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Abstract 12 
Electric vehicle (EV) penetration has been increasing in the modern electricity grid and has been 13 
complemented by the growth of EV charging infrastructure. This paper addresses the gap in the 14 
literature on the EV effects of total electricity costs in commercial buildings by incorporating V0G, 15 
V1G, and V2B charging. The electricity costs are minimized in 14 commercial buildings with real 16 
load profiles, demand and energy charges. The scientific contributions of this study are the 17 
incorporation of demand charges, quantification of EV and smart charging electricity costs and 18 
benefits using several representative long-term datasets, and the derivation of approximate 19 
equations that simplify the estimation of EV economic impacts. Our analysis is primarily based on 20 
an idealized uniform EV commuter fleet case study. The V1G and V2B charging electricity costs 21 
as a function of the number of EVs initially diverge with increasing charging demand and then 22 
become parallel to one another with the V2B electricity costs being lower than V1G costs. A longer 23 
EV layover time leads to higher numbers of V2B charging stations that can be installed such that 24 
original (pre-EV) electricity costs are not exceeded, as compared to a shorter layover time. 25 
Sensitivity analyses based on changing the final SOC of EVs between 90% to 80% and initial SOC 26 
between 50 to 40% (thereby keeping charging energy demand constant) show that the total 27 
electricity costs are the same for V0G and V1G charging, while for V2B charging the total 28 
electricity costs decrease as final SOC decreases.  29 
 30 
Keywords: Demand charge; Smart charging; Electric vehicles; Buildings; Electricity cost 31 
minimization; Optimization 32 
 33 

Nomenclature 

BC EV battery capacity (kWh) 𝑅 rate of energy charges ($/kWh) / rate of 

demand charges ($/kW)  

BE EV battery energy (kWh) RT regularization term 

CD EV charging demand (kWh) SOC EV state of charge 

𝑑 date index of month 𝑡 time (hours) 

EC energy charges ($) ∆𝑡 time resolution (hours) 
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ED energy demand (kWh) 𝑤 weight 

EV electric vehicle / electric vehicle charging 

rate (kW) 

𝑤𝑓 weighing factor for regularization term 

𝑗 EV index Subscripts  

𝐿 original (pre-EV) building load (kW) 𝑐𝑜𝑟 corrected 

𝑚 number of days in a month day daily 

𝑛 total number of EVs end end of simulation time 

NC non-coincident 𝑓 final 

NCDC non-coincident demand charge ($) 𝑖 initial 

NCDP non-coincident demand peak (kW) 𝑜𝑓𝑓 off-peak layover period 

NL optimized net load of buildings (kW) 𝑜𝑛 on-peak layover period 

OC other charges ($) 𝑜𝑝𝑡 optimum 

OPDC on-peak period demand charge ($) 𝑜𝑟𝑔 original 

OPDP on-peak period demand peak (kW) 𝑡ℎ𝑟 threshold 

PP on-peak period   

 34 
1. Introduction 35 

 36 
1.1 Motivation 37 
 38 

The use of electric vehicles (EVs) has significantly increased in the past decade and is 39 

projected to increase even more in the coming decade. The push towards the increasing market 40 

penetration of EVs has also been complemented by the strong growth of EV charging 41 

infrastructure along interstate highways, at workplaces, and at public parking lots 1. There are three 42 

popular types of EV charging: V0G (“dumb” charging at constant full power from when the 43 

vehicles are plugged in until they are unplugged or full, whichever occurs earlier), V1G 44 

(unidirectional, grid-to-vehicle variable smart charging) and V2G (bidirectional, grid-to-vehicle 45 

and vehicle-to-grid variable smart charging). V2B (bidirectional, grid-to-vehicle and vehicle-to-46 
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building variable smart charging) is a variant of V2G, where the EVs, instead of feeding back 47 

energy directly to the grid, reduce the building’s net load peak (grid import). Smart charging 48 

optimally charges and discharges (in case of V2G/V2B) the EVs to provide economic benefit to 49 

EV owners, microgrid/EV charging station operators, and/or grid operators 2.  50 

1.2 Literature Review 51 
 52 

V2G chargers are gaining importance and making a stronger business case because of value 53 

streams associated with operational flexibility as compared to V1G chargers 3. While the EV 54 

charging literature is vast, the following literature in this paragraph only discusses studies that 55 

incorporate V2G charging. Alusio et al. 2 described an optimal day ahead operating strategy for 56 

microgrids with V2G EVs to minimize operating costs based on forecasted load demand and 57 

renewable generation. The authors used time-of-use energy rates for the analysis and demonstrated 58 

the optimization algorithm on a test microgrid. In Ref. 4, the authors carried out a techno-economic 59 

analysis of V2G in the Indonesian power grid considering 3 different tariffs: i) a fixed tariff which 60 

provided flat charging and discharging energy rates to EV owners, ii) a “natural” tariff which 61 

provided energy rates based on the electric generating resources, for example, geothermal, hydro, 62 

coal etc., iii) a demand response tariff which provided energy rates and incentives depending upon 63 

the amount of electricity supply and demand, i.e. the demand response tariff will increase when 64 

demand is high. The authors reported the environmental and economic advantages of incorporating 65 

V2G charging for both EV owners and utility companies. The authors in Ref. 5 presented an 66 

adjustable robust optimization scheduling model for a microgrid with renewable energy 67 

generation, V2G EVs, and time-of-use energy rates. Results showed improvements in the 68 

operational stability and economic performance of the microgrid, such as increasing the wind 69 

energy utilization, reducing peak-loads, and increasing minimum loads. Kiaee et al. 6 developed a 70 
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V2G simulator to undertake power flow analyses to compare the total charging cost of EVs with 71 

and without V2G technology within a power system consisting of 5,000 EVs using time-of-use 72 

energy rates. The control algorithm took advantage of arbitrage, while considering  the EV 73 

capacity, the SOC, vehicle movement within the system and the requirements of drivers and power 74 

system operators. V2G charging achieved a 13.6% reduction in charging cost. A review paper 7 75 

sheds light on various optimization algorithms used for EV scheduling for grid integration. 76 

Schuller et al. 8 compared the weekly charging cost of EVs owned by different socio-77 

economic groups by implementing V0G, V1G, and V2G charging strategies for residential 78 

charging with a time-of-use energy rate. Employees and retirees are the two socio-economic 79 

groups with the greatest contrast in driving behavior, driving 228 km and 119 km on average per 80 

week, respectively. For employees, weekly average costs are 32% and 45% less for V1G and V2G 81 

charging respectively as compared to V0G. For retirees, V1G and V2G charging saved about 51% 82 

and 62% respectively as compared to V0G. Datta et al. 9 proposed a charging/discharging strategy 83 

according to the price of electricity during off and on peak hours (i.e., time-of-use energy rates), 84 

and illustrated that the monthly cost savings associated with V2B is 11.6% as compared to V1G. 85 

Zhou et al. 10 optimized the provision of ancillary services to bring economic benefits to V2G EV 86 

owners in China under time-of-use energy rates. Refs. 11,12 further shed light on the capability of 87 

V2G EVs to shift charging from peak to off peak periods depending on time of use energy rates 88 

and demand response programs. 89 

   None of the studies discussed in the above literature review considered the effect of 90 

demand charges while optimizing V2G/V2B EV charge scheduling, even though demand charges 91 

are a significant portion (30 - 70%) of the electricity bill for commercial and industrial customers 92 

13. Very few studies directly deal with demand charges for EV charging 14. Zhang et al. 14 proposed 93 
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a V1G charging scheme for demand charge reductions, with the EV charging stations installed at 94 

four locations: large and small retail, recreation area, and workplace. The authors used real world 95 

Level 2 EV charging data for the analyses, where for the large retail (which is least flexible due to 96 

shorter charging events and higher EV mobility), 80% of the charging events were shorter than 3 97 

hours. The proposed V1G smart charging scheme reduced monthly demand charges for large retail 98 

by 20-35% as compared to no-control charging for 30% EV demand penetration level, which is 99 

the percentage of EV energy demand with respect to the original (pre-EV) energy demand of the 100 

building. Refs. 15 and 16 considered demand charges for electric bus V1G fast charging stations but 101 

charging schedules of public buses differ from passenger EVs 15 with bus driving schedules being 102 

longer and rigid and energy requirements larger 15, and thus public bus charging is a unique 103 

problem 16. Additionally, to the best of the authors’ knowledge, only one previous work 8 presented 104 

a direct economic performance comparison of both V2G and V1G charging. Also, no previous 105 

work incorporated demand charges for commuter V2G/V2B EVs which the present work 106 

considers. 107 

Although V2G/V2B scheduling strategies for economic cost optimization for time-of-use 108 

energy rates have been investigated previously, there are very few works on the long-term 109 

economic impact of smart charging. Most of the literature present case studies over a single day, 110 

week, or month to prove the efficacy of the schemes conceptually, as summarized in Table 1. 111 

However, at least year-long studies are needed to capture seasonal variations in building loads, EV 112 

demand, and tariffs.  113 

Table 1. Simulation duration of other studies in literature 114 

Work Duration 

Alusio et al. 2 1 day 

Shi et al. 5 1 day 
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Zhou et al. 10 1 day 

Onishi et al. 11 1 day 

Zhang et al. 14 1 day 

Kiaee et al. 6 5 weekdays 

Schuller et al. 8 7 days/1 week 

Datta et al. 9 30 days/1 month 

Huda et al. 4 1 year 

Present Work 1 year 

Li et al. 12 10 years 

 115 

1.3 Present work and its objective 116 
 117 

In the present work, we analyze workplace V2B, V1G, and V0G charging with real load 118 

profiles from 14 commercial buildings, with 100% EV charging/discharging efficiency. The 119 

objective function minimizes the building electricity bill consisting of time-of-use energy and 120 

demand charges. One objective of this study is to report the optimal number of V2B charging 121 

stations to be installed at a particular building such that the original (pre-EV) operating electricity 122 

bill is not exceeded. The study also compares the electricity costs for 14 buildings under V0G, 123 

V1G and V2B charging strategies. Sensitivity analyses elucidate the effects of varying arrival and 124 

final state of charges (SOCs) on the total electricity bill. EV charging stations at commercial 125 

buildings are generally added “behind the meter” such that the energy consumed is lumped with 126 

the building energy consumption and adds to the commercial building owners’ electricity costs. 127 

Commercial building owners typically either provide free charging to their employees or they 128 

contract with a third-party operator who collects charging fees from the EV owners. Charging fees 129 

can be structured such that charging (and discharging) flexibility is rewarded. Therefore, while the 130 
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total electricity costs analyzed in this paper only directly apply to commercial building owners, 131 

some of the savings can be passed on to EV owners. 132 

1.4 Novelty of the present work 133 
 134 

The novelties of the present work are as follows: 135 

• Realistic demand charges, which vary according to the time of the day and 136 

summer/winter season have been considered in the electricity bill. Ref. 14 considers 137 

demand charges whose rate varies according to the tier of demand (first 35 kW costs 138 

