 

Qnet = Qriver – Qevap                (6) 

Where ηt+1 is the future system water level, η is current water level, Qnet is the sum of 

fluvial inputs and evaporation, and Areaη is the surface area of the system at a given water level 

determined by system hypsometry. 

Seventy of the 105 sites in the region were considered in our mouth dynamics analysis 

because they did not have openly-engineered estuary mouths. Of these, 36 sites had sufficient data 

and fall within several archetypes: small creeks, small lagoons, intermediate estuaries, large 

perennially-open lagoons and large river valley estuaries. For these sites, we calculated the percent 

of time that the site was expected to have high closure risk, and the hypothetical changes to water 

levels when we assume the site is closed. Estimates of percent closure for 2050 and 2100 were 

added to estuary closure estimates for the present day and were then binned into the following 

categories: predominantly open (<40%); intermittently open/closed (>40%, <60%); and 

predominantly closed (>60%). Predominantly open sites received no additional changes in water 

level; intermittently open/closed sites received a dampened (0.5x) increase in water level; and 

predominantly closed sites received the full (1x) increase in water level associated with closed 

mouth state. The findings of our estuary mouth dynamics modelling analysis were aggregated by 
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archetype to extrapolate to other systems with similar mouth dynamics characteristics but without 

sufficient data to be included in our mouth dynamics model. 

1.3.5 Wetland Hypsometry 

Hypsometric data were developed for the extent of each of the 105 wetlands using a digital 

elevation model (DEM) obtained from the 2009-2011 NOAA-CA Coastal Conservancy Coastal 

Lidar Project (Table 1-1). The DEM had a spatial resolution of 1 m2 and horizonal and vertical 

error of 50 cm and 9.4 cm, respectively. DEM elevation relative to the North American Vertical 

Datum 1988 (z) was converted to z*; 

z*=
𝑧 −𝑀𝑆𝐿

𝑀𝐻𝐻𝑊 −𝑀𝑆𝐿
           (7) 

where z* is the relative elevation within the tidal range calculated as a dimensionless ratio 

of elevation referenced to mean sea level (MSL) and mean high high water (MHHW) from the 

nearest NOAA tidal station (Swanson et al. 2014). z* was used in order to standardize estimates 

of elevation changes across wetlands with varying tidal datums, elevations and tidal ranges. 

Standard hypsometric curves providing information on wetland elevation relative to sea level were 

created by cumulatively summing the area that falls within z* bins of 0.05.  

1.3.6 Changes in Elevation and Water Level 

Model components for SLR, accretion and mouth dynamics were used to estimate changes 

in elevation and water level relative to our 2016 (t0) baseline. Change in marsh elevation (ΔE) is 

determined by SLR and accretion: 

ΔEt = SLt - At            (8) 

Where SLt is the change in sea level occurring by the year benchmark (t1,2=2050, 2100) 

associated with the SLR projections and At is the total accretion by that time.  SLt and At are 
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calculated from the rates described above by multiplying by the desired time period (t1,2 - t0) and 

converting to meters. 

Change in water level (Δη) was determined by SLR and mouth dynamics: 

Δηt = SLt + ηclosed             (9) 

Where ηclosed is the hypothetical change in water level when a site is assumed to be closed 

(see section Mouth Dynamics). ΔEt and Δηt were estimated for all 105 wetlands for each SLR 

scenario.  

1.3.7 Habitat Change 

We used the estimated changes in elevation and water levels for 2050 and 2100, along with 

the hypsometric curves developed for each wetland to estimate areal changes in habitat occurring 

with SLR (Figure 1-1). Changes in elevation act upon the hypsometric curve itself, increasing the 

z* values by ΔE (which has been converted from meters to z* using the local tide datum), while 

keeping the total area of the marsh constant. Changes in water level are used to manipulate the z* 

ranges that correspond to different wetlands habitats (Figure 1-1, Table S1-2). z* ranges were 

informed by a synthesis of regional habitat-elevation data.  

We calculated the area within three habitat classes (subtidal, unvegetated mudflat, and 

vegetated marsh) for each of the 105 wetlands under current sea levels and 0.6 m and 1.7 m SLR 

scenarios. We report the estimated changes to each habitat class and two metrics of wetland habitat 

loss. For the purpose of this study, wetland habitat loss reflects the combined loss of vegetated 

marsh and unvegetated mudflat areas, which assigns equal weight to these ecologically important 

classes and also aligns with ongoing regional efforts (SCWRP 2018). First, we calculated percent 

change as the difference in wetland area between the existing area and the predicted area under the 

SLR scenario divided by the existing area (hereafter “percent change”). Second, we calculated 
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percent difference as the decrease in the percent of wetland area for each site between the existing 

conditions and the predicted conditions under the SLR scenarios to produce an estimate of the 

relative decrease in the percent of wetland area (hereafter “percent difference”). We report percent 

loss using the “percent difference” approach in order to account for site sizes when comparing 

wetland loss among sites, archetypes, and the region.  

1.3.8 Uncertainty and Sensitivity Analyses 

We conducted an uncertainty analysis to address errors of measurement and sensitivity to 

model parameters that may influence model outputs. We propagated errors (e.g., standard error, 

standard deviation, 95% confidence intervals) associated with each of the model inputs through 

the model to determine the cumulative errors in the habitat change output. Model inputs considered 

include SLR rate, accretion rate, water level changes caused by mouth dynamics, and vertical error 

of the DEM. This error analysis provides us with a bookended range of potential habitat change 

for each site. We conducted a sensitivity analysis by modifying each input ±50% while leaving all 

other inputs unchanged. We modified DEM inputs by ±50 cm to test sensitivity to initial elevation 

for a broad, hypothetical range of vertical error feasible for digital elevation datasets. The 

sensitivity analysis provides an estimate of the percent change in habitat caused by modifying the 

inputs, which allows us to identify the importance of each input in predicting habitat change. 

1.4 Results 

1.4.1 Regional Accretion and Estuary Mouth Dynamics 

Investigation of regional accretion and mouth dynamics were conducted to inform the 

model and revealed inter-archetype differences that may cause differential response to SLR. Over 

100 records of accretion rates were obtained for 10 wetland sites from 16 published sources and 

of these 58 records were suitable for analysis (Table S1-1). Estimates of accretion per archetype 
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based on the site-wide averages ranged from 1.2 ± 0.7 mm yr-1 in fragmented river valleys to 9.5 

± 9.4 mm yr-1 in large lagoons (Table 1-2). Differences in accretion between archetypes were 

useful for modeling but were not statistically significant given low sample sizes following data 

aggregation due to data limitations of this study (Table 1-2). Similarly, the mouth dynamics 

modeling analysis indicates that certain archetypes may experience increased likelihood of closure 

causing increased estuary water levels with future SLR (Table 1-3). For 2050, likelihood of closure 

was predicted to increase by 0 – 13% with water levels increasing by an average of 34 cm, and by 

0 – 48% with increases of 114 cm for 2100. Specifically, small creeks and lagoons are most at risk 

for increased closure, while larger sites with sufficient fluvial runoff are more likely to remain 

open. Although differences in increased likelihood of closure were detected, estimates of increased 

estuary water levels were similar among archetypes and neither was found to be significantly 

different across archetypes. 

Table 1-3. Mouth Dynamics Analysis results. Increased likelihood of high closure risk and the resultant 

increases in water levels when a system is presumed to be closed. 

Archetype 

0.6 m SLR  1.7 m SLR 

Δ Likelihood 

of Closure 

(%) 

Δ Estuary 

water level (m) 

 Δ Likelihood 

of Closure 

(%) 

Δ Estuary 

water level (m) 

Small Creek +13% 0.43  +27% 1.38 

Small Lagoon +8% 0.43  +48% 1.55 

Intermediate Estuary +3% 0.42  +14% 1.41 

Large Perennially-Open Lagoon +7% 0.42  +21% 1.38 

Large River Valley Estuary 0% 0  0% 0 

Fragmented River Valley Estuary No Data No Data  No Data No Data 

Open Bay/Harbor No Data No Data  No Data No Data 

Changes calculated using 2016 as the baseline. Values for change in estuary water levels represent 

the contribution of mouth dynamics alone; these values will be combined with inundation from SLR 

in order to estimate total increases in water level in the estuary. 
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1.4.2 Wetland Habitat Change and Loss 

Estimates of subtidal, unvegetated mudflat, and vegetated marsh areas were made for each 

of the 105 sites under current, 2050 (0.6 m) and 2100 (1.7 m) projected sea levels. Site-specific 

estimates of wetland habitat area were aggregated to the region and to the regional archetypes for 

large-scale inferences into SLR response (Figure 1-3). Region-wide, current vegetated marsh 

habitats encompass 26.6 km2 and are predicted to decrease to 19.9 km2 with 0.6 m SLR and 8.3 

km2 with 1.7 m SLR, which represent losses of 25.3% and 68.8%, respectively. Unvegetated 

mudflat habitats account for 12.5 km2 of the regional habitat under current conditions and are 

predicted to increase to 14.4 km2 with 0.6 m SLR and decrease to 12.1 km2 with 1.7 m SLR, 

representing a 15.7% gain and a 3.0% loss, respectively. Combined wetland habitat (vegetated 

marsh and unvegetated mudflat) for the entire region currently comprises 39.1 km2, or 30.8%, of 

the total wetland area (Table 1-4). When open bays and harbors, which are predominately subtidal 

sites, are excluded, the current proportion of combined wetland habitat in the region is 

approximately 70%. With SLR, the combined wetland area across the entire region (including 

open bays and harbors) are predicted to decrease to 34.3 km2 by 2050 and 20.4 km2 by 2100 (Table 

1-4). This represents regional losses of 12.3% and 47.8% of combined wetland habitat with 0.6 m 

and 1.7 m SLR, respectively. 

Table 1-4. Predicted percent change in wetland (vegetated marsh and unvegetated mudflat) habitat area 

for the southern California region and individual wetland archetypes. 

 Wetland Area (km2) Percent Change (%) 

Archetype Existing 0.6 m SLR 1.7 m SLR 0.6 m SLR 1.7 m SLR 

Small creek 0.08 0.06 0.01 25.0% 87.5% 

Small lagoon 0.04 0.008 0.001 80.0% 97.5% 

Intermediate estuary 14.9 13.5 9.9 9.4% 33.6% 

Large lagoon 5.6 4.3 1.1 23.2% 80.4% 

River valley estuary 9.4 9.2 6.2 2.1% 34.0% 

Fragmented river valley 

estuary 
4.1 2.9 0.9 29.3% 78.0% 

Open bay/harbor 5.0 4.3 2.1 14.0% 58.0% 

Region 39.1 34.3 20.4 12.3% 47.8% 
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Figure 1-3. Current and predicted habitat change for wetland archetypes under two sea level rise scenarios 

when wetlands are confined to existing boundaries. 
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Percent change in combined wetland habitat for the regional archetypes provide a more 

detailed look at SLR response (Table 1-4). Small archetypes with an initially low proportion of 

wetland habitat are predicted to experience rapid habitat loss. Specifically, small creeks currently 

make up 0.08 km2 of wetland habitats in the region but are estimated to decline to 0.06 km2 (-25%) 

by 2050 and to 0.01 km2 (-88%) by 2100. Similarly, small lagoons comprise 0.08 km2 of existing 

wetland areas in the region but will be reduced to 0.008 km2 (-80%) by 2050 and only 0.001 km2 

(-98%) by 2100. Larger archetypes with higher initial proportions of wetland habitats, such as 

intermediate estuaries, large lagoons, and large river valley estuaries, are expected to experience 

slight reductions in the percent of wetland area with 0.6 m SLR, however, with 1.7 m SLR these 

archetypes will experience more drastic declines in wetland area, reflecting overall gains in 

subtidal habitat and conversion of vegetated marsh areas to unvegetated mudflats (Figure 1-3). For 

example, intermediate estuaries comprise 14.9 km2 of existing wetland areas in the region and will 

lose 9.4% of wetlands by 2050 and 33.6% by 2100 (Table 1-4). In the course of this overall 

reduction of wetland area, this archetype is predicted to gain 7.8% of unvegetated mudflat areas 

from 2050 to 2100 at the expense of vegetated marsh (Figure 1-3). Wetland habitat loss, as an 

estimate of percent change, is predicted to be minimal in open bays and harbors, which are large, 

predominantly deep subtidal systems and are often highly modified and managed.  

Site-specific estimates of SLR-driven change to wetland habitat areas provide insights into 

the range of potential responses within archetypes (Figure 1-2, Figure 1-4). Percent difference in 

wetland area per site reflects the combined loss of vegetated marsh and unvegetated mudflat 

compared to the current proportion of wetland area per site (Figure 1-2). With 0.6 m SLR, percent 

difference in wetland habitat per site ranged from -1.1 to 74.2%, indicating a highly variable 

response to SLR given site-specific model parameterization. Similarly, 1.7 m SLR estimates 
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indicate differential site response but overall increased percent difference in wetland habitat 

ranging from -0.7 to 94%. Low or negative predicted percent difference in estimates suggest that 

some sites may be able maintain or gain wetland habitats (vegetated marsh and unvegetated 

mudflat) while others will likely lose habitat area. 

 

Figure 1-4. Inter- and intra-archetype variability in percent difference in combined wetland habitat 

(vegetated marsh and unvegetated mudflat) predicted with 1.7 m SLR by 2100. Boxplots indicate the 

distribution of percent difference for each archetype including the median, first and third quartiles. Points 

indicate each site within the archetype class and the availability of accretion data for that site: data was 

either available from our literature review (measured, closed circle), extrapolated using the archetype 

framework (extrapolated, plus) or unavailable (none, open circle). For sites where accretion data was 

unavailable (small creeks and lagoons), estimates were made using a bathtub model assuming no accretion. 
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Figure 1-5. Relationship between predicted percent difference in wetland habitat with 1.7 m SLR by 2100 

and existing (2016) percent wetland areas (vegetated marsh and unvegetated mudflat) for all 105 sites. Site 

symbology reflects the archetype classification (color) and data availability of accretion inputs for that site 

(shape). Accretion data was either available from our literature review (closed circle, solid trendline), 

extrapolated using the archetype framework (plus, dashed trendline) or unavailable (open circle, long-dash 

trendline). For sites where accretion data was unavailable (small creeks and lagoons), estimates were made 

using a bathtub model assuming no accretion. 

1.4.3 Model Uncertainty and Sensitivity 

Uncertainty analyses revealed the ranges of potential habitat outputs when input error was 

propagated though the model (Figure 1-6). The estimated range of error with 0.6 m SLR is 12.9 – 

33.7 km2 for vegetated marsh, 4.1 – 20.3 km2 for unvegetated mudflat, and 80.0 – 97.2 km2 for 

subtidal habitats. For 1.7 m SLR, the estimated range of error is 5.7 – 37.5 km2 for vegetated 

marsh, 1.6 – 69.8 km2 for unvegetated mudflat, and 21.2 – 13.8 km2 for subtidal habitats. When 

the range of error was compared to the model estimates for each habitat type for 2050 and 2100, 

we found that the predictions for subtidal areas are high within the range and that the predictions 

for vegetated areas are low within the range, while predictions for unvegetated mudflats are in the 
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middle of the range (Figure 1-6). Although this renders model predictions for vegetated areas as 

conservative, the gains in vegetated areas suggested by the uncertainty analysis reflect unlikely 

scenarios of low SLR with high accretion. Overall, predictions for 2100 exhibits higher uncertainty 

due to model inputs than those for 2050. 

 

Figure 1-6. Bookended range of the potential area for each wetland habitat when error is propagated 

through the model. Black lines represent the area of each habitat originally predicted by the model. 

Floating bars represent the range of possible values when model input errors are considered. 

The sensitivity analysis revealed that model estimates of wetland habitat area are most 

sensitive to initial elevation and SLR, followed by accretion and mouth dynamic inputs (Figure 1-

7). When initial elevation was increased by 50 cm, an additional 53.7% of vegetated marsh was 

retained with 0.6 m SLR and an additional 99% was saved with 1.7 m SLR compared to the original 

model estimates. Increasing SLR estimates by 50% caused reductions of 22.6% and 53.5% for 

vegetated marsh areas for 2050 and 2100, respectively. Decreasing SLR estimates by 50% caused 
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gains in vegetated marsh areas but is not a realistic scenario. Increasing accretion inputs resulted 

in additional vegetated marsh areas (+10.3%, +57.7%), while decreasing accretion resulted in 

additional subtidal and unvegetated mudflat areas. Percent change to habitat areas when modifying 

water levels associated with mouth closure were minimal compared to other model inputs but 

indicate slight increases to unvegetated marsh areas when this input was increased. Overall, the 

sensitivity of model outputs increases from 0.6 m SLR to 1.7 m SLR. 

 

Figure 1-7. Percent change in habitat area caused by sensitivity to model inputs. Percent change is 

calculated based on the area of each habitat (subtidal (light grey), unvegetated mudflat (grey), and 

vegetated marsh (dark grey)) originally predicted by the model. Sensitivity was analyzed by varying model 

parameters Accretion, Mouth Dynamics, SLR by ±50% and Initial Elevation by ±50 cm. Note varying y-

axis scales in plot panels. 

1.5 Discussion 

Southern California exemplifies many coastal regions threatened by SLR, where efforts to 

understand future impacts are challenged by spatial variability in drivers and responses, a 

heterogeneous coastal landscape, and limited data availability. Wetland hypsometry offers a 
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standardized modeling approach that can provide multi-scale insights to SLR response for a 

diverse region. Hypsometry data can be developed for any number of wetland sites using a 

consistent approach and readily available datasets. The output of hypsometric analysis provides a 

standardized measure of wetland elevation relative to current sea levels for each site across a large 

geographic area, making it a universal foundation for modeling SLR across sites of various 

morphologies and sizes. The majority of SLR modeling efforts are based on some metric of 

elevation, yet to our knowledge, wetland hypsometry as a measure of z* has not been developed 

for 100+ sites at 1-m resolution to identify site-level impacts throughout a region, as we have done 

here. This framework can be applied to any other coastal regions where elevation data are 

accessible. When combined with analysis of wetland typology (or archetypes), this approach 

reduces the gap between fine-scale (site specific) and large-scale assessments.  

Large-scale assessments often provide a limited understanding of regional SLR response 

(Fagherazzi et al. 2012). Recent global assessments report wetland losses up to 22 – 59% under 

low SLR (0.3 and 0.5 m) and 78% with high SLR (1.1 m) (Nicholls 2004; Nicholls et al. 1999; 

Spencer et al. 2016). Such assessments often indicate no or low vulnerability to SLR in southern 

California relative to other regions because these wetlands are either not included in global 

databases (e.g., RAMSAR) or are characterized under a broad coastal classification scheme 

(Nicholls et al. 1999; Spencer et al. 2016). Our findings indicate that when coastal wetlands are 

confined to their existing extents (i.e. not allowed to migrate), the southern California region could 

experience combined wetland habitat losses of 12% and 48% with 0.6 m and 1.7 m of SLR. For 

vegetated marsh alone, these figures increase to 25% and 68% loss, respectively. These projected 

losses fall within the range of global assessments, and are comparable to similar regional 

assessments (e.g., 45% loss with 0.69 m SLR in Georgia (Craft et al. 2009)). Our modeling 
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approach provides reasonable SLR response estimates at large spatial scales, but also facilitates 

assessment at smaller scales to provide contextualized intra-regional patterns in SLR response. 

Wetland SLR response at intermediate scales is a critical missing piece in predicting SLR 

impacts globally. To address this, our assessment characterized variability in SLR-driven habitat 

loss among and within coastal wetland archetypes. Through the use of archetypes in southern 

California, we were able to identify wetland types that have a higher risk of habitat loss and to 

elucidate the underlying processes that lead to habitat loss. Many of the factors contributing to 

high SLR vulnerability in this study region are universal and applicable worldwide. For example, 

large bays and harbors are predicted to experience minimal relative loss of vegetated marsh and 

unvegetated mudflat habitats because existing habitat composition in these systems is 

predominantly subtidal with few fringing wetlands. Also, bays and harbors are often armored and 

highly managed to maintain deep water and remain open to the ocean; consequently, most impacts 

will be to subtidal habitats. Conversely, small creeks and lagoons are at greater risk for more rapid 

loss of wetland because of their small extent and the steep grade of adjacent upland transition 

zones, which limits migration potential (Donnelly and Bertness 2001; FitzGerald et al. 2008). 

Moreover, these small systems often have limited opportunity for accretion, decreasing their 

ability to accommodate SLR. 

Insights at the archetype level are especially valuable for intermediate estuaries, which 

exhibit a wide range of potential responses to SLR. This archetype is characteristically diverse 

because it consists of systems that are naturally dynamic, fluctuating between open and closed 

mouth states due to fluvial, tidal and wave drivers (Behrens et al. 2015). These dynamic estuarine 

systems are present along the coasts of the Western United States, Mexico, South America, 

Europe, South Africa, Asia and Australia (McSweeney et al. 2017) and are often underrepresent 
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in large-scale assessments despite offering important ecosystems services like refuge for 

endangered fish species (e.g., Swenson, 1999). Incorporating estuary mouth dynamics into SLR 

response models is challenging because mouth dynamics are expected to be heavily influenced by 

SLR (Haines and Thom 2007) and are difficult to model. Therefore, the difficulty in predicting 

mouth dynamics means that the intermediate estuary response to SLR also comes with a high 

amount of uncertainty. Given that intermediate estuaries are more widespread globally than 

previously reported (McSweeney et al. 2017), additional monitoring and modeling of estuary 

dynamics relative to coastal and fluvial processes also subject to climate change represent a high 

research priority.  

Similarly, fragmented river valleys exhibit the largest range of SLR responses because they 

also encompass a diverse group of wetlands, all of which have been highly modified by humans. 

