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Introduction

In recent years, there has been an explosion of machine learning applications ranging

from (partially) self-driving cars to large language models such as ChatGPT. These models

are becoming an increasingly prevalent part of society, and it is therefore crucial that they are

deployed in a safe and reliable way.

Classical machine learning theory, which forms the basis upon which much of this

technology is built, typically involves a formalism in which the learner is given input data and

asked to solve a specific task. For example, in the statistical learning framework for classification,

the learner is given training data and asked to output a classifier with the highest possible accuracy.

However, specific approaches such as this often fail to capture the multitude of behaviors and

features that are necessary for broader applications of machine learning. Indeed, performing

well on test data is far from a sufficient condition for a model to be deployable in the real world.

This dissertation attempts towards building theoretical foundations that are able to address

machine learning in this broader context by considering two specific problems in reliable machine

learning, adversarial examples, and data copying.

Adversarial examples. Adversarial examples arise in classification, and are small

imperceptible changes to a given input that are designed to cause misclassification. For example,

a malicious actor might try to circumvent a spam filter by finding perturbations that fool the filter

but nevertheless preserve the essence of their content. To remedy this, there has been a growing

focus on building robust classifiers for which adversarial examples cannot exist.

In the first two chapters of this dissertation, we study this problem in the non-parametric

setting and seek to understand under what conditions non-parametric algorithms output classifiers
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that are both accurate and robust. In the next two chapters, we consider linear classification and

seek to understand whether robust classification intrinsically requires more data than simply

focusing on accuracy does.

Data Copying. Next, we switch gears and consider a problem in reliable generative

modeling. Prior work (i.e. [4, 5]) has found that large generative models often appear to

memorize their training data and often output a near copy of one of their training points when

queried. In addition to posing clear security risks with respect to privacy or copyright violations,

such ”data-copying” also indicates poor generalization and limited usefulness. In the last chapter

of this dissertation, we propose a formal definition of data-copying and give the first algorithm

with provable guarantees for detecting it.
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Chapter 1

When are Non-Parametric Methods Ro-
bust?

1.1 Introduction

Recent work has shown that many classifiers tend to be highly non-robust and that small

strategic modifications to regular test inputs can cause them to misclassify [6, 7, 8]. Motivated

by the use of machine learning in safety-critical applications, this phenomenon has recently

received considerable interest; however, what exactly causes this phenomenon – known in the

literature as adversarial examples – still remains a mystery.

Prior work has looked at three plausible reasons why adversarial examples might exist.

The first, of course, is the possibility that in real data distributions, different classes are very

close together in space – which does not seem plausible in practice. Another possibility is

that classification algorithms may require more data to be robust than to be merely accurate;

some prior work [9, 10, 11] suggests that this might be true for certain classifiers or algorithms.

Finally, others [12, 13, 10] have suggested that better training algorithms may give rise to more

robust classifiers – and that in some cases, finding robust classifiers may even be computationally

challenging.

In this work, we consider this problem in the context of general non-parametric classifiers.

Contrary to parametrics, non-parametric methods are a form of local classifiers, and include a

large number of pattern recognition methods such as nearest neighbors, decision trees, random
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forests and kernel classifiers. There is a richly developed statistical theory of non-parametric

methods [14], which focuses on accuracy, and provides very general conditions under which

these methods converge to the Bayes optimal with growing number of samples. We, in contrast,

analyze robustness properties of these methods, and ask instead when they converge to the

classifier with the highest astuteness at a desired radius r. Recall that the astuteness of a classifier

at radius r is the fraction of points from the distribution on which it is accurate and has the same

prediction up to a distance r [10, 9].

We begin by looking at the very simple case when data from different classes is well-

separated – by at least a distance 2r. Although achieving astuteness in this case may appear

trivial, we show that even in this highly favorable case, not all non-parametric methods provide

robust classifiers – and this even holds for methods that converge to the Bayes optimal in the

large sample limit.

This raises the natural question – when do non-parametric methods produce astute

classifiers? We next provide conditions under which a non-parametric method converges to the

most astute classifier in the large sample limit under well-separated data. Our conditions are

analogous to the classical conditions for convergence to the Bayes optimal [14, 15], but a little

stronger. We show that nearest neighbors and kernel classifiers whose kernel functions decay

fast enough, satisfy these conditions, and hence converge to astute classifiers in the large sample

limit. In constrast, histogram classifiers, which do converge to the Bayes optimal in the large

sample limit, may not converge to the most astute classifier. This indicates that there may be

some non-parametric methods, such as nearest neighbors and kernel classifiers, that are more

naturally robust when trained on well-separated data, and some that are not.

What happens when different classes in the data are not as well-separated? For this

case, [16] proposes a method called Adversarial Pruning that preprocesses the training data by

retaining the maximal set of points such that different classes are distance ≥ 2r apart, and then

trains a non-parametric method on the pruned data. We next prove that if a non-parametric

method has certain properties, then the classifier produced by Adversarial Pruning followed by
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the method does converges to the most astute classifier in the large sample limit. We show that

again nearest neighbors and kernel classifiers whose kernel functions decay faster than inverse

polynomials satisfy these properties. Our results thus complement and build upon the empirical

results of [16] by providing a performance guarantee.

What can we conclude about the cause for adversarial examples? Our results seem to

indicate that at least for non-parametrics, it is mostly the training algorithms that are responsible.

With a few exceptions, decades of prior work in machine learning and pattern recognition has

largely focussed on designing training methods that provide increasingly accurate classifiers –

perhaps to the detriment of other aspects such as robustness. In this context, our results serve

to (a) provide a set of guidelines that can be used for designing non-parametric methods that

are robust and accurate on well-separated data and (b) demonstrate that when data is not well-

separated, preprocessing through adversarial pruning [16] may be used to ensure convergence to

optimally astute solutions in the large sample limit.

1.1.1 Related Work

There is a large body of work on adversarial attacks [17, 18, 19, 20, 6] and defenses [21,

22, 2, 23, 24, 25] in the parametric setting, specifically focusing on neural networks. On the

other hand, adversarial examples for nonparametric classifiers have mostly been studied in a

much more ad-hoc manner, and to our knowledge, there has been no theoretical investigation

into general properties of algorithms that promote robustness in non-parametric classifiers.

For nearest neighbors, there has been some prior work on adversarial attacks [26, 27, 10,

16] as well as defenses. Wang et. al. [10] proposes a defense for 1-NN by pruning the input

sample. However, their defense learns a classifier whose robustness regions converge towards

those of the Bayes optimal classifier, which itself may potentially have poor robustness properties.

Yang et. al. [16] accounts for this problem by proposing the notion of the r-optimal classifier,

and propose an algorithm called Adversarial Pruning which can be interpreted as a finite sample

approximation to the r-optimal. However, they do not provide formal performance guarantees
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for Adversarial Pruning, which we do.

For Kernel methods, Hein and Andriushchenko [21] study lower bounds on the norm of

the adversarial manipulation that is required for changing a classifiers output. They specifically

study bounds for Kernel Classifiers, and propose an empirically based regularization idea that

improves robustness. In this work, we improve the robustness properties of kernel classification

through adversarial pruning, and show formal guarantees regarding convergence towards the

r-optimal classifier.

For decision trees and random forests, attacks and defenses have been provided by

[28, 29, 30]. Again, most of the work here is empirical in nature, and convergence guarantees

are not provided.

Pruning has a long history of being applied for improving nearest neighbors [31, 32, 33,

34, 35, 36], but this has been entirely done in the context of generalization, without accounting

for robustness. In their work, Yang et. al. empirically show that adversarial pruning can improve

robustness for nearest neighbor classifiers. However, they do not provide any formal guarantees

for their algorithms. In this work, we prove formal guarantees for adversarial pruning in the

large sample limit, both for nearest neighbors as well as for more general weight functions.

There is a long history of literature for understanding the consistency of Kernel classifiers

[37, 15], but this has only been done for accuracy and generalization. In this work, we find

different conditions are needed to ensure that a Kernel classifier converges in robustness in

addition to accuracy.

1.2 Preliminaries

1.2.1 Setting

We consider binary classification where instances are drawn from a totally bounded

metric space X that is equipped with distance metric denoted by d, and the label space is

{±1} = {−1,+1}. The classical goal of classification is to build a highly accurate classifier,
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which we define as follows.

Definition 1.2.1. (Accuracy) Let D be a distribution over X ×{±1}, and let f ∈ {±1}X be a

classifier. Then the accuracy of f over D , denoted A( f ,D), is the fraction of examples (x,y)∼D

for which f (x) = y. Thus

A( f ,D) = P(x,y)∼D [ f (x) = y].

In this work, we consider robustness in addition to accuracy. Let B(x,r) denoted the

closed ball of radius r centered at x.

Definition 1.2.2. (Robustness) A classifier f ∈ {±1}X is said to be robust at x with radius r if

f (x) = f (x′) for all x′ ∈ B(x,r).

Our goal is to find non-parametric algorithms that output classifiers that are robust, in

addition to being accurate. To account for both criteria, we combine them into a notion of

astuteness [10, 9].

Definition 1.2.3. (Astuteness) A classifier f ∈ {±1}X is said to be astute at (x,y) with radius r

if f is robust at x with radius r and f (x) = y. The astuteness of f over D , denoted Ar( f ,D), is

the fraction of examples (x,y)∼D for which f is astute at (x,y) with radius r. Thus

Ar( f ,D) = P(x,y)∼D [ f (x′) = y,∀x′ ∈ B(x,r)].

It is worth noting that A0( f ,D) = A( f ,D), since astuteness with radius 0 is simply the

accuracy. For this reason, we will use A0( f ,D) to denote accuracy from this point forwards.

1.2.2 Notions of Consistency

Traditionally, a classification algorithm is said to be consistent if as the sample size grows

to infinity, the accuracy of the classifier it learns converges towards the best possible accuracy

on the underlying data distribution. We next introduce and formalize an alternative form of

consistency, called r-consistency, that applies to robust classifiers.
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We begin with a formal definition of the Bayes Optimal Classifier – the most accurate

classifier on a distribution – and consistency.

Definition 1.2.4. (Bayes Optimal Classifier) The Bayes Optimal Classifier on a distribution D ,

denoted by g∗, is defined as follows. Let η(x) = pD(+1|x). Then

g∗(x) =


+1 η(x)≥ 0.5

−1 η(x)< 0.5

It can be shown that g∗ achieves the highest accuracy over D over all classifiers.

Definition 1.2.5. (Consistency) Let M be a classification algorithm over X ×{±1}. M is said

to be consistent if for any D over X ×{±1}, and any ε,δ over (0,1), there exists N such that

for n≥ N, with probability 1−δ over S∼Dn, we have:

A(M(S),D)≥ A(g∗,D)− ε,

where g∗ is the Bayes optimal classifier for D .

How can we incorporate robustness in addition to accuracy in this notion? A plausible

way, as used in [10], is that the classifier should converge towards being astute where the Bayes

Optimal classifier is astute. However, the Bayes Optimal classifier is not necessarily the most

astute classifier and may even have poor astuteness. To see this, consider the following example.

Example 1

Consider D over X = [0,1] such that DX is the uniform distribution and

p(y = 1|x) = 1
2
+ sin

4πx
r

.

For any point x, there exists x1,x2 ∈ ([x− r,x + r]∩ [0,1]) such that p(y = 1|x1) >
1
2 and

p(y = 1|x2) <
1
2 . Ar(g∗,r) = 0. However, the classifier that always predicts f (x) = +1 does
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better. It is robust everywhere, and since P(x,y)∼D [y =+1] = 1
2 , it follows that Ar( f ,D) = 1

2 .

This motivates the notion of the r-optimal classifier, introduced by [16], which is the

classifier with maximum astuteness.

Definition 1.2.6. (r-optimal classifier) The r-optimal classifier of a distribution G denoted by

g∗r is the classifier with maximum astuteness. Thus

g∗r = argmax
f∈{±1}X

Ar( f ,D).

We let A∗r (D) denote Ar(g∗r ,D).

Observe that g∗r is not necessarily unique. To account for this, we use A∗r (D) in our

definition for r-consistency.

Definition 1.2.7. (r-consistent) Let M be a classification algorithm over X ×{±1}. M is said

to be r-consistent if for any D , any ε,δ ∈ (0,1), and 0 < γ < r, there exists N such that for

n≥ N, with probability 1−δ over S∼Dn,

Ar−γ(M(S),D)≥ A∗r (D)− ε.

if the above conditions hold for a specific distribution D , we say that M is r-consistent with

respect to D .

Observe that in addition to the usual ε and δ , there is an extra parameter γ which measures

the gap in the robustness radius. We may need this parameter as when classes are exactly 2r

apart, we may not be able to find the exact robust boundary with only finite samples.

Our analysis will be centered around understanding what kinds of algorithms M provide

highly astute classifiers for a given radius r. We begin by first considering the special case of
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r-separated distributions.

Definition 1.2.8. (r-separated distributions) A distribution D is said to be r-separated if there

exist subsets T+,T− ⊂X such that

1. P(x,y)∼D [x ∈ T y] = 1.

2. ∀x1 ∈ T+,∀x2 ∈ T−, d(x1,x2)> 2r.

Observe that if D is r-separated, Ar(g∗r ,D) = 1.

1.2.3 Non-parametric Classifiers

Many non-parametric algorithms classify points by averaging labels over a local neigh-

borhood from their training data. A very general form of this idea is encapsulated in weight

functions – which is the general form we will use.

Definition 1.2.9. [14] A weight function W is a non-parametric classifier with the following

properties.

1. Given input S = {(x1,y1),(x2,y2,), . . . ,(xn,yn)} ∼Dn, W constructs functions wS
1, . . . ,w

S
n :

X → [0,1] such that for all x∈X , ∑
n
1 wS

i (x) = 1. The functions wS
i are allowed to depend

on x1,x2, . . .xn but must be independent of y1,y2, . . . ,yn.

2. W has output WS defined as

WS(x) =


+1 ∑

n
1 wS

i (x)yi > 0

−1 ∑
n
1 wS

i (x)yi ≤ 0

As a result, wS
i (x) can be thought of as the weight that (xi,yi) has in classifying x.

Weight functions encompass a fairly extensive set of common non-parametric classifiers,

which is the motivation for considering them. We now define several common non-parametric

algorithms that can be construed as weight functions.
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Definition 1.2.10. A histogram classifier, H, is a non-parametric classification algorithm over

Rd×{±1} that works as follows. For a distribution D over R×{±1}, H takes S = {(xi,yi) : 1≤

i≤ n} ∼Dn as input. Let ki be a sequence with limi→∞ ki = ∞ and limi→∞
ki
i = 0. H constructs

a set of hypercubes C = {c1,c2, . . . ,cm} as follows:

1. Initially C = {c}, where S⊂ c.

2. For c ∈C, if c contains more than kn points of S, then partition c into 2d equally sized

hypercubes, and insert them into C.

3. Repeat step 2 until all cubes in C have at most kn points.

For x ∈R let c(x) denote the unique cell in C containing x. If c(x) doesn’t exist, then HS(x) =−1

by default. Otherwise,

HS(x) =


+1 ∑xi∈c(x) yi > 0

−1 ∑xi∈c(x) yi ≤ 0
.

Histogram classifiers are weight functions in which all xi contained within the same cell

as x are given the same weight wS
i (x) in predicting x, while all other xi are given weight 0.

Definition 1.2.11. A kernel classifier is a weight function W over X ×{±1} constructed from

function K : R+∪{0} → R+ and some sequence {hn} ⊂ R+ in the following manner. Given

S = {(xi,yi)} ∼Dn, we have

wS
i (x) =

K(d(x,xi)
hn

)

∑
n
j=1 K(

d(x,x j)
hn

)
.

Then, as above, W has output

WS(x) =


+1 ∑

n
1 wS

i (x)yi > 0

−1 ∑
n
1 wS

i (x)yi ≤ 0

Finally, we note that kn-nearest neighbors is also a weight function; wS
i (x) =

1
kn

if xi is

one of the kn closest neighbors of x and 0 otherwise.
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D+ D−

0 0.25 0.5 1

Figure 1.1. HS is astute in the green region, but not robust in the red region.

1.3 Warm Up: r-separated distributions

We begin by considering the case when the data distribution is r-separated; the more

general case is considered in Section 1.4. While classifying r-separated distributions robustly

may appear almost trivial, learning an arbitrary classifier does not necessarily produce an astute

result. To see this, consider the following example of a histogram classifier – which is known to

be consistent.

We let H denote the histogram classifier over R.

Example 2

Consider the data distribution D = D+∪D− where D+ is the uniform distribution over

[0, 1
4) and D− is the uniform distribution over (1

2 ,1], p(+1|x) = 1 for x ∈D+, and p(−1|x) = 1

for x ∈D−.

We make the following observations (refer to Figure 1.1).

1. D is 0.1-separated, since the supports of D+ and D− have distance 0.25 > 0.2.

2. If n is sufficiently large, H will construct the cell [0.25,0.5), which will not be split because

it will never contain any points.

3. HS(x) =−1 for x ∈ [0.25,0.5).

4. HS is not astute at (x,1) for x ∈ (0.15,0.25). Thus A0.1(HS,D) = 0.8.

Example 2 shows that histogram classifiers do not always learn astute classifiers even
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when run on r-separated distributions. This motivates the question: which non-parametric

classifiers do?

We answer this question in the following theorem, which gives sufficient conditions for a

weight function (definition 1.2.9) to be r-consistent over an r-separated distribution.

Theorem 1.3.1. Let D be a distribution over X ×{±1}, and let W be a weight function. Let

X be a random variable with distribution DX , and S = {(x1,y1),(x2,y2), . . . ,(xn,yn)} ∼ Dn.

Suppose that for any 0 < a < b,

lim
n→∞

EX ,S
[

sup
x′∈B(X ,a)

n

∑
1

wS
i (x
′)I||xi−x′||>b

]
= 0.

Then if D is r-separated, W is r-consistent with respect to D .

First, we compare Theorem 1.3.1 to Stone’s theorem [15], which gives sufficient condi-

tions for a weight function to be consistent (i.e. converge in accuracy towards the Bayes optimal).

For convenience, we include a statement of Stone’s theorem.

Theorem 1.3.2. [15] Let W be weight function over X ×{±1}. Suppose the following condi-

tions hold for any distribution D over X ×{±1}. Let X be a random variable with distribution

DX , and S = {(x1,y1),(x2,y2), . . . ,(xn,yn)} ∼Dn. All expectations are taken over X and S.

1. There is a constant c such that, for every nonnegative measurable function f satisfying

E[ f (X)]< ∞,

E[
n

∑
1

wS
i (X) f (xi)]≤ cE[ f (x)].

2. For all a > 0,

lim
n→∞

E[
n

∑
1

wS
i (x)I||xi−X ||>a] = 0,

where I||xi−X ||>a is an indicator variable.

3.

lim
n→∞

E[ max
1≤i≤n

wS
i (X)] = 0.
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Then W is consistent.

There are two main differences between Theorem 1.3.1 and Stone’s theorem.

1. Conditions 1. and 3. of Stone’s theorem are no longer necessary. This is because

r-separated distributions are well-separated and thus have simpler conditions for consis-

tency. In fact, a slight modification of the arguments of [15] shows that for r-separated

distributions, condition 2. alone is sufficient for consistency.

2. Condition 2. is strengthened. Instead of requiring the weight of xi’s outside of a given

radius to go to 0 for X ∼D , we require the same to uniformly hold over a ball centered at

X .

Theorem 1.3.1 provides a general condition that allows us to verify the r-consistency of

non-parametric methods. We now show below that two common non-parametric algorithms –

kn-nearest neighbors and kernel classifiers with rapidly decaying kernel functions – satisfy the

conditions of Theorem 1.3.1.

Corollary 1.3.3. Let D be any r-separated distribution. Let kn be any sequence such that

limn→∞
kn
n = 0, and let M be the kn-nearest neighbors classifier on a sample S∼Dn. Then M is

r-consistent with respect to D .

Remarks:

1. Because the data distribution is r-separated, kn = 1 will be r-consistent. Also observe that

for r-separated distributions, kn = 1 will converge towards the Bayes Optimal classifier.

2. In general, M converges towards the Bayes Optimal classifier provided that kn→ ∞ in

addition to kn/n→ 0. This condition is not necessary for r-consistency– because the

distribution is r-separated.

We next show that kernel classifiers are also r-consistent on r-separated data distributions,

provided the kernel function decreases rapidly enough.
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Corollary 1.3.4. Let W be a kernel classifier over X ×{±1} constructed from K and hn.

Suppose the following properties hold for K and hn.

1. For any c > 1, limx→∞
K(cx)
K(x) = 0.

2. limn→∞ hn = 0.

If D is an r-separated distribution over X ×{±1}, then W is r-consistent with respect to D .

Observe that Condition 1. is satisfied for any K(x) that decreases more rapidly than an

inverse polynomial – and is hence satisfied by most popular kernels like the Gaussian kernel. Is

the condition on K in Corollary 1.3.4 necessary? The following example illustrates that a kernel

classifier with any arbitrary K is not necessarily r-consistent. This indicates that some sort of

condition needs to be imposed on K to ensure r-consistency; finding a tight necessary condition

however is left for future work.

Example 3

Let X = [−1,1] and let D be a distribution with pD(−1,−1) = 0.1 and pD(1,1) = 0.9.

Clearly, D is 0.3-separated. Let K(x)= e−min(|x|,0.2)2
. Let hn be any sequence with limn→∞ hn = 0

and limn→∞ nhn =∞. Let W be the weight classifier with input S= {(x1,y1),(x2,y2), . . . ,(xn,yn)}

such that

wS
i (x) =

K( |x−xi|
hn

)

∑
n
j=1 K(

|x−x j|
hn

)
.

W can be shown to satisfy all the conditions of Theorem 1.3.2 (the proof is analogous to the

case for a Gaussian Classifier), and is therefore consistent. However, W does not learn a robust

classifier on D for r = 0.3.

Consider x =−0.7. For any {(x1,y1),(x2,y2), . . . ,(xn,yn)} ∼Dn, all xi will either be−1

or 1. Therefore, since K(|x− (−1)|) = K(|x− 1|), it follows that wS
i (x) =

1
n for all 1 ≤ i ≤ n.

Since xi = 1 with probability 0.9, it follows that with high probability x will be classified as 1

which means that f , the output of W , is not robust at x =−1. Thus f has astuteness at most 0.9

which means that W is not r-consistent for r = 0.3.
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1.4 General Distributions

We next consider more general data distributions, where data from different classes may

be close together in space, and may even overlap. Observe that unlike the r-separated case,

here there may be no classifier with astuteness one. Thus, a natural question is: what does the

optimally astute classifier look like, and how can we build non-parametric classifiers to this

limit?

1.4.1 The r-Optimal Classifier and Adversarial Pruning

[16] propose a large-sample limit – called the r-optimal – and show that it is analogous

to the Bayes Optimal classifier for robustness. More specifically, given a data distribution D, to

find the r-optimal classifier, we solve the following optimization problem.

max
S+1,S−1

∫
x∈S+1

p(y =+1|x)dµD(x)+∫
x∈S−1

p(y =−1|x)dµD(x)

subject to d(S+1,S−1)> 2r

(1.1)

Then, the r-optimal classifier is defined as follows.

Definition 1.4.1. [16] Fix r,D . Let S∗+1 and S∗−1 be any optimizers of (1.1). Then the r-optimal

classifier, g∗r is any classifier such that g∗r (x) = j whenever d(S∗j ,x)≤ r.

[16] show that the r-optimal classifier achieves the optimal astuteness – out of all

classifiers on the data distribution D ; hence, it is a robustness analogue to the Bayes Optimal

Classifier. Therefore, for general distributions, the goal in robust classification is to find non-

parametric algorithms that output classifiers that converge towards g∗r .

To find robust classifiers, [16] propose Adversarial Pruning – a defense method that

preprocesses the training data by making it better separated. More specifically, Adversarial
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Pruning takes as input a training dataset S and a radius r, and finds the largest subset of the

training set where differently labeled points are at least distance 2r apart.

Definition 1.4.2. A set Sr ⊂X ×{±1} is said to be r-separated if for all (x1,y1),(x2,y2) ∈ Sr,

if y1 6= y2, then d(x1,x2)> 2r. To adversarially prune a set S is to return its largest r-separated

subset. We let AdvPrun(S,r) denote the result of adversarially pruning S.

Once an r-separated subset Sr of the training set is found, a standard non-parametric

method is trained on Sr. While [16] show good empirical performance of such algorithms,

no formal guarantees are provided. We next formally characterize when adversarial pruning

followed by a non-parametric method results in a classifier that is provably r-consistent.

Specifically, we consider analyzing the general algorithm provided in Algorithm 1.
Algorithm 1: RobustNonPar

1 Input: S∼Dn, weight function W , robustness radius r;

2 Sr← AdvPrun(S,r);

3 Output: WSr ;

1.4.2 Convergence Guarantees

We begin with some notation. For any weight function W and radius r > 0, we let

RobustNonPar(W,r) represent the weight function that outputs weights for S∼Dn according to

RobustNonPar(S,W,r). In particular, this can be used to convert any weight function algorithm

into a new weight function which takes robustness into account. A natural question is, for which

weight functions W is RobustNonPar(W,r) r-consistent? Our next theorem provides sufficient

conditions for this.

Theorem 1.4.3. Let W be a weight function over X ×{±1}, and let D be a distribution

over X ×{±1}. Fix r > 0. Let Sr = AdvPrun(S,r). For convenience, relabel xi,yi so that
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Sr = {(x1,y1),(x2,y2), . . . ,(xm,ym)}. Suppose that for any 0 < a < b,

lim
n→∞

ES∼Dn
[ 1

m

m

∑
i=1

sup
x∈B(xi,a)

m

∑
j=1

wSr
j (x)I||x j−x||>b

]
= 0.

Then RobustNonPar(W,r) is r-consistent with respect to D .

Remark:

There are two important differences between the conditions in Theorem 1.4.3 and Theo-

rem 1.3.1.

1. We replace S with Sr.

2. The expectation over X ∼ DX is replaced with an average over {x1,x2, . . . ,xm}. The

intuition here is that we are replacing D with a uniform distribution over Sr. While D may

not be r-separated, the uniform distribution over Sr is, and represents the region of points

where our classifier is astute.

A natural question is what satisfies the conditions in Theorem 1.4.3. We next show that

kn-nearest neighbors and kernel classifiers with rapidly decaying kernel functions continue to

satisfy the conditions in Theorem 1.4.3; this means that these classifiers, when combined with

Adversarial Pruning, will converge to r-optimal classifiers in the large sample limit.

Corollary 1.4.4. Let kn be a sequence with limn→∞
kn
n = 0, and let M denote the kn-nearest

neighbor algorithm. Then for any r > 0, RobustNonPar(M,r) is r-consistent.

Remark:

Corollary 1.4.4 gives a formal guarantee in the large sample limit for the modified

nearest-neighbor algorithm proposed by [16].

Corollary 1.4.5. Let W be a kernel classifier over X ×{±1} constructed from K and hn.

Suppose the following properties hold for K and hn.
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Figure 1.2. Empirical accuracy/astuteness of different classifiers as a function of training sample
size. Accuracy is shown in green, astuteness in purple. Left : Noiseless Setting. Right: Noisy
Setting. Top Row: Histogram Classifier, Bottom Row: 1-Nearest Neighbor

1. For any c > 1, limx→∞
K(cx)
K(x) = 0.

2. limn→∞ hn = 0.