$0/kW, next 115 kW costs $5.72/kW and the remaining costs $10.97/kW), but not 139 

according to time-of-day or season-wise. Ref. 14  also only considers V1G smart 140 

charging (no V2G/V2B analysis), and only for one EV demand penetration level (refer 141 

to Section 1.2). 142 

• Two case studies are presented to quantify the electricity bill savings obtained by using 143 

V2G/V2B over V1G/V0G charging at commercial buildings: (A) A year-long case 144 

study, with variable number of EVs, using two daily EV layover intervals that are 145 

realistic, but uniform across the fleet; (B) A 5 day case study which is representative 146 

of a monthly analysis, based on historical EV charging data. Only Refs. 4 and 12 147 

present studies with similar (or longer) time duration. Ref. 4 presents a year-long 148 

analysis of only V2G EV charging to show its effect on electricity cost reduction, but 149 

for a predefined fixed number (1 million) of V2G EVs. Ref. 12 presents a ten year 150 

analysis but also only considering V2G EVs. The motivation of Ref. 12 is also different, 151 

where V2G user and power grid company economic benefits (cost savings) are 152 

analyzed solely as a function of discharging power of the V2G EVs at the peaks (peak 153 

shaving load). Our study evaluates the electricity bill savings for commercial buildings 154 
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incorporating V2B charging as a function of number of EV charging stations, and 155 

additionally compares the V2B electricity costs to V1G and V0G charging electricity 156 

costs. 157 

• The year-long analysis predicts the optimum number of V2B charging stations to be 158 

installed at a building, so as not to exceed the original (pre-EV) electricity bill. 159 

• We derived and validated approximate analytical expressions for the total electricity 160 

costs as a function of EV charging demand. This is the first time that such equations 161 

have been derived. The equations allow for quick estimation of EV benefits worldwide. 162 

The rest of the paper is organized as follows: Section 2 presents the problem formulation 163 

and discusses the optimization algorithm. Section 3 presents the results and discussion, and Section 164 

4 presents the conclusions. Supplementary material is included at the end to present relevant 165 

discussion and results that expand upon the results presented in Section 3 of the main text. Any 166 

Section, Figure or Table referred to in this paper indicates to those in the main text unless 167 

specifically mentioned. References to the Supplementary material are explicitly mentioned 168 

wherever necessary. 169 

2. Problem formulation and optimization algorithm 170 

2.1 Overview of the fleet and charging scenarios 171 

We aim to minimize the building electricity costs following the installation of a variable 172 

number of EV charging stations. To obtain representative savings, the analysis covers EV charging 173 

on all weekdays in 2019, while the weekend EV load is assumed to be zero. Weekends are 174 

excluded from EV charging as smaller building loads and less workplace charging preclude 175 

demand charge events, and time-of-use energy rate differences are smaller. Therefore, weekend 176 

EV charging does not materially impact the annual utility bill savings. Two case studies (A) and 177 
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(B) are considered. Case study (A), presented in part in the main text, and in part in Sections 1.1 178 

through 1.2 of the Supplementary material, consists of an idealized uniform commuter fleet, where 179 

all EVs have the same battery, and arrive and depart daily at the same time, with the same initial 180 

and final SOC, respectively. The assumption of EVs arriving and departing at the same time daily 181 

is valid for certain type of buildings, such as hospitals and corporate buildings. Case study (A) is 182 

carried out for 14 commercial buildings located on the University of California (UC) San Diego 183 

campus, whose original load data can be found in Ref. 17. The buildings’ primary functions are 184 

diverse and include classrooms, libraries, office spaces, and research laboratories. The load 185 

characteristics of the buildings for the analysis period (year 2019), along with their floor areas and 186 

year of construction are given in Table 2. Case study (B), presented completely in Section 3.5, 187 

considers a realistic case using historical EV charging data for a parking structure with 16 EV 188 

charging stations for 5 weekdays in February 2020, with the EV load being mapped to a building 189 

having 0 original load (the EV load thus becomes the net load of the building). The historical EV 190 

charging dataset contains the time of EV connection, disconnection and end of charging time, the 191 

amount of energy charged, the port type (Level 2 or Direct Current Fast Charger), and the initial 192 

and final SOC. 193 

For V0G charging, the EVs charge at their maximum battery power, starting from the time 194 

the EVs are plugged in until meeting the charging energy demand, without any regard for the 195 

original building load. However, V1G and V2B EVs charge smartly to optimize the electricity 196 

costs, with V2B EVs having the additional capability to discharge back to the grid. Case studies 197 

(A) and (B) cover the application of the model for uniform EV fleet, and non-uniform realistic 198 

scenario based on historical EV charging data respectively, showing the efficacy of the 199 

optimization model in minimizing electricity costs for various scenarios. 200 
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Table 2. Mean original real load for all weekdays, mean of original monthly non-coincident 201 
demand peak and on-peak period demand peak (see definitions in Section 2.2), floor areas, 202 
number of floors, and year constructed of the buildings analyzed for the year 2019. 203 

Building name 

(Building number) 

Mean original 

real load (kW) 

Mean original non-

coincident demand 

peak (kW) 

Mean original on-

peak period 

demand peak (kW) 

Building floor area 

(ft2) 

# of 

floors 

Year 

Constructed 

Mandeville Center 

(I) 

32.2 60.1 56.9 131,365 4 1974 

Police Department 

(II) 

38.1 59.9 54.3 14,567 1 1991 

Hopkins Parking 

Structure (III) 

57.6 99.4 78.6 446,095 7 2006 

Rady (Wells Fargo) 

Hall (IV) 

60.3 103.1 98.8 93,440 4 2012 

Pepper Canyon Hall 

(V) 

62.0 102.4 91.5 85,985 4 2004 

Otterson Hall (VI) 90.9 133.6 131.6 104,363 4 2007 

Music Center (VII) 91.9 137.5 132.1 91,957 4 2008 

Robinson Hall - 3 

buildings (VIII) 

95.0 134.7 129.9 32,932 + 5,142 + 

29,618 = 67,724 

4, 1, 2 1990 

East Campus Office 

(IX) 

118.3 156.4 146.4 77,164 3 2011 

Center Hall (X) 122.8 194.4 186.2 83,288 4 1995 

Student Services 

Center (XI) 

140.5 242.9 202.1 135,085 4 2007 

Social Sciences 

Building (XII) 

146.5 200.0 184.5 84,386 5 1995 

Galbraith Hall 

(XIII) 

196.0 307.4 301.7 127,979 4 1965 
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Geisel Library 

(XIV) 

532.0 649.2 644.0 416,509 10 1970 

 204 

2.2 Objective function 205 

The objective function to be minimized is the total electricity charges of the building plus 206 

a regularization term. The objective function is  207 

min[ 𝑅!"#"(𝑡) × NCDP + 𝑅$%#"(𝑡) × OPDP + 0∑ ∑ (𝑅&"(𝑡) × NL'()(𝑑, 𝑡))*+,	./∆)
)*1 ×2*3

2*4208 

∆𝑡)} + OC	(𝑑, 𝑡) + RT	(𝑑, 𝑡):,                (1)                                                                                                                                      209 

where 𝑅!"#" is the non-coincident demand charge rate, NCDP is the non-coincident demand peak 210 

which is the maximum load demand from the grid at any 15 min interval of the month, 𝑅$%#" is 211 

the on-peak demand charge rate, OPDP is the on-peak period demand peak which is the maximum 212 

load demand from the grid at any 15 min interval between 16:00 and 21:00 hours of all days of the 213 

month, 𝑅&"(𝑡)	 is the time-of-use energy charge rate, NL'() is the building optimized net load 214 

demand from the grid, 𝑑 is the index of the day of the month, 𝑚 is the number of days of the 215 

month, 𝑡 is the time of the day in hours, ∆𝑡 is the time resolution which is chosen as 15 minutes 216 

(0.25 hours), consistent with the real load input data from the buildings, OC is other charges1, 217 

and	RT is a regularization term which guarantees a unique solution of Eq. (1). The first term in Eq. 218 

(1) is the non-coincident demand charge, the second term is the on-peak period demand charge, 219 

and the third term covers the off-peak and on-peak period energy costs over the entire month. The 220 

third term in Eq. (1) shows that for each day, the energy costs are covered from  𝑡 = 0 to 𝑡 =221 

 
1 Other costs are the DWR Bond Charge ($0.00580 × Total energy usage in a month), the City of San Diego Franchisee 
fee ($0.0578 × [R!"#"(𝑡) × NCDP + R$%#"(𝑡) × OPDP + {∑ ∑ (𝑅&"(𝑡) × NL'()(𝑑, 𝑡))*+,	./∆)

)*1 × ∆𝑡)}2*3
2*4 ]), the 

DWR Bond franchisee fee (($0.0688 × DWR Bond Charge), the CA State Surcharge (($0.00030 × Total energy usage 
in a month), and the CA State Regulatory charge ($0.00058 × Total energy usage in a month).  
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24	h − ∆𝑡. 𝑡 = 0 corresponds to the time period from 00:00 to 00:15 hours, while 𝑡 = 24	h − ∆𝑡 222 

corresponds to the time period from 23:45 to 24:00 hours, thus covering the entire day. RT aims 223 

to minimize the deviation of the optimized net load from the original load (which indirectly avoids 224 

unnecessary charging/discharging cycles of the EV) as RT	(𝑑, 𝑡) = 𝑤𝑓 ×225 

∑ ∑ DENL'()(𝑑, 𝑡) − 𝐿'56(𝑑, 𝑡)ED)*+,	./∆)
)*1

2*3
2*4 , where ‖. ‖ is the 2-norm, 𝑤𝑓 is a weighting factor 226 

which is set as 0.01, and 𝐿'56 is the original baseline building load.  227 

2.3 Constraints 228 

In this Section, for simplicity, 𝑑 is dropped from the variable argument, with only 𝑡 being 229 

retained, as the constraints are presented for one day. E.g., NL'()(𝑑, 𝑡)is written as NL'()(𝑡). The 230 

daily power balance for each building is formulated as 231 

NL'()(𝑡) = 𝐿'56(𝑡) +	∑ EV7(𝑡)7*8
7*4 ,                                                                  (2) 232 

where 𝑛 is the number of EVs, EV7 is the jth electric vehicle charging rate where 𝑗 is the EV index. 233 