This archetype exemplifies the global phenomenon of coastal squeeze caused by shoreline 

hardening, where natural systems have become hydrologically altered and bounded by concrete 

structures like seawalls and jetties (Pontee 2013). Anthropogenic impacts like habitat 

fragmentation and shoreline hardening in coastal wetlands will accelerate habitat loss with future 

SLR (Gittman et al. 2015). However, even archetypes considered to be unmodified are also highly 

vulnerable to SLR. Larger archetypes, including intermediate estuaries, large lagoons, and river 

valley estuaries, will experience the greatest amount of habitat change in the region. Although 

these systems are characteristically large, predominantly comprised of wetland habitat, and have 

shallow grades ideal for upland migration, it is likely that allochthonous and autochthonous inputs 

to accretion will not be sufficient to maintain elevation with SLR in the long term. Within these 

larger archetypes there is also wider range of site responses, which reflects the intra-archetype 

diversity of system characteristics.   
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Indeed, we found that site-level response to SLR is highly variable, further emphasizing 

the importance of spatial scale in SLR assessments and the need to supplement regional projections 

with local insights. To date, local insights are best acquired through fine-scale SLR assessments 

conducted for individual wetland sites. This is exemplified by the work of Thorne et al. (2016; 

2018) for several wetland sites in southern California including Upper Newport Bay, Mugu 

Lagoon, and Tijuana River Estuary. Detailed field collections of physical and biological data were 

used to parameterize the process-based WARMER model (Swanson et al. 2014) to predict SLR 

response for a subset area within the study sites. Our SLR response predictions corroborate their 

overall finding that these sites will experience conversion of mid- and high-marsh to low marsh 

with modest SLR projections (0.44 m) and gains of intertidal mudflat and subtidal habitat at the 

expense of vegetated marsh with high SLR projections (1.66 m) (Thorne et al. 2016). Specifically, 

projections for Upper Newport Bay by Thorne et al. (2016) indicate that 60% of the wetland area 

will be converted to subtidal with 1.66 m SLR and this study estimates a total of 57% subtidal 

under the same SLR scenario. Mugu Lagoon is estimated to become 100% intertidal mudflat with 

1.66 m SLR (Thorne et al. 2016), whereas we predict the future habitat composition to be 50% 

intertidal mudflat and 25% subtidal.  However our Mugu wetland boundary is larger than the area 

studied by Thorne et al. (2016) and includes more subtidal areas. Thorne et al. (2016) predict that 

a portion of the Tijuana River Estuary will convert to 80% mudflat and 20% subtidal, and we 

predict that a larger area of the estuary containing a higher initial proportion of vegetated marsh 

will consist of 32% mudflat and 24% subtidal with high SLR. Similarities in SLR response 

predictions for these three sites indicate that our approach may provide an alternative option when 

time and resource intensive assessments are not possible for individual wetlands or when regional 

efforts need to identify sites where more work should be targeted.  
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Accommodating all wetlands types regardless of data availability is another essential step 

towards a comprehensive assessment of wetland response. Our approach is designed for flexibility 

in model parameterization by incorporating site-specific data when available, and by using 

archetype or regional defaults when site data is not available. Having predicted site-level response 

estimates for each site revealed additional patterns in SLR response, including a positive 

correlation between the initial proportion of wetland habitat in each site and the potential relative 

wetland habitat loss, as well as the implications of data availability (Figure 1-5). The availability 

of in situ accretion measurements determines the relationship between wetland habitat composition 

and wetland loss, where sites with higher estimates of accretion supported by empirical data appear 

to be less at risk for future habitat loss. Our model is sensitive to the accretion parameter, and our 

literature review of regional accretion rates highlights that more work is needed to characterize 

accretion variability across marsh zones and among archetypes.  

Like many SLR impacts assessment, a lack of data adds to the uncertainty of our estimates 

of SLR-driven habitat change. Our results indicate that efforts should be targeted towards 

providing additional, spatially explicit estimates of accretion, perhaps supplied by a coordinated 

regional or global sampling network (Osland et al. 2017; Webb et al. 2013). Such information 

would improve data gaps involving plant-mediated biogeomorphic feedbacks, especially 

considering that these processes are variable between individual wetlands and archetypes (Webb 

et al. 2013) and serve as broad indicators of vulnerability (Ganju et al. 2017). Although data 

limitations made it difficult to detect significant differences in accretion between archetypes, the 

archetype framework represents meaningful physical and ecological differences that will likely 

become more significant in the future with the support of additional empirical data. The mouth 

dynamics model component also represents an important, yet highly uncertain, hydrodynamic 
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aspect of modeling SLR response (Rodríguez et al. 2017). As evidenced by the previous lack of 

understanding on the distribution of intermediate estuaries (McSweeney et al. 2017) and the 

complexity of modeling such systems, data availability represents a major hurdle to modeling SLR 

impacts in certain wetland types and regions worldwide. Furthermore, advances in SLR 

projections and elevation datasets that reduce uncertainty and error would be beneficial to 

modeling SLR response, given the high model sensitivity to SLR rate and starting elevation. 

This assessment is designed to inform comprehensive coastal planning by providing 

insights at a variety of spatial scales to aid both regional efforts and local management. Consistent, 

large scale methods are critical for informing regional planning and prioritization, whereas detailed 

methods can then be used to help inform site-specific designs (Runting et al. 2013). Our approach 

augments existing SLR response assessments by estimating both the risk to individual wetlands 

and the relative SLR response within a region. Our findings are comparable to both large-scale 

assessments and intensive, site-based models, making it a useful tool for coastal management. 

Multi-scale inferences to SLR impacts can also aid coordinated regional efforts in maintaining 

regional wetland composition by indicating which subregions, archetypes or individual sites have 

a higher relative vulnerability to SLR (Stralberg et al. 2011). Failure to include all relevant coastal 

wetland types can produce an incomplete picture of regional vulnerability and can obscure 

differences in archetype response to SLR. This is exemplified by intermediate estuaries which are 

globally important wetland types and require additional management considerations when 

planning for SLR impacts. Our approach can also be used to investigate how alterative 

management strategies could reduce SLR-driven habitat loss by manipulating model inputs (see 

SCWRP 2018 for more details). For example, expanding hypsometric curves to include suitable 

upland habitat adjacent to a given site can reveal reductions in habitat loss associated with 
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facilitating wetland migration. Raising the starting elevation of hypsometric curves could indicate 

the potential of thin-layer sediment augmentation as an adaptation strategy. Furthermore, 

modifying accretion rates can help set sediment management goals required to maintain current 

wetland habitat composition within a site or across the region. Overall, this approach is suitable 

for management applications in other regions given its ability to accommodate a diversity of 

wetland types and varying levels of data availability. 
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1.8 Supplemental Materials 

Table S1-1. Records of published accretion data from the literature review. This supplemental info is 

provided as an excel file:  

 

https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fgcb.14429&file=g

cb14429-sup-0001-TableS1.xlsx 

 

Table S1-2. Example z* bin range upper limits corresponding to wetland habitats under current, 2050 and 

2100 conditions. Changes to z* are determined by site-specific changes in water level estimated in our 

analysis. Example values shown for the Aliso Canyon estuary in San Diego county. Z* for this site is based 

on the Newport Beach, CA NOAA tidal station. 

Marsh Zone 

Z* Range Upper Limit 

Current 2050 2100 

Subtidal -1.05 -0.38 1.16 

Intertidal Mudflat 0.00 .66 2.19 

Low Marsh 0.72 1.38 2.91 

Mid Marsh 1.00 1.66 3.19 

High Marsh 1.67 2.33 3.86 

Transition 2.6 3.33 4.86 
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CHAPTER 2: Mapping Coastal Wetland Biomass from High Resolution Unmanned Aerial 

Vehicle (UAV) Imagery2 

2.1 Abstract 

Salt marsh productivity is an important control of resiliency to sea level rise. However, our 

understanding of how marsh biomass and productivity vary across fine spatial and temporal scales 

is limited. Remote sensing provides a means for characterizing spatial and temporal variability in 

marsh aboveground biomass, but most satellite and airborne sensors have limited spatial and/or 

temporal resolution. Imagery from unmanned aerial vehicles (UAVs) can be used to address this 

data gap. We combined seasonal field surveys and multispectral UAV imagery collected using a 

DJI Matrice 100 and Micasense Rededge sensor from the Carpinteria Salt Marsh Reserve in 

California, USA to develop a method for high-resolution mapping of aboveground saltmarsh 

biomass. UAV imagery was used to test a suite of vegetation indices in their ability to predict 

aboveground biomass (AGB). NDVI provided the strongest correlation to aboveground biomass 

for each season and when seasonal data were pooled, though seasonal models (e.g. spring, r2 = 

0.67; rmse = 344 g m−2) were more robust than the annual model (r2 = 0.36; rmse = 496 g m−2). 

The NDVI aboveground biomass estimation model (AGB = 2428.2 × NDVI + 120.1) was then 

used to create maps of biomass for each season. Total site wide aboveground biomass ranged from 

147 Mg to 205 Mg and was highest in the spring, with an average of 1222.9 g m−2. Analysis of 

spatial patterns in ABG demonstrated that ABG was highest in intermediate elevations that ranged 

from 1.6–1.8 m NAVD88. This UAV-based approach can be used aid the investigation of biomass 

dynamics in wetlands across a range of spatial scales. 

 
2 This chapter was published as Doughty C, Cavanaugh K. Mapping Coastal Wetland Biomass from High 

Resolution Unmanned Aerial Vehicle (UAV) Imagery. Remote Sens. 2019;11(5):540. It is reproduced here with 

minor formatting changes to comply with University of California dissertation specifications. 
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2.2 Introduction 

Coastal wetlands, despite being characteristically dynamic ecosystems equipped to deal 

with a variety of stressors, are threatened by environmental change. Environmental stressors, such 

as inundation, salinity and nutrient availability, influence the overall productivity of coastal 

wetlands (Day et al. 2008). Wetland productivity is mediated by complex biogeomorphic 

feedbacks, whereby plants accumulate organic matter and trap inorganic sediment to maintain their 

elevation in relation to varying tidal levels and other stressors (Morris et al. 2002). The ability of 

coastal wetlands to remain productive and maintain elevation through accretion is a key factor in 

overall wetland resilience to environmental change (Pennings et al. 2005; Kirwan and 

Guntenspergen 2015). As a result of these complex biophysical interactions, coastal wetlands 

exhibit high spatial and temporal variability in characteristics such as plant community zonation 

and seasonal productivity.  

Climate change threatens to disrupt the normative patterns and processes by exacerbating 

environmental stressors, which could have cascading effects on biological response, wetland 

productivity, and ultimately, resilience (Kirwan and Megonigal 2013). Climate change is expected 

to accelerate sea level rise, alter precipitation patterns and intensify coastal storms (Scavia et al. 

2002), however, the full extent of impacts remains to be seen (Osland et al. 2016). Two likely 

consequences include changes to peak biomass and to phenology of plant growth (Buffington et 

al. 2018), but response will be highly variable among wetland sites, zones and species (Janousek 

et al. 2016; Goodman et al. 2018). Monitoring the current status and past trends in coastal wetland 

dynamics may provide valuable insights into future response. Specifically, understanding how 

coastal wetland biomass and productivity change over space and time can indicate vegetation stress 
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and help establish a threshold for resilience to environmental drivers (Klemas 2013; Buffington et 

al. 2018).  

Satellite and aerial remote sensing have improved our ability to map and monitor the 

heterogeneous and dynamic nature of coastal wetlands (Klemas 2009). The high temporal 

frequency achieved by repeat coverage of satellite remote sensing has led to consistent, global, 

long-term data archives that can be used to detect changes in wetlands over time (Ozesmi and 

Bauer 2002; E. Adam et al. 2010; Mishra and Ghosh 2015). In addition, these methodologies can 

reveal large-scale patterns in productivity through the remote quantification of biomass (Byrd et 

al. 2014). Biomass estimation in optical remote sensing often uses spectral information in the form 

of vegetation indices (VIs) (Mutanga and Skidmore 2004). Vegetation indices summarize the 

reflectance occurring within visible and near-infrared wavelengths that are sensitive to biomass 

(Klemas 2013; Xue and Su 2017), while also controlling for variation caused by soil and 

atmospheric interference (Mutanga and Skidmore 2004). The correlation among in situ biomass 

measurements and VIs, such as the normalized difference vegetation index (NDVI), provide a 

basis for biomass estimation (Zhang et al. 1997; Adam and Mutanga 2012; Klemas 2013). This 

approach has been demonstrated successfully in numerous satellite applications, including the 

characterization of biomass dynamics over several decades in relation to environmental drivers in 

both Pacific (Buffington et al. 2018), and Atlantic coast marshes (O’Donnell and Schalles 2016).  

However, there are a number of limitations and challenges associated with estimating 

coastal wetland biomass from multispectral imagery (Gallant 2015). Among these are tradeoffs in 

spatial, temporal, and radiometric resolution of satellite imagery that may obscure ecologically 

relevant patterns and processes occurring at fine scales. Limited spatial and temporal resolution is 

particularly an issue for coastal wetlands, as they exhibit variability in species composition, 



49 

 

biomass, productivity, and other characteristics on fine space and time scales (Shanmugam 2013). 

Steep environmental gradients and short ecotones can make it difficult to discriminate many 

wetland characteristics from moderate resolution (10 – 30 m) imagery (Zomer et al. 2009). In 

addition, the spectral response of wetland vegetation is convoluted with the reflectance emitted 

from underlying soils, water, and non-photosynthetic vegetation, and is also altered by water 

content in plant tissues and the structure of plant canopies (Schmidt and Skidmore 2003; Kearney 

et al. 2009). Therefore, patch size and inundation are key concerns in using satellite remote sensing 

to estimate biomass in coastal wetlands (Byrd et al. 2014). As a result, most algorithms that have 

been developed for biomass estimation are site specific and, in some situations, it may not be 

possible to accurately estimate aboveground biomass from multispectral imagery. 

Unmanned aerial vehicles can improve the mapping and monitoring of biomass and 

productivity in coastal wetlands. UAVs offer a cost-effective, flexible approach with the ability to 

provide the finer spatial and temporal resolution needed to adequately identify and measure 

ecosystem change (Whitehead et al. 2014a; Klemas 2015a; Manfreda et al. 2018). UAV 

applications for ecological research are still relatively novel, especially in coastal systems 

(Hugenholtz 2012; Vincent et al. 2014; Whitehead et al. 2014a). To date, applications include 

geomorphological and topographical mapping (Delacourt et al. 2009; C. H. Hugenholtz et al. 2013; 

Turner et al. 2016), as well as coastal hazard and erosion detection (Chong 2007; Pereira et al. 

2009). UAVs have demonstrated great potential in discriminating and mapping a variety of 

vegetation classes and species (Klemas 2015a), exemplified by recent research in mapping 

invasive salt marsh species (Jensen et al. 2011; Samiappan et al. 2016), discriminating mangrove 

species (Ruwaimana et al. 2018), and distinguishing salt marsh structure from underlying terrain 

(Kalacska et al. 2017; Meng et al. 2017a). Biomass quantification using UAVs has been successful 
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in a small number of case studies in coastal wetlands. For instance, high-resolution UAV imagery 

has been used to quantify aboveground biomass and fine-scale spatial patterns of Spartina, an 

invasive cordgrass in China (Zhou et al. 2018). UAVs have also been used to successfully quantify 

height and aboveground biomass in mangrove forests in Malaysia (Otero et al. 2018). UAV 

applications specific to vegetation dynamics in coastal wetland systems are currently limited, but 

examples drawn from agricultural applications highlight the potential for monitoring the health, 

productivity and biomass of vegetation (Sugiura et al. 2005; Berni et al. 2009; Whitehead et al. 

2014a; Whitehead et al. 2014b; Tagle et al. 2017).  

The aim of this study was to develop a UAV-based aboveground biomass estimation model 

for a coastal salt marsh in southern California. An initial objective was to validate UAV reflectance 

retrievals using in situ measures of canopy reflectance to ensure proper image acquisition and post-

processing. We used field data to test the ability of several vegetation indices derived from the 

UAV imagery to accurately model aboveground biomass. By conducting this effort repeatedly 

over the course of an annual growing cycle, we examined the influence of season in our ability to 

model aboveground biomass. The UAV-based estimation model was then used to create ultra-high 

resolution maps of salt marsh aboveground biomass over the annual growing cycle, allowing us to 

detect fine-scale spatial patterns within the coastal wetland and to characterize intra-annual 

biomass dynamics. Ultimately, this study highlights the feasibility of UAVs for quantifying 

biomass dynamics, filling a critical gap in our ability to track coastal wetland phenology at fine 

spatial and temporal scales. 
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Figure 2-1. The Carpinteria Salt Marsh Reserve located in Santa Barbara County, CA, USA. Landsat-8 

(a) and UAV imagery (b) is shown in true color for a basin of the study site for comparison. Basemap is 

courtesy of ESRI. 

2.3 Materials and Methods 

2.3.1 Site Description 

We conducted seasonal UAV surveys and field sampling at the Carpinteria Salt Marsh 

Reserve (34°24′4.3′′N, 119°32′16.4′′W), Basin II, in Santa Barbara County, CA, USA between 

February and November 2018 ( 

Figure 2-1). This site contains 93 hectares of wetland and channel habitats, in addition to 

transitional uplands, with relatively shallow elevations grading from −1 m to 3 m above mean sea 

level. Tidal statistics are characteristic of a perched system with mean sea levels ~0.25 m higher 
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and ~33% reduced tidal range within the marsh relative to the open coast (Sadro et al. 2007). 

Climate conditions are Mediterranean temperate with dry, hot summers. Mean temperatures at the 

site range from 24°C maximum in August and 6 °C minimum in January, with a mean annual 

precipitation of 38 cm.  

The intertidal plant community consists of annual and perennial herbs and grasses. This 

site is dominated by Salicornia pacifica (pickleweed), Jaumea carnosa (marsh jaumea), and 

Distichlis littoralis (shore grass). Other species present include Cuscuta salina (saltmarsh dodder), 

Frankenia salina (alkali heath), Limonium californicum (marsh rosemary), Distichlis spicata (salt 

grass) and Suaeda calceoliformis (horned sea blite). 

2.3.2 Field Data Collection 

2.3.2.1 Multispectral UAV Image Data 

We conducted field campaigns each season for one year on 23 February 2018 (winter), 24 

May 2018 (spring), 19 July 2018 (summer) and 13 November 2018 (fall). Sky conditions on flight 

days ranged from overcast to clear and tidal levels ranged from 0.24 to 1.29 m NAVD88 (Table 

S2-1). We performed UAV surveys using a DJI Matrice 100 quadcopter (DJI, Nanshan, Shenzhen, 

China). The DJI Matrice 100 is a fully programmable multirotor platform that can be customized 

with different sensors for specific applications, unlike other off-the-shelf models, like the DJI 

Phantom. The payload included a Micasense Rededge multispectral camera and a downwelling 

light sensor (DLS), or irradiance sensor (Micasense, Seattle, WA). However, DLS data were 

ultimately not included in image processing because it decreased radiometric performance and 

lead to an overestimation of reflectance in the resulting UAV orthomosaic (Figure S2-1). The 

Rededge multispectral camera used in this study captures five spectral bands: blue (475 nm, 20 



53 

 

nm bandwidth), green (560 nm, 20 nm bandwidth), red (668 nm, 10 nm bandwidth), red edge (717 

nm, 10 nm bandwidth), and the near-infrared (840 nm, 40 nm bandwidth).  

 

Figure 2-2. Overview of data collection and processing workflow. 

Prior to UAV flight, we deployed ground control place markers (GCPs) with RTK-GPS to 

help with georeferencing and photo alignment during image processing (Figure 2-2). We 

performed RTK-GPS measurements at GCP centers with an Arrow Gold RTK-GPS with ~3 cm 

horizontal accuracy and ~5 cm vertical accuracy (EOS Positioning System, Terrebonne, QC, 

Canada). We also captured images of calibrated panels with known reflectance (Micasense, 

Seattle, WA) using the Rededge sensor before and after each flight to aid in radiometric 

conversion. 

We planned UAV flights using the Atlas Flight software (Micasense, Seattle, WA).  We 

conducted flights at an altitude of 90 m above ground level, an airspeed of 7 m s−1, and with image 

overlap (frontlap and sidelap) set to 75%. With these specifications, average flight time per battery 

set was approximately 30 minutes, requiring up to 2 flights to cover a 0.35 km2 study area (Table 

S2-1).  
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2.3.2.2 Vegetation Sampling 

We conducted field sampling of salt marsh vegetation during each season along an 

elevational gradient which captured a representative subset of dominant species at the site (Figure 

2, Ground Samples). The elevational gradient ranged from 0 m NAVD88 at the southwest corner 

of basin II to 3.5 m NAVD88 at the northeast corner of basin II (Figure 2-1). Along elevational 

transects, we sampled 0.25-m2 plots (n = 15) placed approximately 10 m apart. We captured plot 

locations with submeter accuracy using the RTK-GPS. We also measured canopy reflectance with 

an ASD Handheld 2 Spectrometer (Malvern Panalytical, Malvern, UK). Reflectance spectra were 

sampled every 1 nm over 325–1075 nm using a 25 field of view foreoptics. We took ten readings 

at nadir at a height of approximately 50 cm for a 25 cm diameter ground field of view and averaged 

them together to create a single spectral profile for each plot. Following spectral measurements, 

we harvested all aboveground biomass above the soil level within the sampling plot. In the 

laboratory, aboveground biomass samples were massed for wet weight (g) then dried at 50°C for 

one week or until constant mass was achieved to obtain dry weight (g). 

2.3.3 Multispectral UAV Image Processing 

We conducted preprocessing of UAV images to correct images for dark pixels, vignette 

effects, exposure and gain (Figure 2-2). Corrected images were then converted from raw digital 

number (DN) to radiance and from radiance to reflectance using an average radiance-to-reflectance 

conversion factor calculated by averaging the preflight and postflight calibration panel images. 

Image correction and radiometric conversion were conducted in Python 3.6 (Python Software 

Foundation, Amsterdam, the Netherlands) using scripts adapted from Micasense for batch 

processing (Doughty 2019). UAV images processed to reflectance were then imported to Agisoft 

Photoscan Pro v1.4 for orthomosaic generation (Agisoft, St. Petersburg, Russia). During this 
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process, photos were aligned to the highest accuracy setting and optimized using the GCPs with 

RTK-GPS coordinates. We took additional steps to calibrate image color and white balance to 

ensure brightness consistency within each band in the resulting orthomosaic. Final processing steps 

in Photoscan included the creation of a dense point cloud and a digital elevation model (DEM) to 

facilitate mosaicking. Final orthomosaics for each season cover the Carpinteria Salt Marsh Basin 

II (Figure 2-1) at ground resolutions averaging at approximately 6.1 cm pixel−1 (Table S2-1).  