Then for any r > 0, RobustNonPar(W,r) is r-consistent.

Observe again that Condition 1. is satisfied by any K that decreases more rapidly than

an inverse polynomial kernel; it is thus satisfied by most popular kernels, such as the Gaussian

kernel.

1.5 Validation

Our theoretical results are, by nature, large sample; we next validate how well they apply

to the finite sample case by trying them out on a simple example. In particular, we ask the

following question:

How does the robustness of non-parametric classifiers change with increasing
sample size?
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This question is considered in the context of two simple non-parametric classifiers – one

nearest neighbor (which is guaranteed to be r-consistent) and histograms (which is not). To be

able to measure performance with increasing data size, we look at a simple synthetic dataset –

the Half Moons.

1.5.1 Experimental Setup

Classifiers and Dataset.

We consider two different classification algorithms – one nearest neighbor (NN) and a

Histogram Classifier (HC). We use the Halfmoon dataset with two settings of the gaussian noise

parameter σ , σ = 0 (Noiseless) and σ = 0.08 (Noisy). For the Noiseless setting, observe that the

data is already 0.1-separated; for the Noisy setting, we use Adversarial Pruning (Algorithm 1)

with parameter r = 0.1 for both classification methods.

Performance Measure.

We evaluate robustness with respect to the `∞ metric, that is commonly used in the

adversarial examples literature. Specifically, for each classifier, we calculate the empirical

astuteness, which is the fraction of test examples on which it is astute.

Observe that computing the empirical astuteness of a classifier around an input x amounts

to finding the adversarial example that is closest to x according to the `∞ norm. For the 1-nearest

neighbor, we do this using the optimal attack algorithm proposed by Yang et. al. [16]. For the

histogram classifier, we use the optimal attack framework proposed by [16], and show that the

structure of the classifier can be exploited to solve the convex program efficiently. Details are in

Appendix C.

We use an attack radius of r = 0.1 for the Noiseless setting, and r = 0.09 for the Noisy

setting. For all classification algorithms, we plot the empirical astuteness as a function of the

training set size. As a baseline, we also plot their standard accuracy on the test set.
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1.5.2 Results

The results are presented in Figure 1.2; the left two panels are for the Noiseless setting

while the two center ones are for the Noisy setting.

The results show that as predicted by our theory, for the Noiseless setting, the empirical

astuteness of nearest neighbors converges to 1 as the training set grows. For Histogram Classifiers,

the astuteness converges to 0.5 – indicating that the classifier may grow less and less astute with

higher sample size even for well-separated data. This is plausibly because the cell size induced

by the histogram grows smaller with growing training data; thus, the classifier that outputs the

default label −1 in empty cells is incorrect on adversarial examples that are close to a point with

+1 label, but belongs to a different, empty cell. The rightmost panels in Figure 1.2 provide a

visual illustration of this process.

For the Noisy setting, the empirical astuteness of adversarial pruning followed by nearest

neighbors converges to 0.8. For histograms with adversarial pruning, the astuteness converges to

0.7, which is higher than the noiseless case but still clearly sub-optimal.

1.5.3 Discussion

Our results show that even though our theory is asymptotic, our predictions continue to

be relevant in finite sample regimes. In particular, on well-separated data, nearest neighbors

that we theoretically predict to be intrinsically robust is robust; histogram classifiers, which do

not satisfy the conditions in Theorem 1.3.1 are not. Our predictions continue to hold for data

that is not well-separated. Nearest neighbors coupled with Adversarial Pruning continues to be

robust with growing sample size, while histograms continue to be non-robust. Thus our theory is

confirmed by practice.
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1.6 Conclusion

In conclusion, we rigorously analyze when non-parametric methods provide classifiers

that are robust in the large sample limit. We provide a general condition that characterizes when

non-parametric methods are robust on well-separated data, and show that Adversarial Pruning

of [16] works on data that is not well-separated.

Our results serve to provide a set of guidelines that can be used for designing non-

parametric methods that are robust and accurate on well-separated data; additionally, we demon-

strate that when data is not well-separated, preprocessing by adversarial pruning [16] does lead

to optimally astute solutions in the large sample limit.
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Chapter 2

Consistent Non-Parametric Methods for
Maximizing Robustness

2.1 Introduction

Adversarially robust classification, that has been of much recent interest, is typically

formulated as follows. We are given data drawn from an underlying distribution D, a metric d,

as well as a pre-specified robustness radius r. We say that a classifier c is r-robust at an input x if

it predicts the same label on a ball of radius r around x. Our goal in robust classification is to

find a classifier c that maximizes astuteness, which is defined as accuracy on those examples

where c is also r-robust.

While this formulation has inspired a great deal of recent work, both theoretical and

empirical [17, 18, 19, 20, 6, 21, 2, 23, 24, 25, 38], a major limitation is that enforcing a pre-

specified robustness radius r may lead to sub-optimal accuracy and robustness. To see this,

consider what would be an ideally robust classifier the example in Figure 2.1. For simplicity,

suppose that we know the data distribution. In this case, a classifier that has an uniformly

large robustness radius r will misclassify some points from the blue cluster on the left, leading

to lower accuracy. This is illustrated in panel (a), in which large robustness radius leads to

intersecting robustness regions. On the other hand, in panel (b), the blue cluster on the right is

highly separated from the red cluster, and could be accurately classified with a high margin. But

this will not happen if the robustness radius is set small enough to avoid the problems posed in
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(a) Large robustness radii (b) Small robustness radii

Figure 2.1. The red represents negatively labeled points, and the blue positive. If the robustness
radius is set too large (panel (a)), this leads to a loss of accuracy. If the radius is set too small
(panel (b)), this leads to a loss of robustness at point C.

panel (a). Thus, enforcing a fixed robustness radius that applies to the entire dataset may lead to

lower accuracy and lower robustness.

In this work, we propose an alternative formulation of robust classification that ensures

that in the large sample limit, there is no robustness-accuracy trade off, and that regions of space

with higher separation are classified more robustly. An extra advantage is that our formulation is

achievable by existing methods. In particular, we show that two very common non-parametric

algorithms – nearest neighbors and kernel classifiers – achieve these properties in the large

sample limit.

Our formulation is built on the notion of a new large-sample limit. In the standard statis-

tical learning framework, the large-sample ideal is the Bayes optimal classifier that maximizes

accuracy on the data distribution, and is undefined outside. Since this is not always robust with

radius r, prior work introduces the notion of an r-optimal classifier [16] that maximizes accuracy

on points where it is also r-robust. However, this classifier also suffers from the same challenges

as the example in Figure 2.1.

We depart from both by introducing a new limit that we call the neighborhood preserving

Bayes optimal classifier, described as follows. Given an input x that lies in the support of the

data distribution D, it predicts the same label as the Bayes optimal. On an x outside the support,

it outputs the prediction of the Bayes Optimal on the nearest neighbor of x within the support

24



of D. The first property ensures that there is no loss of accuracy – since it always agrees with

the Bayes Optimal within the data distribution. The second ensures higher robustness in regions

that are better separated. Our goal is now to design classifiers that converge to the neighborhood

preserving Bayes optimal in the large sample limit; this ensures that with enough data, the

classifier will have accuracy approaching that of the Bayes optimal, as well as higher robustness

where possible without sacrificing accuracy.

We next investigate how to design classifiers with this convergence property. Our starting

point is classical statistical theory [15] that shows that a class of methods known as weight

functions will converge to a Bayes optimal in the large sample limit provided certain conditions

hold; these include k-nearest neighbors under certain conditions on k and n, certain kinds of

decision trees as well as kernel classifiers. Through an analysis of weight functions, we next

establish precise conditions under which they converge to the neighborhood preserving Bayes

optimal in the large sample limit. As expected, these are stronger than standard convergence

to the Bayes optimal. In the large sample limit, we show that kn-nearest neighbors converge

to the neighborhood preserving Bayes optimal provided kn = ω(logn), and kernel classifiers

converge to the neighborhood preserving Bayes optimal provided certain technical conditions

(such as the bandwidth shrinking sufficiently slowly). By contrast, certain types of histograms

do not converge to the neighborhood preserving Bayes optimal, even if they do converge to the

Bayes optimal. We round these off with a lower bound that shows that for nearest neighbor, the

condition that kn = ω(logn) is tight. In particular, for kn = O(logn), there exist distributions

for which kn-nearest neighbors provably fails to converge towards the neighborhood preserving

Bayes optimal (despite converging towards the standard Bayes optimal).

In summary, the contributions of the paper are as follows. First, we propose a new

large sample limit the neighborhood preserving Bayes optimal and a new formulation for robust

classification. We then establish conditions under which weight functions, a class of non-

parametric methods, converge to the neighborhood preserving Bayes optimal in the large sample

limit. Using these conditions, we show that kn-nearest neighbors satisfy these conditions when
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kn = ω(logn), and kernel classifiers satisfy these conditions provided the kernel function K has

faster than polynomial decay, and the bandwidth parameter hn decreases sufficiently slowly.

To complement these results, we also include negative examples of non-parametric

classifiers that do not converge. We provide an example where histograms do not converge to

the neighborhood preserving Bayes optimal with increasing n. We also show a lower bound for

nearest neighbors, indicating that kn = ω(logn) is both necessary and sufficient for convergence

towards the neighborhood preserving Bayes optimal.

Our results indicate that the neighborhood preserving Bayes optimal formulation shows

promise and has some interesting theoretical properties. We leave open the question of coming

up with other alternative formulations that can better balance both robustness and accuracy for all

kinds of data distributions, as well as are achievable algorithmically. We believe that addressing

this would greatly help address the challenges in adversarial robustness.

2.2 Preliminaries

We consider binary classification over Rd×{±1}, and let ρ denote any distance metric

on Rd . We let µ denote the measure over Rd corresponding to the probability distribution over

which instances x ∈ Rd are drawn. Each instance x is then labeled as +1 with probability η(x)

and −1 with probability 1−η(x). Together, µ and η comprise our data distribution D = (µ,η)

over Rd×{±1}.

For comparison to the robust case, for a classifier f : Rd → {±1} and a distribution

D over Rd×{±1}, it will be instructive to consider its accuracy, denoted A( f ,D), which is

defined as the fraction of examples from D that f labels correctly. Accuracy is maximized by

the Bayes Optimal classifier: which we denote by g. It can be shown that for any x ∈ supp(µ),

g(x) = 1 if η(x)≥ 1
2 , and g(x) =−1 otherwise.

Our goal is to build classifiers Rd → {±1} that are both accurate and robust to small

perturbations. For any example x, perturbations to it are constrained to taking place in the
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robustness region of x, denoted Ux. We will let U = {Ux : x ∈Rd} denote the collections of all

robustness regions.

We say that a classifier f : Rd → {±1} is robust at x if for all x′ ∈Ux, f (x′) = f (x).

Combining robustness and accuracy, we say that classifier is astute at a point x if it is both

accurate and robust. Formally, we have the following definition.

Definition 2.2.1. A classifier f : Rd →{±1} is said to be astute at (x,y) with respect to robust-

ness collection U if f (x) = y and f is robust at x with respect to U . If D is a data distribution

over Rd×{±1}, the astuteness of f over D with respect to U , denoted AU ( f ,D), is the fraction

of examples (x,y)∼D for which f is astute at (x,y) with respect to U . Thus

AU ( f ,D) = P(x,y)∼D [ f (x′) = y,∀x′ ∈Ux].

Non-parametric Classifiers

We now briefly review several kinds of non-parametric classifiers that we will consider

throughout this paper. We begin with weight functions, which are a general class of non-

parametric algorithms that encompass many classic algorithms, including nearest neighbors and

kernel classifiers.

Weight functions are built from training sets, S = {(x1,y1),(x2,y2,), . . . ,(xn,yn)} by

assigning a function wS
i : Rd→ [0,1] that essentially scores how relevant the training point (xi,yi)

is to the example being classified. The functions wS
i are allowed to depend on x1, . . . ,xn but

must be independent of the labels y1, . . . ,yn. Given these functions, a point x is classified by just

checking whether ∑yiwS
i (x)≥ 0 or not. If it is nonnegative, we output +1 and otherwise −1. A

complete description of weight functions is included in the appendix.

Next, we enumerate several common Non-parametric classifiers that can be construed as

weight functions. Details can be found in the appendix.

Histogram classifiers partition the domain Rd into cells recursively by splitting cells

that contain a sufficiently large number of points xi. This corresponds to a weight function in
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which wS
i (x) =

1
kx

if xi is in the same cell as x, where kx denotes the number of points in the cell

containing x.

kn-nearest neighbors corresponds to a weight function in which wS
i (x) =

1
kn

if xi is one

of the kn nearest neighbors of x, and wS
i (x) = 0 otherwise.

Kernel-Similarity classifiers are weight functions built from a kernel function K :

R≥0 → R≥0 and a window size (hn)
∞
1 such that wS

i (x) ∝ K(ρ(x,xi)/hn) (we normalize by

dividing by ∑
n
1 K((ρ(x,xi)/hn))).

2.3 The Neighborhood preserving Bayes optimal classifier

Robust classification is typically studied by setting the robustness regions, U = {Ux}x∈Rd ,

to be balls of radius r centered at x, Ux = {x′ : ρ(x,x′) ≤ r}. The quantity r is the robustness

radius, and is typically set by the practitioner (before any training has occurred).

This method has a limitation with regards to trade-offs between accuracy and robustness.

To increase the margin or robustness, we must have a large robustness radius (thus allowing us to

defend from larger adversarial attacks). However, with large robustness radii, this can come at a

cost of accuracy, as it is not possible to robustly give different labels to points with intersecting

robustness regions.

For an illustration, consider Figure 2.1. Here we consider a data distribution D = (µ,η)

in which the blue regions denote all points with η(x)> 0.5 (and thus should be labeled +), and

the red regions denote all points with η(x)< 0.5 (and thus should be labeled −). Observe that it

is not possible to be simultaneously accurate and robust at points A,B while enforcing a large

robustness radius, as demonstrated by the intersecting balls. While this can be resolved by using

a smaller radius, this results in losing out on potential robustness at point C. In principal, we

should be able to afford a large margin of robustness about C due to its relatively far distance

from the red regions.

Motivated by this issue, we seek to find a formalism for robustness that allows us
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Figure 2.2. The decision boundary of the neighborhood preserving Bayes optimal classifier is
shown in green, and the neighborhood preserving robust region of x is shown in pink. The former
consists of points equidistant from µ+,µ−, and the latter consists of points equidistant from x,
µ+.

to simultaneously avoid paying for any accuracy-robustness trade-offs and adaptively size

robustness regions (thus allowing us to defend against a larger range of adversarial attacks at

points that are located in more homogenous zones of the distribution support). To approach this,

we will first provide an ideal limit object: a classifier that has the same accuracy as the Bayes

optimal (thus meeting our first criteria) that has good robustness properties. We call this the the

neighborhood preserving Bayes optimal classifier, defined as follows.

Definition 2.3.1. Let D = (µ,η) be a distribution over Rd ×{±1}. Then the neighborhood

preserving Bayes optimal classifier of D , denoted gneighbor, is the classifier defined as follows.

Let µ+ = {x : η(x) ≥ 1
2} and µ− = {x : η(x) < 1

2}. Then for any x ∈ Rd , gneighbor(x) = +1 if

ρ(x,µ+)≤ ρ(x,µ−), and gneighbor(x) =−1 otherwise.

This classifier can be thought of as the most robust classifier that matches the accuracy of

the Bayes optimal. We call it neighborhood preserving because it extends the Bayes optimal

classifier into a local neighborhood about every point in the support. For an illustration, refer to

Figure 2.2, which plots the decision boundary of the neighborhood preserving Bayes optimal for

an example distribution.

Next, we turn our attention towards measuring its robustness, which must be done with

respect to some set of robustness regions U = {Ux}. While these regions Ux can be nearly

arbitrary, we seek regions Ux such that AU (gmax,D) = A(gbayes,D) (our astuteness equals the
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maximum possible accuracy) and Ux are “as large as possible” (representing large robustness).

To this end, we propose the following regions.

Definition 2.3.2. Let D = (µ,η) be a data distribution over Rd×{±1}. Let µ+ = {x : η(x)>

1
2}, µ− = {x : η(x)< 1

2}, and µ1/2 = {x : η(x) = 1
2}. For x ∈ µ+, we define the neighborhood

preserving robustness region, denoted Vx, as

Vx = {x′ : ρ(x,x′)< ρ(µ−∪µ
1
2 ,x′)}.

It consists of all points that are closer to x than they are to µ−∪µ1/2 (points oppositely labeled

from x). We can use a similar definition for x ∈ µ−. Finally, if x ∈ µ1/2, we simply set Vx = {x}.

These robustness regions take advantage of the structure of the neighborhood preserving

Bayes optimal. They can essentially be thought of as regions that maximally extend from any

point x in the support of D to the decision boundary of the neighborhood preserving Bayes

optimal. We include an illustration of the regions Vx for an example distribution in Figure 2.2.

As a technical note, for x ∈ supp(D) with η(x) = 0.5, we give them a trivial robustness

region. The rational for doing this is that η(x) = 0.5 is an edge case that is arbitrary to classify,

and consequently enforcing a robustness region at that point is arbitrary and difficult to enforce.

We now formalize the robustness and accuracy guarantees of the max-margin Bayes

optimal classifier with the following two results.

Theorem 2.3.3. (Accuracy) Let D be a data distribution. Let V denote the collection of

neighborhood preserving robustness regions, and let g denote the Bayes optimal classifier. Then

the neighborhood preserving Bayes optimal classifier, gneighbor, satisfies AV (gneighbor,D) =

A(g,D), where A(g,D) denotes the accuracy of the Bayes optimal. Thus, gneighbor maximizes

accuracy.

Theorem 2.3.4. (Robustness) Let D be a data distribution, let f be a classifier, and let U be a

set of robustness regions. Suppose that AU ( f ,D) = A(g,D), where g denotes the Bayes optimal
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classifier. Then there exists x ∈ supp(D) such that Vx 6⊂Ux, where Vx denotes the neighborhood

preserving robustness region about x. In particular, we cannot have Vx be a strict subset of Ux

for all x.

Theorem 2.3.3 shows that the neighborhood preserving Bayes classifier achieves max-

imal accuracy, while Theorem 2.3.4 shows that achieving a strictly higher robustness (while

maintaining accuracy) is not possible; while it is possible to make accurate classifiers which

have higher robustness than gneighbor in some regions of space, it is not possible for this to hold

across all regions. Thus, the neighborhood preserving Bayes optimal classifier can be thought of

as a local maximum to the constrained optimization problem of maximizing robustness subject

to having maximum (equal to the Bayes optimal) accuracy.

2.3.1 Neighborhood Consistency

Having defined the neighborhood preserving Bayes optimal classifier, we now turn our

attention towards building classifiers that converge towards it. Before doing this, we must

precisely define what it means to converge. Intuitively, this consists of building classifiers whose

robustness regions “approach” the robustness regions of the neighborhood preserving Bayes

optimal classifier. This motivates the definition of partial neighborhood preserving robustness

regions.

Definition 2.3.5. Let 0 < κ < 1 be a real number, and let D = (µ,η) be a data distribution over

Rd×{±1}. Let µ+ = {x : η(x) > 1
2}, µ− = {x : η(x) < 1

2}, and µ1/2 = {x : η(x) = 1
2}. For

x ∈ µ+, we define the neighborhood preserving robustness region, denoted Vx, as

Vx = {x′ : ρ(x,x′)< κρ(µ−∪µ
1
2 ,x′)}.

It consists of all points that are closer to x than they are to µ−∪µ1/2 (points oppositely labeled

from x) by a factor of κ . We can use a similar definition for x ∈ µ−. Finally, if η(x) = 1
2 , we

simply set V κ
x = {x}.
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Observe that V κ
x ⊂ Vx for all 0 < κ < 1, and thus being robust with respect to V κ

x is a

milder condition than Vx. Using this notion, we can now define margin consistency.

Definition 2.3.6. A learning algorithm A is said to be neighborhood consistent if the following

holds for any data distribution D = (µ,η) where η is continuous on its support. For any

0 < ε,δ ,κ < 1, there exists N such that for all n ≥ N, with probability at least 1− δ over

S∼Dn,

AV κ (AS,D)≥ A(g,D)− ε,

where g denotes the Bayes optimal classifier and AS denotes the classifier learned by algorithm

A from dataset S.

This condition essentially says that the astuteness of the classifier learned by the algorithm

converges towards the accuracy of the Bayes optimal classifier. Furthermore, we stipulate that

this holds as long as the astuteness is measured with respect to some V κ . Observe that as κ→ 1,

these regions converge towards the neighborhood preserving robustness regions, thus giving us a

classifier with robustness effectively equal to that of the neighborhood preserving Bayes optimal

classifier.

2.4 Neighborhood Consistent Non-Parametric Classifiers

Having defined neighborhood consistency, we turn to the following question: which

non-parametric algorithms are neighborhood consistent? Our starting point will be the standard

literature for the convergence of non-parametric classifiers with regard to accuracy. We begin by

considering the standard conditions for kn-nearest neighbors to converge (in accuracy) towards

the Bayes optimal.

kn-nearest neighbors is consistent if and only if the following two conditions are met:

limn→∞ kn = ∞, and limn→∞
kn
n = 0. The first condition guarantees that each point is classified

by using an increasing number of nearest neighbors (thus making the probability of a misclassifi-

cation small), and the second condition guarantees that each point is classified using only points
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very close to it. We will refer to the first condition as precision, and the second condition as

locality. A natural question is whether the same principles suffice for neighborhood consistency

as well. We began by showing that without any additional constraints, the answer is no.

Theorem 2.4.1. Let D = (µ,η) be the data distribution where µ denotes the uniform distribution

over [0,1] and η is defined as: η(x) = x. Over this space, let ρ be the euclidean distance metric.

Suppose kn = O(logn) for 1≤ n < ∞. Then kn-nearest neighbors is not neighborhood consistent

with respect to D .

The issue in the example above is that for smaller kn, kn-nearest neighbors lacks sufficient

precision. For neighborhood consistnecy, points must be labeled using even more training points

than are needed accuracy. This is because the classifier must be uniformly correct across the

entirety of V κ
x . Thus, to build neighborhood consistent classifiers, we must bolster the precision

from the standard amount used for standard consistency. To do this, we begin by introducing

splitting numbers, a useful tool for bolstering the precision of weight functions.

2.4.1 Splitting Numbers

We will now generalize beyond nearest neighbors to consider weight functions. Doing

so will allow us to simultaneously analyze nearest neighbors and kernel classifiers. To do so,

we must first rigorously substantiate our intuitions about increasing precision into concrete

requirements. This will require several technical definitions.

Definition 2.4.2. Let µ be a probability measure over Rd . For any x ∈ Rd , the probability

radius rp(x) is the smallest radius for which B(x,rp(x)) has probability mass at least p. More

precisely, rp(x) = inf{r : µ(B(x,r))≥ p}.

Definition 2.4.3. Let W be a weight function and let S = {x1,x2, . . . ,xn} be any finite subset of

Rd . For any x ∈ Rd , α ≥ 0, and 0≤ β ≤ 1, let Wx,α,β = {i : ρ(x,xi)≤ α,wS
i (x)≥ β}. Then the

splitting number of W with respect to S, denoted as T (W,S) is the number of distinct subsets
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generated by Wx,αβ as x ranges over Rd , α ranges over [0,∞), and β ranges over [0,1]. Thus

T (W,S) = |{Wx,α,β : x ∈ Rd,0≤ α,0≤ β ≤ 1}|.

Splitting numbers allow us to ensure high amounts of precision over a weight function.

To prove neighborhood consistency, it is necessary for a classifier to be correct at all points in

a given region. Consequently, techniques that consider a single point will be insufficient. The

splitting number provides a mechanism for studying entire regions simultaneously. For more

details on splitting numbers, we include several examples in the appendix.

2.4.2 Sufficient Conditions for Neighborhood Consistency

We now state our main result.

Theorem 2.4.4. Let W be a weight function, D a distribution over Rd×{±1}, U a neighbor-

hood preserving collection, and (tn)∞
1 be a sequence of positive integers such that the following

four conditions hold.

1. W is consistent (with resp. to accuracy) with resp. to D .

2. For any 0 < p < 1, limn→∞ ES∼Dn[supx∈Rd ∑
n
1 wS

i (x)1ρ(x,xi)>rp(x)] = 0.

3. limn→∞ ES∼Dn[tn supx∈Rd wS
i (x)] = 0.

4. limn→∞ ES∼Dn
logT (W,S)

tn
= 0.

Then W is neighborhood consistent with respect to D .

Remarks: Condition 1 is necessary because neighborhood consistency implies standard

consistency – or, convergence in accuracy to the Bayes Optimal. Standard consistency has been

well studied for non-parametric classifiers, and there are a variety of results that can be used to

ensure it – for example, Stone’s Theorem (included in the appendix).

Conditions 2. and 3. are stronger version of conditions 2. and 3. of Stone’s theorem. In

particular, both include a supremum taken over all x ∈ Rd as opposed to simply considering a

random point x ∼D . This is necessary for ensuring correct labels on entire regions of points

simultaneously. We also note that the dependence on rp(x) (as opposed to some fixed r) is a key
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property used for adaptive robustness. This allows the algorithm to adjust to potential differing

distance scales over different regions in Rd . This idea is reminiscent of the analysis given in

[39], which also considers probability radii.

Condition 4. is an entirely new condition which allows us to simultaneously consider all

T (W,S) subsets of S. This is needed for analyzing weighted sums with arbitrary weights.

Next, we apply Theorem 2.4.4 to get specific examples of margin consistent non-

parametric algorithms.

2.4.3 Nearest Neighbors and Kernel Classifiers

We now provide sufficient conditions for kn-nearest neighbors to be neighborhood con-

sistent.

Corollary 2.4.5. Suppose (kn)
∞
1 satisfies (1) limn→∞

kn
n = 0, and (2) limn→∞

logn
kn

= 0. Then

kn-nearest neighbors is neighborhood consistent.

As a result of Theorem 2.4.1, corollary 2.4.5 is tight for nearest neighbors. Thus kn

nearest neighbors is neighborhood consistent if and only if kn = ω(logn).

Next, we give sufficient conditions for a kernel-similarity classifier.

Corollary 2.4.6. Let W be a kernel classifier over Rd×{±1} constructed from K : R+→ R+

and hn. Suppose the following properties hold.

1. K is decreasing, and satisfies
∫
Rd K(||x||)dx < ∞.

2. limn→∞ hn = 0 and limn→∞ nhd
n = ∞.

3. For any c > 1, limx→∞
K(cx)
K(x) = 0.

4. For any x≥ 0, limn→∞
n

lognK( x
hn
) = ∞.

Then W is neighborhood consistent.

Observe that conditions 1. 2. and 3. are satisfied by many common Kernel functions such

as the Gaussian or Exponential kernel (K(x) = exp(−x2)/ K(x) = exp(−x)). Condition 4. can be
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Figure 2.3. we have a histogram classifier being applied to the blue and red regions. The
classifier will be unable to construct good labels in the cells labeled A,B,C, and consequently
will not be robust with respect to V κ

x for sufficiently large κ .

similarly satisfied by just increasing hn to be sufficiently large. Overall, this theorem states that

Kernel classification is neighborhood consistent as long as the bandwidth shrinks slowly enough.

