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ABSTRACT OF THE THESIS

Self-Supervised Contrastive Learning for Multi-Organ Segmentation

By

Junayed Ahmed Naushad

Master of Science in Computer Science

University of California, Irvine, 2022

Professor Xiaohui Xie, Chair

Medical imaging modalities such as computed tomography (CT) and magnetic resonance

imaging (MRI) play an important role in clinical workflows because they allow radiologists

to analyse a patient’s anatomy in great detail while being minimally invasive. Organ seg-

mentation, in particular, is often performed as a preliminary step for treatment planning,

diagnosis, and prognosis. Manual organ segmentation is, however, a very expensive and

time consuming process, so there is great demand for computer assisted or automated organ

segmentation methods.

In recent years, thanks in part to the advent of large-scale labeled datasets such as ImageNet,

deep convolutional neural networks (CNNs) have become the dominant approach to solving

segmentation tasks in the natural imaging domain. Since there is a lack of large-scale labeled

datasets in the medical domain, it is difficult to optimally train a deep CNN from scratch.

Transfer learning from ImageNet is also suboptimal because medical images are inherently

different from natural images.

In this thesis we aim to overcome two main challenges in deep learning-based medical image

analysis: insufficient labeled data and domain shift. We propose a self-supervised contrastive

learning framework for pre-training CNNs on unlabeled medical datasets in order to learn

generic representations that can be fine-tuned for a wide range of multi-organ segmenta-

vii



tion tasks. We introduce a novel contrastive loss for dense self-supervised pre-training on

local regions. Finally, we conduct extensive experiments on three multi-organ datasets and

demonstrate that our method consistently boosts current supervised and self-supervised pre-

training approaches.
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Chapter 1

INTRODUCTION

Medical imaging modalities such as magnetic resonance (MR) imaging and computed to-

mography (CT) play an important role in clinical workflows because they provide physicians

with detailed views of a patient’s internal organs, bone structure, brain function, etc., while

being minimally invasive. Given a patient’s MR or CT image, a radiologist’s responsibility

is to closely analyze the image and report their findings to other physicians. When analyzing

a medical image, a radiologist may perform a wide range of tasks from identifying and diag-

nosing diseases and abnormalities to providing insights that can help with surgical planning.

One of the most common tasks that a radiologist performs is organ segmentation. Among

many other use cases, organ segmentation is required for obtaining biomarker measurements

(i.e., organ location, dimensions, weight, etc.) and identifying organs-at-risk for radiation

therapy.

As an example of a clinical workflow, consider the case where it has been determined that

a patient has nasal and sinus cancer. Radiation therapy is a common treatment for head

and neck cancers, however, the head and neck region has a dense distribution of important

organs so it is crucial that the radiation treatment is appropriately localized [1]. Therefore,

a CT or MR image of the patient is taken, and a radiologist identifies the treatment area

and delineates all organs-at-risk in order to minimize irradiation side effects.

It is evident that organ segmentation is an important step that radiologists must complete
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prior to performing diagnosis, prognosis, or treatment planning. However, manual organ

segmentation of large volume CT and MR images is both very labor-intensive and suffers

from high inter-rater variability [17]. As a result, the development of computer assisted or

automated organ segmentation methods is of great importance in the medical field since

it can dramatically expedite and reduce error in clinical workflows which ultimately yields

better patient outcomes.

In recent years, advancements in the field of deep learning, more specifically advancements

in the development of convolutional neural networks (CNNs), have achieved state-of-the-

art performance on a wide range of visual tasks including segmentation [15, 19, 20, 24, 26,

32]. Much of the success of deep learning based computer vision has been driven by the

advent of large-scale labeled datasets such as ImageNet [33], COCO [25], and PASCAL

VOC [11]. Given that labeling medical images requires many expert radiologists and is a

time-consuming process, it is infeasible to produce labeled datasets of the same magnitude as

those found for natural images. As a result, there is often an insufficient number of labeled

examples to optimally train a deep CNN from scratch. A secondary issue, that is related

to the lack of labeled data, is performance degradation due to domain shift. Domain shift

occurs very frequently when working with medical images due to different imaging modalities

and acquisition protocols, different anatomical views, and large variation in human anatomy.

A common strategy to overcome the lack of labeled examples is to perform transfer learning

from ImageNet pre-trained weights [34, 36]. However, medical images, which are 2D/3D/4D

and grayscale, are inherently different from natural images, which are 2D and RGB. Thus

transfer learning with ImageNet is not ideal. Since unlabeled medical images are compara-

tively easier to obtain in larger quantities, an alternative strategy is to perform self-supervised

learning and generate pre-trained models from unlabeled datasets.

