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Abstract

TeV-scale particles that couple to the standard model through the weak force represent a com-
pelling class of dark matter candidates. The search for such Weakly Interacting Massive Particles
(WIMPs) has already spanned multiple decades, and whilst it has yet to provide any definitive evi-
dence for their existence, viable parameter space remains. In this paper, we show that the upcoming
Cherenkov Telescope Array (CTA) has significant sensitivity to uncharted parameter space at the
TeV mass scale. To do so, we focus on two prototypical dark matter candidates, the Wino and
Higgsino. Sensitivity forecasts for both models are performed including the irreducible background
from misidentified cosmic rays, as well as a range of estimates for the Galactic emissions at TeV
energies. For each candidate, we find substantial expected improvements over existing bounds from
current imaging atmospheric Cherenkov telescopes. In detail, for the Wino we find a sensitivity im-
provement of roughly an order of magnitude in 〈σv〉, whereas for the Higgsino we demonstrate that
CTA has the potential to become the first experiment that has sensitivity to the thermal candidate.
Taken together, these enhanced sensitivities demonstrates the discovery potential for dark matter
at CTA in the 1-100 TeV mass range.

PACS numbers: 95.35.+d, 95.85.Pw, 98.35.Jk, 98.35.Gi

I. INTRODUCTION

While dark matter (DM) is about 85% of the total
matter content of the universe, its fundamental nature is
not known. An elementary particle with mass and cou-
plings at the electroweak scale can naturally represent all
the DM in the universe. Null searches at colliders and in
direct detection have already excluded many realisations
of this paradigm. Nonetheless, the WIMP (Weakly In-
teracting Massive Particle) miracle remains compelling,
and especially for DM at the TeV mass range there re-
mains uncharted parameter space. Archetypal TeV DM
WIMPs include the Wino and the Higgsino. Both candi-
dates could arise as the lightest supersymmetric particles,
and can account for all the DM in significant parts of the
supersymmetric parameter space, assuming a standard
thermal history for the universe [1]. More generally, Hig-
gsino and Wino DM can be thought of as viable minimal
extensions to the Standard Model (SM), independent of
their high-scale origin. That compelling DM candidates
exist at the TeV mass scale provides a strong motiva-
tion to search for any hints of these new particles using
ground-based imaging atmospheric Cherenkov telescopes
(IACT), which have strong sensitivity in the TeV energy
range.

In this work, we explore the sensitivity of the up-

coming Cherenkov Telescope Array (CTA) [2] to Wino
and Higgsino DM. To do so, we use one of the most
advanced calculations available for the gamma-ray an-
nihilation spectra, where particularly for the case of the
Wino there has been significant recent theoretical devel-
opment. Using the expected performances of the CTA
observatory from the latest Monte Carlo simulations of
the instrument response function (IRFs) for the Southern
site [3], we compute the CTA sensitivity to Wino and Hig-
gsino DM in the TeV to ten-TeV DM mass range using
a 3-dimensional log-likelihood-ratio test statistic analy-
sis. There remains considerable uncertainty as to the
relevant astrophysical backgrounds for very high-energy
(VHE) gamma-ray searches in the Galactic Center (GC).
Accordingly, we will consider a wide range of possibili-
ties for the background, and demonstrate that even in
the most pessimistic scenarios the prospects for DM dis-
covery at CTA are significant.

The paper is organized as follows. Section II describes
the modeling of the expected DM annihilation signals in
gamma rays for the Wino and Higgsino DM. In Sec. III,
we discuss the astrophysical backgrounds in the GC re-
gion that are relevant for TeV DM searches. Sec. IV
presents the expected CTA performances, the definition
of the ROIs, the expected signal and background rates,
and the statistical analysis method to compute the CTA
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sensitivity. The results are discussed in Sec. V and we
conclude in Sec. VI.

II. THE DARK MATTER SIGNAL

In this work, we restrict our attention to two com-
pelling DM benchmark candidates: the Wino and Hig-
gsino. The motivation for choosing these candidates is
twofold. First, they represent well-motivated DM candi-
dates, that have proved challenging to test using other
experimental techniques. Secondly, although they can
be thought of as particularly simple extensions to the
SM, the physics involved in determining the photon spec-
trum resulting from their annihilation is rich, and can be
considered representative of the phenomena relevant for
more general TeV-scale DM. In this section we will briefly
expand on each of these points.

Considering the problem from the top down, there
are compelling theoretical motivations to believe that the
Wino or Higgsino might be the DM of our universe. Both
candidates often arise generically as the lightest super-
symmetric particle (LSP) in supersymmetric extensions
of the SM [4–6]. Further, these candidates naturally arise
as DM candidates near the weak scale in specific realiza-
tions such as split [7–14] or spread [15, 16] supersymme-
try.

Independent of high-scale motivations, the Wino and
Higgsino can also be motivated from the bottom up, as
they both represent simple TeV DM candidates, and can
be taken as a testing ground for the type of theoreti-
cal effects that can be relevant for generic DM searches
at CTA. Indeed the electroweak triplet Wino has been
identified as one of the simplest extensions to the SM to
include a viable DM candidate, when viewed through the
minimal DM lens [17–21], and has been considered for al-
most three decades [22]. The Higgsino can also arise in
minimal models, as shown for example in Refs. [23, 24].
In passing we mention another particularly simple exten-
sion to the SM that would fall into this minimal class: the
quintuplet. Here the DM is a Majorana fermion trans-
forming in the quintuplet representation of SU(2)W ; it
represents an additional candidate of interest for CTA
given its thermal mass is 14 TeV [25], although we will
not consider it in the present work.

Both the Wino and Higgsino couple through the SM,
leaving only the masses of the DM and nearly degenerate
states as free parameters in the theory. The scale of
the splitting between the various states, discussed further
below, is significantly smaller than the overall mass scale.
For these reasons, assuming the particles are produced in
the early universe as thermal relics, the overall mass scale
is fixed by the observed DM density. The required mass
has been calculated as 2.9 ± 0.1 TeV for the Wino [26–
28], and 1.0 ± 0.1 TeV for the Higgsino [18, 26]. These
specific masses are of particular interest, and as we will
show in this work are potentially within reach of CTA.
Nevertheless, it is worth exploring a larger mass range,

which becomes plausible if we relax the assumption that
the DM is a simple thermal relic produced within the
standard cosmology.

Given their significant motivation, there have been
a number of attempts to discover these forms of DM,
for example see [29–31]. At present, LHC searches have
ruled out Wino masses below ∼500 GeV [32, 33]. Un-
fortunately, the Higgsino is considerably more difficult
to search for; even ∼400 GeV is a highly optimistic goal
for the full LHC dataset [34]. Further, thermal masses
are out of reach for the LHC for both candidates, and
potentially difficult to discover even at future 100 TeV
colliders [34–37]. Discovery in direct detection is equally
challenging. The thermal Wino cross section is near the
neutrino floor, and the Higgsino is even harder to probe,
sitting below the floor [38–42]. This leaves indirect de-
tection, where the prospects for discovery at CTA will be
explored in the present work. The prospects for minimal
supersymmetric DM candidates at CTA has previously
been explored in [43, 44], although we will approach the
problem with updated predictions for the DM spectra
and astrophysical background contributions. Note also
that indirect detection with anti-protons is an alterna-
tive search strategy, see for example [45–47], although
the systematics associated with such searches are con-
siderable. Studies have been carried out in the frame-
work of phenomenological supersymmetric extensions of
the SM (pMSSM) to demonstrate the complementarity
of the different experimental techniques devised to de-
tect DM depending on the composition of the LSP. As
shown, for instance, in Refs. [43, 44, 48, 49], the CTA
observations will open a unique discovery space for TeV
scale WIMPs.

Independent of its theoretical motivations, the
physics involved in determining the Wino indirect detec-
tion signature has proven particularly rich. The cross-
section to line photons, which arises at one loop, was
first calculated more than twenty years ago [50–52]. This
result is not sufficient to obtain all relevant O(1) con-
tributions to both the rate for Wino annihilations and
the resulting photon spectrum. To do so there are four
effects that must be included.

1. The Sommerfeld enhancement, where a significant
correction to the cross section arises from the po-
tential generated by the exchange of electroweak
particles between the Wino states [18, 53–56];

2. Continuum emission of photons with E � mDM

resulting from the decay of final state W and Z
bosons, the spectrum of which can be determined
using for example PPPC 4 DM ID [57];

3. Resummation of Sudakov double logarithms of the
form αW ln2(mDM/mW ), which become significant
when the DM mass is well above the scale of the
electroweak particles which mediate the annihila-
tion [58–63];

4. Inclusion of endpoint photons, which have E =
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zmDM with 1−z � 1. At any instrument with finite
energy resolution, such as CTA, these photons can
become indistinguishable from the line associated
with the two body final state where z = 1. Due to
the phase space restriction on photons most likely
to be mixed with the line, their contribution is en-
hanced as αW ln2(1− z), and again these logs must
be resummed [62, 64, 65].1

The first calculation involving all of these effects
for the Wino was performed in Ref. [64], and has now
been extended to next-to-leading logarithmic (NLL) ac-
curacy [65]. In the present work we will make use of the
full NLL spectrum from that reference, and in many ways
that aspect of our analysis will represent an update of the
H.E.S.S. Wino sensitivity estimates performed in [68] for
the case of CTA. We note that the calculation in [65]
was performed under the assumption that mW/(2mDM)
is much smaller than the instrumental energy resolution,
∆E/E. Given that for CTA ∆E/E ∼ 10%, we estimate
that the predicted spectrum begins to become unreliable
for mDM . 1 TeV. Fixing this would require matching
our predictions onto a calculation valid in this regime,
such as the calculation in Refs. [69, 70]. In this work we
will show limits down to mDM = 600 GeV, and given the
above caveat we emphasize that results in this low mass
region are subject to larger theoretical uncertainties.

