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Toward Metrics for Cyber Resilience 

Abstract 
There is great interest in the topic of resilient cyber systems. However, much of the accompanying 
research is clouded by a lack of an appropriate definition of the term “resilience” and the challenges 
of measuring the actual resilience of a system. In this paper, we examine some of the lessons 
learned in defining resilience metrics and argue that such metrics are highly contextual, and that a 
general, quantitative set of metrics for resilience of cyber systems is impractical. Instead, we 
provide a set of considerations and guidelines for building metrics that are helpful for a particular 
system.  

Introduction 
For some time now, the design of complex computational systems has been going through a 
philosophical shift, moving from a principle of robustness-centered design to a principle of more 
flexible and adaptive design. These systems are capable of surviving, reacting and recovering from 
external attacks and localized failures. This paradigm shift to a “fighting through design” 
philosophy is, in retrospect, unavoidable, as the limitations of proactive defense mechanism become 
clear. 
It is now generally well accepted that systems inevitably will be attacked, often successfully, so 
they have to be designed to survive these attacks, and recover from their effects to restore and 
maintain desired availability and functionality.  

While there is much good work in this area, real scientific progress has been hampered by the loose 
definition of “resilience” and (as a result) a lack of metrics in this space. As such systems become 
more accepted and deployed in different application domains, the need for a definition and metrics 
becomes of greatest importance, not only to establish common ground, but also to determine 
whether progress is occurring. 
A previous publication (Bishop et al., 2011) focused on the definition of the term “resilience”, and 
how it relates to the concepts of “robustness” and “survivability”. It noted that resilience is multi-
faceted. Although often discussed form the perspective of performance and availability (Heddaya & 
Helal, 1997, Carvalho et al., 2010), resilience also relates to different properties of the system such 
as confidentiality and integrity (Bishop et al., 2011).  
In this paper we focus on resilience metrics. After a brief review of the terminology and definitions, 
we introduce some of the current proposals for measuring resilience. We then discuss some of the 
challenges and limitations associated with these proposals, highlighting some of the additional 
considerations that must be taken into account to adequately represent the resilience of a system.  

Defining our Terms 
“Resilience” is challenging to define. The term refers to specific systems, tasks, outputs, and other 
conditions that vary between scenarios, which precludes the development of a universal metric that 
applies to all system in all situations. Just as different musicians cannot agree on the “best” 
rendition of a song, this existential definition of resilience has implications. In some disciplines 
such as ecology, the resilience of a system is defined as the time the system takes to recover to 
steady state conditions after a perturbation.  



In computing, such a definition is unsatisfactory, partly due to the demands we place on our 
systems (the fitness of a system depends on not its endpoint, but on the path taken to get there) and 
partly due to the immaturity of computing recovery options. Biological ecosystems exist to 
reproduce—to continue to exist, essentially. Computing infrastructures typically have an external 
mission. If we define resilience to be just the recovery time, how do we factor in the differences in 
missions? This question, while difficult to answer, plays an important role in how we quantify and 
measure the resilience of a system. 

Considerations for Resilience Metrics 
The considerations or resilience metrics that we explore in this section are particular to the context 
of cyber systems. Resilience of ecological systems, for example, rarely considers the magnitude of a 
response, focusing instead only on the time taken to return to pre-disturbance conditions.  
Our notion of metrics is congruent with the extensive theory of measurement. As early as 1946, 
Stevens (Stevens, 1946) proposed different levels of measurement, ranging from nominal, the 
labelling of objects, to ratio, the use of more sophisticated statistical techniques to determine 
equality, rank order, equality of intervals and equality of ratios. Typically, we consider 
measurements to range from weak to strong, with the weakest being nominal, and progressing 
though ordinal, interval, and ratio. 
We would like our measurements to be as useful as possible. When we refer to resilience, we need 
to ask what a system being “twice as resilient” as another actually means. If this cannot be 
expressed in terms that are meaningful, the idea of a ratio-based measurement may be impractical or 
not applicable to the topic of resilience.  
A measurement is a representation of a quantity. It is not the quantity being measured, and this is an 
important distinction. A measurement provides insight into the attribute under inspection.  
This section proposes several guidelines for constructing metrics that are appropriate for a particular 
system, given our definitional ambiguity. Each consideration is described and then explored on an 
informal discussion. 