We compared reflectance measured from the UAV imagery to the in situ canopy 

reflectance measurements to validate data collection and processing. To facilitate comparison, 

field spectra were first convolved using a weighted average filter to correspond to the bands 

measured by the Rededge sensor (Chen et al. 2015). We processed field spectra in Python 3.6. We 

extracted reflectance data for each band of the multispectral orthomosaics using the R raster 

package v2.7. Mean reflectance estimates were extracted for a circular area surrounding each 

sampling plot which, accounted for quadrat width (25 cm) and the horizontal error of both the 

RTK-GPS (~2.5 cm) and the orthomosaic (4.3 – 11.9 cm; Table S2-1). Comparison of UAV and 

field reflectance for each of the five bands was conducted for pooled seasonal data using simple 

linear regression in R (R Foundation for Statistical Computing, Vienna, Austria). 

2.3.4 UAV-Based Biomass Estimation 

We tested a suite of vegetation indices for their ability to estimate aboveground biomass ( 

 

Table 2-1). We selected vegetation indices (VIs) based on the spectral bands present in the 

Micasense Rededge sensor and to align with common VIs used with multispectral satellite 

imagery. The UAV-based reflectance estimates corresponding to each sampling plot were then 

used to calculate average VI for each plot. We compared plot aboveground biomass to VI for 
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pooled seasonal data, as well as separately for each season, using simple linear regression from 

the R stats package v3.4.2. Linear regression analysis was selected because data derived from the 

orthomosaics did not exhibit pixel saturation.  

 

 

Table 2-1. Broad band vegetation indices used in UAV remote sensing. 

Index Description Equation Reference 

CIgreen Chlorophyll Index Green 
𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁
− 1 (Gitelson et al. 2005) 

CIrededge Chlorophyll Index Rededge 
𝑁𝐼𝑅

𝑅𝑒𝑑𝑒𝑑𝑔𝑒
− 1 

(Gitelson, Merzlyak, et al. 

1996) 

EVI2 Enhanced Vegetation Index 

2.5

∗
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 2.4 ∗ 𝑅𝐸𝐷 + 1
 

(Jiang et al. 2008) 

GNDVI 
Green Normalized Difference 

VI 

𝑁𝐼𝑅 − 𝐺𝑅𝐸𝐸𝑁

𝑁𝐼𝑅 + 𝐺𝑅𝐸𝐸𝑁
 

(Gitelson, Kaufman, et al. 

1996) 

NRDE 
Rededge Normalized Difference 

VI 

𝑁𝐼𝑅 − 𝑅𝑒𝑑𝑒𝑑𝑔𝑒

𝑁𝐼𝑅 + 𝑅𝑒𝑑𝑒𝑑𝑔𝑒
 (Barnes et al. 2000) 

NDVI 
Normalized Difference 

Vegetation Index 

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 (Rouse et al. 1974) 

 

We selected the vegetation index with the highest performing biomass estimation model to 

create biomass maps for each season. We chose a single annual model based on the seasonally 

pooled data to allow for comparison across seasons. To create biomass maps, first, we created VI 

maps from the 5-band multispectral orthomosaics using raster band math functions in R. Then, we 

applied the biomass estimation model to the VI maps to create biomass maps. Additional raster 

processing included the masking of water and resampling so that resulting biomass maps conform 

to a 1-m pixel resolution. Water masks were created using a supervised classification in ENVI 

(Harris Geospatial Solutions, Boulder, CO). All raster processing was conducted in R.  



57 

 

Further investigation of annual verses seasonal models was performed for the highest 

performing VI. We used a partial F-test to compare the reduced model (pooled seasonal data) and 

the full model (including season as a predictor variable). All statistical analysis was performed in 

R. 

2.3.5 Spatial and Temporal Analysis of Biomass 

We used the UAV-derived maps of biomass to estimate the mean aboveground biomass 

density and total aboveground biomass for the site in each season. We tested seasonal differences 

using a two-way ANOVA. Data were square root-transformed to meet assumptions of normality 

and homogeneity of variances as needed. Biomass maps were also compared to 1-m2 resolution 

digital elevation models (DEMs) available from the NOAA-CA Coastal Conservancy Coastal 

LiDAR project 2009–2013. Biomass and elevation data were extracted for each pixel along an 

elevational gradient from the SW corner to the NE corner of Basin II (Figure 2-1). The correlation 

of biomass and elevation was tested using a parabolic linear regression in R. 
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Figure 2-3. Reflectance validation of UAV reflectance using in situ canopy reflectance for (a) blue, (b) 

green, (c) red, (d) rededge and (e) NIR bands. 

2.4 Results 

2.4.1 Spectral Reflectance Validation Comparison 

Comparison of field and UAV-based reflectance measurements pooled for all seasons 

indicated a strong 1:1 correlation (r2 ≥ 0.94) with root mean square error (RMSE) less than 0.02 

for all visible bands (Figure 2-3). The red edge (RE) and near-infrared (NIR) bands exhibited more 

variability at higher reflectance values. Overall, reflectance estimated with the UAV imagery and 

the observed reflectance in the field were well-correlated in the RE and NIR (r2 ≥ 0.93), with 

RMSE’s less than 0.05. Linear regression models for each band were found to be statistically 

significant (p < 0.005). 

2.4.2 Biomass Estimation Models 

The vegetation indices exhibited variable performance in estimating aboveground biomass 

(Figure 2-4, Table 2-2). Of the vegetation indices, NDVI had the strongest linear correlation to dry 

aboveground biomass for pooled seasonal data (r2 = 0.36, RMSE = 495.9 g m−2, p < 0.005; Table 

2-2), and for each season when seasonal data was analyzed individually. Live aboveground 

biomass was also best predicted by NDVI compared to the other VIs (Table S2-2). 

Table 2-2. Aboveground biomass estimation equations for vegetation indices. 

Index Biomass Estimation Equation (g m-2) R2 RMSE (g m-2) p-value 

CIgreen 519.1 × CIgreen + 293.6 0.263 530.6 <0.005 

CIrededge 952.3 × CIrededge + 730.9 0.112 582.6 0.009 

EVI2 2867.6 × EVI2 + 566 0.244 537.5 <0.005 

GNDVI 3041.2 × GNDVI − 175.3 0.302 516.6 <0.005 

NRDE 2686.2 × NDRE + 682.9 0.115 581.6 0.008 

NDVI 2428.2 × NDVI + 120.1 0.356 495.9 <0.005 

 



59 

 

Further analysis of the NDVI-based biomass estimation model reveals that season is a 

significant predictor in estimating aboveground biomass (partial F-test, F = 6.13, p < 0.001). 

NDVI-aboveground biomass models for the individual seasons exhibited variable success in 

predicting biomass ( 

Table 2-3). Although linear models were significant for all seasons, spring had the best 

performing model (r2 = 0.67, RMSE = 344.3 g m−2). For live aboveground biomass, the spring 

biomass estimation model also outperformed all other seasons (Table S2-3).  

Figure 2-4. Correlation between vegetation indices and dry aboveground biomass for the vegetation indices 

(a) CIgreen, (b) CIrededge, (c) EVI2, (d) GNDVI, (e) NDRE and (f) NDVI. 

 

Table 2-3. Seasonal NDVI-Aboveground biomass estimation equations. 

Season NDVI Biomass Estimation Equation (g m−2) R2 RMSE (g m−2) p-value 

Winter 3097.4 × NDVI − 309.4 0.448 413.6 0.006 
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Spring 2670.7 × NDVI − 261.7 0.672 344.3 <0.005 

Summer 3725.3 × NDVI − 189.4 0.477 466.1 <0.005 

Fall 3717.2 × NDVI − 6.4 0.407 546 0.01 

2.4.3 Spatial and Temporal Patterns in Aboveground Biomass 

The annual NDVI-based biomass estimation model,  

AGB = 2428.2 × NDVI + 120.1    (1) 

was selected to create comparable biomass maps for Basin II of the Carpinteria Salt Marsh 

Reserve for each season (Figure 2-5). Visual comparison of seasonal biomass maps reveal peak 

biomass indicative of salt marsh vegetation “green-up” occurring in spring. Analysis of pixel data 

for each biomass map also indicates an increase in average aboveground biomass in spring, which 

was estimated to be 1,222.9 ± 435.7 g m−2 (Table 2-4). This was 295.3 g m−2 higher than the 

average aboveground biomass estimated for the site in winter, summer, and fall. Similarly, total 

site biomass in Carpinteria Salt Marsh Basin II was 204.7 Mg in spring, approximately 49.3 Mg 

higher than total site biomass estimated for winter, summer, and fall. 

Figure 2-5. Biomass maps based on NDVI biomass estimation model for (a) winter, (b) spring, (c) summer 

and (d) fall. 

 

The seasonal patterns suggested by the biomass maps were supported by field observations 

and analysis of field biomass (Table 2-4). Spring and summer exhibited higher dry and wet 

aboveground biomass compared to that of fall and winter. Unlike the UAV-derived biomass 
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estimates, field data suggests peak plot biomass occurred in summer, which may be indicative of 

ongoing biomass accumulation from spring to summer coinciding with slight declines in 

vegetation greenness. However, only wet aboveground biomass was found to be significantly 

different among seasons (p < 0.001). Dry aboveground was not significantly different across 

seasons (p = 0.27). 

UAV-derived estimates of biomass were compared to elevation for a subset of marsh area 

along an elevational gradient (Figure 2-6). For all seasons, peak biomass estimates occurred at 

elevations of 1.6 to 1.8 m. Maximum biomass occurred in spring with averages nearing 1,500 g 

m−2, which was on average approximately 500 g m−2 higher than the other seasons. 

Table 2-4. Seasonal biomass estimates from field sampling and UAV biomass maps. 

 Field Measurements (±S.D.) UAV estimates (±S.D.) 

 Wet AGB  

(g m−2) 

Dry AGB (g 

m−2) 

Mean Site 

NDVI 

Mean Site Dry 

AGB (g m−2) 

Total Site Dry 

AGB (Mg) 

Winter 1461.0 ± 879.1 819.0 ± 536.3 0.34 ± 0.12 946.3 ± 300.7 158.5 

Spring 3101.9 ± 2068.1 1071.3 ± 579.3 0.45 ± 0.18 1222.9 ± 435.7 204.7 

Summer 4131.1 ± 2255.6 1262.5 ± 621.3 0.35 ± 0.14 958.6 ± 338.7 160.5 

Fall 2972.7 ± 2214.3 1080.7 ± 683.3 0.31 ± 0.15 878.1 ± 359.6 147.1 

p-value <0.001 0.268 - - - 

 



62 

 

Figure 2-6. Seasonal comparison of NDVI-based aboveground biomass by elevation for (a) winter, (b) 

spring, (c) summer and (d) fall. Pixel values (green circles) were extracted along an elevational gradient 

for vegetated wetland areas. Parabolic relationship shown in gray with standard error shaded light gray. 

2.5 Discussion 

This study demonstrates potential for mapping aboveground biomass in coastal wetlands 

using high-resolution multispectral UAV imagery. By combining a UAV approach and field 

surveys over the course of an annual growing cycle, we were able to develop biomass estimation 

models based on NDVI, a commonly used proxy for vegetation health and productivity. We found 

a strong relationship between NDVI and biomass during the spring, which is typically the season 

of peak greenness. The submeter ground resolution attainable with UAVs was beneficial for 

investigating fine-scale spatial changes in wetland biomass. UAVs also offer high flexibility in the 

timing of imagery collection, which would be beneficial for a number of time-sensitive ecological 

applications. Overall, the multi-temporal, multispectral imagery derived from UAVs can help 

reveal spatio-temporal variability at resolutions superior to traditional remote sensing approaches. 

Our findings reveal the high spatial and temporal variability of aboveground biomass in 

the Carpinteria Salt Marsh Reserve. The biomass maps created for this site indicate pronounced 

seasonal variability in vegetation health and biomass (Figure 2-5). This pattern is characteristic of 

southern California coastal marshes where green-up of vegetation generally occurs in spring 

following the rainy season with biomass then peaking at the end of summer followed by 

senescence (Zedler 1982; Zedler 2015). Our biomass maps capture spring green-up but indicate 

an overall reduction in green vegetation and aboveground biomass in summer (Table 2-4). This 

seasonal, site-wide response may be explained by spatial variation in vegetation productivity 

occurring within the marsh due to environmental stress along elevational gradients (Figure 2-6). 

High soil salinity is a major limiting factor for wetland plant growth in southern California (Zedler 

1982), and soil salinity has been shown to vary spatially with elevation and tidal inundation (Traut 
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2005). While productivity at lower elevations is generally limited by inundation (Guo and 

Pennings 2012; Janousek and Mayo 2013; Janousek and Folger 2014), higher elevations are prone 

to increased soil salinities due to reduced tidal flushing, minimal freshwater inputs and high rates 

of evapotranspiration in hot, dry summer months (Callaway et al. 1990; Callaway and Sabraw 

1994). Previous work in the Carpinteria salt marsh indicates reduced tidal exchange within the 

marsh, with higher elevations receiving as little as 5% of the inundation experienced at lower 

elevations (Sadro et al. 2007). This case site exemplifies how the high spatial resolutions and 

flexible temporal sampling frequency provided by UAVs can aid in investigating ecologically 

meaningful patterns and processes occurring within salt marshes. 

However, there is uncertainty associated with the remotely sensed estimates of 

aboveground biomass that can be attributed to several sources of error caused by the coastal 

environment, as well as data collection and processing techniques (E. Adam et al. 2010). 

Environmental factors, such as sky conditions and tidal stage at the time of UAV flight can 

contribute to radiometric variability. Sky conditions, namely the presence of clouds, have been 

shown to influence the radiometric correction and resulting homogeneity of the UAV orthophotos 

(Tagle et al. 2017). We conducted our UAV flights over the course of a year under varying sky 

conditions. Environmental conditions during field campaigns contribute to radiometric variability, 

as evidenced by seasonal differences in the correlation among UAV and in situ measures of 

reflectance in the red edge and near-infrared wavelengths (Figure 2-3). This is shown by data 

collected in the fall, where variability in incoming irradiance associated with partly cloudy 

conditions led to an underestimation of reflectance by the UAV compared to the canopy reflectance 

measured in situ. Where possible, UAV imagery should be collected under constant sky conditions 

as close to solar noon as possible (Tagle et al. 2017) in accordance with other logistical, regulatory, 
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and weather constraints. In addition, the use of a downwelling light sensor, or irradiance sensor, 

may improve issues arising from variable light conditions; however, in this study, tests including 

irradiance data during image processing resulted in overestimation of reflectance in UAV imagery 

and thus, was excluded (Figure S2-1). Finally, sensor noise may also present a significant source 

of radiometric variability and should be considered when selecting and designing UAV payloads. 

The presence of water also poses significant complications to estimating biomass in coastal 

wetlands using remote sensing approaches. Water inundation dampens the reflectance occurring 

in the near-infrared wavelengths (Kearney et al. 2009), and so will affect vegetation indices such 

as NDVI. The depth of inundation, vegetation structure and underlying soils can ultimately 

interfere with the relationship between reflectance and standing biomass (Byrd et al. 2014). This 

concern has been demonstrated in long-term time series analyses of wetlands, where high NDVI 

outliers are more likely to reflect real changes in vegetation, but low outliers are likely to be 

artifacts of clouds or inundation (Swets et al. 1999). The use of NDVI in this study as the 

foundation for biomass estimation models, therefore, comes with similar concerns. Due to 

sampling constraints and our desire to conduct UAV surveys as close to noon as possible, tidal 

levels varied across our survey dates. As a result, tidal inundation could lead to underestimation 

of NDVI and affect the relationship between NDVI and biomass. To reduce errors associated with 

inundation, water was masked for each season using a standardized classification. However, spatial 

analysis of the final biomass maps reveal potential issues caused by the presence of underlying 

water in vegetation canopies. In particular, the fall campaign was conducted with tidal levels over 

two times higher than the other seasons (Table S2-1), which may have resulted in underestimations 

of biomass, especially in pixels coinciding with lower elevations where tidal inundation is more 

probable (Figure 2-6). However, one of the benefits of UAV imagery is that the user has control 
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over the timing of image acquisition. Therefore, field campaigns can be planned so that multi-

temporal images are collected at similar tidal stages.  

Vegetation phenology likely also impacted our UAV based estimates of biomass. The 

NDVI-based aboveground biomass model was significantly improved when season was 

considered as an additional predictor variable, meaning that season plays a significant role in 

predicting aboveground biomass. Further analysis of biomass estimation models for the individual 

seasons shows that although biomass estimation models for each season were significant (Table 

2-3), spring presents the strongest model for estimating biomass. One key reason for this finding 

relates to the relationship between greenness and biomass. NDVI is essentially a measure of 

vegetation greenness, therefore, it serves best as a predictor of live, green biomass, which is 

typically produced during the growing season beginning in spring (Zedler 1982). This is also 

evident in NDVI-based biomass estimation models developed for live, or wet, vegetation (Table 

S2-2, Table S2-3). Following the summer and fall dry season, salt marsh perennial and annual 

plants have either senesced or died, often resulting in higher levels of non-photosynthetic 

vegetation (NPV). During summer, fall and winter, poor correlation can be expected between 

NDVI and biomass due to a lack of green biomass given the environmental stressors and natural 

phenological cycles at play in these Mediterranean coastal wetland systems. As a result, we 

recommend that studies examining interannual variability in marsh biomass in this region should 

conduct multispectral UAV surveys during the spring. These findings also have implications for 

satellite-based assessments, where peak biomass may be the most informative biomass estimate 

for detecting long term changes associated with environmental variability (Buffington et al. 2018). 

This has been shown in other satellite-based assessments. For example, (O’Donnell and Schalles 
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2016) found a strong correlation (r2 = 0.70) between NDVI and peak biomass in Spartina 

dominated salt marshes on the coast of Georgia. 

Further improvements to biomass estimation using UAVs in coastal wetlands can be 

achieved by more accurately capturing NPV. Fortunately, the ground resolutions provided by 

UAVs offer a number of advantages for mapping and monitoring coastal wetlands. For instance, 

the increased spatial resolution of ground pixels leads to a decrease in the amount of mixed pixels, 

which might contain both green vegetation and NPV. The spectral response of an unmixed pixel 

will be more representative of a single vegetation cover type, whereas mixed pixels constitute a 

combination of spectral responses from multiple, often disparate cover types. For example, spectral 

signatures can vary among herbaceous or woody vegetation types due to the biochemical and 

biophysical properties of the vegetation (Asner 1998; Klemas 2015b), and therefore, may be more 

easily differentiated at finer resolutions. Increased spatial resolution has a proven advantage in 

delineating vegetation classes and estimating percent cover in salt marshes (Marcaccio et al. 2015; 

Zhou et al. 2017) and mangroves (Ruwaimana et al. 2018) using multispectral imagery. 

Additionally, increased spectral resolution can also aid in the differentiation of cover types like 

live vegetation and NPV. Hyperspectral imagery has demonstrated an advantage over broad-band 

multispectral imagery with improved accuracies in differentiating vegetation types and species 

(Adam et al. 2010). Gains in both spatial and spectral resolution can increase sensitivity to 

variations in reflectance or vegetation indices and ultimately improve the separability of different 

vegetation types. 

High-resolution information on vegetation height and structure is another important 

component that could improve biomass estimation in coastal wetlands. Vegetation height and 

structure are typically measured remotely using active sensors such as LiDAR and RADAR 



67 

 

(Zolkos et al. 2013). These types of sensors can be placed on UAVs, but they are relatively 

expensive as compared to multispectral optical sensors. As UAV and sensor technology advances, 

the inclusion of active sensors to UAV payloads will become more feasible (Whitehead et al. 

2014b; Whitehead et al. 2014a). However, passive optical sensors onboard UAVs also have the 

potential to provide structural information using photogrammetric methods in coastal wetlands 

(Kalacska et al. 2017). These approaches have been successfully applied in olive orchards, 

temperate deciduous forests, and mangrove forests (Dandois and Ellis 2013; Díaz-Varela et al. 

2015; Otero et al. 2018). However, mapping vegetation height using photogrammetry is 

challenging in dense coastal wetlands as it is difficult to obtain sufficient numbers of ground points 

required to calculate vegetation height. For example, errors of up to 80% have been documented 

in elevation models created for dense cordgrass habitats (Meng et al. 2017b).  

2.6 Conclusions 

Here, we demonstrate that UAVs can aid our understanding of the spatial and temporal 

patterns in salt marsh biomass and productivity. Improved understanding of how productivity and 

biomass change over seasonal, annual and decadal time scales is especially valuable, because this 

could indicate deviations from normal patterns of coastal wetland health. But in order to detect 

ecologically relevant changes, remote sensing methods must capture both press and pulse 

disturbances that operate at vastly different temporal scales. In particular, discrete pulse 

disturbances often require flexibility and rapid deployment to time sampling efforts appropriately 

in order to capture the impacts to coastal wetlands. Impacts to biomass, productivity and wetland 

health could serve as harbingers of future climate change impacts and could help establish 

thresholds of resilience to climate change drivers. Assessment of changes to biomass and 



68 

 

productivity also highlight the potential for high-resolution insights into climate-related threats to 

ecosystem services, like carbon storage, that are provided by these valuable coastal habitats. 

The benefits of UAVs for ecological applications in coastal wetlands are numerous due to 

their high operational flexibility and relatively low cost. This is a key advantage over traditional 

aerial and satellite remote sensing. Furthermore, UAVs are a valuable addition to traditional 

ecological fieldwork, which can often be time and resource intensive and costly, and may limit the 

scope of study to relatively small areas and periods of time. Therefore, UAVs may be a 

complementary approach to fill critical spatial and temporal gaps inherent to both field work and 

other remotely sensed data. Integrating contextual field data, high-accuracy GPS and both UAV 

and satellite remote sensing approaches can improve our ability to estimate biomass and 

productivity over time. Overall, remotely sensed data with high spatial and temporal resolutions 

could provide a more synoptic understanding of coastal wetland ecology and an invaluable view 

of ecological patterns and processes. 
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2.9 Supplemental Materials 

Table S2-1. Site conditions and flight data for seasonal field surveys. 