In the case of the Higgsino, a full calculation involving
all effects relevant for CTA has not yet been performed,
and is well beyond the scope of the present analysis. A
number of results do exist, however, including the full
Sommerfeld calculation [54]. In addition, the work in [62]
demonstrated that the resummed endpoint contribution
for the Higgsino is likely to be crucial, and to lead to
a large O(1) correction. Most significantly, a full NLL’
calculation of the effects in a framework assuming the
energy resolution is of order mW/mDM or (mW/mDM)2

has recently been performed in [71], although for CTA
this assumption will not hold across the entire mass
range considered here. Given this state of affairs, in the
present work we will use just the tree-level annihilation
rate, supplemented with the Sommerfeld enhancement,
to produce both line photons and continuum emission
(i.e. photons arising from decays of the primary annihi-
lation products). As we will show, within this simplified
framework the prospects for the Higgsino at CTA appear
encouraging. Nevertheless, we caution that we are using
theoretical predictions that are known to be missing large
O(1) corrections, a caveat that applies to all Higgsino re-
sults shown in this work. That our results indicate CTA

1 For annihilation of neutralinos with no Sommerfeld enhance-
ment, these contributions have previously been calculated at
fixed order in [66, 67]; in the presence of Sommerfeld enhance-
ment, there will be additional endpoint contributions arising
from the conversion of neutralinos into a virtual chargino pair
through the long-range potential, followed by annihilation of the
charginos.

may well be able to probe the thermal Higgsino only re-
inforces the need for the full calculation to be performed.

In the Higgsino case, there are two additional pa-
rameters which must be specified beyond the DM mass,
namely the splittings between the charged and neutral
states, δm+ and δmN . In the Wino case this is not an
additional degree of freedom, as when all the other super-
partners are much heavier, the splitting is dominated by
radiative effects, and has been calculated at two-loops
to be mχ± − mχ0 ' 164.4 MeV [72]. If the splittings
were purely radiative in the Higgsino case, the neutral
states would be of equal mass (δmN = 0) and would both
contribute to the DM, allowing for tree-level scattering
between DM and visible particles via Z exchange. This
scenario is strongly excluded by constraints from direct
detection; evading this limit requires the heavier neutral
state to be kinematically inaccessible in direct-detection
experiments, suggesting δmN & 200 keV for TeV-scale
DM. Such small splittings can be easily induced in su-
persymmetric scenarios by a tiny mixing of the Higgsino
with the heavier neutralinos. For the Higgsino, conse-
quently, there is a wide space of possible mass splittings.
Given that our Higgsino spectrum is representative and
not exact, as mentioned above, we will not attempt an
exhaustive scan of the allowed model space. Instead, we
take two representative values following [62]. Specifically,
we consider

• Scenario 1: δmN = 200 keV and δm+ = 350 MeV.
This scenario represents the case where the neutral
mass splitting saturates the direct detection bound
and the charged mass splitting is set to its radiative
value.

• Scenario 2: δmN = 2 GeV and δm+ = 480 MeV.
This scenario is chosen to contrast with the above,
so that now the ratio of the splittings has been
inverted, and we have δmN � δm+. A δmN split-
ting at this level can be generated in the Minimal
Supersymmetric Standard Model by gauginos just
a factor of few heavier than the Higgsino; it thus
represents the upper end of the splittings expected
from mixing effects.

All results for the Higgsino will be shown for both sce-
narios.

A. Dark Matter Density Distribution in the
Galactic Center

In addition to the details of the particle nature of dark
matter, the GC annihilation signal depends critically on
the distribution of DM around the centre of the Milky
Way. Yet at present, the distribution of the density of
DM in this region of the galaxy is neither firmly pre-
dicted from simulations nor significantly constrained by
observations. N-body simulations containing only DM
motivate density profiles rising steeply toward the GC,
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and for our fiducial model we choose one parameteriza-
tion of these observations, the Einasto profile [73]

ρEinasto = ρ0 exp

[
− 2

α

((
r

rs

)α
− 1

)]
, (1)

where r is the Galactocentric radius. Our fiducial model
is defined by the following parameter for the Milky Way
Galaxy we take α = 0.17 [74], rs = 20 kpc [75], and
ρ0 chosen so that ρDM(r�) = ρ� = 0.39 GeV/cm3 [76],
where r� = 8.5 kpc is the estimated distance from the
Sun to the GC. These values are motivated by a com-
parison to earlier results, however we note that the exact
value for a number of these parameters are currently be-
ing refined. For example, more recent measurements have
found that r� = 8.127 kpc [77]. Improvement to our un-
derstanding of the local DM density are being pursued on
a number of fronts, see for example [78] for a review. We
emphasize that any change to ρ� can be trivially propa-
gated to our results by rescaling the predicted signal by
a factor of [ρ�/(0.39 GeV/cm3)]2.

One systematic uncertainty associated with the GC
DM density that can have a significant impact on the
present analysis is the possibility that true density is re-
duced by to the presence of a core in the inner galaxy.
The incorporation of baryonic matter and its associated
feedback into N-body simulations have demonstrated
that these effects can flatten out the DM density distri-
bution at small r, producing a constant-density “core”.
For Milky-Way-sized galaxies, the core radius can be of
order 1 kpc [79], or even larger; depending on the mod-
eling of baryonic physics, cores extending to ∼ 5 kpc can
potentially be obtained [80].

At present, the exact size of such a core is highly
uncertain. To account for the uncertainty in the DM
distribution at small Galactocentric radii, and the possi-
bility of kpc-scale cores in the region of interest (ROI),
we study the gamma-ray signals associated with a cored
density profile. We empirically parameterize constant-
density cores by setting the density profile to ρEinasto(r)
for r > rc, and to ρDM(rc) = ρEinasto(rc) for r < rc. We
fix the normalization of the density profile at r = r�, i.e.
ρDM(r�) = ρ� in all cases.

B. Annihilation Signal Spectrum

The total photon flux observed from DM annihilation,
in a given ROI, is given by

dΦγ
dE

=
〈σv〉line

8πm2
DM

dNγ
dE
× J , (2)

where the astrophysical factor, or J-factor, is given by

J =

∫
ROI

dΩ

∫
ds ρ2

DM . (3)

We emphasize at the outset that the use of 〈σv〉line

within Eq. (2) does not imply we are only considering
the annihilation of dark matter to two body final states
producing a photon at almost exactly mDM. There is an
inherent freedom to redefine what means in that equation
by 〈σv〉 and the cross section per annihilation, dNγ/dE,
as long as the product is left unchanged. We have ex-
ploited this freedom to write the cross section in a conve-
nient form, as the cross section to produce two photons,

〈σv〉line = 〈σv〉γγ+γZ/2 . (4)

In detail σline corresponds to the cross section for
DM DM→ γγ plus half the cross section for DM DM→
γZ, as there is only a single photon in the latter pro-
cess. This is a convenient choice, as this cross section is
traditionally how limits on the Wino and Higgsino are
presented. Using this definition, if the spectrum con-
sisted only of the exclusive line, then it would simply be
given by 2δ(E −mDM). Yet as emphasized, even though
we will use 〈σv〉line to parameterize our rate, it is not the
only final state we include. More generally, we have

dNγ
dE

= 2δ(E −mDM) +
dN ep

γ

dE
+
dN ct

γ

dE
, (5)

where the normalizations for the endpoint (ep) and con-
tinuum (ct) spectra are determined relative to the line
cross section. A more detailed discussion of this point,
and the detailed form the endpoint and continuum spec-
tra appearing in Eq. (5), can be found in [64].

As discussed above, in the case of the Wino we will use
the full analytic NLL calculation of the endpoint spec-
trum and 〈σv〉line provided in [65]. The continuum spec-
trum from production of gauge bosons and their subse-
quent decay is calculated as described in that work.

For the Higgsino, no endpoint contribution is in-
cluded, and the line and continuum cross sections are
estimated from a tree-level calculation including the non-
perturbative effects of Sommerfeld enhancement. The
Sommerfeld-enhanced cross section for each final state
channel X is determined as:

(σvrel)χ0χ0→X = 2
∑
jj′

s0j(ΓX)jj′s
∗
0j′ , (6)

where ΓX is a channel-specific “annihilation matrix”, and
the s0j coefficients describe the Sommerfeld vector ap-
propriate to the χ0χ0 initial state, derived by solving the
Schrödinger equation, as discussed in Ref. [30] (and fol-
lowing the notation in that work). The prefactor of 2
accounts for the fact that our initial state consists of two
identical DM particles. The potential matrix V (r) for
the Schrödinger equation is given by [54]:

2δm+ − α
r −

αW x2

4c2W

e−mZr

r −
√

2αW e−mW r

4r −
√

2αW e−mW r

4r

−
√

2αW e−mW r

4r 2δmN −αW e−mZr

4c2W r

−
√

2αW e−mW r

4r −αW e−mZr

4c2W r
0

 .

(7)



5

The first, second, and third rows/columns correspond
respectively to the χ+χ− two-particle state, the two-
particle state comprised of the heavier neutral species
χ1χ1, and the two-particle DM-DM state χ0χ0. Here
x = 1− 2s2

W , cW = cos θW , and sW = sin θW .
The tree-level annihilation matrices appropriate to

the Higgsino are given by [54]:2

ΓW+W− =
πα2

W

64m2
DM

 8 4
√

2 4
√

2

4
√

2 4 4

4
√

2 4 4

 ,

ΓZ0Z0 =
πα2

W

64c4Wm
2
DM

 4x4 2
√

2x2 2
√

2x2

2
√

2x2 2 2

2
√

2x2 2 2

 ,

ΓγZ0 =
πααW

2c2Wm
2
DM

x2 0 0
0 0 0
0 0 0

 ,

Γγγ =
πα2

m2
DM

1 0 0
0 0 0
0 0 0

 , (8)

where α = αEM.
In both cases the continuum spectrum arising from W

and Z decays is determined using [57] (note that masses
above 100 TeV would require manual generation of the
spectra, e.g. using Pythia 8.215 [81–83], but we do not
consider such high masses in this work).

