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Expectations and Adaptation to Environmental Threats*

Husnain F. Ahmad, Matthew Gibson, Fatiq Nadeem,

Sanval Nasim, Arman Rezaee

March 2024

Abstract

Scarce information and human capital may make it difficult for residents of developing
countries to form accurate expectations, limiting responses to uncertain environmental
threats like air pollution. We study two randomized interventions in Lahore, Pakistan:
1) general training in forecasting; 2) provision of air pollution forecasts. Both reduced
subjects’ own air pollution forecast errors; the training effect suggests that modest
educational interventions can durably improve forecasting skills. Forecast receipt
increased demand for protective masks and increased the responsiveness of outdoor
time to pollution. Forecast recipients were willing to pay 60 percent of the cost of
mobile internet for continued access.
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1 Introduction

Contemporary people face risky and uncertain environmental threats, from climate change to
water and air pollution. In order to adapt effectively, they must form expectations (forward-
looking beliefs or forecasts; Bakkensen and Barrage, 2022). For example, a farmer in India
must form an expectation over the arrival of increasingly erratic monsoon rains in order
to choose the planting date for rice. Forming accurate and precise expectations may be
difficult, however, particularly in an information-scarce developing-country context (Stiglitz,
2000).! Underlying distributions may be changing over time (Kala, 2019). Past outcomes
of random processes may not be readily observable, and correlated environmental threats
may be impossible to disentangle (Patel, 2023). Third-party forecasts may be scarce or of
low quality (Rosenzweig and Udry, 2014a,b). Levels of relevant human capital may be low
(Jacoby and Skoufias, 1997; Beine, Docquier, and Rapoport, 2008), and ecumenical cognitive
biases may compound the problem of producing useful expectations (Tetlock, 2017). The
resulting errors are plausibly consequential and create scope for beneficial interventions.

Air pollution provides a suitable domain to study expectations over environmental
threats, particularly in the developing world (Chang et al., 2019). It varies at high frequency,
with large changes occurring from one day to the next. This allows a subject to produce or
consume multiple forecasts over the course of an experiment, and creates scope for changes
in a subject’s forecasting process. Uncertainty over air pollution matters, as air pollution
affects mortality and health (Knittel, Miller, and Sanders, 2016; Barrows, Garg, and Jha,
2019; Barreca, Neidell, and Sanders, 2021; Garg, Jagnani, and Pullabhotla, 2023), as well as
labor productivity (Chang et al., 2016a; Neidell, 2017; Chang et al., 2019; Adhvaryu, Kala,
and Nyshadham, 2022).2 Because of these consequences, one can reasonably expect that
subjects take air pollution forecasting seriously. Air pollution has also become an ubiquitous
part of life in developing cities (IQAir, 2023), making it a more natural forecasting domain
than those sometimes employed in lab studies (e.g. stock prices).

In this paper, we exploit uncertain air pollution to study how people form expectations
and make adaptation choices in the presence of limited information and human capital. We
concern ourselves with the following broad questions. Can developing-country residents form
useful forecasts, and can their forecasting ability be improved? How do changes in forecast

inputs influence adaptation, especially avoidance of environmental harm? Do people exhibit

1Stiglitz (2000) writes, “One of the central aspects of less developed countries is that markets work less
efficiently, including ‘markets for information.” ”

20ther important work in this area includes: Alberini et al. (1997); Cropper et al. (1997); Jeuland,
Pattanayak, and Bluffstone (2015); He, Liu, and Salvo (2019); Bishop, Ketcham, and Kuminoff (2022);
Gilraine and Zheng (2022); Persico (2022). For reviews, see Graff Zivin and Neidell (2018) and Aguilar-
Gomez et al. (2022).
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positive demand for forecast products? The answers to these questions shed light on forward-
looking human decision making, and also comprise important inputs to benefit-cost analyses
of policies concerning air pollution monitoring and abatement.

To address these research questions we implemented a randomized controlled trial,
which included two orthogonal treatments: 1) in-person training designed to improve
general forecasting performance, e.g. by avoiding base-rate neglect;> 2) day-ahead air
pollution forecasts delivered by text message (SMS) for eight months. In theoretical terms,
we model these two treatments as shocks to inputs in an agent’s forecast production
function: training increases human capital, while text-message pollution forecasts increase

information.*

Broadly, three types of outcomes interest us: 1) expectations, e.g. error
in forecasting air pollution; 2) adaptive behavioral responses, e.g. willingness to pay for
particulate-filtering face masks; and 3) demand for inputs to expectations, e.g. willingness
to pay (WTP) for our air pollution forecast product.

Our experiment involved 999 subjects in Lahore, Pakistan. In 2019, Lahore ranked
as the twelfth most polluted city in the world, with air roughly comparable to cities
like New Delhi, India; N’Djamena, Chad; and Baghdad, Iraq (IQAir, 2020; Riaz and
Hamid, 2018; Zahra-Malik, 2017). While Lahore experiences acute pollution, its residents
face a challenging information landscape in which to make accurate forecasts (i.e., to
form unbiased expectations). Some sources (public and private) provide retrospective
information, but such efforts remain incomplete in space and time and information quality is
uncertain.” The Punjab Government’s Environmental Protection Department (EPD) posts
past measurements, but only online in English.® The US consulate in Lahore recently began
providing hourly pollution averages online, but these represent one point in a city with an
area of more than 680 square miles. Retrospective and real-time air pollution readings are
not readily available to residents—especially the majority who do not speak English—while
air pollution forecasts are entirely absent.” This kind of information environment is common

in developing cities.®

3For example, a person who forecasts the probability of rain tomorrow without considering the long-term
mean probability of rain in her location exhibits base-rate neglect. Improved forecasting performance could
arise from changes in both the first and higher moments of the forecast distribution.

4In our theoretical model (Section 2), information and human capital may be complements or substitutes.

SManipulation of air pollution readings has been documented in other developing-country settings
(Ghanem and Zhang, 2014; Ghanem, Shen, and Zhang, 2020).

6 According to the Punjab Government: “Data on air quality in the province is scant. Sporadic monitoring
of air pollutants suggests that ambient air standards for particulate matter with size 2.5 micron (PMa5) ...
are exceeded frequently” (Punjab Environmental Protection Department, 2017).

"In pilot surveys, respondents were asked to rank real-time alerts, retrospective readings, and forecasts
from most to least desirable. 69 percent ranked forecasts first, and 25 percent ranked them second.

8Section 5.7 provides evidence for this claim.



Average levels of human capital in Lahore may also hamper residents’ ability to forecast
accurately. Citywide, average educational attainment lies between 6.2 and 6.5 years (NIPS
and ICF, 2019). In our subject population, it is 9.3 years. Pakistan’s nationwide educational
attainment (4.8 years) is a year lower than India’s, and roughly comparable to Uganda’s,
Ethiopia’s, and Nigeria’s (World Bank, 2017). These countries’ urban residents may face skill
constraints similar to those of our subjects. Moreover, Lahore’s residents may confront the
same behavioral biases that generate forecasting errors even in highly educated populations
(Kahneman and Tversky, 1973).

Using incentive-compatible elicitations, we find that both training and forecast provision
reduced error in incentivized forecasts of fine particulates (PMy5) by roughly one-tenth
of a standard deviation, or 5 pg/m?.° This equals approximately 20 percent of the
World Health Organization’s corresponding maximum safe 24-hour standard.!® While both
interventions reduced mean forecast error, training additionally reduced the variance of
forecast error across subjects. The improvement in mean forecast error is driven by reduced
underestimation of air pollution levels. At endline, the median respondent underestimated
PM, 5 levels by 40.2 pg/m? in the control group, compared to 35.7 p1g/m? in the treatment
groups. Given that four to six months elapsed between the training and the forecast
elicitation, these forecast improvements are notable and consistent with a durable increase

1.11

in human capita More generally, the effect of training suggests that helping people use

information is at least as important as—and may be more important than—delivering new
information (Hanna, Mullainathan, and Schwartzstein, 2014).12

Forecast provision increased willingness to pay for particulate-filtering masks by 6.6 PKR,

13

roughly five percent of the retail price.” While the estimated effect of training on mask

demand is positive (4 PKR), it is imprecise. These results indicate that a sparse information
environment is one of the factors limiting the takeup of masks—and more broadly pollution

avoidance—in developing countries. This may be particularly true when less informed people

9Forecasts were incentivized using payments for responses within 5, 10, or 20 percent of realized particulate
pollution. For more details, see Section 3.2.

10Here “fine particulates” denotes PMj 5 air pollution: the concentration of particulates with diameter 2.5
microns or less, measured in micrograms per cubic meter (ug/m?3). For PMy 5, the World Health Organization
has set the daily standard at 25 pg/m? and the annual standard at 10 ug/m3 (World Health Organization,
2006).

"The trainings occurred in August 2019, the endline survey in January-February 2020.

12\We can exclude the conjecture that forecast provision treatment effects were driven by subjects learning
about average pollution levels. At baseline all subjects, including those in the control, received information
on the mean and 5th and 95th percentiles of the distribution of daily average fine particulate readings in
Lahore over the last 30 days. See Section 3 for more details.

13N95 masks filter 95 percent of small particles. According to the mask manufacturer 3M, a genuine N95
mask retailed for 135 PKR (on average) in Lahore in November 2019, while our experiment was in progress.
Endline surveys were completed prior to the outbreak of Covid-19 in Pakistan.
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underestimate air pollution levels, as in our context. Subjects exposed to our one-day-
ahead air pollution forecasts were willing to pay an average of 93 Pakistani Rupees (PKR)
to continue receiving forecasts for 90 days.!* On a monthly basis, this equals roughly 60
percent of the cost of 4G mobile internet access. It stands in contrast to low willingness to
pay for health-promoting goods like insecticide-treated nets and chlorine (Kremer et al.,
2011). Drawing on third-party demographic data, we show that our demand estimate
implies substantial welfare benefits from air pollution forecasting in developing countries,
even allowing for uncertain benefit transfer and substantial monitoring costs.

We also estimate the effect of forecast receipt on outdoor time. This is an important
margin of adaptation to air pollution, as outdoor pollution exposure is frequently higher than
indoor (US Centers for Disease Control and Prevention, 2022). Forecast receipt increased
outdoor time by 16 percent on (infrequent) less polluted days and reduced outdoor time
by 3 percent on more polluted days. That is, SMS forecasts improved the alignment of
outdoor time with the level of air pollution. This pattern of responses was more pronounced
for subjects who reported caring about air quality at baseline, and for children. Increased
avoidance by children may have large welfare consequences because in-utero and childhood
air pollution exposures affect long-run health, labor force participation, and human capital
(Currie et al., 2014).

Finally, the timing of our training—roughly mid-way through the eight months of SMS
forecasts—allows for a better understanding of the dynamics of our treatment effects, as
well as of the interaction of the two interventions. Incentive-compatible forecast elicitations
were conducted at the beginning and end of the one-hour training. Subjects who had been
receiving our SMS forecasts for several months started the training session performing better
than those who had not, and this intent-to-treat effect on forecast error at the study mid-
point was similar to the effect at endline.'> Over the training session, those who had not been
receiving forecasts caught up in terms of forecast error, while those who had been receiving
forecasts saw no additional improvement. These results could be interpreted as evidence
of a ceiling on forecast accuracy, operating perhaps through memory or cognition. Viewed
through the lens of our model, they could be interepreted as evidence that information and
human capital are substitutes in subjects’ forecast production functions.

Our project contributes to several literatures, of which the first is on environmental
beliefs. In a US setting, Bakkensen and Barrage (2022) study expectations of future flood

risk. Previous work in developing countries has focused on farmers, including their beliefs

4Willingness to pay for both forecasts and masks was elicited using a Becker-DeGroot-Marschak
mechanism (Becker, DeGroot, and Marschak, 1964).

15The intent to treat effect of SMS forecasts on t+1 forecast error at the beginning of training is -0.13
standard deviations, versus -0.11 standard deviation at endline.
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over soil salinity (Patel, 2023), monsoon onset (Giné, Townsend, and Vickery, 2015), and
drought risk (Zappala, 2024). Other studies have inferred precipitation beliefs from planting
decisions (Kala, 2019) or estimated responses to precipitation forecasts (Burlig et al., 2024;
Patt, Suarez, and Gwata, 2005; Rosenzweig and Udry, 2014a,b). While we also study
responses to forecasts, this paper makes novel contributions on several dimensions. Perhaps
most importantly, our experiment shocks beliefs not only through subjects’ information sets
(as prior studies have done), but also through their human capital. We elicit beliefs directly
using incentive-compatible mechanisms, rather than relying on stated beliefs or inferring
beliefs within a structural model. Our experiment examines a different but consequential
type of uncertainty—air pollution—and different responses—outdoor time and mask demand.
Studying these beliefs and behaviors is increasingly important, as rural residents in the
developing world continue moving to cities (Henderson, 2002).

Second, we contribute to the body of work on training interventions in developing
countries. Previous research has focused on business and entrepreneurship skills (Karlan
and Valdivia, 2011; McKenzie and Woodruff, 2014; Martinez A, Puentes, and Ruiz-Tagle,
2018), or job training (Card et al., 2011; Acevedo et al., 2017). Our paper instead considers
training in general-purpose forecasting skills. Researchers have sought to improve forecasting
performance in high-income settings, typically with highly educated subjects (Mellers et al.,
2014; Morewedge et al., 2015; Soll, Milkman, and Payne, 2015). So far as we are aware, ours
is the first study to adapt such techniques to a low-income setting.

The third relevant literature is on adaptation to environmental threats. A large body
of work naturally focuses on adaptation to climate change (Auffhammer, 2018). Examples
include Burke and Emerick (2016), Mullins and Bharadwaj (2021), and Garg, Jagnani, and
Taraz (2020); for a development-focused review, see Kala, Balboni, and Bhogale (2023).
Within this literature, our paper is most closely related to a set of studies on pollution
avoidance behavior (Graff Zivin and Neidell, 2013).1 Many studies address avoidance
behavior in developed countries. Prominent examples include Neidell (2004), Graff Zivin
and Neidell (2009), and Moretti and Neidell (2011).!" We provide evidence from a low-
income developing country, where both preferences and the scope for avoidance may differ
(e.g. because of available technologies or jobs). Previous work on avoidance largely relies on
natural experiments for identification (Neidell, 2009, 2010). This literature has not explicitly
addressed expectations, and as a result one cannot tell whether studied populations are

choosing avoidance consistent with the true state of the world. FExamples of estimated

16Some work prefers the term “averting behavior”; we view the two as synonymous. Air pollution avoidance
behavior may take the form of ex ante adaptation, e.g. purchasing a protective mask, or ex post adaptation,
e.g. rescheduling a planned outdoor activity at the last minute.

17Graff Zivin and Neidell (2013) provides a thorough review, including a brief theoretical foundation.
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avoidance responses include cancellation of trips to movie theaters (He, Luo, and Zhang,
2022) and purchases of masks and air purifiers (Zhang and Mu, 2018; Ito and Zhang, 2020;
Wang and Zhang, 2021). Our experimental design allows us to observe both expectations
and avoidance behaviors for the same subjects, including total outdoor time rather than a
Proxy.

Lastly our results add to the literature on demand for environmental information.'® To
the best of our knowledge, ours is the first paper in this literature to elicit the value of
air pollution information directly, using an incentive-compatible mechanism. This avoids
the need to specify channels through which information affects utility. Our elicitation
also recovers the entire demand curve, with an average elasticity of -.93.1° In similar
concurrent work, Patel (2023) experimentally estimates demand for soil salinity information
in Bangladesh. In prior work, Barwick et al. (2019) estimate effects of real-time air pollution
information in China on a variety of outcomes, including shopping and mortality. Combined
with an income-adjusted value of a statistical life (VSL) from the United States, these
estimates allow recovery of a lower bound on the value of air pollution information.?
Another related study is Barnwal et al. (2017), which randomized prices for arsenic testing
of drinking-water wells in Bihar, India. In contrast, our experiment elicited willingness
to pay for information from subjects who had experience with our forecast product. The
resulting estimate is policy-relevant, and it pertains to a near-universal exposure (airborne
fine particulates).?!

The rest of the paper proceeds as follows. Section 2 presents our theoretical model
and Section 3 discusses experimental design. Section 4 describes our approach to empirical

analysis. Section 5 discusses estimated treatment effects and Section 6 concludes.

2 Theoretical model

In this section, we build a simple model of pollution avoidance by a forward-looking agent.
Consider an individual who at the end of the day (¢ = 0) is planning activities for the next
day (t = 1). Her payoff depends on the level of air pollution tomorrow and there are two

possible states s € {h,l}, high and low. The agent consumes only at ¢ = 1. Pollution

18 A related literature studies health information in developing countries. For a review, see Dupas and
Miguel (2017).

19This estimate joins the large set roughly consistent with Samuelson (1965).

20This VSL forms the basis of estimated benefits through both reduced mortality and reduced morbidity
(Barwick et al., 2019).

2In Barnwal et al. (2017) and other studies eliciting demand for static environmental or health information,
demand can only be elicited once, before agents have any experience with the information. Since air pollution
varies at high frequency, we can first expose agents to the information and then elicit willingness to pay.
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effects can be mitigated by engaging in avoidance behavior, which can be purchased in both
periods. Examples of avoidance in our setting include protective face masks and cancellation
or rescheduling of planned outdoor activities.?? Let z and y denote the amount of avoidance

purchased in periods 0 and 1 respectively, so the agent’s payoff is
E— ds(‘r + y) - C(I,y),

where £ > d(0) is her initial endowment that is large enough to avoid any credit constraints.
The function d* is state-dependent damage,?® assumed to be decreasing and strictly convex
in the sum of avoidance purchased. The assumption that damage is decreasing in the sum
of avoidance implies avoidance actions are perfect substitutes across the two periods. This
matches our setting where, for example, a cancelling plans a day ahead is a perfect substitute
for a cancelling them on the day.?* We further assume that both the magnitude of damage
and the marginal benefit of avoidance are increasing with the level of pollution, that is
d"(A) > d'(A) VA and d}(A) < d'(A) YA.? The cost of avoidance is captured through the
cost function ¢, which is assumed to be strictly convex and increasing in both z and y. The
marginal cost of avoidance rises if the agent waits. This may be thought of as capturing
increased search costs or higher price from a time-constrained search for a mask, or the
increased difficulty of rescheduling outdoor activities at the last minute.

Mathematically this requires that globally, ¢; < c;. We ensure this by assuming that
¢(0,0) = ¢1(0,0) = ¢2(0,0) = 0 and that for all x and y, ¢11 < c19 < ¢99. As costs are convex
in each period’s avoidance, making this assumption ensures that at any (x,y), buying more
x increases the marginal cost of z by less than the marginal cost of more y (¢17 < ¢91).
Similarly buying more y raises marginal cost of y by more than that of x (cos > ¢12). This
is perhaps easier to see for the example where ¢(x + By), with § > 1. Then the marginal

cost of y is always higher than that of z, and the above assumptions hold. Also note that

220ne might object that masks are a durable good. We do not model them as such because 1) masks have
a limited life span, roughly 1 to 30 days in our Lahore setting, and 2) the cost of avoidance can be viewed
in terms of opportunity cost, i.e. use of a mask today prevents usage later.

23For simplicity, we assume that there is no credit constraint and that the agent is risk neutral. Adding a
credit constraint would only result in corner solutions, without meaningfully changing any of the directional
results. Similarly, while extension to risk aversion is possible, it reduces tractability without adding
interesting results. We are unable to study changes in risk aversion, as those involve comparing lotteries
that are significantly different. A specialized model making this point is presented in Appendix G.

