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ABSTRACT

The present status of elastic pp and pp scattering in the high
energy domain is reviewed, with emphasis on the forward and near for-
ward regions. The experimental techniques for measuring 0¢:, ¢ and
B are discussed, emphasizing the importance of the Coulomb region.
The impact parameter representation is exploited to give simple didactic
demonstrations of important rigorous theorems based on analyticity, and
to illuminate the significance of the slope parameter, B, and the curvature
parameter, C. Models of elastic scattering are discussed and a criterion
for the onset of “asymptopia” is given. A critique of dispersion relations
is presented. Simple analytic functions are used to fit simultaneously the

real and imaginary parts of forward scattering amplitudes for both pp and

PP, obtained from experimental data for 04, and p. It is found that a good

fit can be obtained using only 5 parameters (with a cross section rising
as log®s), over the energy range 5 < /s < 62 GeV. The possibilities
that: a) the cross section rises only as log s, b) the cross section rises
only locally as logZs, and eventually goes to a constant value, and ¢) the
cross section difference between pp and pp does not vanish as s — oo,
are examined critically. The nuclear slope parameters B are also fitted
in a model-independent fashion. Examination of the fits reveals a new
regularity of the pp and pp systems. Predictions of all of the elastic scat-
tering parameters are made at ultra-high energies, and are compared to

the available SPS collider measurements.
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I. INTRODUCTION

The advent of pp collider physics at the éERN ISR and SPS
during the last three years has extended the maximum pp center of mass
energy from /s ~ 20 GeV to /s = 540 GeV. Experimental groups at
the SPS have measured oy,¢, the total cross section, and B, the nuclear
slope parameter, at the highest available energy, /s = 540 GeV. In the
energy range 30 < /s < 62 GeV, experimental groups at the ISR have
made precision measurements of these quantities for bothk pp and pp, with
the same apparatus used for comparison of pp and pp. Moreover, new ISR
measurements of elastic scattering in the Coulomb interference region have
made possible accurate determinations of p, the ratio of the real to the
imaginary portion of the forward nuclear scattering amplitude, for both
PP and pp. The latter data, taken together with earlier results, enable us
to make a critical comparison of pp and pp elastic scattering parameters
in the high energy domain from /s = 5 GeV to /s = 62 GeV, and
allow theoretical extrapolations to higher energies. As we shall show, the
agreement between these predictions and the new SPS results at /s =

540 GeV gives some confidence in further extrapolation to the energy

regions of /s = 2 TeV (the Tevatron collider, scheduled for 1986) and /

v/s = 40 TeV (the proposed SSC).

‘e will deal exclusively with pp and pp collisions, reviewing
the relevant experimental results for elastic scattering and total cross
section measurements for center of mass energies greater than 5 GeV, with
emphasis on the new data for /s greater than 30 GeV. In particular, we
will concern ourselves with the analysis of elastic scattering in the low |t|
region, —t < 0.02( GeV/ c)2, where t is the 4-momentum transfer squared.

A brief description will recall to the reader the experimental techniques
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and problems associated with these high energy measurements.

The principles of analyticity and unitarity are truly fundamental
to our understanding of particle physics. A requirement of analyticity is
that the forward scattering amplitudes for pp and pp elastic nuclear scat-
tering come from the same analytic function. Further, unitarity provides
a relation — the optical theorem — between the total cross section and
the imaginary portion of the forward scattering amplitude. The existence
of the new pp and pp data now makes possible a critical confrontation
of the consequences of analyticity with accurate experimental data over a

wide energy range.

We will review the consequences of analyticity for forward elastic
scattering amplitudes. The presentation will be didactic in nature, and
will only assume a general understanding of elementary scattering theory
from non-relativistic quantum mechanics. The appropriate relativisite
ge'nera,lizat.ions will be made. Rigorous theorems following from analyticity,
including the Froissant bound, generalizations of the Pomeranchuk theorem
for rising cross sections, the Cornille and Martin bounds and the Fischer
theorem, will be discussed. Using the impact parameter representation,
these theorems will either be proved heuristically or be illustrated by
simple examples. Their applicability and utility will be critically ap-
praised.

Elastic scattering will be discussed in terms of an impact para-
meter representation. Using this physical picture, we will provide heuristic
derivations of many of the important theorems relating to elastic scatter-
ing that are based on analyticity and unitarity. We express the slope
parameter, B, (=d/dt{log{dc, /dl))) and the curvature parameter, C, {=



4d?/dt*(log(do, /dt))) in impact space. Models of elastic scattering are
dicussed and it is shown that C = 0 is a convenient criterion for the onset
of “asymptopia”, defined as the energy domain where differential elastic

scattlering cross section approaches that of a sharp disk.

A model free analysis will be made of the experimental quantities
0twt, p and B. Traditionally, the requirements of analyticity have been
compared with experimental data by means of dispersion relations. We
will demonstrate how the same ends can be achieved more transparently
and easily through direct use of simple analytic functions. The success of
our fits is an experimental confirmation of the principles of analyticity.
The comprehensive fit to pp and pp scattering reveals ap unexpected

regularity between the two systems over the full energy domain considered.

II. KINEMATICS AND CONVENTIONS

We consider elastic pp or pp scattering with the initial 4-momenta
P and p, and the final 4-momenta p; and py. The c.m. energy squared
is

s = (p1 + p2)® = 4k* +m?), (2.1)

where m is the proton mass and k is the c.m. momentum. In terms of
the lab momentum p and lab energy E = \/p2 + m2, we have

s = 2(m? 4+ mE). (2.2)

The 4-momentum transfer squared is

t = (py — ps)? , (2.3)
= —4k%sin’6/2, (2.4)

where ¢ is the c.m. scattering angle. The third Mandelstam variable is

4= (p, — ps)?, (2.5)

and we have

s+t 4 u=4m2. (2.6)

_}'_
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We shall use elastic scattering amplitudes with several different

normalizations. For f,,,. the c.m. scattering amplitude,

do 2 _ -

a0 = lfcml ’ (2‘)

do T .

Et_ = Fg'lfCﬂle.' (2.8)
4r '

Otot = Tlm Sfem(8 = 0). {2.9)

The lab scattering a.mj)litude will be denoted simply by f. It satisfies

do 2
= I/, 2.10)
a0 171 (
do T, .9 .
— “‘ . ll
7 pzlfl s (2.11)
. 4
Otor = —Elmf((?L =0), (2.12)

where 6 is the lab scattering angle. The lab scattering amplitude is

related to the usual Lorentz invariant amplitude M by

i —onii(2)s

= —8&nrmf, (2.13)

SO

1
Ctot = —%ImM(t =0)
=t ImM(t = 0). (2.14)
2k\/s

As a final normalization, we introduce F with the properties

do
dat

Orot = 4V/mIm F(t = 0). . (2.16)

= |F[? (2.15)

The normalizations for these elastic scattering amplitudes are related by

f=? Pp—__1 u (2.17)

=klem= ﬁ 8rm

The context will dictate which of these amplitudes is most convenient to

use.



III. REVIEW OF EXPERIMENTAL RESULTS
FOR oy, p, and B

Prior 10 presenting an overview of the experimental pp and pp
results for Ctot, p and B, we review briefly the theory of elastic hadronic
scattering in the presence of a Coulomb field. This review will help us put
into perspective measurements of elastic scattering made at small || and
will remind the reader of both the types of experimental measurements
and the actual physical quantities which must be measured to extract the

parameters 0y0¢, p, and B.

A. Theoretical Formulation of Elastic Hadronic Scattering
in the Presence of the Coulomb Field

For the moment, we consider separately the effects of either a
Coulombic or a hadronic field, alone. We will later combine these fields
to act simultaneously. In the presence of only a Coulomb field, we have

the familiar Rutherford scattering cross section for pp (pp ), which is

2

2ksin®(6/2)

do
dem

where a is the fine-structure constant ~ 1/137, the upper sign is for pp,
the lower sign is for pp , and G2(t) is the proton’s electromagnetic form
factor squared. It is readily shown that

do T do

T e’ (3-2)

and we can rewrite Eq. (3.1) as

do
_._.=1r

¢ 2¢ 2
dt

1|

Experiment has shown that we can adequately parametrize the

—(£)G* (=] . (3.3)

nuclear (hadronic) elastic scattering cross section in the small |t] region as

don, __ { doy, Bt
dw%miﬂe’ (34)

t.e., if we plot log(do, /dt) vs. t, we get a straight line of slope B, for the
small || region. Now, we write Eq. (3.4), at ¢ = 0, as (see Eq. (2.7))

(&)~ (%)
dt Jumo B\ dQem )y,

r ‘ \ (3.5)
= ZIRe em(0) + iIm fem(O).
Introducing p = Refem(0)/ I fom(0), we rewrite Eq. (3.5) as
(d& ) - 7r’(p+ DM fem(0) |2
dt J,—p k :
. (3.6
_ |t dow [ 9
47 !

where the last step used the optical theorem Eq. (2.9). Thus, we can now

write the elastic hadronic scattering cross section as a function of ¢ as

dU", _ . Otot Bt/2 2 -
i —W(P+7‘)F€ . (3.7)

-8 -
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It is convenient at this point to introduce the invariant scattering amplitudes
of Eqs. (2.15) and (2.16),

20G2()/7
Fo= —() 2T (3.80)
and
i Bt/2
Fy = et dowme 77 (3.85)
4T
so that the invariant differential cross sections are -
dO’c 2 ‘
— =|F ’ .
= = || (3.90)
and
doy, 2
= |Fpl°. 3.9b
= |Ful (3.99)

The above results treat the case of only one interaction at a time.
However, the simultaneous presence of both the nuclear and the Coulomb
fields, although coherent. does not ailow us simply to superimpose the
amplitudes F,. and F,. Instead, we must introduce a phase factor a@(t)
into the Coulomh amplitude, such that the complete elastic differential

cross sections is given by

do _ do, dnt n doy,

=t ta

= [Pt 4 £ (3.10)

20 Ny o
e + o+ e

where we assume tacitly that p varies negligibly over the very small t-
region of interest. The phase factor a¢(t) reflects the distortion of the pure
amplitudes F, and F,, due to the simultaneous presence of both hadronic
and Coulombic scattering. This is perhaps most simply understood if we
use the language of Feynmnan diagrams, in which F, corresponds to sum-
ming all diagrams in which only photons are present and F,, corresponds
to summing all diagrams in which only hadronic exchanges are present.
However, when both fields are turned on, there are new diagrams possible
which have both photons and hadronic exchanges present in the same
diagram, which are not accounted for in F, and F,. This gives rise to
the phase o¢(t). This phase was first investigated by Bethe (1958), and
later by West and Yennie (1968), using a Q.E.D. calculation of Feynman
diagrams. Most recently, the phase was recalculated by Cahn (1982b),

using an eikonal approach, with the result

)——(j:)[f7+log( I ')+1 g(1+B&2)

(3.11)
4]t 41 2|t|
+ () 3) + 3]
where v+ == 0.577... is Euler's constant, B is the slope parameter,
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A2 (=0.71 ( GeV/c)2) appears in the dipole fit to the proton’s electromag-
netic form factor, and the upper sign is for pp and the lower sign for pp.
Iu the low |?] region of interest, the numerical values given by Cahn agree
very closely with those given by West and Yennie. In the ¢ region near
the interference maximum of Eq. (3.10), the value of ¢(t) is very slowly
varying and is v 2. Thus, a¢ is € 1, as also is Bt/2, while G2(¢) is
/2 1. We can now simplify the interference (cross) term of do/dt, defined
as do,, /dt in Eq. (3.10), to be

dogy

it ~ 2(P+ a¢)Fan

aam) (3.12)

~ —(+Xo+ a¢)( m

with the upper sign for pp and the lower sign for pp and where F), is
evaluated at t = 0. The importance of this term is clearly maximal when
{Fe| = |Fyl, 1.e. when do,/dt = do,/dt. B p+ a¢ is positive, the
interference is destructive for pp and constructive for pp . A typical value
for |a¢| in Eq. (3.12) is = 0.02. Thus, the presence of the interference
cross section do,,, /dt allows one to measure the quantity p+c@. Assuming
that we know o,¢, the interference term allows the evaluation of p, the
ratio Ref,;,(0)/Im f¢,(0). Therefore, the Coulomb amplitude serves as a
standard against which the phase of the hadronic amplitude is measured.
Inspection of Eq. {3.10) indicates that the interference term is of maximum

significance when

- 11 -

&: 0.071 2
T 200 for ¢ in( GeV/c)~. (3.13)

tlint & = ,
[tlint Otot  Otot(mb)

We note that the differential elastic scattering cross section given
by Eq. (3.10) divides up naturally into three distinct t regions. Region
1 is for |t| < |t|;n¢, Where the Coulomb scattering dominates, and do/dt
goes as 1/t%. Region 3 is where |t| 3 |t|yn;, Where the nuclear scatter-
ing predominates, and do/dt goes as eB*. Region 2 is where ¢t o~ tipns,
which is the interference region between the Coulombic and the hadronic
amplitudes.

For a colliding beam experiment, where |t| = (k8)?, it is useful
to define the interference angle 8, as

Vit|int

k

Table 3.1 gives |t];n and 6;,; for pp as a function of the energy, /s, for

typical colliding beam accelerators. For example, at the ISR, for /s =

Oint =

. (3.14)

30.7 GeV (corresponding to each beam having £ ~ 15 GeV/c), we find
|thine = 0.0017 ( GeV/c)?, and hence, fi,¢ = +/0.0017/15 = 2.7 mrad.
However, when we get up to the Tevatron collider energy, /s = 2 TeV,
where we expect 04 & 100 mb, we find that |t];,, = 0.00073 (GeV/c)?
and that 6;,; = 0.027 mrad, a very small angle, indeed. At a distance
of 100 meters from the interaction region, it corresponds to a transverse
displacement of only 3.7 mm. This illustrates the difficulty of penetrating
into the Coulomb interference region, let alone the Coulomb region, as we
go to higher energy colliders. Clearly, the experimental problems become
extremely severe for the proposed SSC collider, at /s = 40 TeV, where

8:n: is only about 0.001 mrad.

-12 -
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B. Measurement of os, p, and B from Elastic Scattering

The measured quantity in an experiment is a counting rate, not a
cross section. For example, in an elastic scattering differential cross section
experiment, the quantity measured is AN(t), the number of counts/sec/At
in a At interval around t, corrected for background and any inefficiencies,
such as azimuthal coverage, deadtime, etc. This rate must be normalized

to get do/dt, and thus we write

CAN(t) = L(‘fi—‘;) (3.15)

where L is the normalization factor {for colliding beams, L is the luminosity).
If we can get deeply into the Coulomb region, ¢.e., in Region 1 where
[t] € |t|int, then do/dt is for all practical purposes given by do./dt ~
4rr(rn/t)2. Thus, do/dt is a known cross section, which allows the ex-
perimenter to measure L directly from Eq. (3.15). To take a concrete ex-
ample, if the experiment is carried out at the ISR at /s = 23.5 GeV and
the experiment is capable of achieving a minimum |¢| of 0.00035 ( GeV/ c)2,
then the value of do/dt at this t is ~ 96% Coulombic. Thus, the data are
easily and accurately normalized, provided that the ¢ scale is well deter-
mined. We note the vital role the known Coulomb cross section plays in
. this type of measurement. If the normalization factor L is known, the total
cross section oy, is determined by plotting the counting rates AN(?) in the
nuclear region (Region 3) on a logAN(t) vs. t plot and fitting a straight
line in order to obtain AN{0), the hadronic counting rate at

t = 0. From Egs. (3.4), {3.6) and (3.15), knowing the normalization L, we
find

- 18 -~

orot(l 4 #2)/2 =4 W(do" )
= (3.16)

Thus, this technique, in which L is separately evaluated, measures the
quantity om\/i-{-_p?. The p value can be evaluated from the Coulomb
interference term in Region 2; see Eqs. (3.10), (8.12). Of course, there are
alternative ways of measuring the luminosity, without using the Coulomb
technique, such as the Van der Meer (1968) method of sweeping beams
through each other, etc. In all cases, a direct measurement of L, along with
a measurement of AN(0), yields the result in Eq. (3.16), s.e., om\/f_-l—_pi’ .

