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A partial-state space model of unawareness

Wesley H. Holliday
University of California, Berkeley

August 17, 2024

Abstract

We propose a model of unawareness that remains close to the paradigm of Aumann’s model for
knowledge [R. J. Aumann, International Journal of Game Theory 28 (1999) 263-300]: just as Aumann
uses a correspondence on a state space to define an agent’s knowledge operator on events, we use a
correspondence on a state space to define an agent’s awareness operator on events. This is made possible
by three ideas. First, like the model of [A. Heifetz, M. Meier, and B. Schipper, Journal of Economic
Theory 130 (2006) 78-94], ours is based on a space of partial specifications of the world, partially ordered
by a relation of further specification or refinement, and the idea that agents may be aware of some
coarser-grained specifications while unaware of some finer-grained specifications; however, our model is
based on a different implementation of this idea, related to forcing in set theory. Second, we depart from
a tradition in the literature, initiated by [S. Modica and A. Rustichini, Theory Decision 37 (1994) 107-
124] and adopted by Heifetz et al. and [J. Li, Journal of Economic Theory 144 (2009) 977-993], of taking
awareness to be definable in terms of knowledge. Third, we show that the negative conclusion of a well-
known impossibility theorem concerning unawareness in [Dekel, Lipman, and Rustichini, Econometrica 66
(1998) 159-173] can be escaped by a slight weakening of a key axiom. Together these points demonstrate
that a correspondence on a partial-state space is sufficient to model unawareness of events. Indeed, we
prove a representation theorem showing that any abstract Boolean algebra equipped with awareness,
knowledge, and belief operators satisfying some plausible axioms is representable as the algebra of events
arising from a partial-state space with awareness, knowledge, and belief correspondences.
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1 Introduction

In recent decades, models of uncertainty in economics have been enriched so as to also represent unawareness.
If an agent is uncertain about an event or proposition E, then she can conceive of E but does not know
whether E obtains. By contrast, if an agent is unaware of E, then E is not even “present to mind” (Modica
and Rustichini 1994, p. 107, Modica and Rustichini 1999, p. 274); the agent has a “lack of conception” of
E (Heifetz et al. 2006, p. 90, Schipper 2015). While unawareness is thereby distinguished from uncertainty,
one prominent tradition in the literature, initiated by Modica and Rustichini (1994) and adopted by Heifetz,
Meier, and Schipper (2006) and Li (2009), takes unawareness to be definable in terms of knowledge: an
agent is unaware of E if and only if she does not know E but also does not know that she does not know E.
Dually, an agent is aware of E if and only if she knows E or knows that she does not know E.

While conceptually parsimonious, taking unawareness to be definable in terms of knowledge as above
limits the relevant phenomena that can be modeled. Say that an agent is overconfident when he not only
believes E but also believes that he knows E, though he does not know E, say because E is false.1 For
example, a potential investor in a firm might believe he knows that the firm is profitable, while in fact
it is unprofitable and is committing fraud to suggest otherwise. But according to the Modica-Rustichini
definition of unawareness, it is impossible for an agent to be aware of E and overconfident with respect to E.
Since the overconfident agent believes that he knows E, he does not know that he does not know E.2 Then
since he also does not know E, according to Modica-Rustichini the overconfident agent must be unaware of
E. But on the intuitive interpretation of awareness as being “present to mind” or of unawareness as “lack of
conception,” the overconfident agent is perfectly aware of E. The investor is perfectly aware of the idea of
profitability of the firm; indeed, he believes (falsely) that the firm is profitable. All the behavioral predictions
implied by such awareness and belief apply to the investor. Thus, if we wish to model overconfident agents,
we cannot accept the Modica-Rustichini definition of unawareness.3

Moreover, according to notions of belief as subjective certainty according to which believing E entails
believing that you know E (as in Stalnaker 2006, § 3), the Modica-Rustichini definition makes it impossible
for an agent to be aware of E and falsely believe E; then assuming belief requires awareness (as in Fagin
and Halpern 1988), their definition makes it impossible for an agent to falsely believe E.

Yet we should not give up on modeling unawareness in the face of false or overconfident beliefs. The
investor’s overconfidence may be due in part to his unawareness of the possibility of a sophisticated type of
fraud by the firm; one might predict that if he were made aware—or if we consider a different investor who
is aware—he would realize that none of his due diligence ruled out such fraud. Thus, while overconfidence
with respect to E should be compatible with awareness of E, it may be related to unawareness of some other
event F . We would like to have a model of unawareness that can capture these phenomena.

In this paper, we propose a new model of unawareness. Instead of defining awareness in terms of
knowledge, we model awareness in a way that remains close to the paradigm of Aumann’s (1999a) model for
knowledge: just as Aumann uses a correspondence on a state space to define an agent’s knowledge operator

1As in Modica and Rustichini 1994, 1999, Heifetz et al. 2006, and Li 2009 (and the classics Aumann 1999a,b, Fagin et al.
1995, and Hintikka 1962), knowing E requires that E is true. As for belief, for the rest of the paragraph in the main text one
may replace belief with p-belief (Monderer and Samet 1989), i.e., subjective probability of at least p, for any p ∈ (0, 1] for which
one agrees that p-believing E is inconsistent with knowing ¬E (not E). For example, in Aumann’s (1999b, (12.2)) framework,
knowing ¬E implies 1-believing ¬E, so we can use any p > 0.

2This simply applies the principle that if an agent believes F , then he does not know ¬F (not F ), which we assume in the
next paragraph as well.

3In Appendix A.2, we argue that changing the Modica-Rustichini definition to define unawareness in terms of belief instead
of knowledge still does not provide a satisfactory definition of unawareness of events.
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on events, we use a correspondence on a state space to define an agent’s awareness operator on events. Like
the model of Heifetz, Meier, and Schipper (2006), our model is based on the idea of partial specifications
of the world, partially ordered by a relation of further specification or refinement, and the idea that agents
may be aware of some coarser-grained specifications while unaware of some finer-grained specifications.
However, our model is based on a different implementation of this idea with a long history in mathematics
and mathematical logic. In particular, as exploited in forcing in set theory (e.g., Takeuti and Zaring 1973),
partial specifications ordered by refinement give rise to a Boolean algebra of events via the regular open sets
in the downset topology of the partial order (see Section 2); crucially, in this Boolean algebra, the negation
operation ¬ is not set-theoretic complementation, so there may be partial specifications that belong to neither
E nor ¬E.4 Next, as exploited in so-called possibility semantics for modal logic (Humberstone 1981; Holliday
2014, 2015; van Benthem et al. 2017; Holliday 2021), relating these partial specifications via accessibility
relations—or equivalently, possibility correspondences—for different agents provides a model of multi-agent
knowledge and belief, which generalizes the Kripke frames (Kripke 1963) or Aumann structures (Aumann
1976, 1999a) that drop out as special cases when using only discrete partial orders. The final step we take
here is to add a correspondence representing an agent’s awareness of partial possibilities: ν ∈ A(ω) will mean
that in possibility ω, the agent is aware of possibility ν.

Just as in Aumann structures one uses possibility correspondences to define knowledge of events, in our
structures we will use A to define awareness of events, where an event is understood as a set of possibilities in
a Boolean algebra of events. This project of modeling awareness of events in some Boolean algebra must be
distinguished from the project of modeling awareness of sentences in some language. Awareness of sentences
may be hyperintensional in the sense that where JϕK is the set of possibilities in which a sentence ϕ is true
in a given model, we may have Jϕ1K = Jϕ2K while the agent is aware of the sentence ϕ1 and yet unaware of
the sentence ϕ2.5 Hyperintensional models of awareness of sentences have been developed in the literature
(e.g., Fagin and Halpern 1988, Modica and Rustichini 1999, Halpern 2001), but here we follow the event-
based tradition of Aumann (1976; 1999a) with a non-hyperintensional model of awareness of events (see
Schipper 2015 for comparison of event-based and sentence-based approaches). However, we believe these two
projects should be related by the following bridge principle: an agent is aware of an event E if and only if
she is aware of some sentence ϕ that she understands such that JϕK = E.6

Distinguishing awareness of events vs. sentences is crucial for assessing axioms concerning awareness.
For example, awareness of events should not be monotonic with respect to the entailment relation ≤ in the
Boolean algebra of events (which is just the subset relation ⊆ when events are sets of possibilities); that is,
we should not require that if E ≤ F (E entails F ) and the agent is aware of E, then she must be aware of F .
For example, an agent may be aware of the event E expressed by ‘Ann and Bob will play a Nash equilibrium’
without being aware of the event F expressed by ‘Ann and Bob will play a correlated equilibrium’, due to
not having the concept of correlated equilibrium, despite the fact that E ≤ F . Since E ≤ F is equivalent to
E = E u F , where u is the meet operation in the Boolean algebra (corresponding to intersection of sets),
monotonicity is equivalent to the principle that if an agent is aware of EuF , then she must be aware of F . A
spurious argument for this principle is that “if an agent is aware of a conjunction, then she must be aware of

4This is analogous to rejecting the real states assumption of Dekel et al. 1998, except we consider only events and not
formulas in a logical language.

5The denial of hyperintensionality for awareness and knowledge of sentences is what Dekel et al. (1998) call event sufficiency.
6This bridge principle has consequences for operationalizing the concept of awareness of events. Assuming one has a decision

procedure for testing awareness of sentences, one obtains a semi-decision procedure for testing awareness of a given event E:
enumerate sentences ϕ1, ϕ2, . . . that express E (assuming that for the given E, there are at most countably infinitely many
sentences in the agent’s language that express E) and check for each sentence the agent’s awareness of that sentence.
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each conjunct.” The argument is spurious because it implicitly assumes awareness of a sentence. It is indeed
plausible that if an agent is aware of a sentence ϕ∧ψ, where ∧ is sentential conjunction, then the agent must
be aware of ψ. But the event E u F is not intrinsically a conjunction. We may have E = E u F = C tD,
etc. Thus, in contrast with some other models of awareness in the literature (e.g., Heifetz et al. 2006, Li
2009), our model will not validate the axiom that awareness of E u F implies awareness of F .

Our definition of awareness of events is informally as follows. In a possibility ω, an agent i is aware of
an event E if the following condition holds at ω and its refinements: if i is aware of a possibility ν, then i is
aware of any coarsest refinement of ν belonging to E and any coarsest refinement of ν belonging to ¬E. In
other words, if you are aware of E, then you should be able to apply the E vs. ¬E distinction starting from
any possibility of which you are aware. For example, if an agent is aware of the event E expressed by ‘The
Centers for Medicare and Medicaid Services are investigating the firm’, then for any possibility ν of which
the agent is aware, if ν does not already belong to E or ¬E, then the agent should be aware of a coarsest
further specification of ν belonging to E and a coarsest further specification of ν belong to ¬E. This model
of awareness satisfies the symmetry axiom of Modica and Rustichini 1994, stating that an agent is aware
of E if and only if she is aware of ¬E (though again without accepting the Modica-Rutschini definition of
awareness in terms of knowledge), which helps distinguish being unaware of an event from assigning it zero
probability (cf. Schipper 2013, p. 727). Given symmetry, one may also think of the model as a model of
awareness of distinctions in the space of possibilities or of awareness of binary questions.

Besides symmetry, another consequence of our model is that each agent i is aware of the trivial event Ω

and the trivial distinction of Ω vs. ∅. This does not imply that i is aware of each possibility in Ω. Nor does it
imply that i is aware of each sentence true throughout Ω; e.g., it does not imply that i is aware of the sentence
‘every Nash equilibrium is a correlated equilibrium’. This point is related to Stalnaker’s (1984, pp. 85-6)
defense of the fact that in standard state-space models of knowledge, such as Aumann structures, each agent
knows the trivial event Ω: this does not imply that i knows that the sentence ‘every Nash equilibrium is
a correlated equilibrium’ is true, since i may fail to know the metalinguistic fact that that sentence is true
throughout Ω. Returning to awareness, the bridge principle proposed above implies that i is aware of Ω if
and only if i is aware of some sentence ϕ she understands such that JϕK = Ω, e.g., a sentence ϕ such as ‘It
is raining or it is not raining’. We therefore call the axiom that i is aware of Ω the tautology axiom.

A third consequence of our model is the agglomeration axiom: if i is aware of events E and F , then i

is also aware of E u F , or set theoretically, E ∩ F . The corresponding assumption on sentential awareness
is that if i is aware of ϕ and of ψ, then i is aware of ϕ ∧ ψ. This assumes some logical sophistication on
the part of i. Indeed, we assume that while our agents may have unawareness, they are logically perfect
within the domain of their awareness. As Schipper (2015, p. 78) puts it, “Despite such a lack of conception
[i.e., unawareness], agents in economics are still assumed to be fully rational,” in contrast to some models in
computer science of agents who are both unaware and logically imperfect (e.g., Fagin and Halpern 1988).

After handling awareness, we add knowledge and belief to our model, as in possibility semantics for
modal logic. This part of our model is analogous to the standard treatment of knowledge and belief in
Kripke frames and Aumann structures, allowing adjustments to deal with the partiality of possibilities. We
call the resulting structures epistemic possibility frames. We use these frames to show that an influential
impossibility result concerning awareness due to Dekel, Lipman, and Rustichini (1998) becomes a possibility
result (Fact 3.16) under a slight weakening of one of their axioms.

We can now informally state the main technical result about our model, which is a representation theorem.
We define an epistemic awareness algebra to be a Boolean algebra equipped with an awareness operator
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satisfying the axioms of symmetry, tautology, and agglomeration, plus knowledge and belief operators
satisfying some minimal axioms. We then prove (Theorem 4.6) that any epistemic awareness algebra
is representable as the algebra of events of an epistemic possibility frame with the awareness operator
represented using the awareness correspondence A as sketched above and with knowledge and belief operators
represented using knowledge and belief correspondences. This theorem shows that our model of awareness
given by a partially ordered set equipped with regular open events and the correspondences for awareness,
knowledge, and belief is highly versatile: it can represent any situation involving agents’ event-based
awareness, knowledge, and belief, provided some basic axioms are satisfied.

There is now a large literature on unawareness in economics and computer science, as surveyed up
to around 2014 in Schipper 2014, 2015. A non-exhaustive list of more recent contributions in economics
includes Grant et al. 2015, Quiggin 2016, Karni and Vierø 2017, Galanis 2016, 2018, Piermont 2017, Dietrich
2018, Guarino 2020, Fukuda 2021, Schipper 2021b, Dominiak and Tserenjigmid 2022, and the special issue
introduced by Schipper 2021a. Here we will briefly discuss those works most relevant to the present paper.