In this thesis, we aim to overcome both of the aforementioned challenges in medical image

analysis: insufficient labeled data and domain shift. We present a self-supervised contrastive
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learning framework for pre-training models on unlabeled medical datasets in order to learn

generic representations that can be fine-tuned for a wide range of multi-organ segmentation

tasks.

Our main contributions are summarized as follows:

• We propose a hybrid contrastive learning framework that combines global contrast and

Local Region Contrast (LRC).

• For LRC, we introduce a novel contrastive sampling loss for dense self-supervised pre-

training on local regions.

• We evaluate our proposed solution on three multi-organ datasets and demonstrate that

adding LRC consistently boosts current supervised and self-supervised pre-training

approaches.
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Chapter 2

BACKGROUND

In this thesis we will cover several topics, namely image segmentation, transfer learning,

self-supervised learning, and contrastive learning. Therefore, before going into the details of

the methodology, we will first provide an overview of these topics in this chapter. We will

also discuss the related works that have inspired the ideas in this thesis.

2.1 Image Segmentation

We begin by discussing the general task of image segmentation since the application of this

thesis is multi-organ segmentation. Image segmentation involves grouping pixels together,

thus creating segments within an image. An image segmentation algorithm/model will take

an image as its input and output a segmentation map where it predicts a class label for every

pixel. It is often referred to as a dense prediction task because an algorithm must assign a

class label to every pixel. This is unlike image classification, for example, where an algorithm

assigns a single class label to the entire image. Image segmentation is one of the most

important and commonly performed tasks in computer vision because it provides a higher

level representation of an image where different entities within an image are delineated. As

mentioned earlier in the Introduction, image segmentation is an especially important task in

medical image analysis because medical images are high dimensional and an accurate image

segmentation algorithm can provide a physician with a segmentation map where all of the

4



regions of interest have been highlighted. Figure 2.1 shows an example of a thoracic CT slice

with its corresponding segmentation map. We can see the segmentation mask for the the

esophagus (yellow), heart (green), left lung (teal), right lung (blue), spinal cord (magenta),

and trachea (red).

Figure 2.1: Example of a thoracic CT slice along with its corresponding segmentation map.

There are two types of image segmentation: semantic segmentation and instance segmenta-

tion. Both involve assigning a class label to every pixel, however, if multiple instances of the

same class exist in an image then semantic segmentation treats all instances as a single entity

whereas instance segmentation treats each instance as a separate entity. For example, given

a lung CT scan if there are nodules present in the CT scan then a semantic segmentation

algorithm will assign the class label ’1’ to all of the nodules but an instance segmentation

algorithm will assign a different class label (’1’, ’2’, ’3’, etc.) to each nodule. In this thesis

we will focus on semantic segmentation since we are dealing with organs, and for organs that

have multiple instances (e.g., kidney, optical nerve, etc.) we will treat each instance as a

separate class (e.g., left/right kidney, left/right optical nerve, etc.).

Image segmentation is a challenging task because it is difficult to define a set of characteristics

that can be used to group pixels together. We can group pixels based on having similar

5



intensity, texture, or color, however, sometimes pixels can differ in all of those characteristics

and still be semantically related and thus need to be assigned the same class label. For

example, consider the task of segmenting lungs. A healthy individual’s lungs may be easy

to segment since they will have a consistent texture throughout, but the lungs of a chronic

smoker will have regions with very different texture and intensity that still belong to the

same class.

In the proceeding subsections we will discuss both classical machine learning and computer

vision approaches and more recent deep learning approaches to solving the task of image

segmentation, focusing primarily on methods in the medical imaging domain.

2.1.1 Classical Approaches

Classical machine learning approaches are those that do not involve training deep neural

networks (DNNs). Classical machine learning approaches to image segmentation rely on the

researcher to determine what characteristics should be extracted from an image; this process

is known as feature engineering. These hand-crafted features are then supplied to a machine

learning classifier, such as a k-nearest neighbor classifier, which uses the selected features to

discriminate between objects and segment the image [30]. The advantage to this approach is

that the researcher can easily encode prior knowledge through feature engineering, and this

allows the model to learn with less labeled data. The disadvantage is that feature engineering

is a heuristic process and it is likely that a researcher will miss important features and/or

include ones that are not needed.

