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Abstract: Rapid post-earthquake damage diagnosis of bridges can guide decision-making for emer-
gency response management and recovery. This can be facilitated using digital technologies to
remove the barriers of manual post-event inspections. Prior mechanics-based Finite Element (FE)
models can be used for post-event response simulation using the measured ground motions at nearby
stations; however, the damage assessment outcomes would suffer from uncertainties in structural
and soil material properties, input excitations, etc. For instrumented bridges, these uncertainties can
be reduced by integrating sensory data with prior models through a model updating approach. This
study presents a sequential Bayesian model updating technique, through which a linear/nonlinear
FE model, including soil-structure interaction effects, and the foundation input motions are jointly
identified from measured acceleration responses. The efficacy of the presented model updating
technique is first examined through a numerical verification study. Then, seismic data recorded
from the San Rogue Canyon Bridge in California are used for a real-world case study. Comparison
between the free-field and the foundation input motions reveals valuable information regarding
the soil-structure interaction effects at the bridge site. Moreover, the reasonable agreement between
the recorded and estimated bridge responses shows the potentials of the presented model updating
technique for real-world applications. The described process is a practice of digital twinning and
the updated FE model is considered as the digital twin of the bridge and can be used to analyze
the bridge and monitor the structural response at element, section, and fiber levels to diagnose the
location and severity of any potential damage mechanism.

Keywords: structural health monitoring; digital twin; damage diagnosis; finite element model
updating; Bayesian inference; soil-structure interaction; foundation input motion; rapid post-earthquake
assessment

1. Introduction

The field of computational structural mechanics has advanced to a mature level to facili-
tate high-fidelity and computationally-efficient seismic response simulation of bridges [1–3].
Practitioners and researchers use mechanics-based Finite Element (FE) models for response
prediction of complex bridge structures. Nevertheless, these models include inherent
uncertainties when it comes to mirroring real-world response behavior. These can include
uncertainties in soil and structural material models and parameters, dynamic input excita-
tions, uncertainties in damping energy dissipation mechanisms, etc. The uncertainties can
be quantified and/or reduced by integrating mechanics-based FE models with measured
responses of the structure through a data assimilation approach. This approach consists
of training/updating models with measurements to estimate uncertain/unknown model
parameters [4] (i.e., input-output model updating) or uncertain/unknown model and
input parameters [5,6] (i.e., output-only model updating). The trained/updated model
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provides a digital replicate of the real-world asset given the training data and is referred
to as the Digital Twin (DT). Indeed, the DT can absorb new data (e.g., responses to future
earthquakes) as they become available, thus offering an evolving and live platform that
can be used for response prediction, asset management, rapid post-earthquake damage
assessment, and decision-making for maintenance/rehabilitation of bridge infrastructures.
Advancing towards this idea is the main motivation behind this research work.

Materializing the DT platform for bridges requires overcoming several technical
hurdles. This paper is focused on the following challenges:

(i) Nonlinearity in bridge response behavior: Several approaches for linear FE model
updating using modal properties, identified from ambient and/or operational data,
exist in the literature (e.g., [6–10]). Nevertheless, these methods can update the bridge
model only in the linear regime of response. Linear FE model updating methods
provide limited insight into the nonlinear response behavior of the structure, which
can occur during strong earthquake events.

(ii) Measurement sparsity: Through the California Strong Motion Instrumentation Pro-
gram (CSMIP) [11], the California Department of Conservation in collaboration with
the California Department of Transportation (Caltrans) has instrumented several
bridges and recorded their seismic responses during the past three decades. This
valuable dataset has benefited the research community [12–14] and can provide the
baseline for developing a DT platform for instrumented bridges across California.
However, the collected data is often subjected to notable instrumentation sparsity.
The sparsity in data poses important challenges to the uniqueness of the solution for
the model updating technique and the accuracy of the resulting DT.

(iii) Soil-Structure Interaction (SSI): The Foundation Input Motions (FIMs), which are the
theoretical inputs to the soil-structure interactive system, are not explicitly measurable.
FIMs can be different from the Free-Filed Motions (FFMs) due to the SSI effects [15].
The available knowledge on SSI effects is limited to analytical and numerical studies,
and the in-situ and real-world effects of SSI on complex structures are not completely
known [16–20]. Hence, developing DT for bridges using seismic measurements may
require the estimation of the FIMs.

In this paper, to transcend the aforementioned technical challenges in the application
of digital twinning and virtual sensing, an output-only model updating technique in the
time domain is presented. Through this presented technique, the uncertain parameters
of a linear or nonlinear mechanics-based FE model along with the FIMs can be estimated
using sparsely measured acceleration responses recorded during an earthquake. The model
updating technique presented herein is mainly based on a sequential Bayesian inference
algorithm originally developed in previous works [5,21]. The efficacy of the presented
model updating technique is verified through numerically simulated data using the San
Roque Canyon (SRC) bridge model as a testbed. Then, the seismic data collected from the
SRC bridge are used for real-world case studies. Although, the amplitudes of the available
recorded motions are low, and thus the bridge mainly behaves in the linear-elastic regime,
the process can be readily applied to strong earthquakes and nonlinear structural behavior.
The main novelty of this paper is the application of the time-domain output-only model
updating technique in real-world settings to investigate its efficacy and limitations.

The outline of the paper is as follows. First, the sequential Bayesian inference for
output-only model updating technique and the identifiability analysis approach to de-
termine the identifiable model parameters are briefly presented in Section 2. Section 3 is
focused on the verification of the presented model updating technique using numerically
simulated data. The FE model of SRC bridge is presented in detail in Section 3.1, and
the identifiability analysis is performed in Section 3.2. Following that, the results of the
verification study in a numerically simulated environment are presented in Section 3.3.
Five case studies are carried out in Section 4 using real-world earthquake datasets and the
results are discussed. In Section 5, the application of DT and virtual sensing is presented.
Finally, the conclusion and future steps are discussed.
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2. Sequential Bayesian Inference Method and Identifiability Analysis

The model updating technique for joint system and input estimation is based on a
sequential Bayesian inference method using the unscented transformation approach [22]
for uncertainty propagation. This technique will be reviewed briefly in Section 2.1. The
Identifiability analysis process to quantify the information content of the measurement
data and potential identifiability of model parameters is presented in Section 2.2.

