
1

Distributed and Quantized
Online Multi-kernel Learning

Yanning Shen∗, Member, IEEE, Saeed Karimi-Bidhendi∗, Student Member, IEEE,
and Hamid Jafarkhani∗, Fellow, IEEE

Abstract—Kernel-based learning has well-documented merits
in various machine learning tasks. Most of the kernel-based
learning approaches rely on a pre-selected kernel, the choice of
which presumes task-specific prior information. In addition, most
existing frameworks assume that data are collected centrally at
batch. Such a setting may not be feasible especially for large-
scale data sets that are collected sequentially over a network. To
cope with these challenges, the present work develops an online
multi-kernel learning scheme to infer the intended nonlinear
function ‘on the fly’ from data samples that are collected
in distributed locations. To address communication efficiency
among distributed nodes, we study the effects of quantization
and develop a distributed and quantized online multiple kernel
learning algorithm. We provide regret analysis that indicates our
algorithm is capable of achieving sublinear regret. Numerical
tests on real datasets show the effectiveness of our algorithm.

Index Terms—Kernel-based learning, quantization, online op-
timization, distributed learning

I. INTRODUCTION

The need to collect a massive amount of data and gain
access to high computational power to design machine learning
algorithms is inherent in numerous applications. In many such
tasks, data is collected in a network. Typical examples include
units in an IoT system and wearable devices that collect
health statistics [1]. The increasing amount of accumulated
data in these applications calls for large memory, storage and
computational power resources that are usually not available
on a single processing unit. Furthermore, one would like to
avoid transmitting raw data to a central location to reduce
the communication energy and prolong the network lifetime,
especially in sensor networks where wireless communication
dominates the energy consumption [2, 3, 4, 5, 6, 7, 8]. Also,
other challenges like security and privacy may limit the
network’s ability to transmit the data without restrictions.

One solution to the challenges outlined above is to process
the data locally using a decentralized algorithm. One can use
on-device intelligence to process the locally collected data and
only transmit the relevant content back to a central location for
aggregating what has been learned locally. When nodes work
together collectively, each node can borrow statistical strength
from the local data available at other nodes. This requires
developing new distributed machine learning algorithms that
only need a limited processed information from each node.
The task of distributed and online learning has been well-
studied in the literature. Examples include methods that apply

∗Y. Shen, S. Karimi-Bidhendi and H. Jafarkhani are with the Dept.
of EECS and CPCC, University of California, Irvine, CA; Emails:
{yannings,skarimib,hamidj}@uci.edu

alternating direction method of multipliers (ADMM) [9, 10, 11],
algorithms based on diffusion protocols [12, 13], distributed
support vector machine (SVM) [14] and diffusion-based SVM
[15]. In [16, 17], previous linear online distributed methods
have been generalized to a non-linear setting in the sense
of kernel least mean squares. Since the inception of SVMs,
kernel methods have shown great success in numerous tasks
such as classification, regression, pattern recognition, and so
on [18, 19]. Major efforts have been devoted to scaling up
kernel methods in batch settings. Those include approaches
to approximate the kernel matrix using low-rank factorization
[20, 21, 22], as well as random feature (RF)-based approaches
[23, 24, 25].

Tailored for streaming large-scale datasets, online kernel-
based learning methods have been designed. A common
issue among traditional online kernel learners is that a set
of support vectors needs to be stored to represent the kernel-
based model; thus, when the dataset is very large, the increasing
number of support vectors leads to a notable bottleneck in
communication among nodes [26, 27]. Several budget learning
methods have been proposed to bound the number of support
vectors. Low complexity budgeted kernel learning algorithms
include support vector removal [28, 29] [30], support vector
projection [31, 32], and support vector merging [33] [34]. A
vertical federated kernel learning framework is developed in
[35, 36], where the communication cost at Iteration t is O(mt)
given m nodes. Maintaining an affordable budget, online
multi-kernel learning (OMKL) methods have been reported
for online classification [37, 38, 39] and regression [40, 41].
Recent methods use functional approximation techniques to
alleviate the communication cost. In [27], kernel functions are
approximated by mapping data into a feature space, where
linear online learning algorithms can be applied. Devoid
of the need for budget maintenance, online kernel-based
learning algorithms based on RF approximation [23] have
been developed in [27, 15, 42], but only with a single pre-
selected kernel. In [43], a consensus-based decentralized greedy
projected penalty method is presented in which function
estimation is performed in a reproducing kernel Hilbert space
with a consensus constraint; however, since each node needs
to transmit its raw local training data to its neighboring nodes
at each iteration, the communication complexity increases with
the number of nodes, connectivity of the graph, and data
dimension. A heterogeneous adaptive kernel learning method
is presented in [44] where the consensus constraint is relaxed
in favor of enabling nodes to learn distinctive features of their
data distribution; however, the communication efficiency suffers

2

from the need to transmit local raw data samples to neighboring
nodes. A consensus-based function estimation based on RF
approximation is developed in [45], where depending on the
number of random features, each node communicates a fixed
length weight vector to other nodes. To further reduce the
number of transmission rounds, a communication-censored
framework is presented in [45], where model parameters are
shared only if they differ significantly compared to their values
from previous iteration. A similar communication censored
ADMM-based algorithm is proposed in [46]. Recently, an
online multi-kernel learning method is proposed in [47] that
uses an ADMM approach to optimize each kernel function,
separately.

In this paper, we extend the centralized online multi-kernel
learning framework in [48] to a distributed and quantized
online setting, where multi-kernel learning is used for non-
linear parameter estimation in classification and regression
tasks. In particular, we consider a distributed network in which
nodes observe data generated by a non-linear model in an online
fashion. In contrast to many prior works such as [15, 43, 45],
where single-kernel learning is used, a multi-kernel learning
approach is adapted here for parametric estimation; moreover,
each node only shares its own estimated gradient of the loss
function with its neighbors. The average of the aggregated
gradients is then used to locally update the unknown parameters
at each node. Unlike previous approaches to ameliorate the
communication constraints, such as [45], where an ad-hoc
method is used to determine the relevant information to be
communicated between the nodes, we take a quantization thoery
approach and extend our algorithm so that only quantized
information in batch setting is shared between nodes. We
further establish the efficacy of our quantized online multi-
kernel learning approach through regret analysis. Evaluation
over various real datasets for classification and regression tasks
shows the superior performance of our algorithm compared to
the state-of-the-art decentralized kernel learning methods.

The organization of the paper is as follows. Section II briefly
reviews the basics of kernel-based learning, and outlines the
main notions used throughout the paper. In Section III, learning
procedures for decentralized and online multi-kernel learning is
presented and an algorithm is proposed for quantized and mini-
batch distributed setting. Regret analysis and further theoretical
results are provided in Section IV. Experimental results and
performance evaluations are presented in Section V for both
classification and regression tasks, and Section VI concludes
the paper.

II. PRELIMINARIES

Given samples {(x1, y1), . . . , (xT , yT)}Tt=1 with xt ∈ Rd
and yt ∈ R, the function approximation task is to find a function
f(·) such that yt = f(xt) + et, where et denotes noise. Let us
assume that f(·) belongs to a reproducing kernel Hilbert space
(RKHS) [50] H := {f |f(x) =

∑∞
t=1 αtκ(x,xt)}, where

κ(x,xt) : Rd × Rd → R is a kernel function that measures
the similarity between x and xt. One example for κ is the
Gaussian kernel given by κ(x,xt) = exp[−‖x− xt‖2/(2σ2)].
A reproducing kernel induces the RKHS norm ‖f‖2H :=

∑
t

∑
t′ αtαt′κ(xt,xt′). We consider the optimization problem

min
f∈H

1

T

T∑
t=1

C(f(xt), yt) + λΩ
(
‖f‖2H

)
, (1)

where depending on the application, the cost function C(·, ·) can
be selected to be, e.g., the least-squares, the logistic or the hinge
loss; Ω(·) is an increasing function; and, λ > 0 is a regulariza-
tion parameter that avoids overfitting. According to the repre-
senter theorem [15, 49, 50], the optimal solution of (1) admits
the form f̂(x) =

∑T
t=1 αtκ(x,xt) := α>k(x) where α :=

[α1, . . . , αT]>∈ RT , and k(x) := [κ(x,x1), . . . , κ(x,xT)]>.
Specifying the kernel is critical for kernel learning, since

different kernels yield function estimates with different ac-
curacy. To deal with this, combinations of kernels from a
prescribed dictionary {κp}Pp=1 can be employed in (1). Each
combination is also a kernel [49]. With H̄ denoting the RKHS
induced by κ̄ ∈ K̄, we then solve (1) with H replaced
by H̄ := H1

⊕
· · ·
⊕
HP , where {Hp}Pp=1 are the RKHSs

induced by {κp}Pp=1 [51]. Therefore, the goal now is to find
function f(x) :=

∑P
p=1 w̄pfp(x) ∈ H̄, with the weights

{w̄p := wp/
∑P
p=1 wp}Pp=1. Plugging this into (1) results in

min
{w̄p},{fp}

1

T

T∑
t=1

C

(
P∑
p=1

w̄pfp(xt), yt

)

+ λΩ

∥∥∥∥∥
P∑
p=1

w̄pfp

∥∥∥∥∥
2

H̄

 , (2a)

s. to

P∑
p=1

w̄p = 1, w̄p ≥ 0, p ∈ P, fp ∈ Hp. (2b)

Note that (2a) is biconvex if Ω is convex with respect to f .
Leveraging biconvexity, existing batch MKL schemes solve (2)
via alternating minimization, but typically such schemes are
not scalable with regard to P and T [51, 52, 53].

