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Abstract— Locating gradient sources and tracking them over
time has important applications to environmental monitoring
and studies of the ecosystem. We present an approach, inspired
by bacterial chemotaxis, for robots to navigate to sources using
gradient measurements and a simple actuation strategy (biasing
a random walk). Extensive simulations show the efficacy of
the approach in varied conditions including multiple sources,
dissipative sources, and noisy sensors and actuators. We also
show how such an approach could be used for boundary finding.
We validate our approach by testing it on a small robot (the
robomote) in a phototaxis experiment. A comparison of our
approach with gradient descent shows that while gradient descent
is faster, out approach is better suited for boundary coverage,
and performs better in the presence of multiple and dissipative
sources.

I. INTRODUCTION

Several phenomena in nature induce gradients in their en-
vironment. For example, a fire induces a temperature gradient
in its vicinity, an oil spill induces a concentration gradient
of oil in the water etc. Detection, seeking and tracking such
phenomena in-situ has received some attention recently [1],
[2], [3]. The ability to autonomously detect, locate and track
such phenomena (the source of the induced gradient) would
give scientists a tool to monitor and study ecosystems at an
unprecedented level of detail. Typical gradients of interest to
scientists studying the ecosystem include temperature, light,
salinity, mineral concentration, pH, etc. These problems are
difficult because of the time-varying nature of the source,
the dynamics of the environment, a multiplicity of (possibly
interacting) sources, and finally, a paucity of sensing.

Motivated by these applications and challenges, we are
interested in the development of simple, robust, energy effi-
cient and cost-effective techniques which could be used in-situ
to locate source phenomena of interest to scientists. We are
motivated by a particular example from marine biology; the
detection of a mineral pollutant in seawater. In this paper we
focus on a 2D version of this problem, and propose a simple
strategy for a mobile robot (or multiple robots) to navigate
their way to such a source using gradient information and
extremely rudimentary actuation. Our strategy is inspired by
studies of taxis in bacteria.

Previous approaches include spiral surge [1], gradient
seek [4], sensor arrays [5], swarm intelligence [6]. These
approaches are good for application in nearly static environ-
ments. Most of these approaches have difficulties tracking

weaker and smaller sources, and sources which have a lot
of variation. The gradient seeking strategies are susceptible to
local minima and plateaus. In the presence of multiple sources
they are able to locate the closest source since they enact a
greedy solution.

Another related area is the detection of dynamically chang-
ing gradient source boundaries in-situ in a distributed man-
ner [4] , [5], [7]. This process involves locating the periphery
of the source, a small region which has the sharpest gradient
in a region close to the source. A brute force technique is
to compute the gradient at every point in the search space,
but such a technique is not efficient in terms of energy, time
requirements and the amount of processing involved.

In this paper, we present a novel technique based on biased
random walk [8] for the detection, seeking and tracking of
gradient inducing source phenomena. Our approach is inspired
by the way bacteria detect, locate and track nutrient sources in
nature [9]. We begin by a discussion of the characteristics of
bacterial motion and how it can be adapted and applied to the
problem at hand. In section III we describe the simulation
platform we created to evaluate our strategy along with a
discussion of the results obtained from simulations. Section IV
presents an implementation of our approach on the Robomote
robot platform and a discussion of the results obtained and
their applicability. In section V, we present a comparison
between the behavior of a gradient search strategy and the
behavior of a biased random walk model. This is followed by
our conclusions and a brief comment on future work we plan
to pursue.

II. BACTERIAL MOTION

A. Biased Random Walk as a result of Chemotaxis

Nature presents us with a wide variety of simple biological
models which have evolved and refined over time. These
models help in sustaining the flora and fauna on our planet and
maintaining the ecological balance in diverse habitats. Bacte-
rial motion [9] and its response to the presence of chemical
concentration gradients called chemotaxis (or chemokinesis)
have been well studied [10], [11], [12], [13]. The response to
a chemical stimulus in their vicinity helps bacteria find sources
of nutrients which are essential for their survival. Chemotaxis
is also observed in various other species of animals for varied
purposes including colony formation, predator avoidance and
breeding ground location [9].



