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Prior test experience confounds longitudinal 
tracking of adolescent cognitive and motor 
development
Edith V. Sullivan1*  , Wesley K. Thompson2, Ty Brumback3, Devin Prouty4, Susan F. Tapert5, Sandra A. Brown5, 
Michael D. De Bellis6, Kate B. Nooner7, Fiona C. Baker4, Ian M. Colrain4, Duncan B. Clark8, Bonnie J. Nagel9, 
Kilian M. Pohl1,4 and Adolf Pfefferbaum1,4 

Abstract 

Background: Accurate measurement of trajectories in longitudinal studies, considered the gold standard method 
for tracking functional growth during adolescence, decline in aging, and change after head injury, is subject to con-
founding by testing experience.

Methods: We measured change in cognitive and motor abilities over four test sessions (baseline and three annual 
assessments) in 154 male and 165 female participants (baseline age 12–21 years) from the National Consortium on 
Alcohol and NeuroDevelopment in Adolescence (NCANDA) study. At each of the four test sessions, these participants 
were given a test battery using computerized administration and traditional pencil and paper tests that yielded accu-
racy and speed measures for multiple component cognitive (Abstraction, Attention, Emotion, Episodic memory, Work-
ing memory, and General Ability) and motor (Ataxia and Speed) functions. The analysis aim was to dissociate neurode-
velopment from testing experience by using an adaptation of the twice-minus-once tested method, which calculated 
the difference between longitudinal change (comprising developmental plus practice effects) and practice-free initial 
cross-sectional performance for each consecutive pairs of test sessions. Accordingly, the first set of analyses quanti-
fied the effects of learning (i.e., prior test experience) on accuracy and after speed domain scores. Then developmental 
effects were  determined for each domain for accuracy and speed having removed the measured learning effects.

Results: The greatest gains in performance occurred between the first and second sessions, especially in younger 
participants, regardless of sex, but practice gains continued to accrue thereafter for several functions. For all 8 accu-
racy composite scores, the developmental effect after accounting for learning was significant across age and was 
adequately described by linear fits. The learning-adjusted developmental effects for speed were adequately described 
by linear fits for Abstraction, Emotion, Episodic Memory, General Ability, and Motor scores, although a nonlinear fit 
was better for Attention, Working Memory, and Average Speed scores.

Conclusion: Thus, what appeared as accelerated cognitive and motor development was, in most cases, attributable to 
learning. Recognition of the substantial influence of prior testing experience is critical for accurate characterization of normal 
development and for developing norms for clinical neuropsychological investigations of conditions affecting the brain.
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Background
Longitudinal studies are considered the gold standard 
protocol for tracking developmental and involutional 
changes. By nature, longitudinal assessment requires 
repeated examination, ideally employing the same 
procedures and test materials throughout the study 
[1, 2]. Some assessment classes are relatively robust 
to repeated testing, such as measurement using struc-
tural brain imaging with MRI, somatic size, or blood 
chemistry panels. Even such practice-free retesting is 
subject to measurement drift, which can be estimated 
with longitudinally acquired, control data to be used as 
correction factors (e.g., [3, 4]). By contrast, longitudi-
nal cognitive assessment has the intrinsic problem of 
prior test experience [5–7], also considered “practice” 
or “learning” [8], even when the retest interval spans 
one [9] to two [10–13] years. Thus, any longitudinal 
study purporting to track, quantify, and infer cognitive 
change as development, maturation, or decline is con-
founded by prior testing experience that requires quan-
tification (review, [14]).

Many studies that have considered practice effects 
have focused on adult aging to senescence [1, 8, 15] 
or on repeated testing necessary in clinical settings to 
track the progression of CNS injury due to accident, 
stroke, or dementia [16–19] or recovery with treat-
ment [20] or time [21]. Indeed, practice effects have 
been speculated to minimize age-related declines 
in older people [22, 23] and have proved useful in 
predicting cognitive decline or stability in patients 
with amnestic Mild Cognitive Impairment (aMCI). 
Specifically, patients with aMCI, whose cognitive 
scores improved with repeated testing separated by 
one week, showed a relatively stable disease course 
over one year, whereas those who showed minimal 
improvement between the weekly testing evidenced 
substantial decline over one year [24]. Thus as further 
emphasized by Duff and colleagues in the title of their 
paper [8], practice effects can be considered a “unique 
cognitive variable”.

A growing number of large-scale, longitudinal stud-
ies have been initiated to measure cognitive, motor, 
and emotional development from later childhood 
through young adulthood (reviewed in [25]). Among 
them, National Consortium on Alcohol and NeuroDe-
velopment in Adolescence (NCANDA) [26] with its 
cohort sequential design (described below) is uniquely 
positioned to measure practice effects and to dissoci-
ate them from developmental trajectories, modeling of 
which is the intent of all of these projects.