1.1 Related models

The model of unawareness that is most often used in applications and is related in spirit to the model of this
paper is that of Heifetz, Meier, and Schipper (2006) mentioned above, known as the HMS model (see Heifetz
et al. 2008, Halpern and Rêgo 2008, and Belardinelli and Rendsvig 2020 on the relation between this model
and syntactic, logical approaches). As noted, the mathematical implementation of the idea of partial states
in our model differs from that in the HMS model. Other differences include the following: (i) The algebra of
events in our model forms a Boolean algebra, whereas the algebra of “events” in the HMS model is not even
a lattice under their operations for conjunction and disjunction (see Remark 2.4);7 (ii) We model awareness
using an Aumann-style possibility correspondence, whereas HMS define awareness in terms of knowledge as
in the Modica-Rustichini definition; and (iii) Our model avoids the impossibility theorem of Dekel, Lipman,
and Rustichini (1998) by falsifying a different axiom than the HMS model falsifies (see Appendix A). In light
of points (i)–(ii), in a way our model constitutes a more “conservative” approach to modeling unawareness
than the HMS model; we see how far we can go in modeling unawareness using Boolean algebras of events
and ideas from classical modal logic, for which so much theory has already been developed.

Another closely related model of unawareness is that of Fritz and Lederman (2015). They provide a model
of awareness of events that also validates the three axioms of symmetry, tautology, and agglomeration, while
also rejecting the principle that awareness of E u F implies awareness of F (cf. Theorem 3 in their paper)
and rejecting an axiom of Dekel et al. (1998) that we also reject (namely the Plausibility axiom, discussed
in our Appendix A.2). They do so via a very different construction than ours,8 which we take to be further

7One way to make sense of this fact about the HMS model is to think that what HMS call “events” are not events in the
ordinary sense in decision theory, or what philosophers call (coarse-grained) propositions, which are determined entirely by
their truth conditions. Instead, they are hyperintensional entities that have not only a truth-conditional component but also
a non-truth-conditional component consisting of, e.g., subject matter, or “expressive power” (Heifetz et al. 2006, p. 80), etc.;
indeed, the poset of “events” in the HMS model, as described in Appendix A of Heifetz et al. 2008, is isomorphic to a poset of
pairs (P, S) where P , the truth-conditional part, is a subset of a maximally rich state space, and S, the part encoding subject
matter or expressive power, is a possibly less rich state space, such that P is the inverse image of a subset of S with respect
to the projection of the maximally rich state space onto S (the partial order is then given by (P, S) ≤ (P ′, S′) if P ⊆ P ′ and
S′ � S, where � is HMS’s complete lattice order of state spaces). Philosophers have called a pair of a proposition and a subject
matter a directed proposition (Yablo 2014, p. 49). For these entities, it is easy to see why a lattice axiom like E = E u (E t F )
(the absorption law) can fail, as it fails in the HMS model (see Remark 2.4), because the directed proposition F can introduce
new subject matter beyond that of E, whereas for purely truth-conditional propositions or events, the axiom holds.

8In particular, they introduce structures (Ω,≈) where Ω is a nonempty set of states and ≈ assigns to each ω ∈ Ω an
equivalence relation ≈ω on Ω; then the agent is aware of E ⊆ Ω in state ω, denoted ω ∈ a(E), if and only if for all ρ and τ
such that ρ ≈ω τ , we have ρ ∈ E if and only if τ ∈ E. This approach and ours locate the complexity of modeling awareness
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evidence of the naturality of the three axioms. There is also a fundamental difference in representational
power. On their approach, the family of all E ⊆ Ω of which an agent is aware at a state must be an atomic
algebra of sets.9 By contrast, on our approach, even if our ambient set of events is an atomic Boolean algebra
(which it need not be), there is no requirement that the subalgebra of events of which the agent is aware is
an atomic Boolean algebra (see Example 3.8); the agent may be aware of only the events in some standard
non-atomic algebra used in measure theory. Finally, Fritz and Lederman (2015, Appendix B) prove the
weak completeness,10 with respect to a semantics based on their structures, of a modal logic of awareness
with axioms of symmetry, tautology, and agglomeration. Although we do not introduce logical syntax in
this paper, our representation theorem for arbitrary epistemic awareness algebras (Theorem 4.6) rather
immediately yields strong completeness theorems for the logic of awareness—and extensions thereof—but
now with respect to a semantics based on our epistemic possibility frames.

Finally, as far as I know, the only other work besides the present paper that considers both awareness
in economics and possibility semantics from modal logic is Piermont 2024. Piermont relates both to his
concept of a relativized Boolean algebra, which is an algebraic structure satisfying some of the laws of
Boolean algebras but not E t¬E = 1.11 By contrast, we work with the Boolean algebra of regular open sets
canonically associated with a partially ordered set (Theorem 2.3); and we explain away intuitions that due
to unawareness E t¬E may fail to equal Ω by insisting on the distinction between events and sentences (see
Example 3.6) or other hyperintensional entities (see Footnote 7). As suggested above, our classical approach
makes available all standard results, e.g., from measure theory, that are applicable to Boolean algebras.

1.2 Organization

The rest of the paper is organized as follows. In Section 2, we review mathematical preliminaries that underly
our model. In Section 3, we introduce the model of awareness (3.1) and then add knowledge and belief (3.2),
using the model to formalize several examples. In Section 4, we state our main representation theorem.
In Section 5, we conclude with directions for future work, including a sketch of how to add awareness of
sentences and probability to our framework. All substantial proofs are collected in Appendix B.

Appendix A reviews the impossibility theorem of Dekel et al. (1998), which threatens to preclude the
development of a model of awareness of events as opposed to sentences. We argue that one of their axioms
is too strong, and this is the axiom whose weakening yields a possibility result in Section 3.2.

A Jupyter notebook containing code to verify conditions and compute awareness, knowledge, and belief
in all examples in this paper is available at https://github.com/wesholliday/awareness.

in different places. Theirs is more complex in assigning to each state ω an equivalence relation ≈ω on Ω, whereas ours simply
assigns a subset A(ω) ⊆ Ω; but ours is more complex in working with a partially ordered set (Ω,v), whereas theirs simply
works with a set Ω.

9The atoms of this algebra are the equivalence classes of the relation ≈ω from Footnote 8. Recall that an atom in a Boolean
algebra (B,≤) (see Section 2 for the definition of Boolean algebras as special partially ordered sets) is an a ∈ B such that 0 < a
and there is no b with 0 < b < a. A Boolean algebra is atomic if for each b ∈ B, there is an atom a ≤ b. By contrast, it is
atomless if it has no atoms. An algebra E of sets is atomic (resp. atomless) if it is atomic (resp. atomless) when regarded as a
Boolean algebra (E,⊆).

10As usual in logic (see, e.g., Blackburn et al. 2001, p. 194), a weak completeness theorem states that for every formula ϕ, if
ϕ is semantically valid, then ϕ is syntactically provable; a strong completeness theorem states that for every set Γ of formulas
and formula ϕ, if ϕ is a semantic consequence of Γ, then ϕ is syntactically provable from assumptions in Γ.

11A standard construction (see, e.g., Givant and Halmos 2009, pp. 91-2) associates with a Boolean algebra B and element a
in B a new Boolean algebra B(a), the relativization of B to a, whose bottom element and meet operation coincide with those of
B but whose top element 1a is a and whose complement and join operations are defined by ¬ac = ¬cua and cta d = (ctd)ua.
Examples of relativized Boolean algebras can be obtained by lifting this construction to B? = {(a, b) | a, b ∈ B, a ≤ b}) as
follows: ¬?(a, b) = (¬ba, b), (a, b) u? (a′, b′) = (a u a′, b u b′), (a, b) t? (a′, b′) = (a tbub′ a

′, b u b′), 0? = (0, 0), and 1? = (1, 1).
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2 Preliminaries

Standard representations of uncertainty begin with a nonempty set Ω of states of the world, whose powerset
we denote by ℘(Ω). The set of events is then some nonempty collection E ⊆ ℘(Ω) closed under at least
finite intersection and complement relative to Ω. Here we instead begin with a partially ordered set (poset)
(Ω,v). We think of elements of Ω as partial possibilities and take ω v ν to mean that ω is a further
specification or refinement of ν. For example, the possibility ν may settle that Ann plays up in a game but
leave undetermined what Bob plays; then a refinement ω of ν may settle not only that Ann plays up but also
that Bob plays left, while another refinement ω′ of ν may settle that Ann plays up and Bob plays right. With
this picture, not every subset of Ω is eligible to count as an event. We will delimit the eligible events shortly.

Given a poset (Ω,v), we define the downward closure operation ↓ on ℘(Ω) by

↓E = {ω ∈ Ω | for some ν ∈ E,ω v ν}.

A set E ⊆ Ω is a downset of (Ω,v) if E = ↓E. For ω ∈ Ω, we write ↓ω for ↓{ω}, called a principal downset.
Possibilities ω and ν are compatible, denoted ω G ν, if ↓ω∩↓ν 6= ∅; otherwise they are incompatible, denoted
ω⊥ ν. The downset topology on Ω is the topology whose open sets are exactly the downsets of (Ω,v). The
interior and closure operations for this topology are given by

int(E) = {ω ∈ Ω | for all ν v ω, ν ∈ E}

cl(E) = {ω ∈ Ω | for some ν v ω, ν ∈ E}.

The regularization operation ρ : ℘(Ω)→ ℘(Ω) is then defined by

ρ(E) = int(cl(↓E)) = {ω ∈ Ω | ∀ω′ v ω ∃ω′′ v ω′ : ω′′ ∈ ↓E}.

A set E ⊆ Ω is regular open if ρ(E) = E. Let RO(Ω,v) be the collection of all regular open sets. Note that
if v is the discrete partial order (i.e., the identity relation) on Ω, then RO(Ω,v) is just ℘(Ω).

Regular open sets can be characterized by the following conditions. The proof is straightforward.

Lemma 2.1. Given a poset (Ω,v) and E ⊆ Ω, we have E ∈ RO(Ω,v) if and only if for all ω, ω′ ∈ Ω:

1. persistence: if ω ∈ E and ω′ v ω, then ω′ ∈ E;

2. refinability : if ω 6∈ E, then ∃ω′ v ω ∀ω′′ v ω′ ω′′ 6∈ E.

Only regular open sets will count as genuine events in our model. Persistence states that if a possibility ω
settles that an event holds, so does any refinement of ω. Refinability states that if a possibility ω does not
settle that an event holds, then there is a refinement ω′ of ω that settles that the event does not hold, in the
sense that no possible refinement of ω′ settles that the event holds (cf. the definition of ¬ in Theorem 2.3).

A poset is separative if for any ω ∈ Ω, its principal downset ↓ω is a regular open set, which may be
described as the following event: the possibility ω obtains. One may assume without loss of generality in
what follows that all posets are separative.12 An example of a non-separative poset is a two-element linear
order with ω v ν; the principal downset {ω} does not satisfy refinability, since ν 6∈ {ω} and yet there is no
refinement of ν all of whose refinements are not in {ω}. Collapsing this two-element linear order to a linear

12One can always pass to a quotient poset by identifying ω and ω′ when ρ({ω}) = ρ({ω′}), resulting in a separative poset
with an isomorphic algebra of regular open sets.
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order on the singleton {ω} results in a separative poset with an isomorphic algebra of regular open sets (as
in Theorem 2.3), consisting of the empty set and the whole set. Another way to get a separative poset from
the two-element linear order—but in a way that results in a non-isomorphic algebra of regular opens—is to
add a third element ω′ with ω′ v ν, ω′ 6v ω, and ω 6v ω′, so we obtain the three-element tree; now {ω}
satisfies refinability, since ν is refined by ω′, all of whose refinements (namely just ω′ itself) are not in {ω}.

Given an arbitrary set E of possibilities, ρ(E) is the event that may be described as: one of the possibilities
in E obtains. In the language of lattice theory, ρ is not only a closure operator (satisfying conditions 1-3 in
Lemma 2.2) but also a nucleus (satisfying 4 in addition to 1-3) on ℘(Ω). The proof is straightforward.

Lemma 2.2. The map ρ satisfies the following for all downsets E,F ⊆ Ω: 1. if E ⊆ F , then ρ(E) ⊆ ρ(F );
2. E ⊆ ρ(E); 3. ρ(ρ(E)) = ρ(E); 4. ρ(E) ∩ ρ(F ) ⊆ ρ(E ∩ F ).

Next we characterize the poset (RO(Ω,v),⊆). Recall that a poset (L,≤) is a lattice (resp. complete
lattice) if every two-element subset {a, b} ⊆ L (resp. every subset {ai}i∈I ⊆ L) has a least upper bound
with respect to ≤, called the join and denoted a t b (resp.

⊔
i∈I
ai) and greatest lower bound with respect to

≤, called the meet and denoted a u b (resp.
d

i∈I
ai). A lattice is distributive if for all a, b, c ∈ L, we have

a u (b t c) = (a u b) t (a u c). A lattice is bounded if it has a greatest element with respect to ≤, denoted 1,
and a least element with respect to ≤, denoted 0.13 A bounded lattice is complemented if for every a ∈ L,
there is an ¬a ∈ L, called a complement of a, such that a t ¬a = 1 and a u ¬a = 0 (the complement of a is
unique if the lattice is distributive). A Boolean algebra is a complemented distributive lattice B = (B,≤).
We abuse notation and write a ∈ B for a ∈ B.

It is a classic result in lattice theory that the fixpoints of any closure operator on ℘(Ω), ordered by ⊆, form
a complete lattice with meet as intersection and join as closure of union (Burris and Sankappanavar 1981,
Thm. 5.2); and as Tarski (1937) observed, the fixpoints of the regularization operation ρ form a complete
Boolean algebra. For modern proofs of the following, see, e.g., Takeuti and Zaring 1973, Thms. 1.30, 1.40.

Theorem 2.3. For any poset (Ω,v), the poset (RO(Ω,v),⊆) is a complete Boolean algebra, called the
regular open algebra of (Ω,v), in which the Boolean complement, meet, and join are given by:

¬E = int(Ω \ E) = {ω ∈ Ω | ∀ω′ v ω ω′ 6∈ E} (1)
l

i∈I
Ei =

⋂
i∈I
Ei (2)

⊔
i∈I
Ei = ρ

(⋃
i∈I
Ei

)
= {ω ∈ Ω | ∀ω′ v ω ∃ω′′ v ω′ ∃i ∈ I : ω′′ ∈ Ei}. (3)

Conversely, each complete Boolean algebra (B,≤) is isomorphic to RO(B+,≤+), where B+ is the set of
nonzero elements of the algebra and ≤+ is ≤ restricted to B+, via the map b 7→ {a ∈ B+ | a ≤ b}.