2.1. Sequential Bayesian Inference Method for Output-Only FE Model Updating

The model updating technique for joint system and input estimation is schematically
shown in Figure 1. This technique is closely similar to the works presented in [5,21],
with some tweaks and improvements as will be outlined here. As shown in Figure 1, the
unknown model parameters and inputs (here FIMs) are augmented into the unknown
parameter vector ϕ, the uncertainties of which are expressed with a Gaussian Probability
Density Function (PDF). These uncertainties are propagated into the FE model ŷ = h(ϕ),
in which h(. . .) is the nonlinear response function of the FE model. Next, a simulation (or
prediction) error model v(ϕ) is defined to correlate the FE-predicted response (ŷ) with the
measured response (y) collected by the sensors. Finally, the Bayes’ theorem is used to find
the posterior PDF of the unknown parameters, which is then used as the prior PDF for the
next sequence of measured responses.
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A sequential estimation window approach is used in this study to improve the effi-
cacy of the estimation process. In this approach, the time domain is divided into nw ≥ 2
successive overlapping estimation windows. The wth estimation window spans from
time step tw

1 to time step tw
2 , and tw

l = tw
2 − tw

1 is the length of the wth estimation win-
dow. Also, the overlap between the wth and (w + 1)th estimation windows is defined as
tw,w+1
o = tw

2 − tw+1
1 , ∀ w ≤ nw − 1. The estimation problem is solved at each estimation

window iteratively to estimate the mean vector and covariance matrix of the unknown
parameter vector and then moves to the next estimation window until completion. The
estimates of the unknown model parameters at the end of each estimation window are
transferred to the next estimation window and used as initial estimates. However, to
transfer the estimates of FIMs, each estimation window is divided into two parts. The
estimates of FIMs in the first part, spans from tw

1 to tw+1
1 in the wth estimation window,

which does not overlap with the next estimation window, are considered as final estimates.
The second part overlaps with the next estimation window, spans from tw+1

1 to tw
2 in the

wth estimation window, and the estimates of FIMs in this part are transferred to the next
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estimation window to be considered as initial estimates. The sequential estimation window
approach is schematically shown in Figure 2 and further discussed in the following section.
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n,1:t ∈ R(t×3)×1 is the time history of the three translational components of the FIMs
at the nth support from time step 1 to time step t. The measured response vector of the
bridge at the wth estimation window, ytw

1 :tw
2
∈ R(ny×tw

l )×1, is related to the FE-predicted
response through a simulation error model as

vtw
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(
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= ytw
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θ,

..
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(2)

in which vtw
1 :tw

2
∈ R(ny×tw

l )×1 is the simulation error vector at the wth estimation window and
accounts for the misfit between the measured and FE-predicted responses of the bridge [23].
By neglecting the effects of modeling error, the simulation error at each time step t is
ideally modeled as a spatially and temporally independent zero-mean Gaussian white

noise process (i.e., vt ∼ N(0, R)). Hence, vtw
1 :tw

2
∼ N

(
0,

~
Rw

)
, where

~
Rw ∈ R(tw

l ×ny)×(tw
l ×ny)

is a block diagonal matrix whose block diagonals are the simulation error covariance
matrix R. The objective of the model updating is to find the estimates of the unknown
parameters for which the discrepancies between the measured and FE-predicted responses
are minimized.

The unknown parameter vector at the wth estimation window is defined as

ϕtw
1 :tw
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=
[
θT ,

..
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2

T
]T

, where ϕtw
1 :tw

2
∈ Rnϕ,w×1 with nϕ,w = nθ + ns × tw

l × 3. The
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unknown parameter vector is modeled as a random vector, the evolution of which is
characterized by a Gaussian Markov process—also known as a random walk. A state-
space model is set up, in which the state equation governs the evolution of the random
unknown parameter vector and the measurement equation corresponds to the simulation
error model [24], i.e.,

ϕtw
1 :tw

2 ,k+1 = ϕtw
1 :tw

2 ,k + γw,k (3)

ytw
1 :tw

2
= ŷtw

1 :tw
2 ,k+1

(
ϕtw

1 :tw
2 ,k+1

)
+ vtw

1 :tw
2 ,k+1 (4)

in which γw,k ∼ N(0, Qw) is the process noise vector at the kth iteration of the wth esti-
mation window, and Qw ∈ Rnϕ,w×nϕ,w is the process noise covariance matrix at the wth

estimation window. Equations (3) and (4) represent a state-space model with unknown
states (i.e., model parameters and FIMs herein). An Unscented Kalman Filtering (UKF) [25]
method is used to estimate the unknown states. The estimation process is iterative at each
estimation window. Therefore, the subscript k is added in Equations (3) and (4) to denote
the iteration number.

To propagate the parameter uncertainties into the model, a scaled Unscented Trans-
formation (UT) method is employed [26], in which the model is evaluated separately
at a set of deterministically selected realizations of the parameter vector, which are re-
ferred to as the Sigma Points (SPs). The SPs at the wth estimation window are selected
based on the prior mean vector (ϕ̂−tw

1 :tw
2

) and prior covariance matrix (
(

P̂−ϕϕ
)

tw
1 :tw

2

) of the

unknown parameters. The vector of SPs at the wth estimation window is defined as

ϑw =
[

ϑ1
w ϑ2

w . . . ϑ
2nϕ,w+1
w

]T
. The mean vector (

¯
ytw

1 :tw
2
) and covariance matrix
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(
P̂yy
)
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1 :tw

2
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cross-covariance matrix of vectors ϕtw
1 :tw

2
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1 :tw
2

, shown as
(
P̂ϕy

)
tw
1 :tw

2
, are computed

using a weighted sampling method as follows.

