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1Department of Radiological Sciences, University of California, Irvine, Irvine, CA, United States, 2 Avicenna.AI, La Ciotat,

France, 3Center for Artificial Intelligence in Diagnostic Medicine, University of California, Irvine, Irvine, CA, United States

Purpose: Recently developed machine-learning algorithms have demonstrated strong

performance in the detection of intracranial hemorrhage (ICH) and large vessel occlusion

(LVO). However, their generalizability is often limited by geographic bias of studies. The

aim of this study was to validate a commercially available deep learning-based tool in the

detection of both ICH and LVO across multiple hospital sites and vendors throughout

the U.S.

Materials and Methods: This was a retrospective and multicenter study using

anonymized data from two institutions. Eight hundred fourteen non-contrast CT cases

and 378 CT angiography cases were analyzed to evaluate ICH and LVO, respectively. The

tool’s ability to detect and quantify ICH, LVO, and their various subtypes was assessed

among multiple CT vendors and hospitals across the United States. Ground truth was

based off imaging interpretations from two board-certified neuroradiologists.

Results: There were 255 positive and 559 negative ICH cases. Accuracy was

95.6%, sensitivity was 91.4%, and specificity was 97.5% for the ICH tool. ICH

was further stratified into the following subtypes: intraparenchymal, intraventricular,

epidural/subdural, and subarachnoid with true positive rates of 92.9, 100, 94.3, and

89.9%, respectively. ICH true positive rates by volume [small (<5mL), medium (5–25mL),

and large (>25mL)] were 71.8, 100, and 100%, respectively. There were 156 positive and

222 negative LVO cases. The LVO tool demonstrated an accuracy of 98.1%, sensitivity

of 98.1%, and specificity of 98.2%. A subset of 55 randomly selected cases were also

assessed for LVO detection at various sites, including the distal internal carotid artery,

middle cerebral artery M1 segment, proximal middle cerebral artery M2 segment, and

distal middle cerebral artery M2 segment with an accuracy of 97.0%, sensitivity of 94.3%,

and specificity of 97.4%.

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2021.656112
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2021.656112&domain=pdf&date_stamp=2021-04-29
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mclouthj@hs.uci.edu
https://doi.org/10.3389/fneur.2021.656112
https://www.frontiersin.org/articles/10.3389/fneur.2021.656112/full


McLouth et al. AI ICH/LVO Detection Tool Validation

Conclusion: Deep learning tools can be effective in the detection of both ICH and

LVO across a wide variety of hospital systems. While some limitations were identified,

specifically in the detection of small ICH and distal M2 occlusion, this study highlights a

deep learning tool that can assist radiologists in the detection of emergent findings in a

variety of practice settings.

Keywords: deep learning, artificial intelligence, radiology, large vessel occlusion, neuroradiology, intracranial

hemorrhage

INTRODUCTION

Timely diagnosis of acute cerebrovascular disease is critical to
reduce patient mortality and morbidity. Two forms of stroke,
intracranial hemorrhage (ICH) and ischemic stroke due to large
vessel occlusion (LVO) are especially devastating. ICH 28-day
mortality has been reported at 50.6% and 6-month mortality due
to LVO at 26.2% (1, 2).

Prompt intervention of these entities is critical in achieving
improved outcomes. For example, ICH hematoma expansion
was significantly reduced with early blood pressure control (3).
Regarding LVO, functional independence decreased with every
hour delay to endovascular thrombectomy (4).

Deep learning, a subset of artificial intelligence, has recently
emerged as a means to aid clinicians in the timely diagnosis
of both ICH and LVO. Newly developed algorithms have
demonstrated strong performance in the detection of each (5–
12). However, limitations of most of these studies are that they
are often performed at a single institution and have not been
validated in different settings.