24The damage function can be generalized to any weighted sum, e.g A = x + ey. Generalizing further is
possible, say to a damage function of the form d(z,y), if we either 1) make an interim assumption while
solving, similar to Rosenzweig and Udry, 2014a, or 2) make assumptions on the third derivatives of the
damage function.

25 A notation reminder is in order: we denote the partial derivative of a real valued function f(&@) with
respect to the i-th argument as f;.



¢(0,0) = ¢1(0,0) = ¢2(0,0) = 0 is an elective normalization; the only requirement is that
c1(0,0) < ¢2(0,0).

The level of pollution is unknown at time 0 but revealed at time 1. The probability
of high pollution is P(h) = m, which can also be interpreted as the agent’s unbiased prior
before she begins optimizing. In the process of optimizing the agent forms an internal
forecast, F' € {H, L}, of tomorrow’s pollution. Her forecasting performance depends on her
human capital 7 and her level of information ¢ at ¢ = 0, both exogenous. Our treatments
are designed to vary (increase) the level of ¢ and 7, through either direct provision of
information on the level of pollution or through a learning exercise designed to improve
forecast ability, respectively. We define the probability of a correct forecast as the the
agent’s skill, P(H|h,t,7) = P(L|l,t,7) = p(t,7), and assume she is equally good at
predicting high and low pollution. We assume that skill is increasing in both information
and human capital, but make no assumption on their interaction (i.e. whether they are
substitutes or complements), though our empirical results suggest that they are substitutes.
Finally we assume that, given ¢ and 7, the forecast is weakly useful. Formally this requires

p(t,7) > max{m, 1 —m}.

2.1 Hypotheses

The results of our model, provided in detail in the Appendix A, yield a set of testable
hypotheses.  First, our model shows that there is a positive willingness to pay for
improvements in forecast ability (p). Given the assumption that our treatments (detailed in

the next section) improve an agent’s forecast ability, our model yields the hypothesis below.
Hypothesis 1. Willingness to pay for services that improve the agent’s forecast is non-zero.

Turning to avoidance behaviour, our model predicts that those who anticipate higher
levels of pollution, tend to invest in higher levels of avoidance. Avoidance acts as insurance
against damage caused by pollution. Improved forecast information and skill allow our agent
to avoid pollution in a more sophisticated manner, undertaking more (costly) avoidance when
pollution is high, less when it is low. We can further establish that willingness to pay for
avoidance (e.g. masks) is increasing in forecast skill. We note that Lahore experienced high
air pollution throughout our study. Assuming that our interventions reduce forecast errors

and pre-intervention agents underestimated the level of pollution, we expect the following.26

26 At endline, control subjects underestimated the level of pollution compared to those in our treatments.
The median respondent underestimated PMsy 5 levels by 40.2 ug/m? in the control group compared to 35.7
ug/m3 in the treatment groups.



Hypothesis 2. Subjects receiving our treatments should undertake more avoidance behavior.
In particular, we expect those in all treatment arms to have higher willingness to pay for

masks, compared to those in the control arm.

Similarly, our time-use data provide us with information on avoidance as a function of the
forecast sent a day ahead. Our model suggests that avoidance is increasing in the level of
the air pollution forecast. One of our treatments, sent day ahead forecasts of pollution to
respondents through mobile SMS. If agents incorporate this information and use it to form

better forecasts, we would expect the following.

Hypothesis 3. Avoidance (e.g. reduced outdoor time) is expected to better match the state
(high or low pollution) among recipients of the SMS service. In particular, subjects receiving
SMS forecasts should avoid more than control subjects on high-pollution days and less on

low-pollution days.

Under the additional assumption that experience with our SMS forecast increases its

perceived skill, we expect the following.

Hypothesis 4. Willingness to pay for forecast service will be greater for those who have

experience receiving the SMS service, compared to those without.

Finally we note that the interaction effects of the two treatments are ambiguous in sign,
largely because we impose no structure on the agent’s forecast function p(¢, 7). There is
little empirical basis for restricting p in our setting. While agents’ behavior in combining
information and human capital to produce forecasts raises interesting research questions, they
are mostly beyond the scope of this paper. While we don’t formalize this as a hypothesis, we

note that among participants who received the SMS service, we expect training will decrease
0?p
0.0t

WTP for the SMS service if training and information are substitutes ( < 0) and increase

it if they are complements.

3 Experimental design

We carried out our experiment with a representative sample of 1088 households from two
of the eight Tehsils (sub-districts) of Lahore: Walton and Model Town. We selected
these Tehsils for logistical reasons, namely our ability to place a high quality air pollution
monitor unobstructed in a central location of the two Tehsils. This ensured the ground
truth data for our forecasts was as accurate as possible. The two Tehsils are middle-class,
with education levels above the average for Lahore (27 percent of households have tertiary

education compared to Lahore’s 18.5 percent average). The external validity of results from
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this sample is discussed in Section 5.7. Further details of sampling and randomization are
discussed in Appendix D. Figure 1 shows the division of our sample into treatment and
control groups. We find no evidence of imbalance across these groups at either baseline or
endline (Tables A1 through A4).

One adult per household was invited to participate in our study. Households were
randomly assigned to either have a male or a female respondent. We prioritized household
heads or spouses of households heads for selection, but if they could not be reached we
randomly selected another adult of the same gender from the household. All of our outcomes,
including our incentive-compatible forecast elicitations, our demand elicitations, and our
outdoor time use, were asked of this single respondent, except for child time use, which was
asked about the youngest child in the household that is able to walk. Both of our treatments
were also applied to the same respondent.

At baseline all subjects received a pamphlet explaining fine particulate air pollution
(PMsy5). A color-coded table described potential health effects for different pollution ranges
in neutral language. The pamphlet also provided the mean and 5th and 95th percentiles of
the distribution of daily average fine particulate readings.?” Broadly the goal of the pamphlet
was to put all subjects—including the control group—in a position to make grossly reasonable
forecasts. In Treatment Groups 1 and 3 (71 and T%), we delivered SMS air pollution forecast
messages to respondents every evening over a period of eight months. In Treatment Groups
2 and 3 (72 and T3), we implemented the forecast training once for every subject. More

detailed descriptions of these interventions follow.

3.1 Treatments
3.1.1 Day-ahead air pollution forecasts

We designed a model to forecast day-ahead (¢t+1) PMa 5 air pollution. Our ensemble forecast

combined the following inputs.?®

1. A model based on data from our own air pollution monitors.?? PMs5 levels for t+1
were predicted using a seven-day moving-average (MA7) model with day of the week
fixed effects and weather forecast controls. The MA7 form was selected using a cross-

validation exercise.

2. A similar MA7 model based on data from the US Consulate’s air pollution monitor.

2TThe percentiles were described in colloquial language that assumed no knowledge of probability.

28For more detail, see Section D.4.

29 As noted above, to ensure our model was accurate we placed our primary monitor in a central location
within the two Tehsils in which we conducted the experiment. All respondents were within a 2.5-mile radius
of our primary monitor.
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3. MeteoBlue and SPRINTARS models. These are daily third-party forecasts of fine
particulate pollution based on satellite data. MeteoBlue is a private Swiss provider
of atmospheric data. SPRINTARS stands for Spectral Radiation-Transport Model for
Aerosol Species. This model was developed primarily by Kyushu University, Japan.

For additional detail on how these models were estimated and aggregated into an ensemble
forecast, see Appendix E. We provided our treatment-group (7'1) respondents two pieces of
information in each SMS message: 1) an average PMy 5 air pollution forecast for ¢+1; and
2) the realized average PM, 5 level for the previous day (¢-1).3° The latter was intended to
allow subjects to assess the accuracy of our previous forecasts. SMS forecast messages were
delivered to subjects around 8 PM, e.g. a forecast of Tuesday’s particulate air pollution
would have arrived on Monday evening.

Effects of this treatment may reflect both the two included pieces of information and the
manner in which they were communicated. They are not “pure” information effects. This
is arguably true of any information intervention, however; the message cannot be separated

completely from the medium.

3.1.2 Forecast Training

We implemented a one-hour training in forecasting skills based on the principles of Tetlock
(2017) and Kahneman (2011). Broadly speaking, the training aimed to reduce behavioral and
psychological mistakes that decrease the accuracy of subjects’ forecasts. A group of specially
selected and trained enumerators conducted the trainings in Urdu in subjects’ homes, and
subjects received 150 PKR for their participation.®!

The first set of training exercises covered the concept of calibration. In pilot sessions,
most subjects made large errors and demonstrated overconfidence, consistent with evidence
from high-income countries (Mellers et al., 2014). The calibration exercises were intended
to show subjects that they had room for improvement and open their minds to subsequent
lessons.

The next set of exercises taught subjects to combine “outside” and “inside” views when
making a forecast (Kahneman and Lovallo, 1993; Lovallo, Clarke, and Camerer, 2012).The
outside view is a mean outcome or base rate from a reference class of similar uncertain
events. In our setting, long-run mean air pollution in Lahore would be a reasonable base

rate. The inside view incorporates information particular to the event being forecast, like

30Some governments make similar interventions. For example, the US EPA’s EnviroFlash service allows
users to receive one-day-ahead air pollution forecasts via text message.

31Urdu is one of the primary local languages spoken in Lahore. Training was in-person rather than online
to reduce barriers to participation and increase takeup.
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the probability of rain tomorrow. Subjects were taught how to choose a good reference class
and warned of the tendency to give too much weight to the inside view.

In the following set of exercises, subjects were asked to reflect on an earlier forecasting
task and had the opportunity to change their previous forecasts. This taught subjects to
slow down and to engage “System Two” in the language of Kahneman (2011). Subjects then
completed an exercise that encouraged them not to round their forecasts excessively.

The next exercise taught subjects an important heuristic for forecasting time series: they
were instructed to consider a history at least as long as the time horizon of the forecast task.
That is, to forecast three days ahead one should consider at least three days of history. The
final exercise reminded subjects that people tend to allow their emotions and preferences to
influence their forecasts. For example, a person who plans to spend the day outside tomorrow
may underrate the chance of rain.

All exercises involved the active participation of subjects and were followed by clear
feedback. The training was designed to be general: none of the exercises involved air
pollution, nor was any air pollution information provided. Sessions were relatively brief,

with an average duration of 51 minutes.??

3.2 Primary outcomes

Endline surveys were conducted in person in subjects’ homes ten months after baseline, and

measured five primary outcomes.??

1. Willingness to pay (WTP) for pollution forecasts. We elicited respondents’
willingness to pay for a 90-day subscription to our PM, 5 forecast SMS service. We used
a Becker-DeGroot-Marschak (BDM) mechanism (Becker, DeGroot, and Marschak,
1964), drawing the price in Pakistani Rupees (PKR) from a uniform distribution on
the interval [0,200].3* This outcome allows us to measure forecast consumption—that

is, do our respondents value forecast information?

2. Air pollution forecast error index. We asked respondents to forecast Lahore’s

average PMy 5 levels at ¢t + 1 and ¢ + 3 and calculated an index of the two forecast

32The standard deviation of training duration was 15 minutes.

33Baseline surveys were in April-May 2019. Endline surveys were in January-February 2020, prior to the
outbreak of Covid-19 in Pakistan.

34We used BDM auctions to elicit WTP for our SMS forecast service and a particulate filtering mask (N95).
In each auction respondents received a monetary endowment equal to the maximum possible bid (200 PKR).
A respondent who won—i.e., their bid price was higher than the randomly drawn price in the interval
[0,200]—received the forecasts (or mask), keeping the difference between their endowment and their bid. A
respondent who lost kept their entire endowment. Thus the BDM auctions had real stakes. Moreover, before
bidding on the forecasts or mask, subjects completed a practice BDM auction using real money and answered
comprehension questions. Enumerators explained any errors in answering the comprehension questions.
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errors.>® We incentivized the forecasts by offering payments for responses within 5, 10,
and 20 percent of realized PMs 5 levels. This outcome allows us to examine forecast
production—that is, do our treatments improve respondents’ ability to forecast? Just
before providing an air pollution forecast, subjects were asked if they wanted to view a
weather forecast (at no cost). Subjects who answered yes were shown a weather forecast
for the target date (t+1 or t43) on a tablet computer, and then proceeded to make their
incentivized air pollution forecast. Weather forecasts are potentially relevant because,
for example, rain greatly reduces particulate pollution. This secondary feature of the
experiment was designed to evaluate whether treatment would affect takeup and use

of relevant information.

. Willingness to pay for a particulate-filtering face mask. We elicited
respondents’ willingness to pay for a air pollution mask (N95) using a BDM mechanism,
with the price in PKR drawn from a uniform distribution on the interval [0, 200]. This
outcome allows us to measure behavioral response—that is, do our treatments increase

respondents’ valuation of an avoidance good?

. Air pollution avoidance index. We asked respondents to report (yes or no) whether
in the past week they: (i) reduced the number of hours spent on non-work outdoor
activities; (ii) reduced the number of hours worked significantly; or (iii) rescheduled
activities across days in response to poor air quality. We indexed these responses into a
single measure. This outcome offers an additional dimension of behavioral response—
that is, do our treatments alter respondents’ time allocations in ways that reduce air

pollution exposure?

. Happiness variance. On a five-point Likert scale, we asked respondents to report
“how variable has [their] level of happiness been from day to day over the past week.”
This measures whether our treatments help subjects to better smooth subjective well-

being across days.

Four of these five primary outcomes were also measured at baseline, for use as variance-

reducing controls (see Section 4). WTP for pollution forecasts could not be elicited at

baseline, as this would have required delivery of forecasts to winners of the BDM auction

outside the group randomly assigned to receive forecasts.

35 Absolute-value forecast errors were standardized by subtracting the mean and dividing by the control-
group standard deviation at each time horizon (t+1) and (t+3). We then averaged to form the index.
36Happiness variance and the air pollution avoidance index are self-reported measures.
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4 Empirical strategy

This section explains our strategy for estimating causal effects of treatment. Meaningful

deviations from the pre-analysis plan are described in Appendix F.3.

4.1 Intent to treat

We estimate willingness to pay for 90 days of SMS forecasts between subjects.
Y; = a + BrForecasts; + O Training; + Bpr Forecasts; Training; + €; (1)

In this equation 7 indexes subject and Y is the outcome. Forecasts; denotes random
assignment to SMS forecasts, and Training; random assignment to training. Our pre-
analysis plan anticipated power concerns under correction for multiple testing across eight
primary estimates (discussed in Section 4.3). With such concerns in view, the plan pre-
specified theoretically motivated one-tailed tests for some treatment-outcome combinations.
For willingness to pay for forecasts, our pre-specified hypothesis test takes the one-tailed
form: o + fr > 0. That is, we test whether mean willingness to pay is positive among
subjects in the SMS-forecast-only group.’” This is the test that will be included in our
multiple-testing correction procedure.?®

We estimate effects within subject for the following primary outcomes: air pollution
forecast error index, self-reported happiness variance, willingness to pay for a particulate-

filtering mask, and an index of air pollution avoidance. The estimating equation is as follows.
Y; = BrForecasts; + Br Training; + Brr Forecasts; Training; + vYo; + X;(‘i + & (2)

Notation for outcomes and treatments is as in Equation 1.3 Y| is the baseline variable
corresponding to the outcome Y. X is a vector of controls, including randomization block

dummies. As pre-specified, other elements of X were chosen using post-double-selection

LASSO applied separately to each primary outcome.*’

Again as pre-specified, hypothesis testing on estimates of {8, Sr,Spr} varies by

37Note that because randomization block dummies are not included in Equation 1, treatment effects are
not identified and estimates of B should not be interpreted causally. The sum « + S is of research and
policy interest even though it does not reflect causal effects of treatment.

38The hypotheses that willingness to pay among control subjects is positive o > 0, that training affects
willingness to pay fSr # 0, and that the treatments interact Sppr # 0, are interesting but secondary, as
specified in our pre-analysis plan.

39A1l treatment regressions include a constant term, but we omit it from most equations in this document
in the interest of clarity.

49Gee Appendix F.2 for more discussion.
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outcome. For the air pollution forecast error index, theory predicts that more information
and better forecast training should both weakly improve forecast quality. The tests are one-
tailed, against the alternatives Sr < 0, f7 < 0. The substitutability or complementarity of
our two interventions is theoretically ambiguous, so the test of their interaction is two-tailed
(Brr # 0) for this and all other outcomes. We expect both treatments to improve subjects’
ability to smooth utility over time, so tests in the model of self-reported happiness variance
are one-tailed (Br < 0, fr < 0). Finally our model predicts that both treatments will
increase avoidance when pollution is high (Hypothesis 2), so tests for mask demand and the

avoidance index are against the following alternatives: Sr > 0, S > 0.

4.2 Treatment on the treated

For the training arm (Training; = 1) we observe participation in the training session (Pp; =
1). For the forecast arm (Forecasts; = 1) takeup means looking at our SMS forecast. This
was not directly observable. Moreover it plausibly varied, both across individuals and within
individual over time. As pre-specified, we construct a takeup measure using endline survey
responses to the question: “How many times in the last week have you seen our pollution
forecast message?” Denote the response of subject i as R;.*> Then a subject’s takeup is
defined as Pp; = %Ri. This variable will range from zero to one, and can be interpreted as
the fraction of forecasts taken up. While Pp; is measured with error, in expectation this error
has zero covariance with our random treatment assignment. Importantly, we also allow for
takeup by those in our control group.*® In the endline survey, we showed control respondents
a picture of a forecast treatment SMS message and asked “Did you receive any LUMS air
pollution text messages similar to these from someone else?”* If the respondent said yes, we
followed up with “If yes, how frequently did this happen?” We estimate a frequency in the
last week by dividing the reported (total) frequency by the number of weeks of the forecast
intervention. Just 31 of 544 subjects (5.7 percent) outside the text message group reported
receiving any of our pollution forecasts. Of these 31 subjects, 22 reported receiving one to
nine of our messages over the entire course of the study, and just nine reported receiving ten
or more (Table A16).

The interaction of takeup measures is simply Pppr; = PpiPr;. Effects of
treatment on the treated are estimated using two-stage least squares (2SLS), with

{Forecasts;, Training;, Forecasts; Training;} instrumenting for {Pg;, Pr;, Prr;}. Estimating

41This question was asked only of subjects assigned to the forecast treatment.

42Gubjects who responded “not sure” are assigned R; = 0.

43Such non-compliance was not possible with the training treatment as we had absolute control over who
participated.

#LUMS is the Lahore University of Management Sciences.
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equations appear in Appendix F.1. One- and two-tailed hypothesis tests for primary

outcomes are analogous to those in our I'TT regressions.

4.3 p value adjustments

To address the problem of multiple hypothesis testing, we follow the procedures in Benjamini,
Krieger, and Yekutieli (2006) to control the false discovery rate for a pre-specified subset
of alternative hypotheses related to our primary outcomes: willingness to pay for forecast
information (« + g > 0), air pollution forecast error index (5r < 0, Sy < 0), self-reported
happiness variance (fr < 0), willingness to pay for masks (Sr > 0,87y > 0), and the
avoidance index (8r > 0, fr > 0). The total count of included tests is eight. Note this is
not an exhaustive list of hypotheses involving treatment effects on our primary outcomes.

As pre-specified, where a test is less interesting we exclude it from the adjustment procedure.