For decades, sex has been recognized as a significant 
moderator variable in studies of development of cog-
nitive and motor processes (reviewed in [27, 28]). As 

we noted in our earlier paper [29], sex differences are 
associated with neuropsychological test performance 
during normal development and require consideration 
when assessing developmental trajectories of cogni-
tive and motor functions (e.g., [30–32]). Typically, girls 
undergo sexual maturity earlier than boys (e.g., [33, 
34]) and advance earlier than boys in language skills 
[35], use of semantic knowledge [36], facial emotion 
recognition and discrimination [37, 38], and compo-
nents of episodic memory [37, 39]. By contrast, boys 
develop earlier than girls in mental rotation apprecia-
tion [40, 41], fine motor control (but see[42]) [43, 44], 
and physical strength (e.g., [45, 46]). Many sex-related 
differences identified are relevant to the tests used in 
the current study, girls tend to develop language skills 
earlier than boys, whereas boys develop spatial skills 
earlier than girls [37]. Into adolescence, as groups, girls 
excel on tests of memory and social cognition, whereas 
boys excel on tests of spatial processing and motor 
speed (reviewed in [27]).

Several methods have been proposed to preclude or 
minimize learning effects in longitudinal studies of cog-
nitive and motor performance or, alternatively, to dis-
sociate testing-experience learning from development. 
As summarized by Salthouse [5, 6] and McArdle [2], 
some methods, other than simply using cross-sectional 
protocols, include use of different test forms, stagger-
ing baseline testing, and the “twice-minus-once-tested” 
method [1, 5, 47]. The last approach has proved useful 
in studies employing an accelerated longitudinal design, 
also known as a cohort sequential design. To track 
adolescent brain, cognitive, and emotional develop-
ment, the NCANDA study employed this design by ini-
tially recruiting youth in three age bands (12–14  years, 
15–17  years, and 18–21  years) for subsequent annual 
testing [26]. The cognitive and motor functions assessed 
include executive functions, component processes of 
memory, social cognition, psychomotor speed, and visu-
ospatial skills. Because the mainstay of the test battery 
is based on the computer-driven Web CNB (Computer-
ized Neuropsychological Battery, [48, 49]), performance 
profiles of most of these component processes are meas-
ured in terms of accuracy, speed, and processing effi-
ciency (the sum of standardized accuracy and speed 
scores) [50]. Thus, this battery assesses multiple cogni-
tive domains, each of which can be subject to selective 
practice effects [2, 51].

Application of the twice-minus-once-tested method 
requires measurement of cross-sectional performance, 
for which the initial testing in NCANDA spanned ages 
12 to 21 years [29], and longitudinal performance, which 
was measured annually using the same procedures and 
test materials [9]. The cross-sectional performance 
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provided the expected developmental effect free of 
prior experience over a decade of adolescent growth, 
and the longitudinal performance included the develop-
mental effect plus learning. The difference between the 
second test score of an individual (twice tested) and the 
first test scores of the group at the individual’s second 
test age (once tested) yielded an index of learning. This 
method revealed different extents of practice effects for 
the various test composites (29% to 99% of the variance 
was due to prior testing) and for different ages, where 
the younger participants showed the greatest improve-
ment with little contribution from sex, ethnicity, or 
parental education [9].

The current analysis expanded the twice-minus-
once-tested method to track development independent 
of learning from prior test experience in the NCANDA 
cohort over the first four years of the study. Recently, 
we used this approach to discriminate learning from 
development in the Stroop Match-to-Sample test [52], 
which assesses attentional inhibition, a function con-
sidered to advance over adolescence. Results indi-
cated that learning contributed a greater proportion 
of the change variance than did development, which 
accounted for learning based prior testing [53]. The 
current analysis examined multiple component cogni-
tive (Abstraction, Attention, Emotion, Episodic mem-
ory, Working memory, and General Ability) and motor 
(Ataxia and Speed) functions over the first four annual 
NCANDA test sessions. Accordingly, the first set of 
analyses quantified the effects of learning (i.e., prior 
test experience) on accuracy domain scores, pursuing 
three aims: 1) given previous longitudinal findings indi-
cating significant learning (higher accuracy scores with 
prior experience) from initial repeated testing even 
with a year interval, we tested whether the amount and 
trajectory of learning between the second and later 
tests differed from those observed between the ini-
tial test pairs; 2) we questioned whether these param-
eters differed by functional domain; and 3) age and sex 
were examined as moderating factors. The same three 
aims were also applied to the speed measures with the 
expectation that improvement would be in the direc-
tion of faster response times; to put all accuracy and 
speed measures in the same direction, response speed 
was inverted so that larger values indicated faster per-
formance. After quantifying learning effects, develop-
mental effects were then determined for each domain 
for accuracy and speed, having removed the measured 
learning effects. We tested the hypothesis that the tra-
jectories of scores would be different depending on the 
inclusion or removal of estimated practice effects, and 
that these trajectory differences would be present for 
accuracy and speed scores.