¯
ytw

1 :tw
2
=

2nϕ,w+1

∑
j=1

W j
mŷtw

1 :tw
2

(
ϑ

j
w

)
(5)

(
P̂yy
)
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1 :tw

2
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∑
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[
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1 :tw
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(
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j
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)
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2
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ŷtw

1 :tw
2

(
ϑ

j
w

)
− ¯
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1 :tw

2
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+

~
Rw (6)

(
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)
tw
1 :tw

2
=
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∑
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[
ϑ

j
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1 :tw
2
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1 :tw
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ϑ

j
w
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− ¯
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1 :tw

2
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(7)

In Equations (5)–(7), W j
m and W j

e are the mean and covariance weighting coeffi-
cients [26], respectively, and ŷtw

1 :tw
2

(
ϑ

j
w

)
is the FE-predicted response at the wth estima-

tion window evaluated at ϑ
j
w. Now, the UKF prediction-correction procedure can be

employed to estimate the posterior mean vector ϕ̂+
tw
1 :tw

2 ,k+1 and posterior covariance ma-

trix
(

P̂+
ϕϕ

)
tw
1 :tw

2 ,k+1
of parameter vector at the (k + 1)th iteration. Moreover, to move from

the wth estimation window to the (w + 1)th estimation window, convergence criteria, in-
cluding the maximum number of iterations at each estimation window and allowable
convergence tolerance in the posterior mean vector, are checked. To avoid unphysical
estimates of posterior parameters, a constrain correction approach based on [27] is also
implemented. The model updating algorithm is summarized in Figure 3.
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2.2. Formulation for the Identifiability Analysis

Successful estimation of the unknown model parameters depends on the information
that the measurement data may contain about those model parameters, as well as the
sensitivity of the FE model responses with respect to those parameters. To quantify the
information content of the measurement data and, therefore, to assess the identifiability
of the model parameters, an approach similar to one presented in [28] is used. In this
approach, the information gain of the ith model parameter

(
θi) from measurement data,

∆H
(
θi), is expressed as the difference between the a priori and a posteriori information

entropy, which can be calculated as

∆H
(

θi
)
=

1
2

ln([I]ii pi + 1) (8)

where pi is the a priori variance of θi and [I]ii is the ith diagonal element of the Fisher
Information Matrix defined as

I =
n

∑
t=1

(
∂ŷt
∂θ

)T
∣∣∣∣∣
θ=θ̂

R−1 ∂ŷt
∂θ

∣∣∣∣
θ=θ̂

(9)
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in which n is the total number of time steps. The term R is the covariance matrix of the
simulation error vector as defined earlier and θ̂ is a maximum a posteriori (MAP) estimate,
which is approximated with the initial estimates based on the recommendations provided
in [28]. To calculate the sensitivity terms (i.e., ∂ŷt/∂θ), a Finite Difference Method is
employed. Then, the information gain of different model parameters is compared to sort
out the model parameters with the highest information gain, which are relatively more
likely to be identifiable unless they have strong dependence on other model parameters.
The mutual entropy gain between θi and θ j, ∆M

(
θi, θ j), can be quantified through a mutual

gain metric defined as

∆M
(

θi, θ j
)
=

1
2

ln

([I]ii + pi
−1)([I]jj + pj

−1
)

∣∣∣[I]ij + Pij
−1
∣∣∣

, with
~
I =

[
[I]ii [I]ij
[I]ji [I]jj

]
(10)

where Pij is the a priori covariance matrix of θi and θ j. In case of a strong dependency
between two parameters, the model parameter with smaller information gain (based on
Equation (8)) is fixed and the other model parameter will be estimated.

3. Verification Case Study Using the San Roque Canyon Bridge

A precast reinforced concrete bridge, referred to as the San Roque Canyon (SRC)
bridge, is used as a testbed to examine the efficacy of the model updating technique. The
SRC bridge, located in Santa Barbara County, CA, crosses the San Roque Creek river and
is a 149-m long continuous concrete box girder bridge with a 14-m wide deck and two
lanes of traffic. The SRC bridge has two concrete piers with octagonal cross-section and
seat-type abutments. The bridge deck and pier cross-sections are shown in Figure 4a,b.
This bridge was instrumented in 1996 with six uniaxial accelerometers on the bridge and
three uniaxial accelerometers at a nearby free-field station, see Figure 4c,d. Three out of six
accelerometers on the bridge measure the response of the deck in the transverse direction
(channels 6, 8, and 9), and one accelerometer records the vertical motion of the deck at its
center (channel 7). The channels 4 and 5 record the longitudinal response of the abutment
and deck, respectively. Also, channels 1, 2, and 3 are at the free-field to collect FFMs in the
horizontal (channels 1 and 3) and vertical directions (channel 2).
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Since its instrumentation until 2021, SRC bridge has recorded seven earthquakes
whose data is publicly available through the Center for Engineering Strong Motion Data
(CESMD) [30]. However, only five earthquakes with Peak Ground Acceleration (PGA)
greater than 0.01 g are available and all five earthquakes are considered in this study. These
five earthquakes are listed in Table 1 along with their date, distance between the epicenter
and the bridge, PGA, and Peak Structural Accelerations (PSAs) in different directions. The
PGA for all the earthquakes, except for the 2004 IslaVista, are in horizontal direction. The
recorded acceleration data for these five earthquakes are shown in Figure 5a, in which
the measurement channels used later for the identifiability analysis and model updating
are specified by red dashed lines. Moreover, the pseudo spectral acceleration for FFMs
in transverse and longitudinal directions considering 5% damping ratio are shown in
Figure 5b,c. The period of the first longitudinal and transverse modes of SRC are also
shown in this figure.
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direction, and (c) pseudo spectral acceleration of FIMs projected in the transverse direction. The
period of the first longitudinal and transverse modes of the SRC (calculated based on the prior model)
are shown in the figure.

Table 1. Earthquake records considered in this study.

No. Earthquake Date Distance
(km) PGA (g)

PSA in
Transverse

Direction (g)

PSA in
Vertical

Direction (g)

PSA in
Longitudinal
Direction (g)

1 San Simeon 22 December 2003 187.0 0.015 0.045 0.042 0.022
2 IslaVista 9 May 2004 27.2 0.016 0.026 0.047 0.013
3 IslaVista 29 May 2013 18.0 0.041 0.060 0.150 0.040
4 Montecito 23 April 2017 9.5 0.022 0.024 0.045 0.014
5 Santa Cruz 5 April 2018 67.9 0.016 0.021 0.058 0.019

3.1. FE Model of the SRC Bridge

A detailed FE model of the SRC bridge is developed in OpenSees [31] following the
guidelines provided in [32]. All the nominal material properties are taken from the as-built
structural drawings and Caltrans Seismic Design Criteria [33]. Figure 6 is a schematic
representation of the FE model, in which the model components are numbered from 1 to
13 and explained in the following text. Moreover, the model parameters are numbered
from 1 to 34 and their nominal values are listed in Table 2.
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Table 2. Candidate unknown model parameters. The model parameters are linked to their associated
model components in Figure 6. The unknown parameters to be estimated using the model updating
technique are highlighted in this table.