5 Results

5.1 Demand for air pollution forecasts

Our first primary hypothesis pertains to demand for 90 additional days of our SMS air
pollution forecasts. As pre-specified, our analysis focuses on subjects exposed only to
the forecast treatment. Forecasts are plausibly an experience good, and these subjects’
demand reflects months of interaction and learning. This informed demand constitutes the
relevant estimand for a policymaker contemplating distribution of government forecasts and
conducting a benefit-cost analysis. Figure 3 Panel A presents a histogram of willingness
to pay (WTP) for this group. There is evidence of round-number heaping, particularly at
multiples of 10 and 50. Vertical lines indicate the mean at 93.22 PKR and the median at
100 PKR. Roughly two percent of respondents in this group bid the maximum of 200 PKR
and their willingness to pay is potentially censored. This implies that true mean willingness
to pay is weakly greater than our reported value. In a right-tailed test against a zero null
hypothesis p = .000 and we reject at the one percent level of significance (see Table A5).
This is consistent with Hypothesis 1 from the model in Section 2, that willingness to pay for
useful forecasts is non-zero. On a monthly basis, mean WTP of 93 PKR represents roughly

60 percent of the cost of 4G mobile internet access.*®> Considering a different benchmark, 93

45 Alternatively, one can use total mobile phone costs as a reference point. Table 22 of Pakistan Bureau of
Statistics (2017) gives monthly per capita communications expenditure in the third quintile at 75.62 PKR.
Dividing our WTP estimate by three gives a monthly WTP of 31.07 PKR. As a proportion of communications
expenditure this is 41 percent.
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PKR is approximately 20 percent of a day’s earnings for an unskilled laborer.’® Section 5.7
aggregates WTP over Lahore and compares the resulting figure to monitoring costs. Under
the assumption that our forecasts provide no direct utility (as in the theoretical model of
Section 2),%” mean WTP can be interpreted as the expected welfare gain from additional
avoidance facilitated by the information. Figure 3 Panel B presents the same underlying
WTP responses as a demand curve. The average elasticity of quantity demanded—expressed
here as the share of subjects purchasing—with respect to price is -.93.

In our low-income subject population, finding an appreciably positive mean willingness
to pay was by no means obvious ex ante. Barnwal et al. (2017) discovered low and elastic
demand for arsenic testing of wells in Bihar, India. More broadly, a large body of work in
development economics has revealed both low and strongly elastic demand for preventative
health care (Kremer and Glennerster, 2011). Thornton (2008) found that even at a zero price,
only 34 percent of subjects pick up HIV test results. Small incentives doubled takeup. This
suggests that demand for health information (or alternatively, information complementary to
health care) may share features with demand for other preventative measures, like insecticide-
treated nets and water treatment.

The relatively high willingness to pay for air pollution forecasts may stem from several
factors. First, because we delivered the forecasts by text message, subjects did not face the
takeup barriers in time, distance, and inconvenience identified by studies like Thornton
(2008) and Kremer et al. (2011). Second, many previous studies have not used BDM
elicitation. Finally, differences in setting may be important. Studies like Kremer et al.
(2011) have examined rural populations, while ours is urban. Air pollution is a salient issue
in Lahore because of its severity: in 2019, the city ranked as the twelfth-most polluted in the
world based on PMs 5 (IQAir, 2020). While our results may not transfer to settings like Accra
or Santiago—which experience substantially better air quality—they potentially shed light
on cities with air pollution similar to Lahore’s (for example, New Delhi and N’Djamena) and
on past periods of acute fine particulate pollution in cities like Beijing. Section 5.7 discusses
the external validity of our forecast demand estimates in greater depth and presents demand

estimates for other high-pollution cities.

46Given mean WTP of 93 PKR, one might ask why there is not more provision of air pollution forecasts by
for-profit firms. Even setting aside the sundry market failures that may be present in a developing-country
setting like Lahore, a firm could not prevent customers from passing forecasts to others. Information spillovers
in the context of our experiment are addressed in Section 5.6.2.

4By “no direct utility” we mean that subjects do not derive satisfaction from the forecast itself, even
without acting on it.
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5.2 Primary outcomes, intent to treat

Our remaining four primary hypotheses pertain to regression estimates of intent-to-treat
effects, which are presented in Table 1. Column headings indicate dependent variables and
shaded cells denote pre-specified primary hypotheses. Column 1 presents estimates for an
index of air pollution forecast errors, aggregating errors at one- and three-day horizons (t+ 1
and ¢ + 3). This is our primary outcome in the domain of expectation formation. Provision
of SMS forecasts reduced forecast error by .074 standard deviations, while training reduced
forecast error by .11 standard deviations. (Figure 2 illustrates these error reductions in
levels; a detailed discussion follows in Section 5.5.1.) As described in Section 4, we pre-
specified a one- or two-tailed test at the outcome-treatment level. The resulting p-values
appear in square brackets. The SMS effect on forecast error is statistically significant at
the ten percent level (p = .056), while the training effect is statistically significant at the
one percent level.#® Subjects in the SMS forecast group had not yet received the next day’s
forecast message at the time they made their own incentivized forecasts, so the reduced error
is not a mechanical consequence of treatment.*® Instead the negative treatment effect for
this group is consistent with learning about the data-generating process for air pollution over
the course of the experiment. The negative effect of training on forecast error is consistent
with increased forecasting-relevant human capital.

The interaction effect on air pollution forecast error is positive (column 1 of Table 1), so
the effect on the group that received both treatments was —.0744+—.11+.11 = —.0740. While
the estimated interaction effect is only marginally statistically significant, it is consistent
with net substitutability of information and human capital in the production of forecasts. A
similar pattern obtains in all columns of Table 1, with estimated interaction effects taking
the sign opposite that of the forecast and training effects. Our data do not speak to the
sources of this substitutability. Potential explanations include crowd-out of training by
recent, salient SMS forecasts and constraints on recall or cognition. As treatment interactions
were not the focus of our experimental design—mone were included in our pre-specified
primary outcomes—we do not discuss them further.

The reductions in forecast error from forecast provision and training are practically
large. Estimating effects in concentration rather than standard deviations (Table A6), both
treatments reduced forecast error by approximately 5 pg/m?, or 8 percent of the control

mean. The WHO 24-hour standard for PM, 5 is 25 ug/m?, so the marginal effects of forecasts

48Correction of these p-values for multiple testing is discussed later in this section.

49That is, subjects were not in a position to simply parrot the prediction of our forecast model because the
relevant message arrived in the evening, after all endline surveys had been completed. Furthermore, we find
that only one percent of forecast-group subjects simply repeated the forecast for the previous day. Recall
that our forecast messages contained predictions for t+1 but not t+3.

19



and training are roughly 20 percent of the maximum healthy level.’® The .110 reduction
from forecast training is particularly remarkable, as our endline surveys took place four to six
months after the training sessions. This suggests that our relatively brief sessions—average
duration was 51 minutes—produced durable improvements in subjects’ forecasting ability.?!

Comparisons to other studies in which experimenters designed treatments to reduce
forecast error require care, owing to differences in setting, time horizon, and forecast scoring.
Mellers et al. (2014) found that probability training improved mean standardized Brier
score—a measure of forecast skill—by roughly .1o¢. The improvement persisted over two
years. Following the same annual training intervention over four years, Chang et al. (2016b)
found a 6 to 12 percent improvement in Brier scores, again roughly similar to our estimated
effects. While the participants belonged to many countries, they all had bachelor’s degrees,
and two thirds had graduate degrees. The probability training of Mellers et al. (2014)
and Chang et al. (2016b) contained substantially more material and more complex tasks
than ours. Thus we find a striking result—a shorter, simpler training, conducted with less
educated subjects, yielded a coarsely similar improvement in forecast performance for air
pollution.

Column 2 of Table 1 presents effects on the variance of happiness, as reported by subjects

52

on a five-point Likert scale.”” Larger values correspond to higher variability. Estimated

effects are small and not statistically distinguishable from zero. These coefficients potentially
reflect both small or null treatment effects on this outcome and the measurement problems
that attend questions of this type (Bond and Lang, 2019). Note that the sample size in
column 2 is 951, rather than 999 as in the other columns of Table 1. Here and throughout
the paper, sample sizes less than 999 reflect non-response.

Column 3 reports effects on willingness to pay for N95 particulate-filtering masks.?® The
SMS forecast intervention increased WTP by 6.58 PKR and this estimate is statistically
significant at the five percent level.>* The estimated effect of training is positive at 3.95 PKR,

50Both the United States and the European Union employ more stringent standards. Average PMs 5 levels
during endline surveys were 147 pg/m?>. As a proportion of this level, the 5 pg/m? error reduction is 3.4
percent.

51The standard deviation of training duration was 15 minutes.

52The question at endline was, “How variable has your level of happiness been from day to day over the
past week?” At baseline, we asked “How variable has your level of happiness been over the past month?”
While these questions are not identical, we use this baseline measure as a control to improve precision.

530ur endline survey concluded prior to the outbreak of the Covid-19 pandemic. At baseline, we had
capped the maximum bid at 150 PKR. Despite this difference in censoring, we employ baseline WTP as a
control corresponding to Yy, in Equation 2.

54 As explained in Appendix F.3, our pre-analysis mistakenly specified a two-tailed test for this coefficient.
Table 1 reports a one-tailed p-value congruent with Hypothesis 2 of our theoretical model (Section 2). The
two-tailed p-value is .06. Table A7 reports an alternative set of multiple-testing-corrected p-values in which
tests on willingness to pay for masks and the avoidance index are two-tailed.
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but not statistically significant. These positive estimates are consistent with Hypothesis 2
from the theoretical model in Section 2. That is, treated subjects may have higher WTP
for masks because their forecasts of high pollution are more likely to be accurate.?® More
generally, better forecasts enable subjects to wear masks on the high-pollution days when
they are most needed and conserve masks on less-polluted days. Estimated coefficients for
the avoidance index are similarly positive, but are not statistically significant for either
treatment. Together the results for mask demand and avoidance are consistent with the
finding of Ito and Zhang (2020) that willingness to pay for air purifiers increased in China
after the US embassy in Beijing began posting air pollution readings. Our findings are also
qualitatively consistent with studies of behaviors related to water pollution in developing
countries. Madajewicz et al. (2007) found a large increase in the probability of switching
wells when they informed households of arsenic contamination, while Jalan and Somanathan
(2008) found that informing households of fecal water contamination led them to begin
purifying their water.

As discussed in Section 4.3, we adjust p values corresponding to primary hypotheses
for multiple testing using the procedure of Benjamini, Krieger, and Yekutieli (2006), which
controls the false discovery rate. Note that this procedure can yield corrected p values that
are larger or smaller than uncorrected values. Table 2 presents the corrected probabilities.
In the test of mean willingness to pay for forecasts (column 1; see also Figure 3) against
a zero null, the estimate remains significant at the one percent level. For treatment-driven
reductions in forecast error (column 2), p = .09 for forecasts and p = .03 for training and
we reject a zero null hypothesis at the ten and five percent levels, respectively. Similarly, for
the effect of SMS forecasts on willingness to pay for masks, p = .07 and we reject a zero null
hypothesis at the ten percent level. We fail to reject the null for the effect of training on
willingness to pay for masks at the ten percent level, but we note that the adjusted p value
is not far above the threshold (p = .13).

5.3 Primary outcomes, effect of treatment on the treated

Table 3 reports estimated effects of treatment on the treated, instrumenting for takeup with
treatment assignment as described in Section 4.2.°¢ First-stage F statistics are far above
relevant critical values. Pre-specified LASSO control selection and other details are just

as in Table 1. Some 98 percent of subjects assigned to training took up training, so TOT

55We can rule out the possibility that the effect on mask demand stems from learning about mean pollution,
as both treatment and control subjects received this information at baseline. See Section 3 for more details.

56Tn the text message forecast condition, we define endogenous takeup as the average share of forecasts
viewed, ranging from zero to one, including for the control group. In the training condition, takeup is a
dummy for participation in training.
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> Subjects receiving

effects are not meaningfully different from their I'TT counterparts.
text messages viewed them slightly less than half the time, so TOT estimates are roughly
twice as large as their I'TT counterparts. As a result, the relative magnitudes of effects
from the two treatments are reversed. Among perfect compliers, text messages reduced air
pollution forecast error by more, and increased willingness to pay for masks by more, than
did forecasting training.’® To put the point another way, the apparent advantage of training
in I'TT estimates arises largely from higher takeup rates, rather than larger local average
treatment effects on compliers. Perfect compliers in the text message group increased their

willingness to pay for masks by approximately 14 percent of the control-group mean.*

5.4 QOutdoor time use and WTP for forecasts, intent to treat

In this section we evaluate the remaining hypotheses from our theoretical model (Section
2). The first two are related to avoidance behavior. Column one of Table 4 presents SMS
forecast effects on time spent outside on the day before the endline survey, pooling over
adults and children. We elicited outdoor time use through time diaries, asking subjects to
describe their activities—and whether the activities occurred outdoors or indoors—for each
hour of the day.%° Such diaries are considered best practice in time-use research because
they minimize reporting biases, including recall bias and experimenter demand (Seymour,
Malapit, and Quisumbing, 2017; Field et al., 2022; Giménez-Nadal and Molina, 2022).

We focus on the SMS treatment rather than training because our SMS forecasts varied
over the course of the endline survey and training did not, but results are robust to estimating
the full suite of treatment effects (Table A12). On relatively cleaner days, with our forecast of
particulate pollution below 150 micrograms per cubic meter, subjects receiving SMS messages
increased outdoor time by .74 hours, or 16 percent of the control-group mean. This estimate
is statistically significant at the five percent level (p = .011). The 150-microgram value was
chosen because it was the threshold for the most polluted category of days in the pamphlet
provided to all subjects (including control subjects; see Section 3). Because the endline

surveys were conducted during a high-pollution time of year (January-February), all of our

5"The TOT effects of training in columns 1-3 of Table 3 are slightly smaller in magnitude than the
corresponding ITT effects in Table 1 because the double-selection LASSO algorithm chooses a different set
of controls.

58We cannot reject a null hypothesis that the TOT effects are equal in any column.

59By “perfect compliers” we mean subjects who viewed 100 percent of the SMS forecasts they received.

60Subjects completed 24-hour time diaries for both themselves and the youngest physically active
child in their household. @ The estimating equation is Y; = [gForecasts; + [y High pollution; +
Br g Forecasts; High pollution; + ~vYp; + X;é + ¢&;. High pollution; is a dummy for a high air pollution forecast
(fine particulate concentration above 150 ug/m?) on the day of the subject’s endline time diary (the day
before the endline survey). As elsewhere in the paper, baseline controls in X were chosen using post-double-
selection LASSO.
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SMS forecasts were in either the highest- or second-highest pollution category. On relatively
more polluted days, subjects receiving SMS forecasts spent slightly less time outdoors than
control subjects. That is, the sum of the “Forecasts” and “Forecasts * High pollution”
coefficients is negative (.74 — .88 = —.14) and three percent of the control mean, but one
cannot reject a hypothesized zero marginal effect. When presented with a relatively good
forecast during a bad season for air pollution, SMS-treated subjects took advantage and
control subjects did not. This is consistent with Hypothesis 3. When presented with a
relatively bad forecast, SMS-treated subjects avoided slightly more than control subjects.
Again this is consistent with Hypothesis 3, but we emphasize that the estimate is imprecise.
Column two of Table 4 presents heterogeneous treatment effects by whether subjects
care about air quality.®! At baseline 85 percent of subjects reported caring. This dimension
of heterogeneity was not pre-specified and results should be interpreted cautiously. Having
said that, the indicator for caring co-varies with other attributes in ways that suggest it is
not merely cheap talk. Covariances with baseline avoidance, endline reports of viewing SMS
forecasts, and endline demand for SMS forecasts are all positive and statistically significant;
the covariance with baseline demand for masks is positive but imprecisely estimated (Table
A13). For subjects who reported caring, the pattern of signs in column two of Table 4 is
similar to that of column one. On days with lower forecast pollution, SMS-treated subjects
who care about air pollution spent three additional quarters of an hour outside, relative to
the control group. On days with higher forecast pollution, they spent one quarter of an hour
less outside.®® Broadly the results in column two are consistent with Hypothesis 3.
Columns three through six of Table 4 repeat the specifications of the first two columns
separately for adults and children. Broadly the patterns of signs for adults and children

3

are similar to the pooled estimates.®> The smaller samples reduce precision, especially

for children, preventing us from making strong statements about relative magnitudes.
Bearing that caveat in mind, the point estimates are consistent with greater avoidance
among forecast-treated children (.60 — 1.08 = —.48 hours in column five) than adults
(.60 — .45 = —.15 hours in column three). Similarly the marginal effects of SMS forecasts

on high-pollution days in households that care about air quality are consistent with more

61The estimating equation adds a triple interaction with an indicator for caring about air quality; this
indicator also enters in non-interacted and double-interacted control terms.

62 Among subjects who care about air pollution, the marginal effect of SMS forecast treatment is .068+.69 =
.76 hours on cleaner days and .068 + .69 + 1.26 — 2.27 = —.25 hours on dirtier days. The latter marginal
effect is not statistically significant at any conventional threshold.

63Note that the pooled coefficient on “Forecasts” in column one is not a convex combination of the
corresponding adult- and child-specific coefficients because of our pre-specified LASSO procedure for control
selection. Appendix Table A14 shows that without LASSO-selected controls, the pooled coefficient is a
convex combination of those for adults and children. Patterns of signs and magnitudes are qualitatively
unchanged, though precision is predictably reduced.

23



avoidance among children than adults.%

Our experiment produced no direct evidence on whether the changes in outdoor time seen
in Table 4 reduced pollution exposure.> We cannot exclude the possibility that subjects
were making mistakes, particularly if pollution was high inside their home or workplace.
But staying indoors can be an effective air pollution avoidance strategy. Levels of some
pollutants, e.g. ozone, are generally much lower indoors (US Centers for Disease Control
and Prevention, 2022) and indoor activities often involve less physical exertion (Laumbach,
2010). Owur time-use findings are consistent with Barwick et al. (2019), which finds that
credit-card transactions outside the home decline with higher air pollution after the rollout
of real-time pollution information in China.

Finally, our theoretical model delivers two predictions related to willingness to pay
for continued receipt of our SMS pollution forecasts. The first is that willingness to pay
will be higher among subjects who have received the (free) SMS forecast treatment. The
corresponding regression estimate (Table A5, column two) is positive 5.3 PKR and large in
proportional terms, consistent with Hypothesis 4. This estimate is not statistically significant
at conventional thresholds (two-tailed p = .14). The estimated interaction effect of the
forecast and training interventions is negative. Under Hypothesis 5, this negative sign implies
substitutability of training (human capital) and information in subjects’ forecast production
functions. We caution, however, that this estimate is imprecise and the associated 95 percent

confidence interval includes practically meaningful values on both sides of zero.

5.5 Mechanisms
5.5.1 Sources of reduced air pollution forecast error

Column one of Table 1 demonstrates that both SMS forecasts and training reduced an index
of air pollution forecast errors at t+1 and t+3. Which element of the index drives the
estimate? Table 6 separately reports treatment effects on standardized forecast errors at
the two time horizons. Point estimates indicate that both treatments reduce error much
more at t+1 than t+3, though we cannot reject a null hypothesis of equality. Intriguingly,
the relative advantage of the training treatment is greater at the longer time horizon. One
day ahead, training reduces error by 31 percent more than SMS forecasts do. Three days

ahead, training reduces error by 95 percent more.®® Given the large standard errors, we do

64The marginal effects are .86 + 1.07 — .10 — 2.40 = —.57 for children and —.41 4+ 1.54 +1.17 — 2.17 = .13
for adults.