2.4.4 Histogram Classifiers

Having discussed neighborhood consistent nearest-neighbors and kernel classifier, we

now turn our attention towards another popular weight function, histogram classifiers. Recall

that histogram classifiers operate by partitioning their input space into increasingly small cells,

and then classifying each cell by using a majority vote from the training examples within that cell

(a detailed description can be found in the appendix). We seek to answer the following question:

is increasing precision sufficient for making histogram classifiers neighborhood consistent?

Unfortunately, the answer this turns out not to be no. The main issue is that histogram classifiers

have no mechanism for performing classification outside the support of the data distribution.

For an example of this, refer to Figure 2.3. Here we see a distribution being classified

by a histogram classifier. Observe that the cell labeled A contains points that are strictly closer

to µ+ than µ−, and consequently, for sufficiently large κ , V κ
x will intersect A for some point

x ∈ µ+. A similar argument holds for the cells labeled B and C.. However, since A,B,C are all

in cells that will never contain any data, they will never be labeled in a meaningful way. Because

of this, histogram classifiers are not neighborhood consistent.
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(a) exponential kernel (b) polynomial kernel

Figure 2.4. Accuracy is plotted in red, and the varying levels of robustness regions are in blue,
green and purple. As sample size increases, every measure of astuteness converges towards
0.8,as predicted by Corollary 2.4.6. In panel (b), although the accuracy appears to converge,
robustness doesn’t.

2.5 Validation

To complement our theoretical large sample results for non-parametric classifiers, we

now include several experiments to understand their behavior for finite samples. We seek to

understand how quickly non-parametic classifiers converge towards the neighborhood preserving

Bayes optimal.

We focus our attention on kernel classifiers and use two different kernel similarity

functions: the first, an exponential kernel, and the second, a polynomial kernel. These classifiers

were chosen so that the former meets the conditions of Corollary 2.4.6, and the latter does not.

Full details on these classifiers can be found in the appendix.

To be able to measure performance with increasing data size, we look at a simple synthetic

dataset over overlayed circles (see Figure B.1 for an illustration) with support designed so that

the data is intrinsically multiscaled. In particular, this calls for different levels of robustness in

different regions. For simplicity, we use a global label noise parameter of 0.2, meaning that any

sample drawn from this distribution is labeled differently than its support with probability 0.2.

Further details about our dataset are given in section B.4.
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Performance Measure. For a given classifier, we evaluate its astuteness at a test point

x with respect to the robustness region V κ
x (Definition 2.3.5). While these regions are not

computable in practice due to their dependency on the support of the data distribution, we are

able to approximate them for this synthetic example due to our explicit knowledge of the data

distribution. Details for doing this can be found in the appendix. To compute the empirical

astuteness of a kernel classifier WK about test point x, we perform a grid search over all points in

V κ
x to ensure that all points in the robustness region are labeled correctly.

For each classifier, we measure the empirical astuteness by using three trials of 20 test

points and taking the average. While this is a relatively small amount of test data, it suffices as

our purpose is to just verify that the algorithm roughly converges towards the optimal possible

astuteness. Recall that for any neighborhood consistent algorithm, as n→ ∞, AV κ should

converge towards A∗, the accuracy of the Bayes optimal classifier, for any 0 < κ < 1. Thus,

to verify this holds, we use κ = 0.1,0.3,0.5. For each of these values, we plot the empirical

astuteness as the training sample size n gets larger and larger. As a baseline, we also plot their

standard accuracy on the test set.

Results and Discussion: The results are presented in Figure 2.4; the left panel is for

the exponential kernel, while the right one is for the polynomial kernel. As predicted by our

theory, we see that in all cases, the exponential kernel converges towards the maximum astuteness

regardless of the value of κ: the only difference is that the rate of convergence is slower for

larger values of κ . This is, of course, expected because larger values of κ entail larger robustness

regions.

By contrast, the polynomial kernel performs progressively worse for larger values of κ .

This kernel was selected specifically to violate the conditions of Corollary 2.4.6, and in particular

fails criteria 3. However, note that the polynomial kernel nevertheless performs will with respect

to accuracy thus giving another example demonstrating the added difficulty of neighborhood

consistency.

Our results bridge the gap between our asymptotic theoretical results and finite sample
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regimes. In particular, we see that kernel classifiers that meet the conditions of Corollary 2.4.6

are able to converge in astuteness towards the neighborhood preserving Bayes optimal classifier,

while classifiers that do not meet these conditions fail.

2.6 Related Work

There is a wealth of literature on robust classification, most of which impose the same

robustness radius r on the entire data. [17, 18, 19, 20, 6, 21, 22, 2, 23, 24, 25], among others,

focus primarily on neural networks, and robustness regions that are `1, `2, or `∞ norm balls of a

given radius r.

[40] and [41] show how to train neural networks with different robustness radii at different

points by trading off robustness and accuracy; their work differ from ours in that they focus

on neural networks, their robustness regions are still norm balls, and that their work is largely

empirical.

Our framework is also related to large margin classification – in the sense that the

robustness regions U induce a margin constraint on the decision boundary. The most popular

large margin classifier is the Support Vector Machine[42, 43, 44] – a large margin linear classifier

that minimizes the worst-case margin over the training data. Similar ideas have also been used to

design classifiers that are more flexible than linear; for example, [45] shows how to build large

margin Lipschitz classifiers by rounding globally Lipschitz functions. Finally, there has also been

purely empirical work on achieving large margins for more complex classifiers – such as [46]

for deep neural networks that minimizes the worst case margin, and [47] for metric learning to

find large margin nearest neighbors. Our work differs from these in that our goal is to ensure a

high enough local margin at each x, (by considering the neighborhood preserving regions Vx) as

opposed to optimizing a global margin.

Finally, our analysis builds on prior work on robust classification for non-parametric meth-

ods in the standard framework. [26, 27, 10, 16] provide adversarial attacks on non-parametric
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methods. Wang et. al. [10] develops a defense for 1-NN that removes a subset of the training

set to ensure higher robustness. Yang et. al [16] proposes the r-optimal classifier – which is the

maximally astute classifier in the standard robustness framework – and proposes a defense called

Adversarial Pruning.

Theoretically, [48] provide conditions under which weight functions converge towards

the r-optimal classifier in the large sample limit. They show that for r-separated distributions,

where points from different classes are at least distance 2r or more apart, nearest neighbors

and kernel classifiers satisfy these conditions. In the more general case, they use Adversarial

Pruning as a preprocessing step to ensure that the training data is r-separated, and show that this

preprocessing step followed by nearest neighbors or kernel classifiers leads to solutions that are

robust and accurate in the large sample limit. Our result fundamentally differs from theirs in that

we analyze a different algorithm, and our proof techniques are quite different. In particular, the

fundamental differences between the r-optimal classifier and the neighborhood preserving Bayes

optimal classifier call for different algorithms and different analysis techniques.

In concurrent work, [49] proposes a similar limit to the neighborhood preserving Bayes

optimal which they refer to as the margin canonical Bayes. However, their work then focuses

on a data augmentation technique that leads to convergence whereas we focus on proving the

neighborhood consistency of classical non-parametric classifiers.

Acknowledgments

Chapter 2, in full, is a reprint of the material as it appears in Neural Information

Processing Systems, 2021. Robi Bhattacharjee, Kamalika Chaudhuri. Consistent Non-Parametric

Methods for Maximizing Robustness. The dissertation author is the primary investigator and

author of this paper.

40



Chapter 3

Sample Complexity of Robust Linear Clas-
sification on Separated Data

3.1 Introduction

Motivated by the use of machine learning in safety-critical settings, adversarially robust

classification has been of much recent interest. Formally, the problem is as follows. A learner is

given training data drawn from an underlying distribution D, a hypothesis class H , a robustness

metric d, and a radius r. The learner’s goal is to find a classifier h ∈H which has the lowest

robust loss at radius r. The robust loss of a classifier is the expected fraction of examples where

either f (x) 6= y or where there exists an x′ at distance d(x,x′)≤ r such that f (x) 6= f (x′). Robust

classification thus aims to find a classifier that maximizes accuracy on examples that are distance

r or more from the decision boundary, where distances are measured according to the metric d.

In this work, we ask: how many samples are needed to learn a classifier with low robust

loss when H is the class of linear classifiers, and d is an `p-metric? Prior work has provided

both upper [50, 1] as well as lower bounds [2, 1] on the sample complexity of the problem.

However, almost all look at settings where the data distribution itself is not separated – data

from different classes overlap or are close together in space. In this case, the classifier that

minimizes robust loss is quite different from the one that minimizes error, which often leads to

strong sample complexity gaps. Many real tasks where robust solutions are desired however tend

to involve well-separated data [38], and hence it is instructive to look at what happens in these
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cases.

With this motivation, we consider in this work robust classification of data that is linearly

r-separable. Specifically, there exists a linear classifier which has zero robust loss at robustness

radius r. This case is thus the analog of the realizable case for robust classification, and we

consider both upper and lower bounds in this setting.

For lower bounds, prior work [51] shows that both standard and robust linear classification

have VC-dimension O(d), and consequently have similar bounds on the expected loss in the worst

case. However, these results do not apply to this setting since we are specifically considering

well-separated data, which greatly restricts the set of possible worst-case distributions. For our

lower bound, we provide a family of distributions that are linearly r-separable and where the

maximum margin classifier, given n independent samples, has error O(1/n). In contrast, any

algorithm for finding the minimum robust loss classifier has robust loss at least Ω(d/n), where d

is the data dimension. These bounds hold for all `p-norms provided p > 1, including p = 2 and

p = ∞. Unlike prior work, our bounds do not rely on the difference in loss between the solutions

with optimal robust loss and error, and hence cannot be obtained by prior techniques. Instead,

we introduce a new geometric construction that exploits the fact that learning a classifier with

low robust loss when data is linearly r-separated requires seeing a certain number of samples

close to the margin.

For upper bounds, prior work [50] provides a bound on the Rademacher complexity

of adversarially robust learning, and show that it can be worse than the standard Rademacher

complexity by a factor of d1/q for `p-norm robustness where 1/p+1/q = 1. Thus, an interesting

question is whether dimension-independent bounds, such as those for the accuracy under large

margin classification, can be obtained for robust classification as well. Perhaps surprisingly,

we show that when data is really well-separated, the answer is yes. Specifically, if the data

distribution is linearly r+ γ-separable, then there exists an algorithm that will find a classifier

with robust loss O(∆2/γ2n) at radius r where ∆ is the diameter of the instance space. Observe

that much like the usual sample complexity results on SVM and perceptron, this upper bound
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is independent of the data dimension and depends only on the excess margin (over r). This

establishes that when data is really well-separated, finding robust linear classifiers does not

require a very large number of samples.

While the main focus of this work is on linear classifiers, we also show how to generalize

our upper bounds to Kernel Classification, where we find a similar dynamic with the loss being

governed by the excess margin in the embedded kernel space. However, we defer a thorough

investigation of robust kernel classification as an avenue for future work.

Our results imply that while adversarially robust classification may be more challenging

than simply accurate classification when the classes overlap, the story is different when data is

well-separated. Specifically, when data is linearly (exactly) r-separable, finding an r-separated

solution to robust loss ε may require Ω(d/ε) samples for some distribution families where

finding an accurate solution is easier. Thus in this case, there is a gap between the sample

complexities of robust and simply accurate solutions, and this is true regardless of the `p norm

in which robustness is measured. In contrast, if data is even more separated – linearly r+ γ-

separable – then we can obtain a dimension-independent upper bound on the sample complexity,

much like the sample complexity of SVMs and perceptron. Thus, how separable the data is

matters for adversarially robust classification, and future works in the area should consider

separability while discussing the sample complexity.

3.1.1 Related Work

There is a large body of work [17, 18, 19, 20, 6, 21, 22, 23, 24, 25] empirically studying

adversarial examples primarily in the context of neural networks. Several works [2, 52, 53] have

empirically investigated trade-offs between robust and standard classification.

On the theoretical side, this phenomenon has been studied in both the parametric and

non-parametric settings. On the parametric side, several works [54, 55, 11, 50, 56] have focused

on finding distribution agnostic bounds of the sample complexity for robust classification. In

[11], Srebro et. al. showed through an example that the VC dimension of robust learning may be
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much larger than standard or accurate learning indicating that the sample complexity bounds

may be higher. However, their example did not apply to linear classifiers.

[57] considers learning linear classifiers robustly, but is primarily focused on computa-

tional complexity as opposed to sample complexity.

In [50], Bartlett et. al. investigated the Rademacher complexity of robustly learning linear

classifiers as well as neural networks. They showed that in both cases, the robust Rademacher

complexity can be bounded in terms of the dimension of the input space – thus indicating a

possible gap between standard and robust learning. However, as with the works considering VC

dimension, this work is fundamentally focused on upper bounds – they do not show true lower

bounds on data requirements.

Because of it’s simplicity and elegance, the case where the data distribution is a mixture

of Gaussians has been particularly well-studied. The first such work was [2], in which Schmidt

et. al. showed an Ω(
√

d) gap between the standard and robust sample complexity for a mixture

of two Gaussians using the `∞ norm. This was subsequently expanded upon in [58], [59] and [1].

[58] introduces a notion of “optimal transport,” which they subsequently apply to the Gaussian

case, deriving a closed form expression for the optimally robust linear classifier. Their results

apply to any `p norm. [59] applies expands upon [2] by consider mixtures of three Gaussians in

both the `2 and `∞ norms. Finally, [1] fully generalizes the results of [2] providing tight upper

and lower bounds on the standard and robust sample complexities of a mixture of two Gaussians,

in any norm (including `p for p ∈ [1,∞]). [2] and [1] bear the most relevance with our work, and

we consequently carefully compare our results in section 3.3.1.

Another approach for lower and upper bounds on sample complexities for linear classifiers

can be found in [51], which examines the robust VC dimension of learning linear classifiers.

They show that the VC dimension is d +1, just as it is in the standard case. This implies that the

bounds in the robust case match the bounds in the standard case and in particular shows a lower

bound of Ω(d/n) on the expected loss of learning a robust linear classifier from n samples.

While this result appears to match our lower bound, there is a crucial distinction between
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the bounds. Our bound implies that there exists some distribution with a large `2 margin for

which the expected robust loss must be Ω(d/n). On the other hand, standard results about

learning linear classifiers on large margin data implies that the expected standard loss will be

O(1/n) (when running the max-margin algorithm). For this reason, our paper provides a case in

the well-separated setting in which learning linear classifiers is provably more difficult (in terms

of sample complexity) in the robust setting than in the standard setting. By contrast, [51] does

not show this. Their paper only implies (through standard VC constructions) the existence of

some distribution that is difficult to learn, and the standard PAC bounds cannot ensure that such a

distribution also has a large `2 margin.

In the non-parametric setting, there are several works which contrast standard learning

with robust learning. [10] considers the nearest neighbors algorithm, and shows how to adapt it for

converging towards a robust classifier. In [16], Yang et. al. propose the r-optimal classifier, which

is the robust analog of the Bayes optimal classifier. Through several examples they show that it

is often a fundamentally different classifier - which can lead to different convergence behavior in

the standard and robust settings. [48] unified these approaches by specifying conditions under

which non-parametric algorithms can be adapted to converge towards the r-optimal classifier,

thus introducing r-consistency, the robust analog of consistency.

3.2 Preliminaries

We consider binary classification over Rd×{±1}. Our metric of choice is the `p norm,

where p > 1 (including p = ∞) is arbitrary. For x ∈ Rd , we will use ||x||p to denote the `p norm

of x, and consequently will use ||x− y||p to denote the `p distance between x and y. We will also

let `q denote the dual norm to `p - that is, 1
q +

1
p = 1.

We use Bp(x,r) to denote the closed `p ball with center x and radius r. For any S⊂ Rd ,

we let diamp(S) denote its diameter: that is, diamp(S) = supx,y∈S ||x− y||p.
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3.2.1 Standard and Robust Loss

In classical statistical learning, the goal is to learn an accurate classifier, which is defined

as follows:

Definition 3.2.1. Let D be a distribution over Rd×{±1}, and let f ∈ {±1}Rd
be a classifier.

Then the standard loss of f over D , denoted L ( f ,D), is the fraction of examples (x,y)∼D for

which f is not accurate. Thus

L ( f ,D) = P(x,y)∼D [ f (x) 6= y].

Next, we define robustness, and the corresponding robust loss.

Definition 3.2.2. A classifier f ∈ {±1}Rd
is said to be robust at x with radius r if f (x) = f (x′)

for all x′ ∈ Bp(x,r).

Definition 3.2.3. The robust loss of f over D , denoted Lr( f ,D), is the fraction of examples

(x,y) ∼ D for which f is either inaccurate at (x,y), or f is not robust at (x,y) with radius r.

Observe that this occurs if and only if there is some x′ ∈ Bp(x,r) such that f (x′) 6= y. Thus

Lr( f ,D) = P(x,y)∼D [∃x′ ∈ Bp(x,r) s.t. f (x′) 6= y].

3.2.2 Expected Loss and Sample Complexity

The most common way to characterize the performance of a learning algorithm is through

an (ε,δ ) guarantee, which computes εn,δn such that an algorithm trained over n samples has

loss at most εn with probability at least 1−δn.

In this work, we use the simpler notion of expected loss, which is defined as follows:

Definition 3.2.4. Let A be a learning algorithm and let D be a distribution over Rd ×{±1}.

For any S ∼ Dn, we let AS denote the classifier learned by A from training data S. Then the
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expected standard loss of A with respect to D , denoted ELn(A,D) where n is the number of

training samples, is defined as

EL n(A,D) = ES∼DnL (AS,D).

Similarly, we define the expected robust loss of A with respect to D as

EL n
r (A,D) = ES∼DnLr(AS,D).

Our main motivation for using this criteria is simplicity. Our primary goal is to compare

and contrast the performances of algorithms in the standard and robust cases, and this contrast

clearest when the performances are summarized as a single number (namely the expected loss)

rather than an (ε,δ ) pair.

Next, we address the notion of sample complexity. As above, sample complexity is

typically defined as the minimum number of samples needed to guarantee (ε,δ ) performance.

In this work, we will instead define it solely with respect to ε , the expected loss.

Definition 3.2.5. Let D be a distribution over Rd×{±1} and A be a learning algorithm. Then

the standard sample complexity of A with respect to D , denoted mε(A,D), is the minimum

number of training samples needed such that A has expected standard loss at most ε . Formally,

mε(A,D) = min({n : EL n(A,D)≤ ε}).

Similarly, we can define the robust sample complexity as

mε
r (A,D) = min({n : EL n(A,D)≤ ε}).

3.2.3 Linear classifiers

In this work, we consider linear classifiers, formally defined as follows:
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Definition 3.2.6. Let w ∈Rd be a vector. Then the linear classifier with parameters w ∈Rd and

b ∈ R over Rd×±1, denoted fw,b, is defined as ,

fw,b(x) =


+1 〈w,x〉 ≥ b

−1 〈w,x〉< b
.

Learning linear classifiers is well understood in the standard classification setting. We

now consider the linearly separable case, in which some linear classifier has perfect accuracy.

We will later define linear r-separability as the robust analog of separability.

Definition 3.2.7. A distribution D over Rd ×Y is linearly separable if its support can be

partitioned into sets S+ and S− such that:

1. S+ and S− correspond to the positively and negatively labeled subsets of Rd . In

particular, P(x,y)∼D [x ∈ Sy] = 1.

2. There exists a linear classifier, fw,b, that has perfect accuracy. That is, L ( fw,b,D) = 0.

The standard sample complexity for linearly separable distributions can be characterized

through their margin, which is defined as follows.

Definition 3.2.8. Let D be a linearly separable distribution over Rd×{±1}. Let S+ and S− be

as above. Then D has margin γ if γ is the largest real number such that there exists a linear

classifier fw,b with the following properties:

1. fw,b has perfect accuracy. That is, L ( fw,b,D) = 0.

2. Let Hw,b = {x : 〈x,w〉 = b} denote the decision boundary of fw,b. Then for all

x ∈ (S+∪S−), x has `2 distance at least γ from Hw,b. That is,

inf
x∈S+∪S−,z∈Hw,b

||x− z||2 ≥ γ.

We let γ(D) denote the margin of D .
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Observe that although we use a general norm, `p, to measure robustness, the margin is

always measured in `2. This is because the `2 norm plays a fundamental role in bounding the

number of samples needed to learn a linear classifier.

The basic idea is that when the `2 margin is large relative to the `2 diameter of the

distribution, the max margin algorithm requires fewer samples needed to learn a linear classifier.

In particular, the ratio between the `2 margin and the `2 diameter fully characterizes the standard

sample complexity of the max margin algorithm. To further simplify our notation, we define this

ratio as the aspect ratio.

Definition 3.2.9. Let D be a linearly separable distribution over Rd×{±1}. Then the aspect

ratio of D , ρ(D) is defined as,

ρ(D) =
diam2(S+∪S−)

γ(D)
,

where diam2(S+∪S−) denotes its diameter in the `2 norm.

We now have the following well-known result, which characterizes the expected standard

loss with the aspect ratio.

Theorem 3.2.10. (Chapter 10 in [60]) Let M denote the hard margin SVM algorithm. If D is a

distribution with aspect ratio ρ = ρ(D), then for any n > 0 we have ES∼DnL (MS,D)≤O(ρ2

n ),

where MS denotes the classifier learned by M from training data S.

We can also express this result in terms of standard sample complexity.

Corollary 3.2.11. Let M denote the hard margin SVM algorithm. If D is a distribution with

aspect ratio ρ = ρ(D), then for any ε > 0 we have mε(MS,D)≤ O(ρ2

ε
), where MS denotes the

classifier learned by M from training data S.

Theorem 3.2.10 and Corollary 3.2.11 will serve as a benchmark for comparison with the

robust sample complexity.
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3.2.4 Linear r-separability

Finally, we introduce linear r-separability, which is the key characteristic of distributions

considered in this paper. This can be thought of as the robust analog of linear separability.

Definition 3.2.12. For any r > 0, a distribution D over Rd ×{±1} is linearly r-separable if

there exists a linear classifier fw,b such that Lr( fw,b,D) = 0.

This definition is the fundamental property considered in this paper. Our goal is to

understand the sample complexity required for learning robust linear classifiers on linearly

r-separable distributions, and compare it with the standard sample complexity given in Theorem

3.2.10.

3.3 Lower Bounds

In this section, we consider r-separated distributions whose aspect ratio is constant. By

Theorem 3.2.10, the standard sample complexity for learning them is independent of d. We

will show that in contrast, the robust sample complexity has a linear dependence on d, and

consequently establish a substantial gap between the standard and robust cases.

We begin by defining the family of such distributions.

Definition 3.3.1. For any ρ,r, the set Fr,ρ is defined as the set of all distributions D over

Rd×{±1} such that D is r-separated and has aspect ratio at most ρ .

We now state our main result.

Theorem 3.3.2. Let r > 0 and ρ > 20. Then the following hold.

1. For every learning algorithm A, and any n> 0, there exists D ∈Fr,ρ such that the expected

robust loss when A is trained on a sample of size n from D is at least Ω(d
n ). Formally,

there exists a constant c > 0 such that ES∼Dn[Lr(AS,D)]≥ cd
n .
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2. In contrast, by Theorem 3.2.10, for any D ∈Fr,D, the max margin algorithm has expected

standard loss O(ρ2

n ), when trained on a sample of size n from D . Formally, there exists a

constant c′ > 0 such that ES∼Dn[L (AS,D)]≤ c′ρ2

n .

The condition ρ > 20 is required to rule out degenerate cases. This is because for small

values of ρ , the `2 diameter of D is not much larger than the `2 margin of D . This forces D to

be mostly clustered around a line which leads to more complicated behavior.

Observe that when ρ is a constant independent of d, the expected standard loss is O(1
n)

while the expected robust loss is Ω(d
n ). Thus, the ratio between the expected robust loss and the

expected standard loss is Ω(d), leading to a dimensional dependent gap between the robust and

standard cases.

We also note that these bounds hold regardless of which `p (p ∈ (1,∞]) norm is being

used. This is because our construction of D ∈Fr,ρ for which the lower bound holds is given in

terms of the norm p. More generally, the family Fr,ρ is implicitly defined with respect to p.

Furthermore, our lower bound differs from the lower bound of Ω(d
n ) shown in prior work

[51] because it specifically holds for Fr,ρ , a linearly r-separated family of distributions with

constant aspect ratio. Thus, while [51] has shown the existence of distributions satisfying the

first condition of Theorem 3.3.2, our result is the first to exhibit a distribution satisfying both

conditions.

Finally, we note that Theorem 3.3.2 can also be expressed in terms of sample complexities.

We include this in the following corollary.

Corollary 3.3.3. Let r > 0 and ρ > 20. Then the following hold.

1. For every learning algorithm A, and any ε > 0, there exists D ∈Fr,ρ such that the

robust sample complexity of A with respect to D is at least Ω(d
ε
). Formally, there exists a

constant c > 0 such that mε
r (A,D)≥ cd

ε
.

2. In contrast, by Theorem 3.2.10, for any D ∈Fr,D, the max margin algorithm has

standard sample complexity O(ρ2

ε
). Formally, there exists a constant c′> 0 such that mε(A,D)≤
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c′ρ2

ε
.

3.3.1 Comparison with [1] and [2]

The first work to provide a robust sample complexity lower bound that applied to linear

classifiers is [2]; they showed a gap of Ω(
√

d) between the robust and accuracy loss for a

specific mixture of two Gaussians. This was later generalized to mixtures of any two Gaussians

by [1], who also established more general lower bounds for any `p norm. Since [1] is a strict

generalization of [2], we next explain how our lower bounds differ from [1], and why their

techniques do not lead to our results. We begin by summarizing their results.

Summary of [1]

[1] considers data distributions D that are parametrized by µ ∈ Rd and Σ ∈ Rd×d ,

Σ< 0. Dµ,Σ is the mixture of two Gaussians, N (µ,Σ) and N (−µ,Σ), with equal mass, where

instances drawn from N (µ,Σ) are labeled as +, and instances drawn from N (−µ,Σ) are

labeled as −. They consider robustness measured in any normed metric in Rd , including the `p

norm for p ∈ (1,∞]. Although their bounds apply to any classifier, this effectively deals with

linear classifiers since it can be shown that the optimally robust and accurate classifiers are both

linear.

For any distribution Dµ,Σ, let Lrob denote the optimal robust loss of any classifier on

Dµ,Σ, and let Lstd denote the optimal standard loss. Then the bounds shown in [1] can restated as

follows (a detailed derivation from [1] appears in Appendix C.1).

Theorem 3.3.4. [1]

1. For any learning algorithm A and any n > 0, there exists some mixture of Gaussians, Dµ,Σ

such that the expected excess robust loss is at least Ω(Lrob
d
n ), when A is trained on a

sample of size n from D .

2. For any distribution Dµ,Σ, it is possible to learn a classifier with expected excess standard

loss at most O(Lstd
d
n ).
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3. By (1.) and (2.), the ratio between the expected excess loss and expected excess standard

loss can be expressed as ratio≥Ω(Lrob
Lstd

).

Observe that their bounds are given through excess losses, which is the amount by which

the loss exceeds to the optimal loss. This is necessary because in their setting, the optimal

classifiers do not have 0 loss.