Bacteria sense chemical concentration using receptors. They
are able to detect temporal and spatial changes in chemical
concentration based on the fraction of receptors occupied at
successive time intervals. An increase in the fraction of occu-
pied receptors is called a positive gradient while a decrease
is called a negative gradient. A chemical whose concentration
gradient attracts the bacterial cells is called a chemo-attractant.

Bacteria produce motion by the movement of their flagel-
lum [14]. A counter clockwise flagellar rotation results in a
smooth swim motion in a straight line in a particular direction
(we call this a run) while a clockwise rotation of the flagellum
causes the bacterium to randomly reorient itself in a new
direction (we call this a tumble), which is the direction for
the next run. Motion alternates between these two stages (run
and tumble).

The duration of the run (which is related to the mean
free path) is dependent on the concentration gradient that is
sensed in the vicinity of the bacterial cell. In the absence of
a gradient, the run length is independent of the direction of
motion and the bacterium executes a random walk. In the
presence of a positive gradient, the frequency of tumbling is
reduced resulting in a longer run length [12]. The presence of
a negative gradient does not have any effect on the tumbling
frequency. This change of tumbling frequency in response to
concentration gradient results in chemotaxis, allowing bacteria
to move towards sources of nutrients. Informally, chemotaxis
is a biased random walk.

B. Analysis of Bacterial Motion

A number of mathematical models have been proposed
to model bacterial chemotaxis [8], [15], [16] [17], [18]. In
this section we briefly review the reaction-diffusion model
proposed by Keller and Segel [16].

Jchemotaxis = χ(c)n∇(c) (1)

( 1) models the flux up(or down) the gradient of chemical
concentration, with the flux increasing with n. χ(c) is the
chemotactic sensitivity and represents the specific form of cells
response to chemical signals.

Adding the diffusive term to the model, we get the cell
kinetics model as

δn

δt
= ∇[Dn ∇(n) − χ(c) n ∇(c)] + f(n) (2)

δc

δt
= ∇[Dc ∇(c) + g(n, c) (3)

where Dn is the diffusion coefficient, c(x,t) is the density of
the nutrients in the x direction, f(n) represents the cell division
and death and g(n,c) represents the production and degradation
of the chemical. Keller and Segel used g(n,c)= an − rc and
f(n)=0 with a,r,Dn,Dc,and χ as constant.( 2) is also known
as the parabolic chemotactic equation. The first term models
the random diffusive behavior of the bacterial motion while
the second term describes the biased random walk motion in
response to the chemical gradient.

Ignoring the cell growth term, f(n) = 0, we get

δn

δt
= ∇[Dn ∇(n) − χ(c) n ∇(c)] (4)

As can be seen from ( 4) switching the direction of chemical
gradient can produce both forward and reverse movement of
the cells. Solving ( 3) and ( 4) gives the velocity of the bacterial
band as

ν = nk/acinitial (5)

where cinitial is the initial nutrient concentration, n is the
number of bacteria in the band and a is the cross section area
of the band.

C. A Robotic Implementation

Based on the description of the bacterial motion and its
mathematical analysis presented in the last two subsections, it
is clear that a strategy based on biased random walk could be
used to locate and track gradient sources. This biologically-
inspired algorithm can be implemented on a group of robots
with simple sensing and actuation. The strategy of such a
bacteria-like robot can be summarized as ”sense and move”.
A robotic node executing a biased random walk has very little
requirements in terms of memory since only the last sensor
reading needs to be stored. The processing requirements are
minimal since the only processing required is comparison
between successive sensor readings (gradient computation).
Only a minimal amount of motion control is required to hold
the heading of the robot in a particular direction for a particular
duration of time (depending on bias levels).

III. SIMULATION EXPERIMENTS

A. Methodology

To validate our ideas and explore the possible implications
of a bacterial motion-based approach for localization and
tracking of gradient sources and gradient boundaries, we
designed a simulation platform.