65More generally, the welfare effects of the changes in Table 4 depend on exposure changes, the shape of
the air pollution damage function at high levels of exposure, and subjects’ valuation of time use changes.

66These percentage changes use midpoints as bases.
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not make strong claims about this pattern. It could reflect the fact that our SMS messages
contained forecasts for t+1 but not t+3." Over the period they received messages, subjects
might have learned lessons about forecasting one day ahead that proved unhelpful or even
counterproductive when forecasting three days ahead. In contrast, the training treatment
was designed to be general-purpose and produced practically meaningful reductions in error
at both time horizons.

Figure 2 investigates how our interventions reduced error in one-day-ahead forecasts. For
the control group and each treated group, a separate probability density function is estimated
over t + 1 forecast error. Unlike in most of this paper’s exhibits, in Figure 2 errors are
denominated in pg/m? (rather than control-group standard deviations); no absolute value
operator is applied. At endline control subjects under-predicted pollution substantially,
by 39.6 ug/m3 on average. If subjects face convex pollution-damage and abatement-cost
functions, as hypothesized in our theoretical model, then such underprediction is more costly
than overprediction of similar magnitude. As endline surveys took place during a high-
pollution season (January-February), these prediction errors are plausibly consequential for
health and well-being.%® In contrast, the distributions for the treated groups are shifted
rightward, indicating reduced under-prediction. Dispersion is also reduced. Tables A8 and
A9 quantify these differences in means and standard deviations, respectively. Treatment
increased means (reduced underprediction) by 2.1 to 6.4 pg/m3, with the largest change
in the SMS-forecast group.®” Treatment also reduced the standard deviation of errors by
2.7 to 14.3 pg/m?3, with the largest change in the training group.” This is apparent in
Figure 2, where the height of the distribution function at the mode is much greater for
the training group than for the others. Because our indexed measure of forecast error (as
in Table 1 and Table 6) is built from absolute values, effects on this variable reflect both
the reduced underprediction and the reduced dispersion in the underlying (non-absolute,

non-standardized) forecast errors.

5.5.2 Analysis from the midline training intervention

If the training intervention genuinely improved forecasting ability, that should have been

apparent not only at endline, but also immediately after completion of the training. Subjects

67The SMS effect at t+1 is not mechanical. At the time they made their incentivized endline predictions,
subjects in the SMS group had not yet received our forecast for the next day.

68 At baseline average t + 1 forecast error was positive: subjects over-predicted pollution. This may have
been because baseline surveys occurred during a relatively low-pollution season (April-May). Figure Al
illustrates the distribution of baseline ¢ + 1 forecast errors.

69These estimates are not statistically significant at conventional thresholds.

The reduction in standard deviation for the training group is statistically significant (p = .03), but
reductions for the other groups are not statistically significant at conventional thresholds.
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made incentivized one-day-ahead air pollution forecasts at the beginning of the training
session and again at the end, yielding two observations for each of 522 subjects who completed
training. Recall that subjects received training in both the training-only and forecasts-plus-
training groups. This allows us to estimate simple difference-in-differences models of forecast
errors at t + 1 and ¢ + 3, and an index of errors at both horizons (Table 7).”

The effect of SMS forecast receipt on forecast error at ¢ + 1 (row one, column one) is
negative and statistically significant at the ten percent level. At the start of the training
session, subjects who had been receiving SMS forecasts made better one-day-ahead forecasts
than subjects who had not been. Because both treatments were randomized and the forecast-
only subjects had not yet been treated at the start of the training session, this estimate
can sustain a causal interpretation. The negative effect is consistent with subjects learning
about air pollution (or more formally, the data-generating process) through exposure to SMS
forecasts. The effects of SMS forecasts on ¢ + 3 forecast error and the error index (columns
two and three) are imprecise and one can reject neither a zero null hypothesis, nor a null
hypothesis of equality with the estimate for ¢ + 1.

At the end of the one-hour training, forecast errors fell in the training-only group-the
“Post training” coefficient is the marginal effect on this group. Point estimates are negative
in all three columns, and statistically significant at conventional thresholds in columns one
and three. This is consistent with the training functioning as intended. In the forecasts-and-
training group, though, there was little change from the beginning of training to the end.
Summing the coefficients in the second and third rows gives the marginal effect of the “Post”
variable on this group. These sums are quite close to zero, and one cannot reject a zero null
hypothesis at any conventional threshold. As the “Post” variable was not randomly assigned,
speaking strictly one cannot interpret these marginal effects as causal effects of training. The
scope for confounding in the course of a one-hour training was quite limited, however, and
subjects had little ability to influence the timing of the training sessions.

Broadly, subjects who had been receiving SMS forecasts started the training session
performing better than those who had not. But over the course of the session, the other
subjects caught up in terms of forecast error. One could interpret this as evidence of a ceiling
on forecast accuracy, operating perhaps through memory or cognition. Viewed through the
lens of the model in Section 2, Table 7 provides corroborating evidence that information
and human capital are substitutes in subjects’ forecast production functions. Some of these

trained subjects attrited between training and endline. Table A10 presents the same analysis

"I The estimating equation is Yj; = 31 Forecasts; + B2 Post, + B3 Forecasts; * Post, —&—X;d—i—ait, with ¢ indexing
subject and ¢ period (beginning or end of the training session). As elsewhere in the paper, baseline controls
in X were chosen using post-double-selection LASSO.
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for the endline sample and results are strongly similar.

5.5.3 Information seeking and processing

Our endline survey asked a number of questions about subjects’ information diets, especially
pertaining to weather and air quality. Columns one and two of Table 8 present ITT effects
on counts of sources consulted in the past week for a given category. Subjects receiving SMS
forecasts increased the number of air pollution information sources they consulted by .23,
or 15 percent of the control group mean. The estimate is statistically significant at the five
percent level. Our SMS forecasts were deliberately excluded from the question, so the effect
is not mechanical. The positive estimate is consistent with complementarity of our SMS
pollution forecasts and other air pollution information, e.g. social media posts.

Columns three and four of Table 8 evaluate the role of weather forecasts in production of
subjects’ own incentivized air pollution forecasts. Recall that before making an incentivized
forecast (at both baseline and endline), subjects were offered the opportunity to view a
weather forecast. In column three estimates are small and not statistically distinguishable
from zero; neither SMS forecasts nor training changed subjects’ takeup of weather forecasts.
It is possible these null results arise from a ceiling effect, as 92 percent of control subjects
took up the weather forecast. Column four interacts treatments with weather forecast takeup
to estimate heterogeneous effects on air pollution forecast error. Among trained subjects
who did not take up the weather forecast, air pollution forecast error actually increased
by .24 standard deviations. Weather forecast takeup is endogenous and the result must
be interpreted cautiously. It is worth noting, however, that the training emphasized the
importance of carefully combining an outside view (base rate) and an inside view (situation-
specific information like a weather forecast). A trained subject who did not take up
the weather forecast plausibly missed this important lesson, perhaps because it was not
understood or the subject did not take the training seriously. It is unsurprising that such
a subject might perform worse in forecasting air pollution. Among trained subjects who
did take up the weather forecast, the marginal effect of training was .24 — .37 = —.13.
These are the subjects who drive the reductions in air pollution forecast error estimated in
our primary results (Table 1). The interaction with weather forecast takeup is larger for
training (-.37 standard deviations) than for SMS forecasts (-.10 standard deviations). This
pattern is consistent with trained subjects making better use of relevant information, but
we cannot reject a null hypothesis that the coefficients on these two interactions are equal

at any conventional threshold.
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5.5.4 Mask demand

To investigate the positive treatment effect of SMS forecasts on WTP for masks, Figure
A2 presents demand curves by experimental group. From these curves one can see that
the increase in mean WTP for the forecast group is driven primarily by increases in takeup
at higher prices (100-200 PKR). Demand elasticity in the control group is -1.6. Demand
is less responsive to price in the three treated groups, with elasticities ranging from -.9 to
-1.2. Note however that the local elasticities near the retail price—135 PKR at the time of
our study—are greater at roughly -2.4 (Table A11). This implies that small price changes
or subsidies could produce large changes in mask takeup. At the time of our study mask
wearing was uncommon in Lahore, with 74 percent of subjects reporting at baseline that
they had never seen other people wearing N95 masks. If social norms around mask wearing

changed in response to Covid-19, demand curves could have changed as a consequence.

5.6 Robustness
5.6.1 Experimenter demand

One might worry that some subject responses, especially non-incentivized measures of air
pollution avoidance, might have been influenced by perceived experimenter demand. That is,
subjects might have said they took action to avoid air pollution, when in fact they did not, if
they believed we hoped to increase avoidance. This tendency could have been exacerbated if
subjects thought future interactions and payouts could depend on responses. We attempted
to mitigate these effects in several ways. First, all of our enumerators were trained to distance
themselves from the implementation of treatments and to act as unbiased observers, with
no promises of future interactions. We also ensured endline enumerators were not those
that were involved in inviting subjects to treatment or providing them forecast training.
Second, we phrased questions to mitigate experimenter demand effects and relied heavily
on incentive-compatible elicitations for our primary analyses. Third, we included a social
desirability module in our endline survey, as in Crowne and Marlowe (1960) and recent studies
such as Dhar, Jain, and Jayachandran (2018). From this module, we construct an index of
social desirability and report treatment effects on this variable in Table A15. Point estimates
are small and not statistically significant. Marginal effects on all three experimental groups
are negative, suggesting that if anything our treatment reduced the propensity to give socially
desirable survey responses. No measure of social desirability is complete and we cannot rule
out this type of bias with certainty, but there is no evidence of it in Table A15.

In addition, we indirectly evaluate experimenter demand effects on willingness to pay for

our SMS air pollution forecasts. First we evaluate heterogeneity in willingness to pay for
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SMS forecasts by subjects’ baseline forecast error. If willingness to pay were driven largely
by experimenter demand, we would expect no difference in willingness to pay across subjects
with above- and below-median errors. If instead willingness to pay was driven by the value of
information to subjects, then we would expect subjects with higher baseline error to exhibit
greater demand. Figure A3 displays the latter pattern: a third-party forecast is more valuable
to someone who cannot forecast well alone. While baseline error could be correlated with
other subject characteristics, the observed demand heterogeneity is inconsistent with pure
experimenter demand. As an important aside, this heterogeneity is also inconsistent with
subjects valuing SMS forecasts for reasons other than their information content, e.g. because
the messages help subjects remain attentive to pollution. Second, note that willingness to
pay in the control group was still considerable at 89PKR (Table A5, column one; cf. 93PKR
in the forecast-only treatment group). Subjects in the control group received no treatment
involving forecasts, nor did they have strong reason to believe forecast information was a focus
of the study. Control-group surveys asked about several kinds of air pollution information
and included two other BDM elicitations (for a low-cost practice item and a N95 mask).
Given the experimental environment experienced by control subjects, it is unlikely that
the willingness to pay for SMS forecasts that they exhibited in an incentive-compatible

mechanism stemmed largely from experimenter demand effects.

5.6.2 Spillovers

Given the ease of relaying our forecasts, spillovers might in principle be a concern for our
text message forecast treatment. The sampling was designed to mitigate these concerns by
separating subjects in space, but some social networks might have included both treatment
and control subjects nonetheless. We also asked subjects not to share pollution forecasts
outside their households.

We sought to measure those spillovers we could not eliminate. At endline, subjects in
the control group were asked if they received our forecasts from someone else. Just 31 of
544 subjects (5.7 percent) outside the text message group reported receiving any of our
pollution forecasts. Of these 31 subjects, 22 reported receiving one to nine of our messages,
and just nine reported receiving ten or more; Table A16 reports the complete set of spillover
frequencies. This evidence on spillovers does not raise substantial bias concerns. In addition,
we account for measured spillovers as a form of control non-compliance in our treatment-on-
the-treated estimates in Section 5.3. Because spillovers were so infrequent, accounting for

them produces minimal changes in our estimates.
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5.6.3 Other robustness

Table A17 reports primary ITT results without controlling for baseline measures of the
outcomes, and without the controls selected by the post-double-selection LASSO. As
expected precision is somewhat worse than in Table 1. Point estimates for pre-specified

primary effects are strongly similar across the two tables.

5.7 External validity of demand for air pollution forecasts

How far does our estimated demand curve for air pollution forecasts generalize? A complete
reply to this question would require similar experiments in other settings, but theory and
descriptive evidence allow for thinking about external validity in a structured way. The
value of new air pollution information plausibly depends on: 1) air pollution levels; 2) the
information environment (sources and modes of dissemination); and 3) scope for avoidance.
For this discussion of external validity we will hold air pollution fixed at high levels. Highly
polluted cities like Lahore attract both research and policy attention because the returns
to new knowledge are arguably highest there. Let us consider how Lahore, which had the
world’s highest levels of fine particulate pollution in 2022, compares to the other 24 of the
25 most polluted cities on dimensions 2) and 3).™

As discussed in Section 1, both the US State Department and the Punjab Environmental
Protection Department (EPD) operate reference-quality monitors in Lahore.  Only
retrospective measurements are given, online and in English, which many residents do not
speak. Monitoring is incomplete in both space and time, and residents may not trust these
information sources. Some private individuals post readings from low-cost air pollution
sensors online, but again coverage is spotty and data quality varies widely (Williams et al.,
2014). This information environment is common in the world’s most polluted cities. The
US State Department also operates monitors in New Delhi, Peshawar, and N'Djamena. Of
the 18 top-25 cities in India, 11 are covered by government monitors.” In summary, three
of 24 comparison cities resemble Lahore in that a US State Department monitor is present,
and at least 11 of 24 resemble Lahore in that monitors operated by the Government of India

are present.”™

" According to IQAir, the 25 cities with the highest levels of PM2.5 (fine particulates) are: Lahore,
Hotan, Bhiwadi, Delhi (NCT), Peshawar, Dharbanga, Asopur, N’'Djamena, New Delhi, Patna, Ghaziabad,
Dharuhera, Baghdad, Chapra, Muzaffarnagar, Faisalabad, Greater Noida, Bahadurgarh, Faridabad,
Mugzaffarpur, Noida, Jind, Karagandy, Charkhi Dadri, and Rohtak (IQAir, 2023).

73 Asopur, Dharuhera, Chapra, Bahadurgarh, Jind, Charkhi Dadri, and Rohtak appear not to contain
monitors (Central Pollution Control Board, 2022).

"To the best of our knowledge, the government of Pakistan does not currently operate monitors in
Peshawar and Faisalabad. We have been unable to determine whether there are government monitors in
Hotan, N’Djamena, Baghdad, and Karagandy.
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Comparison of the scope for avoidance in Lahore and other highly polluted cities is more
difficult. Avoidance may depend on the availability of N95 masks and air purifiers. It may
also depend on high-frequency pollution variation in time, and fine-scale pollution variation
in space. The industry-occupation composition of the labor market and its institutions
plausibly matter as well. A complete accounting is beyond the scope of this paper, but our
data allow us to learn something nonetheless. To begin, note that 20 of 24 comparison cities
are in South Asia, with 2 in Pakistan and 18 in India. Owing partly to a common colonial
history, these cities share some cultural and economic characteristics with Lahore, which
may limit the importance of unobserved confounders.

To account for population differences, we regress willingness to pay for air pollution
forecasts on a set of demographic variables available in both our data and the 2011 Indian
Census for Indian cities, and the latest round of the World Bank Multiple Indicator Cluster
Survey (MICS) for others.” These variables include home ownership, number of household
members, number of rooms in the house, and whether households own a car, a computer, a
motorcycle, a television, and/or an air conditioner. Importantly these variables capture
wealth and income differences, and they are components of standard poverty measures
collected across many surveys.”® By combining in-sample coefficient estimates (column 1 in
Tables A18 and A19) with means from these other surveys, we can estimate mean willingness
to pay for 23 of the 24 comparison cities.”” The resulting means range from 70PKR to
105PKR (Table A20). This variation is relatively limited not because our regression lacks
predictive power (R? = .13), but because quantitatively important differences, relative to
Lahore, often offset each other in calculating estimated demand. Baseline air pollution
forecast error does not predict willingness to pay after conditioning on these covariates, which
implies they are reasonable proxies for informedness about air pollution (column 2 in Tables
A18 and A19).”® This suggests that differences in consumption of available information will
not introduce large bias in our estimates of willingness to pay in other cities.

Our out-of-sample willingness to pay estimates should nonetheless be interpreted
cautiously. The empirical model used to create them is surely incomplete, and large benefit

transfer errors are possible (Kaul et al., 2013). Even large benefit transfer errors, however,

"5The 2011 Indian Census was downloaded in April 2023 from
https://censusindia.gov.in/census.website/data/census-tables. ~ MICS data was downloaded in April
2023 from https://mics.unicef.org. In the case of MICS, the latest available survey was always used, with
specific years varying by city.

"6See, e.g., List (2020), for a discussion of the role of comparisons across individual-specific factors such
as these variables when considering generalizability.

""We are unable to find comparable demographic data for Hotan, China.

"8Figure A3 demonstrates that baseline air pollution forecast error predicts willingness to pay for forecast
when one does not condition on these demographic predictors.
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may be irrelevant from a policy perspective. That is because our estimates of willingness
to pay dwarf the costs of monitoring. A reference-quality monitor costs approximately
US$22,000 to US$24,000 (Hussey, Lemelin, and Lulofs, 2022). The total costs of monitoring
are greater because, for example, a city may require several monitors and monitors require
small shelters.” Even allowing for these additional costs, monitoring benefits exceed costs
by roughly two orders of magnitude. Taking the average WTP for Lahore from Table A20,
the implied annual aggregate WTP is roughly 3.6 billion PKR, or US$12.7 million.®"

In summary, our experimental setting in Lahore is reasonably similar to most of the
world’s highly polluted cities in its information environment and its history. Adjusting
for population differences moves estimated willingness to pay only modestly. As a result,
our estimates are useful inputs to research and benefit-cost analysis of new air pollution
monitoring in the urban settings where those efforts matter most. In cities with relatively
richer information environments, e.g. New Delhi with its 10 monitors (Central Pollution
Control Board, 2022), our estimates are less relevant to expansion of the monitoring network,
but they nonetheless speak to the value of the monitoring already in place. This may
be important to governments considering the continuation of monitoring in the context of
competing policy initiatives.

Another way to evaluate our external validity is with the SANS conditions laid out in List
(2020): selection, attrition, naturalness, and scaling. Regarding selection, the distribution
of estimated average WTP in Table A20 suggests Lahore is similar on observables to many
of the other most polluted cities in the world. Regarding attrition, we see in Table A2 that
we do have modest attrition rates (5.9 to 9.6 percent across groups), but our experimental
sample remains balanced on a both covariates and, importantly, our primary outcomes at
baseline (Tables A3 and A4). Regarding naturalness, our demand measures for air pollution
forecasts and masks are natural in that subjects were familiar with the goods (n.b. masks
were available at retail in Lahore during out study) and exchanged their own money for
them as they would have for any other good. Our outdoor-time measure is natural in
that we simply asked households how they spent their time over the previous day. Finally,
regarding scaling, the results in this section take seriously the question of how our estimates

would scale in Lahore and other cities, and we find large potential returns to doing so.