A. RF-based kernel learning

As in [23, 54, 25], we resort to random feature approximation
of kernel functions. We consider normalized shift-invariant
kernels that satisfy κ(xt,xt′) = κ(xt−xt′). For an absolutely
integrable κ(xt − xt′), its Fourier transform πκ(v) exists,
and due to normalization, we have κ(0) = 1. It can also
be viewed as a probability density function (pdf); hence,
κ(xt − xt′) =

∫
πκ(v)ejv

>(xt−xt′)dv := Ev

[
ejv

>(xt−xt′)
]
.

Drawing a number of independent and identically distributed
(i.i.d.) samples {vi}Di=1 from πκ(v), the mean can be approx-
imated by the sample average κ̂(xt,xt′) = z>V(xt)zV(xt′),
where

zV(x) (3)

=
1√
D

[
sin(v>1 x), . . . , sin(v>Dx), cos(v>1 x), . . . , cos(v>Dx)

]>
.

Hence, the nonlinear function that is optimal in the sense
of (1) can be approximated by

f̂RF(x) =

T∑
t=1

αtz
>
V(xt)zV(x) := θ>zV(x), (4)

3

where θ> :=
∑T
τ=1 ατz

>
V(xτ) is the new weight vector of

size 2D. As a result, the loss function is

L
(
f(xt)

)
:=C(f(xt), yt) + λΩ

(
‖f‖2H

)
=C
(
θ>zV(xt), yt

)
+ λΩ

(
‖θ‖2

)
. (5)

Resorting to RF approximation, given xt, for each p, an
RF vector zp(xt) can be generated from pdf πκp

(v) (cf. (3)),
where zp(xt) := zVp

(xt). Hence, for each p and slot t

f̂RF
p,t (xt) = θ>p,tzp(xt), (6)

and θp,t can be updated via

θp,t+1 = θp,t − η∇L(θ>p,tzp(xt), yt), (7)

where η is the learning rate, and ∇L(θ>t zp(xt), yt) is the
gradient at θ = θp,t. While the un-normalized weights can be
updated using exponentiated gradient descent as

wp,t+1 = wp,t exp
(
−ηLt

(
f̂RF
p,t (xt)

))
, (8)

where η ∈ (0, 1) is a constant stepsize. The normalized weights
are obtained as w̄p,t := wp,t/

∑P
p=1 wp,t using {wp,t} in (8)

[54].

III. DISTRIBUTED AND QUANTIZED OMKL

So far, it has been assumed that the data and the gradient
information are available perfectly and without any error or
loss at one central location. However, it is not practical to
transmit the massive amount of real-world data to one central
location and the transmitted information may not be perfect.
Therefore, there is a need for scalable distributed algorithms
that can process data in distributed nodes and fuse the learning
result in an efficient manner. Specifically, suppose there exist
J nodes, where the j th node collects data points {xjt , y

j
t }

over time. Note that in the present work, we mainly focus
on the case where nodes in the network can communicate
and exchange information at each time, while only data are
collected at different locations. In this scenario, the online
function learning problem can be solved via

min
{w̄j

p},{fp}

1

JT

J∑
j=1

T∑
t=1

C

(
P∑
p=1

w̄jpfp(x
j
t), y

j
t

)

+ λΩ

∥∥∥∥∥
P∑
p=1

w̄jpfp

∥∥∥∥∥
2

H̄

 , (9a)

s. to

P∑
p=1

w̄jp = 1, w̄jp ≥ 0, p ∈ P (9b)

fp ∈ Hp, p ∈ P. (9c)

In the following sections, we explore how to solve (9) in an
efficient and distributed fashion.

Figure 1: A network with J = 4 nodes where θjp,t denotes
the local parameter for the p-th kernel at node j and time slot
t.

A. Distributed OMKL

Suppose data samples are collected by J nodes and the nodes
communicate with each other point-to-point. In particular, our
distributed network can be represented by a complete graph
with J vertices where each vertex corresponds to one node
and each edge symbolizes the point-to-point communication
between two nodes, as depicted in Figure 1. Specifically,
each node, say j ∈ {1, · · · , J}, observes local data samples
(xj,t, yj,t) and is associated with local parameters θjp,t corre-
sponding to the p−th kernel at node j and time slot t. An edge
(j1, j2) in the network is defined as the connection between
nodes j1 and j2 in the network to represent the point-to-point
communication between nodes j1 and j2. In addition, every
node stores a copy of the current values of the model variables.
In each iteration, every node obtains local updates for θp
and communicates these updates to all peers. Then, every
node aggregates the received updates, locally, to generate a
global model. Specifically, upon acquiring each data sample,
the distributed online RF-based OMKL is realized by

θjp,t+1 =θjp,t −
η

J

J∑
j=1

∇L(θ>p,tzp(x
j
t), y

j
t)

:=θjp,t − η∇L̄t(θp,t), (10)

where the second equality holds because of the linearity of the
gradient and L̄t(θp,t) := − η

J

∑J
j=1 L(θ>p,tzp(x

j
t), y

j
t), where

θp,t := {θjp,t}j=1:J . Note that the updates in (10) automatically
results in θjp,t+1 = θp,t+1, ∀j. Meanwhile, the combining
weights can be updated via

wjp,t+1 =wjp,t exp
(
−ηL̄t (θp,t)

)
(11)

Similarly, the update in (11) naturally leads to wjp,t+1 =
wp,t+1, ∀j. Moreover, instead of communicating upon ac-
quiring each data sample, every node can communicate the
variables and aggregate the global model only after observing
B data samples. Specifically, upon acquiring B data samples,
the distributed mini-batch OMKL can be realized by

θjp,t+1 =θjp,t −
η

JB

J∑
j=1

B∑
b=1

∇L((θjp,t)
>zp(x

j,b
t), yj,bt), (12)

where again the second equality holds due to the linearity of the
gradient. Meanwhile, the combining weights can be updated

4

via

wjp,t+1 =wjp,t exp

− η

JB

J∑
j=1

B∑
b=1

Lt
(
f̂RF
p,t (xj,bt)

) . (13)

Obviously, choosing B = 1 results in the previous case of
communicating and updating after acquiring every sample data.

B. Quantized and distributed OMKL

In practice, it is often infeasible to send real-valued infor-
mation among distributed nodes. Hence, the information needs
to be quantized first before transmission. Let us consider a
parameterizable lossy-compression scheme for gradient vectors
[55]. We define the scalar quantization function QM (gi), that
quantizes the ith element of g by

QM (gi) = ‖g‖2 sign(gi) εi(g,M), (14)

where M denotes the number of quantization levels, and
εi(g,M) is a random variable. Letting 0 ≤ m < M be an in-
teger that characterizes the quantization interval corresponding
to |gi|/‖g‖2, if g 6= 0, εi(g,M) is defined as

εi(g,M) =

{
m/M with probability 1− M |gi|

‖g‖2 +m

(m+ 1)/M otherwise
.

(15)

Then, g̃ := QM (g) denotes the quantized version of the vector
g when (14) is applied to every entry of g. Incorporating the
above quantization scheme, the θjp,t can be updated via

θjp,t+1 = θjp,t −
η

J

J∑
j=1

∇̃L(θ>p,tzp(x
j
t), y

j
t), (16)

while the combining weights can be updated via

wjp,t+1 = wjp,t exp

− η
J

J∑
j=1

L̃t
(
f̂RF
p,t (xjt)

) . (17)

Hence, the distributed and quantized OMKL can be realized
as summarized in Algorithm 1.

C. Communication efficiency

In the peer-to-peer communication protocol considered in
this work, each node uses a single broadcast to share its local
gradient function; hence, J broadcasts are required, i.e. one
for each node, per time slot. In a fusion-based communication
protocol, where nodes send their local gradients to a fusion
center and the fusion center transmits the aggregated gradient
back to all nodes, a total number of J+1 broadcasts is needed
per time slot. Therefore, the peer-to-peer method is suitable for
small local networks where nodes can communicate directly.
However, in large networks, where nodes are far from each
other, the fusion-based protocol is favorable since the fusion
center is equipped with more transmission power and can
act as a relay node to make these communications feasible.
For a concrete analysis of the communication efficiency, we
study the number of bits required per broadcast since the total

Algorithm 1 Distribute and Quantized OMKL

1: Input: Kernels κp, p = 1, . . . , P , step size η > 0, and
number of random features D.

2: Initialization: θ1 = 0.
3: for t = 1, 2, . . . , T do
4: for j = 1, 2, . . . , J node do
5: Receive a streaming datum xjt .
6: Construct zp(x

j
t) via (3) using κp for p = 1, . . . , P .

7: Predict f̂RF
t (xjt) :=

∑P
p=1 w̄p,tf̂

RF
p,t (xjt) with

f̂RF
p,t (xjt) in (6).

8: Observe loss function Lt, incur Ljt (f̂RF
t (xjt)).

9: for p = 1, . . . , P do
10: Obtain loss L(θ>p,tzp(x

j
t), yt) or Lt(f̂RF

p,t (xjt)).
11: Broadcast and obtain from other nodes
L̃t(f̂RF

p,t (xjt)) and ∇̃Lt(f̂RF
p,t (xjt))

12: Update θjp,t+1 via (16).
13: Update wjp,t+1 via (17).
14: end for
15: end for
16: end for

number of broadcasts per time slot depends on the selected
communication protocol.

Instead of communicating the raw data, our distributed and
quantized OMKL algorithm requires nodes to share a gradient
vector of fixed length due to RF approximation of kernel
functions. Let P be the number of kernels and consider D
i.i.d. samples per kernel as in Eq. (3). If M is the number
of quantization levels, then the total number of bits that each
node communicates per iteration is:

bits/node/iteration = 2D × P × log2(M). (18)

For a 32−bit CPU architecture and a d−dimensional raw data,
32d bits are required for each node per iteration. Therefore,
communication resources are saved as long as we have:

32d > 2D × P × log2(M). (19)

A similar inequality can be written for a 64−bit hardware. As
we will see in Section V, our quantized OMKL algorithm leads
to communication efficiency in many applications, especially
for high-dimensional data, where the communication bottleneck
is more prominent.

