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RESEARCH Open Access

Molecular evidence for new sympatric
cryptic species of Aedes albopictus (Diptera:
Culicidae) in China: A new threat from
Aedes albopictus subgroup?
Yuyan Guo1, Zhangyao Song1, Lei Luo2, Qingmin Wang3, Guofa Zhou4, Dizi Yang1, Daibin Zhong4

and Xueli Zheng1*

Abstract

Background: Aedes (Stegomyia) albopictus (Skuse) is an indigenous species and the predominant vector of dengue
fever in China. Understanding of genetic diversity and structure of the mosquito would facilitate dengue prevention
and vector control. Sympatric cryptic species have been identified in the Ae. albopictus subgroup in Southeast Asia;
however, little is known about the presence and distribution of cryptic species in China. This study aimed to examine
the genetic diversity, evaluate potential new cryptic sibling species, and assess the prevalence of Wolbachia infections
in field populations.

Methods: Aedes adult female specimens were collected from five provinces in southern and central China during
2015–2016. Morphological identification was performed under dissection microscope. The mitochondrial DNA
cytochrome c oxidase subunit 1 (cox1, DNA barcoding) locus and the ribosomal DNA internal transcribed spacer region
2 (ITS2) marker were used to examine the genetic variation, evaluate cryptic sibling species, and population structure in
the field populations. Screening for the presence of Wolbachia was performed using multiplex PCR.

Results: A total of 140 individual specimens with morphological characteristics similar to Ae. albopictus were
sequenced for DNA barcoding. Among these, 129 specimens (92.1%) were confirmed and identified as Ae. albopictus.
The remaining 11 specimens, from 2 provinces, were identified as 2 distinct sequence groups, which were confirmed
by ITS2 marker sequencing, suggesting the existence of potential cryptic species of Ae. albopictus. In Ae. albopictus, we
found significant genetic differentiation and population structure between populations collected from different climate
zones. Medium to high frequencies of Wolbachia infections were observed in natural Ae. albopictus populations,
whereas Wolbachia was infrequent or absent in cryptic species populations.

Conclusions: Our findings highlight the population differentiation by climate zone and the presence of novel,
cryptic Aedes species in China. The low prevalence of Wolbachia infections in cryptic species populations could reflect
either a recent invasion of Wolbachia in Ae. albopictus or different host immune responses to this symbiont in
the cryptic species. The study provides useful information for vector control and host-symbiont coevolution.
Further study is needed to investigate the potential for arbovirus infection and disease transmission in the
emerged cryptic species.

Keywords: Aedes albopictus, Sympatric cryptic species, Wolbachia endosymbiont, Mitochondrial DNA, Genetic
diversity, Population structure
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Background
Over the past decades, more than 11 sibling species or
cryptic species have been identified and characterized in
the Aedes albopictus subgroup of the Scutellaris group
in the subgenus Stegomyia of Aedes [1–3]. Of these spe-
cies, Ae. albopictus, originating from Asia, is the most
widely distributed and has invaded on every continent
except Antarctica [4, 5]. Aedes albopictus is considered a
medically important species and is a major vector of sev-
eral human arboviruses, including dengue, Zika, chikun-
gunya, yellow fever and West Nile viruses [5–10].
Dengue fever has experienced a 30-fold increase in inci-
dence worldwide over the past 50 years and shows no
signs of slowing down [11]. Since the 1970s there have
been several major outbreaks of dengue fever in south-
ern China, including in Hainan, Guangxi, Fujian, Zhe-
jiang, Yunnan and Guangdong provinces [12–14]. Due
to climate change, the transmission of the dengue virus
has spread gradually from southern tropical or subtrop-
ical regions to the surrounding northern and western
regions, and even to the central China Henan Province
with a generally warm temperate continental climate
[15]. The most recent outbreak of dengue fever occurred
in 2014 in Guangdong Province, with a total of 45,224
dengue fever cases and 6 deaths [12, 16, 17]. Aedes albo-
pictus mosquitoes are regarded as the sole vector for
dengue transmission in nearly all these epidemics [14,
18].
In China, Ae. albopictus is an indigenous species,

closely associated with human migration, transportation,
commerce and urbanization. It is the most important
dengue vector species and has different susceptibilities
to dengue virus in different geographical areas [19, 20].
Due to the lack of effective treatments or vaccines for
dengue fever, vector control through chemical or bio-
logical measures targeting mosquitoes or their breeding
sites is essential for dengue prevention. With the pro-
gressive spread of insecticide resistance, the threat of Ae.
albopictus is growing, and development of efficient sur-
veillance methods is more urgent than ever before [21,
22]. Population genetic studies of arthropod disease vec-
tors can provide information about the transmission
dynamics of specific pathogens, which aids in the design
of strategies for controlling vector-borne disease epi-
demics [23, 24]. The recent waves of dengue outbreak in
China highlight the need to improve our knowledge of
Ae. albopictus population distribution and dynamics.
Although scientists have studied the diversity of the cox1
gene in Ae. albopictus in several localities in China [9,
25–27], there have been no systematic studies of the
genetic diversity of Ae. albopictus field populations and
its cryptic species.
Cryptic species are defined as sibling species of two or