7 Additional costs include those associated with sample collection and analysis.

80We extrapolate from mean WTP for 90 days of forecasts among the 11mn residents of Lahore:
(80.3PKR) * (365/90) * 11119985 = 3.621e + 09PKR, or US$12.7mn as of this writing. If monitoring
costs are assumed to be on the close order of 100,000, then WTP is roughly 100 times larger.
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6 Conclusion

We show that increasing information and human-capital inputs allows developing-country
urbanites to form more accurate expectations over an environmental threat: air pollution.
Most strikingly, our one-hour forecast training reduced forecast error for incentivized
predictions made up to six months later. This is consistent with the training building
human capital that works against common prediction biases. Exercises of this type could
be a useful complement to education and job training in the developing world. While our
training was relatively expensive to administer, other work has demonstrated successful de-
biasing from videos and video games, which scale much more cheaply (Morewedge et al.,
2015). The constituent lessons and exercises from our training could be delivered via such
low-cost channels. More generally, our training results argue that assisting people in using
information they already have is at least as important as delivering novel information (Hanna,
Mullainathan, and Schwartzstein, 2014).

Exposure to information—pollution forecasts—also increased willingness to pay for
protective masks. This suggests that in areas where mask-wearing is not yet commonplace,
information provision could be an important spur to mask adoption and other adaptive
behaviors. Our findings that mean WTP for masks is roughly 70 percent of the retail price
and demand is locally elastic suggest that modest subsidies could produce large changes in
takeup, with concomitant health benefits.

Masks are a private response to environmental information. Somanathan (2010) has
surmised that in developing countries, environmental information may also increase demand
for environmental quality and lead to public action. If so, the long-run responses to air
pollution forecasts may be greater in scope and magnitude than those we study.

In addition, we present evidence of meaningful willingness to pay for air pollution
forecasts among developing-country urbanites. This argues that the scarcity of environmental
information in many developing countries does not stem from a lack of demand. While
capital and operating costs for reference-quality air pollution monitors are considerable—the
equipment for a single site typically costs more than US$20,000 (Hussey, Lemelin, and Lulofs,
2022)—the level of demand we estimate indicates that the welfare gain from investments in
air pollution monitoring and forecasting are likely an order of magnitude greater than the
costs. This is plausibly true not only in Lahore, but also in other developing-country settings
with high pollution, low information, and comparable or higher incomes.

Many developing cities combine high, variable air pollution with relatively sparse
information and low stocks of human capital. Residents face considerable risk, not only

from environmental threats, but also in domains from family to employment. While our
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experiment was not designed to measure the broad welfare effects of providing forecasts or
training agents to produce more accurate expectations, they are plausibly considerable, and

warrant future research.
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7 Figures

Figure 1: Experimental Groups

Sample Households
(n=1088)

Note: Subjects were allocated over experimental groups as illustrated above. “SMS Forecasts” are the one-day-ahead air
pollution forecasts delivered by text message (SMS) and described in Section 3.1. “Training” is the session focused on general-

purpose forecasting skills, also described in Section 3.1. The average duration of training was roughly one hour.
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Figure 2: Mechanisms: Air pollution forecast errors (t+1)
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Note: Both treatments reduced mean under-prediction in air pollution forecasts. In addition, both treatments reduced the
variance of forecast errors across subjects. Errors are the difference between subjects’ incentive-compatible one-day-ahead
(t+1) air pollution forecast and realized pollution on the day after the endline survey. That is, a negative error represents an
underprediction of pollution. Units are ,ug/m3, rather than control-group standard deviations as in most exhibits in this paper.

Densities were estimated under Stata-default kernel and bandwidth.
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Figure 3: Willingness to pay (WTP) for air pollution forecasts, forecast-only group
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(b) Panel B: Demand curve for air pollution forecasts

Note: Endline willingness to pay (WTP) for air pollution information, specifically 90 additional days of our SMS air pollution
forecasts (Section 3.1), was practically large. The vertical long-dashed line in Panel A marks the mean at 93.22 PKR, while
the vertical short-dashed line marks the median at 100 PKR. For a formal hypothesis test of the mean against a zero null, see
Table A5. In addition, Panel A illustrates the full distribution of WTP across subjects. Panel B expresses quantity demanded
as the share of subjects purchasing; that is, the share with WTP greater than or equal to a given price. WTP was elicited
at endline using a Becker-DeGroot-Marschak mechanism (Becker, DeGroot, and Marschak, 1964) with a maximum bid of 200
Pakistani Rupees (PKR). Both panels reflect the forecast-only treatment group (246 subjects), as explained in Section 5.2,

because forecasts are plausibly an experience good.
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8 Tables

Table 1: Primary outcomes, intent to treat

Forecast ~ Happiness Avoidance

error index  variance WTP: Masks index

Forecasts -0.074 0.052 6.58 0.046
(0.047) (0.070) (3.53) (0.059)

[0.056] [0.77] [0.03] [0.22]

Training -0.11 0.078 3.95 0.019
(0.047) (0.071) (3.54) (0.059)

[0.01] [0.86] [0.13] [0.37]

Forecasts + Training 0.11 -0.11 -7.58 -0.022
(0.066) (0.099) (5.02) (0.083)

[0.097] [0.13] [0.13] [0.79]

Observations 999 951 999 999
Control mean -0.000 0.017 104.1 -0.0019

Note: Both treatments reduced air pollution forecast error, and receipt of SMS forecasts increased willingness to pay for
masks. Coefficients are intent-to-treat effects, with the dependent variable indicated in the column heading. Units are
standard deviations for the forecast error index, the variance of happiness, and the avoidance index. Units are Pakistani
Rupees (PKR) for willingness to pay for masks. Shaded cells denote pre-specified estimates of interest. All columns include
randomization block indicators. A pre-specified LASSO procedure was used to select additional controls separately for each
outcome. Heteroskedasticity-robust standard errors are in parentheses. A pre-specified left-, right-, or two-tailed test was
conducted for each estimate of interest: air pollution forecast error index (8 < 0,81 < 0), self-reported happiness variance
(Br < 0), willingness to pay for masks (8r > 0,87 > 0), and the avoidance index (8 > 0, 87 > 0). The resulting p-values

appear in square brackets.
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Table 2: MHT-adjusted p-values, primary outcomes (ITT)

Forecast Happiness Avoidance WTP:
error index  variance  W'TP: Masks index Forecasts
Forecasts 0.09 - 0.07 0.17 -
Training 0.03 0.42 0.13 0.27 -
Forecasts + Training - - - - -
Mean, forecast-
only group - - - - 0.001

Note: Estimates remain significant at conventional thresholds after correction for multiple hypothesis testing. The p values in
columns 1 through 4 correspond to the pre-specified estimates in Table 1 (shaded cells). The p value in column 5 corresponds
to the test of mean willingness to pay for forecasts in the forecast-only treatment group. This test is illustrated in Figure 3 and
formalized at the bottom of column 1, Table A5. The MHT correction is performed using the procedure of Benjamini, Krieger,
and Yekutieli (2006), which controls the false discovery rate. As discussed in Section 4.3, the resulting corrected p-values can

be larger or smaller than their uncorrected analogs.
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Table 3: Primary outcomes, effect of treatment on the treated

Forecast ~ Happiness Avoidance
error index  variance WTP: Masks index
% Forecasts seen -0.16 0.063 14.8 0.092
(0.11) (0.16) (8.09) (0.14)
[0.07] [0.65] [0.03] [0.25]
Attended training -0.097 0.061 3.92 0.027
(0.049) (0.074) (3.79) (0.062)
[0.02] [0.8] [0.15] [0.33]
% Forecasts seen 0.24 -0.22 -18.2 -0.061
x Attended training (0.16) (0.24) (12.2) (0.20)
[0.13] [0.18] [0.14] [0.76]
Observations 999 951 999 999
Control mean -0.00 0.017 104.1 -0.0019
1st stage F-stat 173.6 168.2 174 171.5

Note: Takeup of training (.98) was higher than takeup (viewing) of SMS forecasts (.43). As a result estimated TOTs for SMS
forecasts are larger, relative to the ITTs, while estimated TOTs for training are similar to the ITTs. Coefficients are effects of
treatment on the treated, with the dependent variable indicated in the column heading. Units are standard deviations for the
forecast error index, the variance of happiness, and the avoidance index. Units are Pakistani Rupees (PKR) for willingness to
pay for masks. Shaded cells denote pre-specified estimates of interest. All columns include randomization block indicators.
A pre-specified LASSO procedure was used to select additional controls separately for each outcome. Heteroskedasticity-
robust standard errors are in parentheses. A pre-specified left-, right-, or two-tailed test was conducted for each
estimate of interest: air pollution forecast error index (8r < 0,81 < 0), self-reported happiness variance (8 < 0), willingness

to pay for masks (8r > 0, 87 > 0), and the avoidance index (8¢ > 0, 87 > 0). The resulting p-values appear in square brackets.
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Table 4: Outdoor time, effect of receiving forecasts

Outdoor hours

Forecasts 0.74 0.068 0.60 -0.41  0.60 0.86

(0.29) (0.56) (0.33) (0.61) (0.62) (1.79)

Forecasts * High pollution -0.88 1.26 -045 1.54 -1.08 1.07

(0.36) (0.99) (0.41) (0.97) (0.77) (3.10)

Forecasts * Cares about air quality 0.69 1.17 -0.10

(0.64) (0.69) (2.00)

Forecasts * High pollution * Cares -2.27 -2.17 -2.40

(1.06) (1.04) (3.28)

Observations 1442 1442 980 980 462 462

Control mean 474 474 418 418 5.96 5.96

Adult and/or child time? Both Both Adult Adult Child Child
Note: Subjects treated with SMS forecasts better matched their outdoor time to air pollution levels, increasing it
on relatively cleaner days and decreasing it on relatively more polluted days. These effects were stronger among
subjects who reported caring about air quality at baseline. The initial estimating equation (odd columns) is

Y; = pBrForecasts; + By High pollution; + Bp g Forecasts; High pollution; + vYo; + X;é + €;. The dependent variable is
outdoor time in hours, elicited as part of a 24-hour time diary. High pollution: is a dummy for a high air pollution forecast
(fine particulate concentration above 150 1g/m?3) on the day of the subject’s endline time diary (the day before the endline
survey). Even columns add triple interactions with a baseline indicator for caring about air quality; this indicator also enters
in non-interacted and double-interacted control terms. All columns include randomization block indicators. A pre-specified
LASSO procedure was used to select additional controls. Columns 1-2 present standard errors that are clustered at the

household level. Columns 3-6 present heteroskedasticity-robust standard errors.
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Table 6: Mechanisms: Forecast errors, by time horizon

Forecast error (t + 1) Forecast error (t + 3)

Forecasts -0.11 -0.023
(0.058) (0.056)
Training -0.15 -0.065
(0.053) (0.057)
Forecasts + Training 0.13 0.070
(0.075) (0.082)
Observations 999 999
Control mean 0.00 0.00

Note: Reductions in the air pollution forecast error index (Table 1, column 1) resulted primarily from improved one-day-ahead
(t+1) forecasts. Estimates correspond to Equation 2, with the dependent variable indicated in the column heading. Units are
standard deviations in all columns. All columns include randomization block indicators. A pre-specified LASSO procedure

was used to select additional controls separately for each outcome. Heteroskedasticity-robust standard errors are in parentheses.
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Table 7: Mechanisms: Forecast errors, beginning and end of training

Forecast error (t + 1) Forecast error (t + 3) Forecast error idx

Forecasts -0.13 0.027 -0.045
(0.069) (0.074) (0.060)
Post training -0.14 -0.051 -0.098
(0.054) (0.046) (0.044)
Forecasts * Post 0.17 0.024 0.097
(0.064) (0.066) (0.053)
Observations 1044 1044 1044
Control mean -0.20 -0.30 -0.25

Note: Both the training-only group and the forecasts-plus-training group were offered training. At the start of
the training session, the forecasts-plus-training group produced smaller air pollution forecast errors (“Forecasts”
coefficients). But by the end of the session, the training-only group caught up (“Post training” coefficients). The
forecasts-plus-training group showed little change relative to the start of the session (summing coefficients on “Post” and
“Forecasts * Post”). The sample is comprised of two observations for each of 522 subjects. The estimating equation is
Yit = B1Forecasts; + B2 Post: + (33 Forecasts; * Post: + X;é + €it, with ¢ indexing subject and ¢ period (beginning or end of
the training session). Units are standard deviations in all columns. All columns include randomization block indicators. A
pre-specified LASSO procedure was used to select additional controls separately for each outcome. Heteroskedasticity-robust

standard errors are in parentheses.
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Table 8: Mechanisms: Information seeking

. , Weather
Weather Air quality  forecast Forecast
seeking info seeking take up error index

Forecasts 0.18 0.23 0.0084 0.024
(0.14) (0.12) (0.022) (0.15)

Training -0.11 -0.015 -0.021 0.24
(0.14) (0.12) (0.024) (0.13)

Forecasts 4+ Training 0.17 0.019 -0.012 -0.13
(0.20) (0.17) (0.034) (0.18)

Forecasts * Took up weather -0.10
(0.16)

Training * Took up weather -0.37
(0.14)

F + T * Took up weather 0.26

(0.20)

Observations 981 978 999 999
Control mean 2.73 1.53 0.92 -0.000

Note: SMS forecasts increased seeking of pollution information (column 2). Training reduced forecast error much more
for subjects who viewed a weather forecast (column 4, summing coefficients on “Training” and “Training * Took up
weather”) than for those who did not (the coefficient on “Training”). The interaction of weather forecasts and treatment
is more negative for training (“Training * Took up weather”) than for SMS forecasts (“Forecasts * Took up weather”),
potentially consistent with better information processing among trained subjects. Coefficients are intent-to-treat effects,
with the dependent variable indicated in the column heading. In columns one and two dependent variables are counts of
information sources. In column three the dependent variable is an indicator for taking up a free weather forecast before
making incentivized air pollution forecasts. In column four the dependent variable is a standardized air pollution forecast
index, as in column one of Table 1. All columns include randomization block indicators. A pre-specified LASSO procedure

was used to select additional controls separately for each outcome. Heteroskedasticity-robust standard errors are in parentheses.
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A  Results from the theoretical model

To solve our model, we begin solving backward and consider the problem at time ¢t = 1 (the
second period). Note that in the appendix, we abuse notation and drop functional arguments

for notational simplicity and readability.

A.1 Avoidance purchased after pollution is realized (2nd period)

The state of the world s is known, as is the previously purchased level of avoidance x. The

agent’s problem is given by
u*(a) = max{F —d*(z +y) — c(z,y)}. (3)

Under our assumptions, a unique state-dependent level of avoidance exists, though the two-
stage nature of the problem precludes parsimonious assumptions that would ensure it is
non-zero. We focus on the cases that yield interior solutions. Then the state-dependent

optimal level of avoidance in period 1, y*(z), is implicitly defined by the first-order condition

—di(r +y°) — ca(y°) = 0. (4)

—dj; — c12
——————= € [-1,0], as d° and c are
—di; — 2
convex in all variables and 0 < ¢1; < ¢12 < ¢99. The results are intuitive given that avoidance

By the implicit function theorem we know that yj = —

actions in the two periods are substitutes, and the marginal cost of avoidance increases in
the second period. Finally note that if a < b, then a + y*(a) < b+ y°(b). That is, if the
agent invests less in the first period, she does not fully make up for it in the second period.

A.2 Avoidance purchased before pollution is realized (1st period)

We now turn our attention to the full ex-ante problem. Given forecasting skill p the agent

Vip,m) = ;gfgg{ﬂ[puh(x]{) + (1= p)u"(@")] + (1 = m)[pu' (@) + (1 = p)u' (z™)]}. (5)

Interpreting the above, notice that first the state of the world is determined (with probability
7), and then the agent makes a forecast (with skill p). Recall that p depends on the agent’s

level of information and human capital/forecast ability. Based on her forecast, the agent
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chooses her level of avoidance at period 0. Once the state is realized, she purchases extra
avoidance as needed and experiences utility based on the state.

We can transform this bivariate maximization problem into two simpler forecast-
dependent problems using Bayes’ rule. The value function can alternatively be expressed

Vip,m) = p{max(g"u"(z") + (1 = ¢")u' (@™)]} + (1 = ) {max(g"u'(z") + (1 = ¢")u" ("))},

where p = P(H) =1—p—7+27mp , ¢ = P(h|H) = 2 and ¢~ = P(I|L) = 24=™) This

1—¢
transformation allows us to instead solve an interim problem at time 0 that is a function of
t.81

the agent’s forecas The result is similar to the rainfall forecasting problem presented in
Rosenzweig and Udry (2014b), though with one important distinction. Unlike Rosenzweig
and Udry (2014b) we model skill as P(F|s) = p (suppressing exogenous variables), while
Rosenzweig and Udry (2014b) model it as P(s|F') = ¢, with the quality measure assumed
equal for both signals. As can be seen from our formulations of ¢f, this assumption is
meaningfully restrictive.

We can now solve the agent’s problem based on her forecast. Consider the case when she

forecasts a high level of pollution. Then her optimization problem is

mw{ 0"[E — d"(z +y(x)) — el (x) }.
51— g[E —d'(x 4y @) — ey (1))

Before continuing, we note that the best-case scenario for the agent is low pollution.

(6)

Given that the marginal cost of air pollution rises in the second period, it then follows
directly that the agent will always pre-purchase at least the optimal level of avoidance for

l

low pollution, 2! = argmax{E — d'(x) — c¢(z)}. Furthermore in the state with low pollution,

the agent will not purchase additional avoidance tomorrow, i.e. y!(2! + ) = 0 for all z > 0.

Then we can re-write equation 6 as

max
T

FHE—Muww+ywm—dﬂ+aw@m}_
+(1 — ¢")[E — d'(z! + z) — c(2' + x,0))]

81The transformation is a direct application of Bayes’ rule and simple algebraic manipulation. We
reproduce some of the main steps below

max {P(h)P(H|h)u" (z) + P()P(L|P)u" (z") + P(1) P(L|l)u' (z") + P(1) P(H|L)u' (z")}
= max {P(H)P(h|H)u"(a") + P(L)P(h|L)u" (") + P(L)P(I|L)u' (z") + P(H)P(I|H)u' (z")}

= max (P(H)[P(h|H)u' (x) + P (a™)] + P(L)[P(HLL) (@) + PUIL) @)}
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The first-order condition yields®?
¢"[=di-(L+y) — ey —el] + (1 = ¢")[=dy —cr] = 0.

Rearranging and substituting in the first-order condition for the period 1 problem (equation
4) yields

¢"[=di] + (1 = ¢")[~di] — 1 = 0. (7)

We do not need to check the second-order condition as this is a simple case of partial
minimization. However as we use it later, the second derivative is —q¢d%.(1 + yt) — (1 —
qg)d, — c11 <0, as the damage function and costs are strictly convex, and y}* € [—1,0].

)

Equation 7 implicitly defines 27 (¢”), the optimal level of investment given a forecast of

high pollution. We can now ascertain the effect of forecast skill on the level of avoidance
purchased in advance. By the implicit function theorem, x1f = —M > 0, where SOC
is the (negative) second order condition and d#(A) < d}(A) VA. Symmetric arguments imply
that le < 0.

Finally, we wish to compare levels of investment based on the signal the agent receives.
Under our assumptions on the agent’s forecast skill (p > max{w,1 — 7}), we know that
g, q" > % Then as a first step in our comparison of z(¢”) and xL(¢"), we investigate the
artificial case where ¢* = ¢ = ¢. Let us consider the first-order conditions for both forecasts.
For H, we need ¢[—d?] + (1 — q)[—d}] = ¢1, while for L we require (1 —q)[—d%?] +q[—d'] = ¢;.
Recall that ¢ is increasing and convex, and that d?(A) < d{(A) (equivalently, —di(A) >
—d{(A)). Then in the case for each forecast, we need the g-weighted average of the slopes
of the damage functions to equal the slope of the period 0 cost function. For the high
forecast more weight is on the steeper damage function, while the reverse is true for a
forecast of low pollution. Coupled with the convexity of the cost function, this implies that
2f(q) > 2%(q) Vq. The result is both intuitive and consistent with Rosenzweig and Udry
(2014a): a forecast of high pollution, given the same ¢, should result in higher investment
compared to a forecast of low pollution.