Remark 2.4. In the regular open algebra of a poset, we always have
⋃
i∈I
Ei ⊆

⊔
i∈I
Ei and often

⋃
i∈I
Ei (

⊔
i∈I
Ei.

This represents a deep difference between our approach and that of Heifetz et al. (2006), who define their
disjunction of events in such a way that often Ej 6≤

⊔
i∈I
E for j ∈ I, where ≤ is their partial order on events

(see Appendix A). Since their E t F is not necessarily an upper bound of {E,F} with respect to ≤, their
algebra of events with t and u is not even a lattice,14 let alone a Boolean algebra. In addition, their negation
operation ¬ is non-classical, as it violates the equivalence of E ≤ F and ¬F ≤ ¬E from Boolean algebras.

13Every complete lattice is bounded, since the least upper bound of ∅ is 0 and the greatest lower bound of ∅ is 1.
14In equational terms, it violates the absorption law of lattices that E u (E t F ) = E (see Footnote 7 for discussion).
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In applications to reasoning under uncertainty (e.g., involving probability) a Boolean algebra of events is
often not complete (though it may be countably complete), so we do not want to restrict attention to only
representing complete Boolean algebras of events. To represent arbitrary Boolean algebras, we can equip a
poset (Ω,v) with a distinguished Boolean subalgebra of RO(Ω,v).

Definition 2.5. A possibility frame is a triple (Ω,v, E) where (Ω,v) is a poset and E is a nonempty subset
of RO(Ω,v) closed under binary intersection and the operation ¬ from (1).

Compare the notion of a possibility frame to the more familiar notion of a field of sets, a pair (Ω, E)

where Ω is a nonempty set and E is an algebra of subsets of Ω as at the beginning of this section. It is a
classic result of Stone (1936) that for each Boolean algebra B, there is a field of sets (Ω, E) such that B is
isomorphic to (E ,⊆). Since every field of sets may be regarded as a possibility frame (Ω,v, E) in which v is
the discrete partial order, Stone’s theorem immediately implies that each Boolean algebra is representable
by a possibility frame. But we will need non-discrete partial orders to model unawareness using possibility
frames. As a consequence of Theorem 4.6, we will obtain for each Boolean algebra B a possibility frame
(Ω,v, E) with a non-discrete partial order such that B is isomorphic to (E ,⊆).

Given a poset (Ω,v) and E ∈ RO(Ω,v), we denote the set of maximal elements of E by

max(E) = {ω ∈ E | there is no ν ∈ E : ω @ ν},

where ω @ ν means that ω v ν and ν 6v ω. Intuitively, max(E) contains the coarsest or least refined
possibilities that settle that E holds. It is a natural thought that for any nonempty event E, there should be
a unique coarsest possibility belonging to E, describable as “the possibility that E holds”; this is indeed the
case for the possibility frame (B+,≤+,RO(Ω,v)) used in Theorem 2.3, and in fact we shall see that every
Boolean algebra (not only complete ones) can be represented by a possibility frame satisfying this condition
(Theorem 4.6). However, since in applications we typically wish to draw as few possibilities as possible to
model a given situation,15 we impose only the following less demanding condition.

Definition 2.6. A possibility frame (Ω,v, E) is quasi-principal if for any E ∈ E and ω ∈ E, we have
ω ∈ ↓max(E).

In other words, any possibility that settles that E holds is a refinement of some coarsest possibility that
settles that E holds. Of course any possibility frame with Ω finite satisfies this condition.

3 Model

In this section, we introduce our model in two stages: first concentrating on awareness in Section 3.1 and
then adding knowledge and belief alongside awareness in Section 3.2.

Just as the basic datum in Aumann’s (1999a) model of knowledge is a correspondence K : Ω → ℘(Ω),
the basic datum in our model of awareness is a correspondence A : Ω→ ℘(Ω). Intuitively, ω′ ∈ K(ω) means
that in state ω, the agent’s knowledge does not rule out state ω′, i.e., everything the agent knows in ω is true
in ω′. A standard gloss on ω′ ∈ K(ω) is that “in ω, the agent considers ω′ possible,” but this is not a good
gloss: for the agent might be totally unaware of ω′, while at the same time the agent’s knowledge does not

15Cf. Examples 3.7 and 3.14. In the former, there is no coarsest possibility in the event Middle (resp. Up, Down), and in the
latter, there is no coarsest possibility in the event Fraud.
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rule out ω′, so ω′ ∈ K(ω).16 Turning to A, the intuitive interpretation of ω′ ∈ A(ω) is that in ω, the agent is
aware of ω′ as a logical possibility. This does not mean that the agent “considers ω′ possible” in the sense of
thinking that ω′ might actually obtain, for the agent may be fully convinced that it does not obtain; but the
agent can at least entertain ω′. For example, I can entertain possibilities in which, e.g., fusion power is the
leading source of global energy, even though such possibilities are not consistent with my current knowledge.
Presumably some people, e.g., small children, cannot even presently entertain such possibilities.

Mathematically, it is important to recall what makes modeling knowledge with a correspondence possible.
Suppose we begin with a knowledge operator K : ℘(Ω) → ℘(Ω); in fact, it is convenient to start with the
dual operator K̂ : ℘(Ω)→ ℘(Ω) such that K̂(E) = ¬K¬(E), so ω ∈ K̂(E) means that E is consistent with
the agent’s knowledge in ω. The key idea of Aumann’s model, like those of Hintikka (1962) and Kripke
(1963), is to reduce K̂ to its behavior on singleton events {ν}, in the sense that we want:

ω ∈ K̂(E) if and only if for some ν ∈ E : ω ∈ K̂({ν}). (4)

If this holds, and only if this holds, we can represent the operator K̂ : ℘(Ω) → ℘(Ω) using a simpler
correspondence K : Ω→ ℘(Ω) defined by

ν ∈ K(ω) if and only if ω ∈ K̂({ν}), (5)

where the representation of K̂ has the form:

ω ∈ K̂(E) if and only if for some ν ∈ E : ν ∈ K(ω). (6)

This is analogous to reducing a probability measure on ℘(Ω) to its values on singleton events, which is always
possible in the finite case and is also possible in the countably infinite case assuming the probability measure
is countably additive. Similarly, the reducibility of K̂ to its behavior on singleton events as in (4)—and hence
the representability of K̂ using a correspondence as in (6)—is equivalent to K̂ being completely additive, in
the sense that for any family of events {Ej}j∈J ⊆ Ω:

K̂(
⋃
j∈J

Ej) =
⋃
j∈J

K̂(Ej).

Our approach to awareness is analogous to Aumann’s approach to knowledge: we will reduce the behavior
of an awareness operatorA : ℘(Ω)→ ℘(Ω) to its behavior on special events, but since we work with a partially
ordered set rather than a set, these special events will be principal downsets ↓ω rather than singletons {ω}.
Thus, our awareness correspondence A : Ω→ ℘(Ω) will be such that

ν ∈ A(ω) if and only if ω ∈ A(↓ν). (7)

Unlike Aumann’s representation of knowledge, however, the representation of A using A will not have a form
like (6) above. It will have a different form, given in Definition 3.1.3, that reflects the distinction between
an event being consistent with an agent’s knowledge and the agent being aware of the event.

16There is another reason that “the agent considers ω′ possible” is not a good gloss on ω′ ∈ K(ω), which is independent of
unawareness. For example, in a game, Ann might be fully confident that Bob does not hold an ace, whereas Bob does in fact
hold an ace. Then Ann does not “consider it possible” that Bob holds an ace, and yet Ann’s knowledge does not rule out that
Bob holds an ace, because Ann’s knowledge cannot rule out the actual state of the world.
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3.1 Awareness

As discussed above, to model awareness we equip possibility frames as in Definition 2.5 with an awareness
correspondence A. When modeling multiple agents, we can simply introduce a correspondence Ai for each
agent i, but for simplicity here we present everything in the single-agent setting. When ν ∈ A(ω), we say
that in possibility ω, the agent is aware of possibility ν.

Definition 3.1. A possibility frame with awareness is a tuple F = (Ω,v, E ,A) such that:

1. (Ω,v, E) is a quasi-principal possibility frame with a maximum element m in the poset (Ω,v);

2. A : Ω→ ℘(Ω) is a correspondence satisfying the following conditions for all ω, ω′, ν ∈ Ω:

(a) awareness nonvacuity: m ∈ A(ω);

(b) awareness expressibility: if ν ∈ A(ω), then ↓ν ∈ E ;

(c) awareness persistence: if ω′ v ω, then A(ω) ⊆ A(ω′);

(d) awareness refinability: if ν 6∈ A(ω), then ∃ω′ v ω ∀ω′′ v ω′ ν 6∈ A(ω′′);

(e) awareness joinability: if ν ∈ A(ω), E,E′ ∈ E , and max(E ∩ ↓ν) ∪ max(E′ ∩ ↓ν) ⊆ A(ω), then
max((E t E′) ∩ ↓ν) ⊆ A(ω).

3. E is closed under the operation E 7→ A(E) defined by

• ω ∈ A(E) if and only if ∀ω′ v ω ∀ν ∈ A(ω′) max(E ∩ ↓ν) ∪max(¬E ∩ ↓ν) ⊆ A(ω′).

Finally, we call F standard if for all ω, ν ∈ Ω, ν ∈ A(w) implies ω ∈ A(↓ν).

The interpretations of the conditions on A are as follows. Awareness nonvacuity says that each agent i is
aware of at least the coarsest possibility of all. Awareness expressibility says that if i is aware of a possibility,
then the principal downset generated by that possibility is a genuine event, eligible to be thought about.17

Awareness persistence says that if ω settles that i is aware of a possibility ν, and ω′ refines ω, then ω′ still
settles that i is aware of ν. Awareness refinability says that if ω does not settle that i is aware of ν, then
there is a refinement ω′ of ω that settles that i is definitely not aware of ν, so no refinement ω′′ of ω′ settles
that i is aware of ν. Finally, awareness joinability says that if i is aware of ν and of the coarsest refinements
of ν belonging to the event E, and similarly for E′, then i must be aware of the coarsest refinements of ν
belonging to the event E or E′. There is a convenient equivalent condition if Ω is finite, which quantifies
over possibilities rather than arbitrary events: if i is aware of ν and some refinements ν1, . . . , νn of ν, then i
must be aware of the coarsest refinements of ν belonging to the event that one of the νj’s obtains.

Lemma 3.2. Suppose F = (Ω,v, E ,A) satisfies part 1 of Definition 3.1 and awareness expressibility.
If (i) F satisfies awareness joinability, then (ii) for all ν ∈ A(ω) and ν1, . . . , νn ∈ A(ω) ∩ ↓ν, we have
max((↓ν1 t · · · t ↓νn) ∩ ↓ν) ⊆ A(ω). Conversely, if max(E) is finite for each E ∈ E , then (ii) implies (i).

Particular frames used in applications may of course satisfy additional conditions on A (cf. Remark 3.11).
The definition of the A operation in part 3 formalizes the account of awareness of events sketched in

Section 1, namely that in a possibility ω, an agent i is aware of an event E if the following condition holds at
ω and its refinements: if i is aware of a possibility ν, then i is aware of any coarsest refinement of ν belonging
to E and any coarsest refinement of ν belonging to ¬E, where ¬ is the negation in RO(Ω,v) from (1).

17Recall from Section 2 that in a separative poset, every principal downset is a regular open set.
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Remark 3.3. This definition of awareness of events—or equivalently binary questions—generalizes to a
definition of awareness of arbitrary partitional questions, such as “In what month was Ann born?” Given
a family {E1, . . . , En} of disjoint events such that E1 t · · · t En = Ω, we say that in ω, agent i is aware
of {E1, . . . , En} if the following condition holds at ω and its refinements: for 1 ≤ k ≤ n, if i is aware of a
possibility ν, then i is aware of any coarsest refinement of ν belonging to Ek.

As for the requirement in part 3 that E be closed under A, note this requires that A(E) is a regular open
set, which is indeed the case. The quantification over ω′ v ω in the definition of A guarantees persistence
for A(E) (recall Lemma 2.1), while awareness persistence and refinability guarantee refinability for A(E).18

Lemma 3.4. Let (Ω,v) be a poset and A : Ω → ℘(Ω) satisfy awareness persistence and awareness
refinability. Then for any E ∈ RO(Ω,v), we have A(E) ∈ RO(Ω,v).

Then defining unawareness by U(E) = ¬A(E), we have U(E) ∈ RO(Ω,v) as well. Lemma 3.4 implies that
given awareness persistence and refinability, Definition 3.1.3 holds automatically when E = RO(Ω,v).

Finally, the condition that F is standard is simply the condition that awareness of a possibility ν implies
awareness of the distinction between ↓ν and ¬↓ν, which reduces to the condition that if i is aware of ν and
ν′, then i is also aware of any coarsest refinements of ν′ that are incompatible with ν: if ν, ν′ ∈ A(ω), then
max({ν∗ ∈ ↓ν′ | ν∗⊥ ν}) ⊆ A(ω). Standardness implies the equivalence given in (7) above.

Lemma 3.5. For any standard possibility frame with awareness F = (Ω,v, E ,A) and ω, ν ∈ Ω, we have
ν ∈ A(ω) if and only if ω ∈ A(↓ν).

Proof. The left-to-right direction is just the definition of standardness. For the right-to-left direction, if
ω ∈ A(↓ν), then since m ∈ A(ω) by awareness nonvacuity, it follows from the definition of A that in ω, i is
aware of the coarsest refinement of m belonging to ↓ν, which is ν itself, so ν ∈ A(ω).

We now give our first two examples of using possibility frames with awareness for modeling. For simplicity,
we continue to concentrate on the awareness of a single agent; but one can enrich each of our examples to a
multi-agent example by adding additional possibilities and correspondences for other agents’ awareness.

Example 3.6. We begin with perhaps the simplest example of an interesting possibility frame with awareness,
formalizing a story discussed in Geanakoplos 1989, Modica and Rustichini 1994, and Modica and Rustichini
1999. The story concerns Sherlock Holmes’s assistant, Watson: if Watson hears a dog bark, then he will
know—and hence be aware of—the event of the dog barking; but if he does not hear the dog bark, then he will
not even be aware (at least at the relevant time) of the distinction between the dog barking vs. not barking.
We formalize this using the frame in Figure 3.6: Ω = {m, b, b}; the partial order v is depicted by the arrows,
so, e.g., we have b v m (arrows point toward more refined possibilities); the awareness correspondence
for Watson, whom we will call i for short, is given by A(m) = {m}, A(b) = Ω, and A(b) = {m}; and
E = RO(Ω,v). It is easy to check that this is a standard possibility frame with awareness.