Comparison with our bounds

Recall that in our work, we are concerned with the linearly r-separated case, which

occurs precisely when the optimal robust and standard losses both equal 0. However, from

Theorem 3.3.4, we see that although [1] proves a gap between standard and robust sample

complexity, this gap is predicated on distributions for which the optimal robust loss, Lrob and

optimal standard loss, Lstd differ. Furthermore, in the case where they obtain a gap of Ω(d),

we see that this requires Lrob
Lstd

= Ω(d) which is a substantial difference. By contrast, our results

characterize a gap exclusively in the case that this does not occur.

Finally, in the limiting case where the Gaussians they consider are sufficiently far apart,

their data will begin to appear linearly r-separated, meaning both Lrob and Lstd are close to 0.

However, even in this case, it can be shown that the ratio Lrob
Lstd

diverges towards infinity, meaning

that their lower bound characterizes a very different dynamic from ours. Precise details on this

comparison can be found in appendix C.1.

3.3.2 Intuition behind Theorem 3.3.2

The proof idea for Theorem 3.3.2 can be summarized with a simple example (Figure

3.1). In this example, we seek to learn a linear classifier for a linearly r-separated distribution in

R2. The key idea is to contrast the necessary conditions for learning a robust classifier, and the

necessary conditions for learning an accurate classifier.

Observe that the distribution is precisely linearly r-separated, that is, it is not possible to

achieve robustness for radii larger than r. Because of this, there is a unique linear classifier frob
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that has perfect robustness. In order to learn this classifier, we must see examples from S+∪S−

that are close to the “boundary” of S+∪S−. In our figure, this consists of points that are close to

the dotted blue and red lines. Moreover, it can be shown that the number of such examples we

must see is related to d, the dimension.

By contrast, any classifier that separates S+ from S− has perfect accuracy (take for

example fstd shown in the figure). It is possible to exploit this by using margin based algorithms

for learning linear classifiers. In particular, we no longer need to see points that are extremely

close to the boundary of S+∪S−.

Figure 3.1. An example of a linearly r-separated distribution, with positively and negatively
labeled examples in S+ and S− respectively. The optimally robust classifier, frob is shown in
purple, while the (not necessarily unique) optimally accurate classifier, fstd , is shown in green.

General Hypothesis Classes:

We now briefly consider how to extend our methods to other hypothesis classes. For any

hypothesis class H and distribution D let

HD ,α = {h : h ∈H ,L (h,D)≤ α}
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and let

H r
D ,α = {h : h ∈H ,Lr(h,D)≤ α}.

HD ,α can be thought of as the set of accurate classifiers while H r
D ,α can be thought of as the set

of astute classifiers. By their definitions, it is clear that H r
D ,α ⊆HD ,α . However, in the case

when H is the set of linear classifiers, we see that for small α , H r
D ,α is a much “smaller” set

than HD ,α . By exploiting the geometric structure inherent to H , we can much more efficiently

search for some h∈HD ,α than we can in H r
D ,α . This dynamic is the crux of our lower bound: as

we essentially show that there are far more critical points (i.e. points near the decision boundary)

that we must see for learning H r
D ,α that aren’t required for HD ,α .

Thus, for our methods to extend to an arbitrary hypothesis class, we would require a

similar dynamic. We need two properties to hold: (1) H r
D ,α must be a very strict subset of HD ,α

for sufficiently small alpha. (2) We must have some kind of exploitable geometric structure

about H which allows us to exploit this gap. For the case of linear classifiers, this was the `2

measured aspect ratio, γ(D).

Kernel Classifiers:

A natural choice of a more general hypothesis class would be Kernel Classifiers, which

are linear classifiers that operate in an embedded space, H. The main difficulty in expanding our

lower bound to this more general setting comes from the behavior near the margin: the effects of

the robustness radius in the embedded space are considerably less behaved than they are in the
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standard linear case. Nevertheless, we leave this as an important avenue for future work.
Algorithm 2: Adversarial-Perceptron

1 Input: S = {(x1,y1), . . . ,(xn,yn)} ∼Dn,;

2 w← 0 ;

3 for i = 1 . . .n do

4 z = argmin||z−xi||p≤r yi〈w,z〉 finds adversarial example;

5 if 〈w,yiz〉 ≤ 0 checks label then

6 w← w+ yiz perceptron update;

7 end if

8 end for

9 Return: fw,0;

3.4 Upper Bounds

In the previous section, we showed that for any algorithm, there is some distribution

D ∈Fr,ρ that is difficult (i.e. requires high sample complexity) to learn robustly. A natural

follow-up question is: what about distributions for which the margin, γ is very large compared to

r.

Observe that in Figure 3.1 the robustness radius r is very close to the margin. In particular,

we can find adversarial examples from S+ and S− that are very close to the decision boundary

frob. By contrast, if γ >> r, then this no longer holds which suggests that better robust sample

complexities might be possible.

In this section, we will describe a subset of Fr,ρ that can be learned with expected loss

O(1
n), thus matching the standard sample complexity up to a constant factor. To do so, we will

introduce a novel concept: the robust margin. The basic intuition is that distributions for which

the margin greatly exceeds the robustness radius are precisely distributions with a large robust

margin. We use the following notation.
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Observe that if D is a linearly r-separated distribution, then D must also be linearly

separable. As earlier, let S+,S− ⊂ Rd denote the positively and negatively labeled examples

from D . We now define

S+r = ∪s∈S+Bp(s,r) and S−r = ∪s∈S−Bp(s,r). (3.1)

It follows that the decision boundary of any linear classifier with perfect robustness over D must

separate S+r and S−r . We now define the robust margin as a measurement of this separation.

Definition 3.4.1. Let D be a linearly r-separable distribution over Rd×{±1}. Let S+r and S−r

be as above. Then D has robust margin γr if γr is the largest real number such that there exists

a linear classifier fw,b with the following properties:

1. fw,b has perfect astuteness. That is, Lr( fw,b,D) = 0.

2. Let Hw,b = {x : 〈x,w〉 = b} denote the decision boundary of fw,b. Then for all

x ∈ (S+r ∪S−r ), x has `2 distance at least γ from Hw,b. That is,

inf
x∈S+r ∪S−r

inf
z∈Hw,b

||x− z||2 ≥ γ.

We let γr(D) denote the margin of D , and say that such a distribution is r,γr-separated.

It is crucial to note that although adversarial perturbations are measured in `p, the robust

margin is measured in `2. This is because while the metric `p plays a role in constructing B(x,r),

it can be completely disregarded once the sets S+r and S−r are considered, as any hyperplane

separating S+r and S−r will have perfect robustness.

We now define the robust aspect ratio, which is the robust analog of standard aspect ratio.

Definition 3.4.2. Let D be a distribution over Rd×{±1}. Then the robust aspect ratio of D ,

ρr(D) is defined as

ρr(D) =
diam2(S+r ∪S−r )

γr(D)
,
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where as before, diam2(S+r ∪S−r ) denotes its diameter in the `2 norm.

We will now show that just as the aspect ratio, ρ(D), characterized the sample complexity

for standard classification, the robust aspect ratio, ρr(D) will characterize the sample complexity

for robust learning. To do so, we present a perceptron-inspired algorithm (Algorithm 2) for

learning a robust classifier on r-separated data with robust aspect ratio ρr.

The basic idea behind Algorithm 2 is to combine the standard perceptron algorithm with

adversarial training. In particular, we iterate through the training set and do the following on

each point (refer to Algorithm 2 for precise details).

1. Find an adversarial example (z,yi) by attacking our classifier, fw,0, at (xi,yi) (line 4).

This is a straightforward convex optimization problem for linear classifiers.

2. If fw,0(z) 6= yi, we update our weight vector with (z,yi) by using the standard perceptron

update (lines 5-6).

We have the following upper bound on the expected robust loss of our algorithm.

Theorem 3.4.3. Let D be a distribution with robust aspect ratio ρr(D). Then for any n > 0, we

have

ES∼Dn[Lr(AS,D)]≤ O(
ρr(D)2

n
),

where AS denotes the classifier learned by Algorithm 2 from training data S.

Observe that this expected loss is still larger than the expected standard loss in Theorem

3.2.10 as ρr(D)> ρ(D) for any D . We also note that this result is not contradictory with our

lower bound; there exist distributions D ∈Fr,ρ such that γr(D) = 0, and these are precisely the

distributions for which our lower bounds hold.

3.4.1 Generalization to Kernel Classifiers

Algorithm 2 can be thought of as the robust analog to the perceptron algorithm. We now

generalize this algorithm to obtain a robust variant of the kernel perceptron algorithm. We first
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briefly review kernel classifiers. A detailed explanation of our generalized algorithm along with

requisite background material can be found in Appendix C.4

Definition 3.4.4. Let T = {(x1,y1), . . . ,(xm,ym)} be a set of labeled points in ⊂ Rd ×{±1},

K : Rd×Rd → R be a kernel similarity function, and α ∈ Rm be a vector of m real numbers.

Then the kernel classifier with similarity function K, parameters T,α , and denoted by f α
T,K is

defined as

f K
T,α(x) =


+1 ∑

m
1 αiyiK(xi,x)≥ 0

−1 ∑
m
1 αiyiK(xi,x)< 0

.

Conceptually, kernel classifiers are linear classifiers operating in embedded space. With

each kernel similarity function K, there is a map φ : Rd → H (where H is some Hilbert space)

such that K(x,x′) = 〈φ(x),φ(x′)〉. Thus we can think of kernel classifiers as having a linear

decision boundary in H.

We now present an analog of Algorithm 2 that we call the Adversarial Kernel-Perceptron.

The essence of this algorithm has not changed. For each (xt ,yt) in our training set, we do the

following.

1. Find an adversarial example (z,yi) by attacking our classifier, f K
T,α , at (xi,yi) (line 4).

2. If f K
T,α(z) 6= yi, we update our weight vector with (z,yi) by appending (z,yi) to T lines
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(5-6). This corresponds to a kernel-perceptron update that uses (z,yi) instead of (xi,yi).
Algorithm 3: Adversarial-Kernel-Perceptron

1 Input: S = {(x1,y1), . . . ,(xn,yn)} ∼Dn, Similarity function, K

2 T ← /0, α ← 0

3 for i = 1 . . .n do

4 z = argmin||z−x||p≤r yi f K
T,α(z) finds adv. ex.

5 if f k
T,α(z)≤ 0 checks label then

6 T = T ∪{(z,yi)} kern. percep. update

7 α = (1, . . . ,1)|T |

8 end if

9 end for

10 Return f K
T,α

One challenging aspect of this algorithm is minimizing f k
T,α(z). For linear classifiers,

this has a closed form solution that utilizes the dual norm. For arbitrary Kernel classifiers, this is

a somewhat more challenging problem. However, we note that this can be solved using standard

optimization techniques, and in some cases (when K is particularly simple), it can be solved with

basic gradient descent.

Finally, we show that this Algorithm has similar performance to the linear case. Instead

of using the robust aspect ratio, ρr(D), to bound the performance, we will require the robust

K-aspect ratio, which is the kernel analog of this quantity. It can be thought of as the robust

aspect ratio in the embedded space H. Details about this quantity (along with the proof of the

theorem) can be found in Appendix C.4.

Theorem 3.4.5. Let D be a distribution with robust K-aspect ratio ρK
r (D). Then for any n > 0,

we have

ES∼Dn[Lr(AS,D)]≤ O(
ρK

r (D)2

n
),

where AS denotes the classifier learned by Algorithm 3 from training data S.
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This result indicates that for small values of ρk
r (D), we can achieve a very good robust

sample complexity for kernel classifiers. However, as the size of the perturbations approach this

margin, this quantity goes to infinity. This phenomenon mirrors the linearly separable case, and

suggests that a similar overall dynamic holds for kernel classification. We leave finding a full

generalization (including our lower bound) for a direction in future work.
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Chapter 4

Robust Empirical Risk Minimization with
Tolerance

4.1 Introduction

Adversarially robust classification is a staple of modern machine learning. In the robust

setting, along with meeting standard accuracy guarantees, predictions made by a learner at

test time must additionally be robust to adversarial perturbations to the input, typically defined

by a fixed family U = {Ux}x∈X of possible perturbations. Developing robust algorithms with

provable guarantees has been an important research direction in recent years, both for parametric

[54, 55, 11, 50, 56] and non-parametric [10, 16, 48, 61] classifiers, but understanding the

performance of even the most basic algorithms in the setting remains open.

In this work, we study one of the simplest, most fundamental algorithmic paradigms in

learning, a classical method called empirical risk minimization (ERM). In the robust setting, an

algorithm is said to be an empirical risk minimizer (RERM) if it always outputs a hypothesis in

the class with minimal robust risk over its training data. In the standard setting, it is a classical

result that any learnable class is learnable (near-optimally) by any ERM. Unfortunately, this is

known to fail drastically in the robust setting—Montasser et al. [11] showed that there exist finite

VC classes, H , where no algorithm outputting hypotheses in H (called a proper learner) can

converge towards the optimal classifier, even with arbitrary amounts of training data. Conversely,

such classes are in fact robustly learnable, but require complicated improper learning rules and a

62



potentially exponential number of samples.

The failure of Robust ERM for general classes raises an interesting question: are there

natural sufficient conditions for the success of RERM? One obvious answer to this question is

the notion of robust VC dimension, a combinatorial parameter promising the success of RERM.

However, bounding robust VC is typically difficult, and such results are only known for very

specialized examples of classifiers and robustness regions (e.g. linear classifiers under fixed-

radius balls [51] or other simple margin structures [56], or VC-classes under finite perturbation

sets [55]). To our knowledge there are no corresponding results for more general robustness

regions and hypothesis classes beyond these special cases.

Given the current failure of combinatorial techniques in this setting, one might instead

hope to show RERM works given sufficiently nice geometric conditions on the hypothesis class.

Sadly, this is not the case. We show that there exist robustness regions for which RERM (indeed

any proper algorithm) fails even for settings as simple as (bounded) linear classifiers.

Theorem 4.1.1 (Failure of RERM for Linear Classifiers). For any W > 0 and d > 1, let HW

denote the set of linear classifiers with distance at most W from the origin. Then there exists a

set of robustness regions U over Rd such that for any proper learning algorithm L there exists a

distribution D for which the following hold:

• D is realizable: There exists h∗ ∈HW such that `U(h∗,D) = 0.

• L has high error: With probability at least 1
7 over S∼Dm, `U(L(S),D)> 1

8 .

With this in mind, we turn our attention to a different approach: relaxing the notion of

robustness itself. We’ll consider a recent model of Ashtiani et al. [62] called tolerant robust

learning. In the tolerant setting, the learner is only required to compete with the best loss over a

relaxed family of perturbation sets U γ for a (potentially arbitrary) tolerance parameter γ > 0.

Ashtiani et al. [62] studied this setting in the special case of radius r balls, where the learner

competes with robust error against r(1+ γ)-balls. Under this framework, Ashtiani et al. [62]
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give an algorithm with PAC-guarantees for VC classes using significantly fewer samples, but

their techniques remain improper and only hold for the simplest robustness setting.

In this work, we show that a simple variant of RERM in the tolerant model indeed

succeeds under natural geometric conditions on the hypothesis class. In particular, we study a

notion of smoothness called regularity, which roughly promises that every point in the instance

space should be contained in some ball of the same label. This captures many well-studied

settings, such as cases where the decision boundaries are compact, differential manifolds in Rd .

Theorem 4.1.2 (Tolerant RERM for Regular Classes). Let H be a regular hypothesis class with

VC dimension v over Rd , and let U be any set of robustness regions. Then TolRERM tolerantly

PAC-learns (H ,U ) with tolerant sample complexity

m(ε,δ ,γ) = O

vd log dDiam(U)
εγδ

ε2

 ,

where Diam(U) denotes the maximum `2 diameter across robustness regions Ux.

Theorem 4.1.2 matches the sample complexity given in Ashtiani et al. [62] up to logarith-

mic factors and enjoys the additional benefits of applying to more general robustness regions

along with its properness and general algorithmic simplicity. For completeness, we also analyze

our algorithm’s performance over non-regular classifiers in Appendix D.4, and show that it has

a similar performance albeit at the cost of replacing the VC-dimension with vball, the robust

VC dimension of H over balls of a fixed radius. Thus, for non-regular hypothesis classes, our

algorithm gives a reduction from arbitrary robustness regions to the case where they are all balls

of a fixed radius.

Finally it’s worth noting that while Ashtiani et al. [62] only requires sampling access

to the perturbation sets, stronger access such as an empirical risk minimizer is inevitable in

the general setting where U is unknown. We show that there exists hypothesis classes where

Ω((D
γ
)d) queries to a sampling oracle are required for robust learning with tolerance if no other
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interaction with Ux is permitted.

While Theorem 4.1.2 gives a natural sufficient condition for the success of RERM in

relaxed settings, many questions in this direction remain wide open. It would be interesting to

identify a necessary condition for the success of RERM, both in the tolerant and original robust

models. Furthermore, it should be noted that while we prove RERM fails to learn nice classes in

the latter, the perturbation family we use to achieve this is highly combinatorial. As such, there is

still hope that RERM may be sufficient in the traditional setting under joint niceness conditions

on H and U , though the close interplay between the two families seems to make identifying

such a condition difficult, if it is indeed possible at all.

4.2 Related Work

Much of the work on adversarial robustness [17, 18, 19, 20, 6, 21, 22, 23, 24, 25] is done

in the context of neural networks.

On the theoretical side, there has been a recent focus on developing algorithms with

guarantees in convergence towards an optimal classifier. On the parametric side, several works

[54, 55, 11, 50, 56, 51] have focused on distribution agnostic bounds on the amount of data

required to converge towards the optimal classifier in a given hypothesis class. For example,

Montasser et al. [11] showed through an example that the VC dimension of robust learning may

be much larger than standard or accurate learning indicating that the sample complexity bounds

may be higher. There has also been some work considering the computation complexity required

for robust learning such as Diakonikolas et al. [57].

Aside from Ashtiani et al. [62], there are several works which also consider variations on

robust learning with tolerance. Yang et al. [16] and Bhattacharjee and Chaudhuri [48] show that

certain non-parametric algorithms exhibit a type of tolerant behavior when robustness regions are

constrained to be balls of radius r. Montasser et al. [63] considers robustness in the transductive

learning setting. Their work employs a similar idea to Ashtiani et al. [62] in that they consider
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expanded perturbation sets when giving their formal guarantees. However, their expansions are

not based on tolerance γ > 0.

4.3 Preliminaries

Let H be a family of binary classifiers {h : Rd →{±1}}, and U = {Ux ⊆ Rd : x ∈ Rd}

any set of robustness regions. We define the robust loss function with respect to U as follows.

Definition 4.3.1. Let h ∈H be a classifier and (x,y) ∈Rd×{±1} be a labeled point. Then the

robust loss of h over (x,y), denoted `U(h,(x,y)), is defined as

`U(h,(x,y)) =


1 ∃x′ ∈Ux such that h(x′) 6= y

0 otherwise.
.

That is, h achieves a loss of 0 only if it labels all points in Ux as y.

For a distribution, D over Rd×{±1}, we let `U(h,D) denote the expected loss h pays

over a labeled point drawn from D . That is, `U(h,D) = E(x,y)∼D [`U(h,(x,y))].

Similarly, for a set of n labeled points, S, we let `U(h,S) denote the average robust loss h

pays over S. that is, `U(h,S) = 1
n ∑

n
i=1 `U(h,(xi,yi)).

We will also use ||x−x′|| to denote the `2 distance between x and x′, and B(x,r) to denote

the (closed) `2 ball centered at x with radius r.

4.3.1 Robust PAC-learning

We now review a natural generalization of PAC learning to the robust setting called robust

PAC-learning [11].

Definition 4.3.2. Let H be a hypothesis class and U be a set of robustness regions. A learner

L robustly PAC-learns (H ,U) if for every ε,δ > 0, there exists m(ε,δ ) such that for all
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n≥ m(ε,δ ), for all data distributions, D , with probability 1−δ over S∼Dn,

`U(ĥ,D)≤ min
h∈H

`U(h,D)+ ε,

where ĥ = L(S) denotes the classifier in H outputted by L from training sample S. m(ε,δ ) is

said to be the sample complexity of L with respect to (H ,U).

Algorithms that are able to robustly PAC-learn a pair (H ,U) are the natural robust

analogs of standard learning algorithms, and thus an important question is understanding how

the sample complexities, m(ε,δ ), for doing so are bounded.

4.4 Robust Empirical Risk Minimization on Linear Classi-
fiers

Montasser et al. [11] showed that there exist hypothesis classes H with bounded VC

dimension, and robustness regions U , such that proper robust PAC-learning is not possible,

meaning no matter how much data one is allowed, there always exists a distribution where the

learner will suffer high robust loss.

However, for many practical examples, this does not appear to be the case – for example,

[51] showed that when H is the set of all linear classifiers and U is the set of robustness

regions with Ux = B(x,r), the sample complexity of robustly learning with RERM is at most

m(ε,δ ) = Õ
(

d
ε2

)
, matching the standard complexity for linear classification.

Motivated by recent interest in more general robustness regions than balls of a fixed

radius, we consider the case where H is a natural hypothesis class, but U is a potentially

arbitrary robustness region. That is, we ask the following question: are there examples of natural

hypothesis classes for which there exist robustness regions leading to arbitrary high sample

complexities?

Unfortunately, the answer turns out to be yes. To show this, we begin by defining the

natural hypothesis class of bounded linear classifiers.
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Definition 4.4.1. A W-bounded linear classifier, f : Rd → Rd , is a linear classifier h whose

decision boundary has distance at most W from the origin. That is, there exist w ∈ Rd and ,

b ∈ R with |b|
||w|| ≤W such that

h(x) =


1 〈w,x〉+b≥ 0

−1 otherwise
.

We let HW denote the class of all W-bounded linear classifiers

The boundedness condition, W , can be thought of as a regularization term which is

common during any kind of practical optimization.

We now show that there exist robustness regions, U , for which (HW ,U) is not robustly

PAC-learnable, even in the realizable setting. For convenience, we restate Theorem 4.4.2 from

the introduction.

Theorem 4.4.2. For any W > 0 and d > 1, there exists a set of robustness regions U over Rd

such that for any learning algorithm L there exists a distribution D for which the following hold:

• D is realizable: There exists h∗ ∈HW such that `U(h∗,D) = 0.

• L has high error: With probability at least 1
7 over S∼Dm, `U(L(S),D)> 1

8 .

Theorem 4.4.2 consequently shows that the observations made in [11] hold even over

practical hypothesis classes such as (bounded) linear classifiers.

To prove Theorem 4.4.2, we begin with the following critical lemma.

Lemma 4.4.3. For every M ∈ N there exists a family of M subsets of Rd

Z(M) :=
{

Z(M)
1 ,Z(M)

2 , . . . ,Z(M)
M

}

satisfying the following conditions:
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• For every h ∈HW , there exists z ∈ Z(M) such that h(z) = 1.

• For every 1≤ i≤M, there exists hi ∈HW such that hi(z) =−1 for all z ∈ ∪ j 6=iZ
(M)
j .

• The sets {Z(M)}M∈N are mutually disjoint.

Proof. Let {βi}i∈N > 0 be a strictly decreasing sequence of sufficiently small real numbers

(that we will specify later). For notational simplicity, fix an M ∈ N and write β = βM and

W ′ = (1+β )W . For any r > 0, let Sd−1
r denote the (d−1)-sphere centered at the origin of radius

r.

Observe that for any x ∈ Sd−1
W , there exists a unique classifier h ∈HW whose decision

boundary is tangent to Sd−1
W at x so that h(x) = 1. We denote this classifier as hx. It follows that

the set of all points on Sd−1
W ′ that hx classifies as 1 can be easily characterized in terms of x. In

particular, by the definition of hx, it follows from geometry that

{
z : hx(z) = 1,z ∈ Sd−1

W ′

}
=
{

z : ||z− (1+β )x|| ≤W
√

2β (β +1),z ∈ Sd−1
W ′

}
. (4.1)

Let rβ = 2W
√

2β (β +1), and let z1,z2, . . . ,zMβ
denote a a greedy rβ cover of Sd−1

W ′ ,

meaning that points are successively selected from Sd−1
W ′ until no point with distance strictly

greater than rβ from all other points can be selected. Finally, define Zi = Z(M)
i as the set of

elements in Sd−1
W ′ with nearest neighbor zi (ties broken arbitrarily).

We claim that this construction suffices for Mβ ≥M. First, observe that limβ→0 rβ = 0,

which means that for sufficiently small β that Mβ will be arbitrarily large (thus satisfying

Mβ ≥M). So select any β for which this hold, and merge enough regions so that we are left with

exactly M regions (i.e. set ZM = ∪Mβ

i=MZi). Note that we can always choose 0 < β < βM−1 since

the naturals can be embedded into any interval. We now verify the two stipulations of Lemma

4.4.3.

The first stipulation clearly holds since {Zi}M
i=1 partition Sd−1

W ′ and every halfspace h ∈

HW intersects the latter by construction.
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For the second stipulation, observe that for any i, the ball centered at zi of radius
rβ

2 ,

B
(

zi,
rβ

2

)
, does not intersect Z j for any i 6= j. This is because such an intersection would imply

by the triangle inequality that ||zi− z j|| ≤ rβ , which is a contradiction. This observation allows

us to find a classifier, hi, as desired – we set hi to be the previously defined classifier, h zi
1+β

.

Equation 4.1 implies that the only points in Sd−1
W ′ that it will classify as 1 are precisely the points

in B
(

zi,
rβ

2

)
∩Sd−1

W ′ . Since this is a subset of Zi, the second stipulation is met, as desired.

Finally, it is left to observe that over each choice of M these Z(M) are mutually disjoint.

This is true so long as the choices of β themselves are disjoint, since Z(M) lies in the sphere of

radius W (1+βM). As noted previously it is easy to see {βM} can be chosen in this manner in an

inductive fashion.

We are now sketching a proof for Theorem 4.4.2, with the full proof deferred Appendix

D.1.

Proof Sketch: (Theorem 4.4.2)

Our goal is to show that for any m ∈ N, any learner on m samples must fail with

constant probability. Fix any m. The main idea will be to construct a set of robustness regions,

Ux1 ,Ux2 , . . . ,Ux3m such that any classifier in HW will lack robustness on at least m of them. T

Toward this end, set M =
(3m

m

)
, and let Z(M)

1 ,Z(M)
2 , . . . ,Z(M)

M be subsets of Rd as described

by Lemma 4.4.3 (we will drop the superscript in what follows). Let M denote the set of all

subsets of {1, . . . ,3m} with exactly m elements. Associate with each Zi a unique element of M ,

thus allowing us to rename our subsets as {ZT : T ∈M }. We now define

Uxi = ∪T :i∈T ZT ,

where xi is an arbitrary point inside Uxi .

Lemma 4.4.3 that if all xi are given a label of −1, then any h ∈HW will label some (for

some set T ) some z ∈ ZT as +1, thus causing it to lack robustness on all i ∈ T . Conversely, we
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see that for any T , there is a classifier hT ∈HW that is accurate and robust at all xi with i /∈ T .