While intuitive, the result is incomplete, as ¢/ need not equal ¢. In fact, depending
on the value of , either could be higher.®® Recall that zf > 0 and ¥ < 0, and consider
first the case when ¢ > ¢F. Then we have that z%(q") < 2 (¢¥) < 2 (¢"). Similarly,
when ¢ > ¢, we have that 2 (¢*) > 2L(¢") > 2%(¢Y). We have seen, then, that

820nce again, we focus on interior solutions, though it is possible to assume Inada conditions here to
ensure interiority.
83In particular, if 7 > 0.5, ¢ > g%, while the reverse is true otherwise.
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2 (¢f) > a2t (q") for all possible cases.®*

A.3 Willingness to pay for improvements in forecast skill

We now turn our attention to willingness to pay improvements in forecast skill p. Our
treatments (provision of external forecasts and forecast ability trainings) aim at increasing
forecast skill, and so if there is a demand for higher levels of p, it would follow that there
would be (derived) demand for our treatments.

Recall that the value function, V'(p, ) is defined by equation 5. Then application of the

envelope theorem yields
Vi = w[u"(a™(q") — u" (2" (¢")] + (1 = m)[u' (2" (¢")) — u' (=" (¢"))].

To sign this expression, we need to sign u”(z) — u"(2%) and u'(z*) — u!(z"). Consider the
expression uf = —d;(1 4+ y}) — ¢1 — ey} = —dj — ¢;. Taking the second derivative yields
ujy = —dj (1 4+ y5) — 11 <0, so u® is concave and attains unique maxima (one per state).

Of interest, however, are not the maxima (as the agent cannot predict the state of
the world perfectly), but rather u/(z) and u!(x%). Note that z! is implicitly defined by
q[—dM+(1—¢")[—d}] = ¢, and similarly 2% is implicitly defined by ¢*[—d']+(1—¢*)[—d?] =
c1. So given that d" is steeper than d' (and both have negative slope), then at x| u? >0
and at x¥, u! < 0.85 This coupled with the fact that 2 (¢”) > 2X(¢%), and that both u® are
concave, implies that V; > 0. Hence we know that as the quality of the forecast improves,
the individual’s utility increases. This implies that willingness to pay services to improve p
would be positive..

Before we move to the final step and model the effects of training and our SMS forecast
service, we note that the previous results for 7 and z* provide some useful insights.

H = ¢l = 1), in

Compared to a world where the state of air pollution is known (g
a world with imperfect information, the agent under-invests when her forecast is high
(2 (¢M) < argmax, u”(z)) and over-invests when it is low (x%(¢*) > argmax, u'(x)).5 The
result is intuitive, as when the agent forecasts high pollution, she under-invests to benefit
from the non-zero probability of a low pollution state, and vice versa. This result adds to

the set of potential explanations for low mask take-up in developing-country settings with

84This is driven by the fact that p > max{m, 1 — 7}, which implies ¢*, ¢!" > 0.5.

85To see this more clearly, focus on uf|,n = —d? —c1. At 2 ¢H[—d?] + (1 — ¢7)[~d}] = ¢1, and so ¢; is
equal to the weighted average of slopes of d" and d'. Then if follows that d"is steeper than ¢ at ' and so
u'f is positive. Symmetric arguments apply to ull at ol

86 Another way of seeing this result is by noting that “perfect” forecasts would imply that ¢ = ¢* = 1.
Given that zf > 0 and z¥ < 0, imperfect signals yield under- and over-investment, for high and low forecasts
respectively.
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low information and variable pollution.

A.4 Effects of information and training

As a final step, we now model the effects of our experimental interventions: SMS forecasts
and forecasting training. Recall that while suppressed for notational simplicity, in full p(¢, 7).
By simple application of the chain rule, given increases in p increase agent’s utility, increases
in ¢ and 7 would also increase utility.

Within the framework of our model then, we think of our SMS forecast as an increase
in the agent’s information. In the extreme case an agent may simply adopt our forecast
as her own.®?” Similarly, our training is designed explicitly to increase human capital in
the dimension of forecast ability. Both our experimental treatments, then, should improve

agents’ forecast skill.

87Here and throughout the paper, we remain largely agnostic on questions of belief updating.
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B Additional figures

Figure Al: Air pollution forecast errors (t+1), baseline
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Note: Forecast errors are the differences between subjects’ incentive-compatible air pollution forecasts and realized pollution
on the day after the baseline survey. That is, a negative error represents an underprediction of pollution. Units are ug/m37
rather than control-group standard deviations as in most exhibits in this paper. Density was estimated under Stata-default

kernel and bandwidth. The sample includes all baseline respondents.
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Figure A2: Demand curves for N95 masks, endline
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Note: Willingness to pay (WTP) was elicited at endline using a Becker-DeGroot-Marschak mechanism (Becker, DeGroot,
and Marschak, 1964), in which all subjects bid on an N95 mask with a retail price of 135 PKR. The maximum bid was 200
Pakistani Rupees (PKR). Quantity demanded is expressed as the share of subjects purchasing; that is, the share with WTP

greater than or equal to a given price. Local elasticities near the retail price appear in Table A11.
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Figure A3: Demand curves for air pollution forecasts, by baseline forecast error
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Note: Willingness to pay (WTP) was elicited at endline using a Becker-DeGroot-Marschak mechanism (Becker, DeGroot, and
Marschak, 1964), in which all subjects bid on 90 additional days of our SMS air pollution forecasts. The maximum bid was
200 Pakistani Rupees (PKR). The figure reflects the forecast-only treatment group (246 subjects), as explained in Section 5.2.
Quantity demanded is expressed as the share of subjects purchasing; that is, the share with WTP greater than or equal to
a given price. “Good baseline forecaster” denotes subjects with baseline air pollution forecast error (t+1) above the group

median, while “Bad baseline forecaster” denotes subjects with error below the median.
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C Additional tables

Table Al: Treatment-control balance, full baseline sample

Forecasts

Control Forecast Training + Training P-value

Age of respondent (years) 31.643 30.555 30.559 31.776 0.346
(0.663)  (0.608) (0.633) (0.647)

Respondent female (=1) 0.515 0.504 0.496 0.482 0.888
(0.030)  (0.030) (0.030) (0.030)

# of household members 5.493 5.603 5.676 5.864 0.482
(0.161)  (0.145) (0.143) (0.182)

# of elderly in household 0.404 0.397 0.408 0.441 0.886
(0.041)  (0.042) (0.042) (0.042)

# of children in household 1.680 1.952 1.746 1.941 0.173
(0.099)  (0.112) (0.103) (0.116)

A household member has a respiratory disease 1.857 1.846 1.824 1.853 0.729
(0.021)  (0.022)  (0.023) (0.022)

# of employed household members 1.728 1.691 1.846 1.820 0.185
(0.060)  (0.054) (0.061) (0.062)

Cares about air quality (likert) 3.588 3.647 3.632 3.705 0.577
(0.063)  (0.059) (0.058) (0.057)

Aware of the air quality in Lahore (likert) 3.226 3.279 3.255 3.350 0.562
(0.070)  (0.062) (0.064) (0.063)

Aware of the air quality in Walton (likert) 2.570 2.513 2.543 2.625 0.837
(0.096)  (0.089) (0.087) (0.092)

# of times/week checks the weather 1.823 1.918 1.910 2.056 0.381
(0.093)  (0.094) (0.101) (0.098)

Believes n95 masks work (=1) 0.939 0.916 0.922 0.933 0.764
(0.016)  (0.018) (0.018) (0.016)

Household owns a car (=1) 1.955 1.944 1.944 1.952 0.917
(0.013)  (0.014) (0.014) (0.013)

# of mobile phones household owns 2.632 2.592 2.794 2.823 0.294
(0.077)  (0.081) (0.163) (0.110)

Observations 272 272 272 272

F statistic 1.7 1.6 1.5 1.1

Note: Means and heteroskedasticity-robust standard errors reported. P-values are from joint F tests of treatment orthogonality

with respect to listed observables. F statistics are from joint tests of regression coefficients on observables.
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Table A2: Attrition rates by experimental condition

Forecasts +
Control Forecast Training  Training  P-value

Attrited from endline dummy  0.059 0.096 0.092 0.081 0.333
(0.014) (0.018) (0.018) (().017)
Observations 272 272 272 272

Note: Means and heteroskedasticity-robust standard errors reported. P-value is from a joint F test of treatment orthogonality

with respect to an endline attrition indicator.

Table A3: Treatment-control balance, non-attritors

Forecasts

Control Forecast Training + Training P-value

Age of respondent (years) 31.746 30.671 30.308 31.580 0.346
(0.685)  (0.649) (0.665) (0.660)

Respondent female (=1) 0.500 0.472 0.482 0.484 0.936
(0.031)  (0.032) (0.032) (0.032)

# of household members 5.527 5.606 5.563 5.892 0.490
(0.169)  (0.145) (0.142) (0.194)

# of elderly in household 0.410 0.382 0.405 0.436 0.856
(0.043)  (0.043) (0.044) (0.044)

# of children in household 1.656 1.919 1.741 1.924 0.188
(0.101)  (0.097) (0.109) (0.120)

A household member has a respiratory disease ~ 1.852 1.846 1.826 1.856 0.818
(0.022)  (0.023) (0.024) (0.022)

# of employed household members 1.734 1.687 1.838 1.824 0.213
(0.063)  (0.054) (0.063) (0.065)

Cares about air quality (likert) 3.613 3.695 3.623 3.711 0.568
(0.064)  (0.060) (0.061) (0.059)

Aware of the air quality in Lahore (likert) 3.227 3.321 3.282 3.349 0.589
(0.072)  (0.063) (0.066) (0.065)

Aware of the air quality in Walton (likert) 2.565 2.558 2.569 2.592 0.993
(0.098)  (0.093) (0.093) (0.094)

# of times/week checks the weather 1.824 1.955 1.975 2.012 0.537
(0.095)  (0.100) (0.106) (0.101)

Believes n95 masks work (=1) 0.940 0.912 0.919 0.926 0.709
(0.016)  (0.019) (0.019) (0.018)

Household owns a car (=1) 1.952 1.938 1.942 1.952 0.884
(0.014)  (0.015) (0.015) (0.014)

# of mobile phones household owns 2.645 2.565 2.838 2.815 0.214
(0.080)  (0.074) (0.178) (0.117)

Observations 256 246 247 250

F statistic 14 14 1.4 1.3

Note: Means and heteroskedasticity-robust standard errors reported. P-values are from joint F tests of treatment orthogonality

with respect to listed observables. F statistics are from joint tests of regression coefficients on observables.
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Table A4: Balance, non-attritors, primary outcomes at baseline

Forecasts
Control Forecast Training + Training P-value
Forecast error index (baseline) -0.002 0.017 0.108 0.014 0.577
(0.060)  (0.062)  (0.065)  (0.062)
WTP: Masks (baseline) 90.000  89.110  89.615 89.640 0.994
(2.241)  (2.209)  (2.335)  (2.270)
Avoidance index (baseline) 0.005 -0.013 0.093 -0.047 0.249
(0.050)  (0.050)  (0.052)  (0.049)
Happiness variance (baseline) 2.803 2.746 2.703 2.611 0.158
(0.062)  (0.064)  (0.068)  (0.061)
Observations 256 246 247 250
F statistic 0.16 1.89 1.29 1.70

Note: Means and heteroskedasticity-robust standard errors reported. P-values are from joint F tests of treatment orthogonality
with respect to listed observables. F statistics correspond to regressions of group dummies on all baseline measures of primary

outcomes. Willingness to pay for our forecast messages was not elicited at baseline by design.
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Table A5: Willingness to pay for SMS air pollution forecasts

WTP: Forecast WTP: Forecast

Forecasts 4.46 5.34

(4.22) (3.60)
Training -1.22 2.42

(4.08) (3.55)
Forecasts + Training -3.08 -5.15

(5.72) (4.95)
Constant 88.8 109.0

(2.96) (16.0)
Observations 999 999
Forecasts group mean 93.22

(3.00)

[0.00]

Note: Column 1 reports a regression of forecast WTP (in PKR) on a constant term and the three treatment dummies. This
allows a test of the mean in the forecast-only group in a regression context. As pre-specified, we conduct a right-tailed test of
the sum of the Constant and the Forecasts coefficient against a zero null and report the result at the bottom of column 1, with
the resulting p-value in square brackets. Note that because block dummies are not included in column 1, treatment effects are
not identified and estimates should not be interpreted causally. Column 2 reports estimates corresponding to Equation 2, with
forecast WTP as the outcome. Randomization block dummies are included. A pre-specified LASSO procedure was used to

select additional controls. Heteroskedasticity-robust standard errors are in parentheses.
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Table A6: Effects on absolute forecast error in ug/m?

Forecast error

Forecasts -4.12
(2.64)
[0.06]
Training -6.26
(2.63)
[0.01]
Forecasts + Training 6.11
(3.71)
[0.1]
Observations 999
Control mean 64.6

Note: Specification is as in column 1 of Table 1, but with average absolute error (t+1 and t+3) denominated in pg/m3, rather

than control-group standard deviations. As in column 1 of Table 1, tests of the Forecasts and Training estimates are left-tailed

(Br < 0,87 <0). The resulting p-values appear in square brackets.
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Table A7: Alt. MHT-adjusted I'TT p-values, 2-tailed tests for mask WTP and avoidance

Forecast Happiness Avoidance WTP:
error index  variance  W'TP: Masks index Forecasts
Forecasts 0.10 - 0.10 0.42 -
Training 0.03 0.74 0.27 0.74 -
Forecasts + Training - - - - -
Mean, forecast-only group - - - - 0.001

Note: Alternative tests for mask WTP and the avoidance index are two-tailed, rather than right-tailed as in Table 2. The p
values in columns 1 through 4 correspond to the pre-specified estimates in Table 1 (shaded cells). The p value in column 5
corresponds to the test of mean willingness to pay for forecasts in the forecast-only treatment group. This test is illustrated
in Figure 3 and formalized at the bottom of column 1, Table A5. The MHT correction is performed using the procedure of
Benjamini, Krieger, and Yekutieli (2006), which controls the false discovery rate. As discussed in Section 4.3, the resulting

corrected p-values can be larger or smaller than their uncorrected analogs.
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Table A8: Effects on t+1 non-absolute, non-standardized forecast error in pg/m?

Forecast error (t + 1), ug/m?

Forecasts 6.41
(4.06)
Training 2.14
(3.96)
Forecasts + Training -3.49
(5.52)
Observations 999
Control mean -39.6

Note: Specification is as in column 1 of Table 1. Forecast errors are the differences between subjects’ incentive-compatible
air pollution forecasts and realized pollution on the day after the endline survey. That is, a negative error represents an
underprediction of pollution. Units are pg/m3, rather than control-group standard deviations as in most exhibits in this paper.

Heteroskedasticity-robust standard errors are in parentheses.
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Table A9: Standard deviation of t+1 air pollution forecast errors, by group

Standard deviation P-value

Control 75.24

Forecasts only 72.51 0.99
Training only 60.90 0.03
Forecasts + Training 67.49 0.42

Note: Standard deviations are computed from non-absolute, non-standardized forecast error in pg/m?2 (see also note below
Table t.forecast-error-alt-outcomes). P-values correspond to the Brown and Forsythe (1974) median-based robust test statistic

for the equality of variances between control group respondents and respondents in each of the three treatment groups.
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Table A10: Air pollution forecast errors, beginning and end of training, endline sample

Forecast error (t + 1) Forecast error (t + 3) Forecast error idx

Post training -0.15 -0.060 -0.11
(0.058) (0.049) (0.046)

Forecasts -0.12 0.018 -0.052
(0.070) (0.077) (0.063)

Forecasts * Post 0.16 0.021 0.091
(0.067) (0.069) (0.056)

Observations 968 968 968

Control mean -0.19 -0.28 -0.24

Note: Unlike Table 7, this table excludes subjects who attrited between training and endline. The sample is comprised
of 2 observations for each of the 484 trained subjects who completed the endline survey. Both the training-only group
and the forecasts-plus-training group were offered training. At the start of the training session, the forecasts-plus-
training group produced smaller air pollution forecast errors (“Forecasts” coefficients). But by the end of the session,
the training-only group caught up (“Post training” coefficients). The forecasts-plus-training group showed little change
relative to the start of the session (summing coefficients on “Post” and “Forecasts * Post”). The estimating equation is
Yi+ = B1Forecasts; + B2 Posty + (33 Forecasts; * Posty + X;é + €it, with ¢ indexing subject and ¢ period (beginning or end of
the training session). Units are standard deviations in all columns. All columns include randomization block indicators. A
pre-specified LASSO procedure was used to select additional controls separately for each outcome. Heteroskedasticity-robust

standard errors are in parentheses.
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Table A11: Price elasticity of air pollution masks near market price

Bin width 20 30 40

Price elasticity, control -2.13  -2.40 -2.32
Price elasticity, forecasts only -2.44 -2.27 -2.01
Price elasticity, training only -2.04 -2.58 -2.33
Price elasticity, F + T -2.98 -3.08 -2.65

Note: Willingness to pay (WTP) was elicited at endline using a Becker-DeGroot-Marschak mechanism (Becker, DeGroot,
and Marschak, 1964), in which all subjects bid on an N95 mask with a retail price of 135 PKR. The maximum bid was 200
Pakistani Rupees (PKR). Elasticities are estimated from a log-log regression in which price interacts with a set of 3 bin
indicators. Bin indicators also enter in non-interacted form. “Bin width” refers to the bandwidth of the central bin containing
the market price of 135 PKR. That is, a bin width of 20 implies a price elasticity estimated over the range from 125 to 145

PKR. Complete demand curves and average elasticities appear in Figure A2.
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Table A12: Outdoor time, effect of receiving forecasts, including all treatments

Outdoor hours

Forecasts 0.83  -0.25
(0.41)  (0.71)

Forecasts * High pollution -0.96  1.62
(0.50)  (1.27)

Forecasts * Cares about air quality 0.85
(0.87)

Forecasts * High pollution * Cares -2.46
(1.39)

Training -0.69 -0.14
(0.45) (0.87)

Training * High pollution 0.59 0.51
(0.56)  (1.20)

Training * Cares about air quality -1.15
(1.03)

Training * High pollution * Cares 0.58
(1.39)

Forecasts + Training -0.15 0.65
(0.60) (1.18)

(Forecasts 4+ Training) * High pollution 0.10  -0.82
(0.74)  (1.85)

(Forecasts + Training) * Cares about air quality -0.38
(1.37)

(Forecasts 4+ Training) * High pollution * Cares 0.51
(2.02)

Observations 1442 1442
Control mean 4.74 4.74
Adult and/or child time? Both  Both

Note: Column 1 corresponds to a variant of the equation employed in Table 4, with the addition of the training treatment
and the interaction of the two treatments. Column 2 adds triple interactions with a baseline indicator for caring about air
quality; this indicator also enters in non-interacted and double-interacted control terms. The dependent variable is outdoor
time in hours, elicited as part of a 24-hour time diary. High pollution; is a dummy for a high air pollution forecast (fine
particulate concentration above 150 j1g/m?2) on the day of the subject’s endline time diary (the day before the endline survey).
All columns include randomization block indicators. A pre-specified LASSO procedure was used to select additional controls.