Season Date 

Initial Flight 

Time (hh:mm 

PST) 

Sky 

Conditions 

Tidal level  

(m NAVD88) 

Flight 

Duration 

(h:mm) 

Flight 

Altitude (m) 

Coverage 

Area (km2) 

Ground 

Resolution (cm 

pixel-1) 

Orthophoto 

Horizontal 

Error (cm)* 

Winter 02/23/2018 11:45 Clear 0.28 0:32 92.5 0.24 6.23 11.9 

Spring 05/24/2018 11:43 Overcast 0.24 0:28 91.8 0.35 6.11 4.3 

Summer 07/19/2018 11:55 Clear 0.58 0:31 92.0 0.33 6.12 7.3 

Fall 11/13/2018 12:13 Partly cloudy 1.29 0:37 92.0 0.35 6.11 11.1 

Average tidal levels are reported for the nearest open-ocean NOAA tidal station, Santa Barbara, CA (9411340).  
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Figure S2-1. Radiomatric performance of UAV orthomosaic (a) without and (b) with the inclusion of 

downwelling light sensor (DLS) data in image processing. Reflectance derived from UAV orthomosaics 

were compared to spectrometer reflectance of the vegetation canopy measured in situ. 

 

 



78 

 

Table S2-2. Live aboveground biomass estimation equations for vegetation indices. 

Index Biomass Estimation Equation 

(g m-2) 

R2 RMSE (g m-2) p-value 

CIgreen 1423.6*CIgreen + 819.3 0.166 1952.7 < 0.005 

CIrededge 1993.2*CIrededge + 2231.2 0.041 2093.4 0.12 

EVI2 11060.4*EVI2 + 1017.7 0.303 1784.2 < 0.005 

GNDVI 8437.8*GNDVI - 506.1 0.194 1918.9 < 0.005 

NRDE 5933.4*NDRE + 2087.3 0.047 2087 0.1 

NDVI 8433.9*NDVI - 342.3 0.36 1710.8 < 0.005 

 

Table S2-3. Seasonal NDVI-Live aboveground biomass estimation equations. 

Season NDVI Live Biomass 

Estimation Equation (g m-2) 

R2 RMSE (g m-2) p-value 

Winter 6002.5*NDVI - 725.7 0.626 557.8 < 0.005 

Spring 9790.3*NDVI - 1784.7 0.709 1158.4 < 0.005 

Summer 13743.8*NDVI - 1225.4 0.493 1666.6 < 0.005 

Fall 12997.2*NDVI - 828.6 0.474 1666.6 < 0.005 
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CHAPTER 3: Characterizing spatial variability in coastal wetland biomass across multiple 

scales using UAV and satellite imagery3 

3.1 Abstract 

Coastal wetland biomass is an important indicator of wetland productivity, carbon storage, 

health, and vulnerability to climate change. The ability to estimate aboveground biomass (AGB) 

in wetlands at ecologically relevant scales is complicated by the spatial variability inherent to 

patterns in wetland vegetation and the biogeomorphic processes that help create them. Remote 

sensing provides an approach for mapping wetland biomass, but the spatial resolutions of satellite 

and airborne imagery often constrain the types of ecological patterns and processes that can be 

detected. Unmanned Aerial Vehicles (UAVs) have previously been used to capture fine-scale (≤ 

1m) variability in AGB in coastal wetland settings. However, it is unclear if a UAV approach to 

estimating wetland biomass is transferrable across diverse wetland sites or how it compares to 

commonly used satellite-based approaches. Here, we test the capabilities of UAVs in remotely 

quantifying AGB and compare biomass estimation using UAV and Landsat satellite imagery (30 

m resolution) in several wetland sites in southern California. Field surveys highlight significant 

spatial variability in wetland plant community AGB and height that influence remote biomass 

estimation. Relationships between UAV vegetation indices and AGB were site-specific and 

influenced by vegetation types. Biomass estimation using UAVs (r2 = 0.40, RMSE = 534.6 g m-2) 

showed better correlation with NDVI than a Landsat-based approach (r2 = 0.26, RMSE = 596.8 g 

m-2). We found combining high-resolution UAV AGB maps and Landsat NDVI to develop AGB 

models showed the highest correlation (r2 = 0.45, RMSE = 659.7 g m-2) and provided additional 

 
3 This chapter has been submitted to Remote Sensing in Ecology and Conservation and is under review as Doughty 

CL, Ambrose RF, Okin GS, Cavanaugh KC. Characterizing spatial variability in coastal wetland biomass across 

multiple scales using UAV and satellite imagery. Remote Sens Ecol Conserv. 
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spatial information to aid scaling field data to satellite imagery. Overall, UAVs captured more 

spatial complexity in aboveground biomass at finer scales than is possible with moderate-

resolution Landsat pixels, indicating that UAVs can be used to characterize patterns of within-

marsh variability resulting from local-scale (≤ 100s of meters) ecological processes.  

3.2 Introduction 

Coastal wetland biomass is an important indicator of ecosystem productivity, carbon 

storage capacity, and resiliency to climate change. This is because biomass is the product of 

complex biogeomorphic processes in wetlands that link plant growth and turnover, biomass 

accumulation, and decomposition in response to abiotic factors like elevation, inundation, 

freshwater inflow, and salinity (Cahoon et al. 2009; Cahoon and Guntenspergen 2010). Through 

biogeomorphic processes wetland vegetation contributes to vertical accretion through biomass 

creation, organic matter burial, and sediment trapping, which allows marshes to engineer their 

surrounding habitat to optimize plant productivity (Morris et al. 2002) and improve resilience to 

sea level rise (Kirwan and Guntenspergen 2015; Pennings et al. 2005). Inferring the state of these 

processes using measures of biomass, however, often requires harvesting vegetation through 

intensive fieldwork. As a result, data on coastal wetland biomass can be difficult to collect 

frequently enough and at spatial scales that capture the full range of variability of the processes 

and patterns relevant to coastal wetland ecology. 

Coastal wetlands exhibit high spatial and temporal complexity in vegetation as a result of 

dynamic physical, abiotic drivers, and biotic responses that mediate biogeomorphic processes. 

Physical and biological factors that control wetland biomass form a hierarchy that operates across 

multiple spatial and temporal scales (Figure 3-1). Relevant processes and patterns vary among  
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Figure 3-1. Conceptual hierarchy of factors related to wetland biomass in space and time. (A) Biological 

processes (green) occurring at fine scales give rise to patterns (blue) in wetland vegetation. The 

organizational levels at which processes and patterns manifest are labeled in italics. (B) Physical abiotic 

drivers (grey) influence biological processes and patterns across scales. Scale determines which factors can 

be remotely assessed using UAVs and Landsat (dashed lines). 

organizational levels that range from individual plants, within sites, among sites, and regions. 

Abiotic drivers influence biological plant processes occurring at fine scales that give rise to 

patterns in wetland vegetation at larger scales. For example, sea level rise is an abiotic driver 

operating across large spans of space (100s of km) and time (years to centuries) that can alter daily 

tidal inundation levels in a wetland, but its impacts can vary across fine-scales (≤ 1m) within 

wetlands according to existing topography or creek distributions. Changing inundation levels can 
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influence plant productivity, and over time can lead to measurable changes in vegetation species 

composition and standing biomass. Because of these complex interactions across space and time, 

vegetation patterns in coastal wetlands can be highly spatially complex, as evidenced by 

heterogeneous plant community composition, marsh zonation, and species’ elevational niches. 

Impacts of physical drivers on phenology and biomass production can be highly variable among 

wetland sites, zones, and species (Goodman et al. 2018; Janousek et al. 2016). Such high spatial 

complexity contributes to variability in vegetation properties like height and density, productivity, 

and biomass that can be difficult to capture.  

Investigations into coastal wetland productivity, aboveground biomass, and carbon 

dynamics at broad scales are possible using remote sensing (Klemas 2013a). Remote sensing based 

approaches can help reveal large-scale spatial and temporal patterns in bioproductivity through the 

remote quantification of biomass (Byrd et al. 2014). Biomass estimation in optical remote sensing 

uses vegetation indices to summarize the spectral reflectance occurring within visible and near-

infrared wavelengths that are sensitive to plant biomass (Mutanga and Skidmore 2004; Xue and 

Su 2017). The correlation between vegetation indices, such as the normalized difference vegetation 

index (NDVI), and in situ biomass measurements provide a basis for biomass estimation using 

satellite imagery (Klemas 2013a; Mutanga et al. 2012; Pettorelli et al. 2005; Zhang et al. 1997). 

This approach has been used to estimate biomass in tidal wetland settings using the Landsat 

satellite archive of moderate-resolution (30 m) optical imagery (Buffington et al. 2018; Byrd et al. 

2018, 2014; Gross et al. 1987; Mo et al. 2015; O’Donnell and Schalles 2016). Landsat is commonly 

used for its global coverage, 16-day revisit frequency, and decades-long data archive, which 

provides an invaluable tool for investigating long-term changes at broad scales (Kennedy et al. 

2014; Pasquarella et al. 2016; Wulder et al. 2012). However, there are a number of limitations to 
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estimating coastal wetland biomass from satellite multispectral imagery (Gallant 2015), such as 

the interference of water in the atmosphere and in underlying soils (Kearney et al. 2009; Mutanga 

and Skidmore 2004).  

Issues of scale present additional challenges to estimating aboveground biomass in coastal 

wetlands using remote sensing. Tradeoffs in the spatial, temporal, and spectral resolution of 

satellite imagery can obscure ecologically relevant patterns and processes occurring at fine spatial 

scales (Kennedy et al. 2014), such as habitat function, complexity, and community composition 

that contribute to biomass variability in wetlands. Moderate-resolution (30-m) Landsat has had 

difficulty characterizing the high spatial heterogeneity of wetland gradients (Adam et al. 2010; 

Ozesmi and Bauer 2002; Pasquarella et al. 2016). Furthermore, the development of biomass 

estimation models often relies on in situ biomass measurements taken at scales much finer than 

the spatial resolution of satellite imagery (Baccini et al. 2007; Wu and Li 2009). How successfully 

field measurements capture variability in coastal wetland plant communities can influence 

predictive models and resulting biomass estimates (Baccini et al. 2007; Byrd et al. 2014). These 

challenges make it difficult to capture the spatial variability of aboveground biomass within coastal 

wetlands and across larger, regional spatial scales using moderate resolution imagery. However, 

as remote sensing technology advances, products of higher spatial, temporal, and spectral 

resolution are becoming available for wetland applications (Klemas 2013b 2011). These products 

may be useful in filling data gaps that arise from the tradeoffs in spatial and temporal resolution 

inherent to satellite remote sensing.  

Unmanned Aerial Vehicles (UAVs) are revolutionizing spatial ecology (Anderson and 

Gaston 2013) and can facilitate high-resolution monitoring of coastal wetlands (Klemas 2015; 

Pereira et al. 2009). With recent advances in platform and sensor technologies, UAVs provide a 
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low-cost, operationally flexible alternative to traditional satellite and airborne remote sensing, 

which make them especially useful for small-scale or site-based applications. UAVs have been 

used in a number of coastal wetland applications at small scales including coastal monitoring 

(Manfreda et al. 2018; Turner et al. 2016), hazard assessment (Vousdoukas et al. 2011), wetland 

delineation (Gray et al. 2018; Marcaccio et al. 2015), and vegetation height estimation (DiGiacomo 

et al. 2020). Biomass quantification using UAVs has been tested in wetland settings containing 

invasive grasses (Zhou et al. 2018) and mangroves (Navarro et al. 2019; Otero et al. 2018), and in 

other non-wetland applications (see Poley and Mcdermid 2020 for review). 

More recently, UAVs have been applied to the task of quantifying aboveground biomass 

(AGB) in coastal saltmarshes (Doughty and Cavanaugh 2019). In this application, biomass 

estimation models based on UAV NDVI accounted for up to 67% of variability in AGB, but model 

performance varied among seasons. This study was also limited to one saltmarsh site over a single 

annual growth cycle. Although UAVs have demonstrated potential in estimating coastal wetland 

biomass, more work is needed to test how transferrable this approach is among wetlands with 

different plant communities. UAVs could serve as an intermediate between field-based measures 

of biomass and satellite imagery by providing high-resolution insights into complex spatial 

patterns in AGB, habitat complexity, and community composition. A comparison of UAV and 

satellite biomass estimation approaches is needed to see if UAV imagery can be used to 

supplement traditional satellite-based approaches.  

The overarching aim of this study is to test the feasibility of using UAV-based approaches 

to map coastal wetland biomass across spatial scales. First, we test biomass estimation using UAVs 

at fine scales (≤ 1m) within four tidal wetland sites within the southern California region. By using 

wetlands of varying setting, size, and plant communities, we can also identify factors that 
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contribute to variability in biomass modelling across sites. Second, we compare how the spatial 

resolution of high- and moderate-resolution imagery can influence biomass estimation by 

comparing UAV and Landsat approaches at each site. This comparison allows us to quantify 

spatial heterogeneity and patterns in AGB detected using imagery of differing resolutions. Overall, 

this study provides the first quantitative comparison of UAV and Landsat biomass estimation 

approaches in coastal wetlands. This is an essential first step in testing a novel remote sensing 

technology in its ability to capture wetland biomass at ecologically relevant scales and its potential 

in supplementing satellite-based approaches. 

 

Figure 3-2. Study site locations in southern California, USA with site symbology indicating wetland 

archetypes (A). Overviews of wetland areas and UAV survey areas (red outline) for (B) Carpinteria Salt 

Marsh Reserve, (C) San Dieguito Lagoon, (D) Los Peñasquitos Lagoon, and (E) Kendall-Frost Mission Bay 

Marsh Reserve. Gray basemap ©ESRI. Satellite imagery basemap ©Google. 
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3.3 Methods 

3.3.1 Site Description 

We conducted field surveys in four intertidal wetland sites in southern California near the 

end of the region’s growing season during August – September of 2018 and 2019 (Figure 3-2, 

Table S3-1). Field sites included the Carpinteria Salt Marsh Reserve (CSMR), San Dieguito 

Lagoon (SDL), Los Peñasquitos Lagoon (LPL), and Kendall-Frost Mission Bay Marsh Reserve 

(KFMR). These sites represent two wetland types in the region, large river valley estuaries and 

intermittently open estuaries (Doughty et al. 2018; SCWRP 2018; Stein et al. 2019). Plant 

community composition differs among sites and reflects a range of common species throughout 

this region). Site selection was based on access to protected wetland areas and FAA airspace 

restrictions. At each site, field surveys consisted of UAV flights followed by biophysical surveys 

of wetland vegetation.  

3.3.2 UAV Imagery Collection and Processing 

We performed UAV flights using a DJI Matrice 100 quadcopter (DJI, Nanshan, Shenzhen, 

China). Dates and times of UAV flights at each site were chosen to coincide with Landsat 

overpasses and flights were conducted within two hours of solar noon (Tagle et al. 2017). The 

Matrice was equipped with a Micasense Rededge multispectral sensor (Micasense, Seattle, WA), 

which captures five spectral bands: blue (475 nm, 20 nm bandwidth), green (560 nm, 20 nm 

bandwidth), red (668 nm, 10 nm bandwidth), red edge (717 nm, 10 nm bandwidth), and the near-

infrared (840 nm, 40 nm bandwidth). We used the Rededge sensor to capture images of Micasense 

Calibrated Reflectance Panels before and after each flight for radiometric conversion of UAV 

images. UAV flight plans were created using Micasense Atlas Flight Software and flights were 
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Table 3-1. Common species present in field biomass assessment plots (25 x 25 cm). Frequency provides the count of plots where each species was 

present. Mean percent cover is the average across all plots in which a species was present. 

Species Vegetation Type 

Frequency  Mean Percent Cover (%) 

CSMR KFMR SDL LPL Total  CSMR KFMR SDL LPL Total 

Salicornia pacifica (Sp) 
Succulent perennial 

herb 

10 6 7 8 31  44 32 28 36 36 

Arthrocnemum 

subterminale (As) 

Succulent perennial 

herb 

2 0 1 0 3  65 0 5 0 45 

Jaumea carnosa (Jc) 
Succulent perennial 

herb 

8 1 6 8 23  82 1 50 58 62 

Salicornia bigelovii (Sb) 
Succulent perennial 

herb 

0 4 0 0 4  0 55 0 0 55 

Batis maritima (Bm) 
Succulent perennial 

herb 

0 9 0 0 9  0 34 0 0 34 

Frankenia salina (Fs) Perennial herb 5 1 0 8 14  17 5 0 56 39 

Distichlis littoralis (Dl) Perennial grass 3 2 1 0 6  22 65 80 0 46 

Distichlis spicata (Ds) Perennial grass 1 2 3 1 7  10 50 23 90 39 

Limonium californicum 

(Lc) 
Perennial herb 

2 1 0 0 3  55 60 0 0 57 

Spartina foliosa (Sf) Perennial grass 0 6 6 0 12  0 40 46 0 43 

Triglochin concinna (Tc) Perennial herb 0 1 0 0 1  0 2 0 0 2 

Atriplex prostrata (Ap) Non-native annual herb 0 0 0 3 3  0 0 0 53 53 

Cuscuta salina (Cs) 
Annual herb or vine 

(parasitic) 

2 0 0 1 3  1 0 0 40 14 

Abbreviations: Carpinteria salt marsh reserve (CSMR), Kendall-Frost Mission Bay Marsh Reserve (KFMR), San Dieguito Lagoon (SDL), Los 

Peñasquitos Lagoon (LPL) 
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conducted at an altitude of 90 m above ground level, at an airspeed of 7 m s−1, and with image 

overlap set to 75%. Doughty & Cavanaugh (2019) provides a thorough overview of the UAV data 

collection and processing workflow.  

UAV images were converted to reflectance using scripts adapted from Micasense (Doughty 

2019). First, images were corrected for dark pixels, vignette effects, exposure, and gain. Corrected 

images were then converted from raw digital number (DN) to radiance and from radiance to 

reflectance using a conversion factor calculated from the preflight and postflight calibration panel 

images. UAV images of reflectance were then mosaicked to generate multispectral orthomosaics 

using Photoscan Pro v1.4 (Agisoft, St. Petersburg, Russia). Resulting 5-band orthomosaics were 

produced for each site with pixel resolutions averaging ~6 cm.  

Orthomosaics were masked to wetland UAV survey areas (Figure 3-2; red outlines) and 

resampled to 1-m pixel resolutions. Masked orthomosaics were used to create maps of the 

normalized difference vegetation index (NDVI). NDVI was used as the focal vegetation index for 

estimating aboveground biomass using UAVs based on prior findings at CSMR (Doughty and 

Cavanaugh 2019). We extracted mean reflectance and NDVI values from the UAV-derived 

imagery that coincided with sampling plot locations from the biophysical surveys. Data was 

extracted from a circular area surrounding each plot that accounted for plot width (25 cm) plus the 

horizontal error of the RTK-GPS and the orthomosaic that varied for each site (Table S3-1); the 

circular area ranged in diameter from 1.09 – 1.37 m per site.  All orthomosaic processing and 

analyses were conducted in R using base (v4.0.0), raster (v3.0-2), and stats (v3.6) packages (R 

Foundation for Statistical Computing, Vienna, Austria). 
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3.3.3 In Situ Biophysical Surveys 

Following UAV flights, we conducted biophysical surveys of the wetland vegetation at 

each site. Because the timing of field surveys was primarily done to coincide with Landsat 

overpasses and be within two hours of solar noon, tidal levels ranged from 0.70 – 1.25 m NAVD88 

at the time of field sampling (Table S3-1). The location and sampling design of plots were selected 

based on elevation and Landsat pixel footprints of 30 m x 30 m (Figure 3-3). Plot placements were 

guided by elevational gradients at each site to ensure that we captured a variety of common wetland 

species in the region (Table 3-1). Site SDL contained a sharp elevational gradient over a small 

area; therefore, sampling design at SDL was perpendicular to the elevational gradient, unlike other 

sites where we sampled along elevational gradients (Figure 3-3A). Despite this alternative 

sampling design, we captured the range of species occurring at different elevations within SDL. 

We used elevation data from the NOAA-CA Coastal Conservancy Coastal LiDAR project 2009–

2013, available as a 1-m2 resolution digital elevation model (DEM) to measure elevation (m 

NAVD88) for each site. SDL mean elevation was 1.60 ± 0.29 m (1.15 – 2.16 m); KFMR mean 

elevation was 1.27 ± 0.53 m (0.03 – 5.65 m); CSMR mean elevation was 1.85 ± 0.26m (0.61 – 

3.37 m); and LPL mean elevation was 1.88 ± 0.20 m (0.99 – 2.44 m) (Table S3-1; Figure S3-1). 

We selected Landsat pixels across these elevational gradients that also represent a range of 

vegetation “greenness” estimated from Landsat NDVI imagery taken in August - September from 

previous years. Five to six Landsat pixels were selected for each site based on these criteria and 

site size.  
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Figure 3-3. Overview of site sampling design, 

biomass sampling locations, elevation, true-

color UAV imagery and modelled 

aboveground biomass maps for  (A – C) 

Carpinteria Salt Marsh Reserve, (D – F) San 

Dieguito Lagoon, (G – I) Los Peñasquitos 

Lagoon, and (J – L) Kendall-Frost Mission 

Bay Marsh Reserve. 
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Within each of the selected 30-m Landsat pixels, we randomly placed three 25 x 25 cm 

sampling plots approximately 7 m apart around the pixel centers. The total number of plots per 

site ranged from 15 – 18. We measured the coordinates of plot centers using an Arrow Gold RTK-

GPS with ~3 cm horizontal accuracy and ~5 cm vertical accuracy (EOS Positioning System, 

Terrebonne, QC, Canada). We estimated species percent cover and average vegetation height taken 

from three random samples within the plots, before harvesting all aboveground biomass. 

Aboveground biomass samples were dried at 50°C for one week to obtain dry weight (g). 

3.3.4 Landsat Imagery Acquisition and Processing 

Landsat Collection-1 tier-1 Surface Reflectance products were downloaded through the 

USGS Earth Explorer (https://earthexplorer.usgs.gov/). We selected cloud-free Landsat 8 OLI 

scenes acquired within 0 – 18 days of field surveys (Table S3-1). Although field surveys were 

timed to coincide with Landsat satellite overpasses, some Landsat scenes were excluded from the 

analysis due to high cloud cover. Landsat OLI bands used in this study include blue (450 – 515 

nm), green (525 – 600 nm), red (630 – 680 nm), and near-infrared (845 – 885 nm). Tier-1 Landsat 

8 OLI imagery ground resolution is 30 m with ≤ 12 m circular geolocation error uncertainty (Roy 

et al. 2014). Landsat images were masked to wetland UAV survey areas for each site (Figure 3-2; 

red outlines) and converted to NDVI. All Landsat imagery processing and analyses were also 

conducted in R.  