Guideline A: All near-term metrics for resilience are likely to be ordinal 
Engineers and scientists like to be able to assign numbers to things. “This GPU can carry out 1.1 
teraflops—3 times as many as a CPU” is a meaningful statement that reveals something concrete 
about the systems under comparison. It is 1-dimensional, because it compares only computation 
speed. But resilience is not a 1-dimensional quantity.  
Measuring the resilience of a system requires “rolling up” a time series f(t) into a single number.  
Different system inputs produce different time series; loss of dimensionality creates a many-to-one 
mapping and, consequentially, a loss of information in the translation. Furthermore, the behavior 
(and recovery) of the system will vary depending on the failure or perturbation. For simple cases 
with a given set of possible outputs, it is typically possible to claim that one output is more 
desirable than another. This provides an ordinal metric. 



 
Figure 1: Examples or a system response to an external perturbation 

Let us consider a very simple system as an example. We will use this example throughout the paper 
to illustrate a system that is, at least at its core, very straightforward to analyse. 

Consider a generator tasked to produce a certain voltage v. The system uses direct current (DC), so 
that we do not have to consider issues related to phase and timing; instead, we have a single scalar 
value that represents the system at any particular time. At time t1, the system undergoes a 
perturbation of arbitrary origin. Figure 1 shows four possible graphs for the system response. 

In panel (b) of the graph, the response curve is similar to that in (a) except that the magnitude of the 
response is greater for all values of t. We can thus argue that (a) represents a more resilient system 
than (b), but cannot really say how much more resilient until we consider the system in a given 
operational context. Also, panel (c) is similar to panel (a) except that the recovery happens more 
slowly. Panel (d) simply illustrates that curves may be unexpected and take arbitrary shapes—any 
measurement scheme must account for this possibility. Measuring the lowest point and time to 
recovery does not adequately characterize these curves. Similarly, the change in the area under the 
curve due to the perturbation, as proposed in (Wei & Ji, 2010), is only a partial measure of 
resilience. 
Of course, we can measure quantities related to resilience. Time to recovery, for example, is a 
numerical measure of a single aspect of resilience (Ives, 1995). Composing the measures of 
different aspects in order to reason about resilience itself is where our sense of ordinality originates.  

Even with our simple example it is fairly easy to argue, by observation, that at least in vacuo, the 
system represented by Figure 1(a) is more resilient than those represented by Figures 1(b), 1(c) and 
1(d). Recovery follows the same trend, it just happens more quickly. Even here, though, things are 
not quite that simple, and we will revisit these graphs in Guideline H.  



Guideline B: Resilience measurements are particular to a particular perturbation 
Different perturbations will cause different system responses. The failure and subsequent recovery 
of function of a particular part of a system is likely to lead to very different output patterns. This 
inherent notion of events in resilience has been noted not only in the security domain but also in the 
areas of organizational (Westrum, 2006) and systems resilience (Sugden, 2001). In all cases, the 
concept relates to the challenge or disruption affecting the normal operation of the system.  
Thus, when measuring resilience, we are actually measuring each individual perturbation and its 
different magnitudes, and providing an ordering that may be unique to a particular set of conditions. 
For example, one system might be resilient with respect to temperature increases of 5, 10, or 15 
degrees Celsius, returning to steady state output after each temperature change. However, the same 
system may fail completely (that is, have no resilience whatsoever) in the event of a flood. For any 
system that we are likely to care about, there will be sufficient complexity that the resilience of the 
system will vary as a function of the type and magnitude of the perturbation. Determining the “best” 
system in this case will require an understanding of the disruptions that could occur in practice and 
of the users’ tolerance of them. Capturing this numerically will be difficult. 

Guideline C: Resilience metrics are deeply dependent on the boundary drawn around 
the system 

Rarely does considering the resilience of a single piece of a larger system in isolation make sense. 
Our example above (see Figure 1) considered a generator in isolation. If we increase the scope of 
that system to include what the generator powers, our determination of its resilience changes. 
Consider, for example, a generator that is powering a series of incandescent bulbs. Such a system is 
still usable when the voltage sags—the lights may dim, but still provide adequate lighting. In 
contrast, a generator powering a computing device will fail in its mission when the voltage sags 
below a critical value—the computer is either working or it is not. 