more morphologically indistinguishable biological groups

that are closely related and live in the same habitat [28].
Cryptic species may be medically important in vector-
borne disease transmission, vector ecology and evolution-
ary biology. A number of new cryptic species have been
identified in mosquito genera (Diptera: Culicidae), includ-
ing Culex [29–31], Anopheles [32–39] and Aedes [40, 41].
In Ae. albopictus, a novel cryptic species has been re-
ported in Vietnam [40], and the divergence between the
cryptic species and Ae. albopictus was confirmed by ana-
lysis of nuclear ribosomal genes and mitochondrial genes.
However, there are no reports of cryptic species of Ae.
albopictus in other Asian countries, including China.
Natural infections of Wolbachia microbiota are com-

mon in Ae. albopictus, and the two Wolbachia biotypes,
wAlbA and wAlbB, co-occur at a rate near 100% in
many areas [42–46]. Maternally inherited Wolbachia
bacteria can cause cytoplasmic incompatibility (CI) in
many insect species, including Ae. albopictus mosquitoes
[47, 48]. Wolbachia mediates antiviral protection of Ae-
des mosquitoes against a broad range of RNA viruses,
including dengue, yellow fever, chikungunya and Rift
Valley fever virus [49]. Understanding the distribution
and prevalence of Wolbachia in Ae. albopictus and its
cryptic species will provide useful information for vector
control and host-symbiont coevolution.
In this study, we investigated the genetic diversity and

population structure of Ae. albopictus from different cli-
mate regions in China, uncovered and molecularly iden-
tified the cryptic Aedes species and its polymorphism,
and detected Wolbachia infection in the natural Aedes
populations. The prevalence of Wolbachia endosymbiont
was evaluated by multiplex PCR genotyping and DNA
sequencing of individuals in the natural Aedes
populations.

Methods
Sample collection
Adult Aedes mosquito specimens were collected from
April 2015 to October 2016 using BG-sentinel traps
(Bioquip Products, Inc. California, USA) or electric
aspirator mosquito catches [50] at 14 collection sites in
five provinces in China: Henan, Guangdong, Guangxi,
Yunnan and Hainan (Fig. 1). These sites are highly diverse
in environmental conditions and most of them have expe-
rienced dengue epidemics in the past. The sampling site
in Henan Province, located in central China, has a temper-
ate climate with a distinct seasonality characterized by
hot, humid summers and generally cold, windy and dry
winters. The sampling sites in Guangdong and Guangxi
provinces have a subtropical monsoon climate with long
summers and year-round abundant precipitation. The
sampling sites in Hainan and Yunnan provinces are trop-
ical areas with a wet climate. Hainan Province had dengue
epidemics in the late 1970s and early 1980s, however, no
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dengue epidemic has been reported from there since
1990. Guangdong Province has experienced multiple
major dengue and chikungunya epidemics since 1980 and
dengue has remained every year since 1994. In 2013,
Guangdong, Yunnan and Henan provinces had dengue
outbreaks. Dengue transmission occurred in southern
China from July to November and the peak season is usu-
ally September and October whereas dengue epidemic in
Henan Province is limited in summer from July to Sep-
tember, and showed earlier peaks and shorter epidemic
periods [15]. Aedes albopictus mosquitoes are the primary
vector of dengue virus across China, especially in urban
areas. Aedes aegypti mosquitoes are only found in a small
portion of southern China, including Hainan Province and
small portions of Yunnan Province and southern tip of
Guangdong Province [51]. Ten mosquito specimens from
each collection site were used in the study. All mosquito
specimens were morphologically identified under a
stereomicroscope (Nikon) using morphological keys as
described by Lu et al. [52]. All mosquito samples
were stored at -20 °C prior to DNA extraction.

PCR amplification and sequencing of mitochondrial DNA
(mtDNA)
Total DNA was extracted from individual adult mosqui-
toes using the Insect DNA Kit (OMEGA Bio-Tek,

D0926-01, Guangzhou, China) according to the manu-
facturer’s standard protocol. Extracted DNA was pre-
served at -20 °C until molecular analysis. The
mitochondrial gene cytochrome c oxidase subunit 1
(cox1) was used to examine sequence polymorphism
among mosquito samples. PCR was performed to amp-
lify a 651 bp fragment of the 5' cox1 region of mtDNA
using the DNA primer pairs LCOI490 (5'-GGT CAA
CAA ATC ATA AAG ATA TTG G-3') and HCO2198
(5'-TAA ACT TCA GGG TGA CCA AAA AAT CA-3')
[53, 54]. PCR amplification was performed in a 25 μl re-
action volume with 12.5 μl GoTaq Green Master Mix
(Promega, Guangzhou, China), 1 μl each of the forward
and reverse primers at 10 μmol/l, 2 μl of template DNA
and sufficient nuclease-free water to make 25 μl. PCR
conditions were as follows: an initial denaturation at 94 °
C for 1 min followed by five cycles of 94 °C for 40 s (de-
naturation), 45 °C for 40 s (annealing), and 72 °C for 1
min (extension); 30 cycles of 94 °C for 40 s (denatur-
ation), 53 °C for 40 s (annealing), and 72 °C for 1 min
(extension); and a final extension at 72 °C for 5 min.
The amplified fragments were run on a 1% agarose gel
to check integrity, stained with ethidium bromide and
analyzed under UV light. PCR products were purified
using a gel extraction kit (OMEGA Bio-Tek, D2500-02)
and sequenced with PCR primers in both directions