III. BACKGROUNDS IN THE GC REGION

A. Cosmic-ray background

The main background for the DM search with IACTs
comes from hadron and electron cosmic rays (CRs) that
are misidentified as gamma rays. The numerous in-
teractions of CR hadrons (protons and nuclei) in the
Earth’s atmosphere give rise to hadronic showers which
may induce electromagnetic subcascades due to the de-
cay of neutral pions produced in inelastic CR interac-
tions. While the hadronic and electromagnetic show-
ers can be efficiently discriminated through shape anal-
ysis of the shower image [87, 88] and, possibly, the ar-
rival time of the shower front [89], a fraction of the
hadronic cosmic rays cannot be distinguished from pho-
tons due to the finite rejection power of the instrument,
and the electron-induced showers are very similar to the
gamma-ray ones [90]. Misidentified hadrons and elec-

2 We have corrected the off-diagonal terms for the annihilation
matrix in Ref. [54], bringing the inclusive annihilation rates into
agreement with Ref. [18].

trons3 produce an irreducible isotropic background, re-
ferred to hereafter as the residual background. The resid-
ual background for CTA is computed from accurate simu-
lations of the incoming CR fluxes including protons and
heavier nuclei, described by power-law spectra, as well
as electrons and positrons, described by a log-normal
peak on top of a power-law. The publicly-available
IRFs of CTA used in the present work are provided
in Ref. [3]. The source file CTA-Performance-prod3b-
v1-South-20deg-average-50h.root is used to extract the
energy-dependent effective area, background rate and en-
ergy resolution. The IRFs are taken for the Southern site
of CTA, which is most relevant for observations of the in-
ner region of the Milky Way, at a 20◦ mean zenith angle
(which we expect to approximate the average zenith an-
gle for observations of the GC).

B. Definition of the Regions of Interest

The survey of the inner Galactic halo is one of the
key-science observation programmes of CTA [92]. The
central survey region plans a deep exposure of more than
500 h expected in the inner 5◦ of the GC with, in addi-
tion, 300 h of exposure from the extended survey to cover
regions out 10◦ from the Galactic plane. The ROI for the
annihilating DM search is defined as a square region in
Galactic coordinates of 10◦ side length, centered at the
GC. Defining several sub-ROIs improves the sensitivity
to DM by exploiting the features of the spatial behavior
of the expected DM signal with respect to backgrounds.
The search region is split into 400 square 0.5◦×0.5◦ pix-
els. No significant impact of the choice of the spatial bin-
ning size is noticed given the expected photon statistics
obtained in each bin from the CTA inner Galactic halo
survey. Varying the bin size (within a range that gives
reasonable photon statistics per bin) has been tested and
has a negligible impact on the results. The solid angle of
the spatial bin jk is given by:

∆Ωjk =

∫
∆l

∫
∆b

dbkdlj cos bk, (9)

where l and b are the Galactic longitude and latitude,
respectively, given by l = lmin + j∆l and b = bmin + k∆b
with bmin = −4.75◦ and lmin = −4.75◦. ∆b = 0.5◦ and
∆l = 0.5◦ are the sizes of the square pixel in longitude
and latitude, respectively.

Following Refs. [93, 94], the region of ±0.3◦ around
the Galactic plane is excluded as being dominated by
standard astrophysical sources of VHE gamma rays. In
addition a disk of radius 0.4◦ is discarded at the posi-
tion of HESS J1745-303, one of the brightest extended

3 Local (. 1 kpc) CR electron/positron sources may leave an im-
print in the arrival directions of VHE electrons. However, no
anisotropy has been detected so far [91].
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Figure 1. Left panel: VHE astrophysical emissions in the GC region. The energy differential fluxes are plotted for the π0 (pink
open triangles) and ICS (cyan open triangles) components of the Galactic Diffuse Emission measured by Fermi-LAT extracted
from Ref. [84], and for the π0 (pink filled triangles) and ICS (cyan filled triangles) components derived from an alternative
analysis [85] performed in the inner 15◦ × 15◦ of the GC. The filled and open triangles are used for fitting a power-law or a
power-law with exponential cut-off, and then we use the fitted curves to normalize the maps in the CTA energy range. The
H.E.S.S. Pevatron spectrum (red dots) and the low-latitude spectrum of the Fermi Bubbles (blue filled squares) [86] are also
shown. Conservative (dashed blue line) and optimistic (log-dashed blue line) parametrizations of the Fermi Bubbles component
are plotted. Note that the region corresponding to the Galactic ridge emission is excluded from the region of interest (see Sec.
IV.B). Right panel: Expected differential count rate as a function of energy for the expected signal and backgrounds in the
ROI (5,11), a 0.5◦×0.5◦ squared pixel centered at l = 2.75◦, b = −0.25◦ (see Sec. IV.B for more details on the ROI definition).
The expected DM rates are plotted for a 3 TeV Wino with an annihilation cross section of 2.3 × 10−26 cm3s−1 (orange solid
line), and for a 1 TeV Higgsino with an annihilation cross section of 1.1×10−28 cm3s−1 (9.2×10−29 cm3s−1) (green solid lines)
assuming δmN = 200 keV (δmN = 2 GeV) and δm+ = 480 MeV (δm+ = 350 MeV). For the background we show the residual
background, the backgrounds for GDE scenarios 1 and 2, and the maximum Fermi bubbles contribution. The DM signal curves
correspond to the full spectra, including the line component, and have been convolved with the CTA energy resolution.

VHE gamma-ray sources in the overall ROI. In addition,
circular regions of 0.25◦ radius centered on the selected
Fermi-LAT source nominal positions are excluded.

C. TeV Diffuse Emission in the Galactic Center

The GC is a very crowded region where significant
VHE gamma-ray emission arises from various astrophys-
ical objects and production processes. In addition to
pointlike sources such as HESS J1745-290 [95, 96] spa-
tially coincident with the supermassive black hole Sagit-
tarius A* lying at the gravitational center of the Milky
Way, diffuse emission will also contribute to the total
gamma-ray flux. Deep observations of the GC region car-
ried out by H.E.S.S. reveal the detection of VHE emission
correlated with massive clouds of the Central Molecular
Zone [97], and more recently extended emission in the
inner 50 pc of the GC [86], from PeV protons interacting
in the interstellar medium.

At lower energies, the Galactic diffuse emission
(GDE) constitutes about 80% of all the photons detected

by Fermi -LAT in the energy range of a few MeV to ∼ 1
TeV [98]. The GDE results from the interactions of ener-
getic CR particles with interstellar material and ambient
photons, possibly including individual diffuse sources.4

The main processes giving rise to the GDE are π0-decay,
Bremsstrahlung, and Inverse Compton (IC) scattering.
In the Fermi -LAT energy band, current efforts to de-
tect DM in this sky region are limited by uncertainties
in the models for these three components; this is not the
case for current H.E.S.S. VHE gamma-ray searches, but
the greater sensitivity of CTA will likely render the GDE
contribution important even in the VHE regime. Thus
unraveling a potential DM signal from the GC observa-
tions by CTA, or setting robust constraints, will require
the construction of GDE models that are as realistic as
possible.

The Fermi -LAT collaboration has developed a GDE

4 In what follows, the GDE model restricts to the CR-induced
interstellar emission model since the main diffuse sources relevant
for the analysis here are masked in the region of interest.
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model which is publicly available and is the standard in
most Fermi analyses [99]. This model was constructed
with a data-driven approach in which the π0-decay and
Bremsstrahlung gamma rays were modeled as a linear
combination of spatial templates describing the distri-
bution of interstellar gas in the Galaxy. For the IC
emission this work used the CR propagation code GAL-
PROP [100]. In order to account for some extended
positive gamma-ray residuals that have been detected in
various regions of the sky, the Fermi -LAT collaboration
also included several empirical maps in their GDE model.
Among them, and relevant to this work, are the Fermi
Bubbles [101, 102] (see Sec. III E for details).

However, a limitation of the Fermi GDE model is that
it only allows for its overall normalization to be varied
in the fits to the gamma-ray data. This is a very good
approximation for analyses of compact astrophysical ob-
jects (also called gamma-ray point sources) but can have
an impact in studies of extended objects like that of a
putative DM source.

The systematic uncertainties in the GDE model can
also be explored using GALPROP. Ackermann et al.
(2012) [98] performed fits to the gamma-ray data using
a grid of alternative GDE models created with differ-
ent propagation parameter setups, CR halo sizes and 2D
CR source distributions. One of the advantages of this
approach is that each component of the GDE can be in-
cluded in the maximum likelihood fits with independent
normalizations.

Interestingly, the most recent release of GALPROP
(v56) [103] contains more realistic 3D models for the
Interstellar Radiation Field (ISRF) and interstellar gas
distributions. Compared to older versions of the code,
the new models abandon the common assumption of 2D
Galactocentric cylindrical symmetry in the propagation
of CRs, which is expected to have important effects for
analyses of the GC region.