Let us extend our example by providing support for a battery backup. When the generator output 
sags, the batteries can provide power for a certain number of kWh. For this system, the total power 
shortfall drives the failure—that is, it does not matter if the generator output drops to zero as long as 
it returns to functionality before the batteries are exhausted. Continuing to expand our view, 
suppose the batteries can run long enough for a human to intervene and install a new generator. The 
electronic system is not in itself resilient—it does not repair itself or recover—but the system as a 
whole is resilient (just not autonomically so).  
The boundaries we draw around the “system” are critical in considering resilience. They must be 
carefully thought through and well defined. By changing the boundaries, a system that we 
considered not to be resilient may in fact be resilient, and vice versa. Any metrics we use to 
measure resilience are specific to a particular system boundary.  
Perhaps the most fundamental distinction we can draw concerns human input discriminating 
between those systems with autonomic recovery, and those requiring some level of manual 
intervention. Determining which type of system we are exploring is critical to our choice of metric. 
In the case of an autonomic recovery, we expect the system to handle perturbations without human 
input. By considering humans as part of the system, all systems are in some sense resilient because 
the imagination and understanding of people provide an almost infinite pool of resources from 
which to rebuild the system. Conversely, for many real world systems, human intervention is a very 
real part of the larger system, and a resilience mechanism that provides adequate performance until 
humans can intervene is sufficient.  



Guideline D: There is no universal way to combine multiple scenarios meaningfully to 
produce a “global” resilience ordering 

As touched on above, any attempt to distil multiple measures of resilience into an “overall” measure 
of the system is fraught with problems. The different magnitudes of each class of disruption may 
have very different behaviours.  
Attempting to unify the resulting curves into something that adequately represents the system is 
deeply contextual. Furthermore, when considering systems that need to be resilient to attack, any 
metric must take into consideration that a skilled attacker will attack the system at its weakest point. 
Attempting to reduce different aspects of resilience to a simple scalar loses so much information 
that we believe such a reduction to be ill-advised.  

Guideline E: The ordinal ranking of a system could be different for each customer or 
application  

The system requirements drive our ordinal ranking of resilience. Turning once again to our 
generator example, we can imagine two different sets of requirements. One customer may require 
the generator to maintain a certain minimum voltage at all times. Thus, any drop of voltage below 
this critical value makes the system as a whole not resilient even if the generator itself recovers. But 
another customer may care about the total time the voltage sags below its assigned value. If this sag 
lasts longer than a certain period of time, the system fails. So in this case, even if the generator 
capacity recovers, the system as a whole has failed. 

This leads to two observations. First, the systems are no longer the same. External dependencies 
beyond the generator itself make the systems different, even though the generation component is the 
same. Second, the same behaviour of the generator can be “good” for some customers and “bad” for 
others. Thus, we cannot treat the customer requirements as a black box. The resilience of the 
generation system itself matters less than the resilience of the system it supports. The customer 
requirements must drive our metrics for resilience; they are not tied to a single component.  

Guideline F: Metrics for cyber systems are different than those of their physical 
counterparts 

When we consider cyber operations—especially when we must account for the presence of a 
malicious adversary intent on damaging the system—we must think about systemic resilience 
differently than when thinking about random failure.   

When dealing with random errors, it is possible to determine with some degree of surety the 
probability of the different failure modes of the system. As such, it is possible to consider the 
probability of different trajectories the system might take. 
But, when we apply this reasoning to non-random failure such as an attacker might cause, a 
different picture emerges. A simple example is helpful. Assume we have 10 vulnerable web servers, 
and we patch 9 of them. We might conclude that, because we have repaired 90% of the machines, 
our risk has diminished dramatically. Alas, when facing an adversary, this is incorrect. Should the 
attacker identify the weak server, the site as a whole will be penetrated—so patching 9 web servers 
does not make the system as a whole 9 times more secure.  
Thus, when dealing with an adversary, resilience needs to be viewed in terms of attacker capability 
and cost.  



Guideline G: Considering just the system output is not a sufficient picture of resilience 
When reasoning about resilience, it is important to measure the ability of the system to withstand 
further attacks (Mendonca, 2008). For example, consider a system composed of n redundant 
generators. When a generator fails for any reason, it can be replaced by one of the other generators; 
conceivably, this could happen without any significant degradation of quality of service. However, 
after the failure, the system is not as resilient as it was previously. This “capacity” of the system to 
recover from subsequent failures is an important part of determining systemic resilience and is not 
necessarily captured by the output of the system until it actually fails. As such, an important part of 
measuring the system’s resilience is the cost in terms of its effect on the ability of the system to 
recover from subsequent failures or attacks.  