With these observations, we are now prepared to show that for any learner L, there exists

a distribution D for which L has large expected robust loss. To do this, we use a standard lower

bound technique found in [64] that was adapted to the robust setting in [11]. The idea will be to

pick D to be the uniform distribution over a random subset of 2m points in {x1, . . . ,x3m}. We

will then argue that because L only has access to m points from D, it won’t be able to distinguish

which subset D corresponds to, and this will lead to a large expected loss. �

As demonstrated in Lemma 4.4.3, the robustness regions U used in our lower bound

are combinatorial in nature and unlikely to represent any practical kinds of robustness regions.

Nevertheless, our lower bound does show that naturality assumptions on the hypothesis class

alone are not sufficient for ensuring robust PAC-learnability.

A natural next step would be to fully characterizes pairs (H ,U) for which proper robust

PAC-learnability is possible, but we leave this as a direction for future work. We instead turn

towards relaxing the requirements of the robust PAC-learning model in order to find algorithms

that are able to succeed in the case that H is natural but U is arbitrary.

4.5 Tolerant PAC learning

Theorem 4.4.2 implies that for complex robustness regions, robust PAC-learning (Defini-

tion 4.3.2) is not possible, even when H is a simple hypothesis class. Thus, robust learning will

require other ideas.

One such idea is Tolerant PAC-learning, introduced in Ashtiani et al. [62]. Here, the idea

is to relax the goal of robust PAC-learning by introducing a tolerance parameter γ representing

the amount of “slack” the learner gets with respect to the robustness regions U . We now expand

their definition to arbitrary robustness regions by introducing perturbed regions, U γ , which are

defined as follows.

Definition 4.5.1. Let U be a set of robustness regions and γ > 0 be a distance. For any point
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x ∈ Rd , define U γ
x as the set of all points with distance at most γ from Ux. That is,

U γ
x = {x′ : ||x′−Ux|| ≤ γ}.

Finally, we let U γ = {U γ
x : x ∈ Rd} denote the set of γ-perturbed regions of U.

Tolerant PAC-learning is then defined as follows

Definition 4.5.2. Let H be a hypothesis class and U a set of robustness regions. A learner L

tolerantly PAC-learns (H ,U) if for every ε,δ ,γ > 0, there exists m(ε,δ ,γ) such that for all

n≥ m(ε,δ ,γ), for all data distributions, D , with probability 1−δ over S∼Dn,

`U(ĥ,D)≤ min
h∈H

`Uγ (h,D)+ ε,

where ĥ = L(S) denotes the classifier outputted by L from training sample S. As before, we let

m(ε,δ ,γ) denote the tolerant sample complexity of L with respect to (H ,U).

4.5.1 Tolerant RERM oracles

Because our robustness regions, Ux, are arbitrary subsets of Rd , any learning algorithm

will require some sort of access to U . We describe this access through an oracle for U .

Ashtiani et al. [62] employs a sampling oracle for U which allows the learner to sample

points at uniform from the set Ux for any point x. In their setting, Ux is constrained to be a closed

ball of known radius centered at x, and consequently the sampling oracle selects points from the

uniform distribution over the ball. We say that a robust learner is in the sampling model if its

only way of interacting with the regions Ux is through a sampling oracle.

In our setting, where Ux can be an arbitrary regions, sampling oracles pose a significant

challenge – there exists choices of U for which tolerant PAC learning requires an exponential

number of queries to the sampling oracle. We state this as a proposition with the proof in

Appendix D.2.
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Proposition 4.5.3. For any D > 10γ > 0, there exists a hypothesis class H and a set of

robustness regions, U such that the following holds. There exist constants ε and δ , along with a

data distribution D , such that for any n > 0, any learner L that achieves

`U(L(S),D)≤ min
h∈H

`Uγ (h,D)+ ε

with probability at least 1− δ over S ∼ Dn must make at least Ω

((
D
γ

)d
)

sampling oracle

calls.

To circumvent this issue, we turn our attention to a different natural oracle first proposed

in Montasser et al. [11] that is based on Robust Empirical Risk Minimization (RERM). An

RERM oracle, OU,H (S), is a function that returns the classifier h ∈H with minimal robust

empirical risk over S. That is,

OU,H (S) = argmin
h∈H

`U(h,S).

In our work, we will assume access to a mild strengthening of this oracle that allows empirical

risk minimization over any perturbed robustness region, U r.

Definition 4.5.4. A tolerant RERM-oracle for robustness regions U and hypothesis class H

is a function OU,H (S,r) that maps any set of labeled points S and any distance r > 0 to the

classifier with minimal empirical risk over S with respect to U r. That is,

OU,H (S,r) = argmin
h∈H

`U r(h,S).

Observe that in the case that U consists of balls of radius r, a tolerant oracle merely

implies we can also minimize empirical risk for balls of larger radii.
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4.6 Tolerant PAC learning for Regular Hypothesis Classes

Before presenting our algorithm, we first present a key assumption on our hypothesis

class, H , that we refer to as regularity.

4.6.1 Regular hypothesis classes

Definition 4.6.1. We say that a hypothesis class, H is α-regular for α > 0 if for all h ∈H

and for all x ∈ Rd , there exists a closed ball B of radius α containing x such that h(x′) = h(x)

for all x′ ∈ B. We also say that H is regular if it is α-regular for some α > 0.

One important example is hypothesis classes with relatively smooth manifolds as decision

boundaries. In particular, the parameter α can be tied to the smoothness measure of a manifold

known as its reach.

Definition 4.6.2. Let M be a closed manifold embedded in Rd . The reach of M is the largest

α > 0 such that for all x ∈ Rd , if ||x−M|| ≤ α , then x has a unique nearest neighbor in M.

This parameter directly translates to regularity.

Proposition 4.6.3. Let h be a classifier with decision boundary M. Suppose that M is a closed

(d−1)-dimensional submanifold over Rd with reach α . Then h is α/2-regular.

Proof. Let h ∈H be a classifier with decision boundary M. Let x be an arbitrary point with

h(x) = y. We desire to exhibit a ball B of radius α/2 containing x for which h is uniformly y.

Let ρ : Rd → R≥0 be the distance function ρ(x) = ||x−M||. It is well known that this

function is everywhere continuous and has a continuous derivative over {x : 0 < ρ(x)< α}.

If ρ(x)>α/2, then we can simply take B=B(x,α/2) as all points here must be classified

as y by the definition of a decision boundary. Thus, assume ρ(x)≤ α/2.

Let V be the gradient vector field of ρ defined over {x : ρ(x)< α}. Since all points in

this region have a unique nearest neighbor in M, the gradient has magnitude 1 for all such points,
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and the direction is precisely opposite the straight line path from the point’s nearest neighbor in

M.

Since V is continuous, (and Lipshitz over a bounded region), there exists a unique curve

τ starting at x of length α

2 that is always tangent to V . It follows that the endpoint of this path,

x′ must satisfy ρ(x′) = α

2 +ρ(x)> α

2 and ||x− x′|| ≤ α

2 . This means that B = B(x′, α

2 ) suffices,

as desired.

4.6.2 Our Algorithm

We now give a tolerant PAC learning algorithm called TolRERM (Algorithm 4) which

assumes access to a tolerant RERM oracle (Definition 4.5.4). TolRERM is essentially robust

empirically risk minimization with a slight modification: rather than using the original robustness

regions, U , we use the perturbed regions, U r where 0 < r < γ is chosen at random. TolRERM’s

performance is given by Theorem 4.1.2, which is restated here for convenience.

Theorem 4.6.4. Let H be a regular hypothesis class with VC dimension v, and let U be a set

of robustness regions. Then TolRERM tolerantly PAC-learns (H ,U) with tolerant sample com-

plexity, m(ε,δ ,γ) = O
(

vd log dD
εγδ

ε2

)
, where D denotes the maximum `2 diameter of any region, Ux.

Algorithm 4: TolRERM(D ,ε,δ ,γ,n)

1 Sample r ∼ [ εδγ

7 ,γ] at uniform;
2 Sample S∼Dn;
3 Output ĥ = OU,H (S,r);

Since the set of bounded linear classifiers, HW (Definition 4.4.1) is clearly regular and

has VC dimension O(d), Theorem 4.1.2 immediately implies the following corollary.

Corollary 4.6.5. For any set of robustness regions, U, TolRERM tolerantly PAC-learns (HW ,U)

with tolerant sample complexity m(ε,δ ,γ) = O
(

d2 log dD
εγδ

ε2

)
, where D denotes the maximum `2

diameter of any robustness region, Ux.
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TolRERM matches the sample complexities for linear classifiers found in [11] and

[62]. However, it enjoys the advantage of being simpler (as it is essentially an empirical risk

minimization algorithm) and a proper learning algorithm (as it outputs a linear classifier).

Beyond regular hypothesis classes:

It turns out that Algorithm 4 has bounded sample complexity for any hypothesis class

with finite robust VC-dimension for balls (see Appendix D.4 for a full description). Thus,

Algorithm 4 can alternatively be thought of as a reduction from the sample complexity for

learning robust classifiers over arbitrary robustness regions to the sample complexity for balls of

fixed radii. This is expressed in the following result (proved in Appendix D.4).

Theorem 4.6.6. Let H be any hypothesis class with maximal adversarial VC dimension vball ,

and let U be any set of robustness regions. Then TolRERM tolerantly PAC-learns (H ,U) with

tolerant sample complexity m(ε,δ ,γ) = O
(

vballd log dD
εγδ

ε2

)
, where D denotes the maximum `2

diameter of any robustness region, Ux.

4.6.3 Proof of Theorem 4.1.2

We begin by showing that randomly choosing r allows the optimal empirical loss U r to

change relatively smoothly with respect to r.

Lemma 4.6.7. For r ∈ [0,γ], let OPT r
S = minh∈H `U r(h,S). Then with probability at least 1− δ

2

over r ∼ [ εδγ

7 ,γ], OPT r
S ≤ OPT

r− εδγ

7
S + ε

3 .

Proof. Let α = εδγ

7 . Our goal is to show that OPT r
S −OPT r−α

S is likely to be small. Our

strategy is to bound the expected value of OPT r
S −OPT r−α

S and then apply Markov’s inequality.

As a technical note, the function r 7→ OPT r
S is monotonic and bounded, and consequently
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measurable, which ensures that our expectations are well defined. To this end, we have,

E[OPT r
S −OPT r−α

S ] = E[OPT r
S ]−E[OPT r−α

S ]

=
1

γ−α

(∫
γ

α

OPT r
S dr−

∫
γ

α

OPT r−α

S dr
)

=
1

γ−α

(∫
γ

α

OPT r
S dr−

∫
γ−α

0
OPT r

S dr
)

=
1

γ−α

(∫
γ

γ−α

OPT r
S dr−

∫
α

0
OPT r

S dr
)

≤ α

γ−α
=

δεγ

7γ−δεγ
≤ δε

6
,

since ε,δ ≤ 1. Applying Markov’s inequality, with probability at least 1− δ

2 , OPT r
S −OPT r−α

S ≤
ε

3 . �.

Next, we construct a set of robustness regions V r that have similar robust loss to U r and

are also finite.

Lemma 4.6.8. Suppose that H is γ-regular. For all r ∈ [ εδγ

7 ,γ], there exists a set of robustness

regions V r = {V r
x : x ∈ Rd} satisfying the following two properties.

1. |V r
x |= O

((
D

εδγ

)d
)

, where D denotes the maximum diameter of Ux.

2. Let α = εδγ

7 . For all labeled points (x,y) and for all classifiers h ∈H ,

`U r−α (h,(x,y))≤ `V r(h,(x,y))≤ `U r(h,(x,y)).

Proof. For any x ∈ Rd , we will show how to construct Vx so that it satisfies the two conditions

above.

Observe that U r
x is closed and bounded as it is a union of closed balls of radius r. Since

each Ux has diameter at most D, this means that U r
x is compact. Thus, there exists a finite set of

balls of radius α/2 that cover U r
x . Note that these balls are not necessarily contained within U r

x –

only that U r
x is a subset of their union. Let Cx denote the set of all centers of the smallest such
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cover. We claims that Vx =Cx∩U r
x suffices.

First, |Cx| ≤ O
(
(D

α
)d) because any ball of diameter D can be covered by O

(
(D

α
)d) balls

of radius α/2, and U r
x is a subset of a ball of diameter D+2r. This implies that the first condition

holds.

Second, pick any labeled point (x,y) and any classifier h ∈H . If `V r(h,(x,y)) = 1,

then we immediately have `U r(h,(x,y) = 1 since V r ⊆U r. This implies that `V r(h,(x,y)) ≤

`U r(h,(x,y) giving the second half of the second condition.

If `U r−α (h,(x,y)) = 1, then there exists x′ ∈U r−α
x such that h(x′) 6= y. It follows that

since h is γ-regular, h must also be α-regular (as α < γ). This means that there exists a ball B of

radius α/2 containing x′ such that h does not output y for any point in B.

By the triangle inequality, B ⊆U r
x , and since Cx covers U r

x , it follows that there exists

x∗ ∈Cx∩B. By definition, this also means x∗ ∈V r
x . However, by the definition of B, we must

have h(x∗) 6= y, and this means that `V r
x (h,(x,y)) = 1. Since (x,y) was arbitrary, this proves the

second half of the second condition.

We are now prepared to prove Theorem 4.1.2.

Proof. (Theorem 4.1.2) Let α = εδγ

7 . For all s > 0, let hs ∈H denote any fixed choice of

classifier with minimal empirical loss with respect to U s. That is, hs = argminh∈H `U s(h,S).

Then by Lemma 4.6.7, with probability at least 1− δ

2 over r ∼ [α,γ],

`U r(hr,S)≤ `U r−α (hr−α ,S)+
ε

3
. (4.2)

Next, let V r be as defined in Lemma 4.6.8 and suppose that γ is small enough so that H is

γ-regular (this must occur since H is regular by assumption). By the second condition in the

lemma, it follows that for all h ∈ H:

`U r−α (h,D)≤ `V r(h,D)≤ `U r(h,D), (4.3)
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`U r−α (h,S)≤ `V r(h,S)≤ `U r(h,S). (4.4)

Next, since |Vx|= O
((

D
εδγ

)d
)

, Proposition D.3.3 (proved in the Appendix D.3) implies that

the Robust VC dimension of H with respect to Vx is at most O
(

vd log Dv
εδγ

)
, where v denotes

the VC dimension of H .

Because S is independent from r, there exists an absolute constant C such that if n ≥

C
vd log Dv

εδγ
+log 1

δ

ε2 , then classical connections with uniform convergence [65] imply that with

probability at least 1− δ

2 over S∼Dn, for all h ∈H ,

|`V r(h,S)− `V r(h,D)| ≤ ε

3
. (4.5)

Applying a union bound, we see that for n = Ω

(
vd log dD

εγδ

ε2

)
, with probability at least 1−δ over

r ∼ [α,γ] and S∼Dn, Equations 4.2, 4.3, 4.4, and 4.5 simultaneously hold. Thus it suffices to

show that under these assumptions, any ĥ∈H minimizing the robust empirical risk of S under U r

satisfies `U(ĥ,D)≤minh∈H `Uγ (hγ ,D)+ ε, as this will imply that m(ε,δ ,γ) = O
(

vd log dD
εγδ

ε2

)
as desired.

To do so, we use a series of manipulations applying Equations 4.2 and 4.5. For conve-

nience, we let h∗ = argminh∈H `Uγ (h,D).

Since U ⊂U r and `U r is bounded by `V r (Equation 4.3), we have that

`U(hr,D)≤ `U r(hr,D)≤ `V r(hr,D),

and further by Equations 4.5 and 4.4 that

`V r(hr,D)≤ `V r(hr,S)+
ε

3
≤ `U r(hr,S)+

ε

3
.

Since hs is defined as the classifier of lowest empirical risk over U s, it follows from Equation 4.2
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and this definition that

`U r(hr,S)≤ `U r−α (hr−α ,S)+
ε

3
≤ `U r−α (h∗,S)+

ε

3
.

Applying the same trick we did earlier with Equations 4.4 (bounding U r−α with V r) and 4.5

(uniform convergence of the loss over V r), we have

`U r−α (h∗,S)≤ `V r(h∗,S)≤ `V r(h∗,D)+
ε

3
.

Finally, applying Equation 4.3 to bound the loss over V r with the loss over U r and then noting

that r ≤ γ , we have that

`V r(h∗,D)≤ `U r(h∗,D)≤ `Uγ (h∗,D).

Combining all of our observations with the transitive property, it follows that

`U(hr,D)≤ `Uγ (h∗,D)+ ε.

Finally, since this holds for any choice of hr minimizing `U r(hr,S), it holds for the particular

choice of the Tolerant RERM oracle which completes the result.
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Chapter 5

Data-Copying in Generative Models: A
Formal Framework

5.1 Introduction

Deep generative models have shown impressive performance. However, given how large,

diverse, and uncurated their training sets are, a big question is whether, how often, and how

closely they are memorizing their training data. This question has been of considerable interest

in generative modeling [4, 5] as well as supervised learning [66, 67]. However, a clean and

formal definition of memorization that captures the numerous complex aspects of the problem,

particularly in the context of continuous data such as images, has largely been elusive.

For generative models, [3] proposed a formal definition of memorization called “data-

copying”, and showed that it was orthogonal to various prior notions of overfitting such as

mode collapse [68], mode dropping [69], and precision-recall [70]. Specifically, their definition

looks at three datasets – a training set, a set of generated example, and an independent test

set. Data-copying happens when the training points are considerably closer on average to the

generated data points than to an independently drawn test sample. Otherwise, if the training

points are further on average to the generated points than test, then there is underfitting. They

proposed a three sample test to detect this kind of data-copying, and empirically showed that

their test had good performance.

However, despite its practical success, this method may not capture even blatant cases of
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Figure 5.1. The blue points are from the noisey halfmoons dataset, and the red points from a
generated distribution that is a mixture of (40 %) blatant data copier, and (60 %) a noisy underfit
version of halfmoons. Detecting data-copying is challenging because of the canceling effect of
the underfit points.

memorization. To see this, consider the example illustrated in Figure 5.1, in which a generated

model for the halfmoons dataset outputs one of its training points with probability 0.4, and

otherwise outputs a random point from an underfit distribution. When the test of [3] is applied to

this distribution, it is unable to detect any form of data copying; the generated samples drawn

from the underfit distribution are sufficient to cancel out the effect of the memorized examples.

Nevertheless, this generative model is clearly an egregious memorizer as shown in points x1 and

x2 of Figure 5.1.

This example suggests a notion of point-wise data copying, where a model q can be

thought of as copying a given training point x. Such a notion would be able to detect q’s behavior

nearby x1 and x2 regardless of the confounding samples that appear at a global level. This stands

in contrast to the more global distance based approach taken in Meehan et. al. which is unable to

detect such instances. Motivated by this, we propose an alternative point-by-point approach to

defining data-copying.

We say that a generative model q data-copies an individual training point, x, if it has an

unusually high concentration in a small area centered at x. Intuitively, this implies q is highly
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likely to output examples that are very similar to x. In the example above, this definition would

flag q as copying x1 and x2.

To parlay this definition into a global measure of data-copying, we define the overall

data-copying rate as the total fraction of examples from q that are copied from some training

example. In the example above, this rate is 40%, as this is the fraction of examples that are

blatant copies of the training data.

Figure 5.2. The blue points are a training sample from p, and the red points are generated
examples from q. The green regions are the data-copying regions, as q overrepresents them with
comparison to p. We indicate the points that are considered to be copied in the third panel.

Next, we consider how to detect data-copying according to this definition. To this end,

we provide an algorithm, Data Copy Detect, that outputs an estimate for the overall data-copying

rate. We then show that under a natural smoothness assumption on the data distribution, which

we call regularity, Data Copy Detect is able to guarantee an accurate estimate of the total

data-copying rate. We then give an upper bound on the amount of data needed for doing so.

We complement our algorithm with a lower bound on the minimum amount of a data

needed for data-copying detection. Our lower bound also implies that some sort of smoothness

condition (such as regularity) is necessary for guaranteed data-copying detection; otherwise, the

required amount of data can be driven arbitrarily high.

5.1.1 Related Work

Recently, understanding failure modes for generative models has been an important

growing body of work e.g. [71, 72, 70]. However, much of this work has been focused on other
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forms of overfitting, such as mode dropping or mode collapse.

A more related notion of overfitting is memorization [4, 5, 73], in which a model

outputs exact copies of its training data. This has been studied in both supervised [66, 67] and

unsupervised [74, 75] contexts. Memorization has also been considered in language generation

models [76].

The first work to explicitly consider the more general notion of data-copying is [3], which

gives a three sample test for data-copy detection. We include an empirical comparison between

our methods in Section 5.5.2, where we demonstrate that ours is able to capture certain forms of

data-copying that theirs is not.

Finally, we note that this work focuses on detecting natural forms of memorization or

data-copying, that likely arises out of poor generalization, and is not concerned with detecting

adversarial memorization or prompting, such as in [77], that are designed to obtain sensitive

information about the training set. This is reflected in our definition and detection algorithm

which look at the specific generative model, and not the algorithm that trains it. Perhaps the best

approach to prevent adversarial memorization is training the model with differential privacy [78],

which ensures that the model does not change much when one training sample changes. However

such solutions come at an utility cost.

5.2 A Formal Definition of Data-Copying

We begin with the following question: what does it mean for a generated distribution q to

copy a single training example x? Intuitively, this means that q is guilty of overfitting x in some

way, and consequently produces examples that are very similar to it.

However, determining what constitutes a ‘very similar’ generated example must be done

contextually. Otherwise the original data distribution, p, may itself be considered a copier, as it

will output points nearby x with some frequency depending on its density at x. Thus, we posit

that q data copies training point x if it has a significantly higher concentration nearby x than p
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does. We express this in the following definition.

Definition 5.2.1. Let p be a data distribution, S∼ pn a training sample, and q be a generated

distribution trained on S. Let x ∈ S be a training point, and let λ > 1 and 0 < γ < 1 be constants.

A generated example x′ ∼ q is said to be a (λ ,γ)-copy of x if there exists a ball B centered at x

(i.e. {x′ : ||x′− x|| ≤ r}) such that following hold:

• x′ ∈ B.

• q(B)≥ λ p(B)

• p(B)≤ γ

Here q(B) and p(B) denote the probability mass assigned to B by p and q respectively.

The parameters λ and γ are user chosen parameters that characterize data-copying. λ

represents the rate at which q must overrepresent points close to x, with higher values of λ

corresponding to more egregious examples of data-copying. γ represents the maximum size

(by probability mass) of a region that is considered to be data-copying – the ball B represents

all points that are “copies” of x. Together, λ and γ serve as practitioner controlled knobs that

characterize data-copying about x.

Our definition is illustrated in Figure 5.2 – the training data is shown in blue, and

generated samples are shown in red. For each training point, we highlight a region (in green)

about that point in which the red density is much higher than the blue density, thus constituting

data-copying. The intuition for this is that the red points within any ball can be thought of as

“copies” of the blue point centered in the ball.

Having defined data-copying with respect to a single training example, we can naturally

extend this notion to the entire training dataset. We say that x′ ∼ q is copied from training set S

if x′ is a (λ ,γ)-copy of some training example x ∈ S. We then define the data-copy rate of q as

the fraction of examples it generates that are copied from S. Formally, we have the following:
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Definition 5.2.2. Let p,S,q,λ , and γ be as defined in Definition 5.2.1. Then the data-copy rate,

cr (q,λ ,γ) of q (with respect to p,S) is the fraction of examples from q that are (λ ,γ)-copied.

That is,

cr (q,λ ,γ) = Pr
x′∼q

[q (λ ,γ)-copies x′].

In cases where λ ,γ are fixed, we use crq = cr(q,λ ,γ) to denote the data-copy rate.

Despite its seeming global nature, crq is simply an aggregation of the point by point

data-copying done by q over its entire training set. As we will later see, estimating crq is often

reduced to determining which subset of the training data q copies.

5.2.1 Examples of data-copying

We now give several examples illustrating our definitions. In all cases, we let p be a data

distribution, S, a training sample from p, and q, a generated distribution that is trained over S.

The uniform distribution over S:

In this example, q is an egregious data copier that memorizes its training set and randomly

outputs a training point. This can be considered as the canonical worst data copier. This is

reflected in the value of crq – if p is a continuous distribution with finite probability density, then

for any x ∈ S, there exists a ball B centered at x for which q(B)>> p(B). It follows that q (λ ,γ)-

copies x for all x ∈ S which implies that crq = 1.

The perfect generative model: q = p:

In this case, q(B) = p(B) for all balls, B, which implies that q does not perform any

data-copying (Definition 5.2.1). It follows that crq = 0, matching the intuition that q does not

data-copy at all.

Kernel Density Estimators:

Finally, we consider a more general situation, where q is trained by a kernel density

estimator (KDE) over S ∼ pn. Recall that a kernel density estimator outputs a generated
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distribution, q, with pdf defined by

q(x) =
1

nσn
∑

xi∈S
K
(

x− xi

σn

)
.

Here, K is a kernel similarity function, and σn is the bandwidth parameter. It is known that for

σn = O(n−1/5), q converges towards p for sufficiently well behaved probability distributions.

Despite this guarantee, KDEs intuitively appear to perform some form of data-copying

– after all they implicitly include each training point in memory as it forms a portion of their

outputted pdf. However, recall that our main focus is in understanding overfitting due to data-

copying. That is, we view data-copying as a function of the outputted pdf, q, and not of the

training algorithm used.

To this end, for KDEs the question of data-copying reduces to the question of whether q

overrepresents areas around its training points. As one would expect, this occurs before we reach

the large sample limit. This is expressed in the following theorem.

Theorem 5.2.3. Let 1 < λ and γ > 0. Let σn be a sequence of bandwidths and K be any regular

kernel function. For any n > 0 there exists a probability distribution π with full support over Rd

such that with probability at least 1
3 over S∼ πn, a KDE trained with bandwidth σn and kernel

function K has data-copy rate crq ≥ 1
10 .

This theorem completes the picture for KDEs with regards to data-copying – when n

is too low, it is possible for the KDE to have a significant amount of data-copying, but as n

continues to grow, this is eventually smoothed out.

The Halfmoons dataset

Returning to the example given in Figure 5.1, observe that our definition exactly captures

the notion of data-copying that occurs at points x1 and x2. For even strict choices of λ and

γ , Definition 5.2.1 indicates that the red distribution copies both x1 and x2. Furthermore, the

data-copy rate, crq, is 40% by construction, as this is the proportion of points that are outputted
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nearby x1 and x2.

5.2.2 Limitations of our definition

Definition 5.2.1 implicitly assumes that the goal of the generator is to output a distribution

q that approaches p in a mathematical sense; a perfect generator would output q so that q(M) =

p(M) for all measurable sets. In particular, instances where q outputs examples that are far away

from the training data are considered completely irrelevant in our definition.

This restriction prevents our definition from capturing instances in which q memorizes

its training data and then applies some sort of transformation to it. For example, consider an

image generator that applies a color filter to its training data. This would not be considered a

data-copier as its output would be quite far from the training data in pixel space. Nevertheless,

such a generated distribution can be very reasonably considered as an egregious data copier, and

a cursory investigation between its training data and its outputs would reveal as much.

The key difference in this example is that the generative algorithm is no longer trying to

closely approximate p with q – it is rather trying to do so in some kind of transformed space.

Capturing such interactions is beyond the scope of our paper, and we firmly restrict ourselves

to the case where a generator is evaluated based on how close q is to p with respect to their

measures over the input space.