In the present study, we make use of GALPROP v56
to reproduce a single representative model for the GDE
taken from Ref. [103], and include it in our gamma-ray
pipeline. For the chosen model, the cosmic rays that
source the observed diffuse emission follow a distribution
that is half 2D disc and half 3D spiral arms. The spiral
arms template is based on [104]. For the specific details
of this model we refer to [103], and see also [105, 106]
where the model used is referred to as “F98-SA50”. Go-
ing forward, we refer to this specific GDE model as “GDE
scenario 1”. The maps of this GDE model in Galactic co-
ordinates are given in the top panels of Fig. 2 in terms
of integrated flux in the energy bin centered at 1 TeV
and a spatial pixel of size 0.5◦ × 0.5◦. We use a data-
driven prescription for the energy spectrum of this GDE
model. For energies below 50 GeV, we first fit the spatial
maps produced by GALPROP in each energy bin to the
Fermi -LAT data in a 15◦ × 15◦ region centered on the
GC, separately floating the gas-correlated and ICS com-
ponents [85]. The resulting fluxes associated with each
component are shown in the left panel of Fig. 1 (filled

pink and cyan triangles). We then use these data points
to find simple parametric descriptions of the spectra for
the two components; it is these parametric forms that
are used in the remainder of the analysis.

Specifically, we fit a power-law to the derived data
points for the spectrum of the gas-correlated emission
(filled pink triangles in Fig. 1), and a power-law with ex-
ponential cutoff to the derived data points for the spec-
trum of the ICS (filled cyan triangles in Fig. 1). The
resulting best-fit values for the spectral index Γ, normal-
ization φ0 and energy of cutoff Ecut are given in Tab. I.
The spatial maps produced by GALPROP, at each en-
ergy, are then re-normalized so that their total fluxes
in the region of interest are described by these spectra.
Since our purpose is to estimate the likely contribution
of the GDE at higher energies, we prefer this approach to
simply fitting the maps in each energy bin to the Fermi -
LAT data, because at high energies these data become
noisy (due to low photon statistics) and the error bars
on the GDE components can be very large.

We employ also an alternative approach to estimating
the diffuse emission relevant for this analysis, referred to
as “GDE scenario 2”. For the second scenario we de-
rive the spatial shape of π0 emission using the measured
distribution of interstellar dust throughout the Milky
Way [107]. This dust is expected to approximately fol-
low the distribution of gas throughout the galaxy, which
forms the targets for cosmic-ray protons to scatter off and
form pions. To the extent this is true, and that further
cosmic-ray protons are uniformly distributed, we can use
this map as a proxy for the π0 emission. For the ICS,
following Ref. [108], we adopt a simple analytic shape as
a function of Galactic longitude, l, and latitude, b, given
by

ICS(b, l) ∝ exp

[
− l2

2(30◦)2

]
× (csc [max (2◦, |b|)]− 1) .

(10)

In the second line, the argument of the csc is not allowed
to decrease for |b| < 2◦ in order to regulate the divergence
at b → 0. To characterize the spectrum of the GDE
components in this “GDE scenario 2”, we perform a fit
to the spectra given in the right panel of Fig. 1 in Ref. [84]
(and plotted as empty triangles in the left panel of Fig. 1,
after translation to the ROI in question). We thus obtain
a power-law spectrum for the gas-correlated emission and
a power-law spectrum with an exponential cutoff for the
ICS emission. We normalize the spatial maps in each
energy bin so that their total fluxes within the ROI follow
these spectra.

Reference [84] presented a detailed analysis of the
emission near the Galactic center as observed by the
Fermi satellite, and therefore can be used to estimate
the diffuse emission relevant for CTA. The data was fit
to spatial templates in 27 logarithmically spaced energy
bins between 100 MeV and 1 TeV. The spatial tem-
plates included models for the diffuse emission (broken
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Figure 2. Galactic diffuse emission maps in Galactic coordinates. The maps are expressed in terms of the flux Φ integrated in
the energy bin centered at 1 TeV with width ∆ log10(E/1TeV) = 0.2, and in a pixel of size 0.5◦× 0.5◦. The maps are given for
the GDE scenario 1 (top panels) and scenario 2 (bottom panels). The separate π0+Brem (left panels) and ICS (right panels)
components are shown.

into π0+ bremsstrahlung as well as ICS), isotropic emis-
sion, point sources, the Galactic center excess observed
to peak around a few GeV, and a combined template for
Loop I, Sun, Moon, and several other extended sources.
We use the fits performed in the smaller ROI considered
in that work, which was R < 10◦ with R the distance
from the GC, as this is closer to our own ROI. Finally,
as the Fermi energy range does not extend as high as
the expected CTA reach, we have extrapolated the rel-
evant spectral dependences into the CTA energy range,
using the parameters given in Tab. I. The model is an
extrapolation of the data points shown in the left panel
of Fig. 1 (empty pink triangles). The bottom panels of

Fig. 2 show the spatial modeling of the GDE for this al-
ternative scenario, in terms of integrated flux in the en-
ergy bin centered at 1 TeV and in each 0.5◦-side-length
square pixel.

D. Fermi-LAT High-Energy Sources

The inner few degrees of the GC are populated by nu-
merous high-energy gamma-ray sources that shine over
the GDE [109]. Given that the highest energies are our
focus, we select the point-like sources from the third
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Scenario 1

Component φ0 [TeV−1cm−2s−1sr−1] Γ Ecut [TeV]

π0 7× 10−10 2.48 -

ICS 3× 10−10 2.46 70

Scenario 2

Component φ0 [TeV−1cm−2s−1sr−1] Γ Ecut [TeV]

π0 8× 10−10 2.48 -

ICS 5× 10−10 2.40 100

Table I. Spectral parameters of the two models of the
Galactic Diffuse Emission. The gas-correlated component
is parametrized as a power-law and the ICS component as
power-law with exponential cut-off.

Fermi-LAT high-energy source list [110] in Galactic longi-
tude and latitude between ±5◦, and for which the best-fit
energy spectrum is a simple power law shape, i.e. with
no indication of energy cut-off or break.

A disk of radius 0.25◦ centered at the nominal posi-
tion of each selected source is used as a mask in order
to avoid any modeling of the extrapolated spectral be-
haviour of these sources in the TeV energy range that
could be detected given the CTA sensitivity. Above 10
GeV, the Fermi-LAT PSF is about 0.1◦, therefore no sig-
nificant leakage is expected outside the masked regions.
The CTA PSF is even smaller. Masking all the selected
3FHL sources in the overall ROI degrades the overall
solid angle of the search region by less than 1%. The
dominant source of leakage is expected to be the uncer-
tainty on the localization of the peak emission of faint
and extended sources.

E. Fermi Bubbles at Low Galactic Latitudes

The Fermi Bubbles are large bipolar lobe structures,
extending up to about 50◦ in Galactic latitudes above
and below the Galactic plane, discovered in Fermi-LAT
data [108]. At latitudes higher than 10◦, the Fermi
Bubbles emission follows a dN/dE ∝ E−2 power law
spectrum, with a significant spectral softening above
100 GeV. Recent analyses [84, 99, 111, 112] indicate a
brighter emission towards the Galactic plane (|b| < 10◦)
consistent with an E−2 power-law spectrum that remains
hard up to 1 TeV, i.e. no hints for an energy cut-off or
break up to 1 TeV are detected.

In particular, Ref. [84] obtained a new spatial map for
the low-latitude emission of the Fermi Bubbles by using
an image reconstruction technique. This map was fur-
ther improved in Ref. [105] with the use of an inpainting
method to correct for artifacts resulting from the point
source mask applied in the analysis of [84]. A series of
statistical tests were performed in Ref. [105] to validate
the improved low-latitude Fermi Bubbles map. In what

follows we will assume the spatial template provided in
Ref. [105] as our template for the Fermi Bubbles.

The spectrum of the low-latitude component of the
Fermi Bubbles is extracted from Ref. [84]. It is then ex-
trapolated at energies above 1 TeV as an exponential cut-
off power-law spectrum. Two models, “FB min” and “FB
max”, are considered with a spectral index Γ = −1.9 [84],
respectively, and a normalization such that all the Fermi
points fall between the two models. The flux normaliza-
tion and the energy cutoff of the optimistic and conser-
vative models are given in Tab. II. The normalization of
“FB max” (blue lines) is set in order to avoid overshoot-
ing the H.E.S.S. diffuse emission (red dots) as shown in
the left panel of Fig. 1, which shows the spectral behavior
of the Fermi Bubbles as a function of the energy, together
with the spectra of the GDE. Fig. 3 shows the spatial be-
havior of the Fermi Bubbles low-latitude emission for the
“FB min” (left panel) and “FB max” (right panel) mod-
els. The flux is integrated in the 1 TeV energy bin and
in each 0.5◦-side-length pixel.

Model φ0 [TeV−1cm−2s−1sr−1] Γ Ecut [TeV]

FB max 1× 10−8 1.9 20

FB min 0.5× 10−8 1.9 1

Table II. Spectral parameters for the two parametrizations
of the low-latitude component of the Fermi Bubbles emission,
modeled as a power-laws with an exponential cut-off in energy.
The parameters are given for the optimistic “FB max” and
the conservative “FB min” models, respectively.

IV. SENSITIVITY

A. Instrument Response Functions

The Southern site of the CTA observatory is best-
suited to observe the GC region under the most favorable
observation conditions. The IRFs of CTA used in this
work are obtained from publicly available Monte Carlo
simulations with an array composed of 4 large-size tele-
scopes, 24 medium-size telescopes and 70 small-size tele-
scopes, optimized for 50 hour observation time [3]. The
energy-dependent acceptance and residual background
rate, together with the angular and energy resolution,
are computed in the energy range from 10 GeV – 100
TeV, for an observation zenith angle of 20◦. We note
that an energy resolution as low as 5% can be achieved
at TeV energies.