3.3.5 Biomass Model Development 

To study the effects of spatial resolution on AGB estimation, we developed models based 

on three remotely sensed datasets: UAV NDVI (1 m), Landsat NDVI (30 m), and a combination 

of Landsat NDVI and upscaled UAV AGB maps (30 m). For each biomass estimation approach, 

we used simple linear regression and reported the coefficient of determination (r2), root mean 

https://earthexplorer.usgs.gov/
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square error (RMSE) and Akaike information criterion (AIC) to aid model comparisons among 

sites and approaches. 

3.3.5.1 Biomass Estimation from UAV NDVI 

We developed linear regression models using estimates of aboveground biomass collected 

in situ and NDVI derived from UAV imagery at sampling plot locations. Simple linear regression 

was used, as this method is common for estimating marsh biomass with multispectral sensors 

(Hardisky et al. 1983; Mo et al. 2018; Zhang et al. 1997), and because our previous work in the 

region showed no saturation of broadband vegetation indices with increasing aboveground 

biomass (Doughty and Cavanaugh 2019). NDVI was selected as the focal vegetation index in this 

study because it is widely used in remote quantification of wetland biomass (Klemas 2013a) and 

because NDVI adequately modeled biomass in previous studies at CSMR (Doughty and 

Cavanaugh 2019). We did test other indices in this study and found that NDVI performed 

consistently better when comparing across sites (Table S3-2). Thus, linear models based on NDVI 

were developed for each site and for all pooled data. Site-specific models were used to create AGB 

maps used below in the approach combining Landsat NDVI and UAV biomass maps.  

In addition to comparing biomass models among different wetland sites, we also tested the 

impacts of dominant vegetation cover type on the ability to model aboveground biomass using 

simple linear regression. 

3.3.5.2 Biomass Estimation from Landsat NDVI 

To test the impact of sensor resolution, we developed biomass models from the in situ 

biomass collections and Landsat NDVI. Similar to the biomass estimation approach using UAV 

imagery, mean NDVI values were extracted from the Landsat NDVI raster within a 30-m buffer 

area surrounding each sampling plot that accounted for plot size, Landsat resolution, and horizontal 
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error (±12 m) Landsat imagery. Simple linear regression models were then used to test the 

correlation among in situ aboveground biomass and Landsat NDVI among sites and approaches. 

3.3.5.3 Biomass Estimation Combining Landsat NDVI and UAV Aboveground 

Biomass 

Last, we developed biomass models based on UAV-derived maps of AGB and Landsat 

NDVI. UAV biomass maps were created using site-specific AGB models described above. UAV 

biomass maps were upscaled from 1-m to 30-m spatial resolutions using a bilinear raster 

resampling method, which calculates the mean AGB of 900 UAV pixels contained within each 

Landsat pixel. The resulting resolution and extent of upscaled UAV AGB rasters match Landsat 

NDVI rasters. We then used the pixelwise comparisons of UAV-modeled AGB and Landsat NDVI 

to develop biomass models using simple linear regression.  

3.3.6 Spatial Heterogeneity Analysis 

To compare the spatial scale at which each sensor can detect variability, patterns, and 

features in coastal wetland vegetation, we used semivariogram analysis on AGB maps derived 

from UAV and Landsat imagery. Semivariograms provide a representation of spatial variability 

and autocorrelation in a dataset (Atkinson 1993; Cohen et al. 1990). The amount of variability can 

be quantified as semivariance (𝛾(h)), calculated as: 

𝛾(ℎ) =  
1

2𝑛
∑{𝑧(𝑥) − 𝑧(𝑥 + ℎ)}2    (Eq. 1) 

Where 𝛾(h) estimates the variability in aboveground biomass (z) as a function of separation 

in space (x) over a given lag distance (h) (Curran 1988). Semivariance has a dimension of units 

squared (Palmer 2002), therefore the units for semivariance of AGB presented here is g2 m-4. 

Empirical semivariograms can be developed using either transect or matrix sampling 

methods (Cohen et al. 1990). Matrix semivariograms evaluate raster images in 2-dimensions, 
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which permits a more complete, accurate assessment of habitat structure, while transect 

semivariograms based on 1-dimensional data are more useful for estimating habitat features like 

tree canopy size, gaps, and patterns in stand structure (Cohen et al. 1990). We opted for a matrix 

semivariogram approach performed on a 60-m wide spatial subset of each site that aligns with the 

field sampling design across an elevational gradient. This was done in order to simplify the spatial 

variability in multiple dimensions, so that habitat features could be inferred from the AGB maps 

in addition to overall habitat structure. This also allows us to analyze all sites, despite the different 

sampling design required at SDL. We implemented the R package “usdm” (v1.1-18) to perform 

the variogram analysis on raster data of UAV and Landsat maps of AGB (Naimi et al. 2011). Lag 

distance intervals were set to the resolution of UAV (1 m) and Landsat (30 m) imagery. Maximum 

lag distances analyzed for each site were half of the total transect length (100 – 250 m), because 

with greater lag distances, there is greater uncertainty and noise due to fewer available data pairs 

(Palmer 2002). Resulting semivariograms show semivariance of AGB over increasing lag distance 

for imagery type. 

Semivariograms were then used to interpret the scales and patterns of spatial variability in 

each site. The overall form of the variogram summarizes spatial variability of the plant community, 

and noise within the variogram represents fine-scale variation arising from habitat features (See 

Curran 1988 for an overview of semivariogram forms). For “classical” semivariogram forms 

following a spherical model, semivariance increases as a distance decay function of lag distance. 

From this form it is possible to estimate the “sill”, the maximum amount of variability detectable 

with increasing distance, and the “range”, the lag distance at which the sill is reached (Cohen et 

al. 1990). We were able to estimate range where the semivariogram first begins to flatten for some 

sites. If semivariograms exhibited fine-scale variation indicative of habitat features, we compared 
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these to observations of habitat features, such as vegetation patch size or marsh zone width, taken 

from the field or from UAV true-color imagery.  

 

Figure 3-4. Biophysical survey data on (A) species realized niches, (B) vegetation height and (C) 

aboveground biomass according to elevation. Dominant species reflect the highest percent cover within 

plots: Salicornia pacifica (Sp), Arthrocnemum subterminale (As), Jaumea carnosa (Jc), Salicornia bigelovii 

(Sb), Batis maritima (Bm), Frankenia salina (Fs), Distichlis littoralis (Dl), Distichlis spicata (Ds), Limonium 

californicum (Lc) and Spartina foliosa (Sf). 

3.4 Results 

3.4.1 Variability in Wetland Vegetation Captured with Field Surveys 

Field surveys showed that plant community composition of vegetation types and species 

varied among sites (Table 3-1). Dominant vegetation types were most clearly different at CSMR, 

which was dominated by succulent vegetation and contained some Distichlis grass species but no 

Spartina foliosa within survey areas. California cordgrass, S. foliosa, was common in KFMR and 

SDL, which were dominated by grasses, however, SDL exhibited lower species diversity overall 

(Table 3-1). SDL has undergone recent restoration efforts in areas along the northern arm of the 

marsh creek (Figure 3-2C), which limited field surveys to a relatively small area containing pre-

existing native plant communities (Figure 3-3D). Site LPL contained an even mix of grasses and 
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succulent species, but grasses occurred at higher mean percent cover in plots they occupied (Table 

3-1). LPL, however, was also the only site where the non-native herbaceous species Atriplex 

prostrata was found in plots at higher elevations (Figure 3-4A). 

Vegetation types and dominant species that comprised differing plant communities among 

sites also contributed to site-specific differences in plant height and AGB. Differences in in situ 

AGB were significant across sites, while vegetation height was not (Table 3-2). Overall, the 

average height of succulent perennials was 22.5 ± 9.1 cm (9.7 – 58.3 cm) and AGB was 1153.1 ± 

587.7 g m-2 (209.6 – 2841.6 g m-2). For perennial herbs and grasses, average height was 44.4 ± 

23.6 cm (14.0 – 81.7 cm) and AGB was 1283.5 ± 660.8 g m-2 (326.4 – 2944.0 g m-2). AGB was 

not significantly different among vegetation types, but average height did vary significantly among 

succulents and grasses-herbs (t = -3.98, df = 34.3, p-value < 0.0005; unpaired t-test; log-

transformed for normality and homogeneity). 

 

Table 3-2. Mean height and aboveground biomass (± standard deviation) of dominant vegetation classes 

per site. Superscripts denote means differ significantly within each row (P < 0.05). 

 CSMR KFMR SDL LPL Total 

Height (cm)      

Succulent 

perennial 
22.8 ± 6.4 22.6 ± 17.6 17.0 ± 6.3 24.4 ± 5.2 22.5 ± 9.1 

Perennial 

herb-grass 
18.6 ± 2.4 39.4 ± 24.2 55.2 ± 26.5 38.7 ± 13.5 44.4 ± 23.6 

Aboveground 

Biomass (g m-2)     

 

Succulent 

perennial 
1286.1 ± 221.7a 773.1 ± 182.8b 562.2 ±259.3b 1922.2 ± 536.4c 

1153.1 ± 

587.7 

Perennial 

herb-grass 
1342.9 ± 277.3a 879.8 ± 339.6a 787.0 ± 248.9a 2077.1 ± 595.5b 

1283.5 ± 

660.8 
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Comparing plant height and AGB field data to elevation provided insights into the spatial 

complexity of wetland vegetation properties within study sites (Figure 3-4). Species elevational 

ranges indicate the realized elevational niches of common wetland species throughout the region 

(Figure 3-4A), with some species like D. spicata capable of occupying broader elevational ranges. 

Vegetation heights decreased with elevation (Figure 3-4B), whereas aboveground biomass 

increased with elevation (Figure 3-4C). Spatial complexity within wetlands and site-specific 

differences throughout a region are important considerations for remote biomass estimation. 

3.4.2 Site-specific UAV Biomass Estimation  

Site and vegetation type play a significant role in developing models to estimate end-of-

season AGB using multispectral UAV imagery (Figure 3-5). Three of four site-specific 

relationships among wetland AGB and NDVI have similar slopes, indicating a similar rate of 

change in AGB associated with NDVI values for LPL, CSMR, and KFMR (Figure 3-5A, Table 3-

3A). Slopes for these sites ranged from 3153.2 - 4351.9 g m-2 NDVI-1, whereas the slope for SDL 

was 1838.0 g m-2 NDVI-1. AGB models also indicate site-specific differences in the magnitude of 

aboveground biomass. For example, LPL had consistently higher biomass for all NDVI values 

compared to the other sites, and LPL also had significantly higher field biomass than other sites 

(Table 3-2). When data was pooled for all sites, the biomass estimation model accounted for 40% 

of the variation in measured AGB (RMSE = 534.6 g m-2), compared to 48 – 79% of variance 

explained in site-specific models (Table 3-3A).  

Linear models were considerably different for grasses and herbs (AGB=4760.4*NDVI-

700.1; r2 = 0.36; RMSE = 516.7 g m-2; Figure 3-5B, Table S3-3) versus succulent vegetation 

(AGB=1941.4*NDVI+354.4; r2 = 0.08; RMSE = 555.9 g m-2). The linear model for succulents 

explains only 8% of variability in AGB. 
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3.4.3 A Comparison of UAV and Landsat Aboveground Biomass Estimation Approaches 

Aboveground biomass estimation models based on field biomass data and high-resolution 

UAV imagery outperformed models based on moderate resolution Landsat imagery (Figure 3-6A-

B, Table 3). Models based on pooled data for all sites explained 40% of the variability in AGB 

using UAV imagery, while a similar model using Landsat explained only 26% of variability. 

Larger uncertainty in the Landsat-based model reflects poor correlation in site-specific models. 

For example, SDL model correlation was weak and not significant (r2 = 0.06; RMSE = 297.5 g m-

2), compared to the UAV-based model for SDL (r2 = 0.48; RMSE = 220.5 g m-2). We found 

different linear relationships in UAV and Landsat models for SDL and LPL. Both UAV- and 

Landsat-based models for LPL performed well, explaining 79% and 67% of variability, but slopes 

were significantly different between the Landsat and UAV models (Figure 3-6). UAV-based  

Table 3-3A). Slopes for these sites ranged from 3153.2 - 4351.9 g m-2 NDVI-1, whereas the 

slope for SDL was 1838.0 g m-2 NDVI-1. AGB models also indicate site-specific differences in the 

magnitude of aboveground biomass. For example, LPL had consistently higher biomass for all 

NDVI values compared to the other sites, and LPL also had significantly higher field biomass than 

other sites (Table 3-2). When data was pooled for all sites, the biomass estimation model accounted 

for 40% of the variation in measured AGB (RMSE = 534.6 g m-2), compared to 48 – 79% of 

variance explained in site-specific models (Table 3-3A).  

Linear models were considerably different for grasses and herbs (AGB=4760.4*NDVI-

700.1; r2 = 0.36; RMSE = 516.7 g m-2; Figure 3-5B, Table S3-3) versus succulent vegetation 

(AGB=1941.4*NDVI+354.4; r2 = 0.08; RMSE = 555.9 g m-2). The linear model for succulents 

explains only 8% of variability in AGB. 
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Figure 3-5. Linear models between in situ aboveground biomass and NDVI derived from UAV imagery: 

(A) by site, Los Peñasquitos Lagoon (LPL, green squares), Carpinteria Salt Marsh Reserve (CSMR, orange 

circles), Kendall-Frost Mission Bay Marsh Reserve (KFMR, light blue triangles) and San Dieguito Lagoon 

(SDL, dark blue cross); and (B) by dominant cover classes, succulents (navy squares), grass-herbs (green 

circles), and soil (brown triangles). Linear model for all data is shown in grey. 

3.4.3 A Comparison of UAV and Landsat Aboveground Biomass Estimation Approaches 

Aboveground biomass estimation models based on field biomass data and high-resolution 

UAV imagery outperformed models based on moderate resolution Landsat imagery (Figure 3-6A-

B, Table 3). Models based on pooled data for all sites explained 40% of the variability in AGB 

using UAV imagery, while a similar model using Landsat explained only 26% of variability. 

Larger uncertainty in the Landsat-based model reflects poor correlation in site-specific models. 

For example, SDL model correlation was weak and not significant (r2 = 0.06; RMSE = 297.5 g m-

2), compared to the UAV-based model for SDL (r2 = 0.48; RMSE = 220.5 g m-2). We found 

different linear relationships in UAV and Landsat models for SDL and LPL. Both UAV- and 

Landsat-based models for LPL performed well, explaining 79% and 67% of variability, but slopes 

were significantly different between the Landsat and UAV models (Figure 3-6). UAV-based  
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Table 3-3. Linear models of aboveground biomass derived when (A) in situ biomass is compared to NDVI 

derived from UAV imagery, (B) in situ aboveground biomass is compared to NDVI derived from Landsat 

imagery, and (C) modeled aboveground biomass from UAV imagery is compared to NDVI derived from 

Landsat imagery. Site abbreviations: Los Peñasquitos Lagoon (LPL), Carpinteria Salt Marsh Reserve 

(CSMR), Kendall-Frost Mission Bay Marsh Reserve (KFMR), and San Dieguito Lagoon (SDL). 

A. Field biomass to UAV 

Site Equation r2 RMSE (g m-2) AIC p-value 

SDL 1838*NDVI - 63.4 0.48 220.5 210.4 < 0.005 

KFMR 3153.2*NDVI - 496.2 0.48 241.1 213.1 < 0.005 

CSMR 3567*NDVI - 255.9 0.68 293.8 261.7 < 0.005 

LPL 4351.9*NDVI + 63.9 0.79 398.0 272.6 < 0.005 

ALL 3368.4*NDVI - 210.2 0.40 534.6 1022.5 < 0.005 

B. Field biomass to Landsat 

Site Equation r2 RMSE (g m-2) AIC p-value 

SDL -724.8*NDVI + 753.6 0.06 297.5 219.4 0.37 

KFMR 3396.4*NDVI - 873.7 0.39 259.4 215.3 0.012 

CSMR 3501.5*NDVI - 509.5 0.56 345.7 267.5 < 0.005 

LPL 
25541.3*NDVI - 

11618.3 
0.67 495.6 280.5 < 0.005 

ALL 2338.3*NDVI + 74.4 0.26 596.8 1037.0 < 0.005 

C. Modeled biomass to Landsat NDVI 

Site Equation r2 RMSE (g m-2) AIC p-value 

SDL 494.7*NDVI + 301.3 0.13 143.1 733.6 0.005 

KFMR 2061.6*NDVI - 180.1 0.63 172.8 3488.7 < 0.005 

CSMR 2940.1*NDVI - 381.2 0.73 201.7 2844.3 < 0.005 

LPL 7630.7*NDVI - 2263.1 0.56 269.7 2223.2 < 0.005 

ALL 2856.7*NDVI - 284.7 0.45 400.5 10249.0 < 0.005 

 

models for CSMR and KFRM also outperformed Landsat-based models, but differences in models 

among imagery type were less evident. 

Aboveground biomass models derived from a combination of UAV-based AGB maps and 

Landsat NDVI showed improved model performance compared to the Landsat model calibrated 

with in situ data (Figure 3-6C, Table 3-3C). Models based on pooled data for all sites using the 

combined approach increased the explained variance from 26% to 45%. Overall, biomass 

estimation combining Landsat NDVI and UAV aboveground biomass increased explained 
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variability at an average of 11% (7% - 24%) for all sites compared to using Landsat alone. LPL 

was the only site where biomass estimation from Landsat outperformed biomass estimation 

combining Landsat NDVI and UAV AGB maps. RMSE estimates were lower than other 

approaches indicating that the additional data provided by UAV AGB maps reduce model error, 

i.e., data were more concentrated along the regression line. However, AIC estimates of model 

performance are higher than other approaches, which shows that the added UAV AGB data 

reduces the quality of the statistical model by contributing a larger amount of data for the model 

to account for (Table 3C). Overall, high-resolution UAV maps of AGB provide additional 

information to aid in scaling field data to moderate resolution imagery. 

3.4.4 Increased Spatial Heterogeneity in Aboveground Biomass with Increased Image 

Resolution  

Detecting spatial heterogeneity in wetland aboveground biomass improved with increased 

spatial resolution (Figure 3-7). As expected, high-resolution (1 m) maps derived from UAVs 

captured more variability in AGB than Landsat (30 m), indicating a loss of detail with increased 

pixel sizes. This is especially important at lag distances smaller than the 30-m resolution of 

Landsat, where the dissimilarity of wetland characteristics can increase drastically (Figure 3-7B-

D). UAVs consistently captured higher semivariance than Landsat at all sites; however, the 

magnitude of semivariance and form of semivariograms differed among sites and reveal different 

spatial patterns and features. 
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Figure 3-6. Correlations of aboveground biomass and NDVI when (A) in situ biomass is compared to NDVI 

derived from UAV imagery, (B) in situ aboveground biomass is compared to NDVI derived from Landsat 

imagery, and (C) modeled aboveground biomass (using models in panel (A)) is compared to NDVI derived 

from Landsat imagery. Symbology represents different sites: Los Peñasquitos Lagoon (LPL, green 

squares), Carpinteria Salt Marsh Reserve (CSMR, orange circles), Kendall-Frost Mission Bay Marsh 

Reserve (KFMR, light blue triangles), and San Dieguito Lagoon (SDL, dark blue cross). 
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Figure 3-7. Semivariograms showing the effect of image resolution on detectable variation in aboveground 

biomass for (A) Carpinteria Salt Marsh Reserve, (B) San Dieguito Lagoon, (C) Los Peñasquitos Lagoon, 

and (D) Kendall-Frost Mission Bay Marsh Reserve. Semivariance (𝛾(h)) for AGB presented as units in g2 

m-4. 

CSMR exhibited the highest variability in AGB overall and both UAV and Landsat 

imagery presented similar semivariogram forms (Figure 3-7A). For both UAV and Landsat, 

semivariance levels off at ranges of ~75 m and indicates regularly repeated features. This lag 

distance corresponds to the average width of habitat zones observed at CSMR which are comprised 

predominately of the succulent Salicornia pacifica at low elevations, followed by the succulent 

Jaumea carnosa and a mixed zone dominated by Distichlis littoralis grasses at high elevations. 

The slight depression of the UAV semivariogram at ~30 m could also indicate smaller patch sizes 
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of vegetation type and canopy gaps (i.e. mudflats, ponds) occurring within larger elevational 

zonation patterns.  

For the remaining sites, UAV and Landsat semivariograms exhibited different forms that 

signify different spatial patterns in AGB derived from the two imagery types. For example, the 

UAV semivariogram for SDL presents a “classic” form where semivariance quickly increases with 

lag distance to a range of ~30 m, but the Landsat variogram is unbounded (Curran 1988), meaning 

the transect length may be too short to reveal a clear pattern using Landsat (Figure 3-7B). UAV 

AGB maps therefore provide the only insights into wetland features occurring at scales of 30 – 50 

m, which correspond to patch sizes of distinguishable cover types: vegetation (green and brown), 

soils (mudflats and salt flats), and water observed at the site. Slight dips at ~15 m and 25 m could 

indicate variation within broader cover classes due to patches of vegetation types and/or species. 

However, given the alternative sampling design at SDL, these patterns cannot be explicitly linked 

to elevational patterns like marsh zonation.  

There was little variability in AGB maps derived from Landsat for LPL revealed by an 

aspatial relationship with variance over lag distance (Curran 1988), which would indicate a 

homogeneous surface of AGB at this site (Figure 3-7C). Profiles of AGB along the elevational 

transect also show little variation in AGB compared to those from UAVs for LPL (Figure S3-1). 

UAV AGB maps at LPL reveal different spatial patterns with high fine-scale variation indicated 

by the noisy semivariogram. For example, the UAV variogram for LPL exhibits a clear bump at a 

~10 m lag, which corresponds to features occurring within canopies like patches of vegetation type 

or species, as well as small gaps in cover type (i.e., vegetation, soil, water). High noise in the UAV 

semivariogram beginning at 30 – 45 m indicates broader patterns of zonation among similar 

vegetation or cover types discernable in UAV true-color imagery (Figure 3-3H). 
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Semivariograms for KFMR reveal drastically different spatial patterns in AGB. The 

Landsat semivariogram is also unbounded with semivariance continuing to increase over the lag 

distances measured, which indicates spatial dependence at broader spatial scales at this site (Figure 

3-7D). The UAV variogram exhibits a periodic, multifrequency form (Curran 1988) with a large 

inflection at lag distances ~125 – 150 m. This inflection indicates the spatial scale at which we can 

discern variability within a feature and among features. Lag distances of this size correspond to 

wider bands of marsh zonation observed at KFMR as this was a large site with a low elevational 

grade. Peaks around 50 m lag distances reveal repeating patterns within marsh zones arising from 

patches of cover type (vegetation, soil) and vegetation type (succulents, grasses).  