Classical computer vision approaches include a wide array of methods such as combinatorial

graph cut algorithms [4], random walker algorithms [16], and level-set methods [41]. One

popular graph partitioning algorithm is Felzenszwalb’s algorithm [12] which is an efficient

minimum spanning tree based algorithm. Felzenszwalb’s algorithm represents pixels as ver-
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tices in the graph and the edge weights are determined by the difference in intensity (or

color if the image is RGB) and spatial distance between pixels. Thus, similar neighboring

pixels will have lower edge weight and will be partitioned together while dissimilar pixels

that are farther apart will be partitioned separately. Felzenszwalb’s algorithm produces an

over-segmentation of an image where clusters of pixels are referred to as superpixels. The

size and number of superpixels can be controlled through the minimum component size pa-

rameter; increasing the minimum component size yields larger and thus fewer superpixels as

shown in 2.2. As we will discuss in greater detail in the Methodology chapter, we chose to

use Felzenszwalb’s algorithm in order to generate our pseudo-labels because it performs well

and has almost linear time complexity with respect to the number of pixels.

Figure 2.2: Superpixels generated by varying the minimum component size parameter of
Felzenszwalb’s algorithm.

As mentioned earlier, prior knowledge can be used to help guide an algorithm’s segmenta-

tion. One popular technique for using prior knowledge in the medical domain is atlas-based

segmentation. An atlas is a reference image that has already been segmented. Atlas-based

segmentation performs image registration in order to align the atlas with the image to be

segmented. Although this method is capable of achieving great organ segmentation perfor-

mance [35], ultimately its performance is constrained to images that do not have significantly

different anatomies. The performance suffers greatly when there are pathologies present that

cause organs and structures to deform [2].
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2.1.2 Deep Learning Approaches

In recent years, deep learning has become the de facto approach for solving image segmen-

tation problems. Unlike traditional machine learning which requires the researcher to define

what features to extract, in a DNN the feature extractor is comprised of trainable parameters

so the network automatically learns the most important features. However, since no prior

knowledge is encoded into the network it requires significantly more labeled data to train.

As a result, DNNs were largely overlooked during the 90s and early 2000s when classical

machine learning algorithms dominated computer vision. Several years after ImageNet [33]

had been created, a deep convolutional neural network (CNN) named AlexNet [24] emerged

and outperformed existing solutions by a very wide margin on the task of image recogni-

tion. CNNs have several characteristics that make them well suited for visual recognition

tasks: spatial inductive bias, parameter sharing, and translation invariance/equivariance.

When provided with a large amount of labeled data and sufficient computational resources

(GPUs), CNNs can function as powerful and robust feature extractors. Since AlexNet, there

have been many innovations, such as skip connections in ResNet [20], densely connected

layers in DenseNet [21], and depthwise separable convolutions in Xception [9], which allow

for stable and efficient training of deeper networks.

Fully convolutional networks (FCNs) [26] were the first end-to-end learning CNN architecture

that performed semantic segmentation. Common classification CNN architectures can be

easily adapted into FCNs by replacing fully connected layers with convolutional layers and

adding deconvolution layers. Eliminating fully connected layers allows for arbitrary input

sizes and deconvolution layers upsample the feature maps back to the original input size.

Variants of the FCN also include skip connections that sum feature maps from coarser layers

with feature maps from finer layers leading to improved segmentation performance.

U-Net [32] improves upon the FCN and uses a symmetric encoder-decoder architecture with
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a U shape, hence the name U-Net. The encoder, also referred to as the contracting path,

acts as a feature extractor to determine ”what” is contained in the image. The decoder, also

referred to as the expanding path, determines ”where” something is located in the image.

Skip connections are used in order to concatenate the high resolution feature maps from the

encoder with the upsampled outputs in the decoder. For the experiments in this thesis we

will be using a slightly modified U-Net architecture.

Figure 2.3: The original U-Net architecture from [32].

Following the success of U-Net, there have been several newer architectures that extend its

capability by incorporating 3D convolutions and a larger number of shorter skip connections

[28, 45, 47].
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2.2 Transfer Learning

Transfer learning involves using the knowledge gained while solving a particular task in order

to better solve a new task. This strategy is incredibly useful in machine learning because we

are often trying to solve similar tasks in different domains where one domain has significantly

more data than the other. The process of transfer learning involves pre-training a model

on a source domain and then fine-tuning that model on a target domain. By training a

model in a source domain first, we are able to provide a better starting point (i.e., weight

initialization) for the model when fine-tuning on the target domain. If the source domain and

target domain are the same then it is referred to as same-domain transfer learning, whereas

if they differ then it is referred to as cross-domain transfer learning. Cross-domain transfer

learning is generally more challenging due to domain or distributional shift.