To demonstrate the power of Coulomb normalization and to il-
lustrate the quality of the available data, we show in Fig. 3.1 an ex-
perimental plot of log(do/dt) vs. .|t| for pp elastic scattering at /s =
23.5 GeV, taken in 1982 at the ISR by the Northwestern-Louvain group
(Block, 1983b). There are ~ 10° events used to determine the elastic
differential cross section. The minimum |f| obtained in the experiment
is /2 0.00025 ( GeV/¢)?, well below the value (see Table 3.1) of |t|in¢ =
0.0017 ( GeV/c)?. Thus, this experiment probed deeply into the Coulomb
region (Region 1) and therefore also easily prcbed Region 2, the inter-
ference region. The fitted curve used the parametrization of Eq. (3.10).
The p value extracted was p = —0.0064 0.010, using Coulomb normaliza-
tion. The quality of the fit was quite satisfactory, giving a x2/d.f. ~ 1.2
for 93 degrees of freedom. A plot of log (da/dt) vs. |t| for pp elastic
scattering at /s == 52.8 GeV, taken by the Northwestern-Louvain group

-1 -



(Amos et al., 1983a ;Block, 1983b) at the ISR in 1982, is shown in Fig.
3.2. This spectrum contains &~ 10° events. Because of the higher beam
momentum, the miminum [t] is &~ 0.0010 ( GeV/c)?, compared t0 tin; =
0.0016 { GeV/ (.')2 for this energy, and hence, the Coulomb region is only
slightly penetrated. The parametrization of Eq. (3.10) was used to ob-
tain the fitted curve. In this case, the measured quantities were oy,
p and B, with the values 04t = 43.2 4 0.4 mb, p = 0.13 4+ 0.02 and
B = 13.0 4+ 0.5( GeV/c)™2. The quality of the fit was good, yielding
x2/d.f. = 0.59, for 117 degrees of freedom.

Another method for determining the cross section is the so called
“luminosity free” method, in which one simultaneously measures N¢q¢, the
total counting rate due to any interaction, along with the elastic scattering
intercept rate, AN(0). We write

Ntot == Loy, (3.17a)
and
dog \ . -
AN(0)= L} — . (3.170)
dt J,—o

From Eq. (3.16) and (3.17b), we find L and substitute it into Eq. (3.17a)
to obtain

_ 167rAN(0)

otot(1 + p°) Noo
o

(3.18)
We see from Eq. (3.18) that the measured quantity from the “luminosity

- 15 —

free” technique is 0,1(1 + p2), in contrast to the direct measurement of
L which yields crmm. In both cases, the measurements require
AN(0). the extrapolated hadronic counting rate at ¢t = 0, which is found
by measurements in Region 3, the pure nuclear region. We note that a
knowledge of p is needed in both cases in order to extract o;,¢. However,
these measurements only depend weakly on p, since for p as large as 0.2,
1+ p? is only 1.04, a 4% effect in one case and a 2% effect in the other.
Thus, even a very inaccurate knowledge of p yields a relatively accurate

value of 0¢,.

The value of the nuclear slope B is found by plotting the unnor-
malized curve, log(AN{t)) vs. t, in the purely hadronic region (Region 3)
and extracting the slope of this straight line. Thus the measurement of B

does not require a knowledge of the normalization L.

Experiment shows that in the region of |t >~ 0.10( GeV/c)?,
the parametrization (Eq. (3.4)) of an exponential in Bt fails and a “break”
in the slope occurs, with the slope getting smaller in the higher |¢| region.
The experimental elastic differential cross section data can be parametrized

over this larger |t| region as

do,, ( do,

= = ; 12 .
i T )‘=Oexp(Bt + C't¢), (3.19)

where the curvature C' is ~ 5 { GeV/ ¢)~*. Thus if we define a t dependent
slope

Blto) = (ilogf"—") . (3.20)
t=tp



we obtain B({y) = B — 2C|to|. If the experimental { range is limited to
[1] < 0.02(GeV/c), we have a mean to] of &~ 0.01(GeV/c)%. Since a
typical value of B is &~ 12 ( GeV/c)?, we get B(t = 0.01 (Ge\"/c)_z) ~
0.993 B, where B =‘B(0). Thus, the difference between B and the
measured value "B(to). ‘is negligible below |¢| ~ 0.02 ( GeV/e)?.

The total elastic scattering cross section o,; is defined as

fim(da,. /dt)dt. With the parametrization used in Eq. (3.4) and the .

results of Eq. (3.6), it is easily shown that

- 3(%)
= B\dt J,_,

. 3.21
(14 4) (321
- 167 B
This result will be given a special name. We will define ., as
_ U%;t(l + ﬁz) (3.22)
4= T 1erB ‘

If the parametrization (Eq. (3.4)) were valid over the entire ¢ range, then
0 would be E;,. We note that the value of X, is the number often given
in the literature as the experimental value of o,;. From Eq. (3.22), we
find that the ratio of Lei/0¢oe is

Eel _ Ufof(1+p2)

Otot 1678 (3.23)

a result that will be used later.

3
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C. An Overview of Experimental Results -

Measu_rements of elastic scattering have had a rich history at
the Brookhaven AGS (Foley et al, 1967), Serpukhov, (Denisov et al.,
1971a, 1971b), CERN PS (Belletini et al., ‘1965), Fermilab (Bartenev et al.,
1972, 1973a, 1973b, Carroll et al., 1974, Fajardo et al., 1981), CERN ISR
{Amaldi et al., 1971, Barbiellini et al., 1972, Holder et al.,1971,Amaldi and
Schubert, 1980, Favart et al., 1981, Amos et al., 1983a, 1983Db, Carboni et
al., 1982a, 1982b) and the CERN SPS (UA4 Collaboration, 1982a, 19820,
UA1 Collaboration, 1983)collider. There is now an approved experiment
for the Tevatron collider, to be carried out in 1986. Indeed, plans are cur-
rently in progress to;try to measure the elastic scattering at the proposed
SSC in the 1990's.

The utilization of P beams have made possible accurate com-
parisons of the pj‘i.system with the pp system up to /s = 62.8 GeV, using
colliding beams. The colliding beam experiments all use “Roman Pots”
named by the CERN-Rome (Amaldi et al., 1973a) group which first used
them. The Roman Pots are re-entrant bellows in the vacuum chambers
used to get the counters (or drift chambers) close to the beams. This is
done so that the minimum angle of detection, 6,5, is small compared to
&:nt, the Coulomb interference angle, to maximize Coulomb effects and to

measure the interference term proportional to p -+ ad.

Before the advent of the ISR collider (~ 1971), the available pp
data appeared to have o(pp) leveling off with increasing energy to a value
of &~ 40 mb. The anti-proton cross sections available in this era were
higher than the pp cross sections, and o(pp) appeared to be falling with

increasing energy and approaching o(pp). Thus, it was assumed at this

— 1R -



time that the two cross sections were approaching a common constant
value of &~ 40 mb, as /s — oco. The nuclear slope parameters B(pp)
were larger than B(pp). The B(pp) were increasing with /s (diffractive
shrinkage), whereas the B(pp) were slightly decreasing with increasing /s,
and it appeared that both were going to a common value. The values of

B(pp) at the top energy were ~ 12 ( GeV/c) 2.

When the ISR was turned on in 1971, one of the first experiments
done was an elastic scattering measurement of o(pp) for the CERN-Rome
group (Amaldi et al., 1971), using the Van der Meer method of luminosity
determination and a measurement of o(pp) by the Pisa-Stony Brook group
(Amendolia, et al, 1973 a,b) using total counting rate and luminosity.
These early measurements showed that the pp cross section was rising
with energy, and indeed, had a rise that could be fitted with a log25/sq
term, where sg is a scale constant. These measurements were confirmed
later when the Fermilab accelerator and the SPS came into operation.

The value for the anti-proton cross section was still dropping at the

highest available energy (v/s ~ 10 GeV). With the introduction of a

P beam into the ISR, in 1982, experiments on pp scattering were done
both by the Northwestern-Louvain group (Favart et al., 1982, Amos et al,
1983a, 1983b) using elastic scattering and Coulomb normalization, and
by the Pisa—St,ony Brook (Carboni, et al., 1982a, 1982b)group, using total
counting rate and Van der Meer lﬁminos‘xty. The Northwe'stern-Louvﬁin
_group measured ¢, p and B for pp , while the Pisa-Stony Brook group
measured o;,¢. These results conclusively showed that the value of ¢(pp)
at /s = 52.8 GeV was rising from its low energy value and that o(pp)
appeared to be approaching o(pp). The p vaiues, as well as the slope

parameters B also seemed to be approaching one another.
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Shown in Fig. 3.3 are the currently available experimental cross
section data in the energy interval 5 < /s < 62 GeV for both pp and
pp. In Fig. 3.4 are shown the p data. and Fig. 3.5 shows the B data. We
observe that o(pp) falls from the value of A~ 530 mb at /s =5 GeV to a
minimum of = 41.5 mb at /s &~ 20 GeV and rises to ~ 44 mb at /s ~
62 GeV. The cross section o(pp) starts at &~ 39.6 mb at /s = 5 GeV,
goes through a very shallow minimum of a 39 mb at /s near 12 GeV
and climbs to &~ 43.5mb at /s = 62 GeV. The p(pp) values rise from
~ 0.27 at /s = 5 GeV, going through zero at /s = 23 GeV, and reach
about 0.10 at /s = 62 GeV. The p(pp) values are about zero in the
energy region 10 < /s < 20 GeV, and rise to &~ 0.10 at /s = 53 GeV.
The slope parameter data show that B(pp) is rising, going from about
9.5(GeV/c)™? at /5 = 5 GeV t0 12.5( GeV/c) ™2 at /5 = 62 GeV. The
values for B(pp) stay relatively constant at low /5, around 12 ( GeV/c) ™2,
and rise to about 12.5( GeV/c)™2 at \/s = 53 GeV.

The ratio of the “total” elastic scattering cross section to the
total cross section, R = X, /0, is relatively flat in the ISR energy
region, being Az 0.18. It appears to have fallen slightly from its low energy

value. As we will show later, it is expected to rise as high as /s.

The dominant experimental problems for the future, at high
energy will be:

(1) to see if the current trends of Aoy, Ap and AB going to

zero (for A = [(pP) — (pp)] ) continue as we go to very high

3

{2) to verify that the cross section 0¢o¢, which currently rises as

log?s/so, continues this rise as we increase s;

- 20 -
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(3) to find out if B also increases as logs as we go up in s;

(4) to determine whether R = /0, keepsincreasing and find

out its asymptotic constant value, ¢ e., to determine whether

_the pp system is a gray dise (R < 0.5) or a black dise (R =
0.5), or indeed, if 1 > R > 0.5.

These are important questions. The answers become more difficult
at high /5. and the required measurements pose a real challenge to tomor-

row's experimentalists.

S

IV. THEORETICAL DISCUSSION
A. Unitarity |

In the next two sections, it is convenient to work in the center
of mass frame. For elastic scattering, unitarity is embodied in the optical
theorem,

Otot = %Imfcm(t = 0) » (41)

Writing an expansion in terms of Legendre polynomials gives the standard
partial wave expansion for spinless particles (for our purpose of examining

the nearly forward region, we can ignore spin)

Jem(s,1) = 7 32+ 11Picos Dar(k), (12)
{=0

where 8 is the c.m. scattering angle. Comparing coeflicients in

do T 47
Otot == /th = /dtk_glfcmlz = 'kTImf(t = 0): (4.3)

we find for purely elastic scattering

Ima = Ima}? + Rea?, (4.4)

so the amplitude for each partial wave lies on the Argand circle Fig. (4.1)



(4.5)

o | -

1)2
(Ima, - —) + IZea,2 =

If there is inelasticity, the amplitude lies inside the Argand circle (Fig.
4.1). Such an amplitude can be represented as

621'6' -1

a = —
2’

{4.6)
where §; is purely real if there is only elastic scattering and I'mé; > 0 if

there is inelasticity.

A more complete formalism is needed to express the full content
of unitarity in the inelastic case. For this purpose we employ the conven-
tional Lorentz invariant amplitude M which is related to the S-matrix
by

/
S =I—i2r)*6*(p1 + p2 — ;7)) ((ggfz)w;:)lﬁlf;?)) (4.7

where p1(E1) and po(E2) are the initial momenta (energies), the primes

indicate final momenta and energies, and J is the unit matrix. The states

are normalized with

vl = @)’ (p— o), (4.8)
so completeness is expressed by

- 23 -
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. &p}
=31 (/(27”3)'1’11’9 PP Dol (49)
n =1 :
or symbolically,
I=Y|jn><n|. (4.10)
n
Unitarity is the statement
sts=1. (4.11)

" Evaluated between two-body states [p1p2) and |paps), Eq. (4.11) gives

(papsl — iM + iMT|pypo) = 2Im{pspa| M|p1 p2)

P [ A ——

n =1

(Pspa| M PPl . BN, B . 2| MpL P (4.12)

We recognize the usual n-body phase space

=@y I [ f @ )32‘E, 0% pr +p2— Tio,py),  (413)

=1

which relates the cross section to the amplitude squared:



n

1

doy =
" 2F12E, X flux factor

IM[%dd,. - (4.14)

The flux factor ( “lhé relative velocity of the incoming particles ) multi-
plied by 2E, 2E, is simply 4k+/s where k is, as always, the c.n. momentum
in the initial state. Thus specializing to forward scattering with p; = po,
Ps = ps, we find with M(t = 0) = (p1p2|M|p: pz),

2IMM(t = 0) = —4kV/s 3 0 = — /50101, (4.15)
n
or
1 ,
Otot = — —ImM(t = 0). (4.16)
2ky/s :

In this proof of the optical theorem, we see how a sum over
physical intermediate states is central to exploiting the formal statement
of unitarity, Eq. (4.11).

B. Geometrical Picture
1. Impact Parameter Representation

'Elastic pp scattering is described by five amplitudes, but in the
very forward direction, which is our concern, it suffices to imagine that
there is a single amplitude, just as one has for spinless particles. For
this amplitude we will be able to develop a geometrical picture based on
impact parameter space, the two dimensional physical space perpendicular

to the beam direction. (See Jackson, 1973, for an earlier account of some

of this material.) Throughout, we consider only hadronic scattering and
ignore the Coulomb effects which are important only at very small |¢|. The
standard partial wave expansion for the scattering amplitude given in Eq.
(4.2) is .

o

femls, )= 7 Y21+ DPicosO)au(k),

=0
where, as in Eq. (4.6),

__exp(2if)—1

a;(k) 57

and §; is the phase shift in the /*® partial wave. I the scattering is purely
elastic, & is real. If there is inelasticity, Im6 > 0. From Eq. (4.1) it
follows that the contribution of the I*! partial wave to the total cross

section is bounded:

o4m(2i41) —

(ef] S —-—-k2_. (41 I)

Since the bound is a decreasing function of the energy, it follows

that an increasing number of pért.ial waves must contribute to the high
energy amplitude. Tt is thus sensible to convert the discrete sum, Eq. (4.2),

into an integral.

A classical description of the scattering would introduce the im-'
pact parameter, b, which is related to the angular moméntum by bk =
[+ %. The extra 1/2 is thrown in for convenience and in recoguition
of its appearance in the WKB approximation. To convert Eq.(4.2) to an
integral, we replace 3o, — [ dl — [k db and ai(k) — a(b,s). We need also
to express Py(cos @) in terms of b and g, where ¢° = —t = 4k* sin?(6/2).
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For large {, we have (Erdélyi,1953)
Pi(cos8) = Jo((2! 4 1)sin8/2). (4.18)

With these replacements, Eq.(4.2) becomes

femls, 1) = 2k fo bdbJo(gb)a(b, s), © (4.19)

or, using the integral representation of Jo (Abramowitz and Stegun, 1964,
p. 360)

27
1 / . .
= — d ¥4 y 420
Jo(z) = o~ A pexp(izcos @) (4.20)
it is simply

k . \
fem{s,t) == / ¢ exp(iq - bla(b, s), (4.21a)

where d*b = bdbd$. The Fourier transform can be inverted to give

1
ik

“a(b, s) = / dgesp(—iq-b)fem(s,t).  (4.21b)

With our normalization, we have, using Eq. (4.21a},

1
Col = ki:)/(mfmf =3 / gl foml® = 4/ d2bla(b, )%,  (4.22)
and
Otot = ikz]mfcm(s, 0) ='4f d%b Im a(b, s). (4.23)

The amplitude u(b, s) is given in impact parameter space which is perpen-
dicular to the beam direction and thus is the same in the lab and c.m.

systems. Its form is still that of Eq. (4.6). Therefore it lies in the usual
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Argand plot, shown in Fig. 4.1. Elastic scattering corresponds to 4 being
real. If there is inelastic scattering as well, then é has a positive imaginary

part and a(b, s) lies inside the Argand circle.