Power flow from the grid to the EV (charging) is considered positive.  234 

The EV charging rate is constrained as  235 

minEV7 ≤ EV7(𝑡) ≤ maxEV7,                                      (3) 236 

where the maximum and minimum EV charging rate depends upon the charging technology used 237 

(V0G/V1G/V2G/V2B). For V0G and V1G, minEV7 = 0, whereas for V2G/V2B, minEV7 =238 

	−max EV7 .  239 

The EV battery energy constraints are formulated as  240 

minBE7 ≤ BE7 	(𝑡) ≤ maxBE7,                                                                                            (4) 241 

where	BE7 is the Battery Energy of the jth EV.  242 

The minimum and maximum SOC of the battery are inputs, which in turn predefine the 243 

minimum and maximum battery energy limits.  244 
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The initial battery energy of the EV at the time of connection is formulated as 245 

BE7 	Q𝑡 = 𝑡9
7R = SOC9

7 	× BC7,                                                                       (5) 246 

where SOC9
7 is the initial state of charge of the jth EV,	𝑡9

7  is the time the jth EV is connected to the 247 

charging station, “𝑖” stands for “initial”, and BC7 is the battery capacity of the jth EV. 248 

The battery energy variation with time is  249 

BE7 	(𝑡 + ∆𝑡) = BE7 	(𝑡) + EV7(𝑡) 	× ∆𝑡.                                                     (6) 250 

The total energy demand of the jth EV (ED7) is known beforehand as we use perfect 251 

forecasts. The final EV battery energy is constrained as  252 

BE7 	Q𝑡 = 𝑡:
7R = BE7 	Q𝑡 = 𝑡9

7R + ED7 ,                                                                      (7) 253 

where 𝑡:
7 is the disconnection time of the jth EV,  and “𝑓” stands for “final”. Furthermore, the total 254 

energy demand of the EV is formulated as 255 

 ED7 = QSOC:
7 −	SOC9

7R ×	BC7 .                                                              (8) 256 

In case study (B), if Eq. (8), gives an infeasible energy demand (ED7 greater than the 257 

charging ability of the battery given the layover time), then the energy demand is corrected (ED;'5
7 ) 258 

as  259 

ED;'5
7 = minWQ𝑡:

7 − 𝑡9
7R × maxEV7 , ED7:,                               (9) 260 

where Q𝑡:
7 − 𝑡9

7R	is the layover time.  261 

Charging/discharging takes place within the layover period only and is constrained as   262 

EV7(𝑡) = 0																																				0 ≤ 𝑡 < 𝑡9
7,                  (10) 263 

EV7(𝑡) = 0																																				𝑡:
7 < 𝑡 ≤ 𝑡<=>

7 ,                            (11) 264 

where 𝑡 = 0 and 𝑡 = 𝑡<=>
7  correspond to the times at the start and end of the simulation. 265 
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2.4 Optimization software 266 

The optimization is carried out in CVX, a package for specifying and solving convex 267 

programs 18,19 in the MATLAB environment. A flowchart for the optimization algorithm is shown 268 

in Fig. 1. 269 

 270 

Figure 1. Flow chart of the optimization algorithm 271 

2.5 Input Data for Case study (A) and (B)  272 
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Case study (A) is carried out for 14 metered UC San Diego buildings without EVs. The 273 

Case study (A) is further subdivided into two layover periods, a) 07:45 hours to 16:45 hours, which 274 

is representative of a typical office employee layover consisting of 8 hours of work-time, a 30 min 275 

lunch break and 30 mins for travel from the parking lot to the office and vice versa; and b) 06:30 276 

hours to 19:30 hours, which is representative of a typical medical worker shift, consisting of 12 277 

hours of work-time, a 30 min lunch break and 30 mins for travel from the parking lot to the medical 278 

center and vice versa. For Case study (A), the input variables that stay constant throughout the 279 

analysis are as follows. The battery capacity of all EVs (for j =1 through n) is chosen as BC7 =	60 280 

kWh which is representative of a typical EV 20. The minimum and maximum SOC of the EVs are 281 

fixed at 20 and 90% respectively, to limit battery degradation during extreme charging states. The 282 

maximum charging rate of the EVs are maxEV7 =6.6 kW, which is a typical value for a Level 2 283 

charger, which is the most prevalent type of EV charger in the United States 21. For Case study 284 

(B), the minimum and maximum SOC of the EVs are fixed at 0 and 100% respectively, with 285 

variable EV battery capacity and initial & final SOCs per the real charging dataset. Furthermore, 286 

in case study (B), the maximum charging and discharging rate of the EVs depends on the type of 287 

EV charging port they are plugged into (Table 7). Case Study (B) uses real data from ChargePoint 288 

at UC San Diego, where the initial and final SOC is given for a subset of charging events. For 289 

these subsets of EV charging events, initial and final SOC varied between 0-100%. Thus, to impute 290 

the missing data consistent with the original data, the SOC range for Case study (B) is fixed 291 

between 0-100%. 292 

The break-down of the electricity bill components levied by San Diego Gas & Electric are 293 

shown in Table 3. The non-coincident demand charge rates are constant throughout the year and 294 

are higher than the on-peak period demand charge rates in winter, but lower than the on-peak 295 
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period demand charge rates in summer. The on-peak period energy charge rates are higher than 296 

the off-peak period energy charge rates throughout the year. 297 

Table 3. Breakdown of electricity bill components - SDG&E AL-TOU tariff. The on-peak 298 
period is 16:00-21:00 hours, with the remaining hours being off-peak period hours. June 1 299 
to October 31 are summer months with the rest of the year being winter. 300 

Cost Component Symbol Value 

Non-coincident demand charge rate (both summer and 

winter) 

𝑅!"#"(𝑡) $24.48/kW 

On-peak period demand charge rate (summer) 𝑅$%#"(𝑡) $28.92/kW 

On-peak period demand charge rate (winter) $19.23/kW 

Off-peak period energy charge rate (summer) 𝑅&"(𝑡) 

 

$0.10679/kWh 

Off-peak period energy charge rate (winter) $0.09506/kWh 

On-peak period energy charge rate (summer) $0.12628/kWh 

On-peak period energy charge rate (winter) $0.10626/kWh 

 301 

2.6 Input data for sensitivity analysis 302 

A sensitivity analysis based on case study (A) is carried out to study the effect of varying 303 

the initial and final SOC of the EVs in Section 3.4. Initial and final SOC combinations of 40-80%, 304 

45-85% and 50-90% are analyzed to study the effect of changing the initial and final SOCs while 305 

keeping the energy demand of the EVs constant. Energy demand sensitivity analyses are also 306 

carried out for initial and final SOC combinations of 50-85% and 50-80% to elucidate the effects 307 

of changing the final SOC while keeping the initial SOC constant. 308 

3. Results and discussion 309 

3.1 Idealized uniform commuter EV fleet case study 310 

The results for building V (randomly selected) for initial and final EV SOC of 50% and 311 

90% respectively for Jan (January) 2019 and the entire year 2019 are presented in Section 3.2 of 312 
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the main text and Section 1.2 of the Supplementary material with graphics and summarized in 313 

Table 4. The BC7 =	60 kWh, and the initial and final SOC of 50 and 90% respectively correspond 314 

to a daily charging demand of 24 kWh per EV. Thus, the charging demand is increased in multiples 315 

of 24 kWh with each additional charging station / EV (see legend of figures in Section 3.2). The 316 

analyses are carried out up to 432 kWh charging demand (18 EV charging stations) as the changes 317 

in electricity costs per EV thereafter become independent of charging demand. The layover periods 318 

shown in the graphical analysis are 06:30 hours to 19:30 hours (Section 3.2) and 07:45 hours to 319 

16:45 hours (Section 1.2 of the Supplementary material).  320 

 Figure 2 shows the original (pre-EV) load for building V for Jan 2019. The electricity load 321 

is low on holidays (Jan 1) and weekends (Jan 5, 6, 12, 13, 19, 20, 26, 27) when the building 322 

occupancy is low. The original non-coincident (NC) and on-peak period (PP) peak occur on Jan 323 

31 at 14:00 hours at 109.0 kW and Jan 16 at 16:00 hours at 96.5 kW, respectively. 324 
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 325 

Figure 2. Original building V Load for Jan 2019 326 

Table 4 shows the NC and PP demand peaks for Jan 2019 for building V for selected EV 327 

charging demand scenarios for both layover periods.  328 

Table 4. Summary of the NC and PP demand peaks for all charging strategies for Jan 2019 329 
for building V. The original NC and PP demand peaks are 109.0 and 96.5 kW respectively. 330 
The peak values (with EV charging) which are larger / smaller than the original are marked 331 
in red / green font. 332 

Daily EV 

charging 

demand 

Layover 06:30-19:30 hours Layover 07:45-16:45 hours 

NC demand peak 

(kW) 

PP demand peak 

(kW) 

NC demand peak 

(kW) 

PP demand peak 

(kW) 
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(kWh) (# 

of EVs/ 

charging 

stations) 

V0G V1G V2B V0G V1G V2B V0G V1G V2B V0G V1G V2B 

24 (1) 110.6 109.0 102.4 96.5 96.5 89.9 111.0 109.0 102.4 96.5 96.5 91.0 

48 (2) 117.2 109.0 99.5 96.5 96.5 83.5 117.6 109.0 102.6 96.5 96.5 91.0 

72 (3) 123.8 109.0 101.5 96.5 96.5 82.4 124.2 109.0 105.0 96.5 96.5 91.0 

96 (4) 130.4 109.0 103.1 96.5 96.5 82.4 130.8 109.0 107.6 96.5 96.5 91.0 

120 (5) 137.0 109.0 105.0 96.5 96.5 82.4 137.4 109.8 110.3 96.5 96.5 91.0 

144 (6) 143.6 109.0 107.1 96.5 96.5 82.4 144.0 112.7 113.2 96.5 96.5 91.0 

168 (7) 150.2 109.0 109.6 96.5 96.5 82.4 150.6 115.6 116.1 96.5 96.5 91.0 

192 (8) 156.8 109.0 112.1 96.5 96.5 82.4 157.2 118.5 119.0 96.5 96.5 91.0 

216 (9) 163.4 109.5 114.7 96.5 96.5 82.4 163.8 121.4 121.9 96.5 96.5 91.0 

240 (10) 170.0 112.0 117.2 96.5 96.5 82.4 170.4 124.3 124.8 96.5 96.5 91.0 

432 (18) 222.8 132.2 137.4 96.5 96.5 82.4 223.2 147.6 148.1 96.5 96.5 91.0 

 333 

3.2 Layover 06:30 hours to 19:30 hours- medical worker shift 334 

3.2.1 V0G charging  335 

The V0G EVs start charging the moment they are plugged in (06:30 hours) at the highest 336 

possible EV battery power rate (6.6 kW), resulting in charging terminating by 10:15 hours. The 337 

highest original load in the 06:30-10:15 hours period occurs on Jan 22 at 09:30 hours and is 104.0 338 

kW. Therefore, on Jan 22 the net load (with V0G EVs) at 09:30 hours for 24 kWh (1 EV) of 339 

charging demand, which contributes 6.6 kW of charging load, becomes the V0G NC monthly 340 
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demand peak at 110.6 kW (see Table 4). The V0G monthly demand peak increases with further 341 

increasing charging demand by 6.6 kW per EV. As all charging occurs before the on-peak period, 342 

the PP demand peak remains the same as the original at 96.5 kW. Refer to Figure 1 of the 343 