2.3 Self-Supervised Learning

Supervised learning, learning with labeled data, has been an incredibly successful area of

machine learning. However, relying solely on labeled data is a heavily constrained approach

to learning since labelling data can be very expensive and there is an exponentially greater

amount of unlabeled data that could be put to use. Self-supervised learning, which can be

viewed as the intersection of supervised and unsupervised learning, is an area of research

that aims to bridge the gap between supervised and unsupervised learning.

Self-supervised learning involves solving a pretext task in order to learn salient features and

a semantic representation that can help solve downstream tasks. Examples of pretext tasks

in computer vision include inpainting [31], colorization [44], predicting the relative positions

of patches in an image [10], and predicting the degree of rotation of an image [14]. Given
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these pretext tasks, a supervisory signal can be automatically generated from unlabeled data

by exploiting the structure that is present in the data itself [22]. As a result, models can

be trained on unlabeled data in a supervised manner. A common framework is to solve

a pretext task in a self-supervised manner on a large unlabeled dataset and then perform

transfer learning by fine-tuning on a target task in a supervised manner.

Figure 2.4: Example of a pretext task in vision: predicting relative position of patches in an
image from [10].

2.3.1 Models Genesis

Models Genesis [46] is one of the most successful applications of self-supervised learning in the

medical imaging domain. The goal of Models Genesis is to provide generic and robust source

models that can be finetuned for a wide range of downstream medical imaging tasks. Models

Genesis pre-trains a 3D U-Net on a dataset of over 600 unlabeled chest CT scans by restoring

CT subvolumes that have been modified via non-linear transformation, local-shuffling, and

outer/inner-cutout. This pretext task allows for learning appearance, texture, and context

which ultimately leads to state-of-the-art performance on various same-domain and cross-

domain tasks. In this thesis we emulate the Models Genesis framework for providing generic

source models, however, instead of using a generative pretext task we use contrastive pretext

11



tasks.

Figure 2.5: Models Genesis framework from [46].

2.3.2 Contrastive Learning

Figure 2.6: An illustration of contrastive learning and how it learns a representation space.

Contrastive learning involves learning a representation space where similar entities are closer

together and dissimilar entities are farther apart. Entities are embeddings or vector repre-

sentations of images and similarity can be defined using different metrics such as cosine

similarity or Euclidean distance. Contrastive learning has proven to be one of the most

effective approaches for pre-training CNNs in a self-supervised setting. Several contrastive

learning strategies have achieved comparable or superior performance to fully-supervised

pre-training on image classification, object detection, and segmentation of natural images

[3, 5, 6, 7, 13, 18, 29].
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Self-supervised contrastive learning requires creating similar or positive pairs and dissimilar

or negative pairs without having any labels. An assumption that is commonly made in con-

trastive learning for computer vision is that each instance is its own class. Doing so allows

for generating negative pairs easily because every instance or image can form a negative pair

with every other image. Positive pairs can also be generated easily through data augmen-

tation; an image and its augmentation form a positive pair. Figure 2.6 illustrates a simple

contrastive learning framework where a positive pair x and xp are created by applying a

transformation T (in this case random cropping) on x. xn are the negative samples which

consists of all the other images in the batch/dataset. fθ is a neural network encoder and

v, vp, andvn are embeddings produced by the encoder corresponding to x, xp, xn. A suitable

contrastive loss function can be defined following the InfoNCE loss [40]:

L(v, vp) = − log
exp(v · vp/τ)

exp(v · vp/τ) +
∑

n exp(v · vn/τ)

where τ is a temperature hyper-parameter per [43] that scales the similarity and can be

used to increase the penalty for hard negative samples [42]. Minimizing the pairwise loss

between the image embedding v and its corresponding positive pair vp results in maximizing

the similarity, defined here using dot product, between the positive pair and minimizing the

similarity between all negative pairs.

Several empirical studies have shown that having many hard negative samples is important

for contrastive learning [6, 18, 43]. Having high quality negative samples provides a better

loss signal that guides the model to learn better representations. The naive approach to

increasing the number of negative samples is to simply increase the batch size. The issue

with this approach is that it is heavily constrained by GPU memory. Another approach

involves using a memory bank to store the pre-computed embeddings of all instances [43].