Equation (4.21a) has a simple physical interpretation. The func-
tion a(h, s) can be viewed as a distribution of sources of waves which
produce an interference pattern. Equivalently, it can be viewed as the
distribution of an absorber which produces a diffraction pattern when
plane waves are incident on it. There is a clear analogy with diffraction
in optics (for an extensive review of this analogy, see Amaldi, Jacob,
and Matthiae (1976)). Total absorption corresponds to Imé = oc or
a(b,s) = i/2. Thus a black disk of radius R gives a total cross section
(see Eq.(4.23)) 2rR? and an elastic cross section (see Eq. (4.22)) mR2.
For a Gaussian shape in impact parameter space, the elastic scattering .
amplitude is a Gaussian in momentum transfer. In particular, if the
scattering amplitude is f = (ik0t,¢/47)exp(— Bg*/2), so that B is the
nuclear slope parameter, the impact parameter space representation is
a = (ioyot /87 B)exsp(—b>/2B) = (2i0e1/0t0t) exp(—b?/2B). Note that
[e(b=0)| = 204 /01t = 2Xet/0tot- The connection between a(h = 0)
and 0. /01, is more general. Suppose that the scattering amplitude is
[ = (k/47 )i 4 p)otor9(g2/A%) where p is independent of g2 and g is some
function of a single variable, u = ¢2/A2. Then it is easy to show that

Tel f(\m duQ(")

(b == 0) = - = .
o(b=0) (14 p2)otot [§ dug?(u)

(4.24)

Thus for scattering amplitudes of this generic form, a(b = 0) is given by

/(1 4+ p?)oi0 times a pure number which depends on the shape of g.
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but not on the actual value of the parameter, A<,
2. The Slope Parameter B and the Mac Dowell - Martin Bound

Using the impact parameter amplitude, we can obtain a physical

picture of the slope parameter,

B(s, t) = i(l z—:) (4.25a)

which we often evaluate at zero momentum transfer

B = B(s) = B(s,t = 0). (4.25b)

Beginning with

fem ~ / d2bexpliq- b)a(b, s), (4.26)

we expand about ¢ = 0 to find

o~ f d2ba(b, s)[1 + iq- b — -;—(q- b2..]. (4.27)

This yields a general expression for B,

Re [ dbba(b, s) [ dbb*a’(b, 5)

B=
2|f doba(b, s)|*

(4.98)

Thus, if the phase of a(b, s) is independent. of b, we have
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J dbtRa(b,s) [ d2bba(b, s)

B = T dvtev0) ~ 2 @batb,s)’

(4.29)

This shows that B measures the size of the proton. More precisely, B is
one-half the average value of the impact parameter squared as weighted
by a.

Let us suppose that the phase of a(b,s) is independent of b,
so that Re a(b, s)/Im alb, ) = p. Then we can write '

_i+p
+ 0

a(b,8) = |a(b s)|. (4.30)

Combining Eqs. (4.22), (4.23), and (4.29), we find

Oel \-/—-fbdb[a(b,sn (4.31)

Otot J babla(b, s)| ’

et Otot _ 1 S bdbla(b, s)|}2

Otot 167B VTR [ abbla(b, s)|

As an example, suppose a(b, s) is purely imaginary and constant,
with a = 7{A/2, where 0 < A < 2, for b < R and zero for b > R. Then
Oet/0tot = Eet/01ot = A[/2. A perfectly black disk has A = 1. The
equality of o.; and £, is characteristic. In fact, the Mac Dowell - Martin
(Mac Dowell and Martin, 1964) bound states that

(4.32)

Q
p

(4.33)

t‘JI
v
©} 00
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We can demonstrate this using the impact parameter representation as-

suming that a(b) is purely imaginary. Then letting o' = I'ma,

Otot = 4 / d%ba’, (4.34a)
O = 4/d2ba’2, - (4.34b)
OrotB =2 / d?bb%d’, (4.34¢)
and
2 2./
cfe[:%fd"’ba fd'*’l')ba.. (4.35)
Eez (f d2b a’)*‘
Now to minimize 0,;/E.; we consider varying the form of a’ by éa’. Then
at the minimum ;
Oel
b6— =0
Sel

= [/d2b2a’6a’/d2bb2a’/42ba’+/d2b a”fd% b26a’/d2b a
—3/d2ba'2/d2bb2a'fd’-’b 6a'](fd2b a'y=4. (4.36)

Since this is true for arbitrary 6a’, the coefficient of [ db6a’ must vanish

and
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2q! /d:'bbga’fd'*’ba’—}-b:'/d"’ba'z/d"'ba'—3/d2bu'2/42bb2a' =0.
(4.37)

-

Thus a’ is of the form

@ = Cy — Cyb?, (4.38)

where €'} and Cy are positive constants, as seen in Eq. (4.37). Now o
cannot be negative, since Ima > 0, so ¢’ vanishes outside some radius R

and we write

a =A[l—(b/RP], bR (4.39q)
a' =0, b> 0. (4.39b)
This gives
Otot = 2MAR?, (4.40a)
Oet = i’s—r'A?Rz, (4.40b)
1 2
B= il (4.40¢)
3T 0.0
T = ?A‘R‘-, (4.40d)
and
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©| %0

(4.41)

[\

Our success in deriving the proper result, while using the ap-
proximation of the impact parameter representation rather than the fully
correct discrete partial wave series, is easy to understand. Since the min-
imum is achieved with a form which in fact requires many partial waves,

there is no loss in treating the partial wave sum as an integral.

For most reasonable shapes of «, the ratio 0. /X, is actually
quite near unity. Thus it is difficult to distinguish between models on
the basis of this ratio. For example, if @ ~ 1 — (b/bs)™ and vanishes for
b > bo, we find for the ratio values between 8/9 for n == 2 and 0.91 for
n = 5. For the form a ~ [1 — (b/b)]" the minimum value is about 0.89
(just slightly greater than 8/9) when n = 0.6 — 0.7 and the ratio increases
so that for n = 4, it is 1.07. Putting a Gaussian form in Eqs.(4.32) gives

a ratio of exactly 1, just as the black disk gave.

The relationship between the impact parameter amplitude, a,
and the differential cross section can be illustrated with some simple
examples. For definiteness, we shall fix the parameters in each model
so that they produce o4 = 43mb and B = 13 Ge\’/c_Q. These are

characteristic of the values found at the ISR.

The simplest model has a constant value for ¢ inside some radius
R, and zero outside it. Since the forward elastic scattering amplitude at

high energies is mostly imaginary, we take

= %z’A, (4.42)

with A real. Thus .4 = 1 correponds to a purely black disk. From Eqgs.
(4.22) and (4.23) we find,

Otot = 2T R2A, (4.43)
0o = TR2A?, (4.44)

and from Eq. (4.22) and (4.19) or (4.21),

d R 2
2 a2 / b dbJy(gb)
dt 0
= rA%R* JileR) : (4.45)
g | 45

3. The Curvature Parameter, C

As discussed in Section I, the t-dependence of the elastic differential

cross section is described at small ¢ by

do, . do, ...
~ _( = )t=oexp(Bt+Ct2 )
dt t==0 2

If we take a to be purely imaginary, we can easily compute C
from
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Jem ~ /de exp(iq - bla(h)

1. 1
~ / d%b (1 — Zqsz + aq"b“---)a(b). (4.47)

By noting that

n / g2 2 1 / 2 2 / 2
~ b -—

+T16t2(/c12b b2a.)2+§l§t2/dzb a/d"’b bat-. |
(4.48)

we find that

1 [d2bta 1 [([d2bb%a)°
c= LIde _(-.__f - ) . (4.49)

Thus B is certainly positive, while C may be positive, negative or zero.
4. Models of Elastic Scattering

In Fig. 4.2, the profile for the disk and several shapes to be
considered subsequently are shown. The corresponding differential cross
sections are shown in Fig. 4.3 for the values of the parameters which give
Otot = 43mb and B = 13(GeV/c)™2. For the sharp disk, R = 1.42f and
A = 0.34. It is easy to verify that for the sharp disk we have 0¢/0¢; =
AJ2 = 04,4 /167B, that is, X = 0¢. The value of C is negative: C' =
—R*/192.

Ball and Zachariasen (1972) developed a model by solving the
multiperipheral equation for diffractive scattering. The result was an

elastic scattering amplitude

J1(gRg Ins/s0)

Jem(s. t) = ikRyp R,

(4.50)
By comparison with the amplitude used in Eq. (4.45) we see that this
model corresponds to a uniformily gray disk of growing radius R =
Roln(s/so) and amplitude A = &[ln(s/so)]™!. The total cross section
grows as Ins, the elastic cross section is constant and B increases as
In®(s/s0).

A softer profile is given by

e=iA[l— (b/RP], b<R (4.51a)

a=0, b> R. (4.51b)

This is the shape that saturates the MacDowell-Martin bound, o.,/T. =
&/9. For our chosen total cross section and slope, the appropriate parameters
are R = 1.74f, and A = 0.226. The differential cross section,

do

27 = 4’TA2R4 4J1(qR) _ 2JO(QR) 2
dt =~

PR3 ¢2R?

(4.52)

is shown in Fig.4.3.

As a further example, consider a Gaussian profile,
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¢ = %iA exp(—(b/R)?) (4.53)

which gives 0yt = 27AR?, 0o = TA2R?/2, and B = R2/2. Thus, as for
the sharp disk, £,; = o,;. Of course, C = 0 for the Gaussian form. The
appropriate parameters are R = 1.00 f, and A = 0.68. The differential

cross section is compared to that for the previous examples in Fig. 4.3.

More realistic examples of the impact parameter amplitude, a(b, s)
can be found among the models which have been proposed for elastic scat-
tering. The Chou-Yang (Chou and Yang, 1968, 1983; Durand and Lipes,
1968) model postulates that the elastic scattering is the shadow of the ab-
sorption resulting from the passage of one hadronic mass distribution
through another. The transverse distribution of the matter is assumed
to have the same shape as the charge distribution as measured by the
electromagnetic form factor. This assumption leaves only the strength of
the absorption to be fixed, and this can be done by requiring that the total
cross section as calculated in the model agree with experiment. Thus the
only energy dependence is that which comes implicitly through the energy
dependence of the total cross section. If the absorption at an impact

parameter b is Q(b), then one writes

alb, s) = Elg(em —1)= ;-"(1 — ), (4.54)

If a dipole electromagnetic form factor is used,

2 2
G(¢®) = (AQ:_ qg) , (4.55)
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then (1 is a function of z = Ab:

0= A-;—:raKg(:r). (4.56)

Here K3 is a modified Bessel function and the constant A is selected so
that the amplitude, Eq. (4.54), yields the correct value for the total cross
section. The normalization in Eq. (4.56) is chosen so that as z — 0,0 —
A. For large z, 0 — cx%/2¢—* where ¢ is a constant. In Fig. 4.2 the
profile, a/7, is displayed as a function of impact parameter, with A = 1.35
and A = 0.845GeV/c, which give the same total cross section and slope
parameter as before. The value of A obtained in the fit is in remarkably
good agreement with the value A2 = 0.71{(GeV/c)® deduced from the
electromagnetic form factor. The resulting differential cross section in

shown in Fig. 4.3.

The model of Cheng, Walker and Wu (Cheng, Walker, and Wu,
1973; Bourrely, Soffer and Wu, 1983) is based on field theoretic studies
which showed that at high energies, the dominant exchanges give amplitudes
varying as s*t¢. Multiple exchanges produce an eikonalized amplitude.

As a phenomenological form, Cheng, Walker, and Wu used in Eq. (4.54)

Q= f(Ee—*"/?) exp (—xv' b2 + bg), (4.57)

where f,¢,\, and by are parameters. The phase associated with the energy
dependence will be discussed later. The constant c is small and plays the

role of ¢.

The sign of the‘curvat-ure, C for the four displayed models is
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apparent in Fig. 4.3. The Gaussian form with C = 0 is a straight line on
the semi-log plot. The sharp disk and the parabolic form which saturates
the MacDowell-Martin bound both fall below the Gaussian, and thus have
negative values of C. The Chou-Yang has‘a positive values of C for the
given parameters. The measured value of C' is ~ 4 (GeV/c¢)™*. Roughly
speaking, a positive value of C requires a broader tail than the Gaussian
distribution has.

From Eq. (4.49) we see that the condition that C be positive is

(b*) > 2(6%)%, (4.58)
where B
(") = % (4.59)

It is easy to see that a ~ [1 — (b/R)P] gives a negative C for every p > 0,
while a ~ [1— (b/R)]? gives a positive C for p > 4. If we consider shapes
of the form a ~ exp[—(b/R)P] then, if p > 2, the curvature C' is positive,
while if p < 2, C is negative. In Fig. 4.3 we see that among the curves
with diffraction minima, those with negative C tend to have the minima
at smaller values of t, since the differential cross section turns down sooner

than for curves with positive C.

C. Energy Dependence of Cross Sections and Slopes in Models,

and the Approach to “Asymptopia”

While our primary concern is with model independent analysis,

it is worthwhile to consider what the simple models discussed above have
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to say about the energy dependence of the total cross section, elastic cross
section, and slope of the elastic peak.

First we consider the geometric model. The fundamental as-
sumption of the model is that the only dimensionful parameter is the
total cross section. It follows that 0.i/0to¢ and L. /0,: must be energy
independent. While this model is successful in treating the ISR data, it
cannot contend with the energy dependence of these quantities observed
in going from the ISR to the SPS Collider.

Next we consider a generic Chou-Yang model with

I3

a(b, s) = %i(l — exp(—AN()), (4.60)

where (2 is some generalization of the specific form of Chou and Yang.
Then A measures the strength of the hadronic interaction and {} measures
the hadronic overlap density at a separation b. We take (I to be indepen-

dent. of the energy. The parameter A must be chosen to reproduce the

total cross section. Now if the cross section increases indefinitely, so does

A. The cross section is roughly 27 R2, where R is the value of b at which
0b) ~ 1/A. If 0 falls exponentially with 6, R ~ In A. Thus we obtain a
cross section growing as In? s if A varies as a power of 5. The amplitude
is, for large A, nearly i/2 for b < R, and nearly zero for b > R. We see,
then, that for this class of models, asymptotically the profile approximates

a black disk with growing radius.

The ratio of ¢.;/0¢,t, which asymptotically will be 1/2 in these
models, is only 0.22 at the SPS Collider, so we are not yet at the asymptotic
state of the black disk. The ratios
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X =0u/01t (4.61a)

And

Y =ZX/0t0 _ (4.61b)

are shown as functions of the total cross section in Fig. 4.4, where we

" have fixed the Chou-Yang mode! to have A = 0.845 GeV and varied
the remaining parameter, A. The behavior is not too different from the
observed changes between the ISR and the SPS Collider.

For models which become gray or black disks asyﬁxptot-ically, the
curvature parameter, C, must eventually become negative, as it is for the
sharp disk. In Fig. 4.5 we show the behavior of C' in the Chou—Yahg model
as a function of the total cross section. We note that C which is positive at
the ISR is indeed positive in the model at the appropriate cross section of
about 40 mb. However, in the model, C' becomes negative when the cross
section reaches about 100 mb. Thus we expect that the value of C will
change sign around the energy region of the Tevatron Collider. For this
reason, it is important for expérimenters to measure diregtly the ehergy
dependence of C in going from the ISR to the Tevatron. The prediction
that it will change sign is more general than the Chou-Yang model. It is
the consequence of the nucleon-nucleon profile becoming more and more
that of a disk.

In Fig. 44, we see that the curves for X and Y cross when
Otot &~ 85mb. A Gaussian shape has C = 0 and X = Y. Not surprisingly,
we find in Figs. 4.4 and 4.5 that X = Y mnear C = 0. Of course,
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asymptotically, the model becomes that of a black disk and X eventually

becomes equal to )" again.

While we are concerned primarily with ifer)' low momentum trans-
fer, it is instructive to use the Chou-Yang model to make some predictions
at larger momentum transfer (Block and Cahn, 1984). As stressed above,
the Chou-Yang model has no intrinsic energy dependence. It acquires
energ‘\f dependénce through the variable A of Eq.(4.56) which is adjusted al
a givén energy to reproduce the correct total cross section. Once A is deter-
mined, there are no remaining fl‘ee'parameters. In the neﬁ Section we
shall make predictions for the total cross section as a function of the center
of mass energy. Anticipating thése results, we can use the cross section at
each of sefveral energies to fix the model and thus predict the differential
cross section. We show in Fig. 4.6 the impact parameter amplitude at
several energies, and for comparison, a gray disk with the same total cross
section. The cross section is taken from the the fits of Section V. The slope
parameter, B, is then determined in the Chou-Yang model. The gray disk
has been chosen to reproduce the same values of 04, and B . In Fig.. 4.7 we
display the differential cross sections generated by these impaét. parameter
distributions. If the amplitudes are taken to be purely imaginary, there
are sharp diffraction minima, in fact,. zeroes. To obtain more realis-
tic results, we have incorporated small imaginary parts by the prescrip-
tion of Martin (1973). If f is the purely imaginary amplitude'and we

wish to give it a real part so that a particular value of p is achieved, we use

2 N .
)_ (4.62q)

at/)
dt

o (&) e+
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For the sharp gray disk with @ = iA/2 inside a radius R, this yields

dog o a2pd Ji1(gR) § P w2 :

Figure 4.7 shows that at the SSC (40 TeV), the differential cross
section for elastic scattering is likely to be indistinguishable from that
of a black disc. The location of the first minimum moves in rapidly for
the Chou-Yang model until it is nearly as close in as in the gray disk
model. The general arguments above demonstrate that this must happen
eventually. Hence we define “asymptopia” as the energy domain where the
elastic differential cross section is essentially indistinguishable from that
of a sharp disk. What the numerical study reveals is that the coalescence
of the models with the sharp disk will take place with the SSC machine

presently being designed.