Fig. 1 Locations of the 14 sampling sites. Site 1: Kaifeng (HeN-KF, 34°47'53" N, 114°18'05"E) in Henan Province. Sites 2–4: Shantou (GD-ST,
23°21'22"N, 116°40'40"E), Shenzhen (GD-SZ, 22°32'11"N, 113°55'32"E), and Guangzhou (GD-GZ, 23°07'54"N, 113°15'33"E) in Guangdong
Province. Site 5: Wuzhou (GX-WZ, 23°53'43"N, 110°32'54"E) in Guangxi Province. Site 6: Jinghong (YN-JH, 22°00'10"N, 100°46'14"E) in
Yunnan Province. Sites 7–14: Haikou (HN-HK, 20°02'47"N, 110°11'44"E), Chengmai (HN-CM, 19°44'25"N, 110°00'02"E), Danzhou (HN-DZ, 19°
31'23"N, 109°34'36"E), Changjiang (HN-CJ, 19°17'60"N, 109°03'05"E), Baisha (HN-BS, 19°13'37"N, 109°26'51"E), Qiongzhong (HN-QZ, 19°02'06"N,
109°50'03"E), Lingshui (HN-LS, 18°30'27"N, 110°01'59"E) and Baoting (HN-BT, 18°38'27"N, 109°41'54"E) in Hainan Province. The map was
created using the R package ‘maptools’, version: 0.9–2, URL: http://r-forge.r-project.org/projects/maptools/
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using the ABI 3730XL automatic sequencer (Applied
Biosystems, Guangzhou, China). The sequences of cox1
unique haplotypes were deposited to the GenBank data-
base under the accession numbers KY765450-KY765506.

PCR amplification and sequencing of ribosomal DNA
(rDNA)
The internal transcribed spacer 2 (ITS2) region of ribo-
somal DNA was amplified from the DNA samples using
the universal primers ITS2A (5'-ATC ACT CGG CTC
GTG GAT CG-3') and ITS2B (5'-ATG CTT AAA TTT
AGG GGG TAG TC-3'), which anneal to highly con-
served sequences in the 5.8S and 28S rDNA genes flank-
ing the entire ITS2 region [21, 55]. PCR amplification
was performed in a 25 μl reaction volume with 12.5 μl
GoTaq Green Master Mix (Promega, Guangzhou,
China), 1 μl each of the forward and reverse primers at
10 μmol/l, 2 μl of template DNA (1~2 ng/μl), and suffi-
cient nuclease-free water to make 25 μl. PCR conditions
were as follows: an initial denaturation at 94 °C for 3
min followed by 30 cycles of 94 °C for 30 s, 55 °C for 30
s, and 72 °C for 1 min; and a final extension at 72 °C for
5 min. Purification and sequencing of the PCR products
were the same as described above for the cox1 gene. The
sequences of ITS2 unique haplotypes were submitted to
the GenBank database under the accession numbers
MF623839-MF623851.

PCR detection of Wolbachia infection in mosquitoes
The Wolbachia infection status of individual mosquitoes
was determined by PCR amplification of Wolbachia
ribosomal DNA using primers specific for Wolbachia
16S rDNA (WF: 5'-CAT ACC TAT TCG AAG GGA
TAG-3' and WR: 5'-AGC TTC GAG TGA AAC CAA
TTC-3') [56]. To further classify infected mosquitoes by
Wolbachia group, we amplified the Wolbachia surface
protein gene (wsp) using wAlbA primers (328F: 5'-CCA
GCA GAT ACT ATT GCG-3' and 691R: 5'-AAA AAT
TAA ACG CTA CTC CA-3') for A group and wAlbB
primers (183F: 5'-AAG GAA CCG AAG TTC ATG-3'
and 691R: 5'-AAA AAT TAA ACG CTA CTC CA-3')
for B group [57]. PCR amplification was performed in a
25 μl reaction volume with 12.5 μl GoTaq Green Master
Mix (Promega, Guangzhou, China), 1 μl each of the for-
ward and reverse primers at 10 μmol/l, 2 μl of template
DNA, and sufficient nuclease-free water to make 25 μl.
PCR conditions were as follows: an initial denaturation
at 94 °C for 3 min followed by 30 cycles of 94 °C for 30
s, 55 °C for 30 s, and 72 °C for 1 min; and a final exten-
sion at 72 °C for 5 min. PCR-amplified fragments of 408
bp, 364 bp, and 509 bp for 16S rDNA, wAlbA and
wAlbB, respectively, were revealed under UV light after
electrophoresis on 1% agarose gel. Negative and positive
controls for the PCR assay were included in each run.

To obtain the positive control, we sequenced PCR frag-
ments from the 16S rDNA and wsp genes and confirmed
that the amplified PCR product was Wolbachia by using
BLAST search to compare it with existing sequences in
the NCBI database.