Although a memory bank allows for having a very large number of negative samples, the

drawback is that the embeddings grow stale as the parameters of the encoding network

13



update. Momentum Contrast (MoCo) [18] overcomes these issues by viewing contrastive

learning from a different perspective.

2.3.3 MoCo

MoCo views contrastive learning as a dictionary look-up problem where the goal is to match

a query to its appropriate key. MoCo implements a dynamic dictionary as a queue with a

momentum encoder. The dynamic dictionary contains a large number of keys and one of

the keys is a positive sample corresponding to the query while all other keys are negative

samples. MoCo also implements two separate encoders: a query encoder that is updated

using backpropagation per usual and a key encoder which updates its parameters using

momentum and the query encoder parameters.

Figure 2.7: MoCo framework from [18].

At each iteration of the loss function there are many hard negative samples because the

dynamic dictionary is detached from the batch size so it can be very large. At each iteration,

a new batch of keys is enqueued to the dynamic dictionary while the oldest batch of keys is

dequeued so that stale embeddings are removed. Unlike the embeddings in a memory bank

14



which grows stale with each iteration, the dynamic dictionary maintains fresh embeddings

thanks to the momentum encoder. To maintain a consistent dictionary, the momentum

encoder uses a high momentum value (e.g, 0.99) so that its parameters are updated slowly.

We will be using the MoCo framework as part of our own framework since it is one of

the most successful contrastive learning frameworks and its learned representations transfer

particularly well to downstream segmentation tasks.
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Chapter 3

METHODOLOGY

In this chapter we will focus on the actual design of our self-supervised contrastive framework.

Figure 3.1 demonstrates the entire framework, which includes two stages, the contrastive pre-

training stage, and the fine-tuning stage. In the contrastive pre-training stage, we train a

global contrast model and a Local Region Contrast (LRC) model separately with respect to

two different contrastive losses. In the fine-tuning stage, we combine the global and LRC

models, via concatenation, and fine-tune on a target dataset. We elaborate on the details of

each stage in the following subsections.

3.1 Pre-Training Stage

The pre-training stage involves self-supervised contrastive learning on a large dataset of

unlabeled medical images. We will be working with 2D U-Nets so the input will be mini

batches of 2D slices taken from 3D volumes. We will be referring to these individual 2D

slices as images.

During the pre-training stage, an image xq is randomly chosen from a mini batch of images

as a query sample and xn ∈ {x1,x2,x3, ...} are the negative key samples stored in a queue.

To formulate a positive key sample xp, elastic transforms are performed on the query sample

xq.
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Figure 3.1: Overview of the self-supervised framework with pre-training stage, consisting of
global and local contrast, and fine-tuning stage.

3.1.1 Global Contrast

The objective of the global contrast branch is to learn high-level, semantic information,

and we achieve this by performing instance discrimination. To explore global contextual

information, we train a latent encoder Eg following the contrastive protocol in [18]. Eg is

implemented using the encoding half (left side) of a 2D U-Net. Our implementation of U-Net

varies slightly from the original implementation in that we apply instance normalization [39]

after each convolutional layer.
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Three sets of latent embeddings zq, zp, zn are extracted by Eg from xq, xp, xn respectively.

We apply global average pooling to the latent embeddings to flatten them and then add a

linear layer to project them into 128-dimensional vectors. Using dot product as a measure

of similarity, a form of a contrastive loss function called InfoNCE [40] is considered:

Lg = − log
exp (zq · zp/τg)

exp (zq · zp/τg) +
∑

n exp (zq · zn/τg)

where τg is the global temperature hyper-parameter per [43]. Note that in global contrast

we only pre-train a latent encoder Eg, there is no decoder.

3.1.2 Local Region Contrast

Segmentation requires both recognition and localization, therefore, learning just global/semantic

information is insufficient since it primarily helps with just recognition. To improve local-

ization for segmentation, we propose Local Region Contrast (LRC). Unlike global contrast,

positive and negative pairs for LRC are only generated from input image xq and its transform

xp. We use Felzenszwalb’s algorithm to define local regions and to formulate the positive

and negative pairs. For an input image x, Felzenszwalb’s algorithm provides K local regions