Given the potential for deep learning tools to aid physicians
in the timely and accurate diagnosis of these emergencies, it
is important to validate their uses across a variety of facilities.
Prior studies examining the relationship between deep-learning
based algorithms and imaging assessment have been limited by
geographic bias introduced from their cohorts, with the majority
of U.S. states lacking representation (13). The specific aim of
this study is to validate a commercially available deep learning-
based tool, CINA R© v1.0 device (Avicenna.ai, La Ciotat, France)
in the detection of both ICH and LVO from multiple hospital
sites and vendors through a collaboration between the University
of California, Irvine (UCI) and vRAD (Minneapolis, USA). In
doing so, the goal was to evaluate the generalizability of this
tool to eliminate possible geographic bias introduced in other
similar studies.

MATERIALS AND METHODS

This was a retrospective study using anonymized data from
UCI and vRAD. A waiver of consent was obtained from the
local Institutional Review Board (IRB) at UCI for the UCI cases
and the Western IRB for the vRAD cases. The CINA R© v1.0
device (Avicenna.ai, La Ciotat, France) was used for standalone
performance assessment in both the ICH and LVO validation
studies. The statistics provided in this manuscript are derived

from an external test set (the validation cohort) and are
completely independent from a prior cohort used to train the
CINA R© v1.0 device. Specifically, the cohort used to train the tool
was based off of 8,994 ICH cases acquired between November
2014–May 2018 and 566 LVO cases acquired between May 2018–
November 2018. All of the training data was acquired from
vRAD data only. No UCI data was used for the training cohort.
Additionally, all vRAD cases used for the validation cohort were
acquired in 2019 only.

Intracranial Hemorrhage
Patient Selection
A cohort of patients with suspected acute ICH on clinical
grounds in whom non-contrast CT (NCCT) head studies had
been performed from UCI and an American teleradiology
service (vRAD) were assessed. In both UCI and vRAD cases,
suspected acute ICH cases were identified with keywords such
as “hemorrhage,” “NCCT,” and “head” in the clinical indication
or Digital Imaging and Communications in Medicine (DICOM)
header information of the NCCT studies. Only the initial scan
obtained for ICH evaluation was assessed for patients in this
validation cohort. vRAD cases were acquired in 2019 only, and
UCI data from 2017 to 2019. Inclusion criteria for NCCT scans
required a strict axial acquisition, 512 x 512matrix, slice thickness
of <5mm, soft tissue reconstruction kernel, and kVp ranging
between 100 and 160.

ICH cases were divided into intraparenchymal (IPH),
intraventricular (IVH), subarachnoid (SAH), subdural
(SDH), and epidural (EDH) subtypes. Multiple cases
contained a combination of these subtypes and were
categorized accordingly. Intracranial hemorrhages were
further categorized into small (<5mL), medium (5–
25mL), and large (>25mL) volumes. Positive cases for
acute ICH (“ground truths”) were assessed by two board-
certified neuroradiologists, with consensus determined by
a third board-certified neuroradiologist. The two board-
certified neuroradiologists also determined ICH subtype and
volume information.

Scanning Parameters
GE Healthcare, Philips, Siemens, and Canon (Formerly Toshiba)
scanners were used among this cohort with 16, 7, 13, and 5
various scanner models, respectively. The number of detector
rows (NDR) were divided into eight categories: 4 < NDR ≤

8, 8 < NDR ≤ 16, 16 < NDR ≤ 32, 32 < NDR ≤ 64, 64
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FIGURE 1 | Example of a positive ICH identified by CINA®. There is an acute subdural hemorrhage along the right cerebral convexity on non-contrast CT

(green arrow).

< NDR ≤ 128, 128 < NDR ≤ 256, 256 < NDR ≤ 320,
and not available (NA) if this information was not attached to
the case. Slice thickness (ST) was categorized as being < 2.5
and 2.5mm ≤ ST ≤ 5mm. Radiation dose parameters were
measured in kilovoltage peak (kVp) and milliampere-seconds
(mAs). kVp was categorized as kVp < 120, 120 ≤ kVp ≤ 140,
and >140. mAs was categorized as <150, 150 ≤ mAs ≤ 400,
and >400.