Data analysis
The cox1 gene sequences from 140 mosquitoes were
aligned using Clustal W multiple alignment in BioEdit
(version 7.2.6.1) [58]. The number of segregating sites,
haplotype diversity (Hd), and nucleotide diversity (π)
within each population were determined using DnaSP
version 5 [59]. Pairwise sequence divergences were cal-
culated using a Kimura 2-parameter (K2P) distance
model in MEGA 7.0.20 [60]. The K2P model was used
to make our results comparable with most other studies
on mosquito DNA barcoding. To examine population
expansion, we also performed neutrality tests for each
population. Deviations from selective neutrality were
tested using Fu’s Fs statistic [61] and Tajima’s D [62]. To
determine the genealogical relationships among haplo-
types, we constructed a haplotype network using a stat-
istical parsimony algorithm implemented in TCS version
1.21 [63]. The minimum number of mutational steps
between sequences was calculated with > 95% confi-
dence. A haplotype network shows the haplotype fre-
quencies in each population and their relatedness, which
is useful in inferring the plausible geographical origin of
a population [64]. Genetic differentiation among popula-
tions was estimated using Arlequin 3.5 [65]. Analysis of
molecular variance (AMOVA) was conducted to deter-
mine the distribution of genetic variation within and
among populations and among groups (tropical, sub-
tropical, and temperate zone).
To examine the evolutionary relationships between

the individuals of Ae. albopictus and its cryptic spe-
cies, we performed phylogenetic analysis using sequences
of the mtDNA cox1 gene and the rDNA ITS2 region.
Sequences from different species of the family Culicidae
were selected from GenBank and used to build the phylo-
genetic trees. The cox1 phylogenetic tree was built using
sequences of Ae. aegypti (AF390098, AY056597 and
AF425846), Cx. tritaeniorhynchus (KT851544), Cx. pipiens
(KT851543), Cx. tarsalis (AF425847), Ae. flavopictus
(KT358463 and LC054359) and Ae. albopictus and its
cryptic species (KF406577, JQ728019, KY378914,
KF406649, KX495909, KX495922, KX495910, JQ728198,
KY378918 and KY378935). The ITS2 phylogenetic tree
was built using sequences of Ae. aegypti (GU980956,
M95126 and KF471584), Ae. flavopictus (AF353532 and
AF353548), Cx. pipiens (U22131 and U33044), Cx. quin-
quefasciatus (GU562872) and Ae. albopictus and its cryp-
tic species (KU497617, DQ168420, KX495928, AF305554,
KY382426, KX495936, KX495942 and KX495949). The
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predominant haplotype sequences of Ae. albopictus (cox1:
KY765450, KY765468 and KY765479; ITS2: MF623839,
MF623840 and MF623841) and all the haplotypes of cryp-
tic species identified in the study, together with above
GenBank sequences, were aligned using MAFFT v7.31
[66]. Phylogenetic trees were constructed based on the
aligned nucleotide sequences using the neighbor-joining
method via the maximum composite likelihood substitu-
tion model in MEGA 7.0.20 [60]. The statistical signifi-
cance of tree branching was tested by performing 1000
bootstrap replications [67].

Results
Genetic polymorphism of Ae. albopictus and its cryptic
species
PCR amplification and sequencing of the mitochondrial
cox1 gene resulted in a 651 bp fragment for each
individual study subject, with no insertions or dele-
tions. We compared the cox1 sequences with the
existing sequences in the NCBI database by BLAST
search. Of the 140 individuals, 129 sequences (92.1%)
were identical or possessed > 98% similarity with Ae.
albopictus (GenBank: KR068634) (Additional file 1: Table
S1). The remaining 11 individuals (7.9%) were approxi-
mately 10% K2P divergent from Ae. albopictus, indicating
the existence of cryptic species (namely, Aedes sp.) of Ae.
albopictus in China (Additional file 2: Table S2). Of these
11 individuals, 9 were from samples collected in Wuzhou,

Guangxi Province, with one each from Baisha and Baot-
ing, Hainan Province. Since there is only one individual of
Ae. albopictus in GX-WZ population and one each of Ae-
des sp. from HN-BS, and HN-BT populations, which is in-
sufficient for population genetic analysis, these individuals
were excluded from the analysis of the population genetic
structure and genetic diversity. Thus, only 9 individuals
from each of these three populations (GX-WZ, HN-BS
and HN-BT) were included in the genetic polymorphism
analysis (Table 1). A high level of genetic diversity (S = 33;
Hd = 0.972; π = 1.327; k = 8.639) was found in the Wu-
zhou (GX-WZ) population (cryptic species) compared
with the 13 Ae. albopictus populations. Varied levels of
genetic diversity were identified among the Ae. albopictus
populations (Table 1). The Haikou (HN-HK) population
had the highest number of polymorphism sites (S = 18),
the greatest haplotype diversity (Hd = 0.978), and the high-
est average number of nucleotide differences (k = 4.333),
followed by the Kaifeng (HeN-KF) population (k = 3.356).
The three populations from Guangdong Province (GD-
SZ, GD-ST and GD-GZ) had relatively low genetic diver-
sity compared with populations from the other provinces.
Varied genetic diversity was also found in the 8 popula-
tions from Hainan Province, with nucleotide diversity (π)
ranging from 0.123 in specimens from Qiongzhong to 0.
666 in specimens from Haikou. Tajima’s D tests for all
study populations were not statistically significant (Table
1), indicating that the populations are in genetic

Table 1 Genetic polymorphism and neutrality tests of Aedes albopictus and its cryptic species in China