At the ISR and SPS Collider, the observed values of C are posi-
tive. Figure 4.7 shows that C should be negative at the SSC, accord-
ing to the Chou-Yang model. A quantitative indicator of the onset of
“asymptopia” is the energy at which C = 0 and our fits indicate that this
occurs very close to the energy of the Tevatron Collider. This progression
can be viewed in Fig. 4.6, where the profile of nucleon-nucleon system
is seen to develop a characteristic “flat-top”, starting at the Tevatron

Collider energy.

We shall find in Section VI, that when our fit to the experimental
values of the slope is extrapolated to very high energies, the values of B
thus obtained are in substantial agreement with those calculated from

the Chou-Yang model, using Eq. (4.62a). In conclusion, we have used a
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model-free analysis of t = 0 and very small |¢| data at lower energies to
predict. the parameters needed to fix differential elastic scattering cross
sections at very large /s and at large —t. We consider this much more
reliable than using the dip structure at large —¢ of do, /dt (at low /s)
to determine the energy dependences of the total cross section and the s
values, which are either undefined or ill-defined in most models of elastic

scattering cross sections.

D. Analyticity

The physical amplitude for elastic scattering, f, is defined for
s > 4m? and —4m? < t € 0. It is possible to show that f(s,t) is
really the limit of a more general function in which s and ¢ may take on
complex values. ( See Eden {1967) for a comprehensive introduction and

Martin and Cheung (1970} for a thorough treatment. See also, Jackson

- (1960,1973).) In particular, if we fix t = 0, then f(s,t = 0) is the limit of

an analytic function 7 according to

fpp(s,t =0)= lin(x) F(s+ie,t =0), (4.63)

where ¢ — 0 from positive values. Not only is the pp amplitude a limit
of an analytic function, the pp forward amplitude is another limit of the
same analytic function. The principle of crossing states that to go from
the pp amplitude to the pp amplitude we merely replace p, by —p,4 and
vice versa. This is equivalent to interchanging u and s. The pp amplitude

is obtained from 7 by

_"P’l_



- —— — i —_8 '2— ] = .
fpp(s,t 0) (h_r,%f( s+ 4m ie,t = 0), (4.64)

again with ¢ > 0. Now, for t = 0, u = —s + 4m? so we see that the pp
amplitude is found by evaluating 7 using u as the variable, rather than

s. This symmetry is clearer if we use as a variable

E=(s— u)/4m. . (4.65)

For t = 0, E is the lab energy for pp scattering. The pp to pp interchange
reverses the sign of E. More precisely, the physical amplitude, fem, at t =
0, is the limit of an analytic function, ¥, of a complex variable E, with cuts
on the real axis. The physical amplitude for pp scattering, f.m(E.t = 0).
is the limit of #(FE <+ f¢,t = 0) as ¢ — O from positive values. The pp
amplitude at t = 0 is obtained as the limit of 7(—E — i¢,t = 0), again

as € — 0 from positive values (i.e., from below). See Fig. 4.8.

Unitarity relates the imaginary part of the elastic scattering

amplitude to a sum over all physical states with the same energy. E.

See Eq. (4.12). It is possible to show that when we continue the elastic

amplitude in the complex variable E, the imaginary part of the elastic
amplitude for E next to the real axis vanishes if there is no physical
state with energy E which communicates hadronically with pp or

PP . Since pp communicates with the 7 7 channel (and the channel
with a single 7) there is an “unphysical region” on the real axis where
Im¥ 7 0, even though there is no physical elastic scattering at this
energy. (Actually, this region can be probed slightly by studying pp atoms

whose binding energy reduces the mass below 2m.)

From these considerations we conclude that the cut structure of
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the forward elastic scattering amplitude is as follows. The right hand cut
begins at threshold, E = m. The single pion pole occurs when v = mi,
that is, when E = m — m2/(2m). The two pion cut begins when u =
4m?, that is, when E =m - 2m?2 /m. Between the left hand cut and the
right hand cut, except at the pion pole, the amplitude is real on the real
axis.

A function like ¥ which is real on a segment of the real axis is
called real analytic. The Schwarz reflection principle states (Titchmarsh,
1939, p. 155) that if 7 is real analytic, then #(z*) = 7"(z). Thusif 7 has
a cut on the real axis, its imaginary part changes sign in going from one
side of the cut to the other, but the real part is the same on both sides.

In other words, the discontinuity across the cut is imaginary.

The Schwarz reflection principle is quite easy to prove. Suppose
F(z) is analytic in some region and that this region includes a finite
segment (however small) of the real axis. Now deﬁneb a function 6(:)
by 6(2) = F*(z*). We can show that § is in fact an apalytic function
of z: ¥ has a power series expansion 7(z) = ap + a,2 4+ a22% + --- s0
§(2) = ag +ajz +azz® + -

radius of convergence, so § is analytic. Moreover, by construction 7 and

Clearly the two series have the same

G coincide for values of z on the real axis. However, by the principle of
analytic continuation, the function is uniquely determined by its values on
a segment so § and 7 are the same. Thus §"(z) = 7*(z) and §°(z) =

F(z%), s0 77(:) = 7(z"), as we wished to show.

In practice, we shall use real analytic functions which have a
simple cut structure. The left hand cut will begin at £ = —m, jusf. as

the right hand cut begins at E = m. Ignoring the unphysical region of

— 46 -



the pion pole and the two pion cut is permissible, since we are interested

in the high energy region, which is far from these singularities.

It is very useful to define two amplitudes which are combinations

of the pp and pp elastic amplitudes:

fj; = %(fp'ﬁ + fpp)- (4-66)

The amplitude f is even under E - —E, while f_ is odd.

Consider, as an example, a prototypical function possessing the

analyticity properties of scattering amplitude,

6_(E)=(m+ E)* —(m— E)°. (4.67)

This function has branch points at 4 m. We can take the branch cuts to
extend from 7 to infinity and from —m to negative infinity along the real
axis. We define the function so that it is real along the real axis between
-—m and m. This is the behavior appropriate.to a forward scattering
amplitude. See Fig.4.8.

Just above the right hand cut,

G_(E)=(E <4+ m)* — (E— m)*exp(—ina), (4.68)
and for E » m,
G6-(F)~ 2i sin(ﬁa/Q)lEl"’ exp(—ira/2). (4.69)
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while just below the left hand cut

G_(E)=(—FE — m)* exp(—ima) — (—E + m)*, (4.70)

and for —F » m,

6—(E)= —2isin{ra/2)|E|* exp(—ima/2). (4.71)

The phases are explained in Fig. 4.9. If §_ were the continuation of
the pp amplitude, Eqs. (4.68) and (4.69) would give the pp amplitude and
Eqgs. (4.70) and (4.71) would give the pp amplitude. Clearly the amplitude
is odd. It has all the properties we want for odd part of the forward scat-
tering amplitude. Just below threshold, it is purely real. The thresholds
are in the correct place if we ignore the unphysical cuts (as we shall do
henceforth). From this example, we infer that odd amplitudes which be-
have asymptotically as E* have the phase 7exp(—ima/2). This inference
is made rigorous by the Phragmen-Lindelof theorem (Titchmarsh, 1939).
The corresponding analysis for even amplitudes shgws that their phase is

exp(—ima)/2), if their power behavior is E°.

Of course, not all amplitudes need have power law behavior. An

“example of an even function of a different sort is

§+(E) = Llin((m+ B/Eo) + In(0m — EV/Eo)),  (472)

which has the same cut structure as before and which we can define so
that it is real on the real axis between the two branch points. We then find
that above the right hand cut (and below the left hand cut), for £ » m,
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) We conclude this section with an illustrative list of simple analytic
. ir - - . . .
S+ (E)=In(p/Ep) — 5 (4.73) functions together with their asymptotic behavior. It is from these forms

that we shall eventually build our scattering amplitude.
where p is the laboratory momentum.

General Form High Energy Form above
Right Hand Cut

Another useful even function is

54 =\/tn+E)m— B). (4.74) G4+ =(mM+EP +(m—EF  E®exp(—ira/2)2cos(ra/2)
Above the right hand cut, we define this function so it is precisely —ip. 6+ = /(m+E}m—E) —iE
Asymptotically, this is just —7E, in agreement with our general result for
even functions with power law behavior. 64 = kllog((m — E)/Ey)
+log((m+E)/E0)] log E/m — i7 /2

G- =(m+Ey¥ —(m—E)y 1E¥ exp(—ina /2)2 sin(ma/2)

From this table we can recognize the traditional forms for Regge
behavior. A forward amplitude varying as E¢ contributes to the total
cross section as E®—1, If the amplitude is even (the pomeron, f, As),
the phase of the amplitude is exp(—ima/2). Thus for the usual pomeron
with o = 1, the phase is —¢. For odd amplitudes (p,w), the phase is

1 exp(—ima/2).

E. Integral Dispersion Relations

The traditional means of testing analyticity of the scattering
amplitude to is use Cauchy’s theorem to obtain a dispersion relation, that
is, a relation between the real and imaginary parts of the amplitude. (See
Jackson, 1960, and Eden, 1967, for a more complete discussion) Let F(E)
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be the analytic continuation of f(E,t = 0), so 7 is analytic in the cut £

plane. Then we can write

'
where the counterclockwise contour does not cross the cuts or encircle
any poles. {As explained above we ignore "unphysical singularities™ like
the single pion pole and two pion cut. Because we are only interested in
high energies, these have little influence on our answers.) We choose a
contour which passes just above and just below the cuts on the real axis,
as shown in Fig. 4.8. If the contribution from the semicircular contours

at oc vanish, we have

L1 /°° ,F(E' + ie) — F(E! — ie)
F(B) = QTTI.[. m dE E'— E
" G F(E + i) — FIE — z'e)]
) E'—E '

(4.76)
If ¥ = 74 is even, so F(E' + i¢) = F(—E' — i¢),

Fr(E)= %[n dE'Im#L(E' + ie)[El 1 5 + I }*_ E], (4.77)

while if ¥ = 7_ is odd,

1 1
'—FE FE4+FE

7‘(E)=71r7/ dE’Im}'_(E’-I»ie)[E ] (4.78)
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The integrands have singularities at. E' = 4 E which just produce
the identity ImF = Im7. The real part of ¥ is found as a principal value
integral. Thus

!

- 1 [~ 2

1 oo

]Imf_(E’). (4.80)

If the integrals (4.79) or (4.80) do not converge because of the
behavior of f as E — oo, or because of the contributions from the semi-
circles at infinity, we must modify the approach slightly. Consider the
odd function §_ = F4 /E. If we insert this in Eq. (4.78) and take notice
of the pole at E = 0, we find

2E?

m]ﬁlf+(El). (4.81)

o0

Refy(E) = Ref.,.(O)—i—P%fm dE'
(Here the amplitude at f4 (0) really is the analytic continuation, 4 (0), of
the physical amplitude.) This is called a singly subtracted dispersion rela-
tion, and the first term on the right hand side is called a subtraction con-
stant. Clearly the subtracted dispersion relation has better convergence
properties than the unsubtracted relation. On the other hand, there is an
additional constant to be determined. If we try the same trick for the odd
amplitude 4+ = 7_ /E, we find that we just reproduce the unsubtracted
relation (4.80). Instead we must use §.. = F_/E2. With care exercised

-at the pole at E = 0, we find the doubly subtracted dispersion relation

for the odd amplitude



oo

) — 1 l/ ' 2E®
Ref—(E)=ERe/_(O)+ = | dE' mr s

Imf_(E'), (4.82)
where f'_(0) denotes d7— /dE, the analytic continuation, at E = 0. We
see that here the subtraction results in a term linear in E. If the odd
amplitude grows as fast as E, it is this doubly subtracted dispersion
relation which must be used.

The importance of these dispersion relations is that both Ref and
Imf can be measured for the forward direction. The latter is measured
throﬁgh the optical theorem . The former is obtained by measuring the
interference between the hadronic and Coulombic amplitudes at very small
{t], which yields p, the ratio of the real to the imaginary part of the forward
amplitude.

The dispersion relations above may be combined to give relations
for the real part of the pp and pp amplitudes in terms of the measured
cross sections. We expect the total cross sections not to grow faster than a
power of log s, so the even dispersion relation requires a single subtraction.
If the difference of the cross sections falls as a power of s, the odd dispersion
relation needs no subtraction. We then combine Eqs. (4.80) and (4.81)
and the optical theorem to find (note that fpp(0) == fpf)'(o))

FE ® dE ,[Upp(El) Upﬁ(E,)

Refpp(E) = Refpp(O)+ P |  HPlg—F— E,+E], (4.83)

E © 4K ,[OpF(E’) Opp(E')

]. (4.84)
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If the difference of the cross sections does not decrease to zero
at large F, we must use the twice subtracted odd dispersion relation,
Eq.(4.82). The result is

Refpp(E) = chpp0)+E fpp

0+

1 E’E2 1
PE’?’/ EP [E’ °””+E'+E"”J

(4.85)
Refyp(E) = Refpp(0) + E 0+
1 dE’E2 1 1
Przl. B2 [E’ gt By
(4.86)

Note that dfpp(0)/dE = —dfpp 0)/dE where more properly we should
write d7 /dE, and that fpp (0) = fpp(0).

On occasion, some care must be taken with the contours at
infinity which we casually ignored above. Consider for example the analytic
function E itself. This is manifestly odd and has no imaginary part. The
dispersion integral along the real axis, even unsubtracted, certainly con-
verges, since it is identically zero. The unsubtracted dispersion relation ,
Eq. (4.80), would then say E = 0. The problem is that the contribu-
tion from the contour at infinity cannot be ignored. The twice sub-

tracted dispersion relation, Eq. (4.82), correctly gives the identity £ = E.

We review briefly some applications of dispersion relations to pp

and pp scattering. The first use of a dispersion relation for analyzing pp
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and pp elastic scattering was made by P. Soding (1964). He introduced a
singly-subtracted dispersion relation, taking into account the unphysical
region by a sum over poles. Experimental cross sections were inserted into
the relation for /s < 4.7 GeV, and asymptotic power laws were used to
parametrize the data for higher energies. He calculated p values for both

pp and pp scattering. At that time, experimental data only for /s <
6 GeV were available.

The next use of dispersion relations, by Amaldi et al. (1977),
occured after the ISR data had shown that the pp cross sections were
rising. The data then available included pp cross sections and p values up
to /s < 62 GeV and pp cross sections up to /s ~ 15 GeV. They used
the singly-subtracted relations Eqs (4.83), (4.84).. Contributions from pole

terms and the unphyscal region were neglected. The authors did not use

experimental cross sections directly, but rather chose to parametrize them

by

O’pp = Bl + C'IE'.V1 + B2 ln"’ § — C2E—l/2, , (487)

and

0y =By + CLtE™" 4+ ByIn" s + CoE™", (4.88)

where E is in Gev and s is in GeV2. These forms were then inserted into

the dispersion relations.

From a »? fit made simultaneously to the data for 0,,, 0,7, and

ppp. for the high energy region 5 < /s < 62GeV, the parameters By, C,
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1’1, Bz, v, €3 and 15, as well as the subtraction constant, were extracted.
However, there were several other parameters fitted that considerably

smoothed their results (and incidentally lowered the x2 per degree of

" freedom substantially), by allowing the normalizations of various data

sets, including the p values, to be varied within the range allowed by
the systematic errors. In addition, in the forms (4.87) and (4.88) they
arbitrarily chose as a scale for s the value 1 GeV2. A more proper
procedure would be to use the form log7(s/so) and fit hoth 4 and sq. That
the fit found by Amaldi et al. is successful is probably fortuitous. The
authors also did not fit the p(pp ) data that then existed. Since the time
this work was published, precise experimental measurements of ¢ and p
for the pp system have been made at high /s. These new measurements

now allow one to pin down accurately the choice of parameters.