Ranges estimated from the initial leveling off of UAV semivariograms show clear 

differences in the sizes of detectable patterns at each site. Estimated ranges were ~75 m for CSMR, 

~30 m for SDL, ~75 m for LPL and ~50 m for KFMR (Figure 3-7). Site-specific ranges reflect 

overall differences in the sizes of the largest detectable wetland habitat structures. At CSMR, LPL, 

and KFMR, 50 – 75 m ranges correspond to larger, intra-site patterns of marsh zonation, whereas 

the 30 m range detected at SDL indicates smaller intra-site patterns in cover type. SDL was the 

smallest site and had the smallest elevational range, which may be why cover type and not marsh 

zonation was the largest detectable pattern with UAVs. At spatial scales smaller than the estimated 

ranges, the semivariance detected at each site reflects the underlying plant-level characteristics, 

species composition, vegetation type, and cover type that contribute to overall wetland 

heterogeneity (Figure 3-1).  

3.5 Discussion 

UAVs are rapidly becoming a valuable tool for wetland ecologists to map and monitor 

highly dynamic coastal ecosystems. Here we compared the remote estimation of aboveground 
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biomass in diverse coastal saltmarshes by UAV and Landsat. We found that high-resolution UAV 

imagery aids biomass estimation modeling across multiple wetland sites with unique vegetation 

and geomorphic characteristics. UAVs allowed for improved detection of spatial heterogeneity 

and patterns in community composition, marsh zonation, cover and vegetation type that contribute 

to wetland aboveground biomass at various scales (Figure 3-1). UAVs served as a viable 

intermediate between field-based measures of biomass and satellite imagery to improve Landsat-

based biomass estimation. 

The relationship between aboveground biomass and UAV-based NDVI is site-specific and 

influenced by plant communities present in wetlands in the southern California region (Figure 3-

5). For wetland grasses and herbs, NDVI explained more (36%) of the variability in AGB due to 

the sensitivity of NDVI to green photosynthetic tissue characteristic of these vegetation types 

(Klemas 2013a). Common perennial succulents in the region, however, exhibit a wide range of 

growth forms that made it difficult to model AGB, as NDVI explained only 8% of the variation in 

aboveground biomass for this vegetation type. Perennial succulents like S. pacifica (pickleweed) 

and Arthrocnemum subterminale (Parish's glasswort) can grow into low-lying subshrub forms with 

multi-stemmed woody plant tissues. Such non-photosynthetic vegetation (NPV) will contribute to 

standing biomass but will not be adequately modeled using a vegetation index sensitive to green 

photosynthetic tissue. Conversely, saltmarsh succulents that are primarily composed of soft green 

tissue, such as J. carnosa (fleshy jaumea), may be better suited for AGB estimation modelling 

using NDVI. Differences in coastal wetland community composition, vegetation types, growth 

forms, and species contribute uncertainty to aboveground biomass estimation using UAVs, and 

understanding the variability caused by these factors is essential to improving remote estimation 

of aboveground biomass.  
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The increased spatial resolution provided by UAVs in this study improved our ability to 

model aboveground biomass using NDVI compared to Landsat when based on field biomass data 

(Figure 3-6A, B). Other studies using Landsat to estimate and model AGB in wetlands based on 

field measures have been successful using approaches with different focal species, vegetation 

indices, sensor combinations, and image analyses. Gross et al. (1987) provides one of the earliest 

uses of Landsat TM images to quantify and map biomass in a large, homogenous S. alterniflora 

marsh in Delaware, USA, achieving a strong linear model to predict live AGB from NDVI (r2 = 

0.85). Buffington et al. (2018) found tassel cap greenness (TCG) to be a useful measure of 

aboveground biomass (r2 = 0.72) in diverse, productive tidal marsh communities in the Pacific 

Northwest, USA. In coastal Louisiana, USA, Mo et al. (2018) found that it was possible to assess 

biomass among diverse marsh types using non-linear models combined with hyperspectral data (r2 

= 0.85), but not with moderate resolution Landsat. Bryd et al. (2014) show that spectral and spatial 

resolutions of various remotely sensed imagery impact predictive models of aboveground biomass 

for freshwater marshes in the Sacramento–San Joaquin River Delta, California, USA. They found 

Landsat was more successful (r2 = 0.55, RMSE = 556.5 g m-2) than World View-2 (r2 = 0.45, 

RMSE = 659.7 g m-2). Our study compares imagery of similar resolutions, but our 1-m resampled 

UAV imagery (r2 = 0.40, RMSE = 534.6 g m-2) outperformed Landsat (r2 = 0.26, RMSE = 596.8 g 

m-2). The varying success of biomass estimation among these case studies highlight the importance 

of the types of remote sensing data and approaches used in estimating biomass in site-specific 

wetland communities.  

Aboveground biomass estimation in coastal wetlands depends largely on the scale of 

remotely sensed imagery and the scale of site-specific patterns in wetland biomass. For wetlands 

that are large and homogenous, 30-m Landsat pixels may adequately model AGB (e.g., Gross et 
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al. 1987; O’Donnell and Schalles 2016), but wetland communities are often heterogeneous and 

spatially complex (e.g., Buffington et al. 2018; Mo et al. 2018). Wetlands in southern California 

contain highly diverse plant communities (Table 3-1), but are relatively small and constrained by 

upland development (Stein et al. 2014; Zedler 1982). Our study sites also represent wetlands with 

differing geomorphology, elevational ranges, and management and restoration histories. 

Vegetation patterns that result from these factors are also shaped by additional physical drivers 

that are unique to this Mediterranean urban landscape, such as drought, El Niño–Southern 

Oscillation, disrupted river flows, and constant urban runoff. The combination of physical drivers 

and wetland settings unique to this region create high spatial variability and patterns in AGB that 

may be better captured with UAV resolutions. 

UAV data can be used to scale field data to moderate resolution imagery (Figure 3-6, Table 

3-3). In this study, combining UAV-derived AGB maps and Landsat NDVI imagery provided the 

strongest AGB estimation for the wetland sites overall.  A similar “two-step approach” was 

conducted by O’Donnell and Schalles (2016) in a predominantly S. alternaflora marsh in Georgia, 

USA, where biomass maps derived from hyperspectral imagery (AISA Eagle, 1-m) were used to 

scale biomass estimation to Landsat TM and the Landsat archive. Their NDVI-based models using 

AISA (r2 = 0.70) outperformed the combined AISA-Landsat model (r2 = 0.50; O’Donnell and 

Schalles 2016), whereas our work did show improved model performance using a combined UAV-

Landsat approach. This approach may better account for the higher variability in in situ AGB 

because UAVs provide data at the appropriate resolutions needed to capture the high diversity of 

wetland plant communities and plant characteristics shown through our field surveys (Table 1, 2). 

The size of biomass sampling plots also align better with the resolutions of UAV imagery than 
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with Landsat (Figure 3-8), which alleviates 

issues in scaling field measurements to 

Landsat pixels (Baccini et al. 2007).  

UAVs improved detection of spatial 

heterogeneity and complexity in patterns of 

community composition, marsh zonation, 

cover type, and vegetation type that relate 

to aboveground biomass (Figure 3-7). 

Image resolutions determine what wetland 

features can be inferred from remotely 

sensed imagery, and increased resolution is 

key to understanding spatial dependence 

and variability in spatial datasets (Curran 1988). Higher image resolutions have helped to 

characterize landscape spatial heterogeneity among broad land uses like urban developments, 

agriculture, and forest (Garrigues et al. 2006; Silveira et al. 2017) and to detect features such as 

tree crowns and canopy gaps in mangrove ecosystems (Kamal et al. 2014). Understanding the 

presence and scale of relevant habitat characteristics is essential to mapping aboveground biomass 

in any ecosystem (Phinn et al. 1996). Semivariogram analysis indicated that UAVs and Landsat 

can reveal drastically different spatial patterns and features detectable within and among saltmarsh 

sites. At smaller scales (< 30 m), the dissimilarity of wetland characteristics can increase 

drastically (Figure 3-7B-D) and such fine-scale patterns would be undetectable using Landsat. 

Even at larger scales (50 – 70 m), UAVs did a better job of capturing patterns like wetland zones, 

features that were not evident with Landsat. Landsat variograms revealed unbounded and aspatial 

Figure 3-8. True-color UAV imagery (6-cm 

resolution) showing spatial patterns in coastal 

wetland vegetation in relation to field sampling plots 

(red) and Landsat pixels (white) in the Carpinteria 

Salt Marsh Reserve. 
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patterns at three of four study sites (Figure 3-7), despite these sites being relatively larger wetlands 

in the southern California region. Each type of remotely sensed imagery can provide insights into 

spatial variability at the appropriate spatial scales to detect patterns related to wetland AGB (Figure 

3-1A). UAVs and Landsat can help describe ecological patterns in structure, zonation, and 

composition of wetland plant communities that occur on different spatial and temporal scales and 

influence our ability to model aboveground biomass.  

UAVs provide high-resolution insights into wetland habitat complexity and AGB that can 

improve biomass estimation and serve as an intermediate between field-based measures of biomass 

and commonly used Landsat satellite imagery. In situ aboveground biomass was correlated with 

remotely sensed NDVI across wetland sites in southern California region that contained a diversity 

of wetland plant communities. Our work shows that UAV technology can help resolve variability 

in biomass occurring at fine scales that are inherent to salt marsh ecology and that contributes 

uncertainty to biomass modeling. The additional spatial information provided by UAVs can further 

elucidate the processes that generate patterns (Palmer 2002), as patterns in wetland biomass are 

largely driven by spatially and temporally complex interactions among biological and physical 

drivers (Figure 3-1). Overcoming tradeoffs in spatial and temporal resolution remains a major 

challenge to elucidating fine-scale patterns in wetland habitat function, complexity, and 

community composition that contribute to biomass variability. Ongoing improvements to how we 

remotely estimate aboveground biomass at the scales relevant to the ecological processes 

controlling bioproductivity and the resulting vegetative patterns in coastal wetlands can ultimately 

help how we monitor carbon storage, health, and vulnerability to climate change in these valuable 

ecosystems. 
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3.8 Supplemental Materials  

Table S3-1. Descriptions of remote sensing data and tidal levels during acquisition 

Site Archetype 

UAV 

Flight 

Area (km2) 

Site Elevation* 

Mean ± S.D. 

and Range (m 

NAVD88) 

Remote sensing data 
Tidal level** (m NAVD88) 

Landsat 

Overpass 

Date 

UAV 

Survey 

Dates 

UAV 

Ortho 

Horizontal 

error (m) UAV 
Landsat 

San Dieguito Lagoon 
Large River 

Valley Estuary 
0.05 

1.60 ± 0.29 

(1.15 – 2.16) 

9/9/2018 9/4/2018 0.99 1.04 0.82 

Kendall-Frost Mission 

Bay Marsh Reserve 

Intermediate 

estuary 
0.26 

1.27 ± 0.53 

(0.03 – 5.65) 
8/27/2019 8/28/2019 1.24 0.71 0.78 

Carpinteria Salt Marsh 

Reserve 

Intermediate 

estuary 
0.17 

1.85 ± 0.26 

(0.61 – 3.37) 

9/26/2019 9/26/2019 1.10 0.70 0.70 

Los Peñasquitos Lagoon 
Large River 

Valley Estuary 
0.14 

1.88 ± 0.20 

(0.99 – 2.44) 
9/12/2019 9/30/2019 0.96 1.25 0.75 

*Elevation mean, standard deviation, and ranges of wetland areas and UAV survey areas (Figure 2; red outline) from NOAA-CA CC Coastal LiDAR project 

2009–2013 DEM. 

**Average tidal levels taken from the nearest NOAA tidal stations at the time of UAV flights and Landsat overpasses. 
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Table S3-2. Linear models of aboveground biomass for all UAV vegetation indices per site (A – D) and for 

all sites combined (E). Vegetation indices selected based on band combinations possible for UAV or 

Landsat imagery. 

A. San Dieguito 

VI Equation r2 RMSE (g m-2) AIC p-value 

CIgreen 576.9*CIgreen - 208.1 0.63 199.6 205.3 < 0.005 

CIrededge 3501*CIrededge - 547.9 0.81 145.3 195.8 < 0.005 

CVI 732.6*CVI - 1262 0.61 206.3 206.3 < 0.005 

EVI2 2178.9*EVI2 + 84.4 0.39 256.7 212.9 0.012 

GNDVI 3109.3*GNDVI - 649.7 0.64 199.0 205.2 < 0.005 

NDRE 9327.1*NDRE - 704.2 0.80 145.9 195.9 < 0.005 

NDVI 1838*NDVI - 63.4 0.48 220.5 210.4 < 0.005 

B. Kendall-Frost Mission Bay Marsh Reserve 

VI Equation r2 RMSE (g m-2) AIC p-value 

CIgreen 920.3*CIgreen - 284.5 0.59 230.2 209.6 < 0.005 

CIrededge 1993.8*CIrededge + 457.5 0.15 329.3 220.3 0.15 

CVI 603.7*CVI - 396.9 0.32 294.8 217 0.028 

EVI2 6137.1*EVI2 - 204.8 0.41 274.4 214.9 0.01 

GNDVI 4389.8*GNDVI - 805.9 0.61 223.9 208.8 < 0.005 

NDRE 4557.6*NDRE + 442.8 0.15 330.2 220.4 0.16 

NDVI 3153.2*NDVI - 496.2 0.48 241.1 213.1 < 0.005 

C. Carpinteria Salt Marsh Reserve 

VI Equation r2 RMSE (g m-2) AIC p-value 

CIgreen 767*CIgreen + 8.3 0.44 415.4 272 < 0.005 

CIrededge 3400*CIrededge + 247.8 0.31 458.8 275.6 0.016 

CVI 269.1*CVI + 396 0.07 533.2 281 0.28 

EVI2 5292*EVI2 + 107.4 0.49 394.6 270.2 < 0.005 

GNDVI 4798.3*GNDVI - 843.4 0.53 378.0 268.6 < 0.005 

NDRE 8862.9*NDRE + 125 0.33 453.2 275.2 0.013 

NDVI 3567*NDVI - 255.9 0.68 293.8 261.7 < 0.005 

D. Los Peñasquitos 

VI Equation r2 RMSE (g m-2) AIC p-value 

CIgreen 890.2*CIgreen + 227.5 0.66 537.7 281.3 < 0.005 

CIrededge 3193.9*CIrededge + 1015.9 0.58 593.0 284.8 < 0.005 

CVI 518.1*CVI + 132.1 0.37 732.6 292.4 0.008 

EVI2 6448.7*EVI2 + 521.9 0.65 540.5 281.5 < 0.005 

GNDVI 4702.1*GNDVI - 280.8 0.72 483.8 277.5 < 0.005 

NDRE 7362.7*NDRE + 1047.7 0.60 584.4 284.3 < 0.005 

NDVI 4351.9*NDVI + 63.9 0.79 398.0 272.6 < 0.005 

E. All Sites 

VI Equation r2 RMSE (g m-2) AIC p-value 
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CIgreen 897.8*CIgreen - 198.7 0.52 482.2 1008.8 < 0.005 

CIrededge 1988.2*CIrededge + 596.3 0.16 633.0 1044.8 < 0.005 

CVI 559.2*CVI - 346.5 0.34 564.2 1029.6 < 0.005 

EVI2 3606.7*EVI2 + 376 0.20 618.0 1041.6 < 0.005 

GNDVI 4617.6*GNDVI - 766.1 0.49 495.4 1012.4 < 0.005 

NDRE 4534.3*NDRE + 603.4 0.16 636.6 1045.5 < 0.005 

NDVI 3368.4*NDVI - 210.2 0.40 534.6 1022.5 < 0.005 

Vegetation index descriptions: Chlorophyll Index Green Chlorophyll (CIgreen), Chlorophyll Index Rededge 

(CIrededge), Chlorophyll Vegetation Index (CVI), Enhanced Vegetation Index Green (EVI2), Green 

Normalized Difference Vegetation Index (GNDVI), Rededge Normalized Difference Vegetation Index 

(NDRE), and Normalized Difference Vegetation Index (NDVI). 

 

Table S3-3. Linear models of aboveground biomass for vegetation types and archetypes based on UAV 

imagery. 

A. Vegetation Type 

Dominant Cover Class Equation r2 RMSE (g m-2) AIC p-value 

Succulent 1941.4*NDVI + 354.4 0.08 555.9 563.2 0.09 

Grass-Herb 4760.4*NDVI - 700.1 0.36 516.7 343.3 < 0.005 

All 3368.4*NDVI - 210.2 0.40 534.6 1022.5 < 0.005 

B. Wetland Type 

Archetype Equation r2 RMSE (g m-2) AIC p-value 

Large River 

Valley Estuary 
3607.9*NDVI - 143.5 0.43 639.5 526.1 < 0.005 

Intermediate Estuary 3193.7*NDVI - 296.2 0.49 337.1 483.8 < 0.005 

All 3368.4*NDVI - 210.2 0.40 534.6 1022.5 < 0.005 
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Figure S3-1. Profiles of aboveground biomass estimated from UAV (circles) and Landsat (squares) imagery 

along elevational transects (black lines) for (A) Carpinteria Salt Marsh Reserve, (B) San Dieguito Lagoon, 

(C) Los Peñasquitos Lagoon, and (D) Kendall-Frost Mission Bay Marsh Reserve. Profiles of AGB and 

elevation were extracted from within the same area designated as the elevational transects used in field 

sampling design and semivariogram analysis for each site. 
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CHAPTER 4: High local variability in coastal wetland response to macroclimatic drivers in 

a region exhibiting long term greening trends 

4.1 Abstract 

The resilience of coastal wetlands will depend in part on the combined impacts of 

environmental drivers and human stressors. The impacts of macroclimatic drivers like sea level, 

precipitation, and temperature are expected to be highly spatially and temporally variable, as are 

human impacts and the complex responses of wetlands to environmental change. The relative 

influence of environmental drivers and human impacts across spatial and temporal scales therefore 

are important considerations in quantifying response and identifying major drivers to wetland 

conditions. Inferences from past wetland response to environmental change can be gained through 

publicly available, long-term historical observations. We use the Landsat satellite imagery archive 

to estimate past changes in wetland conditions using NDVI, a proxy of greenness, from 1984 – 

2019 for 32 discrete wetland sites across the southern California region. We found that overall, a 

majority wetlands in the region exhibit significant, positive greening trends. However, our findings 

show that regional trends are complicated by local spatial and temporal variability in the 

relationship between wetland NDVI and macroclimatic drivers of temperature and precipitation. 

Improved understanding of long-term trends and intra-annual patterns in greening and browning, 

and the relative importance of environmental and human drivers across spatial scales, will be 

essential in managing these complex systems in a future with climate change and other 

anthropogenic stressors. 

4.2 Introduction 

Coastal wetlands are recognized as some of the world’s most valuable ecosystems because 

of their ability to store carbon, protect coastlines, and provide many other ecosystem services to 
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humans (Barbier et al., 2011). The importance of coastal wetland ecosystems like salt marshes and 

mangrove forests is unsurprising given that human populations exist in higher densities along the 

world’s coastlines (Neumann et al. 2015). Although these ecosystems are well-adapted to highly 

dynamic coastal environments, it is unclear how coastal wetlands may respond to changing 

environmental conditions and to ongoing human influence. Understanding the relative importance 

of environmental and human drivers to coastal wetland conditions, and how driver influence may 

vary over space and time, will be essential to adaptation efforts aimed at preserving these valuable 

ecosystems in the future (Erwin, 2009). 

Coastal wetlands are sensitive to changes in macroclimatic drivers (Osland et al., 2016), 

with rising seas, increasing temperatures, and altered precipitation regimes causing a range of 

documented impacts to wetland ecosystems globally (Mckee et al., 2012; Newton et al., 2020; 

Wong et al., 2014). In addition to sea levels, temperature, rainfall, other important environmental 

drivers to coastal wetland plant communities include freshwater inflow, CO2 concentration, 

storms, and extreme events (Langley et al., 2009; Mckee et al., 2012; Osland et al., 2016). 

Environmental factors relating to hydrological regimes, the availability of freshwater, and salinity 

can also influence wetland ecogeomorphology with consequences to wetland conditions (Day et 

al., 2008).  In arid and semi-arid climates, wetland systems are especially susceptible to extreme 

drought conditions that lead to hypersalinity, which can influence plant species assemblages and 

health (Kelso et al., 2020; Wigginton et al., 2020). Periodic climate fluctuations, such as the El 

Niño Southern Oscillation (ENSO), also influence wetlands by directly altering sea temperatures, 

sea levels, and precipitation on intra-decadal scales (Goodman et al., 2018). Overall, impacts to 

coastal wetlands range greatly in scope from widespread habitat loss, degradation, or conversion, 
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to shifting community composition, and to changes in plant productivity and phenology (Short et 

al., 2016). 

In addition to climatic and environmental drivers, human influence has significant impacts 

on the conditions of wetland ecosystems (Gedan et al., 2009; Newton et al., 2020). The 

urbanization of coastlines worldwide has led to wetland habitat loss and degradation, conversion 

to other land uses, increased development, and shoreline hardening (Gittman et al., 2015). 

Hardened infrastructure can increase the risk of coastal squeeze (Borchert et al., 2018), habitat loss 

(Gittman et al., 2015), and changes to wetland plant communities (Watson et al., 2017). Other 

impacts that accompany urbanization include resource extraction, species introductions and 

invasive species, hydrologic alteration, pollution and eutrophication, and restoration, conservation, 

and management (Gedan et al., 2009). Coastal management and restoration programs have arisen 

in recent decades to counteract negative human impacts on wetlands (Zedler and Callaway, 1999), 

however, even active management and restoration efforts can have direct consequences to plant 

communities, habitat distributions, and conditions within wetland and estuarine systems (Kennish, 

2001).  

Both environmental and human drivers important to coastal wetlands are naturally variable 

in space and time, which contributes to spatial and temporal variability in wetland conditions. 