No. Parameter Description Nominal Value
1 Ed Elastic modulus of deck 27.8 GPa
2 f ′c,c Compressive strength of column 40.4 MPa
3 Ec Initial elastic modulus of column 27.8 GPa
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Table 2. Cont.

No. Parameter Description Nominal Value

4 kb
T

Transverse elastomeric shear stiffness of
bearing pad 100 MN/m

5 kb
L

Longitudinal elastomeric shear stiffness of
bearing pad 10 MN/m

6 ma Embankment mass for abutment 53.0 kg

7 kp
V Vertical soil-foundation stiffness under pier 12.7 GN/m

8 cp
V

Vertical soil-foundation damping coefficient
under pier 240 MN.s/m

9 kp
L Longitudinal soil-foundation stiffness under pier 9.8 GN/m

10 cp
L

Longitudinal soil-foundation damping coefficient
under pier 220 MN.s/m

11 kp
T Transverse soil-foundation stiffness under pier 9.8 GN/m

12 cp
T

Transverse soil-foundation damping coefficient
under pier 190 MN.s/m

13 kp
R,L

Rotational soil-foundation stiffness under pier
about the longitudinal axis 170 GN.m/rad

14 cp
R,L

Rotational soil-foundation damping coefficient
under pier about the longitudinal axis 2.7GN.m.s/rad

15 kp
R,T

Rotational soil-foundation stiffness under pier
about the transverse axis 170 GN.m/rad

16 cp
R,T

Rotational soil-foundation damping coefficient
under pier about the transverse axis 2.7 GN.m.s/rad

17 kp
R,V

Rotational soil-foundation stiffness under pier
about the vertical axis 290 GN.m/rad

18 cp
R,V

Rotational soil-foundation damping coefficient
under pier about the vertical axis 3.6 GN.m.s/rad

19 ka
L

Longitudinal soil-foundation stiffness under
abutment 8.7 GN/m

20 ca
L

Longitudinal soil-foundation damping coefficient
under abutment 170 MN.s/m

21 ka
T

Transverse soil-foundation stiffness under
abutment 37 GN/m

22 ca
T

Transverse soil-foundation damping coefficient
under abutment 130 MN.s/m

23 ka
V Vertical soil-foundation stiffness under abutment 10 GN/m

24 ca
V

Vertical soil-foundation damping coefficient
under abutment 150 MN.s/m

25 ka
R,L

Rotational soil-foundation stiffness under
abutment about its longitudinal axis 300 GN.m/rad

26 ca
R,L

Rotational soil-foundation damping coefficient
under abutment about the longitudinal axis 4.7 GN.m.s/rad

27 ka
R,V

Rotational soil-foundation stiffness under
abutment about the vertical axis 240 GN.m/rad

28 ca
R,V

Rotational soil-foundation damping coefficient
under abutment about the vertical axis 390 GN.m.s/rad
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Table 2. Cont.

No. Parameter Description Nominal Value

29 k f s
L

Far-field soil-embankment stiffness in
longitudinal direction 8.7 GN/m

30 c f s
R

Far-field soil-embankment radiation damping
coefficient in the longitudinal direction 38 MN.s/m

31 c f s,m
L

Far-field soil-embankment material damping
coefficient in the longitudinal direction 140 MN.s/m

32 kbs
L

Soil-backwall initial stiffness in the longitudinal
direction 105 GN/m

33 a0 Mass proportional Rayleigh damping coefficient 0.6 s−1

34 a1
Stiffness proportional Rayleigh damping

coefficient 0.003 s

The deck (Component #1) is modeled using elasticBeamColumn elements, as it is a
capacity protected element [33]. Each span is meshed using ten elements; the cross-sectional
properties are calculated based on the section geometry shown in Figure 4a and the material
modulus of elasticity (Ed) is 27.8 GPa. To account for the torsional vibrations, the rotational
mass moment of inertia is calculated based on the section geometry and is added to deck
nodes (Component #2). The pier foundations are modeled using four 4 m × 4 m linear-
elastic shellMITC4 elements (Component #3) with 1.7 m thick ElasticMembranePlateSection
section and modulus of elasticity of 27.8 GPa. To connect columns to the deck, rigidLink
elements (Component #4) are used to account for the rigidity provided by the cap beams.
Fiber-section forceBeamColumn elements with five integration points [34] are utilized to
model the piers (Component #5). The elastic shear and torsional stiffnesses are aggregated
to the pier fiber sections. The confinement effects in the pier sections are considered using
the Mander’s model [35]. The confined core is modeled using Concrete04 with compressive
strength

(
f ′c,c
)

of 40.4 MPa achieved at 0.37% strain and initial modulus of elasticity (Ec) of
27.8 GPa. Moreover, reinforcement is modeled using Steel02 material with a yield strength
of 46.9 GPa and a modulus of elasticity of 200 GPa. To connect the deck to the abutment
system, rigid frame elements (Component #6) are added to the two ends of the deck with
the number of nodes equal to the number of bearing pads. These nodes are connected to
the rigid abutment body through bearing pads and shear keys. Bearing pads in the vertical
direction are modeled using zeroLength elements with ElasticPPGap uniaxial material with
compression-only vertical compliance up to a 0.01 m deformation, known as the initial
gap (Component #7). The stiffness in bearing pads (Component #8) is modeled using
zeroLength elements with uniaxial bilinear steel01 material assuming 108 N

m and 107 N
m

shear stiffness in the longitudinal
(

kb
L

)
and transverse

(
kb

T

)
directions, respectively, and

1% strain-hardening ratio. Once the gap between the deck and the abutment backwall
is closed, the backwall provides resistant in the longitudinal direction. The backwall
stiffness (Component #9), which is calculated using the theory of plate and shell [36], is
modeled using compression-only elastic perfectly-plastic gap behavior. For this purpose,
an ElasticPPGap uniaxial material with a 0.05 m gap is used. The transverse response of
the deck is controlled by the zeroLength elements representing the shear keys (Component
#10) with a shear stiffness of 100 MN/m. According to the structural drawings, the shear
keys of SRC bridge are ductile. So, the model proposed in [37] can be used to model the
nonlinear compression-only behavior of the shear keys after the gap between the deck and
shear keys is closed. However, since the level of excitation in this study is low, the shear
keys are not modeled and it is assumed that their stiffness is lumped to the stiffness of
bearing pads.