5.3 Detecting data-copying

Having defined crq, we now turn our attention towards estimating it. To formalize this

problem, we will require a few definitions. We begin by defining a generative algorithm.

Definition 5.3.1. A generative algorithm, A, is a potentially randomized algorithm that outputs

a distribution q over Rd given an input of training points, S⊂ Rd . We denote this relationship

by q∼ A(S).

This paradigm captures most typical generative algorithms including both non-parametric
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methods such as KDEs and parametric methods such as variational autoencoders.

As an important distinction, in this work we define data-copying as a property of the

generated distribution, q, rather than the generative algorithm, A. This is reflected in our

definition which is given solely with respect to q,S, and p. For the purposes of this paper, A can

be considered an arbitrary process that takes S and outputs a distribution q. We include it in our

definitions to emphasize that while S is an i.i.d sample from p, it is not independent from q.

Next, we define a data-copying detector as an algorithm that estimates crq based on

access to the training sample, S, along with the ability to draw any number of samples from q.

The latter assumption is quite typical as sampling from q is a purely computational operation.

We do not assume any access to p beyond the training sample S. Formally, we have the following

definition.

Definition 5.3.2. A data-copying detector is an algorithm D that takes as input a training

sample, S∼ pn, and access to a sampling oracle for q∼ A(S) (where A is an arbitrary generative

algorithm). D then outputs an estimate, D(S,q) = ĉrq, for the data-copy rate of q.

Naturally, we assume D has access to λ ,γ > 0 (as these are practitioner chosen values),

and by convention don’t include λ ,γ as formal inputs into D.

The goal of a data-copying detector is to provide accurate estimates for crq. However,

the precise definition of crq poses an issue: data-copy rates for varying values of λ and γ can

vastly differ. This is because λ ,γ act as thresholds with everything above the threshold being

counted, and everything below it being discarded. Since λ ,γ cannot be perfectly accounted for,

we will require some tolerance in dealing with them. This motivates the following.

Definition 5.3.3. Let 0 < ε be a tolerance parameter. Then the approximate data-copy rates,

cr−ε
q and crε

q , are defined as the values of crq when the parameters (λ ,γ) are shifted by a factor

of (1+ ε) to respectively decrease and increase the copy rate. That is,

cr−ε
q = cr

(
q,λ (1+ ε),γ(1+ ε)−1) ,
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crε
q = cr

(
q,λ (1+ ε)−1,γ(1+ ε)

)
.

The shifts in λ and γ are chosen as above because increasing λ and decreasing γ both

reduce crq seeing as both result in more restrictive conditions for what qualifies as data-copying.

Conversely, decreasing λ and increasing γ has the opposite effect. It follows that

cr−ε
q ≤ crq ≤ crε

q,

meaning that cr−ε
q and crε

q are lower and upper bounds on crq.

In the context of data-copying detection, the goal is now to estimate crq in comparison to

cr±ε
q . We formalize this by defining sample complexity of a data-copying detector as the amount

of data needed for accurate estimation of crq.

Definition 5.3.4. Let D be a data-copying detector and p be a data distribution. Let ε,δ > 0 be

standard tolerance parameters. Then D has sample complexity, mp(ε,δ ), with respect to p if

for all n≥ mp(ε,δ ), λ > 1, 0 < γ < 1, and generative algorithms A, with probability at least

1−δ over S∼ pn and q∼ A(S),

cr−ε
q − ε ≤ D(S,q)≤ crε

q + ε.

Here the parameter ε takes on a somewhat expanded as it is both used to additively bound

our estimation of crq and to multiplicatively bound λ and γ .

Observe that there is no mention of the number of calls that D makes to its sampling

oracle for q. This is because samples from q are viewed as purely computational, as they don’t

require any natural data source. In most cases, q is simply some type of generative model (such

as a VAE or a GAN), and thus sampling from q is a matter of running the corresponding neural

network.
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5.4 Regular Distributions

Our definition of data-copying (Definition 5.2.1) motivates a straightforward point by

point method for data-copying detection, in which for every training point, xi, we compute the

largest ball Bi centered at xi for which q(Bi)≥ λ p(Bi) and p(Bi)≤ γ . Assuming we compute

these balls accurately, we can then query samples from q to estimate the total rate at which q

outputs within those balls, giving us our estimate of crq.

The key ingredient necessary for this idea to work is to be able to reliably estimate the

masses, q(B) and p(B) for any ball in Rd . The standard approach to doing this is through uniform

convergence, in which large samples of points are drawn from p and q (in p’s case we use S),

and then the mass of a ball is estimated by counting the proportion of sampled points within it.

For balls with a sufficient number of points (typically O(d logn)), standard uniform convergence

arguments show that these estimates are reliable.

However, this method has a major pitfall for our purpose – in most cases the balls Bi

will be very small because data-copying intrinsically deals with points that are very close to a

given training point. While one might hope that we can simply ignore all balls below a certain

threshold, this does not work either, as the sheer number of balls being considered means that

their union could be highly non-trivial.

To circumvent this issue, we will introduce an interpolation technique that estimates the

probability mass of a small ball by scaling down the mass of a sufficiently large ball with the same

center. While obtaining a general guarantee is impossible – there exist pathological distributions

that drastically change their behavior at small scales – it turns out there is a relatively natural

condition under which such interpolation will work. We refer to this condition as regularity,

which is defined as follows.

Definition 5.4.1. Let k > 0 be an integer. A probability distribution p is k-regular the following

holds. For all ε > 0, there exists a constant 0 < pε ≤ 1 such that for all x in the support of p, if
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0 < s < r satisfies that p(B(x,r))≤ pε , then

(
1+

ε

3

)−1 rk

sk ≤
p(B(x,r))
p(B(x,s))

≤
(

1+
ε

3

) rk

sk .

Finally, a distribution is regular if it is k-regular for some integer k > 0.

Here we let B(x,r) = {x′ : ||x− x′|| ≤ r} denote the closed `2 ball centered at x with

radius r.

The main intuition for a k-regular distribution is that at a sufficiently small scale, its

probability mass scales with distance according to a power law, determined by k. The parameter

k dictates how the probability density behaves with respect to the distance scale. In most common

examples, k will equal the intrinsic dimension of p.

As a technical note, we use an error factor of ε

3 instead of ε for technical details that

enable cleaner statements and proofs in our results (presented later).

5.4.1 Distributions with Manifold Support

We now give an important class of k-regular distributions.

Proposition 5.4.2. Let p be a probability distribution with support precisely equal to a compact

k dimensional sub-manifold (with or without boundary) of Rd , M. Additionally, suppose that p

has a continuous density function over M. Then it follows that p is k-regular.

Proposition 5.4.2 implies that most data distributions that adhere to some sort of manifold-

hypothesis will also exhibit regularity, with the regularity constant, k, being the intrinsic dimen-

sion of the manifold.

5.4.2 Estimation over regular distributions

We now turn our attention towards designing estimation algorithms over regular distri-

butions, with our main goal being to estimate the probability mass of arbitrarily small balls.
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We begin by first addressing a slight technical detail – although the data distribution p may be

regular, this does not necessarily mean that the regularity constant, k, is known. Knowledge of k

is crucial because it determines how to properly interpolate probability masses from large radius

balls to smaller ones.

Luckily, estimating k turns out to be an extremely well studied task, as for most probability

distributions, k is a measure of the intrinsic dimension. Because there is a wide body of literature

in this topic, we will assume from this point that k has been correctly estimated from S using any

known algorithm for doing so (for example [79]). Nevertheless, for completeness, we provide an

algorithm with provable guarantees for estimating k (along with a corresponding bound on the

amount of needed data) in Appendix E.2.

We now return to the problem of p(B(x,r)) for a small value of r, and present an

algorithm, Est(x,r,S) (Algorithm 5), that estimates p(B(x,r)) from an i.i.d sample S∼ pn.

Algorithm 5: Est(x,r,S)

1 n← |S|
2 b← O

(
d ln n

δ

ε2

)
3 r∗ = min{s > 0, |S∩B(x,s)|= b}.
4 if r∗ > r then
5 Return brk

nrk
∗

6 else
7 Return |T∩B(x,r)|

n

Est uses two ideas: first, it leverages standard uniform convergence results to estimate

the probability mass of all balls that contain a sufficient number of training examples. This is

what leads to the specific value of b that is chosen. Second, it estimates the mass of smaller balls

by interpolating from its estimates from larger balls. The k-regularity assumption is crucial for

this second step as it is the basis on which such interpolation is done.

Est has the following performance guarantee, which follows from standard uniform

convergence bounds and the definition of k-regularity.

93



Proposition 5.4.3. Let p be a regular distribution, and let ε > 0 be arbitrary. Then if n =

O
(

d ln d
δε pε

ε2 pε

)
with probability at least 1−δ over S∼ pn, for all x ∈ Rd and r > 0,

(
1+

ε

2

)−1
≤ Est(x,r,S)

p(B(x,r))
≤
(

1+
ε

2

)
.

5.5 A Data-copy detecting algorithm

Algorithm 6: DataCopyDetect(S,q,m)

1 m← O
(

dn2 ln nd
δε

ε4

)
2 Sample T ∼ qm

3 {x1,x2, . . . ,xn}← S
4 {z1,z2, . . . ,zm}← T
5 for i = 1, . . . ,n do
6 Let pi(r) denote Est(xi,r,S)

7 Let qi(r) denote |B(xi,r)∩T |
m

8 radii←{||z− xi|| : z ∈ T}∪{0}
9 radii←{r : pi(r)≤ γ,r ∈ radii}

10 r∗i ←max{r : qi(r)≥ λ pi(r),r ∈ radii}
11 end for
12 Sample U ∼ q20/ε2

13 V ←U ∩ (
⋃n

i=1 B(xi,r∗i ))

14 Return |V ||U | .

We now leverage our subroutine, Est, to construct a data-copying detector called

Data Copy Detect (Algorithm 6), that has bounded sample complexity when p is a regular

distribution. Like all data-copying detectors (Definition 5.3.2), Data Copy Detect takes as input

the training sample S, along with the ability to sample from a generated distribution q that is

trained from S. It then performs the following steps:

1. (line 1) Draw an i.i.d sample of m = O
(

dn2 ln nd
δε

ε4

)
points from q.
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2. (lines 6 - 10) For each training point, xi, determine the largest radius ri for which

|B(xi,ri)∩T |
m

≥ λEst(xi,ri,S),

Est(xi,ri,S)≤ γ.

3. (lines 12 - 13) Draw a fresh sample of points from U ∼ qO(1/ε2), and use it to estimate the

probability mass under q of ∪n
i=1B(xi,ri).

In the first step, we draw a large sample from q. While this is considerably larger than

the amount of training data we have, we note that samples from q are considered free, and thus

do not affect the sample complexity. The reason we need this many samples is simple – unlike

p, q is not necessarily regular, and consequently we need enough points to properly estimate q

around every training point in S.

The core technical details of Data Copy Detect are contained within step 2, in which

data-copying regions surrounding each training point, xi, are found. We use Est(x,r,S) and
|B(x,r)∩T |

m as proxies for p and q in Definition 5.2.1, and then search for the maximal radius ri

over which the desired criteria of data-copying are met for these proxies.

The only difficulty in doing this is that this could potentially require checking an infinite

number of radii, ri. Fortunately, this turns out not to be needed because of the following

observation – we only need to check radii at which a new point from T is included in the

estimation qi(r). This is because these our estimation for qi(r) does not change between them

meaning that our estimate of the ratio between q and p is maximal nearby these points.

Once we have computed ri, all that is left is to estimate the data-copy rate by sampling q

once more to find the total mass of data-copying region, ∪n
i=1B(xi,ri).

5.5.1 Performance of Algorithm 6

We now show that given enough data, Data Copy Detect provides a close approximation

of crq.
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Theorem 5.5.1. Data Copy Detect is a data-copying detector (Definition 5.3.2) with sample

complexity at most

mp(ε,δ ) = O

(
d ln d

δε pε

ε2 pε

)
,

for all regular distributions, p.

Theorem 6 shows that our algorithm’s sample complexity has standard relationships with

the tolerance parameters, ε and δ , along with the input space dimension d. However, it includes

an additional factor of 1
pε

, which is a distribution specific factor measuring the regularity of the

probability distribution. Thus, our bound cannot be used to give a bound on the amount of data

needed without having a bound on pε .

We consequently view our upper bound as more akin to a convergence result, as it implies

that our algorithm is guaranteed to converge as the amount of data goes towards infinity.

5.5.2 Applying Algorithm 6 to Halfmoons

We now return to the example presented in Figure E.1 and empirically investigate the

following question: is our algorithm able to outperform the one given in [3] over this example?

To investigate this, we test both algorithms over a series of distributions by varying the

parameter ρ , which is the proportion of points that are “copied.” Figure E.1 demonstrates a case

in which ρ = 0.4. Additionally, we include a parameter, c, for [3]’s algorithm which represents

the number of clusters the data is partitioned into (with c-means clustering) prior to running their

test. Intuitively, a larger number of clusters means a better chance of detecting more localized

data-copying.

The results are summarized in the following table where we indicate whether the algo-

rithm determined a statistically significant amount of data-copying over the given generated

distribution and corresponding training dataset. Full experimental details can be found in Sections

E.1 and E.1.3 of the appendix.

As the table indicates, our algorithm is able to detect statistically significant data-copying
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Table 5.1. Statistical Significance of data-copying Rates over Halfmoons

Algo q = p ρ = 0.1 0.2 0.3 0.4
Ours no yes yes yes yes
c = 1 no no no no no
c = 5 no no no no yes

c = 10 no no no no yes
c = 20 no no no yes yes

rates in all cases it exists. By contrast, [3]’s test is only capable of doing so when there is a large

data-copy rate and when the number of clusters, c, is quite large.

5.6 Is smoothness necessary for data copying detection?

Algorithm 6’s performance guarantee requires that the input distribution, p, be regular

(Definition 5.4.1). This condition is essential for the algorithm to successfully estimate the

probability mass of arbitrarily small balls. Additionally, the parameter, pε , plays a key role as

it serves as a measure of how “smooth” p is with larger values implying a higher degree of

smoothness.

This motivates a natural question – can data copying detection be done over unsmooth

data distributions? Unfortunately, the answer turns out to be no. In the following result, we show

that if the parameter, pε is allowed to be arbitrarily small, then this implies that for any data-copy

detector, there exists p for which the sample complexity is arbitrarily large.

Theorem 5.6.1. Let B be a data-copying detector. Let ε = δ = 1
3 . Then, for all integers κ > 0,

there exists a probability distribution p such that 1
9κ
≤ pε ≤ 1

κ
, and mp(ε,δ )≥ κ , implying that

mp(ε,δ )≥Ω

(
1
pε

)
.

Although Theorem 5.6.1 is restricted to regular distributions, it nevertheless demonstrates

that a bound on smoothness is essential for data copying detection. In particular, non-regular
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distributions (with no bound on smoothness) can be thought of as a degenerate case in which

pε = 0.

Additionally, Theorem 5.6.1 provides a lower bound that complements the Algorithm 6’s

performance guarantee (Theorem 5.5.1). Both bounds have the same dependence on pε implying

that our algorithm is optimal at least in regards to pε . However, our upper bound is significantly

larger in its dependence on d, the ambient dimension, and ε , the tolerance parameter itself.

While closing this gap remains an interesting direction for future work, we note that the

existence of a gap isn’t too surprising for our algorithm, Data Copy Detect. This is because

Data Copy Detect essentially relies on manually finding the entire region in which data-copying

occurs, and doing this requires precise estimates of p at all points in the training sample.

Conversely, detecting data-copying only requires an overall estimate for the data-copying

rate, and doesn’t necessarily require finding all of the corresponding regions. It is plausible that

more sophisticated techniques might able to estimate the data-copy rate without directly finding

these regions.

5.7 Conclusion

In conclusion, we provide a new modified definition of “data-copying” or generating

memorized training samples for generative models that addresses some of the failure modes of

previous definitions [3]. We provide an algorithm for detecting data-copying according to our

definition, establish performance guarantees, and show that at least some smoothness conditions

are needed on the data distribution for successful detection.

With regards to future work, one important direction is in addressing the limitations

discussed in section 5.2.2. Our definition and algorithm are centered around the assumption that

the goal of a generative model is to output q that is close to p in a mathematical sense. As a

result, we are unable to handle cases where the generator tries to generate transformed examples

that lie outside the support of the training distribution. For example, a generator restricted to

98



outputting black and white images (when trained on color images) would remain completely

undetected by our algorithm regardless of the degree with which it copies its training data. To

this end, we are very interested in finding generalizations of our framework that are able to

capture such broader forms of data-copying.
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Concluding Remarks

This dissertation works towards addressing two specific issues in reliable machine

learning, namely adversarial examples and data-copying. For adversarial-examples, we studied

non-parametric classification along with linear classifiers and saw that in both cases, the robust

setting leads to significant differences from the standard learning setting. For data-copying, we

produced precise definition of what data-copying is along with an algorithm for detecting it.

These two problems are two examples among many other issues (i.e. privacy, fairness)

in reliable machine learning. This reflects that fact that word “reliable” can many different

things, some of which undoubtedly haven’t been discovered. It is our belief that this necessitates

careful conceptual work where the various sides of ”reliable” and ”trustworthy” are disentangled

from each other into rigorous and measurable concepts, and we believe that our work provides

progress towards doing this.
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Appendix A

Appendix for Chapter 1

A.1 Proofs for r-separated distributions

For any distribution D over X ×Y , it will be convenient to use the following notation:

for any measurable S⊂X , let PD [S] = P(x,y)∼D [x ∈ S]. The following definition will be central

to our proofs.

Definition A.1.1. Let D be a distribution over X ×Y . An (ε,γ,α)-decomposition of D is a

finite set of closed balls B1,B2, . . . ,Bs ⊂X each with radius γ such that

PD [∪s
1Bi]> 1− ε,

and such that PD [Bi]≥ α > 0 for 1≤ i≤ s.

Lemma A.1.2. Let X be a totally bounded metric space. For any distribution D , and ε,γ > 0,

there exists α > 0 such that D admits a (ε,γ,α)-decomposition.

Proof. Fix any x ∈X and ε,γ > 0. Then the sequence of balls {Si = B(x, i)} has union equal to

X . Therefore, there exists j such that PD(S j)> 1−ε . Since S j is totally bounded and complete,

it is compact. Let Bo(x,a) denote the open ball centered at x with radius a. Therefore, taking an

open cover of S j, {Bo(x,γ) : x ∈ S j}, we can take a finite subcover {Bo
1,B2,

o , . . . ,Bo
t } that cover

S j. Discarding balls such that PD(Bo
i ) = 0 and taking the closure of each ball gives the desired

result, with α = mini PD(Bi).
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To prove Theorem 1.3.1, we use the following lemma.

Lemma A.1.3. Let D be a distribution over X ×{±1}, and let B1,B2, . . . ,Bs be a (ε,γ,α)-

decomposition of D , and let r > 3γ . If W is a weight function satisfying the conditions of

Theorem 1.3.1, then for any δ > 0 there exists N such that for n≥ N, with probability 1−δ over

S∼Dn, and w1,w2, . . . ,wn learned by W from S,

sup
{x:d(x,∪s

1Bi)≤r−3γ}

n

∑
1

wi(x)Id(xi,x)>r <
1
3
.

Proof. Fix δ > 0, and let Y be the indicator variable defined as

Y =


1 if sup{x:d(x,∪s

1Bi)≤r−3γ}∑
n
1 wi(x)Id(xi,x)>r ≥ 1

3

0 if sup{x:d(x,∪s
1Bi)≤r−3γ}∑

n
1 wi(x)Id(xi,x)>r <

1
3

.

It suffices to show that there exists N such that for all n≥ N, ES∼D [Y ]≤ δ .

Fix S∼Dn and suppose that Y = 1. Then there exists x∗,B∗i such that d(x∗,B∗i )≤ r−3γ

and such that
n

∑
1

wi(x∗)Id(xi,x∗)>r ≥
1
3
.

By definition, Bi has radius γ , so by the triangle inequality, for any x∈B∗i , d(x,x∗)≤ 2γ+r−3γ =

r− γ . This implies x∗ ∈ B(x,r− γ). Therefore, for any x ∈ B∗i ,

sup
x′∈B(x,r−γ)

n

∑
1

wi(x′)Id(x′,xi)>r ≥
n

∑
1

wi(x∗)Id(x∗,xi)>r ≥
1
3
.

By the definition of an (ε,γ,α)-decomposition, we have that PD(B∗i )≥ α . As a consequence,

we have that

EX∼DX

[
sup

x′∈B(X ,r−γ)

n

∑
1

wi(x′)I||xi−x′||>r
]
≥ PD [B∗i ]

1
3
≥ α

3
.

Since the previous inequality is guaranteed to hold if Y = 1, taking the expectation over S yields

102



that

ES∼DnEX∼DX

[
sup

x′∈B(X ,r−γ)

n

∑
1

wi(x′)I||xi−x′||>r
]
≥ αE[Y ]

3
.

By the conditions of Theorem 1.3.1, the left side of the equation must tend to 0 as n→ ∞. This

implies that the same must hold for the right side. Therefore, E[Y ] tends to 0 as n→ ∞, and we

can select N such that E[Y ]< δ for n≥ n, which completes the proof.

Proof. (Theorem 1.3.1) Let W be a weight function that satisfies the condition of Theorem

1.3.1. Fix ε,δ > 0, and γ < r/3. Applying Lemma A.1.2, let B1,B2, . . . ,Bs be an (ε,γ,α)-

decomposition of D . Let T+ and T− be subsets of X corresponding to the definition of

r-separation for D .

For S∼Dn, let A denote the event that

sup
{x:d(x,∪s

1Bi)≤r−3γ}

n

∑
1

wi(x)Id(xi,x)>r <
1
3
.

Suppose A holds. Pick a Bi. Since T+ and T− have distance greater than 2r, and diam(Bi)≤

2γ < r, either Bi ∩T+ = /0 or Bi ∩T− = /0. Note that for n sufficiently large, both cannot be

empty since PD(Bi)≥ α > 0 and each x in the support of D is either in T+ or T−.

Without loss of generality, Bi∩T− = /0. Then Bi∩T+ 6= /0. Bi has diameter 2γ . Thus

d(Bi,T−) > 2r− 2γ . Let x ∈ B(Bi,r− 3γ). Then if (x j,−) ∈ S, by the triangle inequality,

d(x,x j)> 2r−2γ− (r−3γ) = r+ γ .

Substituting this and using event A, we have that

n

∑
1

wS
i (x)I(xi,−)∈S ≤

n

∑
1

wS
i (x)Id(xi,x)>r <

1
3
.

It follows that WS(x) = +1. An analogous argument holds for Bi∩T+ = /0. This implies that WS

is astute with radius r−3γ over all Bi.

∪Bi has measure at least 1− ε . By Lemma A.1.3, for any δ > 0 event A holds with
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probability 1− δ for n sufficiently large. Therefore, for n sufficiently large, we see that

Ar−3γ(WS,D) ≥ 1− ε with probabiltiy 1− δ . Because ε,δ and γ were arbitrary, it follows

that W is r-consistent, as desired.

Proof. (Corollary 1.3.3) For any S = {(x1,y1),(x2,y2), . . . ,(xn,yn)} ⊂X ×{±1}, let wS
i (x) be

1 if and only if xi is one of the kn nearest neighbors of x in the set SX = {x1,x2, . . .xn}. Let D

be a distribution over X ×{±1}. By Theorem 1.3.1, it suffices to show that for any 0 < a < b,

lim
n→∞

EX∼DX
[ES∼Dn[ sup

x′∈B(x,a)

n

∑
1

wS
i (x
′)Id(xi,x′)>b]] = 0.

Fix 0 < a < b, and let ε > 0.

Pick γ > 0 such that a+ 2γ < b. This is possible for any a < b. Let B1,B2, . . . ,Bs be

an (ε,γ,α)-decomposition of D . By applying a Chernoff bound followed by a union bound,

for any δ > 0 there exists n such that with probability 1− δ over S ∼ Dn, each Bi satisfies

|Bi∩SX | ≥ nα

2 . Furthermore, if n is sufficiently large, then nα

2 > kn holds as well.

Consider any x ∈ Bi, andx′ ∈ B(x,a). Bi has radius γ and also satisfies |Bi∩SX | > kn.

Therefore, there are at least kn points within distance a+2γ of x. Because a+2γ < b, it follows

that none of the kn nearest neighbors of x′ can have distance more than b from x′. In particular,

n

∑
1

wS
i (x
′)Id(xi,x′)>b = 0.

Since Bi, x and x′ were arbitrary, we have that for all x ∈ ∪Bi,

sup
x′∈B(x,a)

n

∑
1

wS
i (x
′)Id(xi,x′)>b ≤


0 |Bi∩SX | ≥ nα

2 ,1≤ i≤ s

1 otherwise

Since X ∈ ∪s
1Bi with probability at least 1− ε , and since |Bi∩SX | ≥ nα

2 ,1≤ i≤ s with

104



probability at least 1−δ , it follows that

EX∼D [ES∼Dn[ sup
x′∈B(x,a)

n

∑
1

wS
i (x
′)Id(xi,x′)>b]]≤ (1−δ − ε)0+δ + ε = δ + ε,

which can be made arbitrarily small as ε and δ were arbitrary. Therefore, the limit as n approaches

infinity is 0, as desired.

Proof. (Corollary 1.3.4) Let D be a distribution over X ×{±1}. By Theorem 1.3.1, it suffices

to show that for any 0 < a < b,

lim
n→∞

EX∼D [ES∼Dn[ sup
x′∈B(x,a)

n

∑
1

wS
i (x
′)Id(xi,x′)>b]] = 0.

Fix 0 < a < b, and let ε > 0.

Pick γ > 0 be such that a+2γ < b. Let B1,B2, . . . ,Bs be an (ε,γ,α)-decomposition of

D . By applying a Chernoff bound, for any δ > 0 there exists n such that with probability 1−δ

over S∼Dn, each Bi satisfies |Bi∩SX | ≥ nα

2 .

Next, consider any xi,x j ∈ SX , and let x be a point such that d(xi,x) ≤ a+ 2γ and

d(x j,x)> b. Then we have that

wS
j(x)

wS
i (x)

=
K(

d(x j,x)
hn

)

K(d(xi,x)
hn

)
.

Because b > a+2γ , d(x j,x)
d(xi,x)

> 1. Therefore, since limn→∞ hn = 0 and limx→∞
K(cx)
K(x) = 0 for c > 1,

it follows that for any β > 0, there exists N such that for n≥ N,

wS
j(x)

wS
i (x)
≤ αβ

2
.

Fix any such β , and consider any x with d(x,Bi)≤ a. Then d(x,x′)≤ a+2γ < b for any

x′ ∈ Bi. Recall that Bi contains at least nα

2 points, and let c = mini,d(xi,x)≤a+2γ wi(x). Then it
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follows that

n

∑
1

wS
i (x)Id(xi,x)>b

(a)
=

∑
n
1 wS

i (x)Id(xi,x)>b

∑
n
1 wS

i (x)
(b)
≤

∑
n
1 wS

i (x)Id(xi,x)>b

∑
n
1 wS

i (x)Id(xi,x)≤a+2γ

(c)
≤

ncαβ

2
nα

2 c

= β

(a) holds because the weights always sum to 1. (b) holds because we are reducing the denomina-

tor. (c) holds because there are at least nα

2 points in Bi, with c being the minimum weight (stated

above). The numerator is a result of the inequality shown above in which wS
j(x)/wS

i (x)≤ αβ/2

if d(x j,x)> b and d(xi,x)≤ a+2γ .