Large Vessel Occlusion
Patient Selection
A cohort of patients with suspected LVO on clinical grounds in
whom CT angiography (CTA) head studies had been performed
from UCI and vRAD were assessed. For both UCI and vRAD
cases, suspected LVO cases were identified with keywords such

TABLE 1 | Performance metrics for overall cases of CINA-ICH application.

Statistical findings for ICH detection Values [95% CI]

Sensitivity (%) [95% CI] 91.4% [87.2–94.5%]

Specificity (%) [95% CI] 97.5% [95.8–98.6%]

as, “CTA,” “head,” and “large vessel occlusion” in the clinical
indication or DICOM header information of the CTA studies.
Only the initial scan obtained for LVO evaluation was assessed
for patients in this validation cohort. vRAD cases were acquired
in 2019 only and UCI cases from 2015 to 2019. Inclusion
criteria for CTA scans included a strict axial acquisition, 512
x 512 matrix, slice thickness ≤1.25mm, kVp to range between
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80 and 140, arterial phase timing of contrast bolus confirmed
by mini test bolus or automatic bolus tracking software, and
arterial (or other sharp) reconstruction kernel. Positive cases for
LVO (“ground truths”) were assessed by two U.S. board-certified
neuroradiologists, with consensus determined by a third board-
certified neuroradiologist. Positive LVO cases were divided based
on location into Distal Internal Carotid Artery (ICA), Middle
Cerebral Artery (MCA)-M1, MCA-M2 Proximal, and MCA-
M2 Distal.

Scanning Parameters
GE Medical Systems, Philips, Siemens, Canon (Formerly
Toshiba), and NMS with 13, 4, 12, 4, and 1 various scanner
models were included, respectively. The NDR were divided into
the same eight categories as for the ICH cases. Slice thickness
(ST) was ≤ 1.25mm. Radiation dose parameters were measured
in kilovoltage peak (kVp) and milliampere-seconds (mAs). kVp
was categorized as <100, 100≤ kVp≤ 120, and >120. mAs were
categorized as <100, 100 ≤mAs ≤ 400, and >400.

Statistical Analysis
Data was compared from the CINA R© v1.0 device (Avicenna.ai,
La Ciotat, France) to the ground truths determined by the
board-certified neuroradiologists via a confusion matrix in
order to obtain sensitivity, specificity, and accuracy. Positive
predictive values (PPV) and negative predictive values (NPV)
were computed with varying prevalence values (from 10 to 50%,
increments of 5%). All of these statistics were performed using
Excel and MedCalc version 19.7.2.

These statistics were performed for the total cases in both
the ICH and LVO groups in addition to stratifications based on
scanner models, NDR, slice thickness, radiation dose parameters,
age, and sex, as well as ICH subtypes and volumes and LVO
locations. The CINA R© v1.0 device is not intended to discern
ICH subtype or volume and only detects whether hemorrhage is
present or not. Therefore, ICH subtypes and volume information
were only assessed in positive cases by the two board-certified
neuroradiologists. Only true positives and false negative values
could be calculated and only true positive rate was provided for
these classifications.

PASS sample size software was used to calculate the minimum
number of cases needed to achieve a 95% CI lower bound of
at least 80% assuming a point estimate of 90% (for sensitivity

and specificity, separately). Using the binomial dichotomous
endpoint for a one sample study, at least 137 positive and 137
negative anonymized cases were required (for ICH and LVO).

RESULTS

Intracranial Hemorrhage
Patient Selection
824 cases were selected for analysis from a pool of 400
retrospective anonymized cases from vRAD and 424 from UCI.
10 cases were excluded for the following reasons: 1 because slice
thickness was not identical among the volume, 3 because the
matrix was not 512 x 512, 1 because it contained a post-contrast
series, 2 lacked a full field of view, 2 were uninterpretable due
to significant motion artifact, and 1 was uninterpretable due to
significant metal artifact. After exclusion, case distribution was
395 from vRAD and 419 from UCI for a total of 814 cases.

Overall Cases
ICH ground-truths were as follows: 204 positive ICH cases from
vRAD and 51 fromUCI. There were 191 negative ICH cases from
vRAD and 368 from UCI. There was initial disagreement on 21
cases between the two neuroradiologists. However, a consensus
was eventually reached for each of these cases.