SSI effects are modeled to consider near-field and far-field effects [19,20,38]. At the
abutments, the near-filed effects include the passive soil pressure behind the backwall,
which provides resistance against the abutment movement. This passive soil pressure is
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modeled using zeroLength soil springs (Component #11) with a HyperbolicGapMaterial based
on the Generalized Hyperbolic Force–Displacement (GHFD) backbone curve [39]. The back-
bone curve is developed using the abutment wall height (2.44 m), wall-soil interface friction
angle (40

◦
), and Mohr-Coulomb shear strength parameters with a common silty-sand soil

type [40], whose properties are taken from [41]. The calculated values for the stiffness in the
vertical

(
ka

V
)
, longitudinal

(
ka

L
)

and transverse
(
ka

T
)

directions are equal to 10, 8.7 and 37
GN/m, respectively. The vertical

(
ca

V
)
, longitudinal

(
ca

L
)
, and transverse

(
ca

T
)

damping co-
efficients of soil dashpots are set to 150, 170, and 130 MN.s/m, respectively. The rotational
stiffness about the longitudinal

(
ka

R,L

)
and vertical

(
ka

R,V

)
axis is 300 and 240 GN.m/rad.

In addition, the rotational damping coefficients about the vertical
(

ca
R,V

)
and longitudinal(

ca
R,L

)
axis are 390 and 4.7 GN.m.s/rad, respectively. The far-field soil-embankment effect

is modeled through three parallel zeroLength spring and dashpot elements (Component
#12), with the stiffness and damping properties calculated based on [42]. The springs have
elastic-no-tension (ENT) uniaxial material with a modulus of elasticity

(
k f s

L

)
equal to 3

GPa. The dashpots have Viscous uniaxial material with a damping coefficient defined as
the summation of linear radiation

(
c f s

R

)
and material damping

(
c f s,m

L

)
coefficients. The

parameters c f s
R and c f s,m

L are taken as 38 and 140 MN.s/m, respectively.
At the foundations, the near-field SSI effects are neglected and the far-field effects

under the piers and abutments foundations (Component #13) in all six degrees of freedom
are modeled using zeroLength elements (springs and dashpots) with stiffness and damping
coefficients calculated based on [43]. Corresponding vertical

(
kp

V

)
, longitudinal

(
kp

L

)
,

and transverse
(

kp
T

)
stiffnesses are set to 12.7, 9.8, and 9.8 GN/m, respectively. Also,

the vertical
(

cp
V

)
, longitudinal

(
cp

L

)
, and transverse

(
cp

T

)
damping coefficients are set

to 240, 220, and 190 MN.s/m, respectively. In addition, the rotational stiffness about the
vertical

(
kp

R,V

)
, longitudinal

(
kp

R,L

)
, and transverse

(
kp

R,T

)
axes are equal to 290, 170,

and 170 GN.m/rad, respectively. Similarly, the rotational damping coefficients about the
vertical

(
cp

R,V

)
, longitudinal

(
cp

R,L

)
, and transverse

(
cp

R,T

)
axes are equal to 3.6, 2.7, and

2.7 GN.m.s/rad, respectively.
In addition to the explicit sources of damping energy dissipation in the model (dash-

pots and nonlinear materials), the inherent damping property of the structure is modeled
using Rayleigh damping with the mass (a0) and stiffness (a1) proportional coefficients equal
to 0.6 and 0.003, respectively, which results in 5% damping for modes 1 and 6. The Rayleigh
damping is modeled using the initial stiffness matrix.

3.2. Identifiability Analysis

An identifiability analysis is performed to find the most identifiable model parameters
based on the approach described in Section 2.2. The identifiability analysis is an input-
output approach measuring the sensitivity of model responses with respect to different
model parameters. The analysis is completed here using the significant portion of the 2004
Isla Vista earthquake, and the FFMs are used in lieu of FIMs. Based on the instrumentation
plan in Figure 4, channel 7 records the vertical component of the bridge response and is
likely polluted by the traffic-induced vibrations and thus not included for the identifia-
bility analysis. Consequently, the vertical component of the input motion (channel 2), is
also removed from the analysis. The identifiability analysis process is discussed in the
following part.

A list of potential model parameters and their nominal values are shown in Table 2.
The longitudinal, transverse, and vertical directions mentioned in this table are based on
the directions shown in Figure 6. Model parameters are numbered from 1 to 34. These
parameter numbers are used in Figure 6 to relate the model parameters to the corresponding
model components. To find the most identifiable model parameters, the relative information
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gain for each model parameter is calculated based on Equation (8) and the results are shown
in Figure 7. As can be seen in this figure, there are 10 model parameters that are potentially
identifiable due to their high relative information gain in comparison to other model
parameters. These model parameters, sorted in descending order with respect to their
relative information gain, are: kb

L, Ed, kb
T , Ec, ka

L, a0, a1, ca
L, kp

R,L, and kp
R,T . As can be seen

in Figure 7, the model parameters related to the nonlinear response of bridge, including
f ′c,c, are likely unidentifiable. This is because the considered earthquake in this study has
small amplitude. Figure 8a shows the relative mutual information gain among the model
parameter pairs obtained from Equation (10). Moreover, to better observe the dependency
between model parameters, a scaled version of Figure 8a is presented in Figure 8b. In this
figure, all the mutual information gains in each row are scaled to the maximum value in
the corresponding row. Also, the diagonal values are nullified (actual values are replaced
by zero). As can be seen, there is no significant dependence between the first four model
parameters with high relative information gain (kb

L, Ed, kb
T , and Ec). So, these parameters are

chosen as unknown model parameters to be estimated through the model updating process.
Parameters kp

R,T and kp
R,L are removed from the unknowns because they are dependent

on parameters kb
L and Ec, respectively. Furthermore, parameters a0 and a1 are moderately

dependent; however, both are kept among the unknowns to be estimated. Parameters
ka

L and ca
L are dependent on Ed and kb

L. This is likely due to the competing effects that
parameters ka

L, Ed, and kb
L have on the stiffness of the superstructure in the longitudinal

direction. Since Ed is already selected as an unknown model parameter to be estimated,
ka

L and ca
L are excluded from the unknown parameter vector for the verification studies.