Dispersion relations were applied to the pp and pp system by
Del Prete (1983) who considered the possibility that the difference of the
cross sections grew asymptotically asIns. As demonstrated above, in such
an instance the twice subtracted dispersion relations are required, since
the integrals in Eqs. (4.83) and (4.84) are divergent. Del Prete claimed
to have used the singly subtracted dispersion relations of S6ding, which
do not converge for growing cross section differences. Presumably, the
reported finite results quoted are artifacts of the numerical integration

scheme employed.
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F. Differential Dispersion Relations

The integral dispersion relations require extensive numerical work

for their evaluation. At low energies where the cross sections are rapidly

varying near resonances, this is an unavoidable problem. At higher energies,

the cross sections are smooth and this can be exploited by assuming that
the cross sections are well described by a simple function. This was the ap-
proach of Bronzan and co-workers (Bronzan, 1973; Bronzan, Kane and
Sukhatme, 1974; Jackson, 1973) who obtained and utilized “differential
dispersion relations” . Before we can derive these approximate relations, we
need a different sort of integral dispersion relation, one which gives the im-
aginary part as an integral over the real part. These relations were first
employed by W. Gilbert (1957). These “reverse” dispersion relation can be

obtained by exploiting the even function

G4 (E) = (m® — B2y~ (4.89)
where G4 is defined to be real on the real axis for —m < E < m. This
is just the reciprocal of the function given in Eq. (4.74). Thus above the
right hand cut, 64 = —i|E? — m2| ™"/, Now if 7, is the analytic
continuation an even amplitude, f4, we can construct the even function

W (E) = §+(E)F+(E). (4.90)

Ignoring the possible need for subtractions, we have the usual dispersion

relation

P [ 2B ImN (E' 4+ ic)
Rel4(E)= r dE 57 Rz , (4.91)
or, for E just above the right hand cut,
2K ]Zef (E’) E2 —m2
4

Imfi(E)=—— / dE ot (4.92)

For £ »» m, this gives the approximate relation

2ERef4(E'

Imfi(E)=—= / dE' f*ég ), (4.93)

This looks like the dispersion relation for 7, except that the

real and imaginary parts are interchanged and a minus sign is introduced.

From Eqs. (4.80) and (4.93), we can derive the differential dis-
persion relations. These are approximate relations which are much easier
to employ than true dispersion relations, since they involve only deriva-
tives. The differential dispersion relations can be obtained from the odd
dispersion relation: ‘

Ref_(E) = —/ dE'wImf—‘E". (4.94)

Now let E' = mexp(¢ + u), E = mexp(¢), and expand

1
Imf_(c+n)= Emn"Imf‘_f)(g). (4.95)



Now of course we cannot really do this because there are singularities
along the real axis, but we ignore these niceties and assume E > m, to

write

_ 1 2exp(2¢ + 1) Lonrmtn)
Ref_(¢)= ﬁ/_m dnexp(2§+2n)_exp(2g); 7 Imff (s)-

(4.96)
Only the odd terms contribute. Let X be the operator 8/d¢.
Formally,
1 f” sinh X
—(¢)= - d —(¢). 97
Ref—(¢) = — oo by Imf_(¢) (4.97)

We treat the definite integral as if X were a real number |X| < 1, so that
the integral above converges, and we find (Gradshteyn and Ryzhik, 1965,
p.344)

Re/—(5) = (1an ) Tm (o), (4.98)

or

™0 \rmi—(¢). (4.99)

Re —(5) = (tan S

A similar treatment of the Gilbert dispersion relation, Eq. (4.90), gives

79
Imfi(c) = —(tan -;E)ke,ﬁ_(g). (4.100)
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The above relations are tractable only when we make a fit to the
data using a simple function. For example, if f = aE“, the relations can

be evaluated exactly. For the odd amplitude we find

ReA = tan -’izﬁzmA, (4.101)

i.e. A= —iexp(—ima/2)|A|, as already established in the table in Section
C above., Similar results are obtained for an even function behaving as
a power and for a logarithmic function. So far nothing new has been
achieved. If more complicated functions are used, it is hard to evaluate the
power series in the differential operator, and the series must be truncated
to give an approximation. This prompts the question, why not just use the
simple analytic forms themselves and by-pass the differential dispersion

relations?

G. Use of Simple Analytic Functions to Fit
the Forward Amplitude

We shall circumvent all the difficulties of dispersion relations and
differential dispersion relations by the direct use of analytic functions to
fit the forward pp and pp scattering amplitude. This technique was first
employed by Bourrely and Fischer (1973). Since that time, the quality
and extent of the of the data have improved enormously, especially for

pp - Thus, significantly better results can now be obtained.
1. Even Amplitudes

The form we have chosen for the even amplitude is
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B(In2mp/se — im/2)?

arfy = —ip|A+ 14 a(ln2mp/sg — 7 [2)?

+ ' 4- Regge term,
(4.102)

where the Regge term [shown in Eq.(5.2a) with coefficient C] gives a
decreasing contribution to the cross section at high energies and where,
as usual, p = VE2 — m2. For ¢ = 0, the form is quite simple at high

energies, where s &~ 2mE, and gives (neglecting the falling Regge term)

04 = A+ Bllogs/sy — 72 /4), (4.103)

which saturates the form of the Froissart bound discussed in the next
section. The form is similar to that used by Amaldi, et al. (1977) except
that so is left properly as a free parameter. Permitting the parameter
a to take on small positive values allows for a deviation from this form.
Indeed, asymptotically the form gives a constant cross section, o4 (00) =
A+ B/a. The constant C’ is permitted by the requirements of analyticity
for the even amplitude and corresponds to a portion of the subtraction
constant in the usual dispersion relation treatment. The parameter C' is
unimportant in the region of interest since it lacks the factor of p present
in the dominant terms. We shall also see that very fine fits are obtained
with @ = 0. In fact, adequate fits are obtained even without the Regge
term. This is possible since the log25/so simulates the falling Regge piece
for s < sg. Thus we find just three parameters, A (in mb), A (in mb),
and so(in GeV?), are needed to parameterize the even amplitude . The
parameter a is useful, however, for it will provide a means of estimating
how nearly the data conforms. to an idealized behavior with Froissart
bound form.
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2. Conventional Odd Amplitudes

The odd amplitude is known to be dominated by a piece with
the approsimate behaviour s!/2 ( that is, 0,5 — Opp ~ s~ 1/2). We write

in the high energy limit

4r f_ = Ds%explin(1 — @)/2], (4.104)

where the power, ¢, and the magnitude, D, of the amplitude are taken as

parameters.
3. Unconventional Odd Amplitudes - The Odderons

While the forms given above are quite adequate to describe all the
high energy data, we shall want to consider some less conventional forms
for the odd amplitude. If oy, ~ log?s, the fastest growth allowed by the
Froissart bound, then A¢ may grow as fast as logs {see next section). We

consider three prototypical odd amplitudes:

1O — (O, ) (4.105a)
U = ) Elog2mp/se — in/2), (4.1058)
@ = ) E(log2mp/so — in/2)?, (4.105¢)

where the ¢’s are real constants. We shall refer to the amplitudes in
Eqs.(4.105) as odderon-0, odderon-1 and odderon-2, respectively (Lukaszuk
and Nicolescu, 1973; Kang and Nicolescu, 1975;Joynson et al., 1975). The
full odd amplitude is given by the sum of f__ from Eq.(4.104) and one of
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the terms from Eq. (4.105). Odderon-0 affects the p values but not
the cross sections, being entirely real. Odderon-1 gives a constant cross
section difference, while odderon-2 gives a cross section difference grow-
ing as logs. In a later section, we analyze the existing data to deter-

mine to what extent an odd amplitudes of the above type can be excluded.
¢

H. Asymptotic Behavior:
“Pomeranchuk Theorems” and the Froissart Bound

1. The Original Pomeranchuk Theorem

When the highest energy data available came from Serpukhov, it
seemed that the pp total cross section was becoming constant. In such cir-
cumstances, the original Pomeranchuk theorem would apply (Pomeranchuk,
1958). This theorem states that if pp and pp (or more generally, ab and ab )
cross sections become constant asymptotically and if the ratio of the
real to the imaginary part of the forward scattering amplitude increases

less rapidly than logs, the two cross sections become equal asymptotically.

It is easy to understand this result by considering a class of
examples. If pp and pp cross sections become constant, then f4 ~ —iE.
If f_ grows slower than this, then surely the difference cross section falls
with E. Suppose then that f_ grows asymptotically as E(log(s/so) —
i7/2)?. Certainly 8 cannot be greater than one. If 8 = 1, the difference
cross section is asymptotically a non-zero constant, but the ratio of the
real to the imaginary part grows as logs, violating the conditions of the
theorem. If 3 < 1, the real part over the imaginary part grows as (logs)?,
that is, less rapidly than logs, but then the cross section difference goes

as (logs)®—1, that is, it falls to zero. Thus, we see that the Pomeranchuk
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theorem holds for amplitudes of this class.
2. The Froissart Bound

Since the early operation of the ISR it has been known that the
PP total cross section starts rising after attaining a minimum of about 38
mb. The rate of the rise was found to be about as log®s. The fundamental
result of Froissart (refined by Martin) states that this is the fastest rate
which is permissible asymptotically. We present here a derivation of the
Froissart bound based on two fundamental results which we take as given

(Martin and Cheung, 1970 and references therein):
i. The scattering amplitude f grows no faster than s2.

ii. For fixed s (i.e. k?), the amplitude is analytic in the region lql2 <

2
4my.

We use (ii) and evaluate f at ¢ = 2im, using Eq.(4.21). Thus,

_ P 2 a-
1= 2 [ esplia-b)atp,s)

= % f bdb d¢ exp(2m »bcosd) a(b, 5)

=2 f bdbI,(2m - b) a(b, s) < Cs. (4.106)

We seek to maximize the cross section, subject to this constraint. Clearly
it is best to make a(b, s) purely imaginary. Since the Bessel function /¢(z)
is an increasing function of z, it is best to keep all the contributions at
the lowest possible value of & in order to minimize the above integral. For
these reasons, we take a(b,s) = i for b < b, and a(b,s) = 0 for b > b..
Thus we have
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: .
f= 2p1'/ dbblo(2mab)
0

iph o -
= 2;2,;11(2772,,65) < Cs2. (4.107)

Now using the asymptotic expression I,(z) — exp(z)/v2rz for large z,
we see that

(2m,bc)1/2exp(2m,rbc) < constant X s. (4.108a)

Thus since 2m.b, > 1,

1
2m,

be =

[log(s/s0) — loglog(s/so)], (4.108b)

where sg is an unknown scale.

Now using Eq.(4.23), we find, neglecting the slowly varying term
loglog(s/sg),

Otor = 4 / d26Im a(b, s) = 4wb>
= T (log(s/50))® =~ 60mb (logls/s0))". (4.109)
T

It should be noted that the form for a(b,s) which saturates the bound
is a peculiar one. First, a cuts off sharply. We shall see that this is a
rather general feature of all profiles which lead to log®s growth of the

total cross section. In addition, where ¢ is non-zero, it is equal to 7.
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Thus the scattering is purely elastic. It is more common in models to
find a totally black dise, with @ = /2. In addition, the a chosen above
extends as far in impact parameter space as allowed by analyticity. If it
extended a distance growing as logs but with a lesser coefficient, a smaller
cross section proportional to the square of this coefficient would result. In
particular, a black disk with radius approximately b. /7 would give a cross
section growing as 0.6 mb log%s, the value we shall find from the data

analysis of the next Section.
3. The Revised Pomeranchuk Theorem

Now that cross sections are seen to rise with increasing energy,
we need a revised Pomeranchuk theorem. Suppose the pp and pp cross
sections grow as (logs)?. Then we can show that the difference of the cross

sections cannot grow faster than (logs)(?/2) (Eden, 1966; Kinoshita, 1966).

The proof goes as follows. Referring to Fig.1a, we see that since
the amplitude a(b) must lie in the Argand circle (we drop the indication

of the energy at which the amplitude is evaluated),
|Re a(b)|* < Im a(b). (4.110)

As we saw in the demonstration of the Froissart bound, the
impact parameters that contribute significantly to scattering must lie
within some value b, which grows as logs. Thus we can approximate the

scattering amplitude, Eq. (4.21) as

. b
flg=0= %/ d?b a(b) ~ 2p/ bdb a(b). (4.111)
0
It follows that
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be
|Ref(0)] = 2p /0 bdb Re a(b)

be
< Qp/ bdb|Re a(b)|
0

be
<2 /0 bdb[Im a(b)]/2. (4.112)

Next we apply the Cauchy-Schwartz inequality to (4.112) to obtain

1/2

be 121 e,
|Ref(0)] < 2p[/0- bdbIm a(b)] [/; bdb}
Ot \/2f 1 2 1/2
< 2p( &7 ) (-24)‘)

< constant - s - (logs/sq)"/?(logs/so). (4.113)

Now the generic form for the odd amplitude is

f— ~ s(logs/s, — im/2)". (4.114)

Comparing Eqs. (4.113) and (4.114), we find that

¥ <A/2+4+1. (4.115)
Thus the difference of the cross sections goes as
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Ao ~ (]ogs/so)”"_1 < constant X (logs/so)?/?, (4.1186)

as we wished to show.
4. The Fischer Theorem

We see that growing cross section differences are allowed. Is there
any way other than just looking at the existing data for cross section
differences to infer whether the cross sections are going to approach each
other eventually? Thexje is a theorem, due to Fischer and co-workers
(Fischer et al.,, 1978; Fischer, 1981), which states, in part, that if above
some energy, the signs of Imf!°* and Ref'¢ remain the same, then the
difference of the cross sections tends to zero. (However, if the difference
of the cross sections tends to zero, no conclusion can be drawn about the
relative sign.) Clearly this theorem is satisfied by the amplitude f_ of Eq.
(4.104), for 0 < o < 1. The addition of an odderon-1 or an odderon-2
amplitude leads to opposite signs for Imf%f and Ref!°t in the limit of
high s. This is, of course, in accord with the Fischer theorem, since these

terms lead to non-vanishing cross section differences.

It seems then, that by looking at high energy data for signs of the
real and imaginary parts of the odd amplitude, we might predict whether
or not the cross section difference will ultimately go to zero. The problem
is that at any finite energy, the contribution of one of the odderon terms -
might still be too small to have changed the sign of one or the other part
of the amplitude. That change could occur farther out in energy. We shall
see an example of this among our fits where the cross-over point occurs
near /s = 100GeV, while the data extend only to /s == 62GeV.
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5. The Cornille-Martin Theorem and a New Corollary

We have seen that as § — 00, 0p5/0;p — 1, Whether or not
0y5 — Opp — 0. Similarly, Cornille and Martin (1972a, b, ¢; 1974) have

proved that inside the forward diffraction peak (suitably defined),

dos Jdo .
d:"(s,t)/ d’t'p(s,t)-u, (4.117)

even though the difference of the cross sections at fixed ¢ may not go to
zero. We will illustrate this theorem by an example. Suppose the cross
section goes as logZs and that there is an odderon-2. Then both f4 /p and
J—/p go as (logs/so — ir/2)? at t = 0. We can imagine that the behavior
is similar for ¢ % 0. The odd and even amplitudes, however, are out of
phase by 7/2. The result is Athat

M+ + 11

1, (4.118)
|f+ — F=I?

so the differential cross section ratio goes to unity as required by the
Cornille-Martin theorem, although the difference of the differential cross
sections grows as log2s. A particular consequence of this theorem is that

the ratio of the slope parameters goes to unity, i.e.

Bpp/Bpp = 1. (4.119)

Tt is not the case that the ratio of the p parameters goes to unity.

Using the relation between the differential cross section in the forward
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direction and the total cross section, we derive a new corollary: the ratio

of the squares of the p values goes to unity, i.e.,

(ppp/rpp ¥ = 1. (4.120)

Indeed, for odderon-2, the two p values go to non-zero numbers which are
negatives of each other. » o

6. If the Total Cross Section Grows as log?s

For the cross section to grow as log?s, there must be contributions

to Imai(b, s) for values of b with a range varying as logs. Let us define

1
— : D)
be = 21”7"]0g(6/80)’ (4.121)
(z,s) = a(b = zb,, 5), (4.122)

where sq is fixed. Now from Eq.(4.103)

oo
/ dzs%a(z,8) < Cs. " (4.123)
0

This means that for ¢ > 1, a(z, s) must fall to zero with increas-
ing s. However, there must be some region z < 1 where @ remains finite
so that the cross section will truly grow as log?s, giving a contribution
{see Eq. (4.23))
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w ‘
7= 4zrb3/0 zdzI mi(z, s). (4.124)

Thus the piece of a(b, s) which gives rise to the log?s cross section
is most simply obtained by an @ which is independent of s and which
vanishes for z > 1. This excludes, for example, a Gaussian shape in

impact parameter space

a(b, s) = Aexp(— cb? /b2), (4.125)

which has an infinitely long tail. If there is a piece of the impact parameter
distribution which has a Gaussian distribution, it cannot contribute a
piece to the total cross section which grows as logZs. From the ansatz that
a(z,s) is independent of s, we can obtain a heuristic proof of the theorem
of Auberson, Kinoshita, and Martin (1971) that if the cross section grows

as log®s, then the amplitude is of the form

f ~ islog?sF(tlog%s), ‘ (4.126)
where F is an entire function (of its argument tlog?s) of order one-half.
(That is, F(z) is analytic everywhere in the finite plane and as |z] — oc,

|F} is bounded by cexp(c’lz]ll 2 with ¢ and ¢ positive constants). Now Eq.

(4.19) becomes a finite integral:

f~ sbf/ zdzralz, s)Jo(qb.2). (4.127)
0

-1 -

The theorem follows from the observation that the integral is
over a finite range and that the Bessel function is an entire function.
Asymptotically, for complex argument, the Bessel function Jo(z) is bounded

by an exponential , exp|:|. Thus the integral is bounded by exp(c’gb.) ~

exp(c' v/ —tlog?s).