Methods
Participants
All participants were drawn from the NCANDA cohort 
of 692 who endorsed no or low levels of drinking (no-
to-low alcohol drinkers) at baseline. The current lon-
gitudinal analysis required that each participant had 4 
consecutive annual test sessions, starting from baseline 
and remained a no-to-low drinker (described below) for 
all included sessions. The resulting sample comprised 319 
participants (154 male, 165 female), although not all par-
ticipants had all composites; demographic descriptions 
are presented in Table 1.

All participants underwent informed consent processes 
at each visit with a research associate trained in human 
subject research protocols. Adult participants or the par-
ents of minor participants provided written informed 
consent before starting the study; minor participants 
provided assent. The Institutional Review Boards of each 
site approved this study, and all methods were performed 
in accordance with the relevant guideline and regulations 
noted and approved.

Alcohol history and testing
Participants completed the Customary Drinking and 
Drug use Record (CDDR, [54]) to characterize past and 
current alcohol and substance use. At each test ses-
sion, alcohol and drug use reports were accompanied 
by 12-panel urine toxicology screens for amphetamine, 
methamphetamine, cocaine, phencyclidine, benzodiaz-
epines, barbiturates, opiates, oxycodone, propoxyphene, 
methadone, tricyclic antidepressants, marijuana, and a 
breathalyzer for alcohol to confirm absence of evidence 
for recent use of drugs of abuse. Positive screens were 
sent for gas chromatography/mass spectrometry confir-
mation; if confirmed, participants were excluded from 
testing that day and from the current analysis.

To be considered a no-to-low drinker, participants met 
two sets of criteria determined with the CDDR described 
previously [55] as follows: 1) The maximum lifetime 
drinking days for male and female participants was ≤ 5 
for age 12 to 15.9 years, ≤ 11 for age 16 to 16.9 years, ≤ 23 
for age 17 to 17.9 years, and ≤ 51 for age 18 years old and 
older; and 2) The maximum allowable drinks per occasion 
was ≤ 3 for female participants at any age but varied by 
age for male participants: ≤ 3 for age 12 to 13.9 years, ≤ 4 
for age 14 to 19.9 years, and ≤ 5 for age 20 years old and 
older.

Cognitive and motor tests and composite score 
construction
Assessment was the same across all five sites and used 
a combination of computerized tests (originally the 
Web CNB, now the WebCNP (https:// webcnp. med. 

https://webcnp.med.upenn.edu/
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upenn. edu/) [37, 48]) and traditional neuropsycho-
logical tests [29]. Testing was conducted by research 
assistants trained with annual reliability evaluations 
to criterion and calibrated annually by a centrally-
trained psychometrician using procedures established 
by the NCANDA Data Analysis Resource. The tests 
were administered in the same order across all sites and 
were generally completed in approximately 3  h. Test 
results were uploaded to the software platform, Scal-
able Informatics for Biomedical Imaging Studies [56, 57] 
at SRI International. The longitudinal data used herein 
were available through a formal, locked data release 
(NCANDA_PUBLIC_3Y_REDCAP_V02).

The WebCNP has established construct validity and 
reliability and was standardized on upwards of 10,000 
participants (depending on the measure) with a broad, 
age range (8–90  years old) [48]. Descriptions of the 
15 WebCNP tests used were provided in our earlier 
report [29] (Supplemental Table  3 in Sullivan et  al. 
2016), with most tests having both accuracy and speed 
(response time) measures. A subset of measures from 
these tests was used to create theoretically-driven com-
posite Z-scores for 8 accuracy measures (Abstraction, 

Attention, Emotion, Episodic Memory, Working Mem-
ory, General Ability, Balance, and Total) and 8 speed 
measures (Abstraction, Attention, Emotion, Episodic 
Memory, Working Memory, General Ability, Motor, 
and Total). In addition, an Efficiency score was cal-
culated as the sum of the Total Accuracy plus Speed 
Z-scores [50]. The individual tests and computed com-
posites were described previously, where Table  2 lists 
the cognitive and motor domains and specific processes 
assessed, with associated brain regions reported to sup-
port each process (see Supplemental table 2 in Sullivan 
et al. [29] also lists the composite domains, test meas-
ures and variable names entered into each composite 
domain, and scoring procedure for each measure).