We created a model of the world as a uniform two di-
mensional grid of dimension 2000 * 2000 Units(Fig. 1). We
choose this size for our model because this would help us
generate areas of very low/negligible concentrations within
the grid. We initialize one or more sources of gradient(S i)
at randomly chosen positions in the grid and compute the
gradient generated by these sources at the other grid points
following an inverse square law distribution given by

Intensity(x, y) =
1
K

m∑

i=0

Qi

r2
i

(6)

which gives the concentration that can be sensed at a point
(x, y) on the grid in the presence of m sources of gradient,
Qi is the intensity of the source Si, K is a constant of
proportionality and ri is the distance between the grid point
(x, y) and center of source Si.

All our simulations consisted of a set of 100 robots. These
were either deployed randomly in the grid (using the values
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SIMULATION GRID SETUP

derived from a uniform distribution over the grid region) or
based on the requirements of the simulation. At each time
step each of these robots could either move to one of its 8
neighboring grid points or change its direction of motion or
stay at its position if it has reached the gradient source.

We simulated a biased random walk with a Mean Free Path
(MFP) of 10 units, i.e., under the absence of a concentration
gradient, each robot would move 10 units of distance along
the grid in a particular direction before tumbling and chang-
ing its direction of motion randomly. However, if the robot
senses a positive change in gradient, it decreases its tumbling
frequency thus increasing the run-length resulting in a biased
random walk (Fig. 2). The typical bias value we used in our
simulations is 10% of the MFP which is similar to the bias
values observed in nature for bacterial motion [9].

We also carried out simulations where the intensity of the
source varied over time. The change in intensity could be
attributed to a variety of reasons such as inherent nature of

the source to dissipate its energy over time, occlusion of the
source, consumption of the source (for ex., a nutrient source
being consumed by bacteria over time). We used the following
model:

q = (q0 − kiNit) + (q0e
−k2t) (7)

where k1 and k2 are constants whose values are set based on
the type of source we are trying to model, N i is the number of
robots at source Si depleting its energy at time t. The first term
models the decrease in source intensity due to consumption by
the robots near it while the second term models the decrease
in intensity due to source depletion or dissipation over time.

B. Simulation Results

We carried out several simulations modeling the biased
random walk strategy under a wide variety of simulation
conditions. In our trials, once a robot reaches a particular
gradient source, it stays there as long as the source remains
sufficiently active (i.e., intensity remains above some threshold
value). We also designed a set of metrics which would help
understand and evaluate our approach. The results we present
in this section are averages over 104 trials over the whole
group for various simulation setup conditions.

Fig. 3 presents results of simulations performed to study
the effect of bias levels on the speed of convergence of the
robots to the source. Fig. 4 shows results from simulations
where we begin by initializing a single gradient source at the
start of simulation(t = 0s). A second source is introduced at t
= 5000s. Both sources are modeled to dissipate over time at a
rate proportional to the number of robots which have reached
them.

Our first metric is the average displacement of the robot
from its initial position. We monitor this over time as the
simulations proceed.

We used a set of different robot and source initialization
techniques and observed the following results. As can be
seen in Fig. 3, even when no bias is present, the robots do
move and explore a lot of space. The presence of a bias
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THE EFFECTS OF VARYING BIAS. THE LARGER THE BIAS, THE QUICKER THE CONVERGENCE. THE DATA ARE VISUALIZED USING THREE METRICS: A.

ROBOT DISPLACEMENT VS. TIME (LEFT), B. DISTANCE BETWEEN ROBOT AND SOURCE VS. TIME (MIDDLE), AND C. PERCENTAGE OF ROBOTS AT SOURCE

VS. TIME (RIGHT).
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MULTIPLE SOURCES. A.ROBOT DISPLACEMENT VS. TIME, B.DISTANCE FROM SOURCE VS. TIME, C.PERCENTAGE OF ROBOTS AT SOURCE 1 & 2, AND D.

INTENSITY OF SOURCE 1 & 2

speeds up the movement of the robots into regions of interest.
The exploration phenomena was observed to be independent
of initialization conditions as long as the other simulation
parameters (bias etc.) remained the same.