IV. REGRET ANALYSIS

In this section, we study the regret analysis of the proposed
quantized and distributed online MKL algorithm. To analyze
the performance, we assume that the following conditions are
satisfied.
(as1) Per slot t, the loss function L(θ>zV(xt), yt) in (5) is
convex w.r.t. θ.
(as2) For θ in a bounded set Θ with ‖θ‖ ≤ Cθ, the
loss is bounded; that is, L(θ>zV(xt), yt) ∈ [−C,C] and
has bounded gradient, such that ‖∇L(θ>zV(xt), yt)‖ ≤ L.
Without loss of generality and for the notational convenience,
we assume C = 1, i.e., the loss function is bounded in [−1, 1].

5

Convexity of the loss under (as1) is satisfied by the
popular loss functions including the square loss and the
hinge loss. In addition, (as2) ensures that the losses and
their gradients are bounded, meaning they are L-Lipschitz
continuous. While boundedness of the losses commonly holds
since ‖θ‖ is bounded, Lipschitz continuity is also not restrictive.
Considering kernel-based regression as an example, the gradient
is (θ>zV(xt) − yt)zV(xt) + λθ. Since the loss is bounded,
e.g., ‖θ>zV(xt)− yt‖ ≤ 1, and the RF vector in (3) can be
bounded as ‖zV(xt)‖ ≤ 1, the constant is L := 1+λCθ using
the Cauchy-Schwartz inequality.

In contrast to the centralized regret analysis, we define the
regret in the distributed setting as

Regds
A (T) := E

 T∑
t=1

J∑
j=1

Lt(f̂t(xjt))

− T∑
t=1

J∑
j=1

Lt(f̂∗p (xjt)),

(20)

where

p = arg min
{q∈1,··· ,P}

T∑
t=1

J∑
j=1

Lt(f̂∗q (xjt)), (21)

with f̂∗q (·) := (θ∗q)
>zq(·) = arg min

f∈Fq

T∑
t=1

J∑
j=1

Lt(f(xjt)).

Fq := {f̂q|f̂q(x) = θ>zq(x), ∀θ ∈ R2D}

We first establish the regret of the distributed and online
approach in the following lemma.

Lemma 1: Let us assume (as1), (as2), the sequences {f̂p,t}
and {w̄p,t} generated by the distributed OMKL satisfy

T∑
t=1

J∑
j=1

Lt
(P∑
p=1

w̄p,tf̂p,t(x
j
t)

)
−

T∑
t=1

J∑
j=1

Lt
(
f̂∗p (xjt)

)
≤J lnP

η
+
J‖θ∗p‖2

2η
+
ηJL2T

2
+ ηJT, (22)

where θ∗p is associated with the best RF function approximant
f̂∗p (x) =

(
θ∗p
)>

zp(x).
Proof: See Appendix A.

Using Lemma 1 as a step stone, the performance of the
distributed and quantized online function learning approach
can be bounded as follows.

Theorem 1: Let us assume (as1), (as2), the sequences
{f̂p,t} and {w̄jp,t} generated by the quantized and distributed
OMKL satisfy

Regds(T)

=E
[T∑
t=1

J∑
j=1

Lt
(P∑
p=1

w̄jp,tf̂p,t(x
j
t)

)]
−

T∑
t=1

J∑
j=1

Lt
(
f̂∗p (xjt)

)
≤J lnP

η
+
J‖θ∗p‖2

2η
+
ηJL2T

2
+
ηJσ2

LT

2
+ ηJT, (23)

where σ2
L = min

(
2D
M2 ,

√
2D
M

)
L2.

Proof: See Appendix B.

It can be readily established from (23) that the novel
quantized and distributed online multi kernel learning approach
can achieve sublinear regret if η = 1/O(

√
T).

Remark: Note that the regret bound is of order O(lnP), which
means that the regret bound increases with the increase of
P . However, note that there is a difference between tighter
regret bounds and better performance. Specifically, if P is
smaller, then the regret incurred by the online learner is smaller
compared with the best batch learner with the same P . While
as P increases, the performance of the best batch learner also
improves. Hence, the performance of the online learner is still
likely to improve even though the regret bounds is looser. In
addition, the randomness in our regret analysis comes from
the randomness in the quantization scheme in (14), where the
term εi is a random variable defined in (15), see Appendix for
more detailed proof.

V. EXPERIMENTS

We evaluate our distributed OMKL algorithm against our
implementation of three state-of-the-art algorithms, recently
proposed in the literature, i.e., Random Fourier Features
Distributed Online Kernel-based Learning (RFF-DOKL) [15],
Greedy Projected Penalty Method (GPPM) [43], and an
extension of the batch random feature alternating direction
method of multipliers (RF-ADMM) algorithm [45] to the online
setting, where the local updates per time slot t are based on
the local data at time t. The RFF-DOKL algorithm is a single-
kernel online learning method that uses RF approximation to
resort to parametric estimation and circumvent the curse of
dimensionality. In each iteration, neighboring nodes transmit
their local estimated parameters to each other; then, each node
uses a weighted sum of the received local parameters according
to the Metropolis rule to update its parameters via gradient
descent. The RF-ADMM algorithm is similar to the RFF-
DOKL in the sense that it is also a single-kernel method that
uses RF approximation to make the method scalable; however,
instead of a gradient-based approach, the alternating direction
method of multipliers is used to update the parameters at
each iteration. The GPPM algorithm is also a single-kernel
method; however, instead of using RF approximation to avoid
the curse of dimensionality, the kernel orthogonal matching
pursuit method is used to keep only relevant training samples
for model prediction. In what follows, we compare these
methods against our distributed OMKL algorithm which is a
multi-kernel method that uses RF approximation for parametric
estimation, and a gradient descent approach to update the model
parameters. Experiments are carried out for both classification
and regression tasks, as outlined below.

A. Classification

Simulations for the classification task are performed on these
datasets: (i) Activity (n = 7352, d = 30); (ii) Adult (n =
32562, d = 123); (iii) Banana (n = 5300, d = 2); (iv) Credit-
Card (n = 30000, d = 23); (v) Device (n = 3583, d = 60);
(vi) EEG (n = 14980, d = 14); (vii) MNIST (n = 70000, d =
784); and (viii) Spam-Based (n = 4601, d = 57). The Activity

6

dataset contains samples gathered from a group of volunteers
wearing a smartphone to monitor their activity, and the binary
response variable represents the status of the volunteer as
walking or not walking [56]. The Adult dataset uses the census
data to predict whether a person makes over $50, 000/yr. The
Banana dataset consists of two banana shaped clusters, and
is obtained from Kaggle. The Credit-Card dataset employs a
binary variable, i.e., default or non-default payment methods,
as the response variable based on credit history etc. of clients
[57]. The Device dataset consists of electricity readings over
15 minutes intervals from different households sampled within
a month, and the binary response variable represents whether
the electronic device used at a certain interval is a kettle or
dishwasher [58]. The EEG dataset contains a continuous EEG
measurement with the Emotiv EEG Neuroheadset where the
eye state was detected via a camera during the measurement,
and the binary response variable represents the state of the eye
as either open or closed. The MNIST dataset contains images
of handwritten digits for which we classified the digit 8 versus
others [59]. The Spam-Based dataset uses attributes such as
the number of consecutive capital letters and frequency usage
of certain words to classify emails as Spam or Non-Spam. The
Adult, Credit-Card and Spam-Based datasets are obtained from
the UCI machine learning repository [60].

The network consists of J = 20 nodes that communicate
with each other point-to-point, and data arrives at each
node sequentially. All methods use the Gaussian kernel, i.e.,
κ(xt,x

′
t) = exp

[
−‖xt − x′t‖2/2σ2

]
, and the parameter σ

is fined-tuned via grid-search for each method and dataset,
separately. The parameter σ for the RF-ADMM algorithm is
set to 1 for all datasets, except for the Banana dataset for
which σ = 0.6 is used. The GPPM algorithm uses σ = 1 for
all datasets. The parameter σ in the RFF-DOKL algorithm
is set to 1, 4, 0.6, 1, 1, 1, 5, 2 for the Activity, Adult,
Banana, Credit-Card, Device, EEG, MNIST, and Spam-Based
datasets, respectively. The distributed OMKL algorithm uses
three Gaussian kernels and their variances are optimized for
each dataset. The value of σ for these three kernels is provided
in Table IV. The regularization parameter is set to λ = 10−3 for
all algorithms. The number of features for random feature (RF)
approximation in distributed OMKL, RF-ADMM and RFF-
DOKL algorithms are set to D = 50. For each method and
dataset, z−normalization or [0, 1]−normalization is applied
only if it results in improvement and the original range of
the data leads to instability and divergence. The presented
distributed OMKL algorithm uses the kernel logistic regression
(KLR) loss function for classification. A similar loss function
is considered in [43] for the GPPM algorithm. Since the
classification task is not addressed in [45], we use the KLR
loss function for the RF-ADMM algorithm. Hinge loss is
considered in [15] for the RFF-DOKL algorithm. The learning
rate is optimized for each method and dataset, separately, either
as O(1/t) or O(1/

√
t). Since RF-ADMM, RFF-DOKL and our

proposed distributed OMKL algorithms are RF-based methods
and inherently stochastic, we performed the simulations for
ten different sets of i.i.d. random features, and reported the
mean and standard deviation of the resulting misclassification

rate. However, the GPPM algorithm is deterministic and only
performed once.