The version prod3b-v1 of the IRFs are chosen for on-
axis observations, i.e. for a source localized close to the
center of the field of view. As shown in Ref. [3], the sensi-
tivity deteriorates by less than a factor of two for sources
up to 2.5◦ from the center of the field of view, for energies
higher than 1 TeV. In what follows we assume a homo-
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Figure 3. Fermi Bubbles emission maps in Galactic coordinates for the conservative (left panel) and the optimistic (right panel)
models. The maps are expressed in terms of flux integrated in a pixel of size 0.5◦ × 0.5◦ and in the energy bin centered at 1
TeV with bin width ∆ log10(E/1TeV) = 0.2.

geneous sky exposure of 500 hours in the overall search
region, which can be obtained provided that an ambi-
tious observation program of the inner Galactic halo is
carried out with an optimized observation strategy [113].

B. Expected Signal and Background Events

In order to obtain an estimate of the expected signal
sγ,ijk in the ith energy, jth Galactic longitude and kth

Galactic latitude bins, the differential gamma-ray flux
dΦS

γ,jk/dEγ in the bin ijk, integrated over the dimen-
sions of the ROI, is convolved with the CTA gamma-ray
acceptance Aγeff and energy resolution at energy E′γ :

dΓS
γ,jk

dEγ
(Eγ) =

∫ +∞

−∞
dE′γ

dΦS
γ,jk

dEγ
(E′γ)Aγeff(E′γ)G(Eγ , E

′
γ).

(11)
The energy resolution is modeled as a Gaussian
G(Eγ , E

′
γ) with width (68% containment radius) of 20%

at 50 GeV, down to better than 5% in the TeV en-
ergy range [3]. The signal count number sγ,ijk in the
bin ijk is obtained from the gamma-ray differential rate
dΓS

γ,jk/dEγ integrated over the energy bin ∆E and mul-
tiplied by the observation time Tobs. Explicitly,

sγ,ijk = Tobs

∫
∆Ei

dEγ
dΓS

γ,jk

dEγ
. (12)

The modeled background bγ,ijk in the bin ijk is obtained:

bγ,ijk = Tobs

∫
∆Ei

dEγ
dΓB

γ,jk

dEγ
. (13)

The CR background flux dΦCR
γ,jk/dEγdΩ is multiplied by

the CR acceptance of CTA, ACR
eff , while the standard

background flux due to astrophysical gamma-ray sources
dΦStd

γ,jk/dEγdΩ is multiplied by Aγeff :

dΓB
γ,jk

dEγ
(Eγ) =

∫ +∞

−∞
dE′γ

∫
∆Ωjk

dΩ

[
dΦCR

γ,jk

dEγdΩ
(E′γ)ACR

eff (E′γ)

+
dΦStd

γ,jk

dEγdΩ
(E′γ ,∆Ω)Aγeff(E′γ)

]
G(Eγ , E

′
γ). (14)

The gamma-ray backgrounds due to the point-like
sources dΦPL

γ,jk/dEγdΩ, the GDE dΦGDE
γ,jk /dEγdΩ, and the

FB dΦFB
γ,jk/dEγdΩ are included in bγ,ijk:

dΦStd
γ,jk

dEγdΩ
(E′γ ,∆Ω) =

dΦPL
γ,jk

dEγdΩ
(E′γ ,∆Ω) +

dΦGDE
γ,jk

dEγdΩ
(E′γ ,∆Ω)

+
dΦFB

γ,jk

dEγdΩ
(E′γ ,∆Ω). (15)

In actual observations with IACTs, typically a fit in-
cluding both signal and background components is per-
formed in a signal region (known as the ON region), and
simultaneously the background is constrained by obser-
vations of a corresponding control region (OFF region)
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where no signal is expected. This approach has the
advantage of factoring out systematic effects associated
with the instrument, which should affect the background
in the OFF and ON regions similarly. However, it de-
pends on being able to select an appropriate OFF region
with similar background to the ON region, which may
be challenging if there is a significant detection of the
spatially non-uniform GDE in CTA observations. In this
work, we do not aim to address the question of the opti-
mal observation strategy, the choice of telescope pointing
positions, and the definition of the OFF regions; instead
we use a simplified approach where we simply model the
expected background in the ON region. This is equiva-
lent to positing an OFF region that perfectly constrains
the background model. In a real analysis, the noise in
the measurement of the background from the OFF region
would be expected to degrade the signal sensitivity some-
what, compared to our simplified analysis; alternatively,
using our background-modeling approach with real data
would require consideration of possible systematic errors
from mis-modeling of either the instrument response or
the GDE itself [114]. In this sense, our results represent
a best-case scenario for sensitivity to a Wino or Higgsino
signal.

Fig. 1 shows the expected count rate as a function of
the energy in a central ROI for the residual background,
the two GDE models, the “FB max” model, and expected
signals from Wino and Higgsino DM, assuming the corre-
sponding thermal mass and predicted annihilation cross
section.

C. Sensitivity Computation

A 3D likelihood-ratio test statistic technique is used
to compute the CTA sensitivity to 〈σv〉line in the Hig-
gsino and Wino DM models. A standard likelihood func-
tion for a counting experiment is used. The likelihood in
the bin i, j, k is given by the Poisson distribution:5

Lijk(sγ,ijk + bγ,ijk,mγ,ijk)

= Pois(sγ,ijk + bγ,ijk,mγ,ijk).
(16)

where Pois(λ, p) = e−λ λp/p!, sγ,ijk and bγ,ijk describe the
expected photon number from the signal and background
models respectively, and mγ,ijk represents the observed
photon number in the relevant bin (or an appropriate
proxy; see the discussion of the Asimov method we em-
ploy below). For the sensitivity studies in the present
work, we keep bγ,ijk fixed in the form of the model de-
rived from Eqs. (14-15), so that our background model
contains no free parameters. As such, once the DM mass
and model (e.g. whether it is a Wino or Higgsino) is

5 If an ON-OFF approach is used, a second Poisson factor for the
OFF region is added, multiplying that for the signal ON region.

specified, the only free parameter in the signal model
and likelihood is an overall signal normalization factor
controlled by 〈σv〉line.

The likelihood function is binned in energy (indexed
by i), Galactic longitude (indexed by j) and Galactic lat-
itude (indexed by k). The total likelihood is the product
of Lijk over the 20 energy bins and 400 spatial bins. In
our case the background bγ,ijk is modeled rather than be-
ing measured in an OFF region, as explained in Sec. IV B,
and as mentioned above the background model contains
no free parameters (we do not allow its normalization,
for example, to vary).6 The sensitivity is expressed
here as the expected limit obtained under the assumption
that mγ,ijk contains no DM signal. Values of 〈σv〉line are
tested through the likelihood ratio test statistic profile
defined as:

Λijk =
Lijk(sγ,ijk + bγ,ijk,mγ,ijk)

Lijk(ŝγ,ijk + bγ,ijk,mγ,ijk)
. (17)

In the ratio, only the amplitude of sγ,ijk is a free param-
eter, and therefore this quantity is solely a function of
the cross section 〈σv〉line. In the denominator we fix the
signal flux normalization to the value which maximises
the likelihood, denoted by ŝγ,ijk. Using Eq. (17), we can
then define a test statistic for setting upper limits as

q(〈σv〉) =

{
−
∑
ijk 2 ln Λijk 〈σv〉 ≥ 〈̂σv〉 ,

0 〈σv〉 < 〈̂σv〉 ,
(18)

where the cross section is again 〈σv〉line, and here 〈̂σv〉
corresponds to the value of the cross section where the
best fit signal is achieved, in detail the value that deter-
mined ŝγ,ijk as in the denominator of Eq. (17). As the
cross section is increased, eventually the signal strength
will become incompatible with the data and q will begin
to increase. The value of 〈σv〉line excluded at 95% con-
fidence level corresponds to q ≈ 2.71, when computing
one-sided upper limits, assuming that the test statistic
behaves as χ2 distribution, as expected in the high statis-
tic limit, with one degree of freedom. Note that this pre-
scription uses Wilks’ theorem, and as such requires that
we allow 〈σv〉line to float negative, as if the background
fluctuates below its mean, the best fit signal point can be
negative. This choice implies that for a significant enough
downward background fluctuation, we could potentially
set a negative limit on 〈σv〉line, thereby excluding all pos-
itive values. In order to avoid this possibility, we imple-
ment power-constrained limits as described in Ref. [115],
where the actual limit is not allowed to go below the

6 The future telescope pointing strategy of CTA that will be imple-
mented to survey the GC region will define optimized pointing
positions of the telescopes to most efficiently survey the GC re-
gion, together with the OFF regions where the background will
be measured for each observation. This discussion is beyond the
scope of this work.
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Figure 4. Expected upper limits at 95% C.L on the Wino annihilation cross section as a function of its mass for 500 h of CTA
observations towards the GC. The predicted NLL cross section is shown (solid gray line) and the thermal Wino DM mass is
marked (cyan solid line and bands). The only background considered here is the residual background. The full Wino spectrum
is included in the expected signal. Left panel: Mean expected upper limits at 2σ (red solid line) for an Einasto profile are shown
together with the 1σ (green band) and 2σ (yellow band) containment bands. Mean expected upper limits at 5σ (red dashed
line) are also shown. The H.E.S.S.-like 2σ sensitivity extracted from Ref. [68] is shown as a blue solid line. Right panel: The
expected limits are shown for cored DM profiles of size from 300 pc to 5 kpc.

lower 1σ expected limit. Accordingly, in Figs. 4 and 6,
we only show the lower 1σ expected limit, as the actual
limit, by construction, cannot go below this. We also
compute the 5σ mean expected upper limit on 〈σv〉line,
which corresponds to q ≈ 23.7.

The above prescription outlines how to determine the
limit for a given dataset mγ,ijk, which could be either ob-
tained from real observations or via Monte Carlo simu-
lations.