Let Barks = {b}; this set satisfies persistence and refinability, so by Lemma 2.1 it is an event inRO(Ω,v).
Now it is immediate from the definition of A that when i is aware of all possibilities, i is also aware of all
events. Hence in possibility b, i is aware of Barks and ¬Barks. By contrast, in b, i is unaware of these
events, for the following reason: although in b, i is aware of the coarsest possibility m, we have m 6∈ Barks
and m 6∈ ¬Barks (the latter because b v m and b ∈ Barks); then since in b, i is only aware of m, i is not

18Conversely, in standard frames as in Definition 3.1, the requirement that RO(Ω,v) be closed under A implies awareness
persistence and awareness refinability.
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m

b b

A(m) = {m}

A(b) = Ω A(b) = {m}

Figure 1: A possibility frame with awareness representing Watson in the story of Geanakoplos 1989.
Refinement arrows implied by reflexivity are not drawn.

aware of the coarsest refinement of m belonging to Barks (namely, b) or of the coarsest refinement of m
belonging to ¬Barks (namely, b). In short, in b, i is not aware of the distinction Barks vs. ¬Barks.

Moreover, in b, i is unaware of his unawareness of Barks. The reason is similar to the above: although
in b, i is aware of m, we have m 6∈ A(Barks) = {b} and m 6∈ ¬A(Barks) = {b} (the latter because b v m

and b ∈ A(Barks)); then since in b, i is only aware of m, i is not aware of the coarsest refinement of m
belonging to A(Barks) (namely, b) or of the coarsest refinement of m belonging to ¬A(Barks) (namely, b).
In short, in b, i is not aware of the distinction A(Barks) vs. ¬A(Barks).

Finally, we must continue, as stressed in Section 1, to avoid conflating events with sentences. For example,
since we can write Ω = Barkst¬Barks, where t is the join in the Boolean algebra RO(Ω,v), does it follow
from Watson’s being aware of Ω that he is aware of Barks? As noted in Section 1, it does not. Ω is the
trivial event, not to be confused with the linguistic item ‘Barkst¬Barks’ of the analyst’s language. Surely
if Watson were aware of a sentence in a language that embeds ‘Barks’, then he would be aware of ‘Barks’.
But Watson’s awareness of the trivial event Ω does not imply any such awareness of a sentence.

Example 3.7. Consider a game in which a column player is aware that the row player can move up or down
but is unaware that the row player has a third move, middle. Informally, such a situation is represented
by the game matrix at the top of Figure 2 in which the middle row is greyed out. Formally, we can
represent the unawareness of the column player, whom we call i, using the frame in Figure 2; that this is a
standard possibility frame with awareness can be checked by hand or more quickly with the notebook cited in
Section 1.2. There are two games the players could play: game G in which the row player only has two moves,
represented by the subtree with root g, and game G in which the row player has three moves, represented by
the subtree with root g. In each colored state, i is aware only of the red possibilities; note i’s awareness of g
is in effect just awareness of the possibility of not playing G, without any awareness of further refinements
of that possibility. But before computing i’s awareness of events, one should become comfortable with the
treatment of ‘not’ and ‘or’ coming from Theorem 2.3. For example, although the partial possibility ` does
not belong to the event Middle = ↓{lm, rm} of the row player playing middle in G, we have ` 6∈ ¬Middle,
since ` is refined by `m and `m ∈Middle. Also note that where Up = ↓{lu, ru} and Down = ↓{ld, rd}, we
have ` ∈ Up tMiddle tDown, despite the fact that ` does not belong to the union of these events; this is
because every proper refinement of ` does belong to the union. Thus, when dealing with partial possibilities,
one must resist the temptation to interpret ‘not’ and ‘or’ using set-theoretic complement and union.

Turning to awareness, observe that at each of the colored states ω, it is not settled that i is aware of
Middle: ω 6∈ A(Middle). For in the colored states, i is aware of g, g 6∈ Middle, and g 6∈ ¬Middle (since g
is refined by `m, which belongs to Middle), yet i is not aware of any coarsest refinement of g that belongs

13



` r
u 3, 3 0, 4
m 10,10 10,0
d 4, 0 1, 1

m

g

`

`u `d

r

ru rd

g

`

`u `m `d

r

ru rm rd

for each colored state ω, A(ω) = {ν ∈ Ω | ν a red state}

for each black state ω, A(ω) = Ω E = RO(Ω,v)

Figure 2: A possibility frame with awareness representing a column player’s unawareness that the row player
has an extra move m. Refinement arrows implied by reflexivity or transitivity are not drawn.

to Middle, namely `m or rm. Hence each colored leaf ω of the tree settles that i is not aware of Middle:
ω ∈ ¬A(Middle). By contrast, in the black leaves, i is aware of every event, in virtue of being aware of
every possibility. It follows that at each colored leaf ω of the tree, i is unaware of her unawareness ofMiddle:
ω ∈ ¬A¬A(Middle). For in the colored states, i is aware of possibilities that are refined by colored leaves
and black leaves, yet i is unaware of all leaves. Thus, at each colored leaf, i is not only unaware of the
distinction Middle vs. ¬Middle but also of the distinction A(Middle) vs. ¬A(Middle). Yet at all colored
states, i is aware of the events Up = ↓{`u, ru} and Down = ↓{`d, rd} of playing up and down in G, since
for every red state ω, every coarsest refinement of ω in Up, ¬Up, Down, and ¬Down is itself a red state.

A question raised about the model in Figure 2 is whether we should delete the two possibilities refining `m
and then turn `m black (resulting in another frame satisfying the constraints of Definition 3.1), representing
full awareness in state `m (and similarly for rm): for in a state where the row player plays middle, doesn’t
the column player necessarily observe this? And isn’t the column player therefore aware ofMiddle (as in the
current black refinement of `m)? In games with imperfect information, the column player might not observe
the row player’s move; but even if one assumes full observability, the analyst can assign zero probability to
the event consisting of the singleton set of the blue possibility below `m, rather than deleting that possibility
from the model. One argument in favor of not deleting the possibility is that an agent can be aware of such
a logical possibility (as the agent is in the black states) even if they are certain that it will not obtain (recall
our intuitive explanation of ω′ ∈ A(ω) at the beginning of Section 3).

We close this section with a simple example of an infinite possibility frame with awareness.

Example 3.8. Let 2≤ω be the set of all finite or countably infinite binary strings (such as 0110, etc.)
ordered such that σ v τ if τ is an initial segment of σ (so 0110 v 011, etc.). This could represent all
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possibilities for finitely many or countably infinitely many flips of a coin. Now consider the possibility frame
(2≤ω,v,RO(2≤ω,v)), where each event in RO(2≤ω) is equal to the union of an arbitrary set {πi}i∈I of
infinite strings and the set of all finite strings all of whose infinite extensions belong to {πi}i∈I . Equip the
possibility frame with the awareness correspondence A defined by

A(σ) = {τ ∈ 2≤ω | τ a finite binary string}.

ThenA satisfies awareness nonvacuity (as the empty string is the maximal element of (2≤ω,v)), expressibility
(since RO(2≤ω,v) contains all principal downsets ↓τ), persistence and refinability (since A(σ) = A(τ) for
all σ, τ ∈ 2≤ω), and joinability (since if max(E)∩ ν and max(E′)∩ ν contain only finite strings, then so does
max((EtE′)∩↓ν)). This frame represents an agent who can conceive of any finite sequence of coin flips but
cannot conceive of infinite sequences. Then the set of events of which the agent is aware forms an atomless
(recall Footnote 9) Boolean subalgebra (see Corollary 4.4) of the atomic Boolean algebra RO(2≤ω,v). The
atoms of RO(2≤ω,v) are the singleton sets of infinite binary strings, of which the agent is unaware.

3.2 Knowledge, belief, and awareness

We now add knowledge and belief correspondences to our possibility frames with awareness. The basic
distinction is that what the agent i knows depends on the true information i has received, whereas belief is
subjective in the same sense as in subjective probability, which models belief quantitively.19 Take ν ∈ K(ω)

(resp. ν ∈ B(ω)) to mean that every event that i knows (resp. believes) in ω—or would know (resp. believe)
if made aware of the event—holds true in ν. In this sense ν conforms to what i knows (resp. believes).

Definition 3.9. An epistemic possibility frame is a tuple F = (Ω,v, E ,A,K,B) such that:

1. (Ω,v, E ,A) is a possibility frame with awareness;

2. each R ∈ {K,B} is a correspondence R : Ω→ ℘(Ω) satisfying the following for all ω, ω′, ν ∈ Ω:

(a) R-monotonicity: if ω′ v ω, then R(ω′) ⊆ R(ω);

(b) R-regularity: R(ω) ∈ RO(Ω,v);

(c) R-refinability: if ν ∈ R(ω), then ∃ω′ v ω ∀ω′′ v ω′ ∃ν′ v ν: ν′ ∈ R(ω′′);

(d) epistemic factivity: ω ∈ K(ω);

(e) doxastic consistency: B(ω) 6= ∅;

(f) doxastic inclusion: B(ω) ⊆ K(ω).

3. for each R ∈ {K,B} and E ∈ E , we have {ω ∈ Ω | R(ω) ⊆ E} ∈ E .

We call F standard if the underlying possibility frame with awareness is standard.

The interpretations of the first three conditions are as follows for knowledge; the belief interpretations are
analogous. R-monotonicity—in its equivalent formulation: if ω′ v ω, then ν 6∈ R(ω) implies ν 6∈ R(ω′)—says
that if ν does not conform to i’s knowledge in ω, then ν does not conform to i’s knowledge in any refinement
ω′ of ω, since i retains in ω′ whatever knowledge she had in ω. R-regularity says that we can view the set of
possibilities that conform to i’s knowledge as a genuine event that i implicitly knows (in fact, the strongest

19As sketched in Section 5, we could use p-belief instead of belief, but for simplicity we use belief when introducing our model.
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such event, given the definition of implicit knowledge below). Finally, R-refinability says that if ν conforms
to i’s knowledge in ω, then there is a refinement ω′ of ω that settles that some refinement of ν conforms to
i’s knowledge, in the sense that at every refinement ω′′ of ω′, some refinement of ν conforms to i’s knowledge
in ω′′.20 Together these conditions imply the following closure property of RO(Ω,v), which shows that it is
possible to satisfy the closure property in part 3 of Definition 3.9.

Lemma 3.10. Let (Ω,v) be a poset and R : Ω → ℘(Ω) satisfy R-monotonicity, R-regularity, and R-
refinability. Then for any E ∈ RO(Ω,v), we have {ω ∈ Ω | R(ω) ⊆ E} ∈ RO(Ω,v).

Thus, if R satisfies the listed properties, then Definition 3.9.3 holds automatically when E = RO(Ω,v).21

As in Fagin and Halpern 1988, one may take L(E) = {ω ∈ Ω | K(ω) ⊆ E} (resp. {ω ∈ Ω | B(ω) ⊆ E}) to
be the event of i implicitly knowing (resp. implicitly believing) E in the sense that i would know (resp. believe)
E if i were aware of E. However, we will concentrate here on explicit knowledge K and belief B:

K(E) = {ω ∈ Ω | K(ω) ⊆ E and ω ∈ A(E)};

B(E) = {ω ∈ Ω | B(ω) ⊆ E and ω ∈ A(E)}.

By Lemma 3.10 and the closure of E under binary intersection, E is also closed under K and B. Moreover,
in the multi-agent generalization of our setup with correspondences Ki and Bi for each agent i, if E is closed
under countably infinite intersections (e.g., if E = RO(Ω,v)), then it is closed under the usual operations
of common knowledge (Aumann 1999a, § 2) and common belief (see, e.g., Lismont and Mongin 1994).

Conditions (d)–(f) of Definition 3.9 are the bare minimum constraints for knowledge and belief, familiar
from the earliest formal models of knowledge and belief (Hintikka 1962). Epistemic factivity implies that if i
knows E, then E is true; doxastic consistency implies that an agent cannot believe ∅; and doxastic inclusion
(which implies that if K(ω) ⊆ E, then B(ω) ⊆ E) implies that if i knows E, then i believes E.

Remark 3.11. Particular frames used in applications may of course satisfy additional constraints, which
may imply epistemic and doxastic introspection principles (see Ding et al. 2019 for a study of when such
principles matter for multi-agent reasoning). As usual, introspection principles for A, K, and B that
quantify over events—e.g., for all events E, K(E) ⊆ K(K(E))—immediately correspond to conditions
on A, K, and B that quantify over events, just by unpacking the definitions of A, K, and B. There
is then a technical question, studied in a branch of modal logic known as correspondence theory (van
Benthem 2001), about whether the conditions on A, K, and B that quantify over events—called second-order
conditions—are equivalent to conditions on A, K, and B that only quantify over possibilities in Ω—called
first-order conditions. Correspondence theory for implicit knowledge and belief in possibility semantics is
well understood (Holliday 2015, Yamamoto 2017, Zhao 2021). To take one example, in epistemic possibility
frames, Positive Introspection for implicit knowledge—for all E ∈ RO(Ω,v), L(E) ⊆ L(L(E))—holds if and
only if K is transitive (if ω′ ∈ K(ω) and ω′′ ∈ K(ω′), then ω′′ ∈ K(ω)), just as in Kripke frames. However,
we will not delve into correspondence theory for awareness or explicit knowledge and belief here, as our
focus is instead on representation theory in Section 4. The example frames in this paper satisfy first-order
conditions that are sufficient but not necessary for introspection principles. For example, it is sufficient for

20This condition from Holliday 2015 is weaker than the refinability condition in Humberstone 1981. This weakening is useful
for the representation theory of modal algebras by possibility frames (see Remark 2.39 of Holliday 2015).

21A natural question is whether the converse of Lemma 3.10 holds, i.e., if for any E ∈ RO(Ω,v), we have
{ω ∈ Ω | R(ω) ⊆ E} ∈ RO(Ω,v), does this imply the listed properties of R? In fact, it implies slightly weaker properties
of R, as shown in Proposition 2.30 of Holliday 2015, but the stronger properties can be assumed without loss of generality
(Proposition 2.37 of Holliday 2015).
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A(E) ⊆ A(A(E)) to hold for all E ∈ E that for all ω ∈ Ω, if A(ω) 6= Ω, then for all ν ∈ A(ω) and ν′ v ν, if
A(ν′) 6= Ω, then for some ω′ v ω, we have A(ν′) = A(ω′); and if this also holds with ‘if A(ω) 6= Ω, then for
all ν ∈ A(ω)’ replaced by ‘for all ν ∈ K(ω)’, then A(E) ⊆ K(A(E)) for all E ∈ E .

We now present two examples of using epistemic possibility frames for modeling.