The misclassification rate and run time of all algorithms
are summarized in Tables I and II, respectively. As shown in
Table I, our method outperforms other algorithms in five out
of eight datasets in terms of the predictive accuracy. Although
our distributed online multi-kernel learning algorithm leads
to a better performance compare to other methods, it does
not sacrifice the computational complexity in favor of better
predictive accuracy. As shown in Table II, our method has lower
running time compared to other algorithms in all datasets.
Both GPPM and RF-ADMM algorithms perform poorly in
terms of computational complexity. In order to avoid the
memory requirement to grow linearly with time, the GPPM
algorithm applies the destructive KOMP procedure at each time
step, which makes the algorithm too slow for many practical
applications. The RF-ADMM algorithm, equipped with the
KLR loss function, solves a minimization task for which a
close form solution does not exist. Since a gradient descent
method needs to be applied at each time step to numerically
solve this optimization problem, the algorithm suffers from high
computational complexity. For a fixed exemplary set of random
features, Figure 2 shows the evolution of misclassification rate
versus time for the four algorithms considered in the paper.

Next, we perform simulations for distributed mini-batch
OMKL and distributed quantized OMKL algorithms. The
parameter B in mini-batch OMKL is set to B = 5 while all
other parameters are left unchanged. Similarly, the number
of quantization levels in the quantized OMKL algorithm
is set to M = 2, 4, and 16, corresponding to 1, 2, and
4−bit representation of the gradient elements, respectively,
while the remaining parameters are kept unaltered. For a
fair comparison between distributed, mini-batch and quantized
OMKL algorithms, a fixed set of random features are used
for each dataset. Due to the small number of data in Activity,
Device and Spam-Based datasets, which causes the distributed
mini-batch OMKL not to reach convergence, the simulations
are carried out for three epochs for these three datasets.

The misclassification rate for both mini-batch and quantized
distributed OMKL algorithms are summarized in Table III. As
expected, mini-batch training increased the error rate since
nodes are able to communicate with each other only after B
new observations; however, this improved the communication
efficiency of the distributed mini-batch OMKL compared to
the distributed OMKL by a factor of B. Simulation results for
quantized OMKL show that the error rate is slightly increased
compared to OMKL without quantization due to the information
loss in the gradient vector; however, the misclassification
rate approaches that of the OMKL algorithm as the number
of quantization levels increases. The effect of mini-batch
and quantized online multi-kernel learning algorithms on the
progression of the misclassification rate is illustrated in Figure
3.

Next, we compare the communication efficiency of these
algorithms. Since the raw gradient vector is communicated
in the RFF-DOKL algorithm, its communication cost for
each node per iteration is 32D bits for a 32−bit hardware.

7

Table I: Mean (SD) of the misclassification rate (%) for different algorithms.

Activity Adult Banana Credit-Card Device EEG MNIST Spam-Based

RFF-DOKL 5.45(0.30) 18.93(0.44) 12.62(0.94) 25.58(0.45) 7.02(0.47) 1.22(0.03) 10.40(0.25) 29.62(0.43)
GPPM 4.47 26.11 12.85 22.73 8.77 4.47 11.92 21.76

RF-ADMM 4.10(0.19) 20.86(0.88) 11.82(1.32) 20.84(0.21) 7.11(1.32) 2.43(0.11) 7.71(0.07) 23.86(0.57)
OMKL 3.40(0.17) 17.94(0.19) 11.53(0.22) 22.19(0.02) 6.63(0.16) 3.14(0.15) 7.10(0.32) 27.74(0.43)

Table II: Running time (d: days, h: hours, m: minutes, s:seconds).

Activity Adult Banana Credit-Card Device EEG MNIST Spam-Based

RFF-DOKL 1.3s 12.8s 1.1s 10.6s 0.7s 2.7s 1m:9.5s 0.8s
GPPM 11m:20.5s 30m:44.7s 1m:2.9s 43.3s 4m:57.3s > 1d > 2d 1m:40.8s

RF-ADMM 8m:1.4s 36m:45.6s 7m:11.1s 33m:41.6s 2m:52.8s 20m:43.9s 5h:36m:24.8s 4m:56.4s
OMKL 1.2s 2.6s 0.9s 2.0s 0.6s 2.4s 46.6s 0.4s

(a) Activity (b) Adult (c) Banana (d) Credit-Card

(e) Device (f) EEG (g) MNIST (h) Spam-Based
Figure 2: Misclassification rate versus the number of observered training samples per node.

Similar argument reveals that each node in the RF-ADMM
algorithm uses 32 × 2D bits per iteration for a 32−bit
CPU operating mode. Since our algorithm uses P = 3
kernels, Eq. (18) implies that the quantized OMKL algorithm
outperforms RFF-DOKL and RF-ADMM algorithms in terms
of communication efficiency if the number of quantization bits,
i.e. log2(M), is less than or equal to 5 and 10, respectively. As
shown in Table III, the performance of the quantized OMKL
algorithm converges to that of the OMKL algorithm even for a
4−bit quantization. Hence, our method outperforms both RFF-
DOKL and RF-ADMM algorithms in terms of communication
efficiency.

Note that the raw data is communicated in the GPPM
algorithm; thus, its communication cost is 32d bits for a 32−bit
hardware. According to Eq. (19), our distributed and 4−bit
quantized OMKL algorithm outperforms the GPPM algorithm
in terms of communication efficiency if:

d >
2D × 3× 4

32
= 37.5, (24)

which is the case for Adult, Device, MNIST, and Spam-Based
datasets. Eq. (24) indicates that for high-dimensional datasets,
our algorithm significantly reduces the communication cost
compared to sending the raw data. For instance, the distributed
and 4−bit quantized OMKL algorithm reduces the number of
communicated bits by a factor of 21 compared to sending the
raw data for the MNIST dataset, where d = 784. However, for
datasets such as Banana, where data is already low-dimensional,
the number of bits that each node transmits per iteration is not
significant.

Finally, we study the effect of hyperparameters P and D, i.e.,
the number of kernels and i.i.d. samples, on the classification
performance of the distributed OMKL algorithm. We consider
three different values D = 20, 50, and 100 for the number of
i.i.d. samples and three different values P = 1, 3, and 5 for the
number of Gaussian kernels. Table IV summarizes the mean
and standard deviation of the classification error for different
datasets. Note that a larger D makes the sample average to be a
more accurate approximation of the expected value and kernel

8

Table III: Misclassification rate (%) for distributed mini-batch and quantized OMKL algorithms.

OMKL Mini-batch OMKL Quantized OMKL
B = 5 M = 2 M = 4 M = 16

Activity 1.73 4.57 1.86 1.81 1.75
Adult 19.50 23.10 19.81 19.67 19.61

Banana 11.96 14.15 13.40 12.74 12.36
Credit-Card 22.17 22.37 22.34 22.23 22.18

Device 6.22 20.36 7.00 6.47 6.32
EEG 3.26 12.03 3.40 3.36 3.26

MNIST 7.33 7.44 8.07 7.57 7.36
Spam-Based 22.61 26.83 24.17 23.20 22.63

(a) Activity (b) Adult (c) Banana (d) Credit-Card

(e) Device (f) EEG (g) MNIST (h) Spam-Based
Figure 3: Misclassification rate versus the number of observered training samples per node.

functions; thus, improving the model’s accuracy. Moreover,
a larger P increases the representability of the function and
enhances the performance of the predictive model although
a very large value of P can have an adverse effect due to
overfitting. This intuition on the effect of P and D over the
model’s performance is captured in Table IV, where the average
error decreases with increasing P and D for each dataset.

B. Regression

Experiments for the regression task are conducted for six
datasets: (i) AirData (n = 7322, d = 13); (ii) BloodData
(n = 61000, d = 2); (iii) EnergyData (n = 18604, d = 25);
(iv) TomData (n = 9725, d = 96); (v) TwitterData (n =
13813, d = 77); and (vi) TwitterDataL (n = 98704, d = 77).
The AirData dataset consists of hourly averaged samples from
five chemical sensors within a polluted region of Italy, and the
goal is to predict the density of the contaminating chemicals
in the air [61]. The BloodData contains signals recorded
by patient monitors at different hospitals and the goal is to
predict an accurate estimation of the blood pressure based on
several physiological parameters from Photoplethysmography
and Electrocardiogram signals [62]. The EnergyData dataset
aims at predicting the energy usage of light fixtures inside the

house based on the temperature and humidity levels of indoors
and outdoors [63]. The TomData dataset contains information
about the number of conversations around a certain topic, and
the target variable is the mean amount of display involving
a specific topic on Tom’s hardware [64]. The TwitterData
dataset and its larger version, i.e., the TwitterDataL dataset,
use features such as the length of discussions around a certain
topic etc. to predict the mean number of active discussions on
a particular subject [64]. These datasets are obtained from the
UCI machine learning repository [60].

The network contains J = 20 nodes that communicate
with each other point-to-point. All algorithms employ the
Gaussian kernel where the parameter σ is fine-tuned via grid-
search for each method individually. The parameter σ for the
RF-ADMM algorithm is set to 1, 0.5, 0.1, 0.5, 1, 0.5 for
the AirData, BloodData, EnergyData, TomData, TwitterData,
and TwitterDataL datasets, respectively. Both GPPM and
RFF-DOKL algorithms use σ = 1 for all datasets. Our
distributed OMKL algorithm uses three Gaussian kernels with
σ ∈ {0.1, 1, 10} values. The regularization parameter is set to
λ = 0.001, and the learning rate is chosen either to be a small
constant or decreasing with O(1/t). The number of features for
random feature (RF) approximation in distributed OMKL, RF-

9

(a) AirData (b) BloodData (c) EnergyData

(d) TomData (e) TwitterData (f) TwitterDataL
Figure 4: Mean square error versus the number of observered training samples per node.

ADMM, and RFF-DOKL algorithms are set to D = 20. Similar
to the classification task, the GPPM algorithm is performed
once since it is deterministic; however, simulations are carried
out for RF-ADMM, RFF-DOKL, and our proposed distributed
OMKL algorithms using ten different sets of random features
and the mean and standard deviation of the error are reported.
No normalization was performed since all algorithms were
stable and converged. The remaining experimental setups are
similar to that of the classification task.