The CINA R© v1.0 algorithm identified 233 true positive ICH
(Figure 1), 14 false positive ICH, 545 true negative ICH, and 22
false negative ICH. Accuracy was calculated as 95.6%. Sensitivity
was 91.4 % [95% CI, 87.2–94.5%] and specificity was 97.5% [95%
CI, 95.8–98.6%]. Performance metrics can be found in Table 1.

TABLE 3 | Performance metrics for ICH cases by geographic distribution in the

United States.

Region category Positive ICH Negative ICH Sensitivity (%) Specificity (%)

Continental (n = 55) 29 26 93.1 100

Northeast (n = 187) 83 104 91.6 95.2

Pacific (n = 450) 67 383 89.5 97.6

Southeast (n = 96) 50 46 88 100

NA (n = 26) 26 0 – –

NA, not available.

TABLE 2 | Performance metrics for ICH cases based on demographics.

Demographic Positive ICH Negative ICH Sensitivity (%) Specificity (%)

Age 18 ≤ Age < 40 (n = 168) 37 131 89.2 100

40 ≤ Age ≤ 70 (n = 316) 112 204 91.1 96.1

Age > 70 (n = 249) 98 151 92.9 97.4

Age NA (n = 81) 8 73 – –

Sex Male (n = 206) 101 95 93.6 96.8

Female (n = 188) 93 95 91.4 97.9

NA (n = 421) 52 359 – –

NA, Not Available.
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Positive predictive values (PPV) and negative predictive
values (NPV) were also assessed based on varying prevalence.
PPV ranged from 80.2% (10% prevalence) to 97.3% (50%
prevalence). NPV ranged from 99.0% (10% prevalence) to 91.9
% (50% prevalence).

Demographics
Performance metrics for age and sex can be found in Table 2. For
age, sensitivity ranged from 89.2% (18 ≤ Age < 40, n = 168) to
92.9% (Age > 70; n = 249). Specificity ranged from 96.1% (40
≤ Age ≤ 70, n=316) to 100% (18 ≤ Age < 40, n=168). For
sex, sensitivity was 91.4% for females (n = 188) and 93.6% for
males (n = 206). Specificity was 97.9% for females and 96.8%
for males.

TABLE 4 | True positive rates for ICH cases based on subtype and volume.

ICH classification True positive rate (%)

Subtype IPH (n = 99) 92.9

IVH (n = 23) 100

EDH/SDH (n = 122) 94.3

SAH (n = 79) 89.9

Volume Small: <5mL (n = 78) 71.8

Medium: 5–25mL (n = 100) 100

Large: >25mL (n = 77) 100

Site
The distribution, sensitivity, and specificity of the ICH tool based
on geographic U.S. regions are shown in Table 3. Sensitivity
ranged from 88% (Southeast U.S., n= 96) to 93.1% (Continental
U.S., n = 55). Specificity ranged from 95.2% (Northeast U.S., n
=187) to 100% (Continental and Southeast U.S.).

ICH Subtypes
ICH cases were additionally categorized based on subtypes:
Intraparenchymal (IPH), Intraventricular (IVH), Subarachnoid
(SAH), Subdural (SDH), and Epidural (EDH). The SDH
and EDH subtypes were combined into one group for
stratification purposes. In addition, some patients are represented
across multiple categories (IPH, IVH, EDH/SDH, and SAH).
Distribution is seen in Table 4. CINA R© demonstrated a true
positive rate of 92.9% for IPH, 100% for IVH, 94.3% for
EDH/SDH, and 89.9% for SAH. ICH size distribution is also seen
in Table 4. CINA R© demonstrated a true positive rate of 71.8% for
small (<5mL) ICH, 100% for medium (5–25mL), and 100% for
large (>25mL) ICH.