From the representation of Eq. (87), we can derive results for the
slope parameter at t = 0. It is clear from the MacDowell-Martin bound
that if the total cross section grows as fast as log”s, so must B, since the
elastic cross section cannot grow faster than log?s. The same result can

be obtained by expanding Eq. (4.126) in powers of tlog®s

[ ~ islog?sla + btlog®s + - - -1, (4.128)

so that

B(s,0) ~ log”s, . (4.129)

in agreement with our expectations. If instead of taking t = 0, we fix
t 7% 0 and let logs increase, we have the exponential bound referred to
above. From the definition, Eq. (4.24) we find

B(s,t) < %20’|t11/210gs

< logs, (4.130)

where " = ¢/t—1/2 at fixed t. Thus ¢” becomes very large for very small .
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This non-uniform behavior was discovered by Martin (Martin, 1982). As a
practical matter, it still seems reasonable to use the form for B(s,0) even
at non-zero values of f since the other form. Eq. (4.130) is derived on the

assumption that ]t|10g2s , or equivalently [t|0;,¢, is large. In particular, if
' the differential cross section had diffraction minima, the limit with ¢ fixed

would correspond to measuring the slope outside the diffraction minimum.

While the form of the amplitude given by Auberson, Kinoshita,
and Martin is a powerful means of examining high energy behavior when
the cross section grows as log®s, it should be noted that the assumption
of this particular energy dépendence is critical. If the cross section grows
as log!%s, the proof fails. We are unaware of any weaker form of the

theorem which pertains to such circumstances.
/
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V. ANALYSIS OF t=0 AMPLITUDES

A. Conventional Amplitudes

We define 7 as the analytic continuation of the forward scattering
amplitude into the complex E plane, where E is the complex energy (E
is the pp laboratory energy if £ is real and > m, the nucleon mass). The
F’s are real analytic functions having cuts on the real axis from +m to

oo and from —m to —oo. We choose the normalizations such, for fits
without odderons,

AnFy =— \/(m-}—E)(-m — E)

{ 4 5 tllogl2mm & E)/so) + logtzm(m — E)/so)/2)?
1+ a{[log(2m(m + E}/so} + log(2m(m — E}/so)]/2}2

C - _
m[[?m(m + BN 4 2m(m — E)* 1]}
(5.1a)
and
47F_ = — \/(m +E)(7n —E)
D (5.18)

a1 a=—1 .
X W[[ﬂm(m +E)N"T — [2m(m— E)" |,

where 4, 8, so, a, C, u. D, and o are real constants to be fitted by the
data. Clearly, 7{(E)= 74 (—FE)and #_(E) = —7_(—FE), ie ., 74 is
an even amplitude and F— is an odd amplitude. To find the scattering

amplitudes for pp scattering, f4 and f_, we evaluate 74 (E 4 i¢) and
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F—(F + 1¢), in the limit of real £ and ¢ — 0 (for the pp amplitudes, we
could evaluate the ¥'s at. — E— ¢, or, correspondingly, use the appropriate

symmetry properties of the #'s). We obtain,

Bllog(2mp/so) — im /2
1+ aflog(2mp/sq) — im/2]2

4}—;Tf+ =i{A+

+ C[((Qm)(E — m))F Leir(1—m)/2

(((Qm)(E + m)~t — ((2m)(E — m))"_l)
+ 2sinmu /2

(5.2a)

and

2 - = D(myE — myreTu=er2

2cosTa/2

L (@mUE + )" — (2m)E — m)* }

(5.2b)

The optical theorem relates the cross sections o+ and o~ to the above
by
T
ot = -pizm f+ . (5.30)

and
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o 4%Imj_, - (8.3b)

where p is the laboratory momentum. Hence, the imaginary portions of
{(5.2a) and (5.2b) give the appropriate cross sections 6t and o~ from

which we form

- |
o(pp) = o) ';'” ) - (5.4a)

and

(et —o0™)
—

The formulae (5.2a) and (5.2b) simplify greatly in the limit of £ > m,

a(pp) = (5.4b)

where s is given by s & 2mE =~ 2mp. Using the notation 7 for the limit

of fas E — oo, we obtain

logl(s/so) — im /2]
1+ aflog(s/so) —~ in /2]

477"74_ = i{A+ fij 5+ Cs”-lei”(l—”)/z}

(5.5a)

and

: 171?_ - D{Sa—-leiﬂ'(l—a)/Q}’ {5.58)
p

forms discussed in Section IVF. If we put 2 = 0 in (5.5a), we find by
inspection of the real and imaginary parts of (5.5a) and (5.5b), the very

simple and useful formulae,
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. e
o(pp) = A+ ﬂ[log‘s/so - T]

+ C'sin(%‘i)su—l + Dcos(%‘i)sa—xy (5.6a)
o(pp) = A+ p[log-'s/so _ 7;_2]
+ C-'sin(%)se—x _ Dcos(%’)sa—x, (5.6b)
p(ppi — fmlogs/so — Cm(’; % i))S““ + Dsin(ro B e
App) = Priogs/so = Ceostmp/2sh 1 — Dsin(ma/2) (6

o(pDP)

We have essentially used the forms (5.6a-d) in our earlier work (Block and
Cahn, 1982a) where we introduced only the coefficients A, 8, s¢, D, @ and
a. We interpret the even amplitude Cs#—! as an even Regge exchange
term, with the odd amplitude Ds*~! as an odd Regge exchange term.
The term in 3 gives the log®s rising cross section, and A corresponds to
a constant cross section. It will turn out that the coefficients using (5.5a-
b), i.e., using (5.6a-d), are nearly identical to those obtained using the
kinematically correct equations (5.2a-b). The only important difference
is that (5.2a-b) give an improved x? for the fit. This is because the low
energy kinematics (the cut structure in E) is treated correctly in (5.2a-b)

for /s ~ 5 GeV, where they are of importance. For /s > 10 GeV, the
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results using either (5.2a-b) or (5.5a-b) are numerically indistinguishable.
However, the introduction of an even Regge amplitude as an alternate
description of the date is a departure from our earlier treatment. The
logzs/so term in the even amplitude, for s < s,, simulates this term in
the cross section. We have fixed the power u to be 0.5, since we expect it .

to be about the same as «, which turns out to be ~ 0.5.

Clearly, setting ¢ = 0 in (5.2a) gives rise to a cross section which
continues to rise indefinitely as log®s/so. The introduction of a non-zero
a in (5.2a) gives us a functional form which will have the cross section rise
locally as log®s/so (in the energy region 5 < /5 < 62 GeV), if ¢ < 1.
However, as s — oo, i.e., at a very high energy, the cross section will
fiatten out and tend to a constant value, A+ (8/a), for positive a. Thus,
we model the case where the Froissart bound is not truly saturated (it
rises as logzs/so only locally), and eventually, the cross section rise stops,
going to a constant cross section at oo. We consider this extreme case a
measure of the possible error due to extrapolation beyond the region of
the fit, 5 < /s < 62 GeV.

The fits were made using seven different types of experimental
qnantities o(pp), o(pP), Ap, Aa, p.v, p(PP) and p(pP), along with their
associated experimental errors (we define Ac = o(pp) — c(pp). Ap =
p(Pp)— p(pp) and pg., = [p(PP) + £(pP)l/2). The x* was minimized using
the seven quantities and their quoted errors. No attempt was made to
adjust any of the data systematically. (For some related fits, see Gauron
and Nicolescu, 1983). The sources of the data used in the fits are given in
Table 5.1.

In our earlier work, we had included in f4 a real constant term
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(which of course does not contribute to o). Since its effect on the p value
~ is through the real portion of f4, its contribution is proportional to the
_ constant term divided by p, and its contnbutlon is vanlshmgly small in
our energy region of interest. Thus, lts 1nﬁuence is neghglble and we ha\e

neglected it in our present work.

The results of our various fits are suminarized in Table 5.2. For
the cases where C' = a = 0 (Fit #1), we get an excellent reproduction of
the data using 5 parameters, A, 3, so. D and a, with a 2/d.f. (x2/degree
of freedom) of 1.17 for 76 degrees of freédom. We obtain 4 = 41.7440.04,

. 8=10.664 0.01, s =338+ 8, D = —39.4 + 1.6 and a = 0.48 4 0.01.
It we introduce the even Reggeon (the term in C), we get, for.a = 0,
Fit #2, which has a x2/d.f. = 1.15 for 75 degrees of freedom. We find
A=41.30 4 0.28, 8 = 0.62 4+ 0.03, 5o = 294 + 28, D = —40.5 + 1.8,
=047 4 0.01 and C = 8.3 4 5.1, using 4 = 0.5. Again, this fit is in
excellent. agreement. with the data. .’.I"he‘units are sucn that o is in mb if
E, m, p and /s are in GeV. The introduction of a # 0 results in Fits #3
and #4. The x2/d.f. is not changed significantly, and we find very small
posit.is'e values of a, which are between 2 and 2.5 'sfnndard deviations from
zero. Clearly, had we found negative ¢ and |a] « 1, we could not have
used the fit for extrapolation, since 0 — A+ (8/a) as s — co. We find
o — 156 mb for Fit #3 and ¢ — 113 mb for Fit #4. All of the above
fits are plotted in Frgs 5. l(a) and 5.1(b) for C = 0, and in Figs. 5.2(a)
and 5. ‘)(b) for C 76 0 (the even Regge term). It is clear that these fits
reproduce the observed data in the energy region 5 < /s < 62 GeV. Also
appended to the cross section curves is the recent experimental value for
o(pP) at the SPS collider at /5 = 540 GeV (UA4-Collaboration, 1982b,
UAl-Collaboration, 1983), which we have corrected for a p value of 0.20.
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Our predictions-are in very good agreement with this measurement. We

remark parenthetlcal]v that for a = 0, the curves are essentially the same

" 'for Vs> 10 Ge\', if we use the simple formulae Egs. (5.6a) - (5. 6d)

We ﬁnd (Flgs 5.1(a) and 5.2(a); also see Table 7.1) that if the

v cross sections keep rising as log s/so, at ‘the Tevatron Collider (Vs =

2 TeV), 0; = 98. 3:[: 1.2mband 0, = 95941 .9mb, where the subscnpts
refer to the ﬁt number and the errors are those generated by the fit (#1
without an even Regge term, #2 with an even Regge term, with both
havmg = 0) At the proposed SSC Colhder (Vs = 40 TeV), we predict
01 = 1964 4 3.1 mb and 02 = 188 8 + 5.6 mb. The ¢ values predrcted
at the Tevatron Colhder are p1 = 0.198 4+ 0.002 and p, = 0. 193 + 0.004,
whereas at the SSC, they are p; = 0.1634-0.001, and po = 0.1604 0.002.

Again the errors represent the uncertainties in the fit given the functional

forms assumed. .

For the fits with a £ 0, the' predictions at /s = 540 GeV are

‘03 = 65.1 + 2.4 mb and'os = 61.6 + 2.4 mb, and p5 = 0.14 + 0.03

and py = 0.11 + 0.02. The cross section predictions at this.energy for
@ # 0 are too close to the values predicted by the ¢ = 0 fits. for the
present ~ 10% cross section measurement to dlstlngursh At Vs =2TeV,

the situation is more favorable and we predict the (a. # 0) values 03 =

"80.04+ 68 mb and 04 = 72.2 4 54 mb ‘with the corresponding values

p3 =0.11 4+ 0 03 and p; =-0.08 4 0. 02. Thus, measurements of o and p
for pp at the Te\atron colllder should easily distinguish between the cases

of a7 0anda =0, ie., Whether or not the cross section keeps rising

. aslog®s. At /s = 40 TeV (the SSC), the a # 0 predictions are o3 =
‘ 1078:}; 201mb and 04 = 89.0 4+ 12.8 mb, along with p3 =0.054 0.02 .

and p4—004:t001

4
4
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At the present time, the measurements of o(pp) at the SPS
Collider are not sufficiently accurate to distinguish between the cases of
a = 0 and @ £ 0. The only evidence bearing on whether the cross sections
continue to rise as logzs/ so is preliminary cosmic ray data, where the cross
sections for p-air collisions are reduced to a lower limit on the pp cross
section at a mean energy of 10 TeV. The lower limit is shown in Figs. 5.1(a)
and 5.2(a), and is evidence in favor of the cross sections continuing to rise
logarithmically. In this regard, the value of the logZs/so coefficient is 3 ~
0.6 mb. This is to be contrasted with the Froissart-Martin bound which
says that o must rise less rapidly than (7/m2 )log?s/s, ~ 60log?s/so mb,
where m, is the pion mass. Thus, our value of 8 is only ~ 1% of the
saturation coefficient. Hence, it is not appropriate to say that we have
“saturated the Froissart-Martin bound”, in spite of the fact that the cross
section seems to rise as log®s/sg.

B. Can a logs Rise Fit the Data?

To verify the form of the rise, we have tested the fit using an
even amplitude that would cause the cross section to rise only as logs/so,

i.e., we introduce the amplitude f, via

47"f+ = {A + Bllog2mp/so — im/2) + C[(?m(E - n}))"“e""“—"’/?

+

(2m(E + m))* ! — (2m(E — m)* !
2sinmp /2 ’

(5.7)

with ¢ = 0.5 and 47 f_/p being given by Eq. (5.2b ). This was a test

to see how well the data could be reproduced utilizing a logs/s, term,
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as contrasted to a log“s/sp term. The fit was very poor, giving rise to
a x2/d.f. = 7.2 for 76 degrees of freedom. The predicted ¢ at the SPS
collider was much too low. Even if we employed s = 0.6, the x2/d.f. was
4.1, equally unsatisfactory. Fundamentally, one could noi, use a logs/sg
term and simultaneously reproduce both the cross sections and the p values
in the energy region 5 < /s < 62 GeV. Thus, we conclude that fitting
all available data in this energy domain requires the presence of a term
varying essentially as log®s/so, and that just a logs/s, term (or, indeed,
any lower power) is ruled out.

C. Odderon.Amplitrudes

Up to this point, we have concerned ourselves with fitting the
data using the odd amplitude f_ given by Eq. (5.2b). This amplitude;
in the limit of s — oo, has Ac — 0 and Ap — 0. The form of Eq.
(5.2b) is suggested by an odd Regge exchange term. However, the require-
ments of analyticity are compatible with odd amplitudes (the “odderons™)
which give Ac — non-zero constant or even Ao — logs/sg, as § — oo.
(Lukaszuk and Nicole.scu, 1973; Kang and Nicolescu, 1975;Joynson et al.,
1975) See Section IV.H. To test. for the presence of these odderon terms,
we introduce three types of odderon amplitudes f (), where j =0, 1, or

2, via

anf® — —OF,  (58a)
anf) = —e‘”E[log(——z ”) _in (5.86)
] 80 ) 2
. 42 '
anf@ = —6(2)E[Iog(2—m—) - ﬂ] . (5.8¢)
S0 2
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where the ¢'s are real constants. We form a new odd amplitude f7¢*/(9) =
fo' 4 £, where the old odd amplitude is given by Eq. (5.2b). The
results of these fits are summarized in Table 5.3. All fits with odderons
used a = 0. Fits #5 and #6 used odderon 0 (j = 0), #7 and #8 used
odderon 1(j = 1) and #9 and #10 used odderon 2 (j = 2), for the cases
of C == 0 and C # 0, respectively. We note from Egs. (5.8a) - (5.8c) that
odderon 0 gives Ac — 0, odderon 1 gives Ao — ex/2 and odderon 2 gives
Ao — elogs/so, as s — oc. All of the odderon fits give a satisfactory
x2, with the x2/d.f. ranging between 1.08 and 1.11. The coefficients (/)
are all small and negative, being about 2 to 2.5 standard deviations from
zero. For Fits #5, 7 and 9, which correspond to C = 0, we find () =
—0.29 4+ 0.12mb, e(!) = —0.12 4 0.04 mb and €2 = —0.04 4 0.02 mb.
The results for odderon 2 (with C = 0) from Fit #9 are plotted in Figs.
5.3(a) and 5.3(b). We see the crossover of Ao from positive to negative
values at /s ~ 80 GeV in Fig. 5.3(a). The most striking feature of this
fit is the separation Ap. The p value for pp rises to about 0.23, whereas
the pp value only goes to 0.15.

It is very difficult to rule out the presence of the odderon terms
given only the existing data. Although the odderon amplitudes are very
small (in comparison with the constant amplitude A, they are < 1%),
they of course dominate the odd amplitude as s — oo0. The data do not
require adding the presence of odderons, but they also do not rule out the
presence of these terms at a 2 standard deviation level. If the odderons are
as large as in our fits, comparisons of o(pp) and o(pp) at /s > 500 GeV
would easily confirm this. Very precise p comparisons would be required
to rule out odderon 0. The curves for fits #5 (odderon 0, C = 0) and #7
(odderon 1, C = 1) are shown in Figs. 5.4(a) and 5.4(b), and Figs. 5.5(a)
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and 5.5(b), respectively.