Composite score construction followed three steps [37, 
58]. First, each measure was standardized on baseline 
scores achieved by all male and female adolescents who 
met NCANDA entry criteria (maximum N = 319) and 
expressed as a Z-score (mean = 0 ± 1SD). This transfor-
mation function was applied to all subjects at all times. 
Not all participants had scores for all measures, typically 
due to computer failure, participant’s refusal to perform 
a test, or lack of testing time; the number of participants 

Table 1 NCANDA demographics at baseline

†Highest education of a parent

https://webcnp.med.upenn.edu/
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Table 2 R2 for each test session gamm and difference between test session pairs tested with ANOVA indicative of learning

†Improvement in R2 between a pair of test sessions; see red values in Fig. 1 bar plots

Bold values are significant with a family-wise Bonferroni correction for 8 comparisons (alpha = 0.05) at p ≤ 0.00625

% due to learning values are noted only for significant improvement
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with scores are in Table 2 in the Results. Next, all scores 
for which a low score signified good performance were 
transformed by multiplying scores by -1 so that high 
scores for all measures were in the direction of good 
performance. Finally, the mean Z-score of all individual 
measures that comprised a composite was calculated; 
missing scores were allowed, but each composite score 
had to have at least 2 measures to make a domain.

Statistical analysis
The primary analysis tools were the General Addi-
tive Mixed Model (GAMM) and Likelihood Ratio Tests 
(LRT) using the gamm and anova functions from the 
mgcv package in R Version 3.1.0 [http:// www.r- proje ct. 
org]. Age was allowed to be a nonlinear smooth effect, 
implemented via thin plate splines [s(age)] with 3 inter-
nal knots [59], herein after referred to as “smoothed age.” 
Roughness penalties for the smooth effects were esti-
mated using generalized cross validation [60].

Estimation of learning from visit to visit
To determine the learning effect from visit to visit, 
three data sets were constructed: 1) all subjects’ visit 
1 plus visit 2; 2) all subjects’ visit 2 plus visit 3; 3) all 
subjects’ visit 3 plus visit 4. For each dataset, a regres-
sion analysis fitting the data with age (GAMM with 
smoothed age) was performed without and with visit 
as a factor. The results of the two models were com-
pared with an LRT; significant improvement by adding 
visit to the model indicated significant learning from 
visit to the subsequent visit. The improvement in the 
amount of variance explained (R-squared) is reported 
here as an index of the amount of learning between 
visits.

To test for age effects on learning, for each test visit 
pair, GAMMs with and without an age-by-visit interac-
tion were compared using LRTs. A significantly better 
fit with age-by-visit interaction indicated significant age 
effects on learning.

To test for sex effects on learning, for each visit pair, 
GAMMs with age-by-visit plus sex-by-visit were per-
formed and examined for learning-by-sex interactions.

Learning‑adjusted developmental model
To quantify learning across the four visits, a sequence 
of model fits was performed [53] that allowed the esti-
mation of development effects independent of learning 
effects. The learning-adjusted development estimate 
across sessions was calculated as follows:

The cross-sectional fit of dependent variable y vs. 
age was computed across all participants for each visit 
separately producing: fit1 (based on only 1st visits), fit2 

(based on only 2nd visits), fit3 (based on only 3rd visits), 
fit4 (based on only 4th visits).

For visits 2, 3, and 4, the age-related learning effect 
from the previous visit was estimated by computing 
the difference between the predicted values from the 
cross-sectional fit at the current visit minus the pre-
dicted value when applying the fit from the previous 
visit to the ages at the current visit. This procedure 
was done cumulatively across visits 2, 3, and 4, pro-
ducing learning-adjusted (i.e., learning-removed) val-
ues. Because visit 1 had no learning relevant to these 
test sessions, visit 1 values were not adjusted for expe-
rience effects. This adjustment is a direct extension of 
the “once vs. twice tested” method to more than two 
testing occasions.

The estimated age-dependent learning at visit 2 was 
the difference between the predicted values of cross-
sectional fit2 applied to subject visit 2 ages minus the 
predicted values of cross-sectional fit1 applied to the 
same visit 2 ages:

This is the simple case of baseline with one follow-up 
test session as used in Sullivan et al. [9] and is the “once 
minus twice tested” method [6].