Standard errors in parentheses are clustered at the household level.

69



Table A13: Covariances with caring about air quality

WTP: Avoidance SMS views WTP:

masks index per week forecast
(Baseline) (Baseline) (Endline) (Endline)
Cares about air quality 2.67 0.44 0.52 10.2
(2.91) (0.051) (0.28) (4.06)
Observations 1088 1088 496 999
Control mean 86.9 -0.37 2.58 80.9

Note: Estimates correspond to regressions of the dependent variable indicated in the column heading on a constant and a
dummy variable for caring about air quality at baseline. Units are in Pakistani rupees (PKR) in columns 1 and 4. Units
are standard deviations in column 2. Units are an average count of views per week in column 3. Heteroskedasticity-robust

standard errors are in parentheses.
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Table A14: Outdoor time, effect of receiving forecasts, without LASSO procedure

Outdoor hours

Forecasts 0.57  0.11 0.61 -0.42 0.46 1.85
(0.38) (0.76) (0.43) (0.83) (0.69) (1.78)

Forecasts * High pollution -0.74  1.02  -0.63 1.60  -0.99 -0.92
(0.47) (1.19) (0.53) (1.19) (0.87) (2.85)

Forecasts * Cares about air quality 0.60 1.36 -1.86
(0.87) (0.94) (2.03)

Forecasts * High pollution * Cares -2.03 -2.68%** 0.18
(1.27) (1.29) (3.06)

Observations 1442 1442 980 980 462 462
Control mean 474 474 4.18 4.18 5.96 5.96
Adult and/or child time? Both Both Adult Adult Child Child

Note: The initial estimating equation (odd columns) is Y; = 8 Forecasts; + By High pollution: + Br g Forecasts; High pollution; +
vYoi + X;J + &;. The dependent variable is outdoor time in hours, elicited as part of a 24-hour time diary. High pollution; is a
dummy for a high air pollution forecast (fine particulate concentration above 150 ,ug/m3) on the day of the subject’s endline
time diary (the day before the endline survey). Even columns add triple interactions with a baseline indicator for caring about
air quality; this indicator also enters in non-interacted and double-interacted control terms. No LASSO-selected controls are
included. All columns include randomization block indicators. Columns 1-2 present standard errors that are clustered at the

household level. Columns 3-6 present heteroskedasticity-robust standard errors.
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Table A15: Effects on a social desirability index

Social desirability index

Forecasts -0.139
(0.126)
Training -0.00642
(0.123)
Forecasts 4+ Training 0.0388
(0.179)
Observations 998
Control mean 0.00

Note: Estimates correspond to Equation 2, with the dependent variable indicated in the column heading. All columns include

randomization block indicators. A pre-specified LASSO procedure was used to select additional controls. Heteroskedasticity-

robust standard errors are in parentheses.
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Table A16: Spillover frequencies, non-SMS groups

Num. spillover

messages Num. HH
1-9 22
10-24 6
25-49 2
o0+ 1

Note: Responses were collected at endline from subjects outside the SMS forecast message group: the pure control group and

the training-only group. Subjects were shown an image of one of our messages and asked if they had received any such messages.
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Table A17: Primary results, no baseline outcome control & no LASSO-selected controls

Forecast ~ Happiness Avoidance
error index  variance  WTP: Masks index
Forecasts -0.050 -0.0066 6.79 -0.029
(0.066) (0.083) (3.80) (0.071)
[0.23] [0.47] [0.04] [0.65]
Training -0.13 -0.0081 3.92 -0.078
(0.065) (0.082) (3.82) (0.070)
[0.03] [0.46] [0.15] [0.87]
Forecasts + Training 0.078 -0.030 -7.58 0.085
(0.092) (0.12) (5.41) (0.10)
[0.40] [0.40] [0.16] [0.40]
Observations 999 995 999 999
Control mean 0.00 0.00 104.1 0.00

Note: This is a variant of Table 1 that omits controls for baseline outcomes and LASSO-selected controls. All columns include
randomization block indicators. Heteroskedasticity-robust standard errors are in parentheses. A pre-specified left-, right-, or
two-tailed test was conducted for each estimate of interest: air pollution forecast error index (Br < 0,81 < 0), self-reported

happiness variance (87 < 0), willingness to pay for masks (8 > 0,87 > 0), and the avoidance index (B > 0, B > 0). The

resulting p-values appear in square brackets.
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Table A18: Predicted Willingness to Pay using Variables Available in the 2011 Indian Census

WTP: Forecasts

# HH members -4.86 -4.77
(1.27)  (1.28)
# of rooms in the house 12.5 12.4
(2.35)  (2.37)
HH owns a car -28.8 -28.8
(7.70)  (7.73)
HH owns a computer -8.24 -8.90
(6.81) (7.02)
HH owns a motorcycle -17.3 -17.7
(13.0)  (13.0)
HH owns a television 24.8 23.7
(13.2)  (13.6)
Constant 78.8 78.3
(19.4)  (19.6)
Baseline forecast error (t+1) 0.046
(0.069)
Observations 242 242
R-squared 0.12 0.12
F-stat 7.84 6.80

Note: These variables were selected from a slightly larger set of overlapping demographics through the use of a penalized

LASSO regression. Sample is limited to households who received the forecast treatment only.
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Table A19: Predicted Willingness to Pay using Variables Available in the MICS

WTP: Forecasts

HHs owns their house 2.71 2.08
(7.32)  (7.50)

# HH members -4.79 -4.72
(1.26)  (1.27)

# of rooms in the house 11.4 114
(2.55)  (2.56)

HHs owns a car -31.1 -31.1
(8.31) (8.32)

HH owns a computer -11.8 -12.3
(7.22)  (7.36)

HH owns a motorcycle -17.4 -17.6
(13.4)  (13.5)

HH owns a television 25.5 24.4
(13.1)  (13.6)

HH owns an air conditioner 11.6 11.5
(9.84)  (9.88)

Constant 78.7 78.4
(19.2)  (19.5)

Baseline forecast error (t+1) 0.040
(0.070)

Observations 242 242

R-squared 0.13 0.13

F-stat 5.72 5.18

Note: These variables were selected from a slightly larger set of overlapping demographics through the use of a penalized

LASSO regression. Sample is limited to households who received the forecast treatment only.
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Table A20: Estimated Average Willingness to Pay in 25 Most Polluted Cities

Estimated Estimated

Pollution Average WIP  Total WTP
Rank City in PKR in USD
1 Lahore, Pakistan 80.3 12,674,713
2 Hotan, China N/A N/A
3 Bhiwadi, India 86.9 875,370
4 Delhi (NCT), India 91.7 21,851,697
5 Peshawar, Pakistan 70.4 1,968,422
6 Darbhanga, India 86.1 361,802
7 Asopur, India 79.0 6,395
8 N’Djamena, Chad 104.8 2,368,224
9 New Delhi, India 89.0 1,482,997
10 Patna, India 94.7 2,264,055
11 Ghaziabad, India 89.0 2,082,740
12 Dharuhera, India 95.0 40,918
13 Baghdad, Iraq 94.13 5,132,407
14 Chapra, India 89.9 258,217
15 Muzaffarnagar, India 90.3 503,434
16 Faisalabad, Pakistan 79.5 3,622,530
17 Greater Noida, India 90.9 131,678
18 Bahadurgarh, India 95.4 231,244
19 Faridabad, India 89.7 1,800,427
20 Mugzaffarpur, India 90.9 457,353
21 Noida, India 86.9 786,073
22 Jind, India 96.0 228,372
23 Karagandy, Khazakstan 92.0 655,368
24 Charkhi Dadri, India 96.5 688,000
25 Rohtak, India 95.4 506,848

Note: Average Willingness to Pay is estimated following the procedure explained in Section 5.7. Data for Indian cities comes
from the 2011 Indian Census. Data for other cities come from the latest round of the World Bank’s Multiple Indicator Cluster
Survey (MICS). Total Willingness to Pay is simply the average for a city multiplied by 365/90 to convert to a yearly WTP,
then multiplied by the estimated population of each city according to UNdata (data.un.org), then multiplied by the current
exchange rate between PKR and USD.
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D Data, sampling, and randomization details

D.1 Sampling and subjects

Located in the province of Punjab, Lahore is Pakistan’s second largest city by population.
The Pakistan Bureau of Statistics divides Lahore’s population of 11.1 million into 8 Tehsils
(subdistricts). We use data from the 2011 Multiple Indicator Cluster Survey (MICS) to
compare Walton (one of our selected Tehsils) to the rest of Lahore on key indicators.®®
On average, residents of Walton are slightly more educated and wealthier than residents of
Lahore as a whole. For example, 27 percent of household heads have some tertiary education,
compared to 18.5 percent overall in Lahore. Households in Walton are also slightly more
likely to include older relatives. Using data from our pilot surveys and insights from previous
surveys in Lahore, we selected two Tehsils for our survey: Walton and Model Town.

To collect data on outcomes and covariates we surveyed subjects in the Walton area of
Lahore at multiple points in time. Survey enumerators collected all the primary data on
electronic tablets using SurveyCTO’s Open Data Kit (ODK) server.

We used 7 charges for the study. Between 140 and 180 households per charge were
surveyed, giving a total of 1088 respondents in 7 charges. This was accomplished by using
a GIS-based system to construct 190 meter by 190 meter grid cells within each charge and
selecting up to 19 survey points within each charge. The grid buffer ensured that our survey
points were at least 190 meters from each other. We then drew 128 random GPS points
across the entire sampling frame of 7 charges.

To select households within each charge, a pin was dropped at a random point. A pair of
enumerators proceeded to the pin and selected the nearest household to the left for the first
survey. The enumerators then selected nine other households using the left hand rule: every
fiftth household on the left, proceeding in a clockwise spiral fashion. Each enumerator pair
surveyed 5 male and 5 female subjects at each survey point, for a total of 10 respondents. This
ensured the gender distribution in the sample would match the population. Households were
excluded from the sample if the dwelling was locked/empty, all members of the household
were below 18 or above 60 years of age, members were not willing to subscribe to our SMS
service, or the household refused to participate in the study. In any of these situations,
the enumerator skipped the dwelling, recorded the reason for refusal, and selected the next

closest neighbor for the survey. For each household, respondent gender was chosen using a

88The MICS data does not distinguish Model Town (our other selected Tehsil) from other Tehsils.

89To draw our sample of 1088 households within these Tehsils, we included 6 out of the 11 charges (sub-
subdistricts) of Walton and 1 charge of Model Town. The excluded charges included restricted military
and high-income areas, where low response rates were expected. The sampling frame for this experiment
encompassed 7 charges, 41 circles and 231 census blocks.
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pre-generated random list.

Within the household, all members were listed according to their status. A random
number generator programmed in the survey tablet was then used to select a household
member using a three step process. First, the set of household members was restricted
to the eligible population;”® Second, a random number was generated for each member.
Members who were either household heads or spouses of household heads were pre-selected by
allocating them a probability of 1, while all other members were assigned equal probability of
being randomly selected. Third, the random numbers were used to select the nth household
member. The enumerator then asked to speak with the nth listed eligible individual to

conduct the baseline survey, conditional on oral consent.

D.2 Baseline survey (core modules)

The following modules were included in our baseline survey:

1. Information and trust;

2. Willingness to pay for particulate-filtering masks;

3. Air pollution forecast elicitation;

4. Air pollution-related attitudes and behavior;

5. Time use of the respondent and the youngest physically active child;
6. Risk aversion elicitation;

7. Political preference elicitation;

oo

. Demographics.

D.3 Survey frequency

Data were collected at two stages of the experiment.

1. In-person surveys: In-person baseline and endline surveys of all respondents were

conducted.

2. Treatment survey: For each individual in the forecast training treatment groups
(groups T2 and T3 in Figure 1), we conducted an in-person training session, which

allowed us to collect additional survey data.

90The eligibility criteria were: (i) ages of 18-60 years; (ii) willingness to receive our SMS forecast messages
and our forecast training; and (iii) presence in the dwelling at the time of the survey.
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D.4 Air pollution data

1. AQMesh and Dusttrak IT: We used two industrial-grade monitors: (1) the AQMesh;
and (2) the Dusttrak I1.”! We installed the AQMesh on the roof of a house in central
Walton. It transmitted air pollution readings via GSM continuously and data were
accessed through an API. The Dusttrak II is a handheld device that a research assistant

used to manually take readings in Walton 2-3 times a day, following a written protocol.

2. AirNow International: U.S. EPA’s AirNow program is a repository of real-time
air quality data and forecasts for the United States. AirNow International is a global
version of the U.S.-based air quality data management and display system. It provides

hourly data on PMs 5 levels. We regularly scraped this data from the AirNow website.”?

3. MeteoBlue: MeteoBlue uses nonhydrostatic mesoscale and multi-scale weather
models, which we operated at resolutions between 40 km. For air quality data,
MeteoBlue makes use of forecast data from the European Commission and the ECMWF
(European Centre for Medium-Range Weather Forecasts).”® MeteoBlue uses this third-
party data to source its predictions and issues them from an atmospheric model with a
40 km resolution. We updated these predictions everyday at UTC 06:00, 10:00, 12:00

and 18:00 to include them in our secondary data.

4. SPRINTARS: Spectral Radiation-Transport Model for Aerosol Species
(SPRINTARS) is a numerical model which estimates the effect of aerosols on
the climatic system and its contribution to global air quality.”* The Climate Change
Science Section at the Research Institute for Applied Mechanics, Kyushu University
in Fukuoka, Japan primarily developed the model. SPRINTARS uses aerosols from
both natural and anthropogenic sources to estimate categories for SPM, PM 10 and
PM, 5. We used the forecasts generated from this model in our secondary data on air

quality forecasts.

91The AQMesh is a small-sensor air quality monitoring system for measuring outdoor and indoor
air quality. Details on the product can be found here: https://www.agmesh.com/product/. The
Dusttrak-IT is a battery-powered handheld aerosol monitor. Details of the device can be found here:
https://www.tsi.com/dusttrak-ii-aerosol-monitor-8532/.

920ne can obtain the data from the following link after selecting Lahore as a city from the drop-down
menu: https://airnow.gov/index.cfm?action=airnow.global_summary.

93Details about the ECMWF model can be found here: https://www.ecmwf.int/en/forecasts.

9Details about the SPRINTARS model can be found here:  https://sprintars.riam.kyushu-
u.ac.jp/forecast.html.
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D.5 Weather data

o AccuWeather: AccuWeather is a popular source of weather forecasts. It takes the
U.S. National Oceanic and Atmospheric Administration’s (NOAA) weather forecasts
and transforms them for general consumers. Weather forecast data from Accuweather

95

were scraped each day for the city of Lahore.”” Data included temperature levels,

precipitation levels and cloud cover.

D.6 Randomization details

Stratification and randomization were performed in R using the commands in the blockTools
package (Moore 2012), which allows for blocking on a high-dimensional set of covariates
and avoids discretizing continuous covariates. For robustness (in terms of block stability) to
outliers, we generated multivariate location and spread using a Minimum Volume Elipsoid
(MVE) estimator. Robustness to outliers was important in our setting because pilot surveys
yielded very large forecast errors for some respondents. In computing the MVE, we weighted
incentive-compatibly elicited baseline outcomes twice as heavily as other covariates. While
the exact magnitudes of these weights were admittedly ad hoc, they made explicit our prior
that baseline outcomes should predict endline outcomes better than other covariates. Per the
recommendation of Athey and Imbens (2017), blocks contained eight subjects. We performed
blocking using the optimal-greedy algorithm implemented in the block command. Within
each block, we randomly assigned two subjects to each experimental condition (forecasts,

training, forecasts and training, control).

D.6.1 Primary treatment

Subjects were stratified on risk aversion, air pollution forecast error (t+1 and t+3), travel
time forecast error (¢+1 and t+3), and willingness to pay for a particulate-filtering mask. We
elicited these variables using incentive-compatible mechanisms as part of the baseline survey.
We further stratified subjects on several self-reported variables: having rescheduled activities
in response to air pollution in the past week, informedness about air pollution, household
health risk from air pollution,”® education, gender, age, and a dummy for having provided
a subsequently verified phone number at baseline. For additional details on randomization,

see Section D.6

9https://www.accuweather.com/en/pk/lahore/260622/daily-weather-forecast /260622.

96This measure was calculated as the first principal component of three indicators: presence of a household
member with breathing problems, presence of children in the household, and presence of elderly people in
the household.
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E Intervention details

E.1 Day-ahead air pollution forecasts

We designed an ensemble model to forecast day-ahead (¢t+1) PMys air pollution: the
concentration of particulates of diameter 2.5 microns or less, measured in micrograms per

cubic meter (ug/m?3). Our ensemble forecast combined the following models.””

1. Model based on data from our own air pollution monitors
This model used as inputs: (1) average daily PMs 5 readings from one or both of our
industry qualified air pollution monitors deployed in the Walton neighborhood (our
study area) of Lahore; and (2) AccuWeather ¢+1 forecasts for minimum temperature,
maximum temperature, and precipitation in inches. The two monitors were: (1) an
AQMesh; and (2) a Dusttrak II. We installed the AQMesh on the roof of a house in
central Walton and it transmitted air pollution readings continuously via GSM. We
then accessed these readings through an API. The Dusttrak II is a handheld device
that a research assistant used to manually take readings in Walton 2 to 3 times a day
under a fixed protocol. We predicted t+1 PMs 5 levels through an MA7 model with
day of the week fixed-effects and weather forecast controls. The MAT form was selected

using a cross-validation exercise applied to our data.

2. Model based on data from the US Consulate’s air pollution monitor
This model was identical to the model based on our data, but used data from AirNow—

a ground monitor located at the US consulate in Lahore.

3. MeteoBlue and SPRINTARS models
These models offer publicly available air pollution forecasts based on satellite data.

We accessed t+1 forecasts at 5pm each day.

We combined the models above through a simple three step process: first, we designated
retrospective data from our air pollution monitor(s) as the “ground truth” and we demeaned
each of the other models (including our own prediction models) according to the differences
between the predictions in these models and the ground truth over the prior week; second,
we measured the root-mean squared error of each model relative to the ground truth over
the prior week; and third, we took an average of the predictions for t+1, inversely weighted

by each model’s root-mean squared error.

97We describe the data sources listed below in greater detail later in Section D.4.
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We employed an API-based SMS messaging service that used a short code to send SMS
messages to our survey participants in Treatment Groups I and 3.9 The use of a short code
allowed the participants to reply to our forecast messages with any queries, enabling some
interaction on text messages as well. We sent our treatment group respondents two pieces
of information: 1) an average PMs 5 air pollution forecast for ¢+1; and 2) realized average
PM; 5 air pollution level for the previous day (¢-1). The latter was intended to allow subjects

to assess the accuracy of our forecasts.

E.2 Forecast Training

We implemented a one-hour forecast training based on the principles of Tetlock (2017)
and Kahneman (2011). In particular we drew on the findings of Mellers et al. (2014) and
Mauboussin and Callahan (2015), but no material was taken directly from this work. Broadly
speaking, the training aimed to reduce behavioral and psychological mistakes that decrease
the precision and accuracy of subjects’ forecasts. Training took place in subjects’ homes.
A group of specially selected and trained enumerators conducted the trainings in Urdu.’
Subjects received 150 PKR for their participation.