Before CTA’s first light, we can estimate the expected
sensitivity by generating a large number of Monte Carlo
datasets and determining the mean expected limit and
associated containment bands. An alternative to this ap-
proach, which we will use in this work, is to instead deter-
mine all of these quantities using the Asimov formalism of
Ref. [116]. Under the Asimov approach, instead of taking
many realizations of the model, calculating the limit each
time, and then determining the mean of those values, we
instead take the mean dataset, which is exactly given
by the model. The model, when used as the dataset, is
then referred to as the Asimov dataset. Of course, as
the model is not strictly an integer, this requires analyt-
ically continuing the Poisson distribution to non-integer
values, which can be accomplished using the Γ function.
The Asimov approach can also be used to determine the
confidence intervals. In detail, to determine the N -sigma
containment band, instead of evaluating q = 2.71, we

calculate

q =
(
Φ−1(0.95)±N

)2
. (19)

Here Φ is the cumulative distribution function for the
standard normal, which has µ = 0 and σ = 1. Accord-
ingly Φ−1(0.95) ≈ 1.64, so that the above result contains
the mean limit as a special case at N = 0.

In the idealized scenario we consider here of data
drawn from a background model known exactly, the
above procedure for calculating limits is sufficient. We
emphasize, however, that when considering the actual
CTA data, our models will be inevitably imperfect. One
consequence of this is that the coverage of our limits, and
the validity of discovery thresholds can deviate from the
simple asymptotic estimates used above, and may need
to be validated and potentially tuned using datasets that
contain an injected signal.

V. RESULTS AND PROSPECTS

A. Sensitivity to Wino DM and impact of the
endpoint contribution

The CTA sensitivity forecast for Wino DM, expressed
as the mean expected upper limit at 95% C.L. on 〈σv〉line

as a function of the Wino mass, is shown in the left panel
of Fig. 4, together with the expected containment bands
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dashed line). The major improvement on the sensitivity to
the Wino with respect to a simple line comes from the end-
point gamma-rays. The effect of the continuum on the limits
is much smaller than the endpoint contribution, to a greater
degree than observed with H.E.S.S., due to the improved CTA
energy resolution.

obtained from the Asimov dataset. This forecast assumes
500 h of homogeneous exposure within the overall 10◦-
side ROI centered on the GC, and an Einasto DM den-
sity profile. The Wino spectrum includes the line and the
continuum component together with the endpoint contri-
bution. The mean expected limits (red solid line) reach
cross sections of about 4× 10−29 cm3 s−1 at 1 TeV. The
containment bands at 1σ (green band) and 2σ (yellow
band) are drawn in green and yellow, respectively, to-
gether with the theoretical cross section (gray solid line).
All masses where the CTA limits lie below the theoreti-
cal cross section are forecast to be excluded. The mass
mDM = 2.9 TeV predicted for a Wino thermally-produced
in the early universe can be excluded by CTA; this is
not surprising, as it has already been shown that this
mass and cross section can be strongly constrained by
H.E.S.S.-like observations [68]. For these assumptions,
the Wino cross section can be probed up to masses of
∼40 TeV outside resonances.

Less stringent constraints are obtained if a cored DM
distribution is assumed in the GC, as shown in the right
panel of Fig. 4. The sensitivity to 〈σv〉line is computed for
DM density cores of radius rc = 0.3, 0.5, 1, 2 and 5 kpc.
The degradation of the limits is only a factor 20% for a
300 pc ('2.0◦) core, but increases up to a factor of about

50 in the extreme case of a core with rc = 5 kpc ('30.5◦).
The Wino thermal mass is expected to be excluded even
for the largest cores. Masses below 4 TeV, 9 TeV and
20 TeV at the positions of Sommerfeld resonances are
excluded for cores as large as 5 kpc. Only masses above
a few ten TeV are out of reach for kpc-sized cores outside
resonances. The 5σ sensitivity is plotted in the left panel
of Fig. 4.

Alternatively, if we assume our fiducial Einasto pro-
file, we can interpret the results of Fig. 4 as constraining
the fraction of DM that can consist of 2.9 TeV Winos.
CTA will exclude the thermal prediction by a factor
of ∼620, so a null detection would allow the Wino to
amount to no more than 4% of DM (recall that for anni-
hilation the signal flux scales quadratically with the DM
fraction). For masses below the thermal value of 2.9 TeV,
the Wino is naturally only a subset of the full DM den-
sity. CTA would be able to test even these scenarios: a
1 TeV Wino would contribute ∼17% of DM [18], whereas
the cross-section limit in Fig. 4 requires such DM to con-
stitute a fraction no larger than 7%.

Fig. 5 shows the improved sensitivity obtained by us-
ing the full Wino annihilation spectrum, including the
continuum and endpoint contributions, in addition to the
monoenergetic gamma line. The endpoint component
improves the constraints by a factor of 1.5 at 1 TeV,
3 at 10 TeV and 7 at 50 TeV. Inclusion of the contin-
uum improves the limits by 1-5% over the whole DM
mass range. The improvement due to the continuum
is less pronounced than expected for H.E.S.S. observa-
tions [68], whereas the endpoint contribution is more sig-
nificant. This difference is due to the improved energy
resolution of CTA compared to H.E.S.S., which is up to a
factor of two better. The line and endpoint contributions
to the overall spectrum strongly dominate the expected
limits.

B. Sensitivity to the Higgsino

The CTA sensitivity forecast for Higgsino DM, ex-
pressed as the expected 95% C.L. upper limit on 〈σv〉line

as a function of the Higgsino mass, is shown in Fig. 6,
together with the expected containment bands obtained
from the Asimov dataset. The theoretical cross sec-
tion is overlaid in gray. Two cases are considered for
different splittings: “splitting 1” (left panel) refers to
δmN = 200 keV and δm+ = 350 MeV and “splitting
2” (right panel) to δmN = 2 GeV and δm+ = 480 MeV.
The sensitivity improves substantially when considering
the full spectrum, compared to the line-only case, for
masses below ∼2 TeV, where the continuum contribu-
tion dominates over the line at the end of the spectrum.
Sensitivity to this continuum is only possible due to the
improved CTA effective area down to a few tens of GeV.
The improvement is up to a factor 4 for the smallest
mass considered in this work. For splitting 1, the Hig-
gsino is within the reach of CTA for the thermal mass of
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1 TeV and the first two Sommerfeld-induced resonances.
In the case of splitting 2, the thermal mass is within
reach thanks to the continuum contribution. The first
resonance can be probed; the second one only barely.
An accurate calculation of the endpoint contribution, for
example using the methods described in [69, 70], could
additionally improve the sensitivity. The 5σ sensitivity
is plotted in the upper panels of Fig. 6.

We note that despite of the importance of the con-
tinuum contribution to CTA’s sensitivity, this scenario
is not excluded by existing lower energy constraints
from Fermi. Fermi observations of Milky Way satel-
lite galaxies constrain the cross-section for annihilation
of 1 TeV DM to a W+W− final state to be smaller than
∼ 2.7×10−25 cm3/s. This is more than an order of mag-
nitude larger than the predicted W+W− cross section of
the thermal Higgsino, which is ∼ 8.7 (7.7) × 10−27 for
mass splitting 1 (2) considered above. In fact, even for
the thermal Wino the Fermi constraint is still a factor of
∼ 2 from the theoretical prediction, a scenario CTA can
probe by several orders of magnitude.

The impact of a cored DM density in the inner Galac-
tic halo is computed for Higgsino DM. Fig. 6 shows
the expected 95% C.L. upper limits on 〈σv〉line for the
Einasto profile (red solid line) and cored profiles with
core radii from 300 pc up to 5 kpc. The expected lim-
its are computed for the two choices of splittings. The
degradation of the sensitivity with the increasing size of
the DM core follows the same behavior as for the Wino
case, since the same DM spatial distribution is assumed
for the Wino and Higgsino cases.

As for the Wino, we can also interpret our fiducial lim-
its in the context of a limit on the fraction of DM made up
of Higgsinos. At the thermal 1 TeV value, that fraction
is 52% and 58% for splitting 1 and 2, respectively. If we
reduced the mass to 0.6 TeV, then a thermally produced
Higgsino would only amount to ∼36% of DM [18]. Rein-
terpreting our limits at this mass as a constraint on the
DM fraction, we have 36% and 38% for splitting 1 and
2, so that the scenario would only marginally be probed.

C. Impact of the Astrophysical Backgrounds

Fig. 7 shows the impact of each background compo-
nent on the CTA sensitivity including the full (line + end-
point + continuum) spectrum, for both Wino and Hig-
gsino DM. We first show the mean expected 95% C.L. up-
per limits assuming a background model that includes all
the components previously described, i.e the residual and
all the standard astrophysical components. Then, we ex-
clude the point-like high-energy Fermi-LAT sources, the
GDE, and eventually the Fermi Bubbles, keeping only
the residual background in the last step. This procedure
quantifies the impact of each background component on
the CTA sensitivity to DM signals.

The limit shown as a black line is computed assum-
ing all the background components given in Eq. (15).

Masking the Fermi-LAT sources in the overall ROI has a
negligible impact on the sensitivity (cyan curve) since the
overall solid angle of the masks is negligible with respect
to the signal region. The blue curve shows the impact of
the GDE scenario 1 on the CTA sensitivity. The GDE
has an impact up to between 5% and 20% for scenario 1,
and up to 25% for scenario 2, for which more emission is
expected in the TeV energy range.

The strongest impact amongst the standard astro-
physical backgrounds is due to the Fermi Bubbles as-
suming the “FB max” model. For the Wino, compared
to the residual-background-only limits, the “FB max”
model emission has an impact of up to 30% on the con-
straints, while for the “FB min” model the impact is neg-
ligible. The effect of including all standard astrophysical
backgrounds, with respect to the residual-background-
only case, is up to about 50% and is largest for masses
around ten TeV.