R = {r1, r2, .., rK}, where rk is the k-th local region in image x. We then apply an elastic

transform to both the query image xq and its local regions Rq so that we have the augmented

image xp = Te(xq) and its local regions Rp = {r1p, r2p, .., r
Kp
p }, where rkp = Te(r

k
q). Note that

Kq = Kp always holds since Rp is a one-to-one mapping from Rq. The query image xq

and augmented image xp are then forwarded through a randomly initialized U-Net, which

includes a convolutional encoder El and a convolutional decoder Dl. We get correspond-

ing feature maps fq and fp with the same spatial dimensions as xq and xp and D channels

from the last convolutional layer of Dl. By maintaining the same spatial dimensions as the

input, we have created pixel-level embeddings. fq and fp are also normalized with respect
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to the channel dimension so each pixel embedding is a unit vector. Afterwards, we sam-

ple N pixel embeddings with from the local region rkq in fq, and formulate the sample mean

fkq = 1
N

∑N
n=1 f

k,n
q , where fk,nq is the n-th pixel embedding sampled from feature map fq within

the k-th local region rkq . Our sampling strategy is straightforward: we sample random points

with replacement following a uniform distribution. Similarly, for feature map fp, its sample

mean fkp can be provided following the same random sampling process. Each local region

pair of fkq and fkp is considered a positive pair. For the negative pairs, we sample both fq and

fp from the rest of the local regions {r1, r2, ..., rk−1, rk+1, ..., rK}. The local contrastive loss

can be defined as follows:

Ll = −
K∑

k1=1

log
exp

(
fk1q · fk1p /τl

)
∑K

k2=1 1[k2 ̸=k1] exp
(
fk1q · fk2q /τl

)
+ exp

(
fk1q · fk2p /τl

)
where τl is the local temperature hyper-parameter and 1[k2 ̸=k1] is an indicator function that

evaluates to 1 if k2 ̸= k1 and 0 otherwise. Compared to global contrast, in LRC we pre-train

both El and Dl.

3.2 Fine-Tuning Stage

Whereas the pre-training stage involves self-supervised learning on a large unlabeled dataset

using global and local contrastive loss functions, the fine-tuning stage follows a more standard

protocol for multi-organ segmentation and involves supervised learning on smaller labeled

datasets using Dice loss. The global and LRC models are trained separately during the pre-

training stage, but for the fine-tuning stage we combine the two models, via concatenation,

so that the final predictions utilize both global and local information. We append a randomly

initialized decoder Dg to the pre-trained global encoder Eg to ensure that the embeddings

have the same dimensions prior to concatenation. We concatenate the outputs from the
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final convolutional layers of Dg and Dl and add a 1x1 convolutional layer to get the final

segmentation map.

20



Chapter 4

EXPERIMENTS

In this chapter we will discuss the experimental setup and the results from the various

experiments that we conducted. We validate our proposed framework by testing it on three

multi-organ segmentation datasets from different regions of the body. We also observe if our

framework provides superior weight initialization and leads to faster convergence. Finally,

we perform ablation studies to determine what contribution different components make to

the performance of the entire framework.

4.1 Datasets

4.1.1 Pre-Training Dataset

During both the global and local pre-training stages, we pre-train the encoders on the

Abdomen-1K dataset [27]. It contains over one thousand CT images which equates to

roughly 240,000 2D slices. The CT images have been curated from 12 medical centers and

include multi-phase, multi-vendor, and multi-disease cases. Although segmentation masks

for liver, kidney, spleen, and pancreas are provided in this dataset, we ignore these labels

during pre-training since we are following a self-supervised protocol. Out of the 1062 total

CT images, we set aside 5 CT images as a validation set.
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Figure 4.1: Example CT slices from Abdomen-1k.

4.1.2 Fine-Tuning Datasets

During the fine-tuning stage, we perform extensive experiments on three datasets with re-

spect to different regions of the human body. Each dataset is from an increasingly different

region of the body and will evaluate the model’s ability to handle domain shift.

The first dataset is ABD-123 which is an abdomen dataset from [38] that contains 123 CT

images from patients with various abdominal tumors. These CT images were taken during

the treatment planning stage. We report the average Dice score on 53 test CT scans including

11 abdominal organs: large intestine, duodenum, spinal cord, liver, spleen, small intestine,

pancreas, left kidney, right kidney, stomach, and gallbladder. This dataset contains the same

organs as the pre-training dataset and is from the same region of the body, so this dataset

will evaluate the model’s ability to perform same-domain transfer learning.

The second dataset is Thorax-85 which is from [8] and contains contains 85 thoracic CT

images. We report the average DSC on 25 test CT scans including 6 thoracic organs: esoph-

agus, trachea, spinal cord, left lung, right lung, and heart. We chose this dataset in order to

evaluate cross-domain transfer learning.