The mean square error and running time of all methods are
summarized in Tables V and VI, respectively. Not only does
our method lead to a lower MSE compare to other algorithms
in five out of six datasets, but also it has a lower running time in
all cases. This shows the advantage of our proposed framework
in distributed online learning tasks, especially in time-sensitive
applications. For a fixed exemplary set of random features,
Figure 4 shows the evolution of mean square error versus time
for all four algorithms.

Next, we carried out experiments for distributed mini-batch
OMKL and distributed quantized OMKL algorithms. Parameter
B in mini-batch OMKL is set to B = 5, and three quantization
levels M = 2, 4, and 16, corresponding to the 1, 2, and 4−bit
element-wise representation of the gradient, are considered.
For a fair comparison between distributed, mini-batch, and
quantized OMKL algorithms, a fixed set of random features are
used for each dataset. All other parameters are kept unchanged.

Table VII summarizes the mean square error for OMKL,
mini-batch OMKL, and quantized OMKL algorithms. Since
parameters are updated after B = 5 new observations at each

node, the average square error for mini-batch OMKL is higher
than that of OMKL; however, the mini-batch OMKL algorithm
reduces the number of bits that each node needs to transmit
by a factor of B compared to the OMKL algorithm. The mean
square error for quantized OMKL is slightly increased due
to lossy compression of the gradient vector; however, similar
to what we observed in the classification task, the effect of
quantization is marginal on the model’s performance. The effect
of mini-batch and quantized online multi-kernel learning on
the progression of the mean square error is illustrated in Figure
5.

An argument similar to that in Section V-A reveals that
for a 32−bit hardware, our quantized OMKL algorithm
outperforms RFF-DOKL and RF-ADMM algorithms in terms
of communication cost if the number of quantization bits is
less than or equal to 5 and 10, respectively. According to
Table VII, the performance of the quantized OMKL algorithm
converges to that of the OMKL algorithm for M = 16, i.e. 4
quantization bits; hence, our algorithm leads to less number of
communicated bits compared to RFF-DOKL and RF-ADMM
algorithms.

According to Eq. (19), our distributed and 4−bit quantized
OMKL algorithm achieves a lower number of transmitted bits
compared to communicating the raw data, which is the case
for the GPPM algorithm, if we have:

d >
2D × 3× 4

32
= 15. (25)

This is the case for EnergyData, TomData, TwitterData,
and TwitterDataL datasets. Eq. (25) implies that for high-

10

(a) AirData (b) BloodData (c) EnergyData

(d) TomData (e) TwitterData (f) TwitterDataL
Figure 5: Mean square error versus the number of observered training samples per node.

dimensional datasets, our algorithm can significantly reduce
the number of bits that each node transmits per time slot.

Next, we carry out the regret simulations in a distributed
network with J = 20 nodes that communicate with each other
point-to-point. The regularization parameter and learning rate
are set to λ = 0.001 and η = 0.005, respectively, and the
number of random features is set to D = 20. The experiments
are performed over the AirData dataset with mean-square-error
as the loss function. The loss function for the best single
Gaussian kernel RF approximation is obtained via offline
learning over the dataset. The online distributed and quantized
OMKL uses ten Gaussian kernels where the parameter σ
for these kernels are fine-tuned via grid-search. Due to the
randomness in selecting the random features, simulations are
run ten times and the average regret is depicted in Figure 6.
As shown in Figure 6, given the constant learning rate η, the
regret closely follows a linear growth with the sample size as
we showed analytically in Section IV. Moreover, as shown in
Figure 6, the regret curve for the distributed and quantized
OMKL closely follows the regret curve for the distributed
OMKL. The two curves converge as the number of quantization
bits increases.

Finally, we study the effect of P , i.e., the number of kernels,
on the model’s performance and the value of regret in a
distributed network with J = 20 nodes. The regularization and
learning rate parameters are set to λ = 0.001 and η = 0.005,
respectively, and the number of random features is equal to
D = 20. The simulations are carried out over the AirData
dataset with mean-square-error as the loss function. Offline

Figure 6: Regret vs sample size for the AirData dataset.

learning over the same dataset is used to obtain the loss
function for the best single Gaussian kernel RF approximation.
Five variations of the online distributed OMKL algorithm
corresponding to the values P = 1, 3, 5, 7 and 10 are simulated
where a nested set of σ values are used for these variation, e.g.,
the set of σ values corresponding to the distributed OMKL
with P = 3 kernels is a subset of the set of σ values for the
one that uses P = 5 kernels. Figure 7 depicts the evolution
of the residual sum of squares as the dataset size grows. As
shown in Figure 7, increasing the number of kernels improves

11

Table IV: Effect of P and D on the classification error.

Variances of Activity
Gaussian kernels D = 20 D = 50 D = 100

{1} 4.96(1.04) 4.03(0.41) 3.39(0.27)
{0.1, 0.5, 1} 4.65(0.93) 3.40(0.17) 3.13(0.34)

{0.1, 0.5, 1, 5, 10} 3.22(0.56) 2.17(0.37) 1.74(0.12)
Variances of Adult

Gaussian kernels D = 20 D = 50 D = 100
{1} 23.03(0.86) 19.90(0.73) 18.76(0.29)

{0.5, 1, 2} 20.72(0.87) 17.94(0.19) 17.24(0.18)
{0.5, 0.8, 1, 2, 5} 19.67(0.38) 17.77(0.16) 16.88(0.12)

Variances of Banana
Gaussian kernels D = 20 D = 50 D = 100

{3} 14.49(0.57) 12.72(0.33) 12.04(0.22)
{1, 3, 5} 13.38(0.55) 11.53(0.22) 11.23(0.15)
{1, 2, 3, 4, 5} 12.65(0.46) 11.38(0.11) 10.99(0.17)
Variances of Credit-Card

Gaussian kernels D = 20 D = 50 D = 100
{3} 24.55(0.19) 23.57(0.11) 22.82(0.03)
{1, 3, 5} 23.56(0.19) 22.19(0.02) 22.18(0.01)
{1, 2, 3, 4, 5} 22.73(0.09) 22.18(0.01) 22.17(0.003)
Variances of Device

Gaussian kernels D = 20 D = 50 D = 100
{1} 8.66(0.35) 7.59(0.10) 7.08(0.21)

{0.1, 0.5, 1} 7.33(0.08) 6.63(0.16) 6.29(0.17)
{0.1, 0.25, 0.5, 0.75, 1} 7.21(0.04) 6.35(0.17) 6.11(0.11)

Variances of EEG
Gaussian kernels D = 20 D = 50 D = 100

{10} 3.63(0.03) 3.26(0.02) 2.97(0.05)
{0.1, 1, 10} 3.39(0.12) 3.14(0.15) 2.84(0.10)

{0.1, 0.5, 1, 5, 10} 3.15(0.08) 2.98(0.12) 2.65(0.10)
Variances of MNIST

Gaussian kernels D = 20 D = 50 D = 100
{1} 9.65(0.15) 8.40(0.17) 7.49(0.17)

{0.1, 1, 10} 8.72(0.27) 7.10(0.32) 6.73(0.10)
{0.1, 0.5, 1, 5, 10} 7.85(0.33) 6.83(0.19) 5.80(0.18)

Variances of Spam-Based
Gaussian kernels D = 20 D = 50 D = 100

{0.2} 30.23(0.56) 28.93(0.36) 27.96(0.23)
{0.1, 0.2, 0.4} 29.41(0.29) 27.74(0.43) 27.28(0.43)

{0.1, 0.2, 0.3, 0.4, 0.5} 28.92(0.53) 27.59(0.30) 26.87(0.87)

model’s performance, as we previously verified in Table IV for
the classification task. Figure 8 illustrates the regret for five
variations of the distributed OMKL algorithm corresponding
to different values of P . Although increasing P leads to a
logarithmic increment in the first term of the regret upper
bound in Eq. (22), it significantly reduces the square norm of
θ∗p associated with the best single kernel RF approximation,
which leads to an overall decrease in the regret’s value and
upper bound.

All simulations are performed on a 6−core workstation with
Ubuntu 18.04.3 LTS platform and Intel(R) Core(TM) i7-8700
CPU @ 3.20GHz.

VI. CONCLUSION

We consider the problem of distributed and quantized online
multiple kernel learning. We develop an efficient and scalable
algorithm for distributed and quantized OMKL. The algorithm
is capable of updating the sought nonlinear model as more
and more data samples are collected at distributed locations
over a network. In addition, to overcome the communication
bottleneck, only quantized information is shared among network
nodes. Expected regret bound analysis shows that the algorithm
is capable of achieving sublinear regret. Numerical tests on real

Figure 7: Square error of the distributed OMKL algorithm over
the AirData dataset for different number of kernels.

Figure 8: Regret for the distributed OMKL algorithm over the
AirData dataset for different number of kernels.

datasets validate the effectiveness and efficiency of our novel
algorithm. The present work opens up a number of possible
future directions: (i) extension of the present work to the case
where the communication networks entail general connectivity
patterns; and (ii) exploring how to cope with possible delays
in exchanging the gradients.

APPENDIX A
PROOF OF LEMMA 1

To prove Lemma 1, we introduce two intermediate lemmas
as follows.

Lemma 2: Let us assume (as1), (as2), and define f̂∗p in
(21) with Fp := {f̂p|f̂p(x) = θ>zp(x), ∀θ ∈ R2D}. Let
{f̂p,t(xt)} denote the sequence of estimates generated by the
centralized OMKL with a pre-selected kernel κp. Then, the
following bound holds

T∑
t=1

J∑
j=1

Lt(f̂p,t(xjt))−
T∑
t=1

J∑
j=1

Lt(f̂∗p (xjt))

12

Table V: Mean (SD) of the mean square error
(
10−3

)
for different algorithms.