Supplementary material for a graphical representation. 344 

3.2.2 V1G charging  345 

V1G chargers cannot discharge back into the grid, and hence the optimized net load (with 346 

EV charging) cannot be smaller than the original load. Figure 3(a) shows that on Jan 31, with up 347 

to 192 kWh of charging demand, the NC demand peak remains the same as the original at 109.0 348 

kW. Increasing the charging demand to 216 kWh increases the NC demand peak to 109.5 kW, 349 

which exceeds the original NC demand peak. With the addition of more V1G EV charging demand 350 

(above 216 kWh charging demand), the optimal NC peak demand increases by 2.5 kW per EV 351 

because the increasing charging demand (of 24 kWh per EV) is uniformly spread out over the 9.5 352 

hour off-peak layover period from 06:30-16:00 hours (see Section 3.2.4 for a detailed explanation).  353 

Figure 3(b) shows that the PP demand peak remains the same as the original at 96.5 kW 354 

for all charging demands. Because of the higher energy and demand charges applicable in the on-355 

peak period as compared to the off-peak period, all charging will take place in the off-peak layover 356 

period before 16:00 hours if feasible. A complete charging before 16:00 hours occur on some days 357 

(e.g. Figure 3(b) for 1 or 2 EVs) when accommodating all the charging demand within the off-358 

peak layover period does not lead to an increase of the NC demand peak beyond the original. 359 

However, complete charging before 16:00 hours is not optimal on days when the original off-peak 360 

load curve during the layover period cannot accommodate the charging demand without increasing 361 

the NC demand peak. Therefore, charging during the off-peak layover period (from 06:30-16:00 362 

hours) takes place until the optimized load becomes constant at the original NC demand peak. A 363 
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further increase in the charging demand results in EVs being charged during the on-peak layover 364 

period (16:00-19:30 hours) until the optimized on-peak layover period load becomes constant at 365 

the original PP demand peak. With further increasing the charging demand, charging occurs again 366 

exclusively in the off-peak layover period (06:30-16:00 hours), leading to increasing NC demand 367 

peak beyond the original demand peak (see Fig. 3(c)). Specifically, the additional charging demand 368 

is spread out uniformly over the off-peak layover period. The reasoning for the optimized charging 369 

strategy is given in Section 3.2.4.2 370 

Figure 3(c) shows the V1G timeseries analysis on Jan 22 to elucidate the optimized 371 

charging strategy. For a charging demand of 24 kWh, the entire charging takes place in the off-372 

peak layover period. With further increasing charging demand (192 kWh), charging continues to 373 

occur in the off-peak layover period until the off-peak layover period load becomes constant at the 374 

original NC demand peak (109.0 kW), with the rest of the charging occurring in the on-peak period 375 

without increasing the PP demand peak (96.5 kW). For a charging demand of 216 kWh, additional 376 

charging occurs initially in the on-peak period until the on-peak layover period load becomes 377 

constant at the PP demand peak, with the rest of the additional charging demand being uniformly 378 

accommodated in the off-peak layover period increasing the NC demand peak to 109.5 kW. With 379 

further increasing charging demand (above 216 kWh), additional charging occurs exclusively in 380 

the off-peak layover period, with the additional charging demand spread out uniformly, leading to 381 

an increase in the NC demand peak by 2.5 kW per EV (see Table 4). Comparing Figs. 3(a) and 382 

3(c) show that for some charging demands, the optimized NC and PP demand peaks are reached 383 

on multiple days. 384 

 
2 Note that in rare cases the maximum EV charging rate can restrict the maximum charging such that charging deviates 
slightly from the strategy described above. But most of the results relevant to this paper can be explained by the 
optimized charging strategy discussed above.  
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 385 

(a) 386 

 387 

(b) 388 
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 389 
(c) 390 

Figure 3. V1G charging for the 06:30-19:30 hours layover: (a) NC demand peak for Jan 31 391 
2019, when the original NC demand peak also occurs, (b) PP demand peak for Jan 16 2019, 392 
when the original PP demand peak also occurs, and (c) NC and PP demand peak for Jan 22 393 

2019, which provides the greatest limitation for accommodating PP EV charging. The 394 
legend shows total daily EV charging demand and the number in brackets in the legend 395 
correspond to the number of EVs/charging stations. The yellow shading denotes the off-396 
peak layover period, the red shading denotes the on-peak layover period, while the un-397 

shaded area denotes the non-layover period. The original NC and PP demand peaks are 398 
109.0 and 96.5 kW, respectively. 399 

 400 
3.2.3 V2B charging 401 

Figure 4(a) shows that the V2B chargers can discharge and decrease the optimized net load 402 

below the original load. For example, the NC demand peak decreases from 109.0 kW to 102.4 kW 403 

and then to 99.5 kW as the charging demand increases from 0 kWh to 24 kWh and then to 48 kWh 404 

respectively. This occurs because as the number of EVs increases, the total discharge power also 405 

increases. However, from a charging demand of 72 kWh, we see a monotonous increase in the NC 406 

demand peak, and starting at 168 kWh the optimized NC demand peak exceeds the original NC 407 

demand peak. Above a charging demand of 168 kWh, the NC demand peak increases by 2.5 kW 408 
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per EV (see Table 4), as the additional charging demand (over 168 kWh) is spread out uniformly 409 

over the entire off-peak layover period. The reasoning for this optimized V2B charging strategy is 410 

elucidated in Section 3.2.4. The variation in the optimized net load around 07:00 hours for all 411 

energy demands in Fig. 4(a) occurs due to the regularization term in the objective function that 412 

penalizes the deviation from the original load curve. The optimized load is equal to the NC demand 413 

peak after about 10:00 hours since no extra cost is incurred when the optimized load is equal to 414 

the NC demand peak threshold. A detailed discussion is provided in Section 1.1.2 of the 415 

Supplementary material. 416 

Figure 4(b) shows the on-peak period on Jan 16 which is the day with the original PP peak. 417 

With increasing charging demand from 24 kWh to 72 kWh, the PP demand peak decreases. The 418 

increased discharging capacity with the addition of more EVs is responsible for the reduction of 419 

the PP demand peak. With further increasing charging demand, the PP demand peak remains 420 

constant at 82.4 kW. The NC and PP demand thresholds for Jan are decided by different days 421 

depending on charging demand. Jan 16 decides the demand thresholds for 1 EV (for 24 kWh daily 422 

charging demand). Then, Jan 22 (shown graphically in Fig. 2 of Supplementary material) decides 423 

the demand thresholds for 2 or more EVs as shown by flat lines at 83.5 kW (2 EVs, 48 kWh) and 424 

82.4 kW (3 or more EVs, 72 kWh or more).  425 
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 426 

(a)  427 

 428 
(b) 429 

Figure 4. V2B charging for the 06:30-19:30 hours layover: (a) NC demand peak for Jan 31, 430 
2019, when the original NC demand peak also occurs, and (b) PP demand peak for Jan 16, 431 

2019 when the original PP demand peak also occurs. The original NC and PP demand 432 
peaks are 109.0 and 96.5 kW, respectively. 433 

 434 
3.2.4 Effect of charging type, load shape and layover period on electricity costs  435 

3.2.4.1 Cumulative results: 06:30-19:30 hours layover  436 
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Section 3.2.1 through 3.2.3 elucidate the effect of the charging demand (or number of 437 

charging stations) on the NC and PP demand peaks for Jan 2019 for the layover period 06:30-438 

19:30 hours. In Section 3.2.4, we compare the performance between V0G, V1G and V2B charging 439 

strategies in terms of total electricity costs for Jan and the entire year 2019 for the layover period 440 

06:30-19:30 hours. We also derive general mathematical expressions for the slopes (once they 441 

become constant) of the V0G, V1G and V2B total electricity charges versus daily energy demand 442 

curves month-wise, daily charging demand when the V1G and V2B curves transition to constant 443 

slope, and final offset between V1G and V2B total electricity charges. Although, we mostly 444 

present results from building V in this paper, the mathematical expressions are applicable to all 445 

the other buildings and for other layover periods. 446 

Figures 5 shows that for both Jan (Fig. 5a) and the entire year 2019 (Fig. 5b), the total 447 

electricity costs with V2B are lower than the original building costs for charging capacities up to 448 

120 kWh (or 5 V2B charging stations), making 5 the optimal number of V2B charging station 449 

installations for building V for the layover period 06:30-19:30 hours.  450 

 451 

(a) 452 
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 453 

(b) 454 
 455 

Figure 5. Total electricity charges versus total daily EV energy demand for (a) Jan 2019 456 
and (b) the entire year 2019 for the layover period 06:30-19:30 hours at building V. 457 

 458 
Figures 5 also shows that V0G charging incurs the highest electricity costs, followed by 459 

V1G and V2B respectively. This is expected as V0G cannot time-shift load demand from the grid 460 

and charges at the maximum charger power of 6.6 kW, while for V1G and V2B, charging is spread 461 

out smartly to optimize electricity costs. V2B reduces the electricity costs compared to V1G 462 

because the V2B discharging capability reduces the demand peak costs. The net summation of NC 463 

and PP demand peak charges are less for V2B than V1G which results from a greater reduction in 464 

PP demand peak charges compared to the increase in NC demand charges (Table 4).  The net cost 465 

savings as a result of shifting demand from the on-peak to off-peak layover period of V2G/V2B 466 

EVs are demonstrated for a hypothetical case study in Section 1.3 of the Supplementary material. 467 

Initially the V2B and V1G electricity costs diverge because with an increasing number of 468 

EVs, the V2B EVs can discharge during the non-coincident and on-peak period peaks, while 469 
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charging at other times, which leads to reduced costs. However, after a certain energy demand, 470 

Figs. 5(a) and 5(b) show that the V1G and V2B cost curves become parallel to each other.  471 

For V1G, as described in Section 3.2.2, after both the off-peak and on-peak layover period 472 

loads become constant (at their respective original peaks), additional charging demand is 473 

accommodated in the off-peak layover period only. Accommodating the additional charging 474 

demand exclusively in the off-peak layover period leads to an increase of the non-coincident 475 

demand peak as,  ∆NCDP = ∆"#567
4?	.	–	)8

9	, where ∆NCDP	is the increase of the NC demand peak, 476 

∆CD>AB is the daily increase in the charging demand and (16	h	–	𝑡9
7) is the off-peak layover which 477 

is 9.5 hours (06:30-16:00 hours) for the 06:30-19:30 hours layover. Accommodating the daily 478 

increase in charging demand exclusively in the on-peak layover period would increase the on-peak 479 

period demand peak as, ∆OPDP = ∆"#567
):
9/4?	.