The results of the odderon fits illustrate that the Fischer theorem
must be applied with care. In the region in which data now exist, Ref2"
and Imf"¢% have the same sign. For the fits with odderon 1 or 2, at high
energies the imaginary part changes sign, since the term in ¢ is negative
and dominates the odd amplitude, causing Ac to change sign and become
negative. Thus, for sufficiently high energy (just beyond the range of
existing data), both the real and the imaginary portions of f"¢% have
opposite signs, as required by the Fischer theorem, since Ac does not
go to zero as s — oo. However, a premature application of the Fischer
theorem at existing energies leads one to the false conclusion that the
cross sections become asymptotically equal, since at these énergies, both
the real and imaginary portions of the odd amplitude have the same sign.
D. Summary of Amplitude Analysis

We summarize this section with the following conclusions:

(1) All of the cross sections and p values for pp and pp above
V8 = 5 GeV can be simply and very satisfactorily parametrized
with 6 (or even 5) coefficients, using Eqs. (5.2a) - {5.2b) or
using Egs. (5.1a) - (5.1b). Above /s = 10 GeV, the simple
formulae Egs. (5.6a) - (5.6d) are sufficient.

(2) Measurements of o¢,¢ and p for pp at the Tevatron collider
(Vs = 2 TeV) are necessary to decide whether the cross
section continues to rise as logZs/so, i.e., a = 0, or whether
the cross section flattens out. If the cross section continues
to rise, we predict cross sections of about 100 mb at \/5 =
2 TeV and 200 mb at /s = 40 TeV. On the other hand, in
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(3)

(4)

()

the fit with a 5% 0, they are predicted to be only 70 mb and
90 mb, respectively (for fit #4), a very large experimentally

accessible difference. Further, the p value is 0.20 for ¢ = 0

whereas p is 0.08 for a 7 O (fit #4) at \/s = 2 TeV, again a

very large effect.

The measured coefficient 8 of the log”s/s, term for the rising
cross section is only 1 % of the Froissart-Martin bound of ~

60 mb for the coefficient. .

The existing p and oy,¢ data for pp and pp in the energy
region 5 < /s < 62 GeV require a log®s/s, term. A term

only varying as logs/so (or a lower power) is not sufficient.

The odderon amplitudes are within 2 to 2.5 standard devia-
tions of zero, i.e., they are compatible with zero, and are at

most about 1 % as strong as the constant even amplitude.
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VI. SLOPE ANALYSIS OF NEARLY—FORWARD ELASTIC
SCATTERING DATA

The near-forward badronic amplitude for pp and pp elastic scat-
tering is reflected in three experimentally determined parameters, the total

cross section 0y,¢, the p value and the nuclear slope parameter B, defined
as

B(s) = ilog(dgt ) at t=0. (6.1)

In the preceding section, we analyzed t = 0 data in the energy
domain 5 < /s < 62 GeV, in order to extract forward hadronic elastic
scattering amplitudes f4 and f—~. We found that we could get an excellent
parametrization of the data using either a 5-parameter fit (fit #1 of Table
5.1) or a 6-parameter fit (fit #2 of Table 5.1), both of which had a log?s/so
behavior as s — co. We recall that fit #2 used an even Regge exchange
term Cs*—! with g = 0.5, whereas fit #1 had C = 0. Both fits used
a=¢=0.

In this section, we will use the results of fits #1 and #2 to obtain
the s dependence of the nuclear slope parameters B for pp and pp elastic
scattering, using experimental data in the near-forward direction (defined
as the small |t| region, |t] < 0.02( GeV/c)?)

hadronic elastic differential scattering cross section as

We write the invariant

don _ TS+ 94(t8) £ fmg—(t,8)°
dt P2 ’

(6.2)
where p is the laboratory momentum. We have assumed real, exponential
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“form factors™ in Eq. (6.2), with g4(t,s) = exp(B*+t/2) being the form
factor for the even amplitude and g (7, s) = exp(B~t/2) being the form
factor for the odd amplitude. Since we are concerned only with very small
|7], the assumption of an exponential form is the practical equivalent of
replacing eB*/2 by 1 4 Bt/2. We rewrite Eq. (6.2) as

do,,
dt

= %{[RewaP(B*t/?)i Ref_exp(B*+t/2)]?
p

(6.3)

+ [Imfyexp(B*t/2) + Imf._exp(B"t/z)]?},

with the + sign for pp and the — sign for pp. In the limit of s — oo and
p — 0, we can simplify Eq. (6.1), using Eq. {6.3), to become

B(s) = B*(s)+ g—;-AB(s), (6.4)

with the + sign for pp and the — sign for pp, defining AB(s) = B~(s)—
B*(s). We have assumed in Eq. (6.4) that the ratio of the odd to even
cross sections 0~ /ot « 1 (0~ and 67 are defined in Eq. (5.4)).

In our analysis we will include slope data in the high energy
region 5 < /s < 62 GeV, and only those data measured in the very low
|t] region, |t| ~ 0.02( GeV/c)?, so that we can reasonably approximate
the definition of B made in Eq. (6.1). '

In order to determine the form of the s dependence of B¥(s),
we observe that as s — oo, B(pp) = B(pp) = B+, since M~ /p — 0.

The high energy elastic scattering is known to be diffractive, with an
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approximately exponential slope B. Further, at high energies, p is known
to be small. Thus, setting p = 0, we approximate o,;, the total elastic

scattering cross section, as Ty, i.e.,

_ 1 {doy,
?(zl 24 Eel - B—+( dt )t=0

2
atot
g —
167 B+’

(6.5)

where we have used the optical theorem in Eq. (6.5) and oy, is the total

cross section. We rewrite Eq. (6.5) as

Oel . _Otot

o N e BT (6.6a)

Since @,/0¢o: must be less than 1, we must require that B grow with s
at least as rapidly as the total cross section oy¢, i.e., that B+(s) must

grow as log®s. since o4, grows as log?s (Horn and Zachariasen, 1973). We
therefore parametrize the even slope as

B*(s) = C* + D*logs + E*+log?s, (6.6b)
where s is measured in GeV2. The odd amplitude is a Regge exchange

term, Ds_"’_l, so we choose for the odd slope the normal Regge behavior

B~(s)=C— 4+ D™ logs, (6.7)
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where s is in GeV 2. We emphasize the importance at high energies of the
term in log®s in Eq. (6.6). It is essential for the slope parameter at t = 0
to follow the trend of the total cross section for large 5. This term has
not been included in a recent analysis of Burq et al,, and its absence has
seriously distorted their slope predictions for high s. In particular, if one
plots B vs. log;. a positive curvature similar to that measured for o¢,; is

expected, and not a straight line, at large s.

The measurements of B in the energy range 5 < /s < 62 GeV
do not form a smooth set in s, unlike the situation for p and o4,¢, where
there is.a good agreement between various experimental groups. Indeed,
the slope situation is quite confused, and even after corrections for curva-

ture, many groups quote inconsistent values at the same energies.

It is a Solomonic task to decide which results are correct and
should be included, and which results are false and should be excluded
from our analysis. We were guided in our judgment by the principle that
the slope data should roughly resemble the shape of the total cross section
curve as a function of s, and thus have positive curvature. Using this
principle to choose between conflicting sets of data, we chose to fit the
data from the sources displayed in Table 6.1. The data have been fitted in
a x? minimization program using the experimental data for B(pp). B(pp)
and AB, along with their associated errors. No attempt has been made

to adjust the data for systematic errors between various data sets.
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The results for fit #1 are, in (GeV/c)™2:

C* =10.90 + 0.55,
D+ = —0.08 4 0.19,
E* = 0.043 + 0.016,
C~ =232T+ 16,
D~ =0.93 + 0.17,

with x2/d.f. = 1.51 for 52 degrees of freedom.

The results for fit #2 are:

C* =10.94 4 0.45,
D* = —0.09 + 0.15,
E* = 0.043 4 0.013,
C~ =23.30 4 1.4,
D~ =094+ 0.13,

with x2/d.f. = 1.51 for 52 degrees of freedom. The correlated errors for
fit #2 are given in Table 6.2.

The results of these fits are essentially indistinguishable. Fig.
6.1 is a plot of our fit #2 for the slopes B(pp) and B(pp) vs. /5, where
only data in the energy interval 5 < /s < 62 GeV have been used in
the fitting. We have also plotted in Fig. 6.1 the recent SPS measurement
for B(pD) at /s = 540 GeV for comparison with our prediction. The
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agreement is within errors. Our prediction at /s = 540 GeV for fit #2
is B(pp) = 16.66 4 0.59¢ Ge\"/c)—z, where the error in the prediction is

due to the uncertainties in the fitting parameters.

Our prediction for B(pp) at the Tevatron collider (/s = 2 TeV)
is 19.53 4+ 1.41 (GeV/c)™%, and at the SSC (/s = 40 TeV) is 28.34 +
3.81(GeV/c)™2. '

We can now determine the total elastic scattering cross sections
Yt as a function of s, for both pp and pp elastic scattering. If we consider

a non-zero p value, Eq. (6.5) is modified to become

2(" = a?gt(l + pz)/IG".Bv ’ (68)

and

Te1/0tor = 0tot(1 + p?)/167B. (6.9)

We plot the ratio of ©,;/0t: vs. s for both the pp and pp systems (for
Fit #2) in Fig. 6.2. The ratio for pp at /s = 3 GeV is 0.27 4+ 0.06 and
is about 0.17 4 0.003 in the ISR range. The pp ratio at /s = 3 GeV
is 0.24 4 0.06, is about 0.17 4 0.003 in the ISR range, and goes up to
0.22 4 0.008 at the SPS collider (v/s = 540 GeV). The measured ratio at
the SPS is 0.21 4 0.01, in good agreement with our prediction. It is easy
to show, using Eqs. (6a) - (6d) and (6.6), that asymptotically, the ratio

Let/0tor = B[16TE* as s — oo. _ (6.10)
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Thus, at infinite energy, (using Table 1 in Eq. (6.10)), the ratio L¢t/0t0 =
0.74 4+ 0.23. Indeed, this result is also comsistent with the black disk
prediction of 0.5. We remark that even at as large an energy as /s =

500 TeV, the ratio has only grown to 0.44.



VII. A REGULARITY OF THE pp AND pp SYSTEMS

We notice from Fig. 6.2 that for all s, the ratios X;/0s,¢ are.

suprisingly close to being the same for both the pp and the pp system,
in spite of the fact that at the lower energies, the total cross sections, p
values and nuclear slopes B are very different. An even more suprising

regularity is seen when we examine the quantity A, defined as

Otot (1 + [72)
16mB .
o (7.1)

Oeot V(1 + 02),

which is proportional to the magnitude of the impact parameter amplitude

A=

at zero impact parameter. The ratio

A(pp)
R= "2
A(pp)

is plotted vs. s in Fig. 6.3. This ratio is compatible with 1, within

(7.2)

the errors of our fitting procedure. For example, the error in R at /s =
3 GeVis £0.040, at /s = GeVis 4:0.025, at /s = 10 GeV is £:0.010, at
/s = 52.8 GeV is 4-0.001 and essentially goes to zero for /s < 62.5 GeV.
The above errors take into account the correlation errors of fit #2 for the
forward scattering amplitudes, as well as the slope fit. It is of course not
surprising that R = 1 for the high energy data, where Ao, Ap and
AB — 0 as s = oo. What is important is that at the lowest energies,
(3 < Vs < 15 GeV), where the total cross sections and nuclear slopes are

very different (up to ~ 35%c), the ratio R is compatible with 1, within

- 93 -

fitting errors of < 2.5%. This result implies that at all s, the magnitude of
the impact parameter amplitude is the same for pp and pp elastic collisions
at zero impact parameter. At large impact parameters and low energies
they diverge, since the slope parameters B (which determine the shape
of the impact parameter representation) are very different. It remains a
fundamental problem for any model of elastic PP and pp scattering at high

energies to explain this newly-observed regularity.
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VIII. CONCLUSIONS

Elastic pp and pp scattering are of renewed interest since the ac-
quisition of high quality pp data from the ISR. Those data demonstrated
that the total cross section for pp scattering exhibits the same rising
trend first observed for pp scattering at the ISR. Measurements at very
small ¢ have d‘etermined'\the ratio of the real to the imaginary part of the

scaltering amplitude in the same energy regime.

Just as the ISR program was concluding, a new and dramatic
chapter in elastic scattering was beginning with the SPS collider. The
€Nnormous jump in energy was a great challenge to our ability to extrapo-
late from the ISR and lower energy data. Indeed the extrapolation indi-
cated that the SPS total cross sections should be more than 50% higher
than the minimum bp cross section of ~~ 39 mb. Predictions for the
slope parameter were pot as easy to make since the low energy data were

inconsistent.

The extrapolations of the cross section were not just curve fitting
because analyticity connects the cross section with the real part of the
forward amplitude. Indeed the simultaneous fitting of the o;,; and p data

with analytic functions is impressive evidence for analyticity.

Not only are the analytic fits quite successful, but their form is
very provocative. The data cannot be fitted successfully with a log(s/s¢)
rise, but. are well fitted by a log?(s/so) rise. Thus, the total cross sec-
tion seems to saturate the form of the Froissart-Martin bound - 4ot ~-
log® s/so - although with a coefficient about 1% as large as that allowed

in principle. If we surmise that asymptotically the elastic scattering will
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be described by a black disk, we find that its radius is only about 1/7
as large as allowed by the Froissart-Martin bound. Why? If quantum
chromodynamics is indeed the correct theory of hadronic interactions, it
should be able to explain this fundamental result. High energy nucleon-
nucleon scattering poses a long-term challenge to the theoretical com-

munity.

Does the log?(s/so) growth of the total cross section persist
indefinitely? Only further experimentation can tell. It is possible, however,
to quantify the issue. By introducing the parameter ¢ we have allowed for
deviations from the log? s form. Roughly, the increasing part of the total

cross section varies as

log? s/s0

14 alog®s/so (&)

Here a is a small positive quantity. The smaller it is, the closer
the form is to the Froissart behavior. The value of a can be translated
into an energy scale at which there is departure from the log? s form
by considering the curvature of the cross section as a function of logs.
The curvature is positive near the minimum of the cross section, but is
eventually negative as the cross section approaches its constant asymptotic
value. We define s;, as the value of s at the transition where the curvature

is zero. It is easy to see that

Vi = Vagel/V1ze T (82)
The values obtained in Fit #3 give
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VStr = 865 -*_-_44450(?Gev, {(8.3)
While from Fit #4 we find
5
Vi = 400:23“"' (8.4)

The introduction of , ‘/st, is analogous to the introduction of a scale parameter

in QED to measure the departure from an idealized theory of point par-
ticles. The analogy here is that the idealized theory is o(s — o0) ~
log2(s/so), and /3¢ gives a measure of the lowest energy needed to ob-
serve a meaningful departure from it. The numbers in Egs. (8.4) and (8.5)
indicate it may be possible at the SPS and Tevatron Colliders to see devia-

tions from the log? s/so behavior.

The ISR data showed that the pp and pp total cross sections
continue to approach each other as the energy increases, in conformity
with the usual description which has the difference of the cross sections
varying as s~1/2, There is no fundamental reason for this, especially if
the total cross sections increase as a power of logs. To make a precise
conclusion about the difference cross section, we have considered a class
of odd amplitudes, odderons, which only contribute significantly at high
energies. When we add odderon terms to our fits, we find that these
amplitudes are typically about a 2.5 standard deviation effect from zero,
and are 2~ 1% as strong as the dominant even amplitude. The behavior
of odderon 2 from our Fit #9 is most intriguing. It predicts a substantial
difference between p(pp) and p(pP ) at /s > 1TeV, with p(pp ) =~ 0.22
and p(pp) =~ 0.10, an easily measured effect if one had both pp and pp
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collisions available at these energies. At /s = 40 TeV, this fit gives
a(pp) — o(pP ) =~ 5mb. Strikingly, the pp cross section climbs above the
PP cross section at /s o~ 100GeV and remains above it. The presence
of odderon terms cannot be completely ruled out at present energies and
only ultra-high energy comparisons between pp and pp collisions will be

able to shed any light on this interesting and mysterious possibility.

In this regard, one should note that the asymptotic theorems,
such as that due to Fischer, should be applied with caution. It is always
tempting to imagine that the behavior at the highest energy for which
there are measurements represents the asymptotic pattern. However, we
have seen that fits can be made to the present data in which at slightly
higher energies the pp total cross section exceeds.that. of pp and in which
the difference cross section does not go to zero but instead increases at
higher energies. Such is the case in our Fits #7-10. These fits show that at
energies as low as /s = 100GeV, surprising results might appear. To find

such effects, we need direct pp vs. pp comparisons at the same energies.