AirData BloodData EnergyData TomData TwitterData TwitterDataL

RFF-DOKL 16.15(0.68) 22.65(1.15) 29.23(0.07) 20.23(0.10) 18.10(1.34) 19.97(1.03)
GPPM 19.82 19.89 34.08 24.75 19.22 28.37

RF-ADMM 12.76(0.06) 15.56(0.06) 16.05(0.03) 15.32(0.11) 7.26(0.08) 8.13(0.44)
OMKL 5.25(0.20) 11.06(0.85) 28.60(0.08) 10.85(1.33) 6.22(0.30) 3.63(0.27)

Table VI: Running time (in seconds).

AirData BloodData EnergyData TomData TwitterData TwitterDataL

RFF-DOKL 1.14 19.86 4.02 1.54 2.65 46.07
GPPM 8.47 6843.22 20.14 4.85 19.27 101.45

RF-ADMM 13.92 138.52 37.50 19.36 26.77 232.38
OMKL 0.62 7.69 2.05 0.90 1.34 14.62

Table VII: MSE
(
10−3

)
for distributed mini-batch and quantized OMKL algorithms.

OMKL Mini-batch OMKL Quantized OMKL
B = 5 M = 2 M = 4 M = 16

AirData 5.75 12.18 5.88 5.80 5.76
BloodData 13.24 19.53 13.49 13.27 13.26

EnergyData 28.60 30.55 28.75 28.64 28.61
TomData 13.11 17.63 13.39 13.20 13.13

TwitterData 6.74 14.82 6.97 6.80 6.77
TwitterDataL 4.60 8.65 4.69 4.63 4.62

≤
J‖θ∗p‖2

2η
+
ηJL2T

2
, (26)

where η is the learning rate, L is the Lipschitz constant in
(as2), and θ∗p is the corresponding parameter (or weight) vector
supporting the best estimator f̂∗p (x) = (θ∗p)

>zp(x).
Proof: Similar to the regret analysis of online gradient

descent [65], using (10) for any fixed θ, we find

‖θp,t+1 − θ‖2 =‖θp,t − η∇L̄(θp,t)− θ‖2 (27)

=‖θp,t − θ‖2 + η2‖∇L̄(θp,t)‖2

− 2η∇>L̄(θp,t)(θp,t − θ).

Meanwhile, the convexity of the loss under (as1) implies that

L̄(θp,t)− L̄(θ) ≤ ∇>L̄(θp,t)(θp,t − θ). (28)

Plugging (28) into (27) and rearranging terms yield

L̄(θp,t)−L̄(θ)

≤‖θp,t − θ‖2 − ‖θp,t+1 − θ‖2

2η
+
η

2
‖∇L̄(θp,t)‖2. (29)

Summing (29) over t = 1, . . . , T , with f̂p,t(xt) = θ>p,tzp(xt)
results in

T∑
t=1

(
L̄(f̂p,t(xt))−L̄(θ>zp(xt))

)
≤ ‖θp,1−θ‖

2 − ‖θp,T+1 − θ‖2

2η
+
η

2

T∑
t=1

‖∇L̄(θp,t)‖2

(a)

≤ ‖θ‖
2

2η
+
ηL2T

2
, (30)

where (a) uses the Lipschitz constant in (as2), the non-negativity
of ‖θp,T+1 − θ‖2, and the initial value θp,1 = 0. Then,
the proof of Lemma 2 is complete by choosing θ = θ∗p =∑T
t=1 α

∗
p,tzp(xt) and f̂∗p (xt) = θ>zp(xt) in (30).

In addition, to bound the difference between the loss of
the solution obtained from distributed OMKL and the loss
of the best single kernel-based online learning algorithm, the
following lemma holds:

Lemma 3: Let us assume (as1), (as2), and {f̂p,t} be generated
from the distributed OMKL. Then, the following bound holds

T∑
t=1

P∑
p=1

J∑
j=1

w̄p,tLt(f̂p,t(xjt))−
T∑
t=1

J∑
j=1

Lt(f̂p,t(xjt))

≤ηJT +
J lnP

η
, (31)

where η is the learning rate in (8) and P is the number of
kernels in the dictionary.

Proof: Letting Wt :=
∑P
p=1 wp,t, the weight recursion in

(11) implies that

Wt+1 (32)

=

P∑
p=1

wp,t+1 =

P∑
p=1

wp,t exp
(
−ηL̄t

(
f̂p,t(xt)

))
≤

P∑
p=1

wp,t

(
1− ηL̄t

(
f̂p,t(xt)

)
+ η2L̄t

(
f̂p,t(xt)

)2
)
,

where the last inequality holds because exp(−ηx) ≤ 1 −
ηx + η2x2, for |η| ≤ 1. Furthermore, substituting w̄p,t :=

13

wp,t/
∑P
p=1 wp,t = wp,t/Wt in (32) results in

Wt+1 (33)

≤
P∑
p=1

Wtw̄p,t

(
1− ηL̄t

(
f̂p,t(xt)

)
+ η2L̄t

(
f̂p,t(xt)

)2
)

=Wt

(
1−η

P∑
p=1

w̄p,tL̄t
(
f̂p,t(xt)

)
+ η2

P∑
p=1

w̄p,tL̄t
(
f̂p,t(xt)

)2
)
.

Using 1 + x ≤ ex, ∀x, (33) leads to

Wt+1 ≤Wt exp

(
− η

P∑
p=1

w̄p,tL̄t
(
f̂p,t(xt)

)
+ η2

P∑
p=1

w̄p,tL̄t
(
f̂p,t(xt)

)2
)
. (34)

Telescoping (34) from t = 1 to T , setting W1 = 1, we have

WT+1 ≤ exp

(
− η

T∑
t=1

P∑
p=1

w̄p,tL̄t
(
f̂p,t(xt)

)
+ η2

T∑
t=1

P∑
p=1

w̄p,tL̄t
(
f̂p,t(xt)

)2
)
. (35)

On the other hand, for any p, we have

WT+1 ≥ wp,T+1

= wp,1

T∏
t=1

exp(−ηL̄t
(
f̂p,t(xt)

)
)

= wp,1 exp

(
− η

T∑
t=1

L̄t
(
f̂p,t(xt)

))
. (36)

Combining (35) with (36), we arrive at

exp

(
−η

T∑
t=1

P∑
p=1

w̄p,tL̄t
(
f̂p,t(xt)

)
+ η2

T∑
t=1

P∑
p=1

w̄p,tL̄t
(
f̂p,t(xt)

)2
)

≥wp,1 exp

(
−η

T∑
t=1

L̄t
(
f̂p,t(xt)

))
. (37)

Taking the logarithm of the both sides of (37), we find that
(cf. wp,1 = 1/P)

− η
T∑
t=1

P∑
p=1

w̄p,tL̄t
(
f̂p,t(xt)

)
+η2

T∑
t=1

P∑
p=1

w̄p,tL̄t
(
f̂p,t(xt)

)2

≥ −η
T∑
t=1

L̄t
(
f̂p,t(xt)

)
− lnP, (38)

which leads to

T∑
t=1

P∑
p=1

w̄p,tL̄t
(
f̂p,t(xt)

)
(39)

≤
T∑
t=1

L̄t
(
f̂p,t(xt)

)
+ η

T∑
t=1

P∑
p=1

w̄p,tL̄t
(
f̂p,t(xt)

)2

+
lnP

η

and the proof is complete since Lt
(
f̂p,t(xt)

)2

≤ 1 and∑P
p=1 w̄p,t = 1.
To prove Lemma 1, since Lt(·) is convex under (as1),

Jensen’s inequality implies that

Lt
(P∑
p=1

w̄p,tf̂p,t(xt)

)
≤

P∑
p=1

w̄p,tLt
(
f̂p,t(xt)

)
. (40)

Plugging (40) into (31) in Lemma 3, we have

T∑
t=1

J∑
j=1

Lt
(P∑
p=1

w̄p,tf̂p,t(x
j
t)

)
(41)

≤
T∑
t=1

J∑
j=1

Lt
(
f̂p,t(x

j
t)
)

+ ηJT +
J lnP

η

(a)

≤
T∑
t=1

J∑
j=1

Lt
(
f̂∗p (xt)

)
+
J lnP

η
+
J‖θ∗p‖2

2η
+
ηJL2T

2
+ηJT

where (a) follows because of Lemma 2, and θ∗p is the optimal
solution for any given kernel κp. This proves the claim in
Lemma 1.

APPENDIX B
PROOF OF THEOREM 1

To prove Theorem 1, we introduce three intermediate lemmas
as follows.