Each training session began with incentivized elicitations of air pollution forecasts. Over
the course of the session, we elicited non-incentivized forecasts of the same outcomes to
allow evaluation of individual training exercises. At the end of the session, we again elicited
incentivized forecasts. This structure allows us to measure within-subject changes in forecast
ability over the training session.

The first set of training exercises covered the concept of calibration. Participants provided
80 percent confidence intervals for PMs, 5 readings over the previous five days and then
answered numerical questions about Pakistan’s history and culture (for example, “what is
the population of Islamabad?”). For each answer, the subjects provided a confidence level:
the probability that their answer fell within a given range around the truth. In the third
calibration exercise, the subjects answered “true or false” general knowledge questions and
provided confidence levels for each answer. In pilot sessions, most subjects made large errors
and demonstrated overconfidence, consistent with evidence from developed countries (Mellers
et al., 2014). The calibration exercises were intended to show subjects that they had room

for improvement and open their minds to subsequent lessons.

98 A short code is a four digit telephone number (shorter than a full phone number) employed to send
and receive SMS and MMS messages over mobile phones. In the local context, banks, public institutions,
and accredited private organizations use short codes to share messages with their clients. The Pakistan
Telecommunication Authority (PTA) follows a rigorous procedure to grant access to short codes. We obtained
the short code “8755” to deliver SMS messages to our survey participants in groups 1 and 3.

99Urdu is one of the primary local languages spoken in Lahore.
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The next set of exercises taught subjects to combine “outside” and “inside” views when
making a forecast (Kahneman and Lovallo, 1993; Lovallo, Clarke, and Camerer, 2012). The
former denotes the base rate at which an event occurs in a reference class (for example,
the long-run average level of PM,y 5 in Lahore). The latter denotes factors particular to a
given forecast task (for example, subjects’ knowledge that air pollution in Lahore is lower on
weekends than on weekdays). The exercise taught subjects about choosing a good reference
class and avoiding the tendency to give too much weight to the inside view in forecasting.

In the following set of exercises, we asked subjects to reflect on an earlier forecasting
task. Subjects had the opportunity to change their previous forecasts. This taught subjects
to slow down and to engage “System Two” in the language of Kahneman (2011). Subjects
then completed an exercise that encouraged them not to round their forecasts excessively.
Previous work (Mellers et al., 2014) has found that most subjects round too much; that is,
their initial rounded forecast does not incorporate all the information at their disposal.

The next exercise taught subjects an important heuristic for forecasting time series: they
were instructed to consider a history at least as long as the time horizon of the forecast task.
For example, if they wanted to forecast air pollution for three days ahead, they were told to
consider at least three days of air pollution history.

The final exercise reminded subjects that people tend to allow their emotions and
preferences to influence their forecasts. For example, a person who plans to spend the

day outside tomorrow may underrate the chance of rain.
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F Analysis details

F.1 Treatment on the treated details

The second-stage specification for within-subject analyses is as follows.

Y, = 5FpFi+5TPT¢+5FTPFT1+7Y0@'+X;5+€¢ (8)

In this equation 7 indexes subject. Y is the outcome and Yj is the corresponding baseline
variable. The variables {ppz, PTZ-, PA’FTZ} represent instrumented takeup. Other controls and

hypothesis testing are as in the I'TT regressions. The three first-stage specifications for arm
A e {T,F,FT} are as follows.

Py = ppForecasts; + o7 Training; + @pr Forecasts; Training; + v4Yo; + X;H a+va (9)
Controls are naturally identical in both the first- and second-stage regressions.

F.2 Control variables: machine learning and missing values

As indicated in Section 4.1, we employ post-double selection LASSO to choose a precision-
maximizing control set (Ahrens, Hansen, and Schaffer, 2018). This is consistent with the
recommendation of Ludwig, Mullainathan, and Spiess (2019).1% While we used enumerator
training and survey design to minimize non-responses to specific questions, subjects were of
course given the choice of not responding, or responding “don’t know” to any question. We
do not consider as potential control variables any questions with high non-response rates,
as these may indicate confusion and higher likelihood of measurement error. In addition,
to preserve sample size when controls are included, we handle missing values as follows: (i)
create a dummy variable for whether the subject did not answer a given question; (ii) replace
the control variable with zero instead of missing for non-responses; and iii) include both the
control and the dummy in our regression. This is consistent with the recommendation in

Gerber and Green (2012). Coefficients on these variables are not interpretable.

100 According to Wager et al. (2016), ridge regression, LASSO, elastic net, and random forest procedures
can all be used to improve efficiency without introducing bias into estimated treatment effects.
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F.3 Meaningful deviations from the pre-analysis plan

o We employ asymptotic standard errors in the body of the paper, rather than standard
errors from randomization inference, because the latter cannot readily be combined

with our pre-specified algorithmic control selection using standard software tools.

o In our pre-analysis plan we say “we will control for the false discovery rate (at five
percent) following Romano and Wolf (2005)...” (Page 24). We intended to control for
the FDR as we do in this paper, but we cited the wrong paper there. We intended
to cite Anderson (2008), as we did in the original pre-analysis plan that we registered

prior to any endline data collection.

o Avoidance index as a primary outcome. In version 1 of our PAP, we listed the avoidance
index as a primary outcome. In version 2 we replaced it with outdoor time, failing
to realize that effects on outdoor time cannot be analyzed using the same regression
framework applied to the other primary outcomes. For example, forecasts may increase
outdoor time on clean days and decrease it on polluted days, so the average effect is
uninformative. We include the avoidance index as a primary outcome, and analyze
the plausibly heterogeneous effects on outdoor time under secondary outcomes. This
change has no impact on the number of results that are statistically significant at

conventional thresholds (10, 5, or 1 percent).

o Hypothesis tests on willingness to pay for masks. In the PAP we made contradictory
statements about alternative hypothesis (right- vs. two-tailed tests) for the avoidance
index and willingness to pay for masks, even though both are qualitatively similar
avoidance behaviors. We resolve the inconsistency in favor of right-tailed tests on both
outcomes because our theoretical model predicts positive treatment effects (Section 2,
Hypothesis 2). This change has no impact on the number of results that are statistically

significant at conventional thresholds (10, 5, or 1 percent).

o Hypothesis tests on forecast error. In the PAP we specified a left-tailed test for the
estimated interaction effect (forecasts and training) on air pollution forecast error.
When we later completed our theoretical model, it became obvious that this was an
error, as information and human capital can be either substitutes or complements in
forecast production. Accordingly we present a two-tailed test of this coefficient estimate
in our primary I'TT results. This change has no impact on the number of results that

are statistically significant at conventional thresholds (10, 5, or 1 percent).
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G A Model for Risk Aversion

In this appendix section, we build a simple model with the sole purpose of showing that the
effect of changes in risk aversion are ambiguous, in the absence of very strong assumptions
(namely CARA). For simplicity of analysis, we abuse notation by reusing variables defined
in the main text. In short, consider what follows to be independent of the model in the main
text. All variables are re-defined.

First consider the case of air pollution in the absence of any mitigating behavior. The
agent is faced with exposure to either high or low pollution. High levels of pollution reduce
the agent’s utility, and we model this as a reduction in her consumption. We normalize the
agent’s wealth on a low pollution day to C' and model high pollution as damage X. Further
assume that the probability of high pollution is p € [0,1]. The agent is assumed to be risk
averse, and we model this by assuming that for consumption x, the agent receives utility
u(z), such that u(0) =0, ' > 0 and «” < 0. While later we wish to model the effects of risk
aversion on the agent’s behavior, for simplicity, we suppress any notation for risk preferences,
until they are explicitly needed.

In the absence of any mitigating behavior, the agent faces expected utility (baseline)
B =pu(C —X)+ (1 -pu(C).

Now, assume that the agent may engage in avoidance behavior (e.g purchase a mask, re-
schedule activities, or remain indoors longer). Avoidance is not free, and comes at a cost

101 By engaging in

(especially in the case of lost work), and we model it as a cost a < X.
avoidance behavior pre-emptively (always avoid), the agent can mitigate all costs associated

with high pollution; in essence she can guarantee the pay-off
A =u(C —a).

It is possible that the agent chooses not to avoid at all times. If the agent could predict
high pollution, she could attempt to only avoid in such cases, and thereby save on the cost
of unnecessary avoidance. In the absence of any forecast, we assume that the agent’s naive
belief that a given day is high pollution is equal to p as well.'% Then every day, with a
probability of p, she either chooses to avoid (in response to what she believes is a high

pollution day), or not avoid with probability (1 —p). This probabilistic response to pollution

101Tf ¢ > X, the agent will never engage in avoidance, and the case is not of interest.
102Tf nature decides with probability p that there is high pollution, and the agent calculates her expected
pay-off using the same, it is intuitive that the agent uses the same unconditional prediction.
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would yield expected pay-off
N = p(pu(C —a) + (1 = p)u(C = X)) + (1 = p)(pu(C — a) + (1 = p)u(C)).  (10)

In the equation above, note that first nature decides whether a day is high or low pollution
and then for each day, the agent naively predicts whether it is high or low pollution. Equation

10 can be rearranged and expressed as the weighted average of A and B,

N =pu(C =a)(p+ (1 = p)) + (1 = p)(pu(C = X) + (1 = p)u(C))
=pA+ (1 —-p)B.

N is a convex combination of A and B, implying that the agent would never engage in
naive predictions; she would either always avoid if A > B or never avoid. We therefore only

need to consider these two cases, and so introduce our forecast service case by case.

G.1 Introducing forecasting

Now assume there is a service available, which informs the agent whether she will face high
or low pollution. This allows the agent to decide whether to avoid or not contingent on the
additional information in the forecast. The price of the forecast is f and we are interested
in finding the range of prices for which agents would purchase the service. The forecast is
imperfect, that is with a probability 7, it may incorrectly predict the level of pollution.'%
The forecast allows our agent to only avoid when the forecast predicts there is high pollution.

Then for an agent who purchases the forecast service (and follows it), her expected utility

is given by
plru(C —a—f)+ (1 —mu(C - X = f)]+ (1 = p)lru(C = f) + (1 —m)u(C —a— f)].

Note the implicit timing in the formulation. As with naive avoidance, nature first decides
whether there is high or low pollution. Then based on the realized level of pollution, the
forecast predicts the state of the world correctly or incorrectly, with probability = and (1—m)
respectively. If the agent buys the forecast, all consumption levels are reduced by the forecast
price f. The forecast is introduced to two different types of agents; those who in the absence

of a forecast were avoiding and those who were not. We consider these two cases separately.

103While these probabilities may be contingent on the realized level of pollution, for simplicity we assume
that forecast reliability is constant.
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G.2 Forecasting when avoidance is not too costly

In the case where avoidance is not too costly, the agent would purchase the forecast if
plru(C—a—f)+(1-m)u(C=X = f)|+(1=p)[ru(C—=f)+(1—m)u(C—a—f)] = w(C—a). (11)

We wish to model how behavior would change with changes in risk aversion. To do this, we
focus on the threshold price of the forecast, f¢, such that for all f < f* an agent would

purchase the forecast, and for those above they would continue to avoid at all times.

Remark. A threshold price f¢ exists.

Proof. Note that we can re-write (11) as T%(f) = p[ru(C—a—f)+(1—m)u(C—X — f)]+(1—
p)ru(C—f)+ (1 —mu(C—a— f)]—u(C —a). T* is continuous as u is continuous. Further
more, it is obvious that it is strictly decreasing in f (as w is strictly increasing). Finally, note
that 7%(X) < 0 and if 7%(0) > 0 then by the mean value theorem, a f* € [0, X], otherwise
f*=0. Finally, f* is unique as T is strictly decreasing. O

We are interested in how a non-trivial f¢ which can be interpreted as the highest
willingness to pay for a forecast service, behaves as we change the agent’s risk aversion.
Intuitively, it should decrease as risk aversion increases, because the forecast service in
essence offers a lottery, while always avoiding is a certain outcome. The intuition holds,

and to see why we express the threshold function as

T*(f) = ulyp) — ulc - a),

where ¢ is the certainty equivalent of a lottery with pay-offs of (C'—a— f,C— X — f,C— f)
with respective probabilities (pr + (1 — p)(1 — 7),p(1 — 7), (1 — p)w). Then by definition
as risk aversion increases, ¢ decreases, shifting 7% downwards and decreasing the threshold

price f¢.

Result 1. For agents who, in the absence of a forecast would engage in avoidance, willingness

to pay for a forecast is decreasing in their level of risk aversion .

We can also derive other comparative static results using the geometric properties of 7.
Result 2. The threshold value f* is:

1. Decreasing in p.

2. Increasing in 7.
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Proof. As f® is the fixed point of T, shifts in 7T would also shift its fixed point. As such

we consider the partial derivatives of T% with respect to each exogenous variable. ‘(’B% =

7u(C —a—f)—uwC—fl+ 1 —mulC —-X—f)—ulc—a—f)] <0asu >0 and
0<a<X.
Similarly, 22- = plu(C —a—f)—u(C—X — f)]+(1—p)[w(C—f)—uw(C—a—[)] > 0. O
Both results are intuitive. As the probability of a high pollution event increases, the
expected benefit of a sophisticated response gained through the forecast falls. Similarly, as

the reliability of a forecast increases, so does demand for it.

G.3 Forecasting when avoidance is too costly

When avoidance is in itself too costly, a forecast product presents the agent with a choice
between two lotteries: forecast-based avoidance and no avoidance. The agent would purchase

the forecast if

T"(f) =plru(C —a— f) + (1 =mu(C = X = f)l + (1 = p)[ru(C = f) + (1 = m)u(C —a — [)]
—pu(C — X) — (1 —p)u(C) > 0. (12)

Once again, analogous to the previous case, the model yields a threshold price that is unique.
Remark. A threshold price f" exists when avoidance is costly.

Before conducting comparative statics, let us consider the threshold at which the agent
would consume a forecast even when it is given away for free. We set f = 0 and consider

our agent’s choice. She chooses to use the forecast service if

plru(C —a) + (1 = m)u(C — X

(1= p)[mu(C) + (1 — M)u(C —a

plru(C —a)+ (1 —mu(C - X) —u(C - X
pr[u(C —a) —u(C — X

v

pu(C = X) + (1 = p)u(C),
(1 =p)[u(C) = 7mu(C) = (1 = m)u(C - a)],
> (1=p)1 =m)[u(C) —u(C - a)]. (13)

v

This formulation provides intuition behind the agent’s choice. The left-hand side in equation
(13) captures the benefit of the forecast; it is the expected utility of avoiding when the
forecast correctly predicts high pollution. Meanwhile the right hand side of the same
equation reflects the expected cost of an incorrect forecast leading to unnecessary avoidance.
The agent would only use a free forecast if the benefit is greater than costs. In essence, this

shows that for a forecast to matter, its skill must exceed some lower bound.
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We now move to comparative static analysis for our non-trivial case, i.e cases where
equation 13 is satisfied, and the agent would have a non-zero threshold price. Basic
comparative statics with respect to p and 7 can be derived as before, however analyzing
changes with respect to the agent’s risk preferences requires more assumptions. We therefore

first establish the results with respect to the former, and then move to analyze risk separately.
Result 3. The threshold value f! is:

1. Decreasing in p.

2. Increasing in .

Proof. Analogous to f%, f™is the fixed point of 7" and shifts in 7" would also shift its fixed
point. As such we consider the partial derivatives of T™ with respect to each exogenous
variable. 88% =7mu(lC—-a—f)—ulC—-]+A-m)(uC—-X—-f)—ulC—-a—f)<0as
v >0and 0<a<X.

Similarly, 22" = p[u(C'—a—f)—u(C—X = f)]+(1—p)[w(C—f)=U(C—a—[)] = 0. O

G.4 Risk aversion and willingness to pay.

To study the relationship between risk aversion and f", for tractability we need more
structure. We assume that the forecast is perfectly reliable, i.e 7 =1 and further assume
that the agent’s utility exhibits constant absolute risk aversion (CARA). In particular we
use the standard CARA formulation, and assume that when the agent consumes x units,
her utility takes the form u(x) = 1—e~**, where « is her Arrow-Pratt coefficient of absolute
risk aversion.

When the forecast is perfectly reliable, the agents choice simplifies to
pu(C = a— )+ (1= p)u(C — f) = pu(C — X) + (1 - pJu(C). (14)

The agent is comparing two simple lotteries, with the same binary probabilities over different
outcomes. We therefore define the certainty equivalent for such binary lotteries. For CARA,
the certainty equivalent is not a function of initial wealth, so we define the certainty equivalent
based on spread. Let ce(x,a), be the certainty equivalent of a lottery that yields 0 with
probability p and x with probability (1 — p), for an agent with an Arrow-Pratt coefficient of
absolute risk aversion, «.

Then we can re-write equation (14), which defines the threshold value as

uw(C — f—a+ce(a,a)) > u(C — X + ce(X, ).
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As w is strictly increasing in consumption, we can rewrite the above as C' — f —a+ce(a, a) >
C — X + ce(X, «). So our threshold is equivalently defined by

ft=(X —a)+ce(a,a) — ce(X, ).

Differentiating with respect to « yields

of
Ja

= ceq(a, a) — ceo (X, ).

To sign this we need to know the rate at which the slope of the certainty equivalent w.r.t.
risk aversion changes w.r.t. the size of the lottery, i.e ce,,. So, let us focus on ce(x, ).
Allowing for minor abuse of notation, we add risk aversion as a determinant of utility and

express utility as u(zx, «).

u(ce(x, o), a) = pu(0, ) + (1 — p)u(z, @),
= (1 —pu(z, a). (15)

We now differentiate both sides with respect to «, which yields

uz(ce, a)ceqa(x, ) + uq(ce, ) = (1 — plug(z, ),
Ua(ce, A)ceq(z, ) = (1 = plug(z, @) — uq(ce, ),

ug(ce, a)ceqa(x, ) = [ua(x, ) — us(ce, )] — puy(z, @).

Given our functional form for u, we know that u, = ae™** > 0, u, = are™** >
Upe = —axe™® < 0 and Uy, = —a?e™*® < 0. This coupled with the fact that ce(z, o) <

by construction, implies that the term in the square bracket is negative, and so ce, < 0 (as

0,
T

expected).
We are interested in cen, = cego. To solve this, first differentiate (15) by z and then by

u(ce(x,a),a) =(1 — p)u(zx, a),
ug(ce, a)cey(r, o) =(1 — plug(x, @),
Uz (x, @)

ceq(x, A) =(1 _p)m’
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Uz (ce, ) Uge (T, @) — Uy (2, @) [ty (ce, a)ceqs(x, ) + uga(ce, )]

cega =(1 —p)

9

ug(ce, o)

S;;nux(ce, Q) Uga (T, ) — Uy (T, Q) Ugy(ce, ) e (T, ) — Uz (T, Q) U (ce, ),

~ = Uy (T, Q) Ugy(ce, @) cen (T, ) + [ug(ce, ) uga (T, @) — ug (T, )z (ce, ).
sign

The first term is negative given what we already know. Focusing on the term in the square

bracket we have

Uz (CE, Q)Uaa(T, o) — Ue (T, @)Uza(ce, @) =ae™(—aze™") — (ae™*")(—a(ce)e™*),

—a?em@ee) (e — 1) < 0.

Therefore, ce,, < 0.

All this allows us to sign 2 = ceq(a, @) — cea(X,a). As X > a and ceqy < 0, we have

Oa
that % > 0.

Result 4. When avoidance is costly, more risk averse agents are willing to pay higher prices

for the (perfectly reliable) forecast service.
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