	, where ∆OPDP	is the increase of the PP demand peak 480 

and (𝑡:
7 − 16	h)	is the on-peak layover which is 3.5 hours (16:00-19:30 hours) for the 06:30-19:30 481 

hours layover. Therefore, after the net loads are flat, V1G charging only occurs in the off-peak 482 

layover period if ∆NCDP × 𝑅!"#"(𝑡) 	− ∆OPDP × 𝑅$%#"(𝑡) 	< 0, which is the case as C;<=<(E)	
C>?=<(E)

<483 

4?	.	–	E@
A

EB
A-4?	.

 for both summer and winter. Table 3 shows that the ratio of 𝑅!"#"(𝑡)  to  𝑅$%#"(𝑡) is 1.27 484 

for winter and 0.85 for summer. For the 06:30-19:30 hours layover, the ratio of off-peak (9.5 hours) 485 

to on-peak (3.5 hours) layover duration is 2.7. Table 3 also shows that the PP energy charges are 486 

higher than the off-peak period energy charges for both summer and winter. Thus, after the net 487 

loads are flat, accommodating the additional charging demand uniformly in the off-peak layover 488 

period is most economical from both the energy and demand charges point of view.  489 
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For V2B, with a small charging demand it is economical to discharge during the off and 490 

on-peak period peaks, and charge at other times such that the off and on-peak layover period loads 491 

become constant, since a constant net load by definition has the smallest peak. The divergence of 492 

V2B and V1G electricity costs for a small number of EVs occurs as the V2B EVs – unlike V1G - 493 

can discharge during the original off-peak and on-peak period peaks, reducing the NC and PP 494 

demand peaks. With further increasing charging demand, once the off peak and on peak period 495 

loads are constant, it is most economical to spread out the additional charging demand exclusively 496 

over the off-peak layover period, keeping the PP load constant (as shown in Fig. 2 in 497 

supplementary material above 168 kWh charging demand) for the same reason discussed above 498 

for V1G charging. When additional charging demand is accommodated by charging in the off-499 

peak layover period only, V2B offers no further economic advantages over V1G. If the V2B EVs 500 

were to discharge at a given time, the same amount of energy would have to be charged at another 501 

time and therefore introduce a new peak. Thus, the V1G and V2B electricity costs become parallel 502 

after a certain energy demand as the additional energy and demand cost per added vehicle is 503 

identical. The trends of the total electricity charges versus the total daily EV energy demand curve 504 

for electricity tariff structures other than those in this paper are similar to Fig. 5 as discussed in 505 

Section 1.4 of the Supplementary material. 506 

3.2.4.2 Final slope of total electricity charges versus daily EV charging demand curve 507 

For V0G charging in Jan 2019 and daily charging/energy demand over 24 kWh (see Table 508 

4), when the slope of the V0G total electricity charges versus charging demand curve becomes 509 

constant (see Fig, 5(a)), with every 24 kWh of daily additional EV charging demand (∆CD>AB), the 510 

∆NCDP is 6.6 kW while the ∆OPDP is 0, which leads to an increase in the NCDC as ∆NCDC =511 

∆NCDP × 𝑅!"#"(𝑡), where 𝑅!"#"(𝑡) is $24.48/kW. The total charging demand increase in the 512 
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month is ∆CDHI=E. = ∆CD>AB ×Weekdays, where Weekdays = 23 for Jan 2019. The entire 513 

charging demand is added in the off-peak layover period which leads to increasing monthly energy 514 

charges as ∆ECHI=E. =	∆CDHI=E. × 𝑅&"(𝑡), where 𝑅&"(𝑡) is $0.09506/kWh. Due to the increase 515 

in NCDC and energy charges, there is a corresponding increase in other charges as ∆OC =516 

[0.00580 + 0.00030 + 0.00058 + (0.0688 × 0.00580)] ×	∆CDHI=E. + 0.0578 × (∆NCDC +517 

∆ECHI=E.). 518 

For the V1G and V2B charging, when the final slopes of their total electricity charges 519 

versus daily energy demand curves become constant for a month, further increasing daily charging 520 

demand (∆CD>AB) is accommodated and spread out uniformly over the off-peak layover period. 521 

This leads to ∆NCDP = ∆"#567
4?	.	–	)8

9, while the equations governing ∆NCDC, ∆CDHI=E., ∆ECHI=E. and 522 

∆OC remain the same as those of V0G. The final slope of the V0G, V1G and V2B total electricity 523 

charges versus energy daily demand curves, once they become constant for the month, is governed 524 

by  525 

SlopeCDE
CFE
CGH

= ∆!"#"J∆&"IJKLMJ∆$"
∆"#567

,                        (12) 526 

where the difference between the slopes of V0G and V1G/V2B, once they become constant, is 527 

determined by ∆NCDP (and hence ∆NCDC), which are different for V0G and V1G/V2B charging. 528 

3.2.4.3 Daily EV charging demand when the V1G and V2B total electricity charges versus daily 529 

EV charging demand curve transitions to constant slope  530 

The daily V1G charging demand above which the final slope of the total electricity charges 531 

versus daily energy demand becomes constant for a month is approximated by calculating the V1G 532 

threshold daily charging demand (CD>AB,E.L,M4N)	above which charging takes place in the off-peak 533 

layover period only.  534 
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For any weekday of the month, for daily charging demands (CD>AB) for (and above) which 535 

V1G charging takes place in the off-peak layover period only satisfies 536 

ED'56(𝑑) + CD>AB ≥	NCDP'56 × (16h − 𝑡9
7) + OPDP'56 × Q𝑡:

7 − 16hR,                 (13a) 537 

where NCDP'56 and OPDP'56 are the original NCDP and OPDP, respectively. Furthermore, 538 

ED'56(𝑑) is the original energy demand during the EV layover period on “𝑑” day of the month, 539 

formulated as ED'56(𝑑) = ∑ (𝐿'56(𝑑, 𝑡) × ∆𝑡)
):
9

)8
9 . 540 

 The V1G threshold daily charging demand is calculated by using an equality operator in 541 

Eq. (13a), for the day of the month when the original energy demand for the day during the layover 542 

period is maximum, and is formulated as 543 

CD>AB,E.L,M4N = NCDP'56 × Q16h − 𝑡9
7R + OPDP'56 × Q𝑡:

7 − 16ℎR − max	ED'56,                       (13b)  544 

where max	ED'56 is the maximum of ED'56(𝑑) of all weekdays of the month. 545 

 If there are no limitations on the optimized charging due to maximum power constraints 546 

(as is the case for the 06:30-19:30 hours EV layover at building V, discussed in Section 3.2.2), Eq. 547 

(13b) accurately predicts the daily V1G charging demand above which the final slope of the total 548 

electricity charges versus daily energy demand becomes constant. Otherwise, Eq. (13b) yields a 549 

lower bound. 550 

Ideally, the V2B EVs would discharge at their maximum power back to the grid at the 551 

original NC and PP demand peak times resulting in the off-peak and on-peak period loads 552 

becoming constant at the reduced off-peak and on-peak demand peaks. After that, charging should 553 

take place in the off-peak layover period only. The V2B threshold daily charging demand 554 

(CD>AB,E.L,M+O) above which charging takes place in the off-peak layover period only is 555 

approximated as 556 
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CD>AB,E.L,M+O = [NCDP'56 −maxEV7 × 𝑝] × Q16h − 𝑡9
7R + [OPDP'56 −maxEV7 × 𝑝] × Q𝑡:

7 −557 

16hR − 	max	ED'56,                           (14a) 558 

where 𝑝 is the number of EVs corresponding to CD>AB,E.L,M+O .  559 

𝑝 = "#567,LMO,CGH
"#PC

,              (14b) 560 

where CD&M is the daily charging demand of one EV. 561 

Combining Eqs. (14a) and (14b), we get 562 

CD>AB,E.L,M+O =
!"#%QRS×Q4?./)8

9RJ$%#%QRS×Q):
9/4?SR/HAT	&#QRS

4J
I6TPC9×VFWMXY8

9Z

<=PC
	J	

I6TPC9×VY:
9XFWMZ

<=PC

	.	                  (14c) 563 

 CD>AB,E.L,M+O is a lower bound for the daily V2B charging demand above which the final 564 

slope of the total electricity charges versus daily energy demand becomes constant. This is because 565 

V2B EVs do not discharge at the maximum power at the original NC and PP demand peak times 566 

as Eq. (14c) does not take into account if the EV charging demand is met or not at the time of the 567 

EV departure.  568 

CD>AB,E.L,M+O ≤ CD>AB,E.L,M4N because of V2B EV’s ability to discharge (V1G is the 569 

limiting worst case of V2B). Thus, the threshold daily charging demand above which charging 570 

takes place in the off-peak layover period only for both V1G and V2B is decided by 571 

CD>AB,E.L,M4N	calculated from Eq. (13b). 572 

3.2.4.4 Final monthly offset between the V1G and V2B total electricity charges  573 

 The final monthly offset between V1G and V2B (the difference between the V1G and V2B 574 

total electricity charges) once the final slopes of both V1G and V2B total electricity charges versus 575 

daily energy demand curves become constant can be approximated for any CD>AB ≥ CD>AB,E.L,M4N. 576 
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Choosing a CD>AB corresponding to 𝑝 number of EVs where CD>AB ≥ CD>AB,E.L,M4N, the final 577 

monthly offset between V1G and V2B is  578 

Offset = 𝑅!"#"(𝑡) × (NCDPM4N − NCDPM+O) + 𝑅$%#"(𝑡) × (OPDPM4N − OPDPM+O) +579 

{∑ (U<<V>ABW EC>AB,M4N − EC>AB,M+O)} + (OCM4N − OCM+O),                     (15) 580 

where the energy charges (EC) and the OC are calculated for the EV layover period times on 581 

weekdays only. Outside the EV layover times, the electricity charges for V1G and V2B are 582 

identical and equal to the original electricity charges. 583 

 For V1G charging, for the CD>AB above which charging takes place in the off-peak layover 584 

period only, OPDPM4N is  585 

OPDPM4N = OPDPILX.             (16a) 586 

 NCDPM4N is calculated based on the day of the month when the original energy demand 587 

during the layover period is maximum, and is formulated as 588 

NCDPM4N =
YHAT	&#QRSJ"#567/$%#%CFE×Q):

9/4?.RZ

Q4?	.	–	)8
9R

           (16b) 589 

EC>AB,M4N = EC>AB,M4N.I\\ + EC>AB,M4N,I=,          (16c)  590 

where EC>AB,M4N, EC>AB,I\\,M4N, and EC>AB,I=,M4N are the daily V1G total, off-peak, and on-peak 591 

layover energy charges, respectively. For one weekday, EC>AB,I\\,M4N and EC>AB,I=,M4N is 592 

approximated as 593 

EC>AB,I\\,M4N = ∑ min	[(𝐿'56(𝑡) + maxEV7 × 𝑝), NCDPM4N] × 𝑅&"(𝑡) × ∆𝑡4?	.
)8
9 .     (16d) 594 

EC>AB,I=,M4N = {(∑ 𝐿'56(𝑡))
):
9

)8
9 	+ "#567

∆)
− ∑ min	[(𝐿'56(𝑡) + maxEV7 × 𝑝), NCDPM4N]}4?	.