The nuclear slope, B, is of ihterest in its own right. Our predic-
tions here are less firm because of the poorer quality of the data, but
we are guided by the reliable fits for the forward amplitudes and by the
principle that B must grow as fast as log? s if the total cross section does.
Failure to include such behavior must eventually be incompatible with
measurement, if indeed the cross section continues t,b increase as log2 s.
The slope measurement can be combined with the total cross section to
give &,;. In all reasonable models, 0; =~ X.. The energy behavior of
the ratio £./04,¢ is of special interest. In many models, asymptotically
the proton becomes a black disk and the ratio tends to one-half. Our fits

indicate that a substantial increase from the value ~ 0.18 characteristic
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of the ISR energy range is to be anticipated. This is confirmed by early
SPS pumbers.

An examination of our 6-parameter fit to the experimental data
shows that

167B 167B

[, 5

is nearly unity within the errors of the fit, for the entire energy region
3 < /s < 62 GeV. This of course is not surprising in the high energy
region. What is important is that at the lowest energies (3 < /s <
5GeV), where the total cross sections and nuclear slopes are very different
for pp and pp, the ratio R is compatible with 1, within fitting errors of
less than 2.5%. This suggests that for all energies considered, a{(0), the
impact parameter amplitude at zero separation, is the same for pp and
pp- This new regularity remains as an important problem to be explained

by models of nucleon-nucleon scattering.

The data from the SPS collider have confirmed the extrapolations
from the lower energy data. The total cross section is increasing rapidly
as is the slope parameter. Still much remains to be determined. More
precise measurements at the SPS collider will be invaluable. Even more
exciting are the prospects for measurements of the cross section and p
at the Tevatron collider. These measurements should help enormously in
deciding whether we. have begun a continuing log® s climb which would
make the total cross section at the Superconducting Super Collider (at
40 TeV) about 200 mb, or whether we are just being misled by a local

tendency which will flatten out and give a cross section at the SSC which
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is substantially smaller.

For a wide class of models that have total cross sections increas-
ing with s, the nucleon-nucleon profile in impact parameter space even-
tually becomes that of a sharp disk. We regard the energy domain in which
this happens as “asymptopia”. In “asymptopia”, the value of the curva-
‘ture parameter, C, must be negative, since it is that of a disk. Experiment
show C to be positive at the ISR and SPS Collider energies. Using our
predicted oo and p to fix the Chou-Yang mode; we show that the Chou-
Yang and sharp disk models give elastic scattering distributions which are
nearly indist,inguishable/ at /s = 40 TeV, the SSC energy; in particular,
the value of C for the Chou-Yang model has become quite negative. We
have defined the onset of “asymptopia” as the energy at which C = 0,
and ‘have shown that this will occur near the Tevatron Collider energy,
/s = 2 TeV. These forthcoming machines should finally give us our first
experimental glimpse of ‘-‘as_;vmptopia".
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Table 3.1. Values of ¢,;in and 8y, for the Coulomb interference
region for pp elastic scattering. See Eq. (3.13) and (3.14).

Vs Accelerator 1t min Bpmin
(GeV) ‘ (GeV/e)? . (mrad)
23.5 ISR 0.0017 3.6
30.7 ISR 10.0017 2.7
52.8 . ISR 0.0016 15
' .62.5 ‘ ISR 0.0016 1.3

540 SPS | 0.0010 0.12
2000 Tewv:%tfén ' oooors | o0 '.
40000 SSC 0.00037 0.00097
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Table 5.1 Sources for the data used in the fits for o and p for pp

Table 5.2. Results of fits to total cross sections and p values.
See Egs. (5.1) - (5.6). The parameters A, 3, and ¢ are in mb, &g is in
GeVZ?, a,u and a are dimensionless, C is in mb GeV2!—#) and D is in

mb GeV2(1—a),

and pp .
Reference. Data Accelerator
Foley et al., 1967 o(pp), p(pp) AGS
Denisov et al., 1971a,b o(pP ), o(pp) Serpukhov
'Bart-ene\v; et al., 1973b 2(pp) FNAL
Carrol} et al., 1974 o(pp), o(pP) FNAL |
Fajardo et al., 1981 p(PP) FNAL
Amaldi and Schubert, 1980 o(pp). p(pp) ISR
Amos et al.,, 1983a,b Ao, AP, pay ISR
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Fit #1 #2 #3 #4

A 41.74 41.30 41.70 41.11
40.04 +0.28 4-0.04 40.23
8 0.66 0.62 0.64 0.59
: 40.01 40.03 +0.02 40.02
$0 338.5 293.6 332.7 275.1
477 428 +7.9 +22
C 8.4 10.9
+5.1 +4.1
L 0.5 0.5
D -39.37 -40.51 -39.20 -41.32
+16 +1.8. +1.5 +1.9
o 0.4 0.47 0.48 0.46
+40.01 +0.01 +40.01 - 40.01
a 0.0056 0.0082 -
: +40.003 +40.003
x2/d.f 1.165 1.146 1.127 1.058
d.f 76 75 5 - T4
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Table 5.3. Results of fits to total cross sections and p valﬁes : Table 6.1 .Sources for the data used in the fits for the slope
including odderons.. See Egs. (5.1) - (5.6). The parameters A, 3, and ¢ are parameter. '
in mb, so is in GeV2, a, u and a are dimensionless, C is in mb GeV2(1—#) -
and D is in mb GeV2(1=%), Fits #5 and #6 correspond to odderon 0, fits
#7 and #8 to odderon 1 and fits #9 and #10 to odderon 2.

Reference Data Used Accelerator
Fit #5 %6 : #7 #8 #9 #10 Foley et al., 1963 B(pp) AGS
A 4173 | 4151 | 4170 | 416l | 4166 | 41.36 Belletini et al., 1965 B(pp) CERN-PS
‘ . ; . . } _ i .
4004 | 4£030 | +£004 | 4029 | 4005 | +0.26 Amaldi et al,, 1971 B(pp) ISR
7 0.68 0.65 0.67 0.66 0.65 0.62 Chernev et al., 1971 B(pp) Serpukhov
| 4002 | 4003 | £001 | +004 | 4001 | +0.03 Holder et al., 1971 B(pp) 5R
5o 3404 | 3174 | 3458 | 3360 | 3503 | 3161 Barbiellini et al., 1972 B(pp) ISR
+0.5 +31 +81 433 +9.6 430 Bartenev et al., 1972a,b B(pp) FNAL
C —33 17 6.0 Antipov et al., 1973 B(pp ) Serpukhov
156 457 5.0 Ayres et al., 1977 . B(pp) FNAL
i 0.5 0.5 0.5 . Baksay et al., 1978 B(pp) ISR
D 4207 | —42.31 | —41.35 | —41.47 | —35.34 | —36.70 Fajardo et al., 1981 AB FNAL
+2.2 £22 417 +1.8 +2.1 +2.4 _ Northwestern-Louvain Coll., 1982 B(pp), B(pP ) ISR
o 0.46 0.45 0.48 0.48 0.50 0.49 '
4002 | +£002 | 4001 | +0.01 | +0.02 | +0.02
€ —0.29 | —0.25 | —0.12 | —0.11 | —0.04 | —0.04
4012 | +013 | 4004 | 4004 | +002 | +0.02. _
v3/d.f | 1105 | 1.112 1.059 1.072 1.089 1.084 e
d.f. 75 74 75 74 75 T4 : :
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Table 7.1. Predictions for o¢,¢,p, and B at high energies. The

predictions are the same for pp and pp since, no odderons are included.

Table 6.2 The error squared matrix for slope Fit #2. Both fit #1 and #2 have cross sections growing as log? s.
Fit Vs o p B Eafo
(TeV) (mb) | (GeV/e)™?
C+ D+ E+ ‘ C— D #1.540 (SPS) 70.374+0.62 | 0.20040.002{ 16.654-0.74 | 0.227
19-1071 ) —6.7-1072] 55.10~%{—1.1-10"!| 4.8.1072
23.1072[—19.107%] 57.1072|—1.8.102 )

_ #2.540 (SPS) 69.324-0.89 | 0.19440.005 16.66+0.59 | 0.223
1.7-100%|—55.10%} 1.5.-10"%

1.9-107°}—13-10"!

17102 #1 2.00(Tevatron) 98.3041.17 {0.19840.002] 19.53+1.41 | 0.270
oo

#212.00(Tevatron) 95.934-1.87 |0.193-4-0.004] 19.574-1.12 | 0.263

#1120.0 l69.46j:2.5% 0.1724-0.001) 26.034-3.15 | 0.347

#2200 163.394-4.55) 0.1684-0.002{ 26.13+2.50 { 0.332

#1(40.0 (SSC) 196.384-3.10{ 0.1634-0.001} 28.34+ 3.81 | 0.368

#240.0 (SSC) 188.844-5.60{0.1604-0.002] 28.474-3.03 | 0.352

#1(100.0 235.874-3.88 0.1524-0.001{ 31.64+-4.78 | 0.394
#2100.0 226.154-7.15/0.1494 0.002| 31.814-3.79 | 0.376
#1/500.0 316.004-5.46{ 0.1344-0.000] 38.144-6.75 [ 0.436 ~
#2/500.0 301.754-10.4/ 0.1334-0.001{ 38.39+ 5.35 | 0.413
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FIGURE CAPTIONS

Fig. 3.1

Fig. 3.2

Fig. 3.3

Fig. 3.4

Fig. 3.5

Chapter I

An experimental plot of do:,./dt vs. |t| for pp elastic scat-

tering at /s = 23.5 GeV. The fitted curve used the parametriza-

tion of Eq. (3.10). The data were taken at the ISR by the
Northwestern-Louvain (R211) group.

An experimental plot of doy./dt vs. |t| for pp elastic scat-
tering at /s = 52.8 GeV. The fitted curve used the parametriza-
tion of Eq. (3.10). The data were taken at the ISR by the
Northwestern-Louvain (R211) group.

Survey of experimental data for total cross sections oy4¢, in
mb, for both pp and pp interactions in the energy interval
5 < /s < 62 GeV. The pp points are indicated with an “x”
and the pp points with an “o”.

Survey of experimental data for p = Ref,(0)/Imf,(0) for
both pP and pp interactions in the energy interval 5 < /s <
62 GeV. The pp points are indicated with an “x” and the
PP points with an “o”.

Survey of experimental data for B, the nuclear slope parameter,
in ( GeV/c)"'z, for both pp and pp elastic scattering, in the t
region |t] < 0.02( GeV/c)2 and in the energy interval 5 <
Vs < 62 GeV. The pp points are indicated with an “x” and
the pp points with an “o”.
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Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Chapter IV

The Argand circle. The partial wave amplitude, a;, or the
impact parameter amplitude, a(b), must lie on or insider the
circle of radius 1/2. If Reé = 6r and I'méb = §;, the central
angle is 26 and the length from the center of the circle to

the amplitude point is (1/2)exp(—26;).

A semi-log plot of various profiles, Ima(b), each of which
gives 0t ¢ = 43 mb and B = 13 (GeV/c)2. The gray disc
is shown as dot-dash. The parabolic form, Eq. (4.39), is
shown as the dotted curve. The Gaussian shape gives the
solid curve. The dashed line is the Chou-Yang model.

A semi-log plot of the differential elastic cross cross sections
for the shapes shown in Fig. 4.2. The dot-dash curve is for
the gray disc, the dotted for the parabolic shape, the solid
for the Gaussian and the dashed for the Chou-Yang model.

The functions X = 01 /010¢ (s0lid curve) and ¥ = Xet /0ot

(dashed curve) in the Chou-Yang model, as a function of o¢,¢.

The quadratic slope parameter, C, in the Chou-Yang model,
as a function of o¢p¢.

A plot of the impact parameter amplitude a(b) vs. b, in
fermis, for the Chdu-Yang model (solid curve) and the sharp
disk (dashed .curve); for energy /s = 540 GeV in (a), /s =
9 TeV in (b) and /5 =40 TeV in (¢).

A plot of doy, /dt, the elastic differential scattering cross sec-
tion, for both the Chou-Yang model and the sharp disk,
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Fig. 4.8

Fig. 4.9

Fig. 5.1(a)

using the impact parameter amplitudes show in Fig. 4.6..
The dotted curves (for p = 0) and the dash-dotted curves
(for non-zero p) are the Chou-Yang predictions, whereas the
dashed curves (for p = 0) and the solid curves (for non-zero
p) are the predictions for the sharp disk. The energies are
(a) Vs = 540 GeV, (b) /s = 2 TeV, (c) /s = 40 TeV.

The complex E plane. The physical pp amplitude is obtained
as the limit of the analytic function # approaching the right
hand cut from above. The physical pp amplitude is obtained
by approaching the left hand cut from below. The unphysi-
cal cut is not shown. The integral dispersion relations are
obtaned by'integrating along the indicated contour (if one
ignores the unphysical cut and pole). The contours are really

closed by infinite semi-circles above and below the real axis.

Definition of the cut structure for G of Eq. (4.64). §— is
made well-defined by specifying that §_ = [m — E|%e"*—

|m + E|*e—**. See Eqs. (4.67)- (4.71). For the pp amplitude,

n—0,¢6— w.

Chapter V

The total cross sections oo, in mb, for pp and pp, as a
function of /s, in GeV. Below /s = 100 GeV, the upper
curve corresponds to pp and the lower to pp , using the fit
#1 (C,a = 0). Above this energy, the difference in ._cross
sections is too small to be visible. The upper curve above

this energy corresponds to the Froissart bound form, with
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Fig. 5.1(b)

Fig. 5.2(a)

Fig. 5.2(b)

Fig. 5.3(a)

a =0 (C =0, fit #1), while the lower curve is the best
fit for @ 7% 0 (C = 0, fit #3). The experimental data used
in the fit were in the energy interval 5'< Vs < 62 GeV.
The experimental SPS pp cross section at \/Ts_ = 540 GeV is
appended for comparison, as is the cosmic ray lower limit for
the pp cross section. To guide the reader, the energies of the

Tevatron collider and the SSC are shown.

The p values for pp and pp. Below /s = 40 GeV, the upper
curve is for pp and the lower for pp, using fit #1 (a,C, € =
0). Above this energy, the curves split, with the lower of
each pair corresponding to a £ 0 (C' = 0, from fit #3) and

‘the upper to ¢ = 0 (C == 0, from fit #1). At very high

energies, the differences between pp and pp disappear and
the two a = 0 curves (fit #1) coalesce, as do the two a # 0
curves {fit #3).

Total cross sections 0s,¢ for pp and pp. as a function of /s.
The legend is the same as for Fig. 5.1(a}), except that the
even Regge coefficient C (C #£ 0) is fitted. The fit used for
a ==0is fit #2 and the fit used for a 5 0 is fit #4.

The p values for pp and pp, as a function of /5. The legend
is the same as for Fig. 5.1(b), except that the even Regge
coefficient C is fitted. The fit used for ¢ = 0 is fit #2 and
the fit used for a 7 0 is fit #4.

The total cross sections 045, in mb, for pp and pp., as a
function of /s, in GeV. The solid curve is for pp and the

dased curve is for pp . The fit utilizes odderon 2 (C' = 0,
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Fig. 5.3(b)

Fig. 5.4(a)

Fig. 5.4(b)

Fig. 5.5(a) »

Fig. 5.5(b)

Fig. 6.1

from fit #9). The data utilized in the fit are in the energy
interval 5 < /s < 62 GeV. The SPS experimental cross

section at /s = 540 GeV is appended for comparison.

The p values for pp and pp, as a function of /s. The legend
is the same as that for Fig. 5.3(a).

Total cross sections for oy,¢ for pp and pp, as a function of
V5. The legend is the same as that for Fig. 5.3(a), except
that the odderon 0 was used (C = 0, from fit. #5).

The p values for pp and pp, as a function of /s. The legend
is the same as that for Fig. 5.3(b), except that odderon 0
was used (C = 0, from fit #35).

Total cross sections ¢, for pp and pp, as a function of /s.
The legend is the same as that for Fig. 5.3(a). except that
odderon 1 was used (C = 0, from fit #7).

The p values for pp and pp, as a function of /s. The legend
is the same as that for Fig. 5.3(b), except that odderon 1
was used (C = 0, from fit #7).

Chapter VI

Nuclear slope parameters B for pp and pp elastic scattering,
evaluated at |t| = 0.02( GeV /c)2. The solid curve is for pp
and the dashed curve for pp. The data used in the fit were in
the energy interval 5 < /s < 62 GeV. The four AB values
of Ref. 3 were used in the fit, but are not shown in the figure.

The experimental SPS pp slope value at /s = 540 GeV is
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Fig. 6.2

Fig. 6.3

append‘ed for comparison. To guide the reader, the energies

of the Tevatron collider and the SSC are shown.

The ratio of T./0¢:, for pp and pp, as a function of /5.
The solid curve is for pp and the dashed curve for ppP- The
curve was computed using fit #2 (a, e =0, C # 0).

The ratio R = A(pP)/A(pp), as a function of /5, where

A= C"f,ot\/(l + p2 )/IGTI'B.
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