Province Locality Name Species n S h Hd π k Tajima’s D Fu's Fs

Henan Kaifeng HeN-KF Ae. albopictus 10 15 5 0.756 0.515 3.356 -1.691 0.584

Guangdong Shantou GD-ST Ae. albopictus 10 5 5 0.667 0.178 1.156 -1.388 -1.896

Shenzhen GD-SZ Ae. albopictus 10 2 2 0.2 0.061 0.4 -1.401 0.586

Guangzhou GD-GZ Ae. albopictus 10 3 4 0.644 0.116 0.756 -1.034 -1.466

Guangxi Wuzhou GX-WZ Cryptic Aedes sp. 9 33 8 0.972 1.327 8.639 -1.559 -1.358

Ae. albopictus 1 – – – – – – –

Yunnan Jinghong YN-JH Ae. albopictus 10 8 8 0.933 0.335 2.178 -0.992 -4.738**

Hainan Haikou HN-HK Ae. albopictus 10 18 9 0.978 0.666 4.333 -1.489 -4.086*

Chengmai HN-CM Ae. albopictus 10 5 5 0.8 0.205 1.333 -0.985 -1.547

Danzhou HN-DZ Ae. albopictus 10 5 5 0.867 0.294 1.911 0.326 -0.706

Changjiang HN-CJ Ae. albopictus 10 10 7 0.867 0.447 2.911 -0.782 -2.134

Baisha HN-BS Ae. albopictus 9 4 5 0.833 0.179 1.166 -0.843 -2.109

Cryptic Aedes sp. 1 – – – – – – –

Qiongzhong HN-QZ Ae. albopictus 10 4 3 0.378 0.123 0.8 -1.667 0.058

Lingshui HN-LS Ae. albopictus 10 4 5 0.8 0.164 1.067 -0.943 -2.096

Baoting HN-BT Ae. albopictus 9 12 8 0.972 0.503 3.277 -1.221 -4.034*

Cryptic Aedes sp. 1 – – – – – – –

Abbreviations: n, number of samples; S, number of segregating sites; h, number of haplotypes; Hd, haplotype diversity; π, nucleotide diversity (× 102, average
number of nucleotide differences per site); k, average number of nucleotide differences
**P < 0.01
*0.01 < P < 0.05
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equilibrium, consistent with the neutral mutation hypoth-
esis. Likewise, Fu’s Fs test was not statistically significant
and rejected the population expansion/bottleneck model
for all study localities, with the exception of one Yunnan
population (YN-JH, Fs = -4.738, P < 0.01) and two Hainan
populations (HN-HK, Fs = -4.086, P < 0.05; HN-BT, Fs =
-4.034, P < 0.05) (Table 1).
A total of 57 haplotypes of mtDNA cox1 were detected

in the 140 specimens, including 47 haplotypes derived
from 129 Ae. albopictus mosquitoes and 10 haplotypes
derived from cryptic species (Additional file 3: Table S3,
GenBank: KY765450–KY765506). Three predominant
haplotypes were identified in Ae. albopictus populations:
H01 (21.5%) from Guangdong Province, H19 (22.1%)
from Yunnan and Hainan provinces, and H30 (10%)
from Hainan Province. Other haplotypes were either
unique to a specific population or had a limited geo-
graphical distribution (Additional file 3: Table S3). To
determine the relationships among the samples, we con-
structed a median-joining network using haplotypes
based on sequence variation. Haplotypes were connected
when the probability of parsimony was at least 0.95.
Two networks were constructed based on all the 57 hap-
lotypes, one based on haplotypes from Ae. albopictus
(Fig. 2a-c) and the other based on haplotypes from the
cryptic species (Fig. 2d). Three haplotypes could not be
connected to the networks at a 95% confidence level:
H28 for Ae. albopictus, and H16 and H44 for the cryptic
species. The Ae. albopictus haplotypes can be

classified into three clusters corresponding to three
climate zones (tropical, subtropical and temperate) as
shown in Fig. 2a-c. Haplotype H01 from Guangdong
Province (subtropical) was connected to haplotypes
from Hainan Province (tropical) through haplotype
H30 by one mutation step at nucleotide position 342
(T-342-C), and to haplotypes from Henan Province
(temperate) through H26 by one mutation step at nu-
cleotide position 624 (G-624-A). Similar patterns were
also observed for haplotype H19 from Yunnan and
Hainan provinces (tropical zones). These results may
imply a multiple origin for Ae. albopictus populations
in China. In the cryptic species, haplotype H17 had at
least 4 connections with other haplotypes, suggesting
it as a potential ancestral haplotype (Fig. 2d).
A phylogenetic tree based on cox1 sequence variation

indicated three clades, which were assigned to three dif-
ferent species (Fig. 3). The first clade (solid blue circles
in Fig. 3) corresponds to Ae. albopictus from China and
Vietnam, the second clade (red squares) corresponds to
cryptic Aedes species previously identified in Vietnam,
and the third clade (purple diamond) corresponds to
cryptic Aedes species previously identified in Pakistan.
The haplotype Aedes sp. CH-H44 (BS07) (purple dia-
mond) is a different cryptic species compared to the
haplotypes from Wuzhou, Guangxi Province (red
squares). A similar pattern was observed in the phylo-
genetic tree based on ITS2 sequence variation (Fig. 4).
The first clade (solid blue circles in Fig. 4) corresponds

Fig. 2 Cox1 haplotype networks showing the genealogical relationships. a-c Aedes albopictus. d Cryptic Aedes species. Each haplotype is
represented by a pie chart with size proportional to its frequency in each population. A black dotted line indicates that a mutation step could not be
determined between haplotypes at probability of parsimony above the 0.95 limit
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to Ae. albopictus from China and Vietnam and the sec-
ond clade (red squares) corresponds to cryptic Aedes
species previously identified in Vietnam. The ITS2
haplotype of Aedes sp. CH-H44 (BS07) (purple diamond)
is also in different clade compared to the haplotypes
from Wuzhou, Guangxi Province (red squares). The two
taxa were distinguished using PCR length polymorphism
at the ITS2 locus. Aedes albopictus had an amplicon size
of ~580 bp, whereas the cryptic species had an amplicon
size of ~415 bp, allowing for easy and accurate identifi-
cation of the cryptic species through 1% agarose gel
electrophoresis.