For subsequent visits the learning effect required 
testing of additional learning from visit to visit, calcu-
lated as follows: The estimate of learning at visit 3 was 
the difference between the predicted values of cross-
sectional fit3 applied to subject ages at visit 3 minus the 
predicted values of cross-sectional fit2 again applied to 
subject ages at visit 3. This quantity was then added to 
the estimate from visit 1 to visit 2 to obtain the cumula-
tive learning effect from baseline to visit 3:

The estimate of cumulative learning at visit 4 was the 
difference between the predicted values of cross-sec-
tional fit4 applied to subject ages at visit 4 minus the 
predicted values of cross-sectional fit3 applied to the 
same subject ages at visit 4, which was then added to the 
estimate from visit 1 to visit 2 and from visit 2 to visit 3:

To examine the effect of age on performance, GAMMs 
examining composite scores as a function of smoothed 
age were performed before and after adjusting for 

visit2.adj = visit2 − (predict(fit2_on_visit2) − predict(fit1_on_visit2))

visit3.adj = visit3 − [(predict(fit2_on_visit2) − predict(fit1_on_visit2))

+

(predict(fit3_on_visit3) − predict(fit2_on_visit3))]

visit4.adj = visit4 − [(predict(fit2_on_visit2) − predict(fit1_on_visit2))

+

(predict(fit3_on_visit3) − predict(fit2_on_visit3))

+

(predict(fit4_on_visit4) − predict(fit3_on_visit4))]

http://www.r-project.org
http://www.r-project.org
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learning. ANOVAs were computed to allow comparison 
of the GAMM with smoothed age to the GAMM with 
linear age to determine whether the developmental tra-
jectory of that test composite was better describes as 
smoothed or linear.

To test for sex effects on development across all visits, 
GAMMs examining learning-adjusted values as a func-
tion of smoothed and linear age with and without sex as a 
factor were compared with ANOVA.

To account for the multiple comparisons made, family-
wise Bonferroni correction was determined for 8 test 
session pairs for each metric (accuracy and speed) with 
α = 0.05 required p-values ≤ 0.00625 (two-tailed) to be 
considered significant.

Results
The first set of results quantifies the learning effects for 
each performance metric (accuracy and speed) of each 
composite score by age and sex. The second set quanti-
fies the developmental effects with the measured learning 
(i.e., practice) effects removed.

Learning effects
For each composite score, learning was quantified by 
computing the difference in the variance explained 
by age between pairs of two GAMM models with 
and without visit as a factor; these statistics are pre-
sented in Table  2 along with the percent change (typi-
cally improvement), their associated LRT L ratios of 
the model fits, and p-values. The additional variance 
explained by age plus visit in the model is indicative of 
learning and is depicted in red in the second bar of each 
visit pair in Fig. 1. The learning effect did not differ sig-
nificantly by sex between test session pairs for any accu-
racy composite score but showed a modest sex effect for 
the Motor speed composite, described below (Table 3). 
The trend was for the younger participants to show 
greater learning than the older ones especially between 
sessions 1 and 2 (Figs.  2 and 3, column 5). Cross-sec-
tional scores at each test session over age are presented 
in Figs. 2 and 3 (first of the 3 right panels), and the learn-
ing component is presented in the second and third fig-
ures of the right triplet for each composite score over 
age.

Accuracy composite scores
Overall, smooth age fits were better than linear age fits 
in describing the unadjusted data, which comprised 
both learning and development (Table  4; Fig.  2a-c, left 
spaghetti plots for each composite). Two exceptions 
were Working Memory and Balance; the latter showed a 
smooth trend.

For Abstraction accuracy, the ANOVA comparing the 
GAMM fits between each successive pairs of test sessions 
indicated significant performance improvement between 
each pair (red area of Fig.  1 and Table  2). In all three 
cases, significant age-by-learning interactions indicated 
that learning was greater with younger age.

For Attention, Emotion, Episodic Memory and Average 
accuracy, the ANOVA comparing the GAMM fit pairs 
of test sessions indicated significant improvement from 
time 1 to 2 and 2 to 3 but not from 3 to 4. Further, learn-
ing interacted with age, indicating greater learning with 
younger age. For Working Memory and General Ability 
accuracy, the ANOVA revealed significant improve-
ment that interacted with age from time 1 to 2. Bal-
ance was the only composite failing to show significant 
improvement between any test pairs and no interaction 
with age.

Speed composite scores
Like Accuracy, Speed showed improvement over test 
sessions, but the overall pattern of improvement in com-
posite scores differed by metric. Smooth age fits were 
better than linear age fits in describing the unadjusted 
data, which comprised both learning and development 
(Table 4; Fig. 3a-d, left spaghetti plots for each compos-
ite), for four of the eight test composites and the Effi-
ciency score: Attention, Episodic Memory, Motor, and 
Average Speed. Linear fits better described the age effect 
for the four remaining composites: Abstraction, Emotion, 
Working Memory, and General Ability; Emotion and 
General Ability showed smooth trends.