Scanner Models
Case distribution among the various scanner models are found
in Table 5. Note that there were 41 different scanner models for
the ICH data set with 16, 7, 13, and 5 different models for GE,
Philips, Siemens, and Canon (Formerly Toshiba), respectively.
Sensitivity for GE, Philips, Siemens, and Canon was 91.8, 84.4,
96.7, and 94.1%, respectively. Specificity was 98.1, 97.7, 90.0, and
100%, respectively.

TABLE 5 | Performance metrics and distribution for ICH cases based on different scanning parameters.

Scanning parameter Positive ICH Negative ICH Sensitivity (%) Specificity (%)

Scanner model GE Healthcare (n = 203) 97 106 91.8 98.1

Philips (n = 461) 64 397 84.4 97.7

Siemens (n =90) 60 30 96.7 90

Canon (Formerly Toshiba) (n = 60) 34 26 94.1 100

Detector rows 4 < NDR ≤ 8 (n = 2) 2 0 100 –

8 < NDR ≤ 16 (n = 46) 14 32 78.6 100

16 < NDR ≤ 32 (n = 185) 91 94 94.5 96.8

32 < NDR ≤ 64 (n = 518) 111 407 91 97.5

64 < NDR ≤ 128 (n = 6) 5 1 100 100

128 < NDR ≤ 256 (n = 12) 8 4 87.5 100

256 < NDR ≤ 320 (n = 14) 12 2 100 100

NA (n = 31) 12 19 – –

Slice Thickness ST < 2.5mm (n = 39) 23 16 100 100

2.5 ≤ ST ≤ 5mm (n = 775) 232 543 90.5 97.4

kVp kVp < 120 (n = 8) 6 2 100 100

120 ≤ kVp ≤ 140 (n = 806) 249 557 91.2 97.5

kVp >140 (n = 0) 0 0 – –

mAs mAs < 150 (n = 23) 12 11 100 90.9

150 ≤ mAs ≤ 400 (n = 765) 231 534 90.9 97.8

mAs > 400 (n = 26) 12 14 91.7 92.9

NA, not available.
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FIGURE 2 | Example of a positive LVO identified by CINA®. There is a large vessel occlusion in the distal right MCA-M1 branch on CTA (green arrow).

Scanning Parameters
Case distribution and performance metrics among the various
scanning parameters can be found in Table 5. The number of
detector rows’ sensitivity ranged from 78.6% (8 < NDR ≤ 16,
n = 46) to 100% (4 < NDR ≤ 8, n = 2; 64 < NDR ≤ 128, n =

6; 256 < NDR ≤ 320, n = 14). Specificity ranged from 96.8%
(16 < NDR ≤ 32, n = 185) to 100% (8 < NDR ≤ 16; 64 <

NDR ≤ 128; 128 < NDR ≤ 256, n = 12; 256 < NDR ≤ 320).
Slice thickness sensitivity and specificity was 100% when slice
thickness was<2.5mm. Sensitivity was 90.5% and specificity was
97.4% when slice thickness was 2.5≤ ST≤ 5mm. Sensitivity and
specificity for kilovoltage peaks was 100% when kVp was <120.
Sensitivity was 91.2% and specificity was 97.5% when kVp was

TABLE 6 | Performance metrics for overall cases of CINA-LVO application.

Statistical findings for LVO detection Values [95% CI]

Sensitivity (%) [95% CI] 98.1% [94–99.5%]

Specificity (%) [95% CI] 98.2% [95.1–99.4%]

120 ≤ kVp ≤ 140. Sensitivity for milliampere-seconds was 100%
and specificity was 90.9% whenmAs< 150. Sensitivity was 90.9%
and specificity was 97.8% when 150≤mAs≤ 400. Sensitivity was
91.7% and specificity was 92.9% when mAs was >400.
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TABLE 7 | Performance metrics for LVO cases among different demographic parameters.

Demographic Positive LVO Negative LVO Sensitivity (%) Specificity (%)

Age 18 ≤ Age < 40 (n = 26) 5 21 83.3 100

40 ≤ Age ≤ 70 (n = 176) 65 111 100 97.3

Age > 70 (n = 176) 85 91 97.7 98.9

Sex Male (n = 185) 74 111 98.7 98.2

Female (n = 186) 80 106 97.5 98.1

NA (n = 7) 2 5 – –

NA, not available.