Genetic differentiation of Ae. albopictus populations and
cryptic population
Among the 13 Ae. albopictus populations, genetic differ-
entiation was observed between populations from Henan
Province (HeN-KF) and Guangdong Province (GD-ST,
GD-SZ and GD-GZ) and populations from Yunnan and

Hainan provinces. Thirty-four of 36 pairwise tests were
significant at P < 0.05, and pairwise FST values ranged
from 0.224 (between HeN-KF and HN-BT) to 0.750
(between GZ-SZ and HN-QZ), with an average of 0.
411 (Table 2). No genetic differentiation was observed
between populations within Hainan Province or be-
tween populations from Yunnan and Hainan prov-
inces, indicating strong gene flow between these
populations. All pairwise FST values of differentiation
between cryptic population (GX-WZ) and the other
13 Ae. albopictus populations were highly significant
and generally very high (FST values > 0.9) (Table 2).
To further examine population structure and the
extent of genetic variation between Ae. albopictus
populations from tropical zones (Yunnan and Hainan
provinces) and those from subtropical and temperate
zones (Guangdong and Henan provinces), we con-
ducted analysis of molecular variation (AMOVA)
between the two groups of populations. Our results

Fig. 3 Phylogenetic analysis based on cox1 haplotype variation. Accession numbers of haplotypes marked with color symbols were identified in
the current study; others were retrieved from GenBank. Haplotypes marked with a solid blue circle are associated with Ae. albopictus. Haplotypes
marked with a red square or a purple diamond are associated with cryptic species of the Ae. albopictus subgroup. Neighbor-joining trees were
constructed via the maximum composite likelihood substitution model using MEGA (version 7.0). Numbers at branches represent bootstrap values
of 1000 replicates (values > 50 are shown). The scale-bar shows the number of nucleotide substitutions per site
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Fig. 4 Phylogenetic analysis based on ITS2 haplotype variation. Accession numbers of haplotypes marked with color symbols were identified
in the current study; others were retrieved from GenBank. Haplotypes marked with a blue circle are associated with Ae. albopictus. Haplotypes marked
with a red square or a purple diamond are associated with cryptic species of the Ae. albopictus subgroup. Neighbor-joining trees were constructed via
the maximum composite likelihood substitution model using MEGA (version 7.0). Numbers at branches represent bootstrap values of 1000 replicates
(values > 50 are shown). The scale bar shows the number of nucleotide substitutions per site

Table 2 Pairwise genetic differentiation (FST) between Ae. albopictus populations and the cryptic population in China

HeN-KF GD-ST GD-SZ GD-GZ YN-JH HN-HK HN-CM HN-DZ HN-CJ HN-BS HN-QZ HN-LS HN-BT

GD-ST 0.091

GD-SZ 0.106 0.028

GD-GZ 0.098 0.044 0.037

YN-JH 0.260* 0.405* 0.463* 0.436*

HN-HK 0.118 0.327* 0.360* 0.344* 0.059

HN-CM 0.285* 0.521* 0.606* 0.557* 0.046 0.030

HN-DZ 0.139 0.290* 0.358* 0.333* 0.054 0.042 0.057

HN-CJ 0.236* 0.419* 0.466* 0.444* 0.071 0.026 0.008 0.080

HN-BS 0.292* 0.488* 0.588* 0.539* -0.007 0.082 0.012 0.035 0.044

HN-QZ 0.347* 0.651* 0.750* 0.701* 0.182 0.028 0.048 0.183 0.081 0.227

HN-LS 0.309* 0.573* 0.667* 0.620* 0.089 0.029 -0.034 0.092 0.035 0.070 0.007

HN-BT 0.224* 0.348* 0.397* 0.377* 0.004 0.055 0.036 -0.003 0.010 -0.011 0.152 0.067

GX-WZa 0.905* 0.925* 0.931* 0.928* 0.917* 0.898* 0.923* 0.918* 0.911* 0.922* 0.927* 0.926* 0.905*
aAedes sp. cryptic population
*Asterisks indicate significant values after Bonferroni correction (P < 0.05)
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indicated a significant overall population structure in
Ae. albopictus (FST = 0.38, P < 0.001). The majority
of genetic variation (61.77%) was within populations,
whereas approximately 34.21% was between the two
groups, and only 4.01% of variation was among popu-
lations within groups (Table 3).