Lemma 4: Let L(.) be a convex and L-smooth
function. Given repeated independent accesses to an
unbiased stochastic gradient with bounded variance,
i.e., E[∇̃L(θ>p,tzp(xt), yt) − ∇L(θ>p,tzp(xt), yt)] = 0,
E[‖∇̃L(θ>p,tzp(xt), yt) − ∇L(θ>p,tzp(xt), yt)‖22] ≤ σ2, each
kernel-based learner achieves the following regret:

T∑
t=1

E
[
Lt(f̂p,t(xt))

]
−

T∑
t=1

Lt(f̂∗p (xt))

≤
‖θ∗p‖2

2η
+
ηL2T

2
+
ησ2T

2
. (42)

Proof: For any fixed θ, we find

‖θp,t+1 − θ‖2

=‖θp,t − η∇̃L(θ>p,tzp(xt), yt)− θ‖2. (43)

14

Adding and abstracting the term η∇L(θ>p,tzp(xt), yt), we
obtain

‖θp,t+1 − θ‖2

=‖θp,t − η∇̃L(θ>p,tzp(xt), yt)− η∇L(θ>p,tzp(xt), yt)

+ η∇L(θ>p,tzp(xt), yt)− θ‖2

=‖θp,t − θ‖2 + η2‖∇L(θ>p,tzp(xt), yt)‖2

+ η2‖∇̃L(θ>p,tzp(xt),yt)−∇L(θ>p,tzp(xt),yt)‖2

−2η∇>L(θ>p,tzp(xt), yt)(θp,t− θ)−2η(∇̃L(θ>p,tzp(xt), yt)

−∇L(θ>p,tzp(xt), yt))
>(θp,t− θ)

+ 2η2∇>L(θ>p,tzp(xt), yt)(∇̃L(θ>p,tzp(xt), yt)

−∇L(θ>p,tzp(xt), yt)). (44)

The convexity of the loss under (as1) implies that

L(θ>p,tzp(xt), yt)− L(θ>zp(xt), yt)

≤∇>L(θ>p,tzp(xt), yt)(θp,t − θ). (45)

Substituting (44) in (45) and taking expectation on both
sides leads to

L(θ>p,tzp(xt), yt)− L(θ>zp(xt), yt) (46)

≤‖θp,t − θ‖2 − ‖θp,t+1 − θ‖2

2η
+
η

2
‖∇L(θ>p,tzp(xt), yt)‖2

+
η

2
‖∇̃L(θ>p,tzp(xt), yt)−∇L(θ>p,tzp(xt), yt)‖2

− (∇̃L(θ>p,tzp(xt), yt)−∇L(θ>p,tzp(xt), yt))
>(θp,t − θ)

+ η∇>L(θ>p,tzp(xt), yt)(∇̃L(θ>p,tzp(xt), yt)

−∇L(θ>p,tzp(xt), yt)) ≤
‖θp,t − θ‖2 − ‖θp,t+1 − θ‖2

2η

+
ηL2

2
+
η

2
‖∇̃L(θ>p,tzp(xt), yt)−∇L(θ>p,tzp(xt), yt)‖2

− (∇̃L(θ>p,tzp(xt), yt)−∇L(θ>p,tzp(xt), yt))
>(θp,t − θ)

+ η∇>L(θ>p,tzp(xt), yt)(∇̃L(θ>p,tzp(xt), yt)

−∇L(θ>p,tzp(xt), yt)).

Summing (46) over t=1, . . . , T , with f̂p,t(xt) = θ>p,tzp(xt),
we arrive at

T∑
t=1

(
L(f̂p,t(xt), yt)−L(θ>zp(xt), yt)

)
≤ ‖θp,1−θ‖

2 − ‖θp,T+1 − θ‖2

2η
+
ηL2T

2

+
η

2

T∑
t=1

‖∇̃L(θ>p,tzp(xt), yt)−∇L(θ>p,tzp(xt), yt)‖2

−
T∑
t=1

(∇̃L(θ>p,tzp(xt), yt)−∇L(θ>p,tzp(xt), yt))
>(θp,t−θ)

+ η

T∑
t=1

∇>L(θ>p,tzp(xt), yt)(∇̃L(θ>p,tzp(xt), yt)

−∇L(θ>p,tzp(xt), yt))

≤ ‖θ‖
2

2η
+
ηL2T

2

+
η

2

T∑
t=1

‖∇̃L(θ>p,tzp(xt), yt)−∇L(θ>p,tzp(xt), yt)‖2

−
T∑
t=1

(∇̃L(θ>p,tzp(xt), yt)−∇L(θ>p,tzp(xt), yt))
>(θp,t−θ)

+ η

T∑
t=1

∇>L(θ>p,tzp(xt), yt))(∇̃L(θ>p,tzp(xt), yt)

−∇L(θ>p,tzp(xt), yt)), (47)

where the first inequality uses the Lipschitz constant in (as2),
the last inequality uses the non-negativity of ‖θp,T+1 − θ‖2,
and the initial value θp,1 = 0. Taking expectation on both
sides of (47) results in

T∑
t=1

E
[
L(f̂p,t(xt), yt)−L(θ>zp(xt), yt)

]
≤ ‖θ‖

2

2η
+
ηL2T

2

+
η

2

T∑
t=1

E
[
‖∇̃L(θ>p,tzp(xt), yt)−∇L(θ>p,tzp(xt), yt)‖2

]
−

T∑
t=1

E
[
(∇̃L(θ>p,tzp(xt),yt)−∇L(θ>p,tzp(xt),yt))

>(θp,t−θ)
]

+η

T∑
t=1

E
[
∇>L(θ>p,tzp(xt), yt))(∇̃L(θ>p,tzp(xt), yt)

−∇L(θ>p,tzp(xt), yt))

]
≤ ‖θ‖

2

2η
+
ηL2T

2
+
ησ2T

2
. (48)

Then, by choosing θ = θ∗p =
∑T
t=1 α

∗
p,tzp(xt) such that

f̂∗p (xt) = θ>zp(xt) in (48), the proof of Lemma 4 is complete.

Building upon the result in Lemma 4, the following lemma
can be readily established for distributed and quanitzed OMKL.

Lemma 5: Let L(.) be a convex and L-smooth function.
Given repeated independent accesses to stochastic gradient
with bounded variance, E[‖∇̃L(xjt , y

j
t)−∇L(xjt , y

j
t)‖22] ≤ σ2,

the distributed and quantized OMKL achieves the following
regret:

T∑
t=1

E
[
Lt(f̂p,t(xt))

]
−

T∑
t=1

Lt(f̂∗p (xt))

≤
J‖θ∗p‖2

2η
+
ηJL2T

2
+
ηJσ2T

2
. (49)

Combining (31) in Lemma 3 with Lemma 5

J∑
j=1

T∑
t=1

E

[
Lt
(P∑
p=1

w̄jp,tf̂p,t(x
j
t)

)]

≤
J∑
j=1

T∑
t=1

Lt
(
f̂∗p (xjt)

)
+
J lnP

η
+
J‖θ∗p‖2

2η

+
ηJL2T

2
+
ηJσ2T

2
+ ηJT. (50)

15

In addition, the following lemma characterizes the performance
of the quantization scheme.
Lemma 6: For any vector g ∈ R2D, using the quantization
scheme QM (g) in (14), we have E[QM (g)] = g (unbiasedness)
and E[‖QM (g) − g‖22] ≤ min

(
2D
M2 ,

√
2D
M

)
‖g‖22 (variance

bound).
Proof: See [55].

Combining Lemma 6 with (50) and letting σ2 = σ2
L :=

min
(

2D
M2 ,

√
2D
M

)
L2 in (50) lead to Theorem 1.

REFERENCES
[1] K. Slavakis, G. B. Giannakis, and G. Mateos, “Modeling and optimization

for big data analytics:(statistical) learning tools for our era of data deluge,”
IEEE Signal Processing Magazine, 31(5):18–31, 2014.

[2] H. Yousefi’zadeh, H. Jafarkhani, and M. Moshfeghi, “Power optimization
of wireless media systems with space-time code building blocks,” IEEE
Transactions on Image Processing, 13(7):873-884, 2004.

[3] S. Karimi-Bidhendi, J. Guo, and H. Jafarkhani, “Using Quantization to
Deploy Heterogeneous Nodes in Two-Tier Wireless Sensor Networks,”
IEEE International Symposium on Information Theory, pp. 1502-1506,
July 2019.

[4] G. Anastasi, M. Conti, M. D. Francesco, and A. Passarella, “Energy
conservation in wireless sensor networks: A survey,” Ad hoc networks,
7(3):537–568, 2009.

[5] J. Guo, S. Karimi-Bidhendi, and H. Jafarkhani, “Energy-Efficient Node
Deployment In Wireless Ad-Hoc Sensor Networks,” IEEE International
Conference on Communications, pp. 1-6, June 2020.

[6] M. A. Razzaque and S. Dobson, “Energy-efficient sensing in wireless
sensor networks using compressed sensing,” Sensors, 14(2):2822–2859,
2014.

[7] J. Guo and H. Jafarkhani, “Sensor deployment with limited communication
range in homogeneous and heterogeneous wireless sensor networks,” IEEE
Transactions on Wireless Communications, 15(19):6771-6784, 2016.

[8] S. Karimi-Bidhendi, J. Guo, and H. Jafarkhani, “Energy-Efficient Node
Deployment in Heterogeneous Two-Tier Wireless Sensor Networks
with Limited Communication Range,” IEEE Transactions on Wireless
Communications, 20(1):40-55, Sep 2020.

[9] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al., “Distributed
optimization and statistical learning via the alternating direction method of
multipliers,” Foundations and Trends R© in Machine learning, 3(1):1–122,
2011.

[10] I. D. Schizas, G. Mateos, and G. B. Giannakis, “Distributed lms for
consensus-based in-network adaptive processing,” IEEE Transactions on
Signal Processing, 57(6):2365–2382, 2009.

[11] G. Mateos, I. D. Schizas, and G. B. Giannakis, “Distributed recursive
least-squares for consensus-based in-network adaptive estimation,” IEEE
Transactions on Signal Processing, 57(11):4583–4588, 2009.

[12] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over adaptive
networks: Formulation and performance analysis,” IEEE Transactions on
Signal Processing, 56(7):3122–3136, 2008.

[13] R. L. G. Cavalcante, I. Yamada, and B. Mulgrew, “An adaptive projected
subgradient approach to learning in diffusion networks,” IEEE Transactions
on Signal Processing, 57(7):2762–2774, 2009.

[14] P. A. Forero, A. Cano, and G. B. Giannakis, “Consensus-based dis-
tributed support vector machines,” Journal of Machine Learning Research,
11(May):1663–1707, 2010.

[15] P. Bouboulis, S. Chouvardas, and S. Theodoridis, “Online distributed
learning over networks in rkh spaces using random fourier features,” IEEE
Transactions on Signal Processing, 66(7):1920–1932, 2017.

[16] R. Mitra and V. Bhatia, “The diffusion-klms algorithm,” In 2014
International Conference on Information Technology, pp. 256–259, IEEE,
2014.

[17] S. Chouvardas and M. Draief, “A diffusion kernel lms algorithm for
nonlinear adaptive networks,” In 2016 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pp. 4164–4168, IEEE,
2016.