Large Vessel Occlusion
Patient Selection
406 anonymized CT angiography (CTA) cases were assessed; 93
from UCI and 313 from vRAD. 28 of these were excluded for the
following reasons: 11 were not CTAs, 2 had no contrast, 7 did not
have enough contrast, 2 were uninterpretable due to significant
motion artifact, 2 were uninterpretable due to significant metal
artifact, 3 did not have a full field of view, and 1 had an acquisition
issue (z-spacing variability).

Overall Cases
LVO ground-truths (determined by two board-certified
neuroradiologists) were as follows: 156 positive LVO cases and
222 negative LVO cases. There was initial disagreement on 19
cases between the two neuroradiologists. However, a consensus
was eventually reached for each of these cases.

The CINA R© v1.0 algorithm identified 153 true positive LVO
(Figure 2), 4 false positive LVO, 218 true negative LVO, and 3
false negative LVO. Sensitivity was 98.1 % [95% CI, 94.0–99.5%]
and specificity was 98.2% [95% CI, 95.1–99.4%]. Performance
metrics can be found in Table 6.

Positive predictive values (PPV) and negative predictive values
(NPV) were also assessed based on varying prevalence (from
10 to 50%, increments of 5%). PPV ranged from 85.8% (10%
prevalence) to 98.2% (50% prevalence). NPV ranged from 99.8%
(10% prevalence) to 98.1% (50% prevalence).

Demographics
Performance metrics for patient demographics can be found in
Table 7. For age, sensitivity ranged from 83.3% (18 ≤ Age < 40,
n = 26) to 100% (40 ≤ Age ≤ 70, n = 176). Specificity ranged
from 97.3% (40 ≤ Age ≤ 70) to 100% (18 ≤ Age < 40). For sex,
sensitivity was 97.5% for females (n = 186) and 98.7% for males
(n= 185). Specificity was 98.1% for females and 98.2% for males.

Site
The distribution, sensitivity, and specificity of the LVO tool based
on geographic U.S. regions are shown in Table 8. Sensitivity
ranged from 97.4% (Southeast U.S., n= 75) to 100% (Continental
U.S., n = 27). Specificity ranged from 97.3% (Southeast U.S.) to
100% (Continental U.S.).

LVO Subtypes
A subset of 55 patients were randomly selected to evaluate
performance metrics of the tool in evaluating LVO subtypes (4

TABLE 8 | Performance metrics for LVO cases by geographic distributions in the

United States.

Region category Positive LVONegative LVOSensitivity (%)Specificity (%)

Continental (n = 27) 8 19 100 100

Northeast (n = 155) 50 105 98 98.1

Pacific (n = 120) 59 61 98.3 98.4

Southeast (n = 75) 38 37 97.4 97.3

NA (n = 1) 1 0 – –

NA, not available.

Distal ICA, 26 MCA-M1, 20 Proximal MCA-M2, and 3 Distal
MCA-M2). Accuracy was 97.0%, sensitivity 94.3% [95% CI, 83.4–
98.5%], and specificity 97.4% [95% CI, 95.1–98.7%].

Scanner Models
Case distribution among the various scanner models can be
found in Table 9. Sensitivity for Siemens, Canon (formerly
Toshiba), GE Medical Systems and Philips was 96.7, 94.1, 91.8,
and 84.4%, respectively. Specificity for GE Healthcare, Philips,
Siemens, Canon, and NMS was 90.0, 100, 98.1, 97.7, and
100%, respectively.