PCR detection of Wolbachia infection in natural mosquito
populations
Wolbachia infections were detected in all 14 of the Ae.
albopictus populations. Infection rates ranged from 50%
(HN-DZ) to 100% (in 8 populations) with an average of
~90% (Table 4), suggesting that Wolbachia is highly
prevalent in Ae. albopictus in China. In the cryptic Aedes
sp. species, however, Wolbachia infection was absent
(HN-BT and HN-BS) or occurred at low frequency (11%,
GX-WZ) (Fig. 5a-d). Most infected individuals were
infected with both the wAlbA and wAlbB strains of Wol-
bachia; the average superinfection rate in the 14 Ae.
albopictus populations was 70%, with a range from 10%
(HN-DZ) to 90% (YN-JH, HN-CJ and HN-QZ). Single-
strain Wolbachia infections were found in five popula-
tions for wAlbA and eight populations for wAlbB, with
low prevalence (< 20%) (Fig. 5e, f ) except in HN-CM
(70% wAlbA) (Table 4).

Discussion
Aedes albopictus, one of the cryptic species of the Ae.
albopictus subgroup, is an important vector for public
health. It is highly invasive and is the most widely dis-
tributed mosquito species in the world. Aedes albopictus
originated at the edges of forests and bred in natural
habitats, but it has adapted to being a domestic mos-
quito [13]. Today, the species can be found throughout
tropical, subtropical and temperate zones in China.
Cryptic species often occur in sympatry and are so simi-
lar they cannot be distinguished via traditional species
identification using morphological keys [68, 69]. With
the advent of molecular diagnosis technology and rela-
tively inexpensive DNA sequencing technology, the dis-
covery of cryptic species has become common in many
insect groups [70]. However, little is known about the
cryptic species within the Ae. albopictus subgroup in
China. To the best of our knowledge, this is the first
report describing the discovery of phylogenetically

divergent cryptic species living in sympatry with Ae.
albopictus in China. In this study, among 14 study
populations collected across the tropical, subtropical
and temperate climate zones of China, we found
three populations in southern China in which cryptic
species of Ae. albopictus coexisted in sympatry. Fur-
thermore, multiple haplotypes of cryptic species were
present in the Wuzhou population in Guangxi Prov-
ince within the subtropical zone, and probably a
novel cryptic species (KY765493) existed in the Baisha
population in the tropical area of Hainan Province.
Further investigation is needed to confirm the repro-
ductive isolation of these species. These results may
have important implications for vector control and
for understanding the evolutionary processes of the
species. For example, if the cryptic species is a novel
disease vector with different biting or resting behav-
iors, current vector control interventions that target
on species-specific vector behavior could lead directly
to programme failure and thus these vector control
strategies need to be adjusted.
The distribution of Aedes mosquito species is influ-

enced by climatic, environmental and geographical fac-
tors, as well as by human behavior [71–73]. In this
study, we found significantly higher genetic diversity in
cryptic species populations than in Ae. albopictus popu-
lations. For example, the cryptic species population in
Wuzhou (GX-WZ) has 33 segregation sites, with much
higher nucleotide diversity and the highest average num-
ber of nucleotide differences compared with the Ae.
albopictus populations. The high genetic diversity of
cryptic species, as well as their coexistence with Ae.
albopictus, may be explained by environmental hetero-
geneity in these densely forested, mountainous areas
with a low level of gene flow and random genetic drift.
The different population structure between tropical
(Hainan and Yunnan) and subtropical (Guangdong)/
temperate (Henan) populations of Ae. albopictus might
be due to selective pressures exerted by specific climate,
environment and human activities. The mountainous
areas of Yunnan and central Hainan provinces have
lower human population density and more complex
tropical environments than the densely populated
Guangdong (coastal) and Henan (plain) provinces. The
association between genetic population structure and

Table 3 Analysis of molecular variance (AMOVA) of two groups of populations of Ae. albopictus in China

Source of variation df SS Variance components Percentage of variation

Among groups 1 30.34 0.5234 Va 34.21

Among populations within groups 11 17.04 0.0614 Vb 4.01

Within population 115 108.68 0.9450 Vc 61.77

Total 127 156.06 1.5299 –

Abbreviations: df degrees of freedom, SS sum of squares
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Table 4 Results of PCR screening for Wolbachia infection in natural Ae. albopictus populations and cryptic Aedes species in China

Province Locality Name Species Total
female

16S rRNA n (%) wAlbA
n (%)

wAlbB
n (%)

Type A and
type B n (%)

Uninfected
n (%)

Henan Kaifeng HeN-KF Ae. albopictus 10 9 (90.0) 0 (0) 2 (20.0) 7 (70.0) 1 (10.0)

Guangdong Shantou GD-ST Ae. albopictus 10 10 (100) 0 (0) 2 (20.0) 8 (80.0) 0 (0)

Shenzhen GD-SZ Ae. albopictus 10 10 (100) 1 (10.0) 1 (10.0) 8 (80.0) 0 (0)

Guangzhou GD-GZ Ae. albopictus 10 10 (100) 0 (0) 2 (20.0) 8 (80.0) 0 (0)

Guangxi Wuzhou GX-WZ Cryptic Aedes sp. 9 1 (11.1) 0 (0) 0 (0) 1 (11.1) 8 (88.9)

Ae. albopictus 1 1 (100) 0 (0) 0 (0) 1 (100) 0 (0)

Yunnan Jinghong YN-JH Ae. albopictus 10 10 (100) 0 (0) 1 (10.0) 9 (90.0) 0 (0)

Hainan Haikou HN-HK Ae. albopictus 10 9 (90.0) 0 (0) 2 (20.0) 7 (70.0) 1 (10.0)