The second metric is the average distance of the robot from
the source over time. This reflects how an average robot moves
with respect to a gradient source over time. We studied this
parameter also under a wide range of simulation models (dif-
ferent types of gradient setups, different initialization strategies
for robots and sources of gradients, different types of gradient
sources (decaying vs. constant intensity)). Some of the results
can be seen in Fig. 3(b), 4(b). As expected, in the absence of a
bias, the robots wander around without showing any particular
progress towards the source. An introduction of a very small
amount of bias of the order of 10% results in a rapid speed
up of movement of robots towards the source of the gradient.

Another question that comes up to mind is how well did the
robots do in terms of reaching an individual gradient source,
how fast and how many of them reached which source? This
gives us a third metric to evaluate our model wherein we
monitor the average number of robots reaching a particular
source over time. This metric is more meaningful when plotted

alongside the source intensity variations. A look at a few
results Fig. 3(c), 4(c) demonstrates how the robots reach
the source as the simulation proceeds in time. They also
demonstrate how the appearance of a second source attracts
some of the robots thereby pulling them away from the first
source. As the intensity of one of the sources starts decreasing,
some of the robots start moving away from it and once it
disappears, all the robots which were near it start executing a
random walk again in search of other sources and move away
from it.

From the above results we can come up with a measure of
how much bias is ideal for the type of system we are trying
to model. Higher bias values speed up the movement towards
the source but might not be good for sources which vary in
intensity or are mobile. Lower bias values result in slower
response time to reach the source but are more effective in
tracking weaker, mobile sources whose intensity varies over
time. One can thus trade bias for speed vs. efficiency.

The results from the multiple source experiment (Fig. 4) also
demonstrate that this technique does not show any preferential
behavior of moving towards a particular source based on the
time of appearance of the source. We also carried out a set
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EFFECT OF INTRODUCTION OF ERRORS IN THE DECISION FUNCTION

of simulations simulating a number of sources with different
intensities and the results were as we expected. All sources
were tracked though the weaker sources got a comparatively
smaller fraction of the robots in case the gradients they set
up were very small, but on an average all sources were
well covered. Another set of simulations were performed
to study how the performance of the algorithm varied in
presence of linear, cubic and exponential gradients. The results
were almost similar since the algorithm inherently works by
measuring the sign of difference between successive samples
rather than absolute magnitudes.

After executing a run, the robot essentially takes a new
sensor reading and compares it with the previous sensor
reading taken before it started the current run. The decision
to tumble or continue is then based on if the difference was
negative or positive and does not depend on the absolute
sensor readings. This makes the system tolerant to static sensor
errors. We carried out another set of simulations introducing
a Gaussian error in the decision function itself. Fig. 5 present
the results. Even in the presence of 40% error, the system still
converges to the gradient source. This error models the non-
static sensor errors and actuation errors (i.e., motion of the
robot might not be the same as the command signal applied).

We also carried out a set of simulations to understand how
well the robots spread around a gradient source i.e., do the
robots reach a gradient source all at the same place? We
modeled a circular source with a diameter of 45 units and
studied the effect of deploying the robots randomly, uniformly
and at a single location in the grid at the start of the simulation.
Fig. 6 presents the result of initializing all the robots at a
single location at one corner of the grid. As can be seen,
the robots approach the source from all directions. Similar
results were obtained from random and uniform initial robot
deployments. A point to note here is that even if all the robots
were deployed in very close vicinity of the source, some spread
along the periphery of the source was achieved. The results
from irregularly shaped sources were also in agreement with
the above observations.
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EFFECTIVENESS AT BOUNDARY DETECTION

C. Discussion

From the above results we conclude that a strategy based on
biased random-walk implemented on a group of mobile robots
can effectively track multiple dynamically changing gradient
sources at the same time. Moreover, such a set of robots
require very minimal amount of controls to be developed. The
only control element is to change the length of the run in
response to the sensed gradient change.

The source boundary detection results also highlight the
suitability of our approach to a set of applications where the
source dimensions are comparatively large and we need to
track its complete boundary (e.g. the boundary of an underwa-
ter plume or the boundary of an oil spill). For such applications
the algorithm should be able to achieve a sufficient spread of
robots along the entire boundary.