In summary, parameters Ed, Ec, kb
T , kb

L, a0, and a1, highlighted in Table 2, are selected as
unknown model parameters to be estimated.
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3.3. Verification Study Using Numerically Simulated Data

To simulate the measurements, the FE response of the SRC bridge to the 2004 Isla Vista
earthquake is simulated and polluted with an artificial zero-mean Gaussian noise with 5%
Root Mean Square (RMS) noise-to-signal ratio. For the simulation, the measured free field
motions are used as the FIMs. The time history analysis is performed using time step size
of 0.01 sec and the Newmark-beta average acceleration method for time integration, with
the nominal model parameter values presented in Table 2. The noisy simulated responses
are used for model updating to estimate the six unknown model parameters and the FIM
time histories in the longitudinal and transverse directions. It should be noted that due
to the short length of the SRC bridge, the FIMs are assumed to be uniform. As discussed
before, measurement channels 7 and 2 are not considered and only channels 4, 5, 6, 8, and 9
are used in the model updating.

The model updating is carried out using 31 number of overlapping estimation win-
dows (nw = 31). The length of each estimation window is 27 time steps (tw

l = 27), and the
overlap between each two estimation windows is equal to 10 time steps (tw,w+1

o = 10). In
order to initialize the model parameter vector (θ̂0), −20% estimation error is assumed in
the initial estimates of all unknown model parameters where estimation error is defined as

Estimation error(%) =

(
Estimated model parameter value
Nominal model parameter value

− 1
)
× 100 (11)

and the nominal values are shown in Table 2. The assumed −20% deviation of model
parameters from their nominal values is chosen as a reasonable initial error based on
engineering judgement. The final estimates of the model parameters are sensitive to the
initial estimates. However, as long as the initial estimates are not unreasonably far from
the nominal values, no significant change in the final estimates is expected [44]. The term(
P̂θθ

)
t0
1:t0

2
is set as a diagonal matrix with ith diagonal entry equal to

(
0.1θ̂0,i

)2, while θ̂0,i

is the ith entry of θ̂0. Moreover,
(
P̂ ..

ug ..
ug
)

t0
1:t0

2
is also initialized as a t0

l × t0
l diagonal matrix

with diagonal entries equal to (0.001g)2. The first nθ diagonal entries in Qw are equal to(
0.001θ̂w,i

)2, where θ̂w,i is the ith entry of the θ̂w, and the rest are time-invariant and equal
to 10−8—note that the term θ̂w refers to the estimate of model parameter vector at the
wth estimation window. Finally, the diagonal entries of the simulation error covariance
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matrix, R, representing the measurement noise variances, are set as (0.003%g)2. Moreover,
the maximum number of iterations and the allowable convergence tolerance are selected
equal to 9 and 0.02. These thresholds are based on experience to achieve a compromise
between estimation accuracy and computational demand.

The time histories of the estimation error for unknown model parameters are shown in
Figure 9. In this figure, the error in the estimation of model parameters are calculated at the
end of each estimation window. As can be seen, the estimation errors for most unknown
model parameters are significant in the first five seconds. However, as time passes and
more information is collected, the estimation errors decrease and converge to zero with
less than 4% error. Also, as seen in this figure, elastic modulus of deck and initial elastic
modulus of columns converge to their nominal values faster than the other unknown model
parameters. This is because they are associated with the initial linear-elastic stiffness of the
bridge structural components.
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Figure 9. Estimation error time histories for the unknown model parameters through the model
updating technique using numerically simulated data.

The estimated FIMs in the longitudinal and transverse directions are compared to
their true counterparts in Figure 10a,b, respectively. Moreover, to evaluate the accuracy of
the estimated FIMs, the Relative Root Mean Square Error (RRMSE) of the estimated FIM
time histories are shown in Figure 10c. The RRMSE at time tn is calculated as

RRMSE. (%) =

√
∑tn

i=t1
(ŝi − si)

2√
∑tn

i=t1
(si)

2
× 100 (12)

where the terms ŝi and si are the estimated and true time history values at the ith time step,
respectively. As seen in Figure 10, the estimated FIMs are less accurate at the beginning of
estimation, when model parameters are not accurately estimated yet, and as time passes
the RRMSEs decrease.
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Figure 10. Comparison between true and estimated FIMs in (a) longitudinal and (b) transverse
directions, and (c) RRMSE of the estimated FIMs.

Figure 11 shows a comparison between measured and estimated responses at the
measurement channels. As can be seen, the match between the estimated and measured
response time histories is reasonable, which verifies the model updating technique. The
RRMSE values for the estimated responses decrease in time due to improved accuracy in
the estimated FIMs and unknown model parameters.
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4. Case Study Using Real-World Earthquake Data

In this section, the SRC bridge model is integrated with the real data collected during
earthquakes shown in Table 1. Using the presented model updating technique, the 6 un-
known model parameters, already specified in Section 3.2, are estimated jointly with the
two FIMs in the longitudinal and transverse directions. Details of the model updating pro-
cess is similar to those explained in the previous section, and the nominal parameter values
(shown in Table 2) are used as the initial estimates for the unknown model parameters.

Figure 12 shows the estimation time history of the unknown model parameters. In
this figure, the parameters’ estimates are normalized to their nominal (initial) values, and
the term Eave is the average of estimates for the concrete modulus of elasticity in deck
(Ed) and the initial modulus of elasticity in columns (Ec). The event-to-event variabilities
in the final estimates of the unknown model parameters are shown in Figure 13. In this
figure, the nominal values are shown as dashed red lines. As seen in Figure 13a, while the
final estimates for the concrete modulus of elasticity are close to the nominal values, there
is minor event-to-event variability. These minor variations could be due to the concrete
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aging, modeling uncertainties, and other sources of modeling error. The variation in the
final estimates of elastomeric bearing pad’s shear stiffness in longitudinal and transverse
directions are shown in Figures 13b and 13c, respectively. As can be seen, the level of
the final estimates in the transverse direction is higher than the ones in the longitudinal
direction. This is likely because the model parameter kb

T represents the combined effects
of the stiffness of the elastomeric pad and shear key, while the model parameter kb

L only
accounts for stiffness of the elastomeric pad. The level of the final estimates in Figure 13b,c
are close to each other for different earthquakes with the exception of the 2018 Santa Cruz
earthquake (earthquake No. 5). This variation can be due to the fact that the 2018 Santa
Cruz earthquake is one of the weakest events used in this study with small PGA and PSAs
(see Table 1). In such a weak event, the bearing pad stiffness is likely high enough to
prevent any movement. In this case, the measurements may not be sensitive to the stiffness
of the bearing pads, which could result in large estimates for kb

L and kb
T .