The impact of the astrophysical background compo-
nents on the sensitivity to Higgsino DM is shown in the
right panel of Fig. 7, with similar results. A similar degra-
dation is expected for the Wino and Higgsino cases when
adding the GDE and Fermi Bubble emissions to the resid-
ual background. The observed impact of the astrophysi-
cal background on the sensitivity to DM is the same for
the Wino and Higgsino candidates.

An additional study was performed in order to evalu-
ate the interplay between the spatial morphology of the
background components and the size of the DM core.
Changes in the DM core size are expected to modify
which spatial regions have the greatest sensitivity to the
DM signal. Consequently, the degree to which the lim-
its vary with core size could change depending on the
spatial morphology of the background. Equivalently, the
degree to which the astrophysical backgrounds weaken
the limits may depend on the assumed core size. For
example, background features occurring a few degrees
from the GC might have a negligible effect for peaked
density profiles with small cores, but a larger impact for
few-kpc cores. Fig. 8 shows the CTA expected mean
95% C.L. upper limit on 〈σv〉line for Wino DM, at the
thermal mass, as a function of the DM core radius rc.
The limits are obtained under the assumption of residual
background only, residual background and GDE, and all
astrophysical backgrounds. In case of the GDE, the two
above-mentioned scenarios are considered. Note we are
considering the case of residual background and GDE, in
order to avoid being dominated by the optimistic extrap-
olation of the Fermi Bubbles in the TeV energy range.
We observe no obvious interplay between the core size
and the effects of including astrophysical backgrounds;
the degradation of the limits in the presence of astro-
physical backgrounds is similar for all core sizes tested.)

The sensitivities computed in this work can be signif-
icantly degraded when systematic uncertainties are con-
sidered in the analysis. DM searches in the complex en-
vironment of the GC region will need to contend with ex-
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Figure 6. 95% C.L. expected upper limits on the line Higgsino annihilation cross section as a function of its mass for the
Einasto profile (red solid line) and cores of size from 300 pc to 5 kpc. The theoretical cross section is printed in gray. Top
left panel: Limits computed assuming mass splittings δmN = 200 keV and δm+ = 350 MeV. The mean expected limits are
shown at 2σ (red solid line) and 5σ (red dashed line), respectively. Top right panel: Limits computed assuming mass splittings
δmN = 2 GeV and δm+ = 480 MeV. Bottom panels: 95% C.L. expected mean upper limits for CTA on the Higgsino annihilation
cross section as a function of its mass, for an Einasto DM profile and 500 hour homogeneous exposure in a 10◦-side squared
region centered at the GC region. The expected limits (red solid line) are shown together with the 1σ (green band) and 2σ
(yellow band) containment band obtained from the Asimov dataset. Only the residual background is considered here. The
predicted LO cross section is shown (solid gray line) and the thermal Higgsino DM mass is marked (cyan solid line and bands).
The sensitivity is computed for the mass splittings δmN = 200 keV and δm+ = 350 MeV (bottom left panel) and δmN = 2 GeV
and δm+ = 480 MeV (bottom right panel). The line-only constraints are shown as red dotted lines.

perimental systematic uncertainties arising, for instance,
from instrumental and observational conditions. System-
atic uncertainties will likely dominate the statistical un-
certainties, given the large amount of data expected in
the GC region. For estimates of the impact of the sys-
tematic uncertainties on the sensitivity, see, for instance,

Refs. [113, 114, 117].
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VI. CONCLUSIONS

We have computed the CTA sensitivity in the frame-
work of specific heavy DM candidates in the mass range
between 600 GeV and 100 TeV, assuming an Einasto DM
density profile peaked at the GC and using the most-up-
to-date EFT computation of the annihilation spectrum
of the Wino and a Sommerfeld-enhanced tree-level com-
putation of the Higgsino spectrum. In this case, CTA has
the sensitivity to access to the Wino parameter region in
the few tens of TeV mass range, much beyond the ther-
mal mass region, extending further the already strong
constraints by H.E.S.S., and to probe the thermal mass
and cross section for the Higgsino. Accordingly, CTA will
open unique discovery space for these DM scenarios.

For the Higgsino, we find that the continuum contri-
bution can dominate the line contribution for determin-
ing the forecast limits at lower masses (below 2-3 TeV);
for the Wino, the inclusion of the endpoint spectrum sig-
nificantly improves the constraints relative to the case
with only the gamma-ray line (as was shown to be the
case for H.E.S.S in Ref. [68]), but adding the continuum
contribution does not modify the constraints significantly
(see Fig. 5). Given the impressive reach of CTA, the need
to calculate this contribution in the case of the Higgsino
is clearly emphasised.

As expected, the choice of the DM profile plays an
important role in the estimation of the sensitivity in the
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GC. While for Wino DM, a broad range of masses are
within reach even for DM profiles with kpc-size cores, this
is not the case for the Higgsino outside the resonances in
the predicted annihilation cross section.

Studying the impact of several standard astrophysi-
cal backgrounds on the sensitivity of CTA to DM under-
lines the importance of performing dedicated studies to
both spatially and spectrally model this emission; we es-
timate that these backgrounds can cause the constraints
on the DM annihilation cross section to deteriorate by
up to 50%. In addition, this study showed that the ef-
fect of including spatially inhomogeneous astrophysical
backgrounds appears to be largely independent of the
assumed core scale in the DM density profile.

CTA will be a unique probe for heavy DM candidates
in the TeV mass range, improving significantly over the
present limits set by the current imaging atmospheric
Cherenkov telescopes, although its full impact will de-
pend on the DM candidate and the distribution of the
DM around the GC.
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and Michael Krämer, “Constraining heavy dark matter
with cosmic-ray antiprotons,” JCAP 1804, 004 (2018),
arXiv:1711.05274 [hep-ph].

[48] Lars Bergstrom, Torsten Bringmann, and Joakim Ed-
sjo, “Complementarity of direct dark matter detec-
tion and indirect detection through gamma-rays,” Phys.
Rev. D 83, 045024 (2011), arXiv:1011.4514 [hep-ph].

[49] Matthew Cahill-Rowley, Randy Cotta, Alex Drlica-
Wagner, Stefan Funk, JoAnne Hewett, Ahmed Ismail,
Tom Rizzo, and Matthew Wood, “Complementarity of
dark matter searches in the phenomenological MSSM,”
Phys. Rev. D 91, 055011 (2015), arXiv:1405.6716 [hep-
ph].

[50] Lars Bergstrom and Piero Ullio, “Full one loop calcula-
tion of neutralino annihilation into two photons,” Nucl.
Phys. B504, 27–44 (1997), arXiv:hep-ph/9706232 [hep-
ph].

[51] Zvi Bern, Paolo Gondolo, and Maxim Perelstein,
“Neutralino annihilation into two photons,” Phys. Lett.
B411, 86–96 (1997), arXiv:hep-ph/9706538 [hep-ph].

[52] Piero Ullio and Lars Bergstrom, “Neutralino annihila-
tion into a photon and a Z boson,” Phys. Rev. D57,
1962–1971 (1998), arXiv:hep-ph/9707333 [hep-ph].