Chengmai HN-CM Ae. albopictus 10 10 (100) 7 (70.0) 0 (0) 3 (30.0) 0 (0)

Danzhou HN-DZ Ae. albopictus 10 5 (50.0) 2 (20.0) 2 (20.0) 1 (10.0) 5 (50.0)

Changjiang HN-CJ Ae. albopictus 10 10 (100) 0 (0) 1 (10.0) 9 (90.0) 0 (0)

Baisha HN-BS Ae. albopictus 9 9 (100) 1 (11.1) 0 (0) 8 (88.9) 0 (0)

Cryptic Aedes sp. 1 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Qiongzhong HN-QZ Ae. albopictus 10 10 (100) 1 (10.0) 0 (0) 9 (90.0) 0 (0)

Lingshui HN-LS Ae. albopictus 10 6 (60.0) 0 (0) 0 (0) 6 (60.0) 4 (40.0)

Baoting HN-BT Ae. albopictus 9 7 (77.8) 0 (0) 0 (0) 7 (77.8) 2 (22.2)

Cryptic Aedes sp. 1 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Fig. 5 Example of banding patterns of agarose gel electrophoresis. PCR products amplified using primers for Wolbachia-specific 16S rRNA gene
(a) and Wolbachia surface protein gene (wsp) (b-f) in natural populations. Lanes 1–10: PCR products of 10 individuals from specific locations;
Lanes “+” and “–”: positive and negative controls, respectively; Lane M: DNA ladder. Red arrows indicate cryptic Aedes species
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climate/environment has also been observed in other Ae.
albopictus populations [19, 74, 75]. Gene flow between
the two genetic clusters (tropical and subtropical/tem-
perate) appeared to be restricted due to geographical
isolation, which was also evidenced in the cox1 haplo-
type network analysis. Interestingly, both of the major
tropical-zone haplotypes, H30 and H19, were just one
mutation step (C-342-T) from subtropical (Guangdong
Province) and temperate (Henan Province) haplotypes,
and the same mutation step (G-624-A) was found be-
tween populations within tropical zones as well as
between populations from subtropical and temperate
zones. These results suggest that climate, geography,
environment and human activity all play important roles
in Ae. albopictus population structure.
The maternally transmitted endosymbiotic bacterium

Wolbachia is known to have an important impact on
host reproduction in many insects, including mosquitoes
(Diptera: Culicidae) [47, 76, 77]. Wolbachia can inhibit
human pathogens transmitted by mosquitoes, including
dengue virus [78–80], yellow fever [81], filarial nema-
todes [82, 83], malaria parasites [84–86] and Zika virus
[87]. Our results indicate significant variations in the fre-
quency of Wolbachia infection in Ae. albopictus popula-
tions. Populations from Guangdong, Yunnan, and many
sites in Hainan Province had a 100% infection rate,
followed by a 90% infection rate in Henan Province in
central China. Such high prevalence of Wolbachia has
also been observed in other Asian countries, including
Malaysia [43, 88], Thailand [89], India [90] and Sri Lanka
[91]. In our study, most populations were naturally in-
fected with two Wolbachia strains (wAlbA and wAlbB)
at high frequencies, suggesting that superinfection is
common in Ae. albopictus, as observed in other studies
[44, 88, 89, 92]. Interestingly, a relatively low prevalence
of Wolbachia was also observed in three Ae. albopictus
populations (HN-DZ, HN-LS, and HN-BT) from Hainan
Province, in which no more than 50% of the individuals
were not detected with Wolbachia infection, indicating
that there was variation in natural Wolbachia infection
in these Ae. albopictus populations. Furthermore, no
Wolbachia infection was detected in the Aedes cryptic
species from Hainan Province, and Wolbachia infection
was detected in just one individual of the cryptic species
from Guangxi Province. A similar pattern was observed
in the cryptic species in Vietnam [40], suggesting that
the cryptic species may be resistant to Wolbachia infec-
tion or that Wolbachia are present at low cell density in
the cryptic species that cannot be detected by PCR [93].
In addition, cryptic species may prevent Wolbachia
introgression by reproductive isolation and maintaining
ancestral levels of mitochondrial diversity. Wolbachia in-
duced cytoplasmic incompatibility and mitochondrial se-
lective sweep have been observed in the Ae. albopictus

and other mosquito species [29, 48]. Further studies are
needed to confirm the reproductive isolation between
Ae. albopictus and its cryptic species.

Conclusions
Our results indicated that the genetic diversity and
population structure of Ae. albopictus between tropical,
subtropical and temperate zones in China appeared to
be separated by a single mutation step at the mitochon-
drial DNA barcoding cox1 gene. Sympatric, cryptic sib-
ling species might be common in the Ae. albopictus
subgroup in China. The prevalence of high-level Wolba-
chia infection in most of the Ae. albopictus populations,
and the absence or low prevalence of Wolbachia in the
sympatric cryptic species, possibly due to Wolbachia-in-
duced genetic hitchhiking or selective sweep that has
created a barrier to gene flow among the species. Eluci-
dating the mechanisms of the observed absence or low
prevalence of Wolbachia in sympatric cryptic species
may provide insight toward the development of new vec-
tor control strategies. Finally, this study will have im-
portant implications for disease vector-based control
programs, Wolbachia-based disease control strategies,
and host evolutionary biology. Further study is needed
to investigate the potential for arbovirus infection and
disease transmission in the emerged cryptic species.
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