The ANOVAs comparing the GAMM fits revealed sig-
nificant increases in speeded responses between the first 
two pairs of test sessions but not the last pair for five 
composite scores and for Average Efficiency: Abstraction, 
Emotion, Episodic Memory, Motor, and Average Speed. 
Attention and General Ability speed improved from time 
1–2 only. Working Memory showed no improvement 
between any test pair (Fig. 3a-d, 3 plots in the right panel; 
Table 2).

The age-learning interaction was significant for time 1–2 
and time 2–3 for Abstraction, Emotion, Episodic Memory, 
Motor, and Average Speed (Table  3, Fig.  3a-d). For Gen-
eral Ability speed, the interaction with age was significant 
between time 1–2 and showed a trend between time 2–3.

The learning effect in the speed scores between test ses-
sion pairs differed by sex for the Motor composite only. 
The sex difference occurred between tests 1 and 2 and 
indicated that the female participants showed a greater 
gain in speed than the male participants (see differences 
in confidence intervals for female scores in red relative to 
male scores in blue in Fig. 3, left panel).
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Fig. 1 The difference in variance explained by age between each visit pair (e.g., visit 1 compared to visit 2) with age alone in the left bar of each pair 
and age + visit in the right bar of each pair, with the additional variance explained by learning depicted in red in the right bar of each visit pair

(See figure on next page.)
Fig. 2 a-c Two left panels: The gray spaghetti plots show accuracy performance of each person for each of the four test sessions for each test 
composite. The gray regression lines indicate the ± 1 and ± 2 standard deviations of all participants. The color regression lines indicate the mean 
and 95% confidence interval of the performance by male (blue) and female (red) participants. The left plots show the learning + developmental 
effect; the right plots show the learning-adjusted developmental effect. Three right panels depict learning by session in accuracy scores. The first 
plot presents the fit of the cross-sectional scores at each test session over age: black = test 1, red = test 2, green = test3, and blue = test 4. The 
second plot displays the learning between tests 1–2 (red), tests 2–3 (green), and tests 3–4 (blue) over age. The third plot also displays the learning 
over age between test pairs normalized at 0 to reveal age effects and their differences between test pairs. The general trend was for the younger 
participants to show greater learning than the older ones especially between sessions 1 and 2 (red filled plots)
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Fig. 2 (See legend on previous page.)



Page 10 of 15Sullivan et al. BMC Medical Research Methodology          (2022) 22:177 

Learning-adjusted developmental effects
Accuracy composite scores
These results describe developmental effects for each com-
posite after removing the estimated learning effects. For all 
8 composite accuracy scores, the developmental effect was 
significant across age and was adequately described by lin-
ear fits with no improvement from nonlinear (smooth) fits 
(p = 0.999 for all composites except Attention p = 0.173) 
(Table  4; Fig.  2, right panel of spaghetti plots). Thus, the 
accelerated improvement in scores over age (Fig.  2 spa-
ghetti plots in left panels) was attributed to greater learn-
ing rather than apparent accelerated development in the 
younger relative to the older participants.

Speed composite scores
The learning-adjusted developmental effects for speed 
were adequately described by linear fits with no improve-
ment from smooth fits (p = 0.999) for Abstraction, Emo-
tion, Episodic Memory, General Ability, and Motor scores. 
The smooth fit was better than the linear fit for Attention, 
Working Memory, Average Speed, and Efficiency (Table 4; 
Fig. 3 right spaghetti plots).

The effect of learning adjustment can also be portrayed 
by comparing the cross-sectional age relation to the longi-
tudinal age relation with and without learning adjustment 
as per Salthouse [61]. Figure 4 presents the average slope 
from the simple cross-sectional linear regression at baseline 
(value in Z units/year) compared to the fixed effects from a 
linear mixed-model regression of the data across all 4 years 
before and after learning adjustment for the accuracy and 
speed domains. With few exceptions (notably, Attention 
speed; but even in this instance, the learning-adjusted bet-
ter reflected the cross-sectional results than ignoring the 
practice), the non-adjusted data overestimated the rate of 
change per year and the learning adjusted more closely 
reflected the initial cross-section age relation.