Scanning Parameters
Case distribution and performance metrics among the various
scanning parameters can be found in Table 9. Sensitivity for the
number of detector rows ranged from 96.2% (32 < NDR ≤ 64,
n = 146) to 100% (8 < NDR ≤ 16, n = 15; 16 < NDR ≤ 32,
n = 63; 256 < NDR ≤ 320, n = 5). Specificity ranged from
90.0% (8 < NDR ≤ 16) to 100% (16 < NDR ≤ 32; 64 < NDR
≤ 128, n = 126; 256 < NDR ≤ 320). Sensitivity and specificity
for slice thickness ≤1.25mm was 98.1 and 98.2%, respectively.
Sensitivity for kilovoltage peak ranged from 98% (100 ≤ kVp ≤

120, n = 359) to 100% (kVp < 100, n = 8; kVp > 120, n = 11).
Specificity ranged from 83.3% (kVp> 120) to 100% (kVp< 100).
Sensitivity for milliampere-seconds ranged from 97.8% (100 ≤

mAs ≤ 400, n =314) to 100% (mAs < 100, n=43; mAs >400, n
= 21). Specificity ranged from 97.7% (100≤mAs≤ 400) to 100%
(mAs < 100; mAs > 400).
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TABLE 9 | Performance metrics for LVO cases based on different scanning parameters.

Scanning parameter Positive LVO Negative LVO Sensitivity (%) Specificity (%)

Scanner model GE healthcare (n = 129) 50 79 91.8 98.1

Philips (n = 137) 62 75 84.4 97.7

Siemens (n = 73) 30 43 96.7 90.0

Canon (Formerly Toshiba) (n = 37) 14 23 94.1 100

NMS (n = 2) 0 2 – 100

Detector rows 4 < NDR ≤ 8 (n = 0) 0 0 – –

8 < NDR ≤ 16 (n = 15) 5 10 100 90

16 < NDR ≤ 32 (n = 63) 27 36 100 100

32 < NDR ≤ 64 (n = 146) 52 94 96.2 96.8

64 < NDR ≤ 128 (n = 126) 65 61 98.5 100

128 < NDR ≤ 256 (n = 0) 0 0 – –

256 < NDR ≤ 320 (n = 5) 1 4 100 100

NA (n=23) 6 17 – –

Slice thickness ST ≤ 1.25mm (n = 378) 156 222 98.1 98.2

kVp kVp < 100 (n = 8) 1 7 100 100

100 ≤ kVp ≤ 120 (n = 359) 150 209 98 98.6

kVp > 120 (n = 11) 5 6 100 83.3

mAs mAs < 100 (n = 43) 11 32 100 100

100 ≤ mAs ≤ 400 (n = 314) 138 176 97.8 97.7

mAs > 400 (n = 21) 7 14 100 100

NA, not available.

DISCUSSION

This retrospective, multicenter study aimed to demonstrate
the generalizability of a commercially available deep-learning
based tool, CINA R© v1.0, in the detection of ICH and LVO
across multiple hospital settings. The algorithm performed
well in the ICH cohort, with an overall accuracy of 95.6%,
sensitivity of 91.4%, and specificity of 97.5%. Of the ICH
subtypes, it achieved the highest sensitivity in the detection
of intraventricular hemorrhage with a true positive rate of
100%, followed by epidural/subdural, intraparenchymal, and
subarachnoid subtypes which all had sensitivity of at least 90%.
When stratified by ICH size, it performed best for medium and
large volumes with sensitivities of 100%, but demonstrated lower
sensitivity in the detection of small volumes with a sensitivity
of 71.8%.

The tool also performed well in the LVO cohort, with an
accuracy of 98.1%, sensitivity of 98.1%, and specificity of 98.2%.
The algorithm showed robust performance in detecting LVO
location in a smaller subset of cases with an accuracy of 97.0%,
sensitivity of 94.3%, and specificity of 97.4%.

These results corroborate previous studies analyzing the
ability for deep-learning tools to detect intracranial emergencies.
For example, Chilamkurthy et al. used a deep-learning algorithm
to detect and classify ICH on large and diverse cohorts in
India (6). Another study obtained an AUC of 0.99 in the
detection of ICH via deep-learning algorithms; however, this
was based off of a single institution using relatively uniform
scanning parameters on two scanner models (9). Similar

studies have been performed with respect to AI detection of
LVO. For example, a commercially available deep learning
software for LVO detection achieved an AUC of 0.86 using
a cohort derived from three tertiary stroke centers (11).
Our work expands on these previous studies by showing
similar robust performance of deep learning tools across
a diverse population regardless of scanner parameters and
geographic distribution.