Example 3.12. Let us add knowledge and belief to Example 3.6. There are two pairs of knowledge and
belief correspondences we might consider for Watson:

K(b) = B(b) = {b} and K(b) = B(b) = K(m) = B(m) = Ω;

K′(b) = B′(b) = {b} and K′(b) = B′(b) = {b} and K′(m) = B′(m) = Ω.

One can easily check that in both cases, all the conditions of Definition 3.9 are satisfied. Moreover, for any
event E, we have K(E) = K′(E) and B(E) = B′(E). However, the primed pair of correspondences can be
used to capture the idea that if only Watson were aware in b of the distinction between Bark and ¬Bark,
then he would know and believe ¬Bark in b. In either case, the frame illustrates our reason for rejecting part
of what Dekel et al. (1998) call the axiom of Plausibility, which is one direction of the Modica-Rustichini
definition of unawareness: U(E) ⊆ ¬K(E) and U(E) ⊆ ¬K¬K(E). The first inclusion holds in our model
by the definition of K, but the second inclusion can fail in light of the distinction between awareness of
events and awareness of sentences. First observe that the event U(Barks) is unknowable: it cannot be
known at b or m, because it is not true at these states (recall Example 3.6); and it cannot be known at b,
because although it is true at b, Watson is not aware of U(Barks) in b (again recall Example 3.6). Thus,
¬K(U(Barks)) = Ω. But of course K(Ω) = Ω (recall Section 1). So we have a violation of Plausibility
at b, as b ∈ U(Barks) and b 6∈ ¬K¬K(U(Barks)). Here Watson is aware of and indeed knows the trivial
event Ω, and as analysts we see that Ω = ¬K(U(Barks)). But it is a fallacy, based on conflating awareness
of events with awareness of sentences, to think that if i is aware of Ω, and Ω can be obtained from E by
applying some operations on sets, then i must be aware of E. It is similar to the fallacy in thinking that if a
student is aware of a number n, and n can be obtained from a number m by some mathematical operations,
then the student must also be aware of m. For more on Plausibility, see Appendix A.2 and Fact 3.16.

Remark 3.13. We can now prove that in our model, unawareness is not definable in any way from knowledge
and belief; so not only does the Modica-Rustichini definition of unawareness in terms of knowledge fail, but
other definitions in terms of knowledge and/or belief also fail. It suffices to give two possibility frames that
yield the same algebra of events and the same K and B operators but different A operators. Let F1 have
the same three possibilities as in Example 3.6 but with A(ω) = {m} and K(ω) = B(ω) = Ω for all ω ∈ Ω.
Let F2 be just like F1 except that we change A so that A(ω) = Ω for all ω ∈ Ω. In both frames, the agent
does not know or believe anything beyond the trivial event Ω; but in F1, the agent has unawareness (e.g.,
ω 6∈ A(Barks) for all ω), while in F2, the agent has full awareness (ω ∈ A(E) for all possibilities ω and
events E). Thus, the awareness operator is not definable in terms of the knowledge and belief operators.

Finally, let us return to the example of the overconfident agent with which we began in Section 1.

Example 3.14. A potential investor i in a firm believes that he knows the firm is profitable, while being
unaware of a sophisticated type of fraud that the firm is in fact using to cover up unprofitability. This is the
case in state f1 in the possibility frame in Figure 3.14 with E = RO(Ω,v) and the awareness, belief, and
knowledge correspondences specified below. Intuitively, in the names for states, p stands for profitability,
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b stands for belief (in profitability), u stands for unawareness (of possibilities of fraud), and f stands for
fraud. Then the correspondences are defined as follows:

• for each colored state ω, A(ω) = {ν ∈ Ω | ν a red state};

• for each black or gray state ω, A(ω) = Ω;

• for each square or blue state ω, B(ω) = ↓pb and K(ω) = ↓{ω, pb};

• for each black state ω, B(ω) = {pbu} and K(ω) = {ω, pbu};

• for each diamond or green state ω, B(ω) = K(ω) = ↓{ν ∈ Ω | ν a diamond state};

• for each gray state ω, B(ω) = K(ω) = {ν ∈ Ω | ν a gray state};

• B(p) = ρ(
⋃
ω@p
B(ω)) = ↓{p, pb} and K(p) = ρ(

⋃
ω@p
K(ω)) = ↓{p, pb};

• B(p) = ρ(
⋃
ω@p
B(ω)) = ↓{p, pb} and K(p) = ρ(

⋃
ω@p
K(ω)) = Ω;

• B(m) = ↓{p, pb} and K(m) = Ω.

m

p

pb

pbu pbu

pb

pbu pbu

p

pb

pbu

f1 f1

pbu

f2 f2

pb

p bu

f3 f3

pbu

f4
f4

Figure 3: The refinement structure of a possibility frame for Example 3.14. Refinement arrows implied by
reflexivity or transitivity are not drawn.

Let Profit = ↓p and Fraud = {f1, f2, f3, f4}. Then we have the following:

• In the blue states, i is unaware of the distinction between Fraud and ¬Fraud and believes Profit and
believes that he knows Profit (note that in state pb, i knows Profit).

• In the green states, i is unaware of the distinction between Fraud and ¬Fraud and is undecided (in
belief) and uncertain (in knowledge) about Profit.

• In the black states, i is aware of the distinction between Fraud and ¬Fraud but still believes Profit
and believes he knows Profit (note that in state pbu, i knows Profit).

• In the gray states, i is aware of the distinction between Fraud and ¬Fraud and is undecided and
uncertain about Profit.
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In f1, f1, f2, and f2, agent i is overconfident in Profit: i believes he knows Profit, but he does not, since
Profit does not obtain in these states. As analysts—or as other agents interacting with i—we might assign
low probability to f2 and f2, reflecting the view that i is unlikely to be overconfident when i is aware of
the possibility of the sophisticated type of fraud. In general, say that a state ω determines that agent i has
information-based beliefs22 if for all ω′ v ω and ν ∈ Ω, if in ω′, i is aware of ν and i’s information is in fact
consistent with ν, then in ω′, i does not mistakenly believe he can rule out ν:

if ν ∈ A(ω′) and ν ∈ K(ω′), then ν ∈ B(ω′).

If ω determines that i has information-based beliefs, then ω determines that i can only have false beliefs if
he is unaware of some possibilities that are in fact consistent with his information. In the above example,
i has information-based beliefs at all leaves of the tree except for f2 and f2. In principle, to what extent
false beliefs in a population of agents are correlated with unawareness of possibilities consistent with their
information, as distinguished from mistakes in reasoning, exposure to misleading evidence, etc., could be
investigated experimentally, though we will not attempt to describe an experimental protocol here.

To sum up, in contrast to models that define awareness in terms of knowledge (recall Section 1), as in
Modica and Rustichini 1994, 1999, Heifetz et al. 2006, and Li 2009, we are able to model an agent who is
aware of Profit while also being overconfident in Profit; and we are able to relate the agent’s overconfidence
in Profit to his unawareness of Fraud.

Remark 3.15. Examples 3.12 and 3.14 satisfy all the principles of Stalnaker’s (2006, p. 179) joint logic
of knowledge and belief, with negative introspection for belief suitably modified to allow for unawareness:
K(E) ⊆ K(K(E)) and B(E) ⊆ K(B(E)) (Positive Introspection); ¬B(E) ∩ A¬B(E) ⊆ K¬B(E) (Weak
Negative Introspection for Belief); and B(E) ⊆ B(K(E)) (Strong Belief).

Finally, let us relate our model to the impossibility theorem concerning unawareness from Dekel et al.
1998, reviewed in detail in Appendix A. We already discussed Dekel et al.’s axiom of Plausibility in
Example 3.12. One can check23 that the structures (E ,⊆,U,K,¬) arising from Examples 3.12 and 3.14
satisfy all of Dekel et al. other axioms (in particular, what they call AU Introspection and KU Introspection)
and the following weakening of Plausibility:

Nontrivial Plausibility: U(E) ⊆ ¬K(E), and if ¬K(E) 6= Ω, then U(E) ⊆ ¬K¬K(E).

Thus, a slight weakening of Plausibility leads us from impossibility to the following possibility result.

Fact 3.16. There are epistemic possibilities frames such that (E ,⊆,U,K,¬) satisfies the axioms of Dekel
et al. 1998, Theorem 1(i) when Plausibility is replaced by Nontrivial Plausibility.24

22Similarly, one could define information-based p-beliefs by replacing ν ∈ B(ω′) in the displayed condition with i’s assigning
probability greater than 1− p to the event ↓µ, assuming an extension of our model with probability as sketched in Section 5.

23This can be checked by hand for Example 3.12 and using the notebook cited in Section 1.2 for Example 3.14.
24The frames from Examples 3.12 and 3.14 also satisfy the following, building on nomenclature of Heifetz et al. 2006,

Prop. 3: if K(E) 6= ∅, then A(K(E)) = A(E) (Nontrivial AK-Self Reflection); A(A(E)) = A(E) (AA-Self Reflection); and
K(A(E)) = A(E) (A-Introspection) (recall Remark 3.11). However, we think it would be reasonable for at least the left-to-right
inclusions in each of these principles to be violated in other examples, given the distinction between events and sentences we
have stressed (e.g., from the facts that ω ∈ A(F ) and F = A(E), it should not be required that ω ∈ A(E), since the agent need
not conceive of the event F—which has no syntactic structure—in terms of anyone’s awareness of E). On similar grounds, the
second part of Nontrivial Plausibility can also be reasonably doubted as a universal requirement in all cases.
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4 Representation

Having seen how to model some concrete examples involving awareness, knowledge, and belief using possibility
frames, we now identify exactly the class of examples that can be so represented. Such an example is specified
abstractly by a Boolean algebra of events equipped with awareness, knowledge, and belief operators.

Definition 4.1. An epistemic awareness algebra is a tuple A = (B, A,K,B) where B is a Boolean algebra
and A, K, and B are unary operations on B such that for all a, b ∈ B and � ∈ {K,B}:

• A1 = 1 (tautology), Aa = A¬a (symmetry), and Aa uAb ≤ A(a u b) (agglomeration);

• K1 = 1 (knowledge necessitation) and �a u�b ≤ �(a u b) (knowledge/belief agglomeration);

• if a ≤ b, then �a uAb ≤ �b (awareness-restricted monotonicity);

• Ka ≤ a (factivity of knowledge) and B0 = 0 (consistency of belief);

• Ka ≤ Ba (knowledge-belief entailment) and Ba ≤ Aa (belief-awareness entailment).

As usual, an isomorphism between epistemic awareness algebras A and A′ is a bijection from the carrier set
of A to that of A′ that respects the lattice orders and operations: a ≤ b if and only if f(a) ≤′ f(b); and for
each 4 ∈ {A,K,B}, we have f(4(a)) = 4′(f(a)).

Some immediate consequences are that B1 = 1 (belief necessitation) and Ka ≤ Aa (knowledge-awareness
entailment). It also follows that awareness is closed under not only meets but also joins.

Lemma 4.2. For any a, b ∈ B, Aa uAb ≤ A(a t b).

Proof. We have Aa uAb ≤ A¬a uA¬b ≤ A(¬a u ¬b) ≤ A¬(¬a u ¬b) = A(a t b).

Of course, we could impose additional axioms, but our representation theorems will be stronger if we can
represent any epistemic awareness algebra, not just those with special additional properties.

Each epistemic possibility frame gives rise to an epistemic awareness algebra as follows.

Proposition 4.3. If F = (Ω,v, E ,A,K,B) is an epistemic possibility frame, then F+ = ((E ,⊆),A,K,B)

is an epistemic awareness algebra.

An immediate corollary of F+ satisfying tautology, symmetry, and agglomeration is that the family of events
of which an agent is aware in a possibility forms a Boolean subalgebra of RO(Ω,v).

Corollary 4.4. If F = (Ω,v, E ,A,K,B) is an epistemic possibility frame, then for any ω ∈ Ω, the family
{E ∈ E | ω ∈ A(E)} contains Ω and is closed under ∩ and ¬ from (1).

We now proceed in the converse direction: given an epistemic awareness algebra, we wish to construct
an epistemic possibility frame F that represents the algebra as F+. To this end, recall that a filter in a
Boolean algebra B is a nonempty set F of elements of B that is upward closed under the lattice order of B
(if a ∈ F and a ≤ b, then b ∈ F ) and closed under the meet operation of B (if a, b ∈ F , then a u b ∈ F ). A
filter is proper if it does not contain all elements of B. Given an element a ∈ B, the set ⇑a = {b ∈ B | a ≤ b}
is a filter, and a filter F is principal if F = ⇑a for some a ∈ B. The following type of construction is used in
possibility semantics (Holliday 2015, § 5.5) but here we must add A’s for awareness and modify the treatment
of K and B due to the awareness-restricted monotonicity of knowledge and belief.
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Definition 4.5. Given an epistemic awareness algebra A = (B, A,K,B), define A+ = (Ω,v, E ,A,K,B) as
follows:

1. Ω is the set of all proper filters of B, and F v G if F ⊇ G;

2. E = {â | a ∈ B} where â = {F ∈ Ω | a ∈ F};

3. A(F ) = {H ∈ Ω | H is the principal filter of an element a such that Aa ∈ F};

4. K(F ) = {H ∈ Ω | for all a1, . . . , an ∈ B, if Ka1 t · · · tKan ∈ F , then a1 t · · · t an ∈ H};

5. B(F ) = {H ∈ Ω | for all a1, . . . , an ∈ B, if Ba1 t · · · tBan ∈ F , then a1 t · · · t an ∈ H}.

In the Appendix, we prove the following main representation theorem.

Theorem 4.6. For any epistemic awareness algebra A:

1. A+ is a standard epistemic possibility frame;

2. the map a 7→ â is an isomorphism from A to (A+)+.

This result is analogous to the Stone Representation Theorem for Boolean algebras (Stone 1936) (or more
precisely, the Stone-like representation without the Axiom of Choice25 in Holliday 2015 and Bezhanishvili
and Holliday 2020) but with awareness, knowledge, and belief added alongside Boolean operations.

Remark 4.7. In the case when A is finite, we can cut the set Ω in Definition 4.5 down to just the principal
filters. In fact, one can typically use a much smaller quasi-principal possibility frame, as in Examples 3.7 and
3.14; one need only add enough partial possibilities to witness an agent’s unawareness of events, rather than
a partial possibility for each proposition from A. For example, while the possibility frame in Example 3.7
has 37 possibilities, its associated algebra has 220 = 1, 048, 576 events. In practical modeling, we usually
construct a concise possibility frame F and then calculate its algebra F+ of events, instead of starting with
a very large algebra A of events and then applying Theorem 4.6 to obtain a possibility frame A+. The point
of Theorem 4.6 is rather to show that possibility frames do not unreasonably limit what we can model.