)8
9 ×595 

𝑅&"(𝑡) × ∆𝑡.              (16e) 596 
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 For V2B charging, on the day which determines the OPDPM+O, the EVs charge to their 597 

maximum SOC during the off-peak layover to have maximum discharging capability during the 598 

on-peak layover. The on-peak layover energy demand (ED'8) on the day which determines the 599 

OPDPM+O is formulated as    600 

ED'8 = {BE7 	Q𝑡 = 𝑡:
7R − maxBE7} × 𝑝	.          (17a) 601 

 The OPDPM+O is calculated based on the day of the month when the original energy demand 602 

during the on-peak layover period is maximum. Let ED'56,'8(𝑑) = ∑ (𝐿'56(𝑑, 𝑡) × ∆𝑡)
):
9

4?	.  be the 603 

original energy demand during the on-peak EV layover period on “𝑑” day of the month and 604 

max	ED'56,'8 be the maximum ED'56,'8(𝑑) of all weekdays of the month, then the OPDPM+O is 605 

formulated as 606 

OPDPM+O =	
]HAT	&#QRS,Q[J	&#Q[^

():
9/4?	.)

.                      (17b) 607 

NCDPM+O is calculated based on the day of the month when the original energy demand 608 

during the layover period is maximum, and is formulated as 609 

NCDPM+O =
YHAT	&#QRSJ"#567/$%#%CGH×Q):

9/4?.RZ

Q4?	.	–	)8
9R

.                    (17c) 610 

The energy charges for V2B are formulated similarly to Eq. (16c), (16d) and (16e), with 611 

“V1G” subscripts being replaced by “V2B”. 612 

3.2.4.5 Implementation of the mathematical approximations for Jan 2019 613 

Table 5. Comparison between optimization and analytical results for Jan 2019 for the 06:30-614 
19:30 and 07:45-16:45 hours layover periods. 615 

Metric Symbol Layover 06:30-19:30 hours Layover 07:45-16:45 hours 

  Optimization Analytical Optimization Analytical 

Final V0G slope ($/kWh/day) Slope!"# 9.6 9.6 9.6 9.6 
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Final V1G slope ($/kWh/day) Slope!$# 5.2 5.2 5.6 5.6 

Final V2B slope ($/kWh/day) Slope!%& 5.2 5.2 5.6 5.6 

V1G threshold daily charging 

demand (kWh) 

CD'(),+,-,!$# 216 211 144 114 

V2B threshold daily charging 

demand (kWh) 

CD'(),+,-,!%& 168 46 144 33 

Final monthly offset ($) between 

V1G and V2B 

 156.4 164.6 97.9 99.0 

Table 5 shows a comparison between the optimization and analytically derived (Eqs. 12 616 

through 17) V0G, V1G and V2B metrics for the 06:30-19:30 hours layover in Jan 2019. The final 617 

V0G, V1G and V2B slopes are predicted without error by the analytical method (Eq. (12)), because 618 

charging takes place exactly according to the strategy described in Section 3.2.4.1. The	619 

CD>AB,E.L,M4N	is predicted accurately analytically, and the difference between the optimization and 620 

analytical values occurs primarily because we increase the daily charging demand in multiples of 621 

24 kWh for the optimization (see discussion of Fig. 3(c), where increasing the CD>AB from 192 to 622 

216 kWh changes the off-peak layover period load from 109.0 to 109.5 kW and makes the on-623 

peak period layover load constant at 96.5 kW. If the CD>AB were 211 kWh, both the off-peak and 624 

on-peak period layover loads would have been constant at 109.0 and 96.5 kW respectively, after 625 

which the excess charging demand is accommodated uniformly in the off-peak layover period). 626 

CD>AB,E.L,M+O	is underpredicted by the analytical method and gives only a lower bound of the actual 627 

daily threshold charging demand. CD>AB,E.L,M+O is underpredicted because according to Eq. (14a) 628 

through (14c) the V2B EVs are assumed to discharge at their maximum capacity during the 629 

original NC and PP demand peaks, resulting in the off-peak and on-peak loads becoming constant 630 

at their reduced peaks, without regard for the EV final SOC constraints. The Offset is calculated 631 
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analytically with high accuracy with the maximum error being less than 6% with respect to the 632 

optimization value. The error is caused due to the approximate energy (in Eq. (16d) and (16e) of 633 

main text) and other charges, as the NC and PP demand charges are calculated accurately (not 634 

shown in Table 5). 635 

For the layover period of 07:45-16:45 hours, Table 5 shows that for Jan 2019, the final 636 

V0G, V1G and V2B slopes are predicted exactly by the analytical method. 	637 

The	CD>AB,E.L,M4N	is underpredicted analytically, and the difference between the optimization and 638 

analytical values occurs primarily because above 114 kWh of daily charging demand, additional 639 

charging takes place exclusively in the off-peak period, but the charging is non-uniform; only at 640 

approximately 144 kWh of daily charging demand, the additional charging demand is spread out 641 

uniformly over the off-peak period leading to a constant slope. Like the 06:30-19:30 hours layover, 642 

the Offset is calculated analytically with high accuracy with maximum error being about 1.2%. 643 

3.2.4.6 Interpretation of the total electricity charges versus daily EV charging demand curve  644 

Figure 5(a) shows that for Jan 2019 V0G charging for the 06:30-19:30 hours layover, the 645 

slope becomes constant at $9.6/kWh/day with increasing daily charging demand above 24 kWh. 646 

These costs should not be confused with electricity (energy) costs per kWh charged. Since there 647 

are 23 weekdays in the month when EV charging occurs, $9.6/kWh/day = $0.42/kWh/month; in 648 

other words, the average electricity cost per kWh charged is 42 cents. Since all graphs are presented 649 

in kWh of daily EV charging (energy) demand, we chose to continue to report results using the 650 

$/kWh/day metric.  651 

For V1G charging, the slope is initially constant at $2.5/kWh/day until 144 kWh of daily 652 

charging demand, because charging takes place in the off-peak layover period only, without 653 

increasing the NC demand peak over the original. The slope until 144 kWh of daily charging 654 



 37 

demand can be found from Eq. (12), with ∆NCDC = 0. Finally, the V1G slope becomes constant 655 

at $5.2/kWh/day with additional daily charging demand above 216 kWh. For V2B charging, the 656 

slope is negative initially, then becomes positive and increases to $5.1/kWh/day with increasing 657 

daily charging demand up to 168 kWh. With additional charging daily demand above 168 kWh, 658 

the slope becomes constant at $5.2/kWh/day, resulting in parallel V2B and V1G curves above 216 659 

kWh of daily charging demand. The slope of the V2B electricity charges curve increases faster 660 

than V1G from 48 to 216 kWh of daily charging demand because the addition of daily charging 661 

demand (from 48 kWh to 216 kWh) results in a greater increase of the NC demand peak for V2B 662 

as compared to V1G (see Table 4 V1G and V2B NC and PP demand peaks for the 06:30-19:30 663 

hours layover). For example, for 72 to 216 kWh of daily charging demand, the PP demand peak 664 

remains constant for V1G at 96.5 kW and at 82.4 kW for V2B and does not affect the slope of 665 

electricity costs versus daily energy demand curve. On the other hand, the NC demand peak costs 666 

increase faster for V2B resulting in a faster increasing slope of electricity costs versus daily energy 667 

demand for V2B compared to V1G. 668 

Figure 5(b) shows that for the entire year 2019, the slope of V0G charging for the 06:30-669 

19:30 hours layover, becomes constant at $114.9/kWh/day above 48 kWh of daily charging 670 

demand. For V1G charging, the slope is $29.4/kWh/day until 120 kWh of daily charging demand, 671 

then increases, and becomes constant at $62.2/kWh/day with daily charging demands above 240 672 

kWh. For V2B charging, the slope is negative up to a daily charging demand of 48 kWh, then 673 

becomes positive and increases, and finally becomes constant at $62.2/kWh/day above 216 kWh 674 

of daily charging demand, resulting in parallel V2B and V1G curves above 240 kWh of daily 675 

charging demand. 676 

3.3 Overall results for all buildings  677 
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To explain the building-to-building differences in the electricity charges associated with 678 

EV charging, in this Section we discuss the results for all buildings for one sample initial and final 679 

SOC combination (50 & 90% respectively) and one layover period (06:30-19:30 hours). The initial 680 

and final SOC combination is chosen as 50 & 90% respectively to be consistent with the rest of 681 

the paper.  682 

Figure 6 shows that for all buildings, V0G incurs the highest EV charging costs (the 683 

difference between post and pre-EV charging building electricity costs), followed by V1G and 684 

V2B. For V0G charging, all charging takes place between 06:30-10:15 hours (see Section 3.2.1). 685 

The difference between the V0G EV charging costs from building-to-building is driven by 686 

differences in the NCDC. The monthly increase in the NCDC for a building depends on two 687 

factors: (a) The intersection of the original NC demand peak time with the time of V0G charging. 688 