http://dx.doi.org/ 10.1088/1367-2630/11/10/105005
http://dx.doi.org/ 10.1088/1367-2630/11/10/105005
http://arxiv.org/abs/0903.3381
http://dx.doi.org/10.1088/1475-7516/2015/10/026
http://arxiv.org/abs/1507.05519
http://dx.doi.org/10.1016/0550-3213(93)90101-T
http://dx.doi.org/10.1016/0550-3213(93)90101-T
http://dx.doi.org/ 10.1103/PhysRevD.73.043510
http://dx.doi.org/ 10.1103/PhysRevD.73.043510
http://arxiv.org/abs/hep-ph/0510064
http://dx.doi.org/ 10.1103/PhysRevD.95.035020
http://arxiv.org/abs/1611.05048
http://arxiv.org/abs/1611.05048
http://dx.doi.org/ 10.1088/1475-7516/2017/05/006
http://arxiv.org/abs/1702.01141
http://dx.doi.org/ 10.1016/j.physletb.2007.01.012
http://dx.doi.org/ 10.1016/j.physletb.2007.01.012
http://arxiv.org/abs/hep-ph/0610249
http://arxiv.org/abs/hep-ph/0610249
http://dx.doi.org/ 10.1007/JHEP03(2011)069
http://arxiv.org/abs/1010.2172
http://arxiv.org/abs/1010.2172
http://dx.doi.org/10.1007/JHEP03(2016)119
http://dx.doi.org/10.1007/JHEP03(2016)119
http://arxiv.org/abs/1601.04718
http://dx.doi.org/ 10.1007/JHEP10(2013)124
http://arxiv.org/abs/1307.4400
http://dx.doi.org/10.1088/1475-7516/2013/10/061
http://arxiv.org/abs/1307.4082
http://dx.doi.org/10.1088/1674-1137/42/4/043105
http://dx.doi.org/10.1088/1674-1137/42/4/043105
http://arxiv.org/abs/1705.04843
http://arxiv.org/abs/1712.02118
http://arxiv.org/abs/1804.07321
http://dx.doi.org/10.1007/JHEP08(2014)161
http://arxiv.org/abs/1404.0682
http://dx.doi.org/10.1007/JHEP10(2014)033, 10.1007/JHEP01(2015)041
http://arxiv.org/abs/1407.7058
http://dx.doi.org/10.1007/JHEP12(2014)108
http://dx.doi.org/10.1007/JHEP12(2014)108
http://arxiv.org/abs/1410.6287
http://dx.doi.org/ 10.1103/PhysRevD.91.115002
http://arxiv.org/abs/1502.05044
http://dx.doi.org/ 10.1016/j.physletb.2012.01.013
http://dx.doi.org/ 10.1016/j.physletb.2012.01.013
http://arxiv.org/abs/1111.0016
http://dx.doi.org/10.1103/PhysRevLett.112.211602
http://dx.doi.org/10.1103/PhysRevLett.112.211602
http://arxiv.org/abs/1309.4092
http://arxiv.org/abs/1309.4092
http://dx.doi.org/10.1103/PhysRevD.91.043504
http://arxiv.org/abs/1401.3339
http://dx.doi.org/ 10.1103/PhysRevD.91.043505
http://dx.doi.org/ 10.1103/PhysRevD.91.043505
http://arxiv.org/abs/1409.8290
http://dx.doi.org/10.1007/JHEP06(2015)097
http://arxiv.org/abs/1504.00915
http://dx.doi.org/ 10.1007/JHEP02(2015)014
http://arxiv.org/abs/1411.5214
http://arxiv.org/abs/1411.5214
http://dx.doi.org/ 10.1007/JHEP10(2019)043
http://arxiv.org/abs/1905.00315
http://dx.doi.org/ 10.1088/1475-7516/2012/06/016
http://arxiv.org/abs/1202.0692
http://arxiv.org/abs/1202.0692
http://dx.doi.org/10.1088/1475-7516/2014/07/031
http://dx.doi.org/10.1088/1475-7516/2014/07/031
http://arxiv.org/abs/1401.6212
http://dx.doi.org/10.1088/1475-7516/2018/04/004
http://arxiv.org/abs/1711.05274
http://dx.doi.org/10.1103/PhysRevD.83.045024
http://dx.doi.org/10.1103/PhysRevD.83.045024
http://arxiv.org/abs/1011.4514
http://dx.doi.org/10.1103/PhysRevD.91.055011
http://arxiv.org/abs/1405.6716
http://arxiv.org/abs/1405.6716
http://dx.doi.org/ 10.1016/S0550-3213(97)00530-0
http://dx.doi.org/ 10.1016/S0550-3213(97)00530-0
http://arxiv.org/abs/hep-ph/9706232
http://arxiv.org/abs/hep-ph/9706232
http://dx.doi.org/10.1016/S0370-2693(97)00990-8
http://dx.doi.org/10.1016/S0370-2693(97)00990-8
http://arxiv.org/abs/hep-ph/9706538
http://dx.doi.org/ 10.1103/PhysRevD.57.1962
http://dx.doi.org/ 10.1103/PhysRevD.57.1962
http://arxiv.org/abs/hep-ph/9707333


19

[53] Junji Hisano, Shigeki Matsumoto, and Mihoko M. No-
jiri, “Explosive dark matter annihilation,” Phys. Rev.
Lett. 92, 031303 (2004), arXiv:hep-ph/0307216 [hep-
ph].

[54] Junji Hisano, Shigeki. Matsumoto, Mihoko M. No-
jiri, and Osamu Saito, “Non-perturbative effect on
dark matter annihilation and gamma ray signature
from galactic center,” Phys. Rev. D71, 063528 (2005),
arXiv:hep-ph/0412403 [hep-ph].

[55] Nima Arkani-Hamed, Douglas P. Finkbeiner, Tracy R.
Slatyer, and Neal Weiner, “A Theory of Dark Matter,”
Phys. Rev. D79, 015014 (2009), arXiv:0810.0713 [hep-
ph].

[56] Kfir Blum, Ryosuke Sato, and Tracy R. Slatyer, “Self-
consistent Calculation of the Sommerfeld Enhance-
ment,” JCAP 1606, 021 (2016), arXiv:1603.01383 [hep-
ph].

[57] Marco Cirelli et al., “PPPC 4 DM ID: A Poor Parti-
cle Physicist Cookbook for Dark Matter Indirect Detec-
tion,” JCAP 1103, 051 (2011), arXiv:1012.4515 [hep-
ph].

[58] Andrzej Hryczuk and Roberto Iengo, “The one-loop and
Sommerfeld electroweak corrections to the Wino dark
matter annihilation,” JHEP 01, 163 (2012), [Erratum:
JHEP06,137(2012)], arXiv:1111.2916 [hep-ph].

[59] Martin Bauer, Timothy Cohen, Richard J. Hill, and
Mikhail P. Solon, “Soft Collinear Effective Theory for
Heavy WIMP Annihilation,” Proceedings, Meeting of
the APS Division of Particles and Fields (DPF 2015),
JHEP 01, 099 (2015), arXiv:1409.7392 [hep-ph].

[60] Grigory Ovanesyan, Tracy R. Slatyer, and Iain W.
Stewart, “Heavy Dark Matter Annihilation from Effec-
tive Field Theory,” Phys. Rev. Lett. 114, 211302 (2015),
arXiv:1409.8294 [hep-ph].

[61] Matthew Baumgart, Ira Z. Rothstein, and Varun
Vaidya, “Constraints on Galactic Wino Densities
from Gamma Ray Lines,” JHEP 04, 106 (2015),
arXiv:1412.8698 [hep-ph].

[62] Matthew Baumgart and Varun Vaidya, “Semi-inclusive
wino and higgsino annihilation to LL′,” JHEP 03, 213
(2016), arXiv:1510.02470 [hep-ph].

[63] Grigory Ovanesyan, Nicholas L. Rodd, Tracy R. Slatyer,
and Iain W. Stewart, “One-loop correction to heavy
dark matter annihilation,” Phys. Rev. D95, 055001
(2017), arXiv:1612.04814 [hep-ph].

[64] Matthew Baumgart, Timothy Cohen, Ian Moult,
Nicholas L. Rodd, Tracy R. Slatyer, Mikhail P. Solon,
Iain W. Stewart, and Varun Vaidya, “Resummed
Photon Spectra for WIMP Annihilation,” (2017),
arXiv:1712.07656 [hep-ph].

[65] Matthew Baumgart, Timothy Cohen, Emmanuel
Moulin, Ian Moult, Lucia Rinchiuso, Nicholas L. Rodd,
Tracy R. Slatyer, Iain W. Stewart, and Varun Vaidya,
“Precision Photon Spectra for Wino Annihilation,”
JHEP 01, 036 (2019), arXiv:1808.08956 [hep-ph].

[66] Lars Bergstrom, Torsten Bringmann, Martin Eriksson,
and Michael Gustafsson, “Gamma rays from heavy
neutralino dark matter,” Phys. Rev. Lett. 95, 241301
(2005), arXiv:hep-ph/0507229 [hep-ph].

[67] Torsten Bringmann, Lars Bergstrom, and Joakim Ed-
sjo, “New Gamma-Ray Contributions to Supersymmet-
ric Dark Matter Annihilation,” JHEP 01, 049 (2008),
arXiv:0710.3169 [hep-ph].

[68] Lucia Rinchiuso, Nicholas L. Rodd, Ian Moult, Em-

manuel Moulin, Matthew Baumgart, Timothy Co-
hen, Tracy R. Slatyer, Iain W. Stewart, and Varun
Vaidya, “Hunting for Heavy Winos in the Galactic Cen-
ter,” Phys. Rev. D98, 123014 (2018), arXiv:1808.04388
[astro-ph.HE].

[69] M. Beneke, A. Broggio, C. Hasner, and M. Vollmann,
“Energetic γ-rays from TeV scale dark matter annihila-
tion resummed,” (2018), arXiv:1805.07367 [hep-ph].

[70] M. Beneke, A. Broggio, C. Hasner, K. Urban, and
M. Vollmann, “Resummed photon spectrum from dark
matter annihilation for intermediate and narrow energy
resolution,” (2019), arXiv:1903.08702 [hep-ph].

[71] Martin Beneke, Caspar Hasner, Kai Urban, and
Martin Vollmann, “Precise yield of high-energy pho-
tons from Higgsino dark matter annihilation,” (2019),
arXiv:1912.02034 [hep-ph].

[72] Masahiro Ibe, Shigeki Matsumoto, and Ryosuke Sato,
“Mass Splitting between Charged and Neutral Winos at
Two-Loop Level,” Phys. Lett. B721, 252–260 (2013),
arXiv:1212.5989 [hep-ph].

[73] J. Einasto, “On the Construction of a Composite Model
for the Galaxy and on the Determination of the System
of Galactic Parameters,” Trudy Astrofizicheskogo Insti-
tuta Alma-Ata 5, 87–100 (1965).

[74] A. Abramowski et al. (H.E.S.S.), “Search for a Dark
Matter annihilation signal from the Galactic Center halo
with H.E.S.S,” Phys. Rev. Lett. 106, 161301 (2011),
arXiv:1103.3266 [astro-ph.HE].

[75] Lidia Pieri, Julien Lavalle, Gianfranco Bertone, and
Enzo Branchini, “Implications of High-Resolution Sim-
ulations on Indirect Dark Matter Searches,” Phys. Rev.
D83, 023518 (2011), arXiv:0908.0195 [astro-ph.HE].

[76] Riccardo Catena and Piero Ullio, “A novel determina-
tion of the local dark matter density,” JCAP 1008, 004
(2010), arXiv:0907.0018 [astro-ph.CO].

[77] R. Abuter et al. (GRAVITY), “Detection of the grav-
itational redshift in the orbit of the star S2 near the
Galactic centre massive black hole,” Astron. Astrophys.
615, L15 (2018), arXiv:1807.09409 [astro-ph.GA].

[78] J. I. Read, “The Local Dark Matter Density,” J. Phys.
G41, 063101 (2014), arXiv:1404.1938 [astro-ph.GA].
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