5 Conclusion

Theorem 4.6 shows that epistemic possibility frames are capable of representing any scenario involving
awareness of events, plus knowledge and belief—including that of multiple agents, given the obvious multi-
agent generalization of everything above—provided some basic axioms are satisfied in the scenario. Thus,
as far as event-based approaches to awareness are concerned, epistemic possibility frames provide a highly
versatile modeling tool. We conclude by mentioning several avenues for further development.

First, we can immediately use our possibility frames to interpret a formal logical language for reasoning
about unawareness and uncertainty, following standard practice in computer science (Fagin et al. 1995,
Halpern 2003) and some work in economics (e.g., Board 2004, Heifetz et al. 2008, Alon and Heifetz 2014).
We simply turn an epistemic possibility frame into an epistemic possibility model for a propositional language
by equipping the frame with a valuation V of atomic formulas such that V (p) ∈ E for each atomic formula
p of the language. One can then recursively define the interpretation of complex formulas built up using

25Using the Axiom of Choice, the set Ω in Definition 4.5 may be cut down to just the set of proper filters that are maximal
(i.e., ultrafilters) or principal.
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negation and conjunction and modalities for awareness, knowledge, and belief for each agent, using the
operations in the epistemic awareness algebra arising from the epistemic possibility frame. Finally, one can
easily turn our main representation theorem (Theorem 4.6) into a strong completeness theorem for a modal
logic of awareness, knowledge, and belief with axioms matching those of epistemic awareness algebras.

A logical approach can then be extended to more expressive languages than that of propositional modal
logic, such as propositional modal logic with propositional quantifiers, as investigated in Halpern and Rêgo
2009, 2013. In such a language, one may express that an agent knows that there is some event of which
she is unaware: K∃p Up. There is a mathematically elegant semantics for modal logic with propositional
quantifiers using complete Boolean algebras (see, e.g., Holliday 2019, Ding 2021) and hence a corresponding
semantics using possibility frames in which E = RO(Ω,v) (Holliday 2021, § 5.1), which one could consider
for applications to unawareness. Ding (2021) solves a related problem: modeling a modest agent who believes
that she must have some false belief, written as B∃p(Bp ∧ ¬p), though she does not know which belief it is.

There is also the possibility of using a formal language not just to reason about awareness of events as
modeled in this paper but also to model awareness of sentences, perhaps even developing a sentence-based
approached on top of our event-based approach. For example, assume that for every event E ∈ E in our
model, there is some atomic formula p for which V (p) = E. For an arbitrary formula ϕ of the modal
language, to formalize awareness of the formula ϕ itself, we could say that Aϕ is true at a possibility ω just
in case for every subformula ψ of ϕ, we have ω ∈ AJψK, where JψK is the set of possibilities at which ψ is
true (an event). This would capture the idea that being aware of complex formulas such as ϕ∧ψ or ϕ∨¬ϕ
requires being aware of ϕ and of ψ. However, this still has the consequence that if two atomic formulas p
and q are true in exactly the same states, then i is aware of p if and only if i is aware of q; to avoid this
consequence, one could directly encode awareness of atomic formulas, as in Fagin and Halpern 1988, or one
could associate with each possibility its own language and then require for the truth of Aϕ at ω that ϕ belong
to the languages associated with each possibility witnessing awareness of JϕK as in Definition 3.1.3.26

Finally, though here we have focused on knowledge and qualitative belief, we can also add probability
to our frames (cf. Aumann 1999b, Heifetz et al. 2013). This can be done by assigning to each possibility
ω a set Pω of probability measures on the Boolean algebra {E ∈ E | ω ∈ A(E)} of events of which
the agent is aware in ω. The reason for allowing a set of measures—besides wanting to allow multi-prior
representations of uncertainty—is that a possibility ω may be partial, not settling exactly which probability
measure captures the agent’s subjective probabilities, leaving us with a set of measures to be narrowed down
by further refinements of ω. Appropriate persistence and refinability conditions relating the sets Pω for
different possibilities ω ensure that certain probabilistic events, such as the agent p-believing E (Monderer
and Samet 1989) or judging that E is at least as likely as F (cf. Alon and Lehrer 2014, Alon and Heifetz
2014), will themselves belong to RO(Ω,v), so we can require that they belong to E . Thus, a full apparatus
of awareness, knowledge, and probability for multiple agents could be developed using possibility frames,
enabling applications to decision theory and game theory with unawareness.
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A The DLR impossibility theorem

A.1 General formulation

Our goal in this paper is to model awareness of events as opposed to sentences. Famously, Dekel, Lipman,
and Rustichini (1998) prove theorems that are supposed to raise problems for such models. In this Appendix,
we explain why our project is not doomed by these results. Although Dekel et al. phrase their theorems in
terms of state-space models, they are much more general. Let E be a nonempty set and ≤ a preorder on
E with a minimum element 0. Think of elements of E as events and ≤ as the entailment relation between
events. For example, given a nonempty set Ω, we could take E to be the powerset of Ω, ≤=⊆, and 0 = ∅,
but this is just one example. Next, we assume maps U : E → E for unawareness, K : E → E for knowledge,
and ¬ : E → E for negation.27 Suppose these maps satisfy the following axioms for all E ∈ E :

• U(E) ≤ U(U(E)) (AU Introspection);

• U(E) ≤ ¬K(E) and U(E) ≤ ¬K¬K(E) (Plausibility);

• K(U(E)) = 0 (KU Introspection);

• K(¬0) = ¬0 (Necessitation);

• ¬¬0 = 0 (Double Negation).

AU Introspection says that if an agent is unaware of E, then she is unaware that she is unaware of E, while
KU introspection says that it is impossible for an agent to know that she is unaware of a specific event E.
Necessitation says that the agent knows the trivial event ¬0, namely Ω in state-space models, and Double
Negation says that negation is involutive on 0 as in Boolean algebras (and many generalizations thereof).

Plausibility is one direction of the Modica-Rustichini (1994) definition of unawareness in terms of knowledge.
In fact, only the second half of Plausibility (U(E) ≤ ¬K¬K(E)) is used for the following result.

Proposition A.1 (Dekel et al. 1998, Theorem 1(i)). Assuming the axioms above, U(E) = 0 for all E ∈ E .

Proof. U(E) ≤ U(U(E)) ≤ ¬K¬K(U(E)) ≤ ¬K¬0 = ¬¬0 = 0.
27Stipulating some operations U and K on E is of course not to provide any illuminating model of unawareness and knowledge,

but this abstract setup will be useful for stating impossibility theorems. The actual models of unawareness cited in this paper
(e.g., Heifetz et al. 2006, Li 2009, Fritz and Lederman 2015, and our model) all attempt to represent unawareness operations
using more concrete structures. To provide any additional insight or representational succinctness beyond stipulating a primitive
U : E → E, the model must derive such an operation from more concrete relations, correspondences, etc. on a set of states. For
an example in which this requirement is not satisfied, note that in a state-space model based on a field of sets (Ω, E), stipulating
an operation U : E → E is equivalent to stipulating a neighborhood function NU : Ω → ℘(E) via the definition: E ∈ NU (ω) if
and only if ω ∈ U(E). Thus, this repackaging with a neighborhood function (which merely lists the events of which an agent is
supposed to be unaware at a state ω) offers no additional insight or representational succinctness.
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Thus, unawareness is contradictory and hence impossible assuming the axioms above.28

Note, by contrast, that our argument concerning overconfidence at the beginning of Section 1 targeted
instead the converse of Plausibility, namely ¬K(E) u ¬K¬K(E) ≤ U(E) (Converse Plausibility), where we
now assume that for all E,F ∈ E , there is a greatest lower bound E u F of {E,F} in (E ,≤).

Proposition A.2. In addition to K, U , and ¬, assume a map B : E → E such that for all E ∈ E ,
B(E) ≤ ¬K¬E (Noncontradictory Belief and Knowledge). Further assume Converse Plausibility. Then for
all E ∈ E , we have (i) B(K(E)) u ¬K(E) ≤ U(E). Thus, if B(E) u U(E) = 0 (Belief Requires Awareness),
then (ii) B(E) uB(K(E)) u ¬K(E) = 0.

Proof. For (i), B(K(E)) ≤ ¬K¬K(E), so B(K(E)) u ¬K(E) ≤ ¬K(E) u ¬K¬K(E) ≤ U(E).

Thus, Converse Plausibility essentially renders overconfidence impossible, given that the other axioms are
uncontroversial. We will also give an argument against the second half of Plausibility below.

Although Dekel et al. originally framed their Theorem 1(i) as a result about standard state-space models,
Proposition A.1 applies to any model of awareness that provides a structure (E ,≤, 0, U,K,¬). For example,
the model of Heifetz, Meier, and Schipper (2006) provides a set E constructed as certain pairs (E,S) of
sets ordered by (E,S) ≤ (E′, S′) if E ⊆ E′ and S′ � S, where � is a complete lattice order (see Schipper
2013, §§ 2.1, 2.3, 2.5). Hence the minimum element is 0 = (∅, S>) where S> is the maximum element of
�. The model also provides maps U , K, and ¬ from E to E . Since this model allows for unawareness, it
must reject one of Dekel et al.’s axioms. Indeed, it rejects K(U(E)) = 0 (KU Introspection). Heifetz et
al. instead set K(U(E)) to be a certain non-minimum element (∅, S(E)) of (E ,≤); although they denote
that non-minimum element by ∅S(E) and refer to the axiom K(U(E)) = ∅S(E) as “KU Introspection,” the
event ∅S(E) is not equal to the minimum element 0 in (E ,≤), so their “KU Introspection” is not Dekel et
al.’s axiom.29 The model of Li 2009 similarly rejects Dekel et al.’s KU Introspection axiom.

Like Heifetz et al. and Li, Fritz and Lederman (2015, § 2.3) respond to Dekel et al.’s result by rejecting
their package of axioms. Taking inspiration from a distinction Dekel et al. draw between “real” and
“subjective” states in state-space models, Fritz and Lederman argue that AU Introspection, Plausibility,
and KU Introspection need only hold with respect to some distinguished set S of states, rather than with
respect to the set Ω of all states. This means restricting the axioms as follows: U(E) u S ≤ U(U(E));
U(E) u S ≤ ¬K(E) and U(E) u S ≤ ¬K¬K(E); and K(U(E)) u S = 0. Fritz and Lederman (2015,
Theorem 2) show that there are state-space models of unawareness of events satisfying these restricted
axioms, plus Necessitation and Double Negation, in which unawareness is possible. More recently, Fukuda
(2021) has studied other models violating AU Introspection in particular.

Thus, there is precedent in the literature for rejecting one or more of the axioms of Deket et al. In the
rest of this appendix, we will raise doubts about their axioms in light of the distinction between awareness
of events vs. awareness of sentences.30

28Dekel et al. prove another result (Theorem 1(ii)) that replaces Necessitation with the Monotonicity of K, i.e., if E ≤ F ,
then K(E) ≤ K(F ), but this principle is unacceptable assuming knowledge requires awareness, for reasons similar to those for
rejecting monotonicity of awareness in Section 1 (cf. Modica and Rustichini 1994, p. 123, Modica and Rustichini 1999).

29In response to this point, I have received the reply that the model of Heifetz et al. preserves the spirit of Dekel et al.’s
KU Introspection even though it does not preserve the mathematical letter of the axiom. However, the point that their model
violates the axiom K(U(E)) = 0 is not merely a mathematical point; to instead set K(U(E)) = (∅, S(E)) is made possible by
their abandoning the classical view that events form a Boolean algebra (see Remark 2.4), which is conceptually significant.

30After writing this paper, I learned from Harvey Lederman that Elliot 2022 raises similar doubts about the axioms.
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A.2 Plausibility

In particular, we will raise doubt about the second half of Plausibility: U(E) ≤ ¬K¬K(E). Suppose F is
some in principle unknowable event, meaning K(F ) = 0, such that our agent is also unaware of F . According
to KU Introspection, U(E) is an example of such an unknowable F , but we need not use KU Introspection;
under highly plausible assumptions, F := Eu¬U(E)u¬K(E) is unknowable31 (see the proof of Proposition
A.3). Now since F is unknowable, ¬K(F ) is equal to Ω (or abstractly, ¬0). But any agent knows Ω (again
cf. Stalnaker 1984), being careful not to confuse Ω with any particular sentence true throughout Ω. Thus,
the agent’s unawareness of F contradicts Plausibility, which implausibly implies that an agent who knows
Ω must be aware of every unknowable event. It is surely true that knowledge of a sentence ¬Kϕ implies
awareness of the embedded sentence ϕ. But unlike sentences, events do not intrinsically “embed” other events;
and there is no reason to suppose that an agent who knows Ω thinks about the event Ω as the event expressed
by the sentence ¬Kϕ.32 See Example 3.12 for a similar point. Now let us prove the claim above.

Proposition A.3. Assume Necessitation and Double Negation as above. Further suppose that for all
E,F ∈ E , we have E u ¬E = 0 (Noncontradiction), K(E) ≤ E (Factivity), and that if E ≤ F , then
K(E) u ¬U(F ) ≤ K(F ) (Awareness-restricted Monotonicity, to which we return in Section 4). Finally,
assume the second half of Plausibility. Then for every E ∈ E , we have U(E u ¬U(E) u ¬K(E)) = 0.

Proof. Where E′ = E u ¬U(E) u ¬K(E), we have K(E′) ≤ E′ ≤ ¬U(E) by Factivity, which implies
K(E′) ≤ K(E′) u ¬U(E) ≤ K(E) using Awareness-restricted Monotonicity with E′ ≤ E. But we also
have K(E′) ≤ E′ ≤ ¬K(E) using Factivity. Thus, K(E′) ≤ K(E) u ¬K(E) = 0, so K(E′) = 0. Hence by
Necessitation, K¬K(E′) = ¬0. Then by the second half of Plausibility, U(E′) ≤ ¬K¬K(E′) = ¬¬0 = 0.

For E′ as in the proof, we should be able to have E′ 6= 0 and E′ 6= ¬0, so the idea that it is impossible to be
unaware of E′ is highly counterintuitive; indeed, Example 3.14 shows how such unawareness is possible.33

We take Proposition A.3 to cast doubt on the second half of Plausibility, rather than any of the other axioms.
Fortunately, Fact 3.16 shows that a slight weakening of Plausibility delivers us away from Dekel et al.’s (1998)
impossibility theorem to a possibility result.