A

B

C

D

Fig. 3 a-d Two left panels: The gray spaghetti plots show speed 
performance of each person for each of the four test sessions for each 
test composite. The gray regression lines indicate the ± 1 and ± 2 
standard deviations of all participants. The color regression lines 
indicate the mean and 95% confidence interval of the performance 
by male (blue) and female (red) participants. The left plots show 
the learning + developmental effect; the right plots show the 
learning-adjusted developmental effect. Three right panels depict 
learning by session in speed scores. The first plot presents the fit of 
the cross-sectional scores at each test session over age: black = test 
1, red = test 2, green = test3, and blue = test 4. The second plot 
displays the learning between tests 1–2 (red), tests 2–3 (green), and 
tests 3–4 (blue) over age. The third plot also displays the learning 
over age between test pairs normalized at 0 to reveal age effects and 
their differences between test pairs. Unlike the accuracy scores, the 
general trend for the speed scores showed different age trends for 
the different test composites
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Discussion
In general, mean scores for both accuracy and speed 
improved on most composite scores across the four 
test sessions with the greatest gains between the first 
and second tests (Fig.  2, two right panels). Abstraction 
was the only composite to show improvement over all 3 
comparisons. Except for Working Memory, the overall 
learning for the Accuracy composite scores was greater 
in younger than older participants (Fig.  2, column 5). 

The Balance composite, which assessed gait and quiet 
standing, was unique in showing no significant change 
between any test session. Learning was detectable even 
in the context of apparent ceiling effects in the Atten-
tion and Working Memory composites (Fig. 2, spaghetti 
plots). Unlike the Accuracy scores, the Speed compos-
ite scores did not show greater learning in the younger 
than older participants, except for the Motor Speed 
composite.

Table 3 Interactions of age or sex with learning between test session pairs

NB: See left panel of spaghetti plots for learning + development

Bold values are significant with a family-wise Bonferroni correction for 8 comparisons (alpha = 0.05) at t p ≤ 0.00625

Table 4 Test for linear vs. smooth fit across all sessions (with sex in the model) for development with and without learning effects

Bold values are significant with a family-wise Bonferroni correction for 8 comparisons (alpha = 0.05) at p ≤ 0.00625

See Figs. 2 and 3 spaghetti plots: left panel = learning + development; right plots = learning-adjusted development

†Slopes are taken from linear models and estimate the Z-unit change per year
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We tested the hypothesis that the trajectories of 
scores would be different depending on the inclusion 
or removal of estimated practice effects, and that these 
trajectory differences would be present for accuracy 
and speed scores. For most composite scores, these 
hypotheses were supported. Specifically, developmen-
tal effects were linear for all accuracy composites. 
Thus, what appeared as accelerated advancement in the 
younger boys and girls was attributable to the learning 
component of the aging functions. As with the linear 
trends for accuracy, five learning-adjusted speed scores 
were linear. Speed scores showing smooth fits were 
Attention, Working Memory, Average Speed, and Effi-
ciency; each exhibited a slight inflection, notably in the 
younger ages that were modestly steeper for the girls 
than the boys. In all cases, the confidence intervals of 
the female participants overlapped or exceeded the 
speed score intervals of their male counterparts, albeit 
non-significant from the GAMM analyses, thereby 
lending little support for a male advantage in speeded 
responding in cognitive or motor realms in later ado-
lescence (cf. [27]). Further, sex differences may be 
attenuated with multiple annual test sessions, noted 
herein. Absence of age-by-sex interactions was also 
reported in a 4-year longitudinal study of youth tested 
every 2  years (ages 6 to 18  years at baseline testing) 
despite sex-related performance differences in specific 
tests: male youth achieved better scores than female 

youth on Block Design, whereas the opposite occurred 
on Grooved Pegboard and Digit Symbol Coding tests 
[11]. One interpretation is that the sex differences were 
stable despite repeated testing and presumed further 
development over the 4-year interval.

The original, cross-sectional analysis of the WebCNP 
composite scores noted that sex differences had smaller 
effect sizes than age but were evident, with female par-
ticipants outperforming their male counterparts on 
attention, word and face memory, reasoning speed, and 
all social cognition tests, whereas male participants out-
performed their female counterparts in spatial process-
ing and sensorimotor and motor speed [37]. Comporting 
with those cross-sectional findings, our current longi-
tudinal observations revealed that these sex differences 
were greatest at younger ages, with adolescent develop-
ment, female participants became faster over time on 
Motor Speed.

To quantify practice effects associated with subtests 
of the computer-based test battery Cognition, which is 
based on the Web CNP, Basner and colleagues [15] varied 
testing parameters, including test forms and test–retest 
intervals for retesting upwards of 15 times. Remarkably, 
even their 6 subtests using unique stimuli in subsequent 
test sessions evidenced practice effects, consistent with 
the interpretation that some form of procedural learn-
ing beyond episodic memory for specific test information 
contributes to practice effects, that is, prior experience.