Using this, we get the following bound:

sup
x′∈B(X ,a)

n

∑
1

wS
i (x
′)Id(xi,x′)>b ≤


β x ∈ ∪s

1Bi, |Bi∩SX | ≥ nα

2 ,1≤ i≤ s

1 otherwise

Since x∈∪s
1Bi with probability 1−ε , and since |Bi∩SX | ≥ nα

2 ,1≤ i≤ s with probability

1−δ , it follows that

EX∼D [ES∼Dn[ sup
x′∈B(x,a)

n

∑
1

wS
i (x
′)Id(xi,x′)>b]]≤ (1−δ − ε)β +δ + ε.

which can be made arbitrarily small as ε,β , and δ were arbitrary. Therefore, the limit as n

approaches infinity is 0, as desired.
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A.2 Proofs for general distributions

Lemma A.2.1. Let B1, . . . ,Bs be a (ε,α,γ) decomposition of D over X ×{±1}. Let U ⊆ [s].

Then if n≥ O( s22s log(1/δ )
ε2 ), then with probability at least 1−δ , for all U we have:

|P(x,y)∼D [x ∈ ∪i∈U Bi,y =+]−P(x,y)∼DS
[x ∈ ∪i∈U Bi,y =+]| ≤ ε,

|P(x,y)∼D [x ∈ ∪i∈U Bi,y =−]−P(x,y)∼DS
[x ∈ ∪i∈U Bi,y =−]| ≤ ε.

Proof. For any given U ⊆ [s], by a Chernoff bound we have that

|P(x,y)∼D [x ∈ ∪i∈U Bi,y =+]−P(x,y)∼DS
[x ∈ ∪i∈U Bi,y =+]|> ε

with probability at most δ

2s+1 . Taking a union bound over all U , we see that with probability

1− δ

2 ,

|P(x,y)∼D [x ∈ ∪i∈U Bi,y =+]−P(x,y)∼DS
[x ∈ ∪i∈U Bi,y =+]| ≤ ε

for all U ⊆ [m]. Applying the same to y =−1 and taking a union bound implies the result.

Lemma A.2.2. Let M be a classification algorithm over X ×{±1}, r > 0 be a radius, and D

be a distribution over X ×{±1}. Then for any ε,δ over (0,1), and for all γ over (0,r/2), there

exists N such that for n≥ N, with probability 1−δ over S∼Dn,

Ar−γ(MS,D)≥ Ar(MS,DS)− ε,

where DS denotes the uniform distribution over S.

Proof. (Lemma A.2.2) Fix ε,δ > 0 and γ < r/2. Applying Lemma A.1.2, let B1, . . . ,Bs be a

(ε,α,γ) decomposition of D .
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Let T be the subset of S such that MS is astute at T with radius r. Define:

I+T = {i|(x j,+) ∈ T,x j ∈ Bi}

I−T = {i|(x j,−) ∈ T,x j ∈ Bi}.

Observe that I+T ∩ I−T = /0. To see this, notice that Bi has radius γ < r/2. This implies that

any (x j,+),(xk,−) ∈ Bi would force MS to not be astute at either of those points. Thus we an

think of I+T being the set of positively labeled balls, and I−T being the set of negatively labeled

balls.

Let B+ = ∪i∈I+T
Bi and B− = ∪i∈I−T

Bi. Our strategy will be to argue that MS must be

robust with radius r−2γ at B+∪B−, and then to observe that PD [(B+,+)]+PD [(B−,−)] must

be close to Ar(MS,DS).

Let TX ⊂X denote the set of all xi such that (xi,yi) ∈ T . By the definitions of DS and

T , we have that

Ar(MS,DS) =
|T |
n

=
|TX ∩B+|

n
+
|TX ∩B−|

n
+
|TX \ (B+∪B−)|

n
.

If xi ∈ ∪s
1B j and xi ∈ TX , then by definition, x ∈ (B+∪B−). Therefore, TX \ (B+∪B−)

consists of xi /∈ ∪s
1B j. Using this, we see that

Ar(MS,DS) =
|TX ∩B+|

n
+
|TX ∩B−|

n
+
|TX \ (B+∪B−)|

n

≤ P(x,y)∼DS
[x ∈ B+,y =+]+P(x,y)∼DS

[x ∈ B−,y =−]+P(x,y)∼DS
[x /∈ ∪s

1B j].

If n is sufficiently large, then by Lemma A.2.1, each term on the right is within ε of its

corresponding probability over D . Thus we see that with probability 1−δ ,

Ar(MS,DS)≤ P(x,y)∼D [x ∈ ∪i∈I+T
Bi,y =+]+P(x,y)∼D [x ∈ ∪i∈I−T

,y =−]+4ε. (A.1)
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Observe that if MS is robust with radius r at x j ∈ Bi, then it is robust with radius r−2γ

at all x ∈ Bi. Furthermore, for x j ∈ ∪i∈I+T
Bi, MS is astute at (x j,+1) with radius r. Therefore

MS(x) = +1 for all x ∈ ∪i∈I+T
Bi. Consequently,

Ar−2γ(MS,D)≥ P(x,y)∼D [x ∈ ∪i∈I+T
Bi,y =+]+P(x,y)∼D [x ∈ ∪i∈I−T

Bi,y =−]

≥ Ar(MS,DS)−4ε (by equation A.1).

Since this equation holds with probability 1− δ , and since ε and γ were arbitrary, the result

follows.

Proof. (Theorem 1.4.3) For convenience, we let W ′ represent the weight function described by

RobustNonPar(S,W,r). In particular, W ′S and WSr are the same classifier, where Sr denotes the

largest r-separated subset of S.

Fix ε,δ > 0, and let 0 < γ < r. For convenience, let

Zi = sup
x∈B(xi,r−γ)

m

∑
j=1

wSr
j (x)I||x j−x||>r.

Because W fulfills the conditions of Theorem 1.4.3, there exists N such that for n > N, with

probability 1−δ over S∼Dn, 1
m ∑

m
i=1 Zi < ε. Therefore, there exist at most 3mε values of i for

which Zi >
1
3 .

Since Sr is r-separated, it follows that

sup
x∈B(xi,r−γ)

m

∑
1

wSr
j (x)Iy j 6=yi ≤ Zi.

Consequently, if Zi ≤ 1
3 , then WSr(x) = yi for all x ∈ B(xi,r− γ). Let DS denote the uniform

distribution over S. Then we have that

Ar−γ(W ′S,DS) = Ar−γ(WSr ,DS)≥
|Sr|
n
−3ε.
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Observe that for n sufficiently large, with probability 1−δ , |Ar(g∗r ,D)−Ar(g∗r ,DS)| ≤ ε . The

maximum possible astuteness over DS is |Sr|
n since no classifier can be astute at 2 oppositely

labeled points with distance at most 2r. Therefore, with probability 1−2δ ,

Ar−γ(W ′S,DS)≥ Ar(g∗r ,D)−4ε.

By Lemma A.2.2, for n sufficiently large, with probability 1−δ

Ar−2γ(W ′S,D)≥ Ar−γ(W ′S,DS)− ε.

Therefore, for n sufficiently large, with probability 1−3δ over S∼D ,

Ar−2γ(W ′S,D)≥ Ar(g∗r ,D)−5ε.

Since ε,δ , and γ were arbitrary, we are done.

The following two quick lemmas are used for the proofs of Corollaries 1.4.4 and 1.4.5.

Lemma A.2.3. Let B1,B2, . . . ,Bs ⊂X denote s balls. Let T ⊂X satisfy |T ∩∪s
1Bi|= m. Let

Ik ⊆ [s] = {i : |Bi∩T | ≥ k}.

Then |∪i∈Ik Bi∩T | ≥ m− ks.

Proof. For any j /∈ Ik, |B j∩T |< k. Since there are at most s such j, it follows that |∪i/∈Ik
Bi∩T |<

ks. Taking the complement implies the result.

Lemma A.2.4. Let S be a finite subset of X ×{±1}. For any r > 0, let Sr denote the largest

r-separated subset of S. Then |Sr| ≥ |S|2 .
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Proof. Let S = {(x1,y1),(x2,y2), . . .(xn,yn)}. Define:

S+ = {(xi,yi) : yi =+1}

S− = {(xi,yi) : yi =−1}.

Observe that S+ and S− are both r-separated and have union S. Therefore one must have

cardinality at least |S|2 , which implies the same about |Sr|.

Proof. (Corollary 1.4.4) For convenience, we let W ′ represent the weight function described by

RobustNonPar(S,W,r). In particular, W ′S and WSr are the same classifier, where Sr denotes the

largest r-separated subset of S.

Relabel the points in S so that

Sr = {(x1,y1),(x2,y2), . . . ,(xm,ym)},

with m≤ n. We will also let SX
r = {x1,x2, . . . ,xm}.

By Theorem 1.4.3, it suffices to show that for any 0 < a < b,

lim
n→∞

ES∼Dn[
1
m

m

∑
i=1

sup
x∈B(xi,a)

m

∑
j=1

wSr
j (x)Id(xi,x)>b] = 0,

where w j denote the weight functions corresponding to W . Fix 0 < a < b, and let ε > 0.

Pick γ > 0 be such that a+2γ < b. Let B1,B2, . . . ,Bs be a (ε,γ,α) decomposition of D .

By applying a Chernoff bound, for any δ > 0 there exists n0 such that for n≥ n0, with probability

1−δ over S∼Dn,

|SX ∩∪s
1Bi| ≥ (1−2ε)n.

By Lemma A.2.4, m
n ≥

1
2 . It follows that |SX

r ∩∪s
1Bi| ≥ m(1−4ε).
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Let

J = {i : |Bi∩SX
r | ≥ m

ε

s
}.

By Lemma A.2.3 it follows that |SX
r ∩∪i∈JBi| ≥ m(1−4ε)−mε = m(1−5ε).

Next, observe that if n is sufficiently large, then

kn

m
≤ 2kn

n
≤ ε

s
.

Therefore, |Bi∩SX
r |r ≥ kn for i ∈ J.

Fix any B j with j ∈ J, and consider x with d(x,B j)≤ a. Then d(x,x′)≤ a+2γ < b for

any x′ ∈ B j. Therefore, since |SX
r ∩Bi| ≥ kn, all kn-nearest neighbors of x have distance at most b

to x. This implies that
m

∑
1

wSr
i (x)Id(xi,x)>b = 0.

For convenience, let

f (xi) = sup
x∈B(xi,a)

m

∑
j=1

wSr
j (x)Id(x,x j)>b.

For xi ∈ ∪ j∈JB j, any x ∈ B(xi,a) trivially satisfies d(x,Bi) ≤ a. Therefore, f (xi) = 0 Since

|SX
r ∩∪ j∈JB j| ≥ m(1−5ε), and f (xi)≤ 1 for all 1≤ i≤ m, we have that

1
m

m

∑
1

f (xi) =
1
m
( ∑

xi∈∪i∈JBi

f (xi)+ ∑
xi /∈∪i∈JBi

f (xi))

≤ 1
m
(0+5εm(1))

= 5ε.

Since all of our equations hold with probability 1−δ over S for sufficiently large n, this last one

does as well. Since this entirely expression is always at most 1 (regardless of S), and since δ ,ε
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were arbitrary, we have that

lim
n→∞

ES∼Dn[
1
m

m

∑
1

f (xi)] = 0,

which completes the proof.

Proof. (Corollary 1.4.5) For convenience, we let W ′ represent the weight function described by

RobustNonPar(S,W,r). In particular, W ′S and WSr are the same classifier, where Sr denotes the

largest r-separated subset of S.

Relabel the points in S so that

Sr = {(x1,y1),(x2,y2), . . . ,(xm,ym)},

with m≤ n. We will also let SX
r = {x1,x2, . . . ,xm}.

By Theorem 1.4.3, it suffices to show that for any 0 < a < b,

lim
n→∞

ES∼Dn[
1
m

m

∑
i=1

sup
x∈B(xi,a)

m

∑
j=1

wSr
j (x)Id(xi,x)>b] = 0,

where w j are the weight functions corresponding to W . Fix 0 < a < b, and let ε > 0.

Pick γ > 0 be such that a+2γ < b. Let B1,B2, . . . ,Bs be a (ε,γ,α) decomposition of D .

By applying a Chernoff bound, for any δ > 0 there exists n0 such that for n≥ n0, with probability

1−δ over S∼Dn,

|SX ∩∪s
1Bi| ≥ (1−2ε)n.

By Lemma A.2.4, m
n ≥

1
2 . It follows that |SX

r ∩∪s
1Bi| ≥ m(1−4ε).

Let

J = {i : |Bi∩SX
r | ≥

mε

s
}.

By Lemma A.2.3, |SX
r ∩∪i∈JBi| ≥ m(1−4ε)−mε = m(1−5ε).

Next, consider any xi,x j ∈ SX
r , and let x be a point such that d(xi,x) ≤ a+ 2γ and

d(x j,x)> b. Recall that W is constructed from kernel function K and window parameter hn. We
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then have that

wS
j(x)

wS
i (x)

=
K(

d(x j,x)
hn

)

K(d(xi,x)
hn

)
. (A.2)

Because b > a+2γ , d(x j,x)
d(xi,x)

> 1. Fix any β > 0. Because limn→∞ hn = 0 and limx→∞
K(cx)
K(x) = 0

for c > 1, there exists N such that for n≥ N,

wS
j(x)

wS
i (x)
≤ βε

s
.

Fix B j with j ∈ J, and consider x with d(x,B j)≤ a. By the triangle inequality, d(x,x′)≤

a+2γ for all x′ ∈ B j. Then we have the following,

m

∑
1

wSr
i (x)Id(xi,x)>b

(a)
=

∑
m
1 wSr

i (x)Id(xi,x)>b

∑
m
1 wSr

i (x)
(b)
≤

∑
m
1 wSr

i (x)Id(xi,x)>b

∑xi∈B j wSr
i (x)

(c)
≤

msupxi:d(xi,x)>b wSr
i (x)

mε/s infxi∈B j wSr
i (x)

(d)
≤ βε/s

ε/s
= β .

(A.3)

Equation (a) holds because the total sum of weights is always 1, (b) because all weights

are nonnegative, (c) because |B j∩SX
r | ≥ mε/s, and (d) because of equation A.2.

Let

Zi = sup
x∈B(xi,a)

m

∑
j=1

wSr
j (x)Id(x,x j)>b.

For xi ∈ ∪t
1B j, any x ∈ B(xi,a) trivially satisfies d(x,Bi)≤ a. By equation A.3, it follows that
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Zi ≤ β . Since |∪ j∈J B j∩SX
r | ≥ m(1−5ε) and Zi ≤ 1 for all 1≤ i≤ m, we have that

1
m

m

∑
1

Zi =
1
m
( ∑

xi∈∪ j∈JB j

Zi + ∑
xi /∈∪ j∈JB j

Zi)

≤ (1−5ε)β +5ε.

Since all of our equations hold with probability 1−δ over S for sufficiently large n, this last one

does as well. Since this entire expression is always at most 1 (regardless of S), and since δ ,ε,β

were arbitrary, we have that

lim
n→∞

ES∼Dn[
1
m

m

∑
1

Zi] = 0,

which completes the proof.

A.3 Experimental Details

A.3.1 Optimal attacks against histogram classifiers

Let H be a histogram classifier, and let (x,y) be any labeled example. Let r > 0 be some

fixed robustness radius. Recall that an adversarial example against H at (x,y) is any x′ such

that x′ ∈ B(x,r) and H(x′) 6= y. Note that if H(x) 6= y, then x itself is an adversarial example.

Conversely, if H is astute at (x,y) with radius r, then no adversarial example exists.

For arbitrary classifiers, finding adversarial examples at a given point can be challenging.

However, recent work (Yang et. al. 2019) has shown that for non-parametric classifiers, there

are tractable methods for doing so. The key insight is that non-parametric classifiers can be

construed as a partitioning of input space into convex cells, with each cell having a given label.

For example, Figure A.1 gives a visualization for these cells in a histogram classifier.

Because these cells are convex, finding an adversarial example for H at (x,y) (here x is a

point in R2, and y is a label) amounts to finding the closest cell c ∈ H to x such that H(c) 6= y.
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(a) Training Size = 20 (b) Training Size = 50

(c) Training Size = 500 (d) Training Size = 3000

Figure A.1. Empirical accuracy/astuteness of different classifiers as a function of training sample
size. Accuracy is shown in green, astuteness in purple. Left : Noiseless Setting. Right: Noisy
Setting. Top Row: Histogram Classifier, Bottom Row: 1-Nearest Neighbor
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While Yang et. al. (Yang et. al. 2019) presents convex programming algorithms for doing this,

the case of histograms in the `∞ metric is much simpler.

As stated in definition 10, a histogram partitions the input space into hypercubes by

iteratively splitting each cube into 2d cubes with half the length. Therefore, the cells of a

histogram are all hypercubes of varying sizes. For cell c, let s(c) denote the length of the cube

that c corresponds to, and let H(c) denote the label H assigns to c. The key observation is that c

contains an adversarial example for (x,y) if and only if d(c,x)≤ s(c)/2+ r, and H(c) 6= y. This

yields the following algorithm:

Algorithm 7 was further optimized by utilizing nearest-neighbor type algorithms to find

the “closest” cells to x. This was done by grouping cells by their radii, and utilizing a separate

nearest-neighbor data structure for all cells of a given radius.

Although this algorithm doesn’t have the same performance metrics as those presented

in (Yang et. al. 2019), it was easily sufficient for computing the empirical astuteness for our

experiments.
Algorithm 7: Optimal attack algorithm for Histogram Classifiers

1 Input: Histogram H, labeled point (x,y) ∈ R2×{±1}, robustness radius r;

2 for cell c ∈ H do

3 if d(c,x)≤ s(c)/2+ r and H(c) 6= y then

4 Return c

5 end if

6 end for
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Appendix B

Appendix for Chapter 2

B.1 Further Details of Definitions and Theorems

B.1.1 Non-Parametric Classifiers

In this section, we precisely define weight functions, histogram classifiers and kernel

classifiers.

Definition B.1.1. [14] A weight function W is a non-parametric classifier with the following

properties.

1. W takes input S = {(x1,y1), . . . ,(xn,yn)} ∼Dn, and constructs functions wS
1, . . . ,w

S
n that

are from Rd → [0,1] such that for all x ∈ Rd , ∑
n
1 wS

i (x) = 1. The functions wS
i are allowed

to depend on x1,x2, . . .xn but must be independent of y1,y2, . . . ,yn.

2. W has output WS defined as

WS(x) =


+1 ∑

n
1 wS

i (x)yi > 0

−1 ∑
n
1 wS

i (x)yi ≤ 0

As a result, wS
i (x) can be thought of as the weight that (xi,yi) has in classifying x.

Definition B.1.2. A histogram classifier, H, is a non-parametric classification algorithm over

Rd×{±1} that works as follows. For a distribution D over R×{±1}, H takes S = {(xi,yi) : 1≤
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i≤ n} ∼Dn as input. Let ki be a sequence with limi→∞ ki = ∞ and limi→∞
ki
i = 0. H constructs

a set of hypercubes C = {c1,c2, . . . ,cm} as follows:

1. Initially C = {c}, where S⊂ c.

2. For c ∈C, if c contains more than kn points of S, then partition c into 2d equally sized

hypercubes, and insert them into C.

3. Repeat step 2 until all cubes in C have at most kn points.

For x ∈R let c(x) denote the unique cell in C containing x. If c(x) doesn’t exist, then HS(x) =−1

by default. Otherwise,

HS(x) =


+1 ∑xi∈c(x) yi > 0

−1 ∑xi∈c(x) yi ≤ 0
.

Definition B.1.3. A partitioning rule is a weight function W over X ×{±1} constructed in the

following manner. Given S = {(xi,yi)} ∼Dn, as a function of {x1, . . . ,xn}, we partition Rd into

regions with A(x) denoting the region containing x. Then, for any x ∈ Rd we have

wS
i (x) =


1 xi ∈ A(x)

0 otherwise
.

To achieve ∑wS
i (x) = 1, we can simply normalize weights for any x by ∑

n
1 wS

i (X).

Definition B.1.4. A kernel classifier is a weight function W over Rd×{±1} constructed from

function K : R+∪{0} → R+ and some sequence {hn} ⊂ R+ in the following manner. Given

S = {(xi,yi)} ∼Dn, we have

wS
i (x) =

K(ρ(x,xi)
hn

)

∑
n
j=1 K(

ρ(x,x j)
hn

)
.
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Then, as above, W has output

WS(x) =


+1 ∑

n
1 wS

i (x)yi > 0

−1 ∑
n
1 wS

i (x)yi ≤ 0

B.1.2 Splitting Numbers

We refer to definitions 2.4.2 and 2.4.3.

The main idea behind splitting numbers is that they allow us to ensure uniform conver-

gence properties over a weight function. To prove neighborhood consistency, it is necessary for a

classifier to be correct at all points in a given region. Consequently, techniques that consider a

single point will be insufficient. The splitting number provides a mechanism for studying entire

regions simultaneously. For clarity, we include a quick example in which we bound the splitting

number for a given weight function.

Example:

Let W denote any kernel classifier corresponding such that K :R≥0→R≥0 is a decreasing

function. For any S ∼ Dn, observe that the condition wS
i (x) ≥ β precisely corresponds to

ρ(x,xi)≤ γ for some value of γ . This is because wS
i (x)> wS

j(x) if and only if ρ(x,xi)< ρ(x,x j).

Thus, the regions Wx,α,β correspond to {i : ρ(x,xi) ≤ γ}, where γ is a positive real number

that depends on x,α,β . These sets precisely correspond to subsets of S that are contained

within B(x,γ). Since balls have VC dimension at most d +2, by Sauer’s lemma, the number of

subsets of S that can be obtained in this manner is O(nd+2). Therefore, we have that T (W,S) =

O(nd+2) for all S∼Dn.

B.1.3 Stone’s Theorem

Theorem B.1.5. [15] Let W be weight function over Rd×{±1}. Suppose the following condi-

tions hold for any distribution D over Rd×{±1}. Let X be a random variable with distribution

120



DRd , and S = {(x1,y1),(x2,y2), . . . ,(xn,yn)} ∼Dn. All expectations are taken over X and S.

1. There is a constant c such that, for every nonnegative measurable function f satisfying

E[ f (X)]< ∞, and E[∑n
1 wS

i (X) f (xi)]≤ cE[ f (x)].

2. ∀a > 0, limn→∞E[∑n
1 wS

i (x)I||xi−X ||>a||] = 0.

3. limn→∞E[max1≤i≤n wS
i (X)] = 0.

Then W is consistent.

B.2 Proofs

Notation:

• We let ρ denote our distance metric over Rd . For sets X1,X2 ⊂ Rd , we let ρ(X1,X2) =

infx1∈X1,x2∈X2 ρ(x1,x2).

• For any x ∈ Rd , B(x,a) = {x : ρ(x,x′)≤ a}.

• For any measure over Rd , µ , we let supp(µ) = {x : µ(B(x,a))> 0 for all a > 0}.

• Given some measure µ over Rd and some x ∈ Rd , we let rp(x) denote the probability

radius (Definition 2.4.2) of x with probability p. that is, rp(x) = inf{r : µ(B(x,r))≥ p}.

• For weight function W and training sample S, we let WS denote the weight function learned

by W from S.

B.2.1 Proofs of Theorems 2.3.3 and 2.3.4

Proof. (Theorem 2.3.3) Let D = (µ,η) be a data distribution, and let µ+,µ− be as described in

Definition 2.3.1. Observe that for any x ∈ µ+, the Bayes optimal classifier and the neighborhood

preserving Bayes optimal both have the same output, and furthermore the neighborhood pre-

serving Bayes gives this output (by definition) throughout the entirety of Vx, the neighborhood

preserving robustness region of x. It follows that the neighborhood preserving Bayes optimal has

optimal astuteness, as desired.
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Proof. (Theorem 2.3.4) Let D = (µ,η) be a data distribution, and assume towards a contradic-

tion that there exists classifier f which has maximal astuteness with respect towards some set of

robustness regions U = {Ux} such that Vx ⊆Ux for all x. The key observation is that because

f has maximal astuteness, we must have f (x) = g(x) for almost all points x ∼ µ (where g is

the Bayes optimal classifier). Furthermore, for those values of x, we must have g be robust at x

(meaning it uniformly outputs the same output through Ux).

In order for Ux to be strictly larger than Vx for some x, it necessarily must intersect with

Ux′ for some x′ with g(x′) 6= g(x), and this is what causes the contradiction: f cannot be astute at

both x and x′ if they are differently labeled and their robustness regions intersect.

B.2.2 Proof of Theorem 2.4.1

Let D = (µ,η) be the distribution with µ being the uniform distribution over [0,1] and

η : [0,1]→ [0,1] be η(x) = x. For example, if (x,y)∼D , then Pr[y = 1|x = 0.3] = 0.3.

We desire to show that kn-nearest neighbors is not neighborhood consistent with respect

to D . We begin with the following key lemma.

Lemma B.2.1. For any n > 0, let fn denote the kn-nearest neighbor classifier learned from

S∼Dn. There exists some constant ∆ > 0 such that for all sufficiently large n, with probability

at least 1
2 over S∼Dn, there exists x ∈ [0,1] with 1

2 −∆≤ x≤ 1
2 −

3∆

4 and fn(x) = +1.

Proof. Let C be a constant such that kn ≤C logn for all 2≤ n < ∞. Set ∆ as

1
2

log2
1

1−2∆
+

1
2

log2
1

1+2∆
<

1
C
. (B.1)

Let A⊂ [0,1] denote the interval [1
2 −∆, 1

2 −
3∆

4 ]. For S∼Dn, with high probability, there exist

at least ∆n
8 instances xi that are in A. Let us relabel these xi as x1,x2, . . . ,xm as

1
2
−∆≤ x1 < x2 < · · ·< xm ≤

1
2
− 3∆

4
.
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Next, suppose that for some i, at least half of yi,yi+1, . . . ,yi+kn−1 are +1. Then it

follows that fn(x) = +1 for x =
xi+kn+xi

2 because the kn nearest neighbors of x are precisely

xi,xi+1, . . .xi+kn−1 (as a technical note we make x just slightly smaller to break the tie between xi

and xi+kn). To lower bound the probability that this occurs for some i, we partition y1,y2, . . .ym

into at least m
2kn

disjoint groups each containing kn consecutive values of yi. We then bound the

probability that each group will have at least kn/2 +1s.

Consider any group of kn yis. We have that Pr[yi] = +1 = η(xi) = xi ≥ 1
2 −∆. Since

the variables yi are independent (even conditioning on xi), it follows that the probability that

at least half of them are +1 is at least Pr[Bin(kn,
1
2 −∆)≥ kn

2 ]. For simplicity, assume that kn is

even. Then using a standard lower bound for the tail of a binomial distribution (see, for example,

Lemma 4.7.2 of [80]), we have that

Pr[Bin(kn,
1
2
−∆)≥ kn

2
]≥ 1√

2kn
exp(−knD(

1
2
||(1

2
−∆)),

where D(1
2 ||(

1
2 −∆)) = 1

2 log2
1

1−2∆
+ 1

2 log2
1

1+2∆
.