Finally, we address whether the problems with the Modica-Rustichini definition of unawareness in terms
of knowledge might be solved by changing the definition to use belief: U(E) = ¬B(E) u ¬B¬B(E). The
answer is that under a standard assumption of models of rational belief, namely that B(E u ¬B(E)) = 0

(No Moorean Beliefs34), the same kind of argument given above against the second half of Plausibility can
be applied to the second half of Belief Plausibility, i.e., to U(E) ≤ ¬B¬B(E).35

31Eu¬K(E) is the classic example of an unknowable event from what is known as Fitch’s paradox (Fitch 1963); for example,
can Ann know the event expressed by “Bob played left but Ann doesn’t know it”? We could use this simpler event and the
axiom K(E u ¬K(E)) = 0, but we will instead derive K(E u ¬U(E) u ¬K(E)) = 0 from other axioms.

32Where A(E) = ¬U(E), these points also show the problem with the principle A(¬K(E)) ≤ A(E) when ¬K(E) is Ω. Note
that this principle follows from A(K(E)) ≤ A(E) (one direction of AK-Self Reflection in Heifetz et al. 2006, Prop. 3) and
A(F ) = A(¬F ) (symmetry), casting doubt on the former when K(E) = 0. See Footnote 24 for a restricted principle.

33In Example 3.14, if we define Fraud′ = Fraud ∩A(Fraud) ∩ ¬K(Fraud), then Fraud′ = {f2, f4} and U(Fraud′) is the
set of blue and green states.

34The name is taken from what is known as Moore’s paradox (see Hintikka 1962, § 4.5 and Holliday and Icard 2010). The
standard axiomatization of the implicit belief operator (not requiring awareness), denoted by L in Fagin and Halpern 1988,
entails No Moorean Belief for L in place of B. Then given that explicit belief (requiring awareness) entails implicit belief, we
can derive B(E u ¬L(E)) = 0 and replace the conclusion of Proposition A.4 with the equally unappealing U(E u ¬L(E)) = 0.

35Note that the belief modification of the Modica-Rustichini definition assumes an agent who is not mistaken about what she
believes (B(B(E)) ≤ B(E)). For otherwise we could have an agent who is aware of E, does not believe E, but believes that
she does believe E, so she does not believe that she does not believe E, contradicting the modified definition. From here it is a
short step to the assumption that the agent is not mistaken about what she does not believe and then to No Moorean Beliefs.
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Proposition A.4. Assume Double Negation, Necessitation for B instead of K, and No Moorean Beliefs. In
addition, assume the second half of Belief Plausibility. Then for all events E ∈ E , we have U(Eu¬B(E)) = 0.

Proof. Where E′ = E u ¬B(E), we have B(E′) = 0 by No Moorean Beliefs, so B¬B(E′) = ¬0 by
Necessitation, in which case the second half of Belief Plausibility yields U(E′) ≤ ¬B¬B(E′) = ¬¬0 = 0.

In short, Belief Plausibility implausibly implies that an agent who believes Ω must be aware of every
unbelievable event E′ as in the proof. To see the implausibility, note that many people at the beginning of
World War II were unaware of the unbelievable E′: a nuclear weapon will end the war, but we do not believe
that a nuclear weapon will end the war. Thus, changing the Modica-Rustichini definition of unawareness to
use belief instead of knowledge still does not provide a satisfactory definition of unawareness of events.

B Proofs

In this appendix, we give proofs of results in the main text. To make clear where we use our various
assumptions, we typeset them in bold.

Lemma 3.2. Suppose F = (Ω,v, E ,A) satisfies part 1 of Definition 3.1 and awareness expressibility.
If (i) F satisfies awareness joinability, then (ii) for all ν ∈ A(ω) and ν1, . . . , νn ∈ A(ω) ∩ ↓ν, we have
max((↓ν1 t · · · t ↓νn) ∩ ↓ν) ⊆ A(ω). Conversely, if max(E) is finite for each E ∈ E , then (ii) implies (i).

Proof. First, assume (i). We prove (ii) by induction on n. For the base case of n = 1, if ν1 ∈ A(ω) ∩ ↓ν, so
ν1 v ν, then max(↓ν1 ∩ ↓ν) = {ν1} ⊆ A(ω). For the inductive step, suppose ν ∈ A(ω) and ν1, . . . , νn+1 ∈
A(ω) ∩ ↓ν. By the inductive hypothesis, we have max((↓ν1 t · · · t ↓νn) ∩ ↓ν) ⊆ A(ω); moreover, we have
max(↓νn+1) = {νn+1} ⊆ A(ω). By awareness expressibility, ↓ν ∈ E for 1 ≤ i ≤ n + 1, and ↓ν ∈ E , so
(↓ν1 t · · · t ↓νn) ∩ ↓ν ∈ E by Definition 2.5 and ↓νn+1 ∈ E . By the previous two sentences and awareness
joinability, we have max((↓ν1 t · · · t ↓νn) ∩ ↓ν) t ↓νn+1) ⊆ A(ω). Now we have

(↓ν1 t · · · t ↓νn+1) ∩ ↓ν = ((↓ν1 t · · · t ↓νn) t ↓νn+1) ∩ ↓ν

= ((↓ν1 t · · · t ↓νn) ∩ ↓ν) t (↓νn+1 ∩ ↓ν)

= ((↓ν1 t · · · t ↓νn) ∩ ↓ν) t ↓νn+1

using the associative and distributive laws of Boolean algebras and the fact that νn+1 ∈ ↓ν. From the
previous two facts, it follows that max((↓ν1 t · · · t ↓νn+1) ∩ ↓ν) ⊆ A(ω), which establishes (ii).

Now assume (ii) and that max(E) is finite for each E ∈ E . Toward proving (i), suppose ν ∈ A(ω),
E,E′ ∈ E , and that max(E ∩ ↓ν) ∪max(E′ ∩ ↓ν) ⊆ A(ω) ∩ ↓ν. By the finiteness assumption, we can write
max(E ∩↓ν)∪max(E′∩↓ν) = {ν1, . . . , νn}. Then by (ii), max((↓ν1t · · ·t↓νn)∩↓ν) ⊆ A(ω). Now we claim
that (↓ν1 t · · · t ↓νn)∩↓ν = (E tE′)∩↓ν. For the left-to-right inclusion, since ν1, . . . , νn ∈ E ∪E′, we have
↓ν1∪· · ·∪↓νn ⊆ E∪E′, so ρ(↓ν1∪· · ·∪↓νn) ⊆ ρ(E∪E′) by Lemma 2.2.1 and hence ↓ν1t· · ·t↓νn ⊆ EtE′

by Theorem 2.3. For the right-to-left inclusion, suppose µ ∈ (E t E′) ∩ ↓ν. To show µ ∈ ↓ν1 t · · · t ↓νn,
it suffices to show that for every µ′ v µ, there is a µ′′ v µ′ with µ′′ ∈ ↓ν1 ∪ · · · ∪ ↓νn. Given µ′ v µ and
µ ∈ E t E′, there is a µ′′ v µ′ with µ′′ ∈ E ∪ E′. Without loss of generality, suppose µ′′ ∈ E. Then since
µ′′ v µ′ v µ v ν, we have µ′′ ∈ E ∩ ↓ν. By awareness expressibility, ↓ν ∈ E , so we have E ∩ ↓ν ∈ E .
Then since (Ω,v, E) is quasi-principal and µ′′ ∈ E ∩ ↓ν, there is a µ∗ ∈ max(E ∩ ↓ν) such that µ′′ v µ∗.
It follows that µ′′ ∈ ↓ν1 ∪ · · · ∪ ↓νn, which completes the proof of (i).

26



Next we prove the two key lemmas that together show that the set of regular open sets of an epistemic
possibility frame is closed under A, K, and B.

Lemma 3.4. Let (Ω,v) be a poset and A : Ω → ℘(Ω) satisfy awareness persistence and awareness
refinability. Then for any E ∈ RO(Ω,v), we have A(E) ∈ RO(Ω,v).

Proof. By Lemma 2.1, it suffices to verify persistence and refinability for A(E). Persistence is immediate
from the ∀ω′ v ω quantification in the definition of A. As for refinability, suppose ω 6∈ A(E), so there is
some ω′ v ω, ν ∈ A(ω′), and ν′ ∈ max(E ∩ ↓ν) ∪max(¬E ∩ ↓ν) such that ν′ 6∈ A(ω′). Given ν′ 6∈ A(ω′), by
awareness refinability there is an ω′′ v ω′ such that for all ω′′′ v ω′′, we have ν′ 6∈ A(ω′′′). We claim that
for all ω′′′ v ω′′, we have ω′′′ 6∈ A(E). Assume for contradiction that ω′′′ ∈ A(E). Since ω′′′ v ω′′ v ω′, we
have ω′′′ v ω′, which with ν ∈ A(ω′) implies ν ∈ A(ω′′′) by awareness persistence. Together ω′′′ ∈ A(E)

and ν ∈ A(ω′′′) imply max(E ∩ ↓ν) ∪max(¬E ∩ ↓ν) ⊆ A(ω′′′). Hence ν′ ∈ A(ω′′′), contradicting what we
derived above. Thus, ω′′′ 6∈ A(E), which establishes refinability for A(E).

Lemma 3.10. Let (Ω,v) be a poset and R : Ω → ℘(Ω) satisfy R-monotonicity, R-regularity, and R-
refinability. Then for any E ∈ RO(Ω,v), we have {ω ∈ Ω | R(ω) ⊆ E} ∈ RO(Ω,v).

Proof. By Lemma 2.1, it suffices to verify persistence and refinability for {ω ∈ Ω | R(ω) ⊆ E}. For
persistence, suppose ω′ v ω. Then by R-monotonicity, R(ω′) ⊆ R(ω), so R(ω) ⊆ E implies R(ω′) ⊆ E.
For refinability, suppose R(ω) 6⊆ E, so there is some ν ∈ R(ω) \E. Since ν 6∈ E and E ∈ RO(Ω,v), there is
a ν′ v ν such that for all ν′′ v ν′, ν′′ 6∈ E. Since ν ∈ R(ω) and ν′ v ν, we have ν′ ∈ R(ω) by R-regularity.
Then by R-refinability, there is an ω′ v ω such that for all ω′′ v ω′ there is a ν′′ v ν′ with ν′′ ∈ R(ω′′).
But as above, ν′′ v ν′ implies ν′′ 6∈ E, so R(ω′′) 6⊆ E. Thus, we have shown that for all ω′ v ω there is an
ω′′ v ω′ with R(ω′′) 6⊆ E, which completes the proof of refinability.

By these lemmas and the fact that RO(Ω,v) is closed under intersection, it is also closed under K and B.
Next we prove that epistemic possibility frames as in Definition 3.9 give rise to epistemic awareness

algebras as in Definition 4.1.

Proposition 4.3. If F = (Ω,v, E ,A,K,B) is an epistemic possibility frame, then F+ = ((E ,⊆),A,K,B)

is an epistemic awareness algebra.

Proof. ThatA satisfies the tautology and symmetry axioms of Definition 4.1 is obvious. For the agglomeration
axiom, suppose ω ∈ A(E1) ∩A(E2). Toward showing that ω ∈ A(E1 ∩E2), suppose ω′ v ω and ν ∈ A(ω′),
so ↓ν ∈ E by awareness expressibility. Then since E1, E2 ∈ E , we have E1∩↓ν,E2∩↓ν,E1∩E2∩↓ν ∈ E .

First suppose that ν′ ∈ max(E1 ∩E2 ∩↓ν). Then since ν′ ∈ E1 and the frame is quasi-principal (recall
Definition 2.6), there is some ν∗ ∈ max(E1 ∩ ↓ν) with ν′ v ν∗. Then since ω ∈ A(E1), ω′ v ω, ν ∈ A(ω′),
and ν∗ ∈ max(E1 ∩ ↓ν), we have ν∗ ∈ A(w′). Moreover, we have ν′ ∈ max(E2 ∩ ↓ν∗), for if there is some
ν′′ such that ν′ @ ν′′ ∈ E2 ∩ ↓ν∗, then given that ν∗ ∈ max(E1 ∩ ↓ν) and that E1 is a downset, we have
ν′′ ∈ E1 ∩ E2 ∩ ↓ν, contradicting the fact that ν′ ∈ max(E1 ∩ E2 ∩ ↓ν). Then since ω ∈ A(E2), ω′ v ω,
ν∗ ∈ A(w′), and ν′ ∈ max(E2 ∩ ↓ν∗), we have ν′ ∈ A(ω′).

Now suppose ν′ ∈ max(¬(E1 ∩E2) ∩ ↓ν) = max((¬E1 t ¬E2) ∩ ↓ν). Since ω ∈ A(E1) ∩A(E2), we have
ω ∈ A(¬E1)∩A(¬E2), which with ω′ v ω and ν ∈ A(ω′) implies max(¬E1 ∩↓ν)∪max(¬E2 ∩↓ν) ⊆ A(ω′).
Thus, by awareness joinability,

max(ρ(max(¬E1 ∩ ↓ν) ∪max(¬E2 ∩ ↓ν))) ⊆ A(ω′). (8)
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Moreover, we claim that

↓(max(¬E1 ∩ ↓ν) ∪max(¬E2 ∩ ↓ν)) = (¬E1 ∪ ¬E2) ∩ ↓ν. (9)

The left-to-right inclusion is obvious, since ¬E1 and ¬E2 are downsets. For the right-to-left inclusion,
suppose ν′ ∈ (¬E1 ∪¬E2)∩↓ν. Hence ν′ ∈ ¬E ∩↓ν for some i ∈ {1, 2}. Since the poset is quasi-principal,
we have ν′ ∈ ↓max(¬E ∩ ↓ν) and hence ν′ ∈ ↓(max(¬E1 ∩ ↓ν) ∪ max(¬E2 ∩ ↓ν)), which establishes (9).
Thus, we have:

↓(max(¬E1 ∩ ↓ν) ∪max(¬E2 ∩ ↓ν)) = (¬E1 ∪ ¬E2) ∩ ↓ν

⇒ ρ(↓(max(¬E1 ∩ ↓ν) ∪max(¬E2 ∩ ↓ν))) = ρ((¬E1 ∪ ¬E2) ∩ ↓ν)

⇒ ρ(max(¬E1 ∩ ↓ν) ∪max(¬E2 ∩ ↓ν)) = ρ((¬E1 ∪ ¬E2) ∩ ↓ν) by definition of ρ, idempotence of ↓

⇒ ρ(max(¬E1 ∩ ↓ν) ∪max(¬E2 ∩ ↓ν)) = ρ(¬E1 ∪ ¬E2) ∩ ρ(↓ν) by Lemma 2.2.4

⇒ ρ(max(¬E1 ∩ ↓ν) ∪max(¬E2 ∩ ↓ν)) = (¬E1 t ¬E2) ∩ ↓ν by definition of t and ↓ν ∈ E ⊆ RO(Ω,v)

⇒ max(ρ(max(¬E1 ∩ ↓ν) ∪max(¬E2 ∩ ↓ν)) = max((¬E1 t ¬E2) ∩ ↓ν).