To better investigate the estimated Rayleigh damping, the final estimates of the damp-
ing coefficients (a0 and a1) are used to calculate the damping ratio as a function of frequency
as shown in Figure 14. As can be seen, the model updating results show almost no damping
during the first earthquake, i.e., 2003 San Simeon. This is because that the bridge behaves
almost quasi-statically in this excitation due to the superior presence of low-frequency com-
ponents in 2003 San Simeon in comparison to the other earthquakes (see Figure 5). On the
other hand, the highest damping ratios are estimated from the 2013 Isla Vista earthquake
with the highest PGA, which suggests a correlation between the inherent damping and
earthquake intensity. Based on these results, considering a 3–4% Rayleigh damping ratio
for the first and eighth modes (with frequencies of 1.12 and 5.82 Hz, respectively) can be
a rational assumption for the SRC bridge in the case of low to moderate earthquakes, i.e.,
2013 Isla Vista. However, under weak excitations, e.g., the 2004 Isla Vista earthquake, lower
damping ratio, around 1–2%, can be considered for these modes.

Sensors 2022, 21, x FOR PEER REVIEW  16  of  25 
 

 

the two FIMs in the longitudinal and transverse directions. Details of the model updating 

process is similar to those explained in the previous section, and the nominal parameter 

values  (shown  in  Table  2)  are  used  as  the  initial  estimates  for  the  unknown model 

parameters. 

Figure 12 shows the estimation time history of the unknown model parameters. In 

this figure, the parameters’ estimates are normalized to their nominal (initial) values, and 

the term    is the average of estimates for the concrete modulus of elasticity  in deck 

( 	and the initial modulus of elasticity in columns  . The event‐to‐event variabilities 

in the final estimates of the unknown model parameters are shown in Figure 13. In this 

figure, the nominal values are shown as dashed red lines. As seen in Figure 13a, while the 

final estimates for the concrete modulus of elasticity are close to the nominal values, there 

is minor event‐to‐event variability. These minor variations could be due to the concrete 

aging, modeling uncertainties, and other sources of modeling error. The variation in the 

final estimates of elastomeric bearing pad’s shear stiffness in longitudinal and transverse 

directions are shown in Figure 13b and Figure 13c, respectively. As can be seen, the level 

of the final estimates in the transverse direction is higher than the ones in the longitudinal 

direction. This is likely because the model parameter    represents the combined effects 

of the stiffness of the elastomeric pad and shear key, while the model parameter    only 

accounts for stiffness of the elastomeric pad. The level of the final estimates in Figure 13b,c 

are close to each other for different earthquakes with the exception of the 2018 Santa Cruz 

earthquake (earthquake No. 5). This variation can be due to the fact that the 2018 Santa 

Cruz earthquake is one of the weakest events used in this study with small PGA and PSAs 

(see Table 1).  In such a weak event,  the bearing pad stiffness  is  likely high enough  to 

prevent  any movement.  In  this  case,  the measurements may  not  be  sensitive  to  the 

stiffness of the bearing pads, which could result in large estimates for    and  . 

(a)  (b)  (c) 

 

(d)  (e)   

Figure  12. Estimation  time histories  of  (a)  ,  (b)  ,  (c)  ,  (d)  ,  and  (e)    for different 

earthquakes.	The estimates are normalized to the initial estimates. 

2003 San Simeon

2004 IslaVista

2013 IslaVista

2017 Montecito

2018 Santa Cruz

Figure 12. Estimation time histories of (a) Eave, (b) kb
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The estimates are normalized to the initial estimates.
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The comparisons between the FFMs and the estimated FIMs and the corresponding
RRMSEs in the longitudinal and transverse directions are shown in Figures 15 and 16,
respectively. Here, RRMSE presents the misfit between the predicted FIMs and collected
FFMs. So, greater values for RRMSEs can imply more significant SSI effects. Note that
as channel 3 malfunctioned during the 2017 Montecito and 2018 Santa Cruz earthquakes,
measurements of channels 4 and 1 are considered to report the recorded FFMs in the longi-
tudinal and transverse directions, respectively, for these two earthquakes. In Figure 15, the
estimated FIMs in the longitudinal direction are compared with the recorded measurements
in channel 4, and as can be seen, these two signals match well for these two earthquakes. In
other words, what is recorded by measurement channel 4 on the abutment overlays the
estimated FIM. This means that there is likely no significant bridge-abutment interaction.
The best fit between the FIMs and FFMs is seen for the 2003 San Simeon earthquake, which



Sensors 2022, 22, 1278 19 of 26

is not surprising due to the low-frequency content of this motion as discussed earlier.
Overall, the estimated longitudinal FIMs in all earthquakes show close similarity with the
recorded FFMs. Therefore, neither kinematic interaction nor inertial interaction is likely
significant for this bridge under the studied ground motion intensities in the longitudinal
direction; however, a higher level of differences is observed between recorded FFMs and
estimated FIMs in the transverse direction.
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Figure 15. Comparison between the recorded FFMs and estimated FIMs in the longitudinal direction
for (a) 2003 San Simeon, (b) 2004 IslaVista, (c) 2013 IslaVista, (d) 2017 Montecito, and (e) 2018 Santa
Cruz, earthquake events. Part (f) is the RRMSE between the estimated FIMs and recorded FFMs.
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Figure  17.  Comparison  between measured  and  estimated  (from  updated model)  responses  at 

different measurement channels for 2003 San Simeon earthquake: (a) channel 4, (b) channel 5, (c) 

channel 6, (d) channel 8, (e) channel 9. Part (f) is the corresponding RRMSEs. 