If the original NC demand peak falls within the V0G charging time, the post-EV charging new NC 689 

demand peak increases at the charging power of the EV; (b) If there is no intersection in (a), the 690 

difference between the original NC demand peak and the maximum original load in the month 691 

during the V0G charging time. If the original NC demand peak time falls outside the V0G charging 692 

time, and the lower the difference between the original NCDP and the maximum original load in 693 

the month in the V0G charging time, the higher the chance that a particular number of EV will 694 

increase the NCDP. For V0G, most buildings show EV charging cost increases consistent with 6.6 695 

kW per EV of increased NCDP for daily EV energy demand over 100 kWh, but building XIII 696 

shows smaller cost increases as the original NC demand peak is much larger than the maximum 697 

load during the EV charging time. 698 

Building XIII is also the main outlier for V1G and V2B as the charging can be spread over 699 

the layover period such that the building load stays below the original peak demand even for 432 700 
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kWh of daily EV charging demand. Therefore, electricity cost increases for building XIII reflect 701 

only the additional energy charges and there is no demand charge contribution. For V1G and V2B 702 

charging at the other buildings, the variation between the EV charging costs from building-to-703 

building is driven by NCDC, OPDC (only for V2B), and off and on-peak energy costs. For V1G, 704 

the electricity costs initially increase with a slope that is consistent with only energy charges from 705 

off-peak charging, but eventually transition to a slope consistent with energy and demand charges 706 

from constant charging during the off-peak period. The transition occurs mostly between 100 to 707 

400 kWh of charging demand, depending on the building. The smaller the difference between the 708 

original demand peaks and the off and on-peak layover period mean loads, the higher the chance 709 

that a particular number of EVs will increase the peak demand charges. 710 

For V2B, the final slopes are consistent with the V1G slopes and the ordering of the EV 711 

charging costs for high daily EV energy demand is also consistent with V1G. The lower envelope 712 

of the initial decrease in V2B electricity costs is consistent with a decrease of 6.6 kW in both NC 713 

and PP demand charges, i.e. EVs discharging at full power. Depending on the building, the slope 714 

is maintained for up to 3 EVs (72 kWh of charging demand), is followed by a slower decrease 715 

(less than 6.6 kW decreases in NC and PP demand charges), and eventually becomes positive as 716 

demand charge reductions become infeasible and the energy costs increase, and eventually the 717 

demand charge increases dominate. The intersection of the original demand peak times along with 718 

the layover period plays a large role for V2B. Specifically, if the original demand peak times do 719 

not fall within EV layover time, V2B charging cannot reduce costs. 720 
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 721 

Figure 6. EV charging cost versus total daily EV energy demand for all buildings for the 722 
06:30-19:30 hours layover for the entire year 2019 for initial and final SOC of 50 & 90% 723 
respectively for (a) V0G charging, (b) V1G charging, and (c) V2B charging. The legend 724 

represents the building number. 725 

 726 
The results for the total electricity charges (not shown graphically) elucidate that for all 727 

three charging strategies, generally, as the mean original real load (proxy for the original load of 728 

the buildings) of the buildings increase (Table 2), the total electricity charges also increase, as the 729 

demand and energy charges are higher for a building with higher original load. 730 

Table 6 shows the optimal number of V2B EV charging stations to be installed at a building 731 

such that the original (pre-EV) electricity costs are not exceeded. Generally, for a given month, 732 
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the larger the difference between the original NCDP & the mean load in the off-peak period, and 733 

the original OPDP & the mean load in the on-peak period (as quantified in Eq. (18), the more V2B 734 

EV charging reduces the NCDC and PPDC. It then follows that the greater the NCDC and PPDC 735 

savings, the higher the number of optimal V2B charging stations for a building. Hence, in Table 736 

6, we present the optimal number of V2B charging stations as a function of a metric 𝑤, which 737 

weights the difference in original peak and mean loads by the off and on-peak layover times 738 

averaged over the 12 months in 2019. 𝑤 is formulated as 739 

𝑤 = mean	 p∑ qQNCDP'56 −mean0Q∑ ∑ 𝐿'56(𝑑, 𝑡))*4?	./∆)
)*1

2*3
2*4 R +HI=E.*4+

HI=E.*4740 

Q∑ ∑ 𝐿'56(𝑑, 𝑡))*+,	./∆)
)*+4	.

2*3
2*4 RrR × (4?	./)8

9)

():
9/)8

9)
+ QOPDP'56 −mean0∑ ∑ 𝐿'56(𝑑, 𝑡))*+4	.

)*4?		.
2*3
2*4 rR ×741 

():
9/4?	.)

():
9/)8

9)
st,                                (18) 742 

where 𝑑 takes the value of the date index of the month for only weekdays (when EV charging 743 

occurs). The month argument is dropped from NCDP, OPDP and 𝐿'56 for simplicity of 744 

presentation of Eq. (18). 745 

Table 6. Optimal number of V2B EV charging stations by building 746 

Buildings arranged in increasing 

order of 𝒘 (Eq. 18) 

𝒘 Optimal # of V2B charging 

stations 

II 20.8 3 

I 29.2 4 

III 38.2 6 

VII 40.6 6 

IX 42.4 5 

V 44.0 5 
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IV 44.7 5 

VII 44.9 6 

VI 48.0 5 

XII 53.6 7 

X 81.6 9 

XI 104.0 13 

XIII 114.4 1 

XIV 134.2 12 

Table 6 shows that generally as 𝑤  increases, the optimal number of V2B charging stations 747 

also increases. The optimal number of V2B charging stations for building XIII is an outlier 748 

because, for the EV layover period (06:30-19:30 hours) considered, for most of the months (9 out 749 

of 12) its NCDP'56 occurred outside the layover period and for the remaining 3 months it occurred 750 

in the PP period, giving the V2B EVs little chance to reduce the NCDP. For some of the months, 751 

the OPDP'56 of building XIII also occurred out of the layover period, further preventing load 752 

shifting and electricity cost reduction by V2B. 753 

3.4 Sensitivity analyses  754 

Section 3.2 presented a case study for the idealized uniform commuter EV fleet for initial 755 

and final SOC of 50 and 90% respectively for the 06:30-19:30 hours layover for building V for 756 

the year 2019. In this Section, we carry out sensitivity analyses based on the initial and final SOCs 757 

of 45 & 85%, 40 & 80%, 50 & 85%, and 50 & 80%, to present the effect of varying the initial and 758 

final SOCs on the NC and PP demand costs, energy costs, and total electricity costs for both 759 

layover periods for the year 2019. The effect of varying initial and final SOCs on total electricity 760 

costs is presented graphically for building V for 2019 in this Section (consistent with the rest of 761 

the paper), while the variation of all metrics (NC and PP demand costs, energy costs and total 762 
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electricity costs) for the SOC combinations with the same daily charging energy demand, for all 763 

buildings for both the layover periods is presented in Tables S1, S2 and S3 of the Supplementary 764 

material.  765 

If the final SOC is reduced below 90% (note that for our analyses the maximum and 766 

minimum SOC of the EV battery is 20 and 90% respectively), it is possible for the V2B EVs to 767 

discharge immediately before disconnecting and therefore further discharge during the on-peak 768 

period. In Section 3.2.3, typically the net V2B charging demand during the on-peak period was 769 

zero or positive (if charging up to 90% during the off-peak period was not optimal, resulting in net 770 

charging during the on-peak period), while in this Section (for final SOCs below 90%) the net V2B 771 

charging demand during the on-peak period is expected to be negative (net discharging). 772 

Figures 7(a) and 7(c) show results for EVs having different initial and final SOCs but the 773 

same daily charging energy demand for the 06:30-19:30 hours and 07:45-16:45 hours layover, 774 

respectively.  For a particular layover period, the V0G and V1G total electricity charges are the 775 

same if the daily charging energy demand of the EVs is the same, as the V0G and V1G EV 776 

charging costs do not depend on the final SOC because they do not have the ability to discharge. 777 

V2B EVs make use of the lower final SOC, to shift demand from the on-peak period to the off-778 

peak period resulting in cost savings, as the on-peak period has higher energy charge rates and 779 

additional demand charges over the off-peak period. The V2B total electricity costs decrease for 780 

both layover periods as the final SOC decreases from 90 to 80% (with initial SOC decreasing from 781 

50 to 40%) because the smaller the final SOC the more flexibility for discharging during the on-782 

peak period. The strategy of V2B EVs to discharge more during the on-peak period as final SOC 783 

decreases from 90 to 80% is accompanied by more charging during the off-peak period, which 784 
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ultimately leads to net total electricity cost savings, i.e., the decrease in the on-peak periods costs 785 

is greater than the increase in the off-peak period costs. 786 

Figures 7(b) and 7(d) correspond to EVs having different final SOCs (with initial SOC 787 

fixed at 50%) and thus different daily charging energy demand for the 06:30-19:30 hours and 788 

07:45-16:45 hours layovers, respectively. The total electricity charges for both layover periods for 789 

all charging strategies are smallest for a final SOC of 80% and increase as the final SOC increases 790 

to 85 to 90%. The smaller cost for V0G and V1G, for lower final SOCs is due to the smaller total 791 

charging energy demand (as initial SOC is fixed at 50%). The V1G costs decrease more than V0G 792 

because, as the final SOC (and thus charging demand) decreases, the V1G average load (and 793 

therefore incremental NCDC) is proportional to the charging demand per Eq. (16b), as opposed to 794 

V0G which charges without regard for the original load curve and costs.  For V2B, in addition to 795 

the former point, there is an added benefit of more discharging potential during the on-peak period 796 

when the final SOC is lower than 90%. The sensitivity analyses (comparison between Figs. 7(a) 797 

& 7(c), and 7(b) & 7(d)) also show that the shorter layover period of 07:45-16:45 hours leads to 798 

higher total electricity charges compared to the longer layover period of 06:30-19:30 for all 799 

charging strategies for any particular initial and final SOC combination. 800 

Tables S1, S2 and S3 of the Supplementary material present the results with initial and 801 

final SOC of 50 & 90%, 45 & 85%, and 40 & 80%, respectively. 802 
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Figure 7. Total electricity charges versus daily number of EVs for the for the entire year 805 
2019 for the layover period (a, b) 06:30-19:30 hours, and (c, d) 07:45-16:45 hours, at 806 

building V for (a, c) same daily charging demand with initial and final SOCs being 40 & 807 
80%, 45 & 85%, and 50 & 90%, respectively, and (b, d) different daily charging demand 808 
with initial and final SOCs being 50 & 80%, 50 & 85%, and 50 & 90%, respectively. The 809 

legends in the figure correspond to the charging strategies along with their initial and final 810 
SOCs. For example, V0G__SOC__50-80 indicates V0G charging with initial and final SOC 811 

of 50 and 80% respectively. 812 

3.5 A realistic case using historical data 813 

A realistic case study is carried out using historical EV data of charging records available 814 

from ChargePoint at UC San Diego. The relevant historical data used in this analysis are the time 815 

of EV connection and disconnection, end of charging, charging demand, initial and final SOC (for 816 

a subset of events only), EVSE IDs, and port type (Level 2 (L2) and Direct Current Fast Chargers 817 

(DCFC)). For a data sample, see Ref. 17. Originally the EVs were charged with the V0G charging 818 

strategy, which did not make use of the flexibility afforded by the complete layover time, i.e., 819 

originally the EVs charged too quickly when more suitable later times were available for charging.  820 