IV. EXPERIMENTS WITH THE ROBOMOTE ROBOT

Validation experiments were carried out on the Robomote
(Fig. 7(a)) test bed developed at the Robotic Embedded
Systems Lab at the University of Southern California. The ca-
pabilities of this small matchbox sized two wheeled robomote
include moving along a straight line for a specified duration
and/or distance and the ability to turn in place by a specified
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ROBOT BEHAVIOR IN RESPONSE TO (A) SINGLE AND (B) MULTIPLE GRADIENT SOURCES

angle. For a more detailed description of the platform the
reader is referred to [19].

We used Mica-I motes developed by Crossbow to give
control commands to the Robomote using TinyOS [20]. A
light gradient was generated using a light source placed at one
end of the test-bed. A basic sensor board with a photo sensor
was mounted on the Robomote(Fig. 7(b)) to sense the light
gradient. The experimental setup can be seen in Fig. 7(c). The
position of the robomote on the test bed was tracked using an
overhead camera which captured frames and passed these to
a tracker [21] for data analysis and storage. Color blobs were
mounted on top of the Robomote to help in the detection of
Robomote location on the test bed.

We used the two basic components move and rotate written
in TinyOS for controlling the robomote to carry out the biased
random walk. We positioned the robomote at a distance d
(d=40cm, 80cm, 120cm) from the source. Note that by fixing
d, the heading of the robomote still was a random variable and
could be towards or away from the source. Also we considered
a small circle of 5cm. around the source which we considered
as the source radius. We were interested in measuring if the
robomote reaches the source and if so in how much time? The
speed of the robomote was set at 2cm/s with a turn time of
approximately the same duration.

Once switched on at a distance d, the robomote starts off by
taking a sample using the photo sensor(S i). It starts moving
along a straight line in the direction of its current heading for
a distance and/or duration as specified in the random walk

parameter MFP. At this point it takes another photo sensor
reading and compares it with the previous reading from the
photo sensor. If it senses no change or a negative change in
gradient, it randomly chooses a new heading direction (θ i)
and rotates in place to orient to that heading. If a positive
change in gradient was sensed, it continues its motion for an
additional distance specified by its bias value before randomly
computing the new heading and making a turn (’tumbling’).
In either case the procedure is repeated by moving along a
straight line in the direction of its heading for a distance
and/or duration as specified in the random walk parameter
MFP, followed by another decision based on the photo sensor
reading. The experiment terminates when the robot reaches
the source.

Each of the d values constituted a circular arc on the table
of radius d units from the center of the light source. We
repeated the experiment 75 times for each of the d values with
random starting orientations and starting locations on the arc
and averaged our position readings between the gathered data
for our analysis. We believe this gave us a good enough set to
evaluate the effectiveness of the approach. The graphs for the
metrics we proposed in the previous section can be seen in
Fig. 8(a). The results from the robomote platform agree with
the results we obtained from our simulation work.

We repeated the experiment with two equal intensity sources
present at the same time at opposite corners of the test bed
and started the robomote at distances d (d = 25%,50%(center)
and 75% positions on the test bed)(Fig. 7(d)). Contrary to the
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COMPARISON OF GRADIENT DESCENT STRATEGY WITH BIASED RANDOM WALK IN PRESENCE OF A SINGLE SOURCE
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Fig. 10

COMPARISON OF GRADIENT DESCENT STRATEGY WITH BIASED RANDOM WALK IN PRESENCE OF MULTIPLE SOURCES

expectation that the robomote would have moved to the closest
source, we observed what we had expected i.e., the source with
which the robomote finally ended at was independent of the
starting orientation and location of the robomote at the start
of the experiment.

As a final test for our biased random-walk strategy, under
the same setup as previous experiment(Fig. 7(d)), we started
with only one source switched on initially at t = 0s. At t = 180s.
we switched on the second source located at the other end of
the test bed. This was followed by switching off the first source
completely at t=435s. We repeated the experiment for the
different values of d (d = 25%,50%(center) and 75% positions
on the test bed)). Again the results (Fig. 8(b)) obtained in
hardware platform were in agreement with our simulation
results.