Fig. 4 Top: Accuracy; bottom: Speed. Dark green = rate of change/year from cross-sectional analysis of baseline data. Salmon = rate of change/year 
from fixed effects of mixed-model analysis of data across all 4 years. Light green = rate of change/year from fixed effects of mixed-model analysis of 
learning-adjusted data across all 4 years
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In the current study, the variance explained by 
age + learning in the visit-to-visit analyses ranged from 
less than 0 to 16%. Within those totals, the proportion of 
accuracy score variance attributable to learning ranged 
from 14% for Emotion to more than 100% for the two 
Memory composites between test sessions 1 and 2 (Fig. 1 
and Table 2). For Average accuracy, the gain was nearly 
60% from tests 1 to 2 and remained high between tests 2 
to 3 at 42%. Learning-associated improvement in speed 
scores between sessions 1 and 2 was especially high for 
Abstraction (92%), Emotion (70%), and Episodic Memory 
(69%). Thus, a unique contribution of this analysis was 
to address whether practice effects in this adolescent 
to young adult age range would accrue beyond the first 
follow-up testing and, if so, would occur in all functional 
domains examined. Although the greatest learning effect 
occurred between the first and second visits, further 
learning was measurable between visits 2 and 3 and again 
between visits 3 and 4 for two accuracy scores (General 
Ability and Average) and for several speed scores and the 
Efficiency score, as depicted in the red segments in Fig. 1.

The slopes from the linear models describe the 
learning-adjusted developmental performance trajec-
tories (Table  4) in terms of Z-unit changes per year 
(Figs. 2 and 3 right spaghetti plots). Extrapolating from 
the youngest to the oldest youth, the functional com-
posites showing the largest improvement were General 
Ability accuracy and Attention accuracy and speed, 
with estimated gains of approximately 1.0 Z-unit over a 
decade. The developmental estimates would have been 
inflated had they not been adjusted for learning. Indeed, 
a benefit of the cohort sequential design in longitudinal 
assessment was demonstrated in our analysis, based on 
Salthouse [61], that compared cross-sectional slopes, 
longitudinal slopes unadjusted for practice effects, and 
longitudinal slopes adjusted for practice effects (Fig. 4). 
Use of the twice minus once tested analysis enabled 
this comparison, which revealed that for most compos-
ites the longitudinal slopes adjusted for practice effects 
reflected the cross-sectional slopes, a pattern previously 
noted in a longitudinal analysis of cognitive perfor-
mance by men and women spanning the adult age range 
[1]. By contrast, the unadjusted longitudinal slopes 
were substantially greater and thus over-estimated the 
developmental trajectories. Critically, longitudinal ses-
sions initiated at a single or narrow age preclude such 
an adjustment, which requires cross-sectional observa-
tions to be made over wide age bands.

Limitations
Although use of composite scores can reduce excessive 
variance often observed in individual tests, the test com-
posites created in the current study, which were similar 

to those used by Gur and colleagues [48–50, 62], com-
prised different numbers of measures that may have 
contributed to differences in variances. Further, some 
tests may be more difficult than others, and difficulty lev-
els may differ by variables such as age, sex, or individual 
abilities. Despite the strength of the twice-minus-once-
tested method, representation of each age in adolescence 
had a limited sample size, which was then halved in the 
sex analyses. This method may also be subject to cohort 
differences by recruitment age bands [1, 2, 63].

Conclusion
Longitudinal study, held as the gold standard for tracking 
developmental trajectories, must take prior assessment 
experience, also considered learning or practice effects, 
into account. Study protocols that recruit all participants 
at one age or within a narrow age band are not posi-
tioned to use the twice-minus-once-tested method to 
dissociatate learning from development, whereas stud-
ies using the cohort sequential (accelerated longitudinal) 
design are poised to do so. Had our method not dissoci-
ated the effects of learning from development, the course 
of developmental changes over the adolescent years 
would have been interpreted as following an accelerating 
increase, notable in younger ages. By contrast, removing 
the learning effects revealed a linear developmental tra-
jectory for all accuracy composite scores for all cognitive 
functions examined. Recognition of the substantial influ-
ence of prior testing experience, which does not neces-
sarily rely on repetition and memory for specific test 
items (cf., [15]) and can be a metric of interest in its own 
right [8], is critical to be accomplished in highly vetted 
groups of adolescents and emerging adults. Doing so will 
enable accurate characterization of normal development 
and provide norms for other uses, including clinical neu-
ropsychological investigations of conditions affecting the 
brain whatever the cause.
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