[18] J. Shawe-Taylor, N. Cristianini, et al., Kernel methods for pattern analysis,
Cambridge university press, 2004.

[19] T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in machine
learning,” The annals of statistics, 36(3):1171-1220, 2008.

[20] C. K. I. Williams and M. Seeger, “Using the nyström method to speed up
kernel machines,” In Advances in neural information processing systems,
pp. 682–688, 2001.

[21] F. Sheikholeslami, D. Berberidis, and G. B. Giannakis, “Large-scale
kernel-based feature extraction via low-rank subspace tracking on a budget,”
IEEE Transactions on Signal Processing, 66(8):1967–1981, 2018.

[22] C. Cortes, M. Mohri, and A. Talwalkar, “On the impact of kernel
approximation on learning accuracy,” In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, pp.
113–120, 2010.

[23] A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” In Advances in neural information processing systems, pp.
1177–1184, 2007.

[24] B. Dai, B. Xie, N. He, Y. Liang, A. Raj, M. F. Balcan, and L. Song,
“Scalable kernel methods via doubly stochastic gradients,” In Advances in
Neural Information Processing Systems, pp. 3041–3049, 2014.

[25] F. X. X. Yu, A. T. Suresh, K. M. Choromanski, D. N. Holtmann-Rice,
and S. Kumar, “Orthogonal random features,” In Advances in Neural
Information Processing Systems, pp. 1975–1983, 2016.

[26] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein, “Distributed graphlab: a framework for machine learning
and data mining in the cloud,” Proceedings of the VLDB Endowment,
5(8):716–727, 2012.

[27] J. Lu, S. C. H. Hoi, J. Wang, P. Zhao, and Z. Y. Liu, “Large scale online
kernel learning,” The Journal of Machine Learning Research, 17(47):1–43,
2016.

[28] J. Kivinen, A. J. Smola, and R. C. Williamson, “Online learning with
kernels,” IEEE transactions on signal processing, 52(8):2165–2176, 2004.

[29] O. Dekel, S. Shalev-Shwartz, and Y. Singer, “The forgetron: A
kernel-based perceptron on a budget,” SIAM Journal on Computing,
37(5):1342–1372, 2008.

[30] G. Cavallanti, N. Cesa-Bianchi, and C. Gentile, “Tracking the best
hyperplane with a simple budget perceptron,” Machine Learning, 69(2-
3):143–167, 2007.

[31] F. Orabona, J. Keshet, and B. Caputo, “The projectron: a bounded
kernel-based perceptron,” Proceedings of the International Conference on
Machine Learning, pp. 720–727, 2008.

[32] Z. Wang and S. Vucetic, “Online passive-aggressive algorithms on a
budget,” International Conference on Artificial Intelligence and Statistics,
pp. 908–915, 2010.

[33] Z. Wang, K. Crammer, and S. Vucetic, “Breaking the curse of kerneliza-
tion: Budgeted stochastic gradient descent for large-scale svm training,”
Journal of Machine Learning Research, 13(Oct):3103–3131, 2012.

[34] Z. Wang and S. Vucetic, “Twin vector machines for online learning on a
budget,” International Conference on Data Mining, pp. 906–917. SIAM,
2009.

[35] Z. Dang, B. Gu, and H. Huang, “Large-Scale Kernel Method for Vertical
Federated Learning,” Federated Learning, pp. 66-80. Springer, 2020.

[36] B. Gu, Z. Dang, X. Li, and H. Huang, “Federated doubly stochastic
kernel learning for vertically partitioned data,” Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 2483-2493. 2020.

[37] S. C. H. Hoi, R. Jin, P. Zhao, and T. Yang, “Online multiple kernel
classification,” Machine Learning, 90(2):289–316, 2013.

[38] R. Jin, S. C. H. Hoi, and T. Yang, “Online multiple kernel learning: Al-
gorithms and mistake bounds,” In International conference on algorithmic
learning theory, pp. 390–404. Springer, 2010.

[39] D. Sahoo, S. Hoi, and P. Zhao, “Cost sensitive online multiple kernel
classification,” In Asian Conf. on Machine Learning, pp. 65–80, 2016.

[40] D. Sahoo, S. C. H. Hoi, and B. Li, “Online multiple kernel regression,”

16

In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 293–302, 2014.

[41] J. Lu, D. Sahoo, P. Zhao, and S. C. H. Hoi, “Sparse passive-aggressive
learning for bounded online kernel methods,” ACM Transactions on
Intelligent Systems and Technology (TIST), 9(4):1–27, 2018.

[42] Y. Ding, C. Liu, P. Zhao, and S. C. H. Hoi, “Large scale kernel methods
for online auc maximization,” In 2017 IEEE International Conference on
Data Mining (ICDM), pp. 91–100. IEEE, 2017.

[43] A. Koppel, S. Paternain, C. Richard, and A. Ribeiro, “Decentralized
online learning with kernels,” IEEE Transactions on Signal Processing,
66(12):3240–3255, 2018.

[44] H. Pradhan, A. S. Bedi, A. Koppel, and K. Rajawat, “Adaptive kernel
learning in heterogeneous networks,” IEEE Transactions on Signal and
Information Processing over Networks, vol. 7, 2021.

[45] P. Xu, Z. Tian, Z. Zhang, and Y. Wang, “Coke: Communication-censored
kernel learning via random features,” IEEE Data Science Workshop, pp.
32-36, 2019.

[46] Y. Liu, W. Xu, G. Wu, Z. Tian, and Q. Ling, “Communication-censored
admm for decentralized consensus optimization,” IEEE Transactions on
Signal Processing, 67(10):2565–2579, 2019.

[47] S. Hong, and J. Chae, “Distributed Online Learning with Multiple
Kernels,” IEEE Trans. on Neural Networks and Learning Systems, 2021.

[48] Y. Shen, T. Chen, and G. B. Giannakis, “Random feature-based online
multi-kernel learning in environments with unknown dynamics,” The
Journal of Machine Learning Research 20(1): 773-808, 2019.

[49] B. Schölkopf, A. J. Smola, F. Bach, et al., Learning with kernels: support
vector machines, regularization, optimization, and beyond. MIT press,
2002.

[50] G. Wahba, Spline models for observational data, vol. 59, SIAM, 1990.

[51] C. A. Micchelli and M. Pontil, “Learning the kernel function via
regularization,” J. of Mach. Learn. Res., vol. 6, pp. 1099–1125, 2005.

[52] C. Cortes, M. Mohri, and A. Rostamizadeh, “`2-regularization for
learning kernels,” In Proceedings of the Twenty-Fifth Conference on
Uncertainty in Artificial Intelligence, pp. 109–116, Montreal, Canada,
Jun. 2009.

[53] M. Gönen and E. Alpaydın, “Multiple kernel learning algorithms,”
Journal of machine learning research, vol. 12, pp. 2211–2268, 2011.

[54] Y. Shen, T. Chen, and G. B. Giannakis, “Online ensemble multi-kernel
learning adaptive to non-stationary and adversarial environments,” In
Proceedings of the 21st International Conference on Artificial Intelligence
and Statistics, pp. 2037-2046, 2018.

[55] D. Alistarh, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd: Randomized
quantization for communication-optimal stochastic gradient descent,” arXiv
preprint arXiv:1610.02132, 2016.

[56] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A
public domain dataset for human activity recognition using smartphones,”
In Euro. Symp. on Artificial Neural Netw., Comp. Intell. and Mach. Learn.,
Bruges, Belgium, Apr. 2013.

[57] I. C. Yeh and C. H. Lien, “The comparisons of data mining techniques
for the predictive accuracy of probability of default of credit card clients,”
Expert Systems with Applications, 36(2):2473–2480, 2009.

[58] J. Lines, A. Bagnall, P. Caiger-Smith, and S. Anderson, “Classification of
household devices by electricity usage profiles,” In Intl. Conf. on Intelligent
Data Engineering and Automated Learning, pp. 403–412, Sep. 2011.

[59] Y. LeCun, C. Cortes, and C. J. C. Burges, The mnist database, URL
http://yann. lecun. com/exdb/mnist, 1998.

[60] M. Lichman, UCI machine learning repository, 2013.

[61] S. D. Vito, E. Massera, M. Piga, L. Martinotto, and G. D. Francia,
“On field calibration of an electronic nose for benzene estimation in an
urban pollution monitoring scenario,” Sensors and Actuators B: Chemical,
129(2):750–757, 2008.

[62] M. Kachuee, M. M. Kiani, H. Mohammadzade, and M. Shabany, “Cuff-
less high-accuracy calibration-free blood pressure estimation using pulse
transit time,” In IEEE international symposium on circuits and systems
(ISCAS), pp. 1006-1009, May 2015.

[63] L. M. Candanedo, V. Feldheim, and D. Deramaix, “Data driven prediction

models of energy use of appliances in a low-energy house,” Energy and
buildings, 140:81–97, 2017.

[64] F. Kawala, A. Douzal-Chouakria, E. Gaussier, and E. Dimert, “Prédictions
d’activité dans les réseaux sociaux en ligne,” 4ième conférence sur
les modèles et l’analyse des réseaux: Approches mathématiques et
informatiques, pp. 16, 2013.

[65] S. Shalev-Shwartz, “Online learning and online convex optimization,”
Foundations and Trends in Machine Learning, 4(2):107–194, 2011.

	Introduction
	Preliminaries
	RF-based kernel learning

	Distributed and quantized OMKL
	Distributed OMKL
	Quantized and distributed OMKL
	Communication efficiency

	Regret analysis
	Experiments
	Classification
	Regression

	Conclusion
	Appendix A: Proof of Lemma 1
	Appendix B: Proof of Theorem 1
	Biographies
	Yanning Shen
	Saeed Karimi-Bidhendi
	Hamid Jafarkhani