HaN is from [37] and contains 120 CT images covering the head and neck region. We report

the average DSC on 9 organs (brainstem, mandible, optical chiasm, left optical nerve, right

optical nerve, left parotid, right parotid, left submandibular gland, and right submandibular
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gland).

For each fine-tuning dataset we also set aside 10 CT images as a validation set.

Figure 4.2: Example CT slices with ground truth segmentation masks from ABD-123.

Figure 4.3: Example CT slices with ground truth segmentation masks from Thorax-85.

Figure 4.4: Example CT slices with ground truth segmentation masks from HaN.

4.2 Implementation Details

We re-sampled all CT images to have a consistent spacing of 2.5mm × 1.0mm × 1.0mm,

with respect to the depth, height, and width of the 3D volume. The temperature parameter
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τ for both the global and local loss was set to 0.07 as in [18]. The global contrast model was

pre-trained using SGD with an initial learning rate of 0.03, momentum of 0.9, and weight

decay of 0.0001. The LRC model was pre-trained using Adam [23] with an initial learning

rate of 0.0001 and weight decay of 0.0001. All models were also fine-tuned using Adam with

the same settings as the LRC model. We used validation set performance to perform early

stopping and model selection.

4.3 Quantitative Results

4.3.1 Pre-Training

Prior to examining the fine-tuning/transfer learning performance, we first examined if the

embeddings from the LRC model formed clusters that were similar to the ”ground truth”

clusters provided by Felzenszwalb’s algorithm. We did this by performing k-means clustering

on the LRC model embeddings where we set k, the number of clusters, to be equivalent to the

number of ground truth clusters. If the clusters formed by the LRC embeddings were similar

to the clusters generated by Felzenszwalb’s algorithm, then the LRC model had successfully

learned how to produce an over-segmentation.

We randomly sampled 10 slices from each of the 5 validation CT images from Abdomen-1k

and used these slices to evaluate the LRC model embeddings. We used the adjusted Mutual

Information score and Rand Index to evaluate the similarity between the embedding clusters

and the ground truth clusters.

Figure 4.5 illustrates that, qualitatively, the embedding clusters and ground truth clusters

for two randomly selected slices are quite similar. For the adjusted Mutual Information score
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Figure 4.5: Comparison between the clusters formed by Felzenszwalb’s algorithm and the
clusters formed by the LRC model embeddings. MI and RI are adjusted Mutual Information
score and adjusted Rand Index respectively.

and adjusted Rand Index, a score of 0 would indicate two random sets of clusters and a score

of 1 would indicate two identical sets of clusters. Table 4.1 shows that our scores are above

0.7 so we can conclude that our LRC embedding clusters are very similar to the ground truth

clusters.

Adj. Mutual Information 0.791
Adj. Rand Index 0.794

Table 4.1: Mean adjusted Mutual Information score and adjusted Rand Index for the 50
randomly selected slices.

4.3.2 Fine-Tuning

For the three aforementioned fine-tuning datasets (ABD-123, Thorax-85, and HaN), we

decided to use fine-tuning set sizes of 10 and 60. As a baseline, we evaluated a model with

randomly initialized parameters (i.e., trained from scratch). For comparison with an existing

self-supervised learning approach, we also fine-tuned Models Genesis. We included fine-

tuning results for ImageNet pre-training, MoCo pre-training (i.e., only the global contrast

model), and LRC by itself in order to demonstrate that combining LRC with ImageNet or

combining LRC with MoCo provides improved multi-organ segmentation performance.

25



Table 4.2: Comparison of our proposed pre-training strategies (LRC + ImageNet and LRC
+ MoCo) with existing self-supervised and supervised pre-training strategies. All models
are evaluated on 3 fine-tuning datasets where |XF | is the size of the fine-tuning dataset. The
values reported are Dice scores.