The EV battery capacity is required to understand the EV discharging or delayed charging 821 

opportunities. The ChargePoint data does not (directly) contain the EV (rated) battery capacity 822 

data, but the initial and final SOCs are given for 5,754 out of the total of 168,122 charging events 823 

that occurred between March 15, 2016 and August 4, 2020. For the 5,754 events, EV battery 824 

capacity is calculated as BC7 = &#9

Q_$":
9/	_$"8

9R
. We observe an anomaly for five charging events, for 825 

which the calculated battery capacity is above 200 kWh. We remove these five datapoints from 826 

our analysis as most EVs have a battery capacity below 200 kWh 22. To impute the missing EV 827 

battery capacity for the remaining 162,368 charging events, we randomly draw data from the 828 

calculated battery capacity (5,749 events).  829 

Following these calculations, we set the following charging constraints: (i) The missing 830 

final SOC is initially imputed by randomly drawing from the given “valid” final SOCs. (ii) The 831 



 47 

missing initial SOC is calculated from the final SOC, energy demand, and the EV battery capacity 832 

data as  SOC9
7 = SOC:

7 − &#9

O"9
. (iii) If the SOC9

7 is calculated as less than 0% by (ii), it is corrected 833 

and fixed at 0% as the SOC range for the analyses is 0-100%. Correspondingly the battery capacity 834 

is again updated for that EV as BC7 = &#9

Q_$":
9/	_$"8

9R
 , for which SOC9

7 = 0. (iv) The maximum 835 

charging and discharging rate of EVs is 7.2 kW for L2 and 50 kW for DCFC. The input variables 836 

for the realistic analysis are shown in Table 7. 837 

Table 7. Inputs for the realistic case study 838 

Metric Symbol Value 

Maximum charging rate of L2 chargers maxEV\+
]  7.2 kW 

Maximum charging rate of DCFC chargers maxEV#"^"
]  50 kW 

Data sampling interval ∆𝑡 1 hour 

Table 7 shows that the data sampling interval is chosen as 1 hour instead of 15 minutes as 839 

for the uniform fleet Case study (A), because of unreasonably long run-times for 15-minute 840 

timesteps in the realistic case study. The actual time of EV connection and disconnection is mapped 841 

onto the hourly scale, depending on the minute of the hour of the connection or disconnection from 842 

the charging station. Initially the EV connection and disconnection time is rounded up to the 843 

nearest hour. For example, if an EV originally connects at 00:29 hours and disconnects at 1:35 844 

hours on the same day, it is assumed in our algorithm that the EV connects at 00:00 hours and 845 

disconnects at 02:00 hours on that day. After the initial rounding to the nearest hour, a correction 846 

is implemented for the EVs that have the same connection and disconnection time. In these cases, 847 

the connection time is assumed to be the beginning of the hour and the disconnection time is 848 

assumed to be the end of the hour. For example, if an EV originally connects at 16:45 hours and 849 

disconnects at 16:59 on the same day, rounding to the nearest hours would cause both the 850 
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connection and disconnection time to be 17:00 hours on that day. The correction assumes that the 851 

EV connects at 16:00 hours and disconnects at 17:00 hours. 852 

Our analysis is carried out for 5 weekdays of February 2020. The EV charging stations are 853 

located in the Osler Parking Structure. The Osler Parking Structure is chosen for the analysis as it 854 

consists of 16 L2 (with 14 being in use for this analysis) and 2 DCFC fast chargers which is 855 

representative of an EV charging station installation infrastructure at a single location 23. The total 856 

load of the Osler Parking Structure EV charging stations is mapped to a single building having 0 857 

original load, i.e. the optimized EV load is assumed to equal the final building net load. As per the 858 

original V0G charging schedule the NC demand peak occurs on Feb 14, 2020, we choose the 859 

weekdays Feb 10 to Feb 14, 2020 for the analyses, so that the NC demand peak is representative 860 

for the entire month of February 2020. 338 charging events occur from Feb 10 through 14, 2020, 861 

with average layover, charging time, and energy demand of 3 hour 29 minutes, 1 hour 38 minutes, 862 

and 9.8 kWh respectively, with 256 events occurring at L2 chargers and 82 events occurring at 863 

DCFC chargers. 251 charging events at L2 chargers have charging flexibility, whereas all the 864 

events at DCFC chargers have charging flexibility (i.e. (𝑡:
7 − 𝑡9

7) × max	 EV7 > ED7). Since there 865 

are some inconsistencies in the dataset, the final EV energy demand is corrected for 5 L2 charging 866 

events by charging at maximum power during the entire layover period (refer to Eq. (9)). The 867 

objective function minimized is Eq. (1), with the cost components (NC and PP demand charges, 868 

energy charges, and other charges) being adjusted for 5 days instead of the entire month.  869 

 Figure 8(a) shows the timeseries for February 10 through February 14, 2020 for all 3 870 

charging strategies.  Figure 8(b) shows the NC and PP demand charges along with the total 871 

electricity costs for our analysis. The total electricity costs incurred by the EVs based on the 872 

original V0G charging, and the optimized V1G and V2G charging are $5,694, $3,402, and $2,598 873 
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respectively. The results show that the V2G and V1G charging strategies results in 54.4 and 40.3% 874 

total electricity cost savings, respectively over the original V0G charging schedule. 875 

 876 

(a)                                                                            877 

 878 

   (b) 879 

Figure 8. (a) Original (V0G) and optimized net load (= EV charging) timeseries analysis, 880 
and (b) Electricity cost components for the 3 charging strategies, for the realistic case study 881 
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from February 10 through 14, 2020. The total electricity charges in (b) differ from the sum 882 
of the NC and PP demand charges because they also include energy charges. 883 

4. Conclusions 884 

We carry out a techno-economic analysis of three different types of workplace EV charging 885 

strategies (V0G, V1G and V2B) in 14 commercial buildings with real load profiles. We primarily 886 

base our analysis on an idealized uniform EV commuter fleet case study with a layover period of 887 

06:30-19:30 hours for the year 2019.  888 

 V0G incurs the highest year-around electricity costs followed by V1G and V2B. For V0G, 889 

the building-to-building difference in EV charging costs depends on the intersection of the original 890 

NC demand peak time with the EV charging time, and the difference between the original NC 891 

demand peak and the maximum original load during the EV charging time. For V2B, the building-892 

to-building difference in EV charging costs depends on the intersection of the original NC and PP 893 

demand peak times with the EV layover time. For V1G and V2B the building-to-building 894 

difference depends on the difference between the original demand peaks and the mean original 895 

load during the on and off-peak layover periods. 896 

The V1G and V2B total electricity costs initially diverge with increasing daily charging 897 

demand (or number of EV charging stations) and then become parallel to each other. As the daily 898 

charging demand increases, the cost savings of V2B charging over V1G reduce and the V2B 899 

charging costs exceed the original (pre-EV) costs. A longer layover period generally leads to more 900 

cost savings over a shorter layover period for V1G and V2B, as the charging is spread out over a 901 

longer duration for V1G, while for V2G there is an additional flexibility of shifting on-peak loads 902 

to off-peak periods. Correspondingly, a longer layover period also leads to a higher number of 903 

optimal V2B charging stations (the number of V2B charging stations to be installed at a building 904 

such that its operating electricity costs do not exceed the pre-EV original electricity costs), as 905 
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compared to a shorter layover period. Generally, with increasing difference between the original 906 

NCDP & mean off-peak period load and the original OPDP & mean on-peak period load, weighed 907 

over the off-peak and on-peak layover times respectively, the optimal number of V2B charging 908 

stations increases.  909 

Sensitivity analyses based on changing both initial and final SOC of EVs while keeping 910 

the energy demand constant for all the buildings for both layover periods show that, as the final 911 

SOC decreases from 90 to 80% (with the initial SOC decreasing from 50 to 40%), the total 912 

electricity costs remain the same for V0G and V1G, while for V2B the total electricity costs 913 

decrease because of the additional flexibility of discharging during the on-peak period.  914 

A realistic case study based on historical data for 5 high charging demand weekdays in 915 

February 2020 for 14 EV charging stations shows that the V2G and V1G charging strategy results 916 

in 54.4% and 40.3% total electricity cost savings respectively over the original V0G charging 917 

schedule. 918 

While the results discussed so far were all based on convex optimization, we also provided 919 

general equations that allow estimating V1G and V2B benefits based on a pre-EV building load 920 

profile and EV and tariff data. Although the number of V2B charging stations such that the original 921 

(pre-EV) operating electricity bill is not exceeded cannot be predicted exactly without carrying out 922 

the convex optimization, we provided a framework (using Eq. (18), in conjunction with Table 2 923 

and Table 6) to approximate the optimal number of V2B charging stations without carrying out 924 

the convex optimization, which may be of interest to building owners. 925 

One of the limitations of this study is the assumption of 100% charging/discharging 926 

efficiency for the EVs. In reality, each time an EV charges/discharges there are costs due to energy 927 

losses and battery degradation. Therefore, if the losses were considered, the V2G/V2B charging 928 
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economic benefits, which depend on more charging/discharging cycles, would reduce. Another 929 

limitation of the study is that uncertainties in layover periods and battery capacity (which may 930 

occur due to ageing) are not considered.  Future work will focus on tackling these limitations to 931 

make the study more robust and accurate and increase its applicability to more realistic scenarios.  932 

Supplementary material 933 

See the Supplementary material attached alongside the manuscript, for some Results and 934 

discussions which could not be discussed in the main text due to space limitations. Section 1.1 of 935 

the Supplementary material expands upon the uniform fleet V0G and V2B analysis already 936 

presented in Section 3.2.1 and 3.2.3 of the main text respectively for building V for the 06:30-937 

19:30 hours layover. Section 1.2 of the Supplementary material presents the V0G, V1G, and V2B 938 

analyses for building V for the 07:45-16:45 hours layover. Section 1.3 of the Supplementary 939 

material presents a hypothetical case study demonstrating the ability of V2G/V2B EVs to save 940 

electricity costs by shifting load from the on to the off-peak layover period. Section 1.4 of the 941 

Supplementary material elucidates on the general applicability of the optimization model and the 942 

trend of total electricity charges versus total daily EV energy demand curve for electricity tariff 943 

structures other than those used in our paper. Tables S1, S2 and S3 of the Supplementary material 944 

present the effect of varying both the initial and final SOCs of the EVs on the NC and PP demand 945 

costs, energy costs and total electricity costs, while keeping the charging energy demand constant 946 

for the year 2019 for all buildings for both layover periods. 947 

Data availability statement 948 

The data that supports the findings of this study are available within the article and its 949 

supplementary material. 950 
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