V. COMPARISON WITH GRADIENT DESCENT STRATEGY

We are trying to locate a gradient source by essentially
following gradients. An obvious question arises: why not
just use a simple gradient descent algorithm? In this section
we compare our approach to a simple gradient search based
approach.

We begin by presenting an evaluation of the performance
of the simple gradient descent strategy in simulation. We use
the same simulation framework that we developed in section
III-A. We simulated a gradient descent strategy with a Mean

Free Path(MFP) of 10 units, i.e., under the absence of a posi-
tive concentration gradient in the current direction of motion,
the robot would move 10 units of distance along the grid in
that direction before tumbling and changing its direction of
motion randomly and then repeat the run and tumble stages.
However, if the robot senses a positive change in gradient, it
continues moving, in the direction it was moving, for another
MFP units before checking for the gradient change again.

We repeated the simulations for over a 104 trials so that the
effects of noise and effects of outliers, if any, can be filtered
out by averaging and the results could be compared against
those from the biased random walk approach. The results of
the simulation are presented in Fig. 9 along with results for
the biased random walk simulations (repeated here for easier
comparison).

The results clearly indicate that a simple gradient search
based scheme performs better than our biased random walk for
small bias values. However, as the bias levels are increased, the
two are comparable. But sources in nature seldom occur alone
and without interference from each other. Since our technique
was developed to work in real life situations, we need to
evaluate the gradient search strategy in those environments
also.

We performed another set of simulations with multiple
sources. We started the simulation with a single source at
one corner of the grid at time t=0. At time t=1500s. we



initialized a second source at the opposite corner of the
grid and tracked the performance of the gradient descent
algorithm over time. At t=10000s. we turned off the first
source completely and continued the tracking of the robots.
The results from the simulation are presented alongside the
results for biased random walk in Fig. 10. As can be seen
from the results, the gradient descent strategy works better
than the biased random walk approach as long as there is one
source. It is better in terms of number of robots which reached
the source(Fig. 10(c)) as well as the time it takes to get there.
But when we introduce a second source, the gradient descent
strategy just follows the first source and the number of robots
at the first source keeps increasing and almost none of the
robots reach the second source (Fig. 10(d)). On the other hand,
the results from the biased random walk are quite impressive.
Both the sources get a good share of the number of robots
reaching it and both can effectively be tracked at the same
time. The introduction of more sources results in some robots
tracking each one of them as long as there are some available
robots. Thus for the purpose of tracking multiple sources, our
algorithm clearly outperforms the gradient descent approach.

Our last set of simulations verify the source coverage
obtained by the gradient search algorithm. We initialized all
the robots at the same location on the grid. The gradient
descent algorithm terminated with all the robots on one quarter
of the source boundary (nearest their initial position), whereas
(as presented in the previous section), the biased random walk
approach resulted in a spread all around the source. From the
above set of results, clearly the biased random walk approach
we propose outperforms the simple gradient search strategies
for the applications we consider.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented an algorithm based on biased
random walk [8] for the detection, seeking and tracking of
gradient inducing source phenomena. Our approach is inspired
by the way bacteria detect, locate and track nutrient sources
in nature [9]. Through a wide set of simulation and exper-
imental work on robots, we demonstrated how our strategy
is well suited to varied conditions including multiple sources,
dissipative sources, and noisy sensors and actuators. We also
show how our approach could be used for boundary finding.
We validated our approach by testing it on a small robot
(the robomote) in a phototaxis experiment. A comparison of
our approach with gradient descent shows that while gradient
descent is faster, our approach is better suited for boundary
coverage, and performs better in the presence of multiple and
dissipative sources.

Our algorithm is robust in the sense that it is guaranteed to
work as long as there is a gradient. The inherent randomness
of the algorithm saves the robots from landing in a local
minimum. Since the algorithm is insensitive to inherent sensor
errors and can tolerate actuation errors, it is a good choice for
low-cost sensors. The algorithm can thus be implemented on
very simple robots, suitable eventually for deployment in large
numbers.

In the future, we will carry out surface-water experiments
for detection and tracking of one or more dissipating color
dye sources. We will also extend our algorithm to perform
distributed data fusion of the data from multiple sensors on
the robot.
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