Spatially, the response of wetlands to environmental change is likely to vary among individual 

wetland species, sites, or systems (Boesch et al., 2000; Janousek et al., 2016; Scavia et al., 2002). 

Similarly, human impacts are also highly contextual and variable in space (Gedan et al., 2009). 

Temporal variability is inherent to environmental and human drivers, and both can occur as short-

term, episodic “pulse” events or gradual, long-term “press” disturbances depending on timing and 
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magnitude. The combined effects of spatially- and temporally-variable environmental and human 

drivers complicate our understanding of what drives conditions within wetland.  

Changes in estuary conditions in response to environmental and human drivers can be 

monitored through publicly available, long-term datasets (Franklin et al., 2017). The Landsat 

satellite imagery archive offers global coverage and continuous, 16-day image collections dating 

back to 1984 with consistent, reliable data, which allows for investigation into long-term changes 

at broad scales (Kennedy et al., 2014; Pasquarella et al., 2016; Wulder et al., 2012). In coastal 

wetland applications, Landsat has been used in wetland ecosystems to monitor wetland habitat 

distributions and zonation (Bunting et al., 2018; Kearney et al., 2002; Rogers et al., 2017), identify 

disturbance events (Steyer et al., 2013), estimate biomass and carbon storage (Byrd et al., 2014, 

2018; Klemas, 2013; Mo et al., 2018), and to identify patterns and drivers of wetland biomass, 

health, phenology, and overall greenness in both salt marsh and mangrove wetlands (Brooke et al., 

2017; Buffington et al., 2018; Cavanaugh et al., 2018; Kearney et al., 2002; Mo et al., 2019, 2015; 

O’Donnell and Schalles, 2016; Wu et al., 2017).  

Investigations into wetlands that use remote sensing often rely on vegetation indices to 

infer wetland properties. Vegetation indices summarize the spectral reflectance occurring in 

wetland plants (Mishra and Ghosh, 2015; Mutanga and Skidmore, 2004; Xue and Su, 2017), which 

can indicate characteristics ranging from biophysical plant properties to large-scale ecosystem 

change (Adam et al., 2010; Xue and Su, 2017). The normalized difference vegetation index 

(NDVI; Rouse et al., 1974) and the enhanced vegetation index (EVI; Jiang et al., 2008) are 

commonly used indices that convey “greenness” of vegetation. Satellite-based measures of NDVI 

over time can reveal trends in greening or browning that are indicative of biological (plant 

productivity and growth) and physical (cover composition) changes to vegetated ecosystems (e.g., 
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Myers-Smith et al., 2020). Greening trends in coastal wetlands, therefore, likely refect in situ 

increases to plant productivity, aboveground biomass, or vegetated cover in a wetland, whereas 

browning trends may indicate habitat loss, conversion to mudflat or subtidal, or reductions in plant 

productivity or biomass. Using greenness as a proxy for estuaries conditions over time facilitates 

the testing of relative effects that human and environmental drivers have on coastal wetlands. 

The wetlands of southern California offer an interesting opportunity to investigate the 

effects of environmental and human drivers to wetland conditions, i.e., greenness. The southern 

California region is home to a diverse network of coastal and estuarine wetlands that range in size, 

setting, ecology and wetland typology (SCWRP, 2018). Wetlands in the region are relatively small 

and discrete wetland remnants (Grossinger et al., 2011; Stein et al., 2019, 2014), compared to other 

regions containing large, heterogeneous wetlands such as the Sacramento–San Joaquin River 

Delta, California, USA, or the Mississippi River Delta, Louisiana, USA. In southern California, 

wetlands are structurally and functionally diverse due to coastal setting and exposure (Jacobs et 

al., 2011). A typology framework was developed to classify southern California’s many diverse 

wetlands into groups that represent systems with similar physical structure, processes, and plant 

community composition (Stein, 2015), which are expected to function similarly and respond to 

physical drivers and external stressors in a similar manner (Stein et al., 2019). Wetland types used 

in this study, hereafter referred to as wetland “archetypes”, include small creeks and lagoon, 

intermediate (i.e., opening and closing) estuaries, large lagoons, large river valley estuaries, and 

fragmented river valley estuaries (for detailed descriptions, see SCWRP, 2018). 

Southern California’s diverse wetlands are threatened by sea level rise (SCWRP, 2018; 

Thorne et al., 2018, 2016), but impacts are predicted to be highly variable among wetland sites 

(Doughty et al., 2018), and how they will respond to future changes in other environmental factors 
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are unclear. Furthermore, there is not a regional baseline for wetland conditions or how they have 

changed with recent environmental changes. The semi-arid, Mediterranean climate of this region 

is marked by wet winters and dry summers with highly variable precipitation (Dettinger et al., 

2011), which has led to recent droughts in the absence of rainfall and high potential evaporation 

(MacDonald, 2007). Precipitation regimes in this region are also influenced by phases in the 

interannual El Nino-Southern Oscillation (ENSO) climate mode and the multidecadal Pacific 

Decadal Oscillation (PDO) mode (Dettinger et al., 2011). Site-based studies indicate that increased 

rainfall and flooding decrease soil salinity, which can cause increases in biomass and lead to 

changes in marsh species composition (Callaway and Sabraw, 1994; Zedler, 1983). Altered 

precipitation and streams flows also have resulted in plant stress (Zedler et al., 1986). Much work 

has been done in this region to manage and restore coastal wetlands (e.g., Zedler et al. 1996; 

SCWRP, 2018). Therefore, a holistic perspective of how wetlands across this region are impacted 

by interacting environmental and human drivers can aid future management efforts. 

In this study, we use the Landsat archive to track changes in greenness, an indicator of the 

biological and physical conditions relating to vegetation within wetlands, for 32 wetlands in the 

southern California region from 1984 – 2019. Using Landsat to monitor southern California’s 

wetlands, we aim to 1) quantify long-term trends of wetland greenness over 35 years and 2) 

characterize intra-annual patterns in greening for the region. Using unique wetland time series, our 

goals were to 3) identify the relative importance of drivers controlling greenness at wetlands across 

a region and 4) identify the spatial and temporal variability in the relationship between greenness 

and environmental or human factors. We predict that the dominant environmental controls to past 

changes in wetland NDVI will be related to water availability as this represents a major 

environmental constraint in Mediterranean climates. Furthermore, we test the hypothesis that 



127 

 

wetland archetypes should exhibit similar trends and intra-annual patterns in greenness caused by 

similar sensitivity to environmental drivers. This novel application in a region facing a 

combination of climate and human stressors can uncover potential spatial and temporal variability 

in future wetland response to environmental change.  

4.3 Methods 

4.3.1 Study Region and Wetland Site Description 

There are approximately 105 discrete wetlands that have been identified and mapped 

within the southern California region (Stein et al., 2019). These wetland areas were previously 

delineated for regional adaptation planning and management efforts based on 2016 National 

Wetland Inventory (NWI) data by the Southern California Coastal Water Research Project 

(SCCWRP). Delineated wetland areas in this region range greatly in size and function, from vernal 

pools occupying a few tenths of a hectare to large estuaries and lagoons over 250 hectares in size 

(Stein et al., 2019). The wetland archetype typology was developed to classify wetlands of similar 

setting, structure, and function, and to provide a framework to predict future response to SLR and 

aid ongoing regional restoration planning efforts (Doughty et al., 2018; Stein et al., 2019). We 

selected 32 wetland sites for this study based on wetland archetype, size, habitat composition, 

management and restoration history, and the availability of environmental data sources. Size was 

a limiting factor in using Landsat imagery to estimate wetland greenness (described below). 

Overall, selected wetlands represented a range of sizes and archetype classifications in the region 

to the best of our ability. 

For the 32 representative sites, we used the SCCWRP wetland boundaries to define the 

areas for developing Landsat time series (described below).  We used these boundaries as they 

have been relatively stable over 1984 – 2019 in many of the region’s wetlands due to the confines 
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of adjacent, upland development, for which the wetland-urban bounds are unlikely to change in 

the future without active restoration. Therefore, these boundaries offer a constant area to 

investigate changes in greenness within each wetland that represent overall health and shifting 

habitat composition. Habitats mapped within wetland bounds include vegetated marsh, 

unvegetated mudflats and salt flats, and subtidal habitats. 

4.3.2 Landsat Time Series 

Landsat time series were developed for 32 focal wetland sites using Google Earth Engine 

(EE; https://earthengine.google.com/). EE provides a cloud-based platform for storing and 

analyzing geospatial and remotely sensed data (Gorelick et al., 2017). Using EE, we accessed and 

preprocessed Landsat Tier 1 Surface Reflectance scene data from 1984 – 2019 collected with 

Landsat 5 TM, Landsat 7 ETM, and Landsat 8 OLI sensors. Landsat scenes refer to individual 

multispectral optical images taken every 16 days at a specific path/row locations, and containing 

pixels with 30 x 30-m ground spatial resolutions (Wulder et al., 2019). Landsat scenes were 

preprocessed to remove edge pixels and pixels containing clouds and water using the pixel quality 

assessment product (“Pixel_QA”; formerly “CFmask”) that accompanies each Landsat scene (Zhu 

and Woodcock, 2012). Resulting images contain only pixels with clear land within each wetland 

boundary. We used this approach to remove continually subtidal areas from each Landsat scene 

per site, and to allow flexibility if habitat distributions (vegetated marsh, unvegetated mudflat, and 

subtidal habitats) change over time within wetland areas. Counts of clear land pixels for each scene 

were converted to area in order to identify potential changes in wetland areas (vegetated marsh, 

unvegetated mudflat) over 1984 – 2019 at each site. 

 From the Landsat pixels of clear land, we also calculated NDVI as a metric of wetland 

greenness and health. Our previous work in the region shows NDVI is positively correlated to 
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aboveground biomass (AGB) in simple vegetation canopies and AGB does not saturated with 

NDVI (Doughty and Cavanaugh, 2019; Doughty et al., submitted). Landsat NDVI time series were 

then corrected for differences among Landsat sensors to improve continuity in the 35-year NDVI 

time series (Vogelmann et al., 2016). Landsat 8 OLI data was corrected to align with Landsat 7 

ETM+, as the ETM+ sensor has been shown to be consistent with Landsat 5 TM (Flood, 2014). 

Correction factors developed specifically for surface NDVI were applied to all Landsat 8 data (Roy 

et al., 2016).  

We performed additional quality control (QC) measures to account for tides and errors in 

masking cloudy and water pixels in GEE. First, we compared local tide data from the nearest 

NOAA tide gauge (described below) to each Landsat scene and flagged scenes taken when tides 

were greater than the mean high water (MHW) designated by the same NOAA tide gauge. Similar 

time series analyses in coastal wetlands have filtered images for tide effects (Buffington et al., 

2018; O’Donnell and Schalles, 2016), while others place no tidal restrictions (Brooke et al., 2017), 

or rely on the Landsat pixel quality (“Pixel_QA” or “CFmask”) data to remove tidally-inundated 

pixels (Mo et al., 2019). We flagged Landsat scenes for manual inspection if average site NDVI 

was below 0.2 as these usually correspond to soil or water, and if scenes were detected as time 

series outliers. To detect outliers, we used the R package ‘tsoutlier’, which implements the Chen 

and Liu (1993) iterative weighted moving average filter to account for negatively-biased noise in 

NDVI time series (Hird and McDermid, 2009). Scenes that were flagged for high tides, low NDVI, 

low pixel counts, and as additive outliers were then visually inspected in EE and were removed 

from analysis when the impacts of clouds and tides were clear. Buffington et al. (2018) compared 

the effects of similar QC measures against unfiltered time series and found that subsequent 

analyses of marsh phenology were not significantly impacted by the manual removal of poor 
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quality scenes. We created an interactive EE application to allow users to inspect uncorrected 

NDVI time series for wetland sites in southern California 

(https://cheryldoughty.users.earthengine.app/view/socalwetlandtimeseriesviewerv3). Note that 

time series displayed in EE have not undergone the corrections and QC measures as the time series 

used in the following analyses.  

Following manual removal of poor-quality scenes, cleaned time series containing all 

Landsat scenes per site were aggregated to monthly and annual time series of mean NDVI. Due to 

the small size of wetlands in the region, Landsat pixels within the predefined estuary boundaries 

may contain a mix of vegetated marsh, unvegetated mudflat, and subtidal habitats. Although 

precautions were taken to mask water pixels during imagery processing and QC (Figure S4-2), the 

Landsat-derived time series are reflective of “whole estuary” conditions and not solely vegetated 

marsh areas. Therefore, we refrain from inferring marsh productivity and biomass from NDVI 

time series and instead use NDVI as a proxy for overall estuary greenness.  

4.3.3 Environmental and Climatic Datasets 

To investigate the drivers of wetland greenness over time, we acquired time series of 

environmental conditions from 1984 – 2019 falling into 6 categories: sea levels, stream discharge, 

precipitation, temperature, drought, and climate oscillations (Figure 4-1). Monthly time series of 

temperature, precipitation, and vapor pressure deficit (VPD) for each site were acquired from 

gridded (4-km) PRISM data (https://prism.oregonstate.edu; Daly et al., 2008). Using monthly 

PRISM temperature and precipitation data, we calculated the Self-Calibrating Palmer Drought 

Severity Index (PDSI) using the R package ‘scPDSi’ (Wells et al., 2004) and the monthly 

Standardized Precipitation Evapotranspiration Index (SPEI) and the Standardized Precipitation 

Index (SPI) using the R package ‘SPEI’ (Vicente-Serrano et al., 2010). To calculate PDSI, SPEI, 



131 

 

and SPI, estimates of potential evaporation were also estimated from precipitation data and site 

latitude using the Thornthwait (1948) equation to accounts for seasonal changes in sunlight hours.  

NOAA sea level data were available for 5 stations in the region: Santa Barbara, San Diego, 

La Jolla, Los Angeles, Santa Monica (https://tidesandcurrents.noaa.gov). Daily sea level data for 

each site were taken from the nearest NOAA station (Figure S4-1).Data on daily stream discharge 

were taken from USGS Stream Gauges available for 11 of the 32 study sites 

(https://waterdata.usgs.gov). For sites without USGS Stream Gauges stream discharge data was 

not considered in regression analyses. More work is needed in order to incorporate modeled runoff, 

and associated nutrient inputs, for each of the wetland sites in the region. Furthermore, additional 

data on the frequency and duration of estuary mouth closures in this region would aid our 

understanding the impacts to intermediate, or opening and closing, estuaries. 

We also considered climatic fluctuations using monthly data on the Oceanic Nino Index 

(ONI; NOAA Climate Prediction Center; https://www.cpc.ncep.noaa.gov), the Pacific Decadal 

Oscillation (PDO) index (NOAA National Centers for Environmental Information; 

https://www.ncdc.noaa.gov), and the multivariate ENSO index (MEI; NOAA physical Sciences 

Laboratory; https://psl.noaa.gov/enso/mei). Environmental data specific to each wetland site were 

aggregated to monthly and annual time series to be analyzed with the corresponding Landsat NDVI 

time series for each site. All environmental and climatic variables were summarized using the 

mean, except for precipitation and stream discharge, which were summed according to calendar 

year (January to December) and to water year (October to September). Water year summaries 

accounted for precipitation beginning in October of the preceding year and were compared to 

estimated wetland NDVI of the subsequent calendar year. We also summarized temperature and 

precipitation for the wet season (October - March) and dry season (April - September) for each 

https://tidesandcurrents.noaa.gov/
https://waterdata.usgs.gov/
https://www.cpc.ncep.noaa.gov/
https://www.ncdc.noaa.gov/
https://psl.noaa.gov/enso/mei
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year. Overall, 24 explanatory variables were initially tested for correlations of NDVI and 

environmental drivers. 

4.3.4 Human Impact Datasets 

To investigate human-related impacts to wetland NDVI in the region, we quantified urban 

development and restoration activities for each wetland. Urban development was quantified as the 

percent developed areas in 2016 using the Landsat-derived National Land Cover Database  

(NLCD; Yang et al., 2018). Unfortunately, these data are not available as a dynamic time series, 

as 2001 is the only comparable NLCD baseline. Developed areas included NLCD classes 

“Developed, open space”, “Developed, low intensity”, “Developed, med intensity”, and 

“Developed, high intensity”, which represent residential and commercial development with 

impervious surfaces ranging from 20 – 100%. We summarized developed areas contained in the 

watersheds associated with each wetland. Watersheds for each site were acquired from the USGS 

StreamStats Application (https://streamstats.usgs.gov/ss/). The 2016 NLCD was accessed and 

analyzed using EE.  

We used publicly available records from the California State Coastal Conservancy (CA 

CC) to estimate the number of restoration projects that have occurred at each wetland 

(http://www.mapcollaborator.org/sccpv/prod/). We acquired the names and dates for projects that 

described impacts to wetland areas. Dates reported in this dataset reflect the date that projects were 

authorized by the CA CC, not the exact dates and duration that projects were implemented at sites. 

Therefore, this data was excluded from any temporal analyses. Rather, we used the total number 

of restoration projects and the percent change in developed areas as metrics of human impacts to 

compare against long-term trends in NDVI. More work is needed to build in-depth timelines of 

the duration, intensity, and ownership of restoration efforts within the wetlands in the region. 
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Figure 4-1. Monthly time series (1984 – 2019) of A) mean sea level for 5 regional NOAA Stations, B) mean 

stream discharge for 11 regional USGS gauges C) regional means of temperature (black) and precipitation 

(blue), D) regional means of drought indices, and E) regional means of climate indices. Note dual axes for 

temperature and precipitation data (C). 
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4.3.5 Time Series Analysis 

4.3.5.1 Long-term Trends 

We estimated trends in NDVI for individual wetlands over the study period (1984 – 2019) 

using Sen’s slope. Sen’s slope estimates trend as the median slope from a set of local regressions 

fit to portions of the time series and is more suitable for investigating trends in nonparametric data 

(Sen, 1968). Sen’s slope was calculated using the R package ‘trend’ (Pohlert, 2020). We compared 

NDVI trends to site characteristics including latitude, size, archetype classification, habitat 

composition, urban development, and restoration activities in order to test non-environmental 

factors that may explain long-term changes in NDVI. 

4.3.5.2 Intra-annual Patterns 

We used monthly NDVI time series to characterize seasonal patterns in wetland greening 

and browning in southern California. We performed an unsupervised clustering technique on time 

series of mean monthly NDVI (1984 – 2019) from each site to identify wetland sites that exhibit 

similar intra-annual trends. We used k-means clustering to partition the observations (i.e., sites) 

into k clusters with the goal of minimizing the sum of squares between each observation and the 

assigned cluster centers (Hartigan and Wong, 1979). Distances among observations were 

calculated using dynamic time warping (DTW), which accounts for local compression and stretch 

in the time dimension when comparing time series (Giorgino, 2009). We tested the number of 

clusters (k) ranging from 2 – 7 and selected a k of 5 that minimized total within-cluster sum of 

square. Resulting clusters were compared to site wetland archetype classifications. To inspect 

intra-annual patterns for each site, mean monthly NDVI was summarized for all years and fit with 

a smoothing linear regression model for visualization. 
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Table 4-1. Regional summary of environmental conditions over the 1984 – 2019 study period. 

Environmental 

Category 

Environmental Variable  

(unit) 

1986 5-yr 

Average 

(mean ± SD) 

2016 5-yr 

Average 

(mean ± SD) 

Trend 

(unit yr-1) 

Sea Level Sea Level (m NAVD88) 0.76 ± 0.07 0.87 ± 0.07 0.002*** 

Stream 

Discharge 
Stream Discharge (cms) 

23.86 ± 52.79 17.86 ± 64.45 -97.41 

Precipitation Precipitation (mm) 19.1 ± 27.58 23.6 ± 36.53 158.4 

Temperature Minimum Temperature (°C) 11.88 ± 3.69 13.31 ± 3.55 0.025* 

 Mean Temperature (°C) 16.47 ± 2.94 17.38 ± 2.95 0.009 

 Maximum Temperature (°C) 21.05 ± 2.41 21.44 ± 2.62 -0.003 

 Dew Point Temperature (°C) 9.12 ± 4.11 10.05 ± 4.18 0.012 

Drought Min. Vapor Pressure Deficit 

(kPa)  

2.16 ± 0.48 2.28 ± 0.71 0.001 

 Max. Vapor Pressure Deficit 

(kPa) 

12.18 ± 2.75 12.41 ± 3.41 -0.001 

 Palmer Drought Severity (PDSI) -0.87 ± 1.1 -1.57 ± 1.76 -0.040 

 Standardized Precipitation Index 

(SPI) 

0.15 ± 0.8 0.24 ± 0.83 0.000 

 Standardised Precipitation-

Evapotranspiration Index (SPEI) 

-0.04 ± 0.98 -0.3 ± 0.93 -0.009 

Climate Oceanic Niño Index (ONI) -0.15 ± 0.91 0.4 ± 0.86 0.002 

 Pacific Decadal Oscillation 

(PDO) 

0.32 ± 0.79 0.28 ± 0.74 -0.028 

 Multivariate ENSO Index (MEI) -0.12 ± 0.96 0.23 ± 0.84 -0.013 

Asterisks indicate significance level of trend: * p < 0.05, ** p < 0.005, *** p < 0.0001 

 

4.3.5.3 Environmental Correlations with Annual NDVI 

We compared annual NDVI time series of 32 focal wetlands to time series of 24 

environmental variables corresponding to each site using correlation techniques for nonparametric 

and nonstationary time series. Mean NDVI and environmental datasets did not all meet normality 

assumptions and trends in some datasets indicate nonstationary over the 1984 – 2019 period of 

study (Figure 4-2; Table 4-1). Environmental datasets were significantly correlated (Table 4-2). 

We tested for spatial autocorrelation using the multivariate, nonparametric covariance function in 

the R package ‘sncf’ (Bjørnstad and Falck, 2001), which showed that NDVI and environmental 

datasets were spatially autocorrelated in the region. NDVI time series were also temporally 
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autocorrelated. With these data considerations, we opted for regression and spatiotemporal 

statistical approaches suitable for nonparametric time series. 

We investigated environmental controls on annual NDVI in the region using a two-step 

approach. First, we tested correlations among NDVI and all (24) environmental variables for 

individual wetland sites using Spearman’s ranked correlation. These site-based correlations were 

used to identify the top environmental variables and potentially redundant variables within driver 

categories of sea level, temperature, precipitation, stream discharge, drought, and climate. 