Ultimately, given the robust nature of deep learning tools
such as CINA R© v1.0, the goal of these tools is to streamline
the radiologists’ workflow by triaging studies to alert physicians
to the most time-sensitive findings, and to act as a second set
of eyes when studies are more ambiguous. Studies evaluating
the effectiveness of such systems have already begun. For
example, when a deep-learning tool was prospectively integrated
to prioritize studies in a radiologist’s workflow based on the
presence of ICH, one study found that time to diagnosis
was significantly reduced (14). Future studies with CINA R©

v1.0 could mirror this type of work and evaluate patient
outcomes as influenced by the integration of deep-learning tools
into a radiologist’s workflow. For example, both inpatient and
outpatient settings could be evaluated with regards to these
neurologic emergencies and how these tools impact efficiency
and ultimately clinical outcomes.

Our software had some limitations that warrant further
investigation. Perhaps the greatest limitation was in the detection
of small bleeds, with false negatives occurring predominantly
in very small ICH (<1.5mL). The false negatives that occurred
in larger bleeds (1.5–5mL), were often located within chronic

Frontiers in Neurology | www.frontiersin.org 8 April 2021 | Volume 12 | Article 656112

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


McLouth et al. AI ICH/LVO Detection Tool Validation

pathology such as old hematomas, areas of gliosis, or extra-
parenchymal structures such as along the falx cerebri. On the
other hand, ICH false positives predominantly occurred in the
setting of significant streak or motion artifact. Similar limitations
were identified in the LVO cohort with respect to imaging artifact
and small size. For example, the LVO false negatives all occurred
in the setting of small occlusions <1.3mm in length (Note that
LVO lengths were only retrospectively measured for the three
false negative cases in order to understand why the application
failed to detect them and were not measured for the remaining
LVO cases). A false positive LVO case also occurred in the
setting of significant streak artifact. Another false positive case
misdiagnosed an area of stenosis as a complete occlusion. Two
false positive cases misidentified the sphenoparietal sinus venous
structure as an area of occlusion, likely secondary to its close
proximity to the MCA. As a result, caution should be used when
relying solely on the software in these settings. However, the
limitations discussed above often occurred in settings that would
likely pose similar challenges to radiologists and result in a similar
distribution of false negatives and positives.

CINA R© v1.0 was only trained to identify acute blood based
off of hyperdense components. Thus, chronic hemorrhages
cannot be identified by the algorithm unless they contain more
acute hyperdense components. However, given that low density
hemorrhages (e.g., chronic SDH) are often not emergencies,
we believe this distinction is actually clinically useful and not
necessarily a limitation in order to prevent the tool from flooding
the radiologist with alerts for non-emergent cases. The tool did
not differentiate between acute and non-acute LVO etiologies
such as chronic ICA occlusion, and these may have been included
as positive LVO cases. Lastly, the tool was not trained to
evaluate occlusions in the anterior cerebral arteries or posterior
circulation. While further work is needed for future tools to
better identify more distal occlusions and subtle hemorrhages,
the primary goal of CINA in its current state is to identify
obvious findings that need to be assessed urgently for emergent
triage and prioritization of the worklist. This is reflected in
a separate standalone effectiveness assessment demonstrating a

mean “time-to-notification” of 21.6 and 34.7 s for ICH and LVO
detection, respectively.

Despite these limitations, CINA R© v1.0 demonstrates robust
generalizability in the detection of ICH and LVO. For example, in
a study examining the geographic distribution of various cohorts
evaluated by deep learning based algorithms in various medical
specialties, 34 states were not represented among 56 studies (13).
Our ICH data spans 44 states and 204U.S. cities, while LVO
data reflects scans from 40 states and 158U.S. cities. To our
knowledge, this is the most heterogeneous population cohort
ever studied in the U.S. using a deep learning tool for ICH
and LVO detection. This study demonstrates the potential for
greater application of deep-learning tools across a wide variety
of clinical settings.
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