Guideline H: Measuring resilience alone is usually not what we want 
How we define “robustness” and “resilience” has strong implications when we try to compare the 
resilience of two systems. In particular, the sense that robustness is related to the system’s rigidity, 
and the sense that resilience is related to recovery, can lead to some counter-intuitive conclusions if 
we attempt to measure resilience alone.  
Consider the system producing the graphs in Figure 1. Imagine a system that is not affected (in 
terms of output) by any event or disturbance—that is, the system essentially continues unperturbed 
by the attack or failure. Technically, this system displays robustness, but has not demonstrated 
resilience to a particular attack. Thus, one could argue that it could be less resilient than a system 
that is perturbed by, but recovers from, the same kind of event. In this scenario, measuring 
resilience may not make sense, at least from the perspective of recovery to an attack (as defined in 
(Bishop et al., 2011)). An isolated measure of resilience may not be meaningful without a given 
context, and associated indicators of robustness of the system.  

Future Work 
One of the challenges with a metric that provides an ordinal scale is that we can say, for a certain 
set of circumstances, that System A is more resilient than System B, but we cannot say how much 
better. This is particularly important when considering the cost-benefit ratio of System A compared 
to that of System B. If, in practice, System A provides an infinitesimal improvement over System 
B, its value may not be much higher than System B’s. Conversely, if “more resilient” means that A 
will survive and recover and B will not, the value of System A over B is potentially very high. 
Our sense is that there is no universal way of quantifying these differences. The “correct” approach 
is one that takes into account the relative costs and likelihood of failure. This is further complicated 
when systems need to be resilient to attack as well as random failure or perturbation. For such a 
system, an approach that provides generally good performance but fails utterly in one particular 
attack scenario should be weighed by its worst-case performance coupled with the cost to the 
attacker in terms of resources, sophistication, or exploitability. For example, if a system fails 
catastrophically when a certain number can be predicted but the chances of successful prediction are 
low—say 264 to 1—the failure, despite its severity, might not be very important in practice.  
Perhaps the solution is to identify a nuanced set of definitions for resilience that brings context and 
other external factors into account. Simplifying the definition to describe a single dimension of the 
property (for example, the system recovery time) may provide a single comfortable metric, but will 
certainly fail to grasp the full meaning of resilience. If instead, resilience is considered as a multi-



faceted property of the system, it may require a more complex description and a set of nuanced 
metrics, but will better represent the different system perspectives, and operational contexts.   
The relative lack of test scenarios for resilience is an area ripe for exploration. Given that the 
resilience of the system is so sensitive to the scenario under consideration, standardized scenarios 
being available for different problem spaces would allow the direct and reproducible comparison of 
different approaches to survivability (and robustness, and resilience...) using different techniques. 
Without this, much of the work in resilient systems is open to criticism on the grounds that careful 
(or even random) selection of the scenario and requirements can lead to very different conclusions. 
Any funding agency interested in this space should carefully consider this point; even in our simple 
examples, two identical component behaviours can have different implications based on the design 
of the system as a whole. 

Conclusion 
In this paper, we have examined the concept of resilience as it applies to cyber systems. Our 
conclusion is that the development of an overarching set of metrics that can adequately measure 
resilience in all, or even most, systems is, for the foreseeable future, impractical. Resilience is very 
much about the requirements of the system, and different inputs can and will produce different 
systemic behaviour. Any “simple” measure of resilience obscures much detail, and is likely to be 
counterproductive. 

In recognition of this, we have described several issues to be considered when attempting to 
measure the resilience of simple system (a simplified power generator). We do not claim this group 
of issues to be universal or comprehensive, but it at least allows us to begin reasoning about both 
how to demonstrate resilience in experiments, and how to best compare different routes toward 
resilient systems. Despite the challenges inherent in measuring resilience, the problem is an 
important one, and its lack of a clear or partial solution restricts progress in the field of cyber 
resilience in general.   
The complexity and nuances of resilience in real world systems are a major challenge in the 
development not only of resilient systems but also in allowing us to compare the actual behaviour 
of systems. This complexity rises quickly in the face of an adversary who will attempt to exploit the 
system in different ways. Our intuition tells us that funding agencies that have in interest in the 
design of resilient systems will need to provide unambiguous and shareable scenarios that allow the 
direct comparison of different techniques. These scenarios are a critical component of the definition 
of both “resilience” and of the actual system under consideration. 
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