Then given (8), we have max((¬E1 t ¬E2) ∩ ↓ν) ⊆ A(ω′). This completes the proof of ω ∈ A(E1 ∩ E2).
Checking the axioms on knowledge and belief from Definition 4.1 is straightforward

Finally, we prove our main representation theorem. For convenience, we repeat the definition of A+.

Definition 4.5. Given an epistemic awareness algebra A = (B, A,K,B), define A+ = (Ω,v, E ,A,K,B) as
follows:

1. Ω is the set of all proper filters of B, and F v G if F ⊇ G;

2. E = {â | a ∈ B} where â = {F ∈ Ω | a ∈ F};

3. A(F ) = {H ∈ Ω | H is the principal filter of an element a such that Aa ∈ F};

4. K(F ) = {H ∈ Ω | for all a1, . . . , an ∈ B, if Ka1 t · · · tKan ∈ F , then a1 t · · · t an ∈ H};

5. B(F ) = {H ∈ Ω | for all a1, . . . , an ∈ B, if Ba1 t · · · tBan ∈ F , then a1 t · · · t an ∈ H}.

Theorem 4.6. For any epistemic awareness algebra A:

1. A+ is a standard epistemic possibility frame;

2. the map a 7→ â is an isomorphism from A to (A+)+.

Proof. For part 1, let B be the underlying Boolean algebra of A. Note that for a filter F in B and b ∈ B, the
smallest filter extending F ∪ {b} is {c ∈ B | for some a ∈ F, a u b ≤ c}. A basic fact about Boolean algebras
is that if F is a proper filter and b 6∈ F , then the smallest filter extending F ∪ {¬b} is proper.

Clearly (Ω,v) is a poset. To see that (Ω,v, E) is a possibility frame, we must show that E is a subalgebra
of RO(Ω,v). First, we show that each â is regular open. By Lemma 2.1, it suffices to show that â satisfies
persistence and refinability. For persistence, if F ∈ â, so a ∈ F , and F ′ v F , so F ′ ⊇ F , then a ∈ F ′ and
hence F ′ ∈ â. For refinability, if F 6∈ â, so a 6∈ F , then the smallest filter F ′ extending F ∪ {¬a} is proper,
so F ′ v F , and for all F ′′ v F ′, we have ¬a ∈ F ′′, so a 6∈ F ′′ since F ′′ is proper, so F ′′ 6∈ â. Finally, E is
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closed under ∩ and ¬, as (i) â∩ b̂ = â u b, and (ii) ¬â = ¬̂a. Condition (i) follows from that fact that if F is
a filter, then a, b ∈ F if and only if a u b ∈ F . For condition (ii), if F ∈ ¬̂a, so ¬a ∈ F , then for any proper
filter F ′ extending F , a 6∈ F ′, so F ′ 6∈ â; this shows F ∈ ¬â. Conversely, if F 6∈ ¬̂a, so ¬a 6∈ F , then the
smallest filter F ′ extending F ∪ {a} is proper, so F ′ v F ; this shows F 6∈ ¬â.

To show that (Ω,v) is quasi-principal, we must show that for all â ∈ E and F ∈ â, we have that
F ∈ ↓max(â). Indeed, max(â) = {⇑a} (recall that ⇑a is the principal filter generated by a), and from F ∈ â
we have a ∈ F , so F ⊇ ⇑a and hence F v ⇑a, so F ∈ ↓max(â). Finally, the maximum element m of the
poset of proper filters is the principal filter {1}.

Next we verify the five conditions on A:

• awareness nonvacuity: for all F ∈ Ω, m ∈ A(F ).

We have {1} ∈ A(F ) by the tautology axiom of Definition 4.1.

• awareness expressibility: for all F ∈ Ω and H ∈ A(F ), ↓H ∈ E .

If H ∈ A(F ), then H = ⇑a for some a ∈ B, in which case ↓H = â ∈ E .

• awareness persistence: if F ′ v F , then A(F ) ⊆ A(F ′).

Immediate from the definitions of A and v in A+.

• awareness refinability: if H 6∈ A(F ), then ∃F ′ v F ∀F ′′ v F ′ H 6∈ A(F ′′).

Suppose not H 6∈ A(F ). If H is not a principal filter, then set F ′ = F , and then for all F ′′ v F ′, we
have H 6∈ A(F ′′). Now suppose H is the principal filter of a. Since H 6∈ A(F ), it follows that Aa 6∈ F .
Hence the smallest filter F ′ extending F ∪ {¬Aa} is proper. Then for all F ′′ v F ′, i.e., F ′′ ⊇ F ′, we
have ¬Aa ∈ F ′′ and hence Aa 6∈ F ′′ since F ′′ is proper, so H 6∈ A(F ′′).

• awareness joinability: if H ∈ A(F ) and max(â ∩ ↓H) ∪max(̂b ∩ ↓H) ⊆ A(F ), then

max((â t b̂) ∩ ↓H) ⊆ A(F ).

Assuming H ∈ A(F ), we have H = ⇑c for some c ∈ B. Then max((â t b̂) ∩ ↓H) = {⇑((a t b) u c)},
max(â∩↓H) = {⇑(auc)}, and max(̂b∩↓H) = {⇑(buc)}. Assuming max(â∩↓H)∪max(̂b∩↓H) ⊆ A(F ), it
follows that A(auc), A(buc) ∈ F . Hence A((auc)t(buc)) ∈ F by Lemma 4.2, so A((atb)uc) ∈ F by the
distributive law of Boolean algebras. Thus, ⇑((at b)u c) ∈ A(F ), so indeed max((ât b̂)∩↓H) ⊆ A(F ).

Finally, we verify the conditions on R ∈ {K,B}, reasoning about � ∈ {K,B}:

• R-monotonicity: if F ′ v F , then R(F ′) ⊆ R(F ).

Assume F ′ v F and H ∈ R(F ′). Toward showing H ∈ R(F ), suppose �a1 t · · · t �an ∈ F . Then
since F ′ v F , F ′ ⊇ F , so �a1 t · · · t�an ∈ F ′, which with H ∈ R(F ′) implies a1 t · · · t an ∈ H.

• R-regularity: R(F ) ∈ RO(Ω,v).

By Lemma 2.2, it suffices to show that R(F ) satisfies persistence and refinability. That R(F ) satisfies
persistence is immediate from the definition of R and the definition of v as ⊇. For refinability, suppose
H 6∈ R(F ). Hence there is �a1t · · ·t�an ∈ F such that a1t · · ·tan 6∈ F . It follows that the smallest
filter H ′ extending H ∪ {¬(a1 t · · · t an)} is proper. Now suppose H ′′ v H ′, so H ′′ is a proper filter
with H ′′ ⊇ H ′ and hence ¬(a1 t · · · t an) ∈ H ′′. Then a1 t · · · t an 6∈ H ′′, so H ′′ 6∈ R(F ).
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• R-refinability: if H ∈ R(F ), then ∃F ′ v F ∀F ′′ v F ′ ∃H ′ v H: H ′ ∈ R(F ′′).

Assuming H ∈ R(F ), we claim that the smallest filter F ′ extending

F ∪ {¬�c | ∃b ∈ H : c ≤ ¬b}

is proper. If not, then there are a ∈ F , b1, . . . , bn ∈ H, and c1, . . . , cn with ck ≤ ¬bk for 1 ≤ k ≤ n such
that a u ¬�c1 u · · · u ¬�cn = 0, which implies a ≤ ¬(¬�c1 u · · · u ¬�cn) = �c1 t · · · t �cn. Hence
�c1 t · · · t�cn ∈ F , which with H ∈ R(F ) implies c1 t · · · t cn ∈ H and hence ¬b1 t · · · t ¬bn ∈ H,
contradicting the fact that b1, . . . , bn ∈ H and H is a proper filter. Thus, F ′ is indeed proper, so
F ′ v F . Now consider any F ′′ v F ′, so F ′′ ⊇ F ′. We claim that the smallest filter H ′ extending

H ∪ {a1 t · · · t an | �a1 t · · · t�an ∈ F ′′}

is proper. If not, there is some b ∈ H and a family {aj1 t · · · t ajnj
}j∈J for a nonempty finite J such

that �aj1 t · · · t�ajnj
∈ F ′′ and l

j∈J
(aj1 t · · · t ajnj

) ≤ ¬b.

Let Λ be the set of all choice functions λ such that for j ∈ J , 1 ≤ λ(j) ≤ nj . Then for each λ ∈ Λ,

l

j∈J
ajλ(j) ≤ ¬b.

Hence for each λ ∈ Λ, we have ¬�
d

j∈J
ajλ(j) ∈ F

′ by construction of F ′ and hence ¬�
d

j∈J
ajλ(j) ∈ F

′′.

On the other hand,

l

j∈J
(�aj1 t · · · t�ajnj

) ≤
⊔
λ∈Λ

l

j∈J
�ajλ(j) ≤

⊔
λ∈Λ

�
l

j∈J
ajλ(j), (10)

using Boolean distributivity for the first inequality and knowledge/belief agglomeration for the
second, since J is finite. Then since

d

j∈J
(�aj1 t · · · t�ajnj

) ∈ F ′′, we have
⊔
λ∈Λ

�
d

j∈J
ajλ(j) ∈ F

′′. But we

concluded above that for each λ ∈ Λ we have ¬�
d

j∈J
ajλ(j) ∈ F

′′, which implies
d

λ∈Λ

¬�
d

j∈J
ajλ(j) ∈ F

′′

and hence ¬
⊔
λ∈Λ

�
d

j∈J
ajλ(j) ∈ F

′′, contradicting the fact that F ′′ is proper. Thus, we conclude that H ′

is proper. Hence H ′ v H, and H ′ ∈ R(F ′′) by construction.

• epistemic factivity: F ∈ K(F ).
Immediate from factivity for knowledge and the definition of K.

• doxastic consistency: B(F ) 6= ∅.

We claim that the smallest filter H extending {a1 t · · · t an | Ba1 t · · · tBan ∈ F} is proper. If not,
then there is a family {aj1 t · · · t ajnj

}j∈J for a nonempty finite J such that Baj1 t · · · tBajnj
∈ F and

u
j∈J

(aj1t· · ·tajnj
) = 0. As above, let Λ be the set of all choice functions λ such that for j ∈ J , 1 ≤ λ(j) ≤

nj . It follows that for each λ ∈ Λ,
d

j∈J
ajλ(j) = 0. Then

d

j∈J
(Ba1 t · · · tBan) ≤

⊔
λ∈Λ

B
d

j∈J
ajλ(j) ≤ 0 using

the same reasoning as in (10) for the first inequality and belief consistency for the second. Thus,
0 ∈ F , contradicting the fact that F is proper. Hence H is proper, and by construction, H ∈ B(F ).
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• doxastic inclusion: B(F ) ⊆ K(F ).
Immediate from knowledge-belief entailment and the definitions of B and K.

This completes the proof of part 1.
For part 2, we already observed that ·̂ commutes with meet and complement in (i) and (ii) in the second

paragraph of the proof, so next we prove that ·̂ commutes with the awareness operation. Suppose F ∈ Âb,
so Ab ∈ F . Hence A¬b ∈ F by the symmetry axiom. Suppose ⇑b 6= Ω and ⇑b 6= ∅. It follows that neither
b nor ¬b is 0 in B. Now consider any F ′ v F , so F ′ ⊇ F , and suppose H ∈ A(F ′). Hence H = ⇑c for some
c such that Ac ∈ F ′. Then since Ab ∈ F ′ and A¬b ∈ F ′, we have A(b u c) ∈ F ′ and A(¬b u c) ∈ F ′ by
agglomeration, so ⇑(b u c) ∈ A(F ′) and ⇑(¬b u c) ∈ A(F ′). Then since max(̂b ∩ ↓H) = {⇑(b u c)} and
max(¬b̂ ∩ ↓H) = {⇑(¬b u c)}, we have max(̂b ∩ ↓H) ∪ max(¬b̂ ∩ ↓H) ⊆ A(F ′). This shows that F ∈ Ab̂.
Now suppose F 6∈ Âb, so Ab 6∈ F and hence ⇑b 6∈ A(F ). Then since {1} ∈ A(F ) by the tautology axiom
and max(̂b ∩ ↓{1}) = {⇑b}, it follows that F 6∈ Ab̂. This completes the proof that Âb = Ab̂.

It is now easy to see that the frame is standard: for if H ∈ A(F ), then H is the principal filter of an
element a such that Aa ∈ F , in which case by the previous paragraph, F ∈ Aâ, so F ∈ A↓H.

Finally, we show that ·̂ commutes with the knowledge operation (the proof for belief is analogous).
Suppose F ∈ K̂b, so Kb ∈ F . Then by knowledge-awareness entailment, Ab ∈ F , so by the previous
paragraph, F ∈ Ab̂. Moreover, Kb ∈ F implies that for each H ∈ K(F ), we have b ∈ H and hence H ∈ b̂,
so K(F ) ⊆ b̂. Thus, by definition of K, F ∈ Kb̂. Now suppose F 6∈ K̂b, so Kb 6∈ F and hence b 6= 1 by
necessitation. Case 1: Ab 6∈ F . Then by the previous paragraph, F 6∈ Ab̂, which implies F 6∈ Kb̂. Case 2:
Ab ∈ F . Then we claim that the smallest filter H extending

{a1 t · · · t an | Ka1 t · · · tKan ∈ F} ∪ {¬b}

is proper. If not, then since b 6= 1, there is a family {aj1 t · · · t ajnj
}j∈J for a nonempty finite J such that

Kaj1 t · · · tKajn ∈ F and u
j∈J

(aj1 t · · · t ajnj
) ≤ b. As before, let Λ be the set of all choice functions λ such

that for j ∈ J , 1 ≤ λ(j) ≤ nj . Then for each λ ∈ Λ,
d

j∈J
ajλ(j) ≤ b and hence

Ab u
l

j∈J
Kajλ(j) ≤ Ab uK

l

j∈J
ajλ(j) ≤ Kb, (11)

using knowledge agglomeration for the first inequality and awareness-restricted monotonicity for
the second. Then

Ab u
l

j∈J
(Kaj1 t · · · tKajnj

) ≤ Ab u
⊔
λ∈Λ

l

j∈J
Kajλ(j) ≤

⊔
λ∈Λ

(Ab u
l

j∈J
Kajλ(j)) ≤ Kb, (12)

using Boolean distributivity for the first two inequalities and then (11) for the last inequality. Then since the
element on the far left belongs to F , so does Kb, contradicting what we derived above. Thus, H is indeed a
proper filter. By construction H ∈ K(F ), and b 6∈ H since H is proper, so H 6∈ b̂. Hence F 6∈ Kb̂.
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