ABD-123 Thorax-85 HaN
Method |XF |=10 |XF |=60 |XF |=10 |XF |=60 |XF |=10 |XF |=60

Random init. 0.688 0.760 0.859 0.890 0.509 0.778
Models Genesis 0.729 0.802 0.882 0.901 0.640 0.742

ImageNet 0.709 0.776 0.872 0.894 0.675 0.770
MoCo 0.721 0.777 0.866 0.893 0.523 0.760
LRC 0.708 0.772 0.877 0.896 0.539 0.765

LRC + ImageNet 0.727 0.786 0.881 0.903 0.726 0.779
LRC + MoCo 0.753 0.790 0.886 0.901 0.706 0.772

As shown in Table 4.2, LRC boosts supervised pre-training (i.e., ImageNet) by an average of

2.6% for |XF | = 10 and 0.09% for |XF | = 60. LRC also boosts self-supervised pre-training

(i.e., MoCo) by an average of 7.8% for |XF | = 10 and 1.1% for |XF | = 60. As expected

for most self-supervised frameworks, the improvement in performance diminishes as the size

of the fine-tuning set increases. LRC + ImageNet and LRC + MoCo also achieve equal

or better performance than Models Genesis on 5 out 6 tests. For ABD-123 and Thorax-

85, our proposed solutions, using just 10 labeled examples, are able to achieve comparable

performance to random initialization with 50 additional labeled examples. Of the 3 fine-

tuning datasets, the most marked improvement in performance is seen in HaN, the most

challenging dataset.

4.3.3 Optimization

Generally, a consequence of having better weight initialization and better pre-training is

better and faster optimization. Thus, we expect our proposed framework to converge faster

and at a higher segmentation accuracy. In Figure 4.6 we compared the learning curves of

LRC + MoCo and random initialization. For all 3 datasets we can observe that LRC +
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MoCo exceeds the segmentation performance of random initialization by epoch 40/50 or

roughly half the number of epochs. We can also see that, for ABD-123 and Thorax-85, LRC

+ MoCo converges faster.

Figure 4.6: Comparison of the learning curves of LRC + MoCo and random initialization
on the validation sets with |XF | = 10.

4.4 Qualitative Results

As mentioned earlier, our proposed framework provided the most improvement in the HaN

dataset. The head and neck CT scans contain many small organs, such as the optic nerves

and the the optic chiasm, that are only visible in a few slices. Figure 4.7 provides an example

of a difficult slice containing the right and left optic nerves, optic chiasm, and brain stem.

All of the models are able to properly segment the brain stem since it is fairly large and is

visible across many slices, but only LRC + ImageNet and LRC + MoCo are able to properly

segment the optic nerves and optic chiasm. The randomly initialized model and MoCo model

struggle to localize the organs and end up masking the entire head. Models Genesis is able

to segment parts of the optic nerves but also fails to recognize and segment the optic chiasm.

The LRC model by itself is able to identify the location of the optic nerves and optic chiasm

but it fails to recognize that they are separate organs ends up segmenting them together.
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By combining global and local information, the LRC + ImageNet and LRC + MoCo models

are the only ones to successfully recognize all the organs and segment them properly.

Figure 4.7: Comparison of the predicted segmentation masks from each model.
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Chapter 5

CONCLUSION

Like most tasks in medical image analysis, multi-organ segmentation is a challenging prob-

lem for deep learning due to insufficient labeled data and a myriad of factors that can cause

domain shift. In this thesis, we demonstrated how a self-supervised contrastive learning

framework can overcome these challenges by leveraging large unlabeled datasets in order

to pre-train robust models for a wide range of multi-organ segmentation tasks. We intro-

duced Local Region Contrast for dense self-supervised pre-training and showed that it can

be combined with existing supervised and self-supervised pre-training methods to boost seg-

mentation performance. Ultimately, the goal of this thesis is to show that self-supervised

contrastive learning is a viable approach to performing deep learning in the medical imaging

domain.
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Chapter 6

FUTURE WORK

There are many possible directions for extending the work in this thesis. One possible

direction would be to extend the framework to support 3D models. While 2D models can be

effective, ultimately 3D models are superior for performing tasks in medical image analysis

because most medical images are multi-dimensional volumes and 3D models provide greater

spatial context and consistency. The challenge in extending this work to 3D lies in defining

local regions for the LRC model. We tried to apply Felzenszwalb’s algorithm, along with

other graph partitioning algorithms, to 3D volumes but they failed to produce sensible local

regions. These unsupervised algorithms end up defining too many meaningless local regions

for each volume.

Another possible direction would be to incorporate multi-task learning. Rather than train-

ing two separate models and using an ensemble approach, it may be a better approach to

perform multi-task learning and train a single model using both the global and local loss

simultaneously.

Finally, there is much room for improvement in the local loss function. Currently the LRC

model takes a long time to train compared to the global contrast model because the local

loss is quite unstable. Some possible reasons for the instability include the random sampling

of points in a local region and the relatively small number of negative samples.
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