   

Figure 16. Comparison between the recorded FFMs and estimated FIMs in the transverse direction
for (a) 2003 San Simeon, (b) 2004 IslaVista, (c) 2013 IslaVista, (d) 2017 Montecito, and (e) 2018 Santa
Cruz, earthquake events. Part (f) is the RRMSE between the estimated FIMs and recorded FFMs.

Figures 17–21 show the comparison between the measured and estimated (from the
updated models) acceleration responses. As seen, the predicted responses match well the
measured responses in all events. However, as previously discussed in Section 3.3 and can
be seen in the following figures, the accuracy in estimation of the responses is poor at the
beginning of the earthquake event and improves in time.
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(d) channel 8, (e) channel 9. Part (f) is the corresponding RRMSEs.
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5. Digital Twin and Virtual Sensing Application

The updated FE model is a replicate of the SRC bridge in the digital world given the
training data, and is referred to as its digital twin (DT). The DT can be used to reconstruct
local element- and material-level responses to diagnose damage at local levels of the bridge.
For this purpose, the DT is used in a forward simulation for a given input motion and
the local responses (e.g., section moment curvature, material stress-strain) are collected
and used for damage localization and quantification. The process is often referred to as
virtual sensing [45]. Although the level of available earthquake motions was small in
this study and thus, no damage is expected in the structure, the application of the DT
can still be demonstrated. It should be noted that the phrase “Digital Twin” may have
different meanings and applications in different industries. Here, the digital twinning
method is used for post-earthquake assessment of bridges. The data recorded in seismic
events are considered as discontinuous real-time data assuming that no significant changes
will happen between the events. Therefore, the DT will be updated after each seismic
event and used for post-earthquake damage diagnosis. In this section, the SRC DT is
established using the final estimates of the unknown model parameters from the 2013
IslaVista earthquake data (earthquake No. 3). Then, the estimated FIMs are used with
the DT to monitor/estimate the structural responses. Figure 22 shows two examples of
such monitored/estimated responses at local levels. Figure 22a presents the estimated
moment-curvature response at the lowest section of the east pier about the transverse
direction. Also, the predicted stress-strain response of the extreme concrete fiber at the
lowest section of the west pier is shown in Figure 22b. As can be seen, the structure behaves
in its linear-elastic regime during the 2013 IslaVista earthquake. However, a similar concept
is applicable for stronger earthquakes to monitor the response nonlinearity at the local
levels to infer potential damage location and extent.
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6. Conclusions

This study presented the procedure for bridge digital twinning and virtual sensing
through the application of an output-only time-domain model updating technique for
post-earthquake damage diagnosis. In this technique the output-only seismic responses
are integrated with the mechanics-based Finite Element (FE) model of a bridge through
a Bayesian inference approach to jointly estimate the Foundation Input Motions (FIMs)
and the unknown model parameters, and so the development of the bridge’s digital twin.
The model updating is implemented using a sequential estimation window approach, in
which the time domain is divided into sequential overlapping estimation windows. At
each estimation window, the Probability Density Functions (PDF) of input and parameters
are updated iteratively using an Unscented Kalman filtering method and transferred to the
next estimation window. The technology solution for post-earthquake damage diagnosis
will necessitate seamless implementation using parallel processing and high-performance
computing (HPC) to enable a near real-time (e.g., within hours) processing capability.

The output-only time-domain model updating technique was first verified in a nu-
merically simulated environment. For this purpose, a detailed FE model of the San Roque
Canyon (SRC) bridge, located in CA, was developed in OpenSees. An identifiability analy-
sis was performed to select the likely identifiable model parameters among 34 parameter
candidates. Due to instrumentation sparsity and the low-amplitude seismic inputs, only a
few (six) linear-related model parameters (concrete modulus of elasticity of deck, initial
concrete modulus of elasticity of piers, stiffness of bearing pads, and Rayleigh damping
coefficients) were found to be likely identifiable. The verification study presented good per-
formance of the model updating technique in estimating the unknown model parameters
jointly with the time history of FIMs.

In the next step, the model updating technique was repeated for five real-world
earthquake data recorded at the SRC bridge station from 2003 to 2018. The estimated
model parameters were compared between different earthquakes and the likely reasons for
discrepancies were discussed. Estimates of the Rayleigh damping coefficients for different
earthquakes revealed dependency of damping ratio on the intensity of the seismic excitation,
i.e., a stronger earthquake with greater PGA resulted in a larger estimate of damping ratio.
The estimates of bearing pad stiffness had large event-to-event variations, which were
related to the level of intensity and potential modeling errors. Bearing pads were modeled
as linear springs, while their stiffness often depends on the level and frequency content
of the excitation. Furthermore, the estimated FIMs were compared with the Free-Field
Motions (FFMs), and the discrepancies were discussed based on the expected soil-structure
interaction effects. As expected, smaller discrepancies were observed between the FFMs and
the estimated FIMs for the events with low frequency excitation. Furthermore, the measured



Sensors 2022, 22, 1278 24 of 26

responses of the bridge were compared with those estimated from the updated model
(or digital twin). While the agreement between the measured and digital twin predicted
responses was acceptable, a comparison of the relative root mean square errors between
the numerically simulated case study and the real-world case studies clearly showed the
inherent effects of modeling error in the FE model updating technique. Modeling errors
refer to the mathematical idealization and simplifications in the model, which can result in
biased and incorrect model updating outcomes. Finally, the digital twin was developed
using the strongest studied earthquake. To demonstrate the virtual sensing application,
the bridge’s digital twin was used to predict the local level response of the bridge given
the strongest studied earthquake, an important capability that can be used for post-event
damage diagnosis (damage detection, localization, and quantification). Although the levels
of considered earthquakes were low in this study, the approach can be applied to large-scale
and nonlinear models to diagnose damage as the result of material nonlinearity.

The objective of this study was to examine the application of the time domain output-
only Bayesian FE model updating for damage identification and bridge digital twinning
through a real-world case study. Further studies of this type with various structural
systems (simple and complex, experimental, and real-world) and under various loading
conditions are needed to better understand the limitation and capabilities of the Bayesian
model updating approach as a technology solution for structural health monitoring and
damage diagnosis.
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