Inferences from this first correlation analysis were used to highlight spatial variability in driver 

importance and to guide independent variable selection for more robust spatiotemporal regression 

techniques at the regional scale. 

 To estimate a global model that relates NDVI to environmental variables in the region, we 

implemented the spatiotemporal statistical analysis termed Geographically and Temporally 

Weighted Regression (GTWR; Fotheringham et al., 2015). Geographically Weighted Regression 

(GWR) offers a spatial statistical method for modeling heterogeneous processes and considers how 

the correlation of responses and covariates may vary across geographic space (Brunsdon et al., 

1996). Geographically weighted models are suitable when spatial data are not well described by a 

single global model (i.e., at the So Cal regional scale), and localized models calibrated to spatial 

regions (i.e., wetland sites) may improve description (Gollini et al., 2015). Geographically and 

Temporally Weighted Regression (GTWR) modelling techniques go further to account for both 

spatial and temporal heterogeneity, which are more applicable to datasets with spatial and temporal 

heterogeneity and nonstationary (Gollini et al., 2015).  
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Table 4-2. Spearman’s ranked correlation coefficients among environmental data. Bold numbers indicate significance levels of p < 0.05. 
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Precip (Dry Seas.) 0.1 0.1 0.1 0.3 0.4                                   

Precip (Wet Seas.) 0.2 0.3 0.2 0.8 0.6 0.1                                 

Temp Min 0.1 0.0 0.0 -0.4 -0.3 0.0 -0.3                               

Temp Mean 0.2 -0.1 -0.1 -0.4 -0.4 -0.1 -0.3 0.9                             

Temp Max 0.2 -0.2 -0.3 -0.4 -0.4 -0.1 -0.4 0.7 0.9                           

Dew Point -0.1 0.2 0.2 -0.3 -0.3 0.0 -0.2 0.7 0.6 0.5                         

Temp Mean (Dry Seas.) 0.2 -0.1 -0.1 -0.2 -0.2 -0.2 -0.3 0.7 0.8 0.8 0.4                       

Temp Mean (Wet Seas.) 0.3 -0.1 -0.1 -0.2 -0.2 0.1 -0.3 0.7 0.8 0.7 0.4 0.5                     

Temp Max (Dry Seas.) 0.2 -0.2 -0.2 -0.2 -0.3 -0.2 -0.2 0.5 0.7 0.9 0.3 0.9 0.4                   

Temp Max (Wet Seas) 0.2 -0.3 -0.3 -0.3 -0.3 0.0 -0.5 0.5 0.7 0.8 0.3 0.5 0.8 0.5                 

VPD Min 0.2 -0.3 -0.3 -0.3 -0.3 -0.1 -0.2 0.6 0.6 0.4 0.0 0.4 0.5 0.4 0.4               

VPD Max 0.3 -0.3 -0.3 -0.2 -0.2 -0.1 -0.3 0.2 0.5 0.7 -0.2 0.6 0.5 0.7 0.6 0.5             

PDSI 0.0 0.4 0.4 0.4 0.4 0.2 0.5 -0.1 -0.2 -0.2 0.1 -0.3 -0.1 -0.3 -0.2 -0.2 -0.4           

SPI 0.2 0.4 0.4 0.4 0.4 0.6 0.5 0.1 0.0 -0.1 0.2 -0.1 0.0 -0.1 -0.2 -0.1 -0.2 0.5         

SPEI -0.3 0.3 0.3 0.3 0.3 0.3 0.4 -0.3 -0.4 -0.5 0.0 -0.5 -0.3 -0.5 -0.4 -0.4 -0.5 0.5 0.6       

ONI 0.4 0.0 0.0 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 -0.1     

PDO 0.3 0.0 -0.1 0.0 -0.1 0.1 0.2 0.3 0.3 0.4 0.3 0.2 0.3 0.2 0.3 0.2 0.2 0.2 0.2 -0.2 0.5   

MEI 0.4 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.0 0.2 0.1 -0.1 0.9 0.6 
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We applied GTWR to test the correlation of annual NDVI time series to environmental 

drivers for each site used the R package ‘GWmodel’ (Gollini et al., 2015). The weights matrix 

used in GTWR analyses incorporate both temporal and spatial information on distance using a 

spatiotemporal kernel function and a bandwidth parameter of the kernel function (Crespo, 2007; 

Fotheringham et al., 2015; Gollini et al., 2015). We opted for a gaussian kernel function that 

weighs observations closer in space and time more heavily, and continuously decreases assigned 

weights as observations grow farther in space and time.  The kernel bandwidth controls the 

spatiotemporal distance over which the kernel function is applied. An adaptive kernel bandwidth 

ensures sufficient local information is used in determining the appropriate number of observations 

nearest in space and time to a given observation in an irregularly configured dataset. We selected 

optimal adaptive bandwidths that minimized model Akaike information criterion (AIC).  

We limited our GTWR analysis to include only complete, regularly-intervaled 

environmental time series from this analysis. Fourteen environmental variables remained that 

include the top environmental drivers identified in the site-based correlations above (Table 4-3). 

We opted to remove incomplete datasets rather than introduce uncertainty by gap-filling missing 

data and because environmental variables within each driver category were strongly correlated 

with one another (Table 4-2). To further reduce redundancies in independent variable selection for 

GTWR models, we used principal components analysis (PCA) to reduce collinearity in 

environmental variables. PCA was performed on a standardized datasets of environmental 

variables and showed that the variables with highest absolute loadings accounting for 68% of total 

variance in the first 3 components. Top loading variables were max temperature (Tempmax), mean 

temperature (Tempmean), and precipitation (PPT) for component 1, Oceanic Nino Index (ONI), 

multivariate ENSO index (MEI) and sea levels for component 2, and Standardized Precipitation 
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Index (SPI), dew point temperature (TempDewPt), and Oceanic Nino Index (ONI) for component 3. 

Ultimately, we tested seven models using the focal environmental variables from each 

environmental category based on Spearman’s correlation, PCA, and stepwise AIC model rankings 

(Figure S4-3). We use GTWR to examine the spatial-temporal heterogeneity of the effect of these 

environmental drivers on wetland NDVI across a region. 

Table 4-3. Geographically weighted local summary statistics for environmental variables used in 

Geographically and Temporally Weighted Regression (GTWR) 

Environmental 

Variable 

Local 

Mean 

Local 

Standard 

Deviation 

Local 

Skewness 

Local 

Variance 

Localized 

coefficient of 

variation 

Sea Level 0.79 0.04 0.63 0.00 0.05 

Precip 176.27 120.25 0.81 14459.79 0.68 

Precip (Water Yr) 171.42 132.19 1.09 17474.94 0.77 

Temp Min 12.87 1.37 0.25 1.88 0.11 

Temp Mean 17.00 1.14 0.45 1.30 0.07 

Temp Max 21.12 1.14 0.30 1.31 0.05 

Dew Point 10.24 1.29 0.56 1.66 0.13 

VPD Min 2.12 0.60 0.12 0.36 0.28 

VPD Max 11.57 1.83 0.11 3.34 0.16 

PDSI -0.34 2.02 0.33 4.06 -5.68 

SPI 0.19 0.33 0.02 0.11 1.79 

SPEI 0.00 0.62 0.29 0.38 NA 

ONI -0.22 0.91 -0.07 0.83 -4.10 

PDO -0.07 0.72 0.31 0.52 -10.47 
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4.4 Results 

4.4.1 Long-term Greening Trends and Changing Environmental Conditions 

Long-term NDVI trends from 1984 – 2019 ranged from -0.00062 – 0.0026 NDVI year-1 

for individual wetlands in the region (Figure 4-2, Figure 4-3). The majority of wetlands (24 out of 

32) exhibited significant positive trends in NDVI, while two wetlands exhibited significant 

negative trends and six wetlands had nonsignificant trends in NDVI. Trends were not significantly 

correlated with site characteristics like latitude, size, archetype, habitat composition, watershed 

development, or restoration activities (Figure 4-4). However, there are differences in the variability 

of trends within archetypes, suggesting that some wetland types, such as intermediate estuaries, 

can exhibit a range of responses to similar drivers. 

 

Figure 4-2. Long-term trends in NDVI of wetland sites in southern California. Trend direction (color) and 

magnitude (size) are indicated for significant trends. Nonsignificant trends are shown in gray. 
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Figure 4-3. Time series of annual NDVI for focal wetland sites in southern California. Sites are ordered 

latitudinally from North to South. 
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Over the period of study, significant changes also occurred in environmental conditions in 

the region. Sea level and minimum annual temperature exhibited significant positive trends (Table 

4-1). Sea levels in the region increased at a rate of 2.0 mm yr-1 (p < 0.0001) and minimum 

temperatures increased at a rate of 0.025 °C yr-1 (p < 0.05). No other significant trends in other 

environmental drivers were found.  

 

Figure 4-4. Trends related to site characteristics of A) latitude, B) size, C) archetype classification, D) 

habitat, E) percent area of watershed development, and F) number of restoration projects. Archetypes 

include Small Creeks and Lagoons (SCL), Intermediate Estuaries (IE), Large Lagoons (LL), Large River 

Valley Estuaries (LRVE), and Fragmented River Valley Estuaries (FRVE). 

4.4.2 Variability in Intra-Annual NDVI Patterns Among Wetland Types 

Intra-annual patterns in NDVI were characterized from monthly NDVI time series per 

wetland site and grouped according to archetype (Figure 4-5). Five clusters emerged from the k-

means clustering that reflect differences in the overall magnitude of intra-annual NDVI and the 

shape of seasonal greening and browning patterns. Intra-annual patterns varied greatly among sites 
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within each archetype, indicating that there are not typical or singular seasonal patterns in NDVI 

that describe each archetype. However, the majority of large river valley sites were grouped 

according to intra-annual trends, suggested less variability within this archetype compared to 

others. The cluster analysis does indicate five general intra-annual patterns for wetlands in the 

region (Figure 4-5): high NDVI overall with peak NDVI occurring from April to September 

(green); intermediate NDVI with peaks in late summer, early fall (orange); intermediate NDVI 

with peaks in spring (light orange); low NDVI with variability in spring (blue); and low NDVI 

with little intra-annual variability (red).  

 

Figure 4-5. Intra-annual NDVI patterns according to wetland archetypes and assigned k-means clusters. 
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4.4.3 Site-Based Correlations Show Spatial Variability in Key Drivers of Wetland NDVI   

Univariate regressions among NDVI and each environmental variable performed on 

individual sites show variability in the importance of factors controlling NDVI across the region 

(Figure 4-6). Sea levels were significantly positively correlated with NDVI in southern sites. For 

sites with available USGS stream discharge data, six show positive significant correlations with 

NDVI and 2 sites showed negative significant trends. Annual estimates of stream discharge 

summarized for calendar year and water year were similarly correlated with NDVI. Precipitation 

variables were overwhelmingly positively correlated with NDVI, with annual summaries of 

precipitation for the calendar year and water year showing more significant correlations than 

precipitation estimates for the dry and wet seasons. Two sites, the Santa Clara River Estuary and 

the San Luis Rey Estuary, showed significant negative correlations with both precipitation and 

stream discharge. Overall, precipitation variables exhibited the highest correlations with NDVI in 

the region. 

Temperature variables did not show a clear relationship with NDVI for wetlands across the 

region (Figure 4-6). Five sites in the south indicated a significant positive relationship with 

temperature, while 2 sites to the north showed significant negative relationships. Correlations with 

drought indices were variable but indicate overall positive correlations for PDSI, SPEI and SPI 

and negative correlations with estimates of vapor pressure deficit (VPD) across the region. 

Significant correlations among climate indices MEI and PDO and NDVI were only apparent for 5 

sites. 



145 

 

 

Figure 4-6. Top explanatory variables per site determined from univariate regression analyses. 

 

4.4.4 The Influence of Regional Controls on Wetland Greenness Vary in Space and Time 

Global regression analyses for the region indicate that there are spatial and temporal 

relationships among environmental factors and NDVI. Geographically and temporally weighted 

regressions explained regional variability in NDVI for the several models tested (Table 4-4). 

GTWR models that address spatial and temporal heterogeneity explained up 55% of the variation 
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in NDVI (AIC = -3854). The GTWR model that explained the highest variance in NDVI included 

environmental parameters of maximum temperature, water year precipitation, dew point 

temperature, sea level, and maximum vapor pressure deficit (Model 1; Table 4-4). Less complex 

models were also tested using combinations of the top performing variables within each 

environmental category and showed that the simpler models were also comparable to Model 1 in 

terms of explaining NDVI. 

Table 4-4. Comparison of multivariate models used to explain NDVI using geographically and temporally 

weighted regression (GTWR). 

 Model 

GTWR 

r2 AIC 

1 NDVI ~ Tempmax + PPTWaterYear + TempDewPt + SeaLevel + VPDmax 0.55 -3854 

2 NDVI ~ Tempmax + PPTWaterYear + Tempmean 0.53 -3836 

3 NDVI ~ Tempmax + PPTWaterYear + TempDewPt + SeaLevel   0.52 -3799 

4 NDVI ~ SeaLevel + PPTWaterYear + Tempmax + VPDmax + MEI  0.51 -3765 

5 NDVI ~ Tempmax + PPTWaterYear 0.47 -3715 

6 NDVI ~ Tempmax + PPTWaterYear + ONI  0.45 -3667 

7 NDVI ~ Tempmax + MEI  0.44 -3657 

 

4.5 Discussion 

The majority of wetlands in the southern California region exhibited greening trends from 

1984 – 2019. From the regional regression analysis, the two highly correlated environmental 

variables with wetland NDVI over this time period were found to be maximum annual temperature 

and total precipitation summed for the previous water year. We expected that regional controls to 

the health of southern California’s wetlands would be impacted by water availability, namely 

precipitation and drought, which is typical of many other Mediterranean ecosystems worldwide 

(Allen, 2003). A study of tidal marshes in the Pacific Norwest, USA found that peak biomass was 

positively correlated to total annual precipitation and the timing of peak biomass was negatively 

correlated to average growing season temperature based on 31 years of data (Buffington et al., 
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2018). This region is under similar high influence of ENSO, which causes intra-decadal variability 

in temperature in precipitation (Gershunov and Barnett, 1998). An example from Georgia, USA, 

also shows a positive, significant relationship between wetland aboveground biomass and river 

discharge, total precipitation, minimum temperature, and mean sea level over a 28-year period 

(O’Donnell and Schalles, 2016). In another region facing different environmental and human 

stressors, the wetlands of coastal Louisiana, USA, have been exhibiting longer growing seasons 

from 1984 – 2014 that are attributed mainly to increasing atmospheric CO2, while areas of brackish 

and saline marshes have declined over the study period (Mo et al., 2019). Greening trends in 

southern California could reflect longer, amplified growing seasons caused by the interaction of 

warming temperatures and available water resources. Findings from these case studies emphasize 

that location plays an important role modelling wetland characteristics (Buffington et al., 2018), 

that long-term response can vary among wetland types within a larger wetland complex (Mo et al., 

2019), and that wetland response can varied across seasons (O’Donnell and Schalles, 2016).  

In our study of southern California’s wetlands, spatial and temporal variability exists in the 

relationship among wetland greenness and environmental drivers. Results from GTWR 

regressions reveal the spatiotemporal characteristic of the correlations among wetland NDVI and 

environmental drivers that may be missed with global regression techniques. For example, the 

importance of maximum temperature was less evident in site-based regression but was identified 

as a top explanatory variable using PCA and step-wise comparison for AIC for GTWR models 

(Figure S4-3). Conversely, precipitation variables (annual sum, water year sum, and wet season 

sum) were the most significantly and highly correlated variables with NDVI for many sites (Figure 

4-6), but only water-year precipitation was also identified in GTWR techniques as the second top 

explanatory variable. Temperature variables exhibited less local variability than precipitation 



148 

 

(Table 4-3), suggesting that temperature is a regional control while precipitation may be more 

variable at sub-regional scales. Surprisingly, mean annual dew point temperature was also 

identified as a top predictor variable in modelling NDVI using GTWR. To our knowledge, dew 

point temperature has not been specified previously as a control to wetland health, but dew point 

temperature was significantly positively correlated to other temperature variables (Table 4-2). 

Mean annual sea level and maximum annual vapor pressure deficit were the remaining 

environmental variables in the model with the highest explanatory power (Table 4-4). These 

variables were similar to maximum annual temperature in that they appear to have little local 

standard deviation compared to precipitation (Table 4-3). 

Site-based inferences do help reveal spatial variability and patterns in the importance of 

environmental drivers, human influences, and other characteristics on long-term patterns in NDVI. 

Sea levels were significantly positively correlated with NDVI in several sites ranging in size and 

archetype in the south (Figure 4-6), where sea level rise rates are on average 0.93 mm yr-1 higher 

than rates from NOAA stations to the north (https://tidesandcurrents.noaa.gov/sltrends). For sites 

with available USGS stream discharge data, six wetlands showed positive significant correlations 

with NDVI and two wetlands showed negative significant correlations. Differential response to 

streamflow may indicate two contrasting responses wetland plants have to rainfall, such as 

increased productivity from decreased soil salinity (Callaway and Sabraw, 1994; Zedler, 1983), or 

water stress from altered precipitation and streams flows (Zedler et al., 1986). Although stream 

discharge data were only available for a subset sites with USGS stream gauges (Figure S4-1), other 

archetypes throughout the region have associated rivers and creeks (SCWRP, 2018), and stream 

discharge would likely have an impact on these systems as well.  

https://tidesandcurrents.noaa.gov/sltrends
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Trends in NDVI were not well explained by the amount of watershed development, 

restoration projects or site characteristics like size, habitat composition, or archetype classification 

(Figure 4-4). Wetland archetypes represent systems with similar form and structure that are 

expected to function similarly and respond to physical drivers and external stressors in a similar 

manner (Stein et al., 2019). However, each archetype is designed to represent a broad range in 

diversity of sites, and therefore responses may also be variable. This was true in using the archetype 

framework to predict future habitat response to SLR, where sites within archetypes displayed high 

variability in estimated wetland habitat loss (Doughty et al., 2018). Therefore, the diversity of 

intra-annual patterns in NDVI within archetypes, most notably in intermediate estuaries, is valid 

and highlights intra-annual phenology as another diverse quality of the wetlands in the southern 

California region. Five clusters of similar intra-annual patterns emerged based on the timing and 

magnitude of peak annual NDVI, which indicates variable phenological response of systems to 

different environmental factors. Therefore, there are not typical phenological patterns 

characteristic to certain archetypes, or a singular phenological model that describes all sites in the 

region. Intra-annual patterns in wetland NDVI may be less straightforward in this region’s 

wetlands compared to other regions were large, vegetated wetland systems can be described by 

typical annual phenology curves (Mo et al., 2015). 

Our work provides important insights into the spatial and temporal variability in drivers 

and responses in long-term greenness and health of coastal wetlands across a region. The freely 

available, historical datasets used as the foundation for this study can also aid investigations into 

other important patterns in southern California’s wetlands and other regions with a diversity of 

wetlands. More work is needed to consider the full range of human impacts to wetland health, like 

eutrophication, dredging, and watershed management (Kennish, 2001) if long-term datasets are 
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available. In addition, satellite imagery can also aid in identifying pulse disturbances occurring 

from episodic events like fires and subsequently track recovery (Brown, 2019). These applications 

would be of interest to regional wetland management and adaptation efforts in monitoring impacts 

into the future using remotely sensed imagery. 
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4.7 Supplemental Materials 

 
Figure S4-1. Sources of environmental datasets on NOAA sea levels (red diamonds) and USGS stream 

discharge (blue circles). 
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Figure S4-2. Average count of clear land pixels per year (mean ± standard deviation). Simple linear trends 

over the study period are shown in blue. Note that y-axis varies per panel.  
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Figure S4-3. GTWR model selection based on A) corrected AIC and B) a stepwise procedure ranking model 

variable combinations (colors, symbols, combinations joined by lines) by AIC.  
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CONCLUSION 

In my dissertation, I pursued questions pertaining to wetland resilience and vulnerability 

in ecosystems that are at high risk of climate change and other human impacts. Despite being 

regarded as some of the world’s most important ecosystems (Barbier et al. 2011), they have 

continually been lost and degraded globally and their fate remains uncertain (Spencer et al. 2016). 

This is also true of wetlands in the southern California region. Through the work conducted in this 

dissertation, I focus on uncovering the spatial and temporal variability at play in some of the 

wetland properties and processes that have controlled past responses, current status, and future 

predictions in light of environmental change.  

Predictions of future regional response to sea level rise must account for all wetlands in a 

region regardless of size, and despite data availability. This is essential for seeing a full picture of 

regional vulnerability that also accounts for site-based estimates of habitat change and loss 

(Doughty et al. 2019). I focus on site-based measures so that the drivers investigated will be catered 

to ecology and function specific to sites, and so that habitat response is viewed at the appropriate 

scales for coordinated regional management efforts.  

For a more detailed look at the wetland plant features that will ultimately contribute to 

resilience, I developed and tested a UAV approach to remotely estimating aboveground biomass. 

I used UAVs to map seasonal biomass in a single marsh in southern California and found that 

UAVs can provide high resolution insights to aboveground biomass, but that models were 

influenced significantly by season (Doughty and Cavanaugh 2019). To expand upon this work, I 

then applied the UAV approach to three additional wetlands in the region and tested UAV imagery 

verses Landsat imagery in how well they are able to estimate end-of-season aboveground biomass 

and detect ecologically important spatial patterns in wetland vegetation (Doughty et al., submitted). 
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While the resolutions of each imagery type make them suitable for investigating different 

ecological patterns, the high-resolution imagery provided by UAVs revealed what Landsat could 

not in the relatively small and constricted wetlands of southern California. Therefore, UAVs could 

be an essential tool for remotely quantifying aboveground biomass and provide important insights 

into indicators of wetland health. 

Finally, I capitalized on decade’s worth of Landsat satellite imagery and environmental 

conditions to characterize recent patterns in wetland greenness and uncover how greenness is 

related to drivers like temperature and precipitation. Given everything we now know about 

southern California’s wetlands, it is not surprising that past responses to environmental change 

have also been highly spatially and temporally variable among unique wetlands sites in this region. 

However, overall trends suggest that the majority of wetlands are greening, but more work must 

be done to uncouple the human and climate interactions at play in the southern California region. 

The high spatial and temporal variability inherent to the past, present, and future of southern 

California’s wetlands is yet another challenge to ensuring these ecosystems are preserved in the 

future.  
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