To simplify notation, let D∆ = D(1
2 ||(

1
2 −∆)). Then because we have m

2kn
independent

groups of yis, we have that

Pr
S∼Dn

[∃x ∈ [
1
2
−∆,

1
2
− 3∆

4
] s.t. fn(x) = +1]≥ 1− (1− 1√

2kn
exp(−knD∆))

m
2kn

≥ 1− exp(− m
2kn
√

2kn
e−knD∆)

≥ 1− exp(− n∆

(16C logn)3/2 e−CD∆ logn),

with the inequalities holding because m ≥ n∆

8 and kn ≤ C logn. By equation B.1, CD∆ < 1.

Therefore, limn→∞
n

(2C logn)3/2 e−CD∆ logn = ∞, which implies that for n sufficiently large,

Pr
S∼Dn

[∃x ∈ [
1
2
−∆,

1
2
− 3∆

4
] s.t. fn(x) = +1]≥ 1

2
,
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as desired.

We now complete the proof of Theorem 2.4.1.

Proof. (Theorem 2.4.1) Let ∆ be as described in Lemma B.2.1, and let κ = 1
2 . For all x < 1

2 , we

have that [x, 2x
3 + 1

6 ]⊆V κ
x . This is because we can easily verify that all points inside that interval

are closer to x than they are to 1
2 (and consequently all points in µ+∪µ1/2) by factor of 2. It

follows that for all x ∈ [1
2 −

7∆

8 , 1
2 −∆],

[
1
2
−∆,

1
2
− 3∆

4
]⊆V κ

x .

However, applying Lemma B.2.1, we know that with probability at least 1
2 , there exists some

point x′ ∈ [1
2 −∆, 1

2 −
3∆

4 ] such that fn(x′) = +1. It follows that with probability at least 1
2 , fn

lacks astuteness at all x ∈ [1
2 −

7∆

8 , 1
2 −∆]. Since this set of points has total probability mass ∆/8,

it follows that with probability at least 1
2 , there is a fixed gap between AV κ ( fn,D) and A(g,D)

(as they differ in a region of probability mass at least ∆/8). This implies that kn-nearest neighbors

is not neighborhood consistent.

B.2.3 Proof of Theorem 2.4.4

Let D = (µ,η) is a distribution over Rd×{±1}. We will use the following notation: let

D+ = {x : η(x)> 1
2}, D− = {x : η(x)< 1

2 and D1/2 = {x : η(x) = 1
2}. In particular, we have

that D+ = µ+,D− = µ− and D1/2 = µ1/2. This notation serve will be convenient throughout

this section since it allows us to avoid overloading the symbol µ .

To show that an algorithm is neighborhood consistent with respect to D , we must show

that for any 0 < κ < 1, the astuteness with respect to V κ converges towards the accuracy of the

Bayes optimal. To this end, we fix any 0 < κ < 1 and consider V κ .

For our proofs, it will be useful to have the additional assumption that the robustness

regions, V κ
x are closed. To obtain this, we let U = {Ux} where Ux =V κ

x . Each Ux is the closure
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of the corresponding V κ
x , and in particular we have V κ

x ⊂Ux. Because of this, it will suffice for

us to consider AU as opposed to AV κ since AU ( f ,D)≤ AV κ ( f ,D) for all classifiers f .

We now begin by first proving several useful properties of U that we will use throughout

this entire section.

Lemma B.2.2. The collection of sets U = {Ux} defined as Ux = V κ
x satisfies the following

properties.

1. Ux is closed for all x.

2. if x ∈D+, for all x′ ∈Ux, ρ(x,x′)< ρ(D+∪D1/2,x′).

3. if x ∈D−, for all x′ ∈Ux, ρ(x,x′)< ρ(D−∪D1/2,x′).

4. Ux = {x} for all x ∈D1/2.

5. Ux is bounded for all x.

Here µ+,µ−,µ1/2 are as described in Definition 2.3.1.

Proof. Property (1) is given the by definition, and properties (2), (3) follow from the fact that κ

is strictly less than 1. In particular, the distance function ρ is continuous and consequently all

limit points of a set have distances that are limits of distances within the set. Property (4) is since

V κ
x = {x} for all x ∈D1/2.

Finally, property (5) follows from the fact that κ < 1. As x gets arbitrarily far away from

x the ratio of its distance to x with its distance to µ− gets arbitrarily close to 1, and consequently

there is some maximum radius R so that V κ
x ⊂ B(x,R). Since B(x,R) is closed, it follows that

Ux ⊂ B(x,R) as well.

Next, fix W as a weight function and tn is a sequence of positive integers such that the

conditions of Theorem 2.4.4 hold, that is:

1. W is consistent (with resp. to accuracy) with resp. to D .
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2. For any 0 < p < 1, limn→∞ ES∼Dn[supx∈Rd ∑
n
1 wS

i (x)1ρ(x,xi)>rp(x)] = 0.

3. limn→∞ ES∼Dn[tn supx∈Rd wS
i (x)] = 0.

4. limn→∞ ES∼Dn
logT (W,S)

tn
= 0.

Finally, we will also make the additional assumption that D has infinite support. Cases

where D has finite support can be somewhat trivially handled: when the sample size goes to

infinity, we will have perfect labels for every point in the support, and consequently condition 2.

will ensure that any x′ ∈V κ
x is labeled according to the label of x.

We also use the following notation. For any classifier f : Rd →{±1}, we let

D+
f = {x : f (x′ =+1 for all x′ ∈Ux}, and D−f = {x : f (x′ =−1 for all x′ ∈Ux}. (B.2)

These sets represent the examples that f robustly labels as +1 and −1 respectively. These sets

are useful since they allows us to characterize the astuteness of f , which we do with the following

lemma.

Lemma B.2.3. For any classifier f : Rd →{±1}, we have

AU ( f ,D)≥ A(g,D)−µ(D+ \D+
f )−µ(D− \D−f ),

where g denotes the Bayes optimal classifier.

Proof. By property 4 of Lemma B.2.2, Ux = {x} for all x ∈ D1/2. Consequently, if x ∈ D1/2,

there is a 1
2 chance that any classifier is astute at (x,y). Using this along with the definition of
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astuteness, we see that

AU ( f ,D) = Pr
(x,y)∼D

[ f (x′) = y for all x′ ∈Ux]

= Pr
(x,y)∼D

[y =+1 and x ∈ (D+∩D+
f )]

+ Pr
(x,y)∼D

[y =−1 and x ∈ (D−∩D−f )]

+
1
2

Pr
(x,y)∼D

[x ∈D1/2]

However, observe by the definitions of D+,D− and D1/2 that

A(g,D) = Pr
(x,y)∼D

[y =+1 and x ∈ D+]+ Pr
(x,y)∼D

[y =−1 and x ∈ D−]+
1
2

Pr
(x,y)∼D

[x ∈D1/2].

Substituting this, we find that

AU ( f ,D)≥ A(g,D)− Pr
(x,y)∼D

[x ∈ (D+ \D+
f )]− Pr

(x,y)∼D
[x ∈ (D− \D−f )]

= A(g,D)−µ(D+ \D+
f )−µ(D− \D−f ),

as desired.

Lemma B.2.3 shows that to understand how WS converges in astuteness, it suffices to

understand how the regions D+
WS

and D−WS
converge towards D+ and D− respectively. This will

be our main approach for proving Theorem 2.4.4. Due to the inherent symmetry between + and

−, we will focus on showing how the region D+
WS

converges towards D+. The case for − will be

analogous. To that end, we have the following key definition.

Definition B.2.4. Let p,∆ > 0. We say x ∈ D+ is (p,∆)-covered if for all x′ ∈Ux and for all

x′′ ∈ B(x′,rp(x′))∩ supp(µ), η(x′′)> 1
2 +∆. Here rp denotes the probability radius (Definition

2.4.2). We also let D+
p,∆ denote the set of all x ∈D+ that are (p,∆)-covered.

If x is (p,∆)-covered, it means that for all x′ ∈Ux, there is a set of points with measure p
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around x′ that are both close to x′, and likely (with at least probability 1
2 +∆) to be labeled as +1.

Our main idea will be to show that if x is (p,∆) covered and n is sufficiently large, x is likely to

be in D+
WS

.

We begin this process by first showing that all x are (p,∆)-covered for some p,∆. To do

so, it will be useful to have one more piece of notation which we will also use throughout the

rest of the section. We let

D−1/2 = D−∪D1/2 = supp(µ)\D+.

This set will be useful, since Lemma B.2.2 implies that for all x ∈ D+ and for all x′ ∈ Ux,

ρ(x,x′)< ρ(D−1/2,x
′). We now return to showing that all x are (p,∆-covered for some p,∆.

Lemma B.2.5. For any x ∈D+, there exists p,∆ > 0 such that x is (p,∆)-covered.

Proof. Fix any x. Let f : Ux → R be the function defined as f (x′) = ρ(x′,D−1/2)− ρ(x′,x).

Observe that f is continuous. By assumption, Ux is closed and bounded, and consequently must

attain its minimum. However, by Lemma B.2.2, we have that f (x′)> 0 for all x′ ∈Ux. it follows

that minx′∈Ux f (x′) = γ where γ > 0.

Next, let p = µ(B(x,γ/2)). p > 0 since x ∈ supp(µ). Observe that for any x′ ∈ Ux,

rp(x′) ≤ ρ(x,x′) + γ/2, where, rp(x′) denotes the probability radius of x′. This is because

B(x′,(ρ(x,x′)+ γ/2)) contains B(x,γ/2) which has probability mass p. It follows that for any

x′ ∈Ux, ρ(x′,D−1/2)≥ rp(x′)+ γ/2. Motivated by this observation, let A be the region defined as

A =
⋃

x′∈Ux

B(x′,rp(x′)).

Then by our earlier observation, we have that ρ(A,D−1/2)≥
γ

2 . Since distance is continuous, it

follows that ρ(A,D−1/2)≥
γ

2 as well, where A denotes the closure of A.

This means that for any x′′ ∈ A∩ supp(µ), η(x′′)> 1
2 , since otherwise ρ(A,D−1/2) would

equal 0 (as the two sets would literally intersect). Finally, supp(µ) is a closed set (see Appendix
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B.3.1), and thus A∩ supp(µ) is closed as well. Since η is continuous (by assumption from

Definition 2.3.6), it follows that η must maintain its minimum value over A∩supp(µ). It follows

that there exists 2∆ > 0 such that η(x′′)≥ 1
2 +2∆ > 1

2 +∆ for all x′′ ∈ A∩ supp(µ).

Finally, by the definition of A, for all x′ ∈Ux, B(x′,rp(x′))⊂ A. It consequently follows

from the definition that x is (p,∆)-covered, as desired.

While the previous lemma show that some p,∆ cover any x ∈D+, this does not necessar-

ily mean that there are some fixed p,∆ that cover all x ∈D+. Nevertheless, we can show that

this is almost true, meaning that there are some p,∆ that cover most x ∈D+. Formally, we have

the following lemma.

Lemma B.2.6. For any ε > 0, there exists p,∆ such that µ(D+ \D+
p,∆)< ε , where D+

p,∆ is as

defined in Definition B.2.4.

Proof. Observe that if x is (p,∆)-covered, then it is also (p′,∆′)-covered for any p′ < p and

∆′ < ∆. This is because B(x′,rp′(x′))⊂ B(x′,rp(x)) and 1
2 +∆ > 1

2 +∆′. Keeping this in mind,

define

A = {D+
1/i,1/ j : i, j ∈ N}.

For any x ∈D+, by Lemma B.2.5 and our earlier observation, there exists A ∈A such that x ∈ A.

It follows that ∪A∈A A = D+. By applying Lemma B.3.1, we see that there exists a finite subset

of A , {A1, . . . ,Am} such that

µ(A1∪·· ·∪Am})> µ(D+)− ε.

Let Ak = D+
1/ik,1/ jk

for 1 ≤ k ≤ m. From our previous observation once again, we see that

∪Ai ⊂D+
1/I,1/J where I = max(ik) and J = max( jk). It follows that setting p = 1/I and ∆ = 1/J

suffices.

Recall that our overall goal is to show that if x is (p,∆)-covered, n is sufficiently large,
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then x is very likely to be in D+
WS

(defined in equation B.2). To do this, we will need to find

sufficient conditions on S for x to be in WS. This requires the following definitions, that are

related to splitting numbers (Definition 2.4.3).

Definition B.2.7. Let x ∈ Rd be a point, and let S = {(x1,y1), . . . ,(xn,yn)} be a training set

sampled from Dn. For 0≤ α , 0≤ β ≤ 1, and 0 < ∆ < 1
2 , we define

W ∆,S
x,α,β = {i : ρ(x,xi)≤ α,wS

i (x)≥ β ,η(xi)>
1
2
+∆}.

Definition B.2.8. Let 0 < ∆ < 1
2 , and let S = {(x1,y1), . . . ,(xn,yn)} be a training set sampled

from Dn. Then we let

W ∆,S = {W ∆,S
x,α,β : x ∈ Rd,0≤ α,0≤ β ≤ 1}.

These convoluted looking sets will be useful for determining the behavior of Ws at some

x ∈D+
p,∆. Broadly speaking, the idea is that if every set of indices R⊂W ∆,S is relatively well

behaved (i.e. the number of yis that are +1 is close to (|R|(1
2 +∆), the expected amount), then

Ws(x′) = +1 for all x′ ∈Ux. Before showing this, we will need a few more lemmas.

Lemma B.2.9. Fix any δ > 0 and let 0 < ∆ < 1
2 . There exists N such that for all n > N the

following holds. With probability 1−δ over S∼Dn, for all R∈W ∆,S with |R|> tn, 1
|R|∑i∈R yi≥∆

Proof. The key idea is to observe that the set W ∆,S and the value T (W,S) are completely

determined by {x1, . . . ,xn}. This is because weight functions choose their weights only through

dependence on x1, . . . ,xn. Consequently, we can take the equivalent formulation of first drawing

x1, . . . ,xn ∼ µn, and then drawing yi independently according to yi = 1 with probability η(x1)

and 0 with probability 1−η(xi). In particular, we can treat y1, . . . ,yn as independent from W ∆,S

and T (W,S) conditioning on x1, . . . ,xn.

Fix any x1, . . . ,xn. First, we see that |W ∆,S| ≤ T (W,S). This is because W ∆,S
x,α,β is a

subset that is uniquely defined by Wx,α,β (see Definitions B.2.7 and 2.4.3). Second, for any
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R ∈W ∆,S, observe that for all i ∈ R, yi is a binary variable in [−1,1] with expected value at

least (1
2 +∆)− (1

2 −∆) = 2∆ (again by the definition). It follows that if |R| ≥ tn, by Hoeffding’s

inequality

Pr
y1...yn

[∑
i∈R

yi < ∆]≤ exp
(
−2|R|2∆2

4|R|

)
≤ exp

(
−tn∆2

2

)
.

Since there at most T (W,S) sets R, it follows that

Pr
y1...yn

[∑
i∈R

yi < ∆ for some R ∈W ∆,S with |R|> tn]≤ T (W,S)exp
(
−tn∆2

2

)
.

However, by condition 4. of Theorem 2.4.4, it is not difficult to see that this quantity has

expectation that tends to 0 as n→ ∞ (unless T (W,S) uniformly equals 1, but this degenerate

case can easily be handled on its own). Thus, for any δ > 0, it follows that there exists N such

that for all n > N, with probability at least 1− δ

2 , T (W,S)exp
(
− tn∆2

2

)
≤ δ

2 . This value of N

consequently suffices for our lemma.

We now relate D+
WS

(Equation B.2) to W ∆,S as well as the conditions of Theorem 2.4.4.

Lemma B.2.10. Let S = {(x1,y1), . . . ,(xn,yn)} and let 0 < ∆≤ 1
2 and 0 < p < 1 such that the

following conditions hold.

1. For all R ∈W ∆,S with |R|> tn, 1
|R|∑i∈R yi ≥ ∆.

2. supx∈Rd ∑
n
1 wS

i (x)1ρ(x,xi)>rp(x) <
∆

5 .

3. tn supx∈Rd wS
i (x)<

∆

5 .

Then D+
p,∆ ⊆D+

WS
.

Proof. Let x ∈ D+
p,∆, and let x′ ∈ Ux be arbitrary. It suffices to show that WS(x′) = +1 (as

x,x′ were arbitrarily chosen). From the definition of WS, this is equivalent to showing that

∑
n
1 wS

i (x
′)yi > 0. Thus, our strategy will be to lower bound this sum using the conditions given in

the lemma statement.
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We first begin by simplifying notation. Since S and x′ are both fixed, we use wi to denote

wS
i (x
′). Since n is fixed, we will also use t to denote tn. Next, suppose that |{x1, . . . ,xn}∩

B(x′,rp(x′))| = k. Without loss of generality, we can rename indices such that {x1, . . . ,xn}∩

B(x′,rp(x′))∩B(x′,rp(x′)) = {x1, . . . ,xk}, and w1 ≥ w2 ≥ ·· · ≥ wk.

Let Yj = ∑
j
i=1 yi. Our main idea will be to express the sum in terms of these Yjs as

follows.

n

∑
1

wiyi =
k

∑
1

wiyi +
n

∑
k+1

wiyi

= wkYk +(wk−1−wk)Yk−1 + · · ·+(wt+1−wt+2)Yt+1 +
t

∑
i=1

(wi−wt+1)yi +
n

∑
k+1

wiyi

= wkYk +
k−1

∑
i=t+1

(wi−wi+1)Yi︸ ︷︷ ︸
α

+
t

∑
i=1

(wi−wt+1)yi︸ ︷︷ ︸
β

+
n

∑
k+1

wiyi︸ ︷︷ ︸
τ

.

We now bound α,β and τ in terms of ∆ by using the conditions given in the lemma. We

begin with β and τ , which are considerably easier to handle.

For β , we have that

β =
t

∑
i=1

(wi−wt+1)yi ≥
t

∑
i=1

(wi−wt+1)(−1)≥−tw1.

By condition 2 of the lemma, we see that tw1 <
∆

5 , which implies that β ≥−∆

5 .

For γ , we have that γ = ∑
n
k+1 wiyi ≥ −∑

n
k+1 wi. However, for all k + 1 ≤ i ≤ n, by

definition of k, ρ(x′,xi)> rp(x′). It follows from condition 3 of the lemma that γ ≥−∆

5 .

Finally, we handle α . Recall that x is (p,∆)-covered. It follows that for all x′′ ∈

supp(µ)∩B(x′,rp(x′)), η(x′′)> 1
2 +∆. Thus, by the definition of k, η(xi)>

1
2 +∆ for 1≤ i≤ k.
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It follows that if wi > wi+1 or i = k, then

W ∆,S
x′,rp(x′),wi

= { j : ρ(x′,x j)≤ rp(x′),w j ≥ wi,η(x j)>
1
2
+∆}

= {1, . . . , i}.

This implies that {1, . . . , i} ∈W ∆,S, and consequently that Yi ≥ i∆, from condition 1 of

the lemma. It follows that for all t < i≤ k, (wi−wi+1)Yi ≥ i(wi−wi+1)∆, and that wkYk ≥ kwk∆.

Substituting these, we find that

α = wkYk +
k−1

∑
i=t+1

(wi−wi+1)Yi

≥ kwk∆+
k−1

∑
i=t+1

i(wi−wi+1)∆

= wk∆+wk−1∆+ · · ·+wt+1∆+(t +1)wt+1∆.

≥ (1−∑
1t

wi−
n

∑
k+1

wi)∆

≥ (1− 2∆

5
)∆

≥ (
4∆

5
),

with the last inequalities holding from the arguments given for β and γ along with the fact that

0< ∆≤ 1
2 . Finally, substituting these, we find that α+β +γ ≥ 4∆

5 −
2∆

5 = 2∆

5 > 0, as desired.

We are now ready to prove the key lemma that forms one half of the main theorem (the

other half corresponding to D−WS
).

Lemma B.2.11. Let δ ,ε > 0. There exists N such that for all n > N, with probability 1−δ over

S∼Dn, µ(D+ \D+
WS
)< ε .

Proof. First, by Lemma B.2.6, let 0< p and 0<∆ be such that µ(D+\D+
p,∆)< ε . By combining

Lemma B.2.9, condition 3 of Theorem 2.4.4, and condition 2 of Theorem 2.4.4 respectively, we

see that there exists N such that for all n > N, the following hold:
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1. With probability at least 1− δ

3 over S∼Dn, for all R ∈W ∆,S with |R|> tn, 1
|R|∑i∈R yi ≥ ∆.

2. With probability at least 1− δ

3 over S∼Dn, supx∈Rd ∑
n
1 wS

i (x)1ρ(x,xi)>rp(x) <
∆

5 .

3. With probability at least 1− δ

3 over S∼Dn, tn supx∈Rd wS
i (x)<

∆

5 .

By a union bound, this implies that p,∆,S satisfy the conditions of Lemma B.2.10 with probability

at least 1−δ . Thus, applying the Lemma, we see that with probability 1−δ , D+
p,∆ ⊂D+

WS
. This

immediately implies our claim.

By replicating all of the work in this section for D− and D−p,∆, we can similarly show the

following:

Lemma B.2.12. Let δ ,ε > 0. There exists N such that for all n > N, with probability 1−δ over

S∼Dn, µ(D− \D−WS
)< ε .

Combining these two lemmas with Lemma B.2.3 immediately implies that for all δ ,ε > 0,

there exists N such that for all n > N, with probability 1−δ over S∼Dn,

AU (WS,D)≥ A(g,D)− ε.

Since V κ
x ⊂Ux and since κ was arbitrary, this implies Theorem 2.4.4, which completes our proof.

B.2.4 Proof of Corollary 2.4.5

Recall that kn-nearest neighbors can be interpreted as a weight function, in which wS
i (x) =

1
kn

if xi is one of the kn closest points to x, and 0 otherwise. Therefore, it suffices to show that the

conditions of Theorem 2.4.4 are met.

We let W denote the weight function associated with kn-nearest neighbors.

Lemma B.2.13. W is consistent.

Proof. It is well known (for example [39]) that kn-nearest neighbors is consistent for limn→∞ kn =

∞ and limn→∞
kn
n = 0. These can easily be verified for our case.
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Lemma B.2.14. For any 0 < p < 1, limn→∞ES∼Dn[supx∈Rd ∑
n
1 wS

i (x)1ρ(x,xi)>rp(x)] = 0.

Proof. It suffices to show that for n sufficiently large, all kn-nearest neighbors of x are located

inside B(x,rp(x)) for all x ∈ Rd . We do this by using a VC-dimension type argument to show

that all balls B(x,r) contain a number of points from S∼Dn that is close to their expectation.

For x ∈ Rd and r ≥ 0, let fx,r denote the 0− 1 function defined as fx,r(x′) = 1x′∈B(x,r).

Let F = { fx,r : x ∈ Rd,r ≥ 0} denote the class of all such functions. It is well known that the

VC dimension of F is at most d +2.

For f ∈ F , let E f denote E(x′,y)∼D f (x′) and En f denote 1
n ∑

n
1 f (xi), where En f is defined

with respect to some sample S ∼ Dn. By the standard generalization result of Vapnik and

Chervonenkis (see [81] for a proof), we have that with probability 1−δ over S∼Dn,

−βn
√

E f ≤ E f −En f ≤ βn
√

E f (B.3)

holds for all f ∈ F , where βn =
√
(4/n)((d +2) ln2n+ ln(8/δ ).

Suppose n is sufficiently large so that βn ≤ p
2 and kn

n < p
2 , and suppose that equation B.3

holds. Pick any x ∈ Rd and consider fx,r where r > rp(x). This implies E fx,r ≥ p. Then by

equation B.3, we see that En f ≥ p
2 . This implies that all kn nearest neighbors of x are in the ball

B(x,r), and that consequently ∑
n
1 wS

i (x)1ρ(x,xi)>r = 0. Because this holds for all x,r with x ∈ Rd

and r > rp(x), it follows that equation 2 implies that

sup
x∈X

n

∑
1

wS
i (x)1ρ(x,xi)>rp(x) = 0.

Because equation B.3 holds with probability at least 1−δ , and δ can be made arbitrarily small,

the desired claim follows.

Let tn =
√

dkn logn.

Lemma B.2.15. limn→∞ ES∼Dn[tn supx∈Rd wS
i (x)] = 0.
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Proof. Let S ∼ Dn. By the definition of kn nearest neighbors, supx∈Rd wS
i (x) =

1
kn

. Therefore,

tn supx∈Rd wS
i (x) =

√
d logn

kn
. By assumption 2. of corollary 2.4.5, limn→∞

d logn
kn

= 0, which

implies that

lim
n→∞

ES∼Dn[tn sup
x∈Rd

wS
i (x)] = lim

n→∞

√
d logn

kn
= lim

n→∞

d logn
kn

= 0,

as desired.

Lemma B.2.16. limn→∞ ES∼Dn
logT (W,S)

tn
= 0.

Proof. For S∼Dn, recall that T (W,S) was defined as

T (W,S)|{Wx,α,β : x ∈ Rd,0≤ α,0≤ β ≤ 1}|,

where Wx,α,β denotes

Wx,α,β = {i : ρ(x,xi)≤ α,wS
i (x)≥ β}.

Our goal will to be upper bound logT (W,S).

To do so, we first need a tie-breaking mechanism for kn-nearest neighbors. For each

xi ∈ S, we independently sample zi ∈ [0,1] from the uniform distribution. We then tie break

based upon the value of zi, i.e. if ρ(x,xi) = ρ(x,x j), we say that xi is closer to x than x j if zi < z j.

With probability 1, no two values zi,z j will be equal, so this ensures that this method always

works.

Let Ax,α = {i : ρ(x,xi) ≤ α} and let Bx,c = {i : zi ≤ c}. The key observation is that

for any α,β , Wx,α,β = Ax,α ∩Bx,c for some value of c. This can be seen by noting that the

nearest neighbors of x are uniquely determined by ρ(x,xi) and zi. Therefore, it suffices to bound

|A = Ax,α : x ∈ Rd,α ≥ 0}| and |B = {Bx,c : x ∈ Rd,c≥ 0}|.

To bound |A|, observe that the set of closed balls in Rd has VC-dimension at most d +2.

Thus by Sauer’s lemma, there are at most O(nd+2 subsets of {x1,x2, . . . ,xn} that can be obtained

from closed balls. Thus |A| ≤ O(nd+2.
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To bound |B|, we simply note that Bx,c consists of all i for which zi ≤ c. Since the zi can

be sorted, there are at most n+1 such sets. Thus |B| ≤ n+1.

Combining this, we see that T (W,S)≤ |A||B| ≤ O(nd+3). Finally, we see that

lim
n→∞

logT (W,S)
tn

= lim
n→∞

O(d logn)√
knd logn

= lim
n→∞

√
O(d logn)

kn
= 0,

with the last inequality holding by condition 2. of Corollary 2.4.5.

Finally, we note that Corollary 2.4.5 is an immediate consequence of the previous 4

lemmas as we can simply apply Theorem 2.4.4.

B.2.5 Proof of Corollary 2.4.6

Let W be a kernel classifier constructed from K and hn such that the conditions of

Corollary 2.4.6 hold: that is,

1. K : [0,∞)→ [0,∞) is decreasing and satisfies
∫
Rd K(x)dx < ∞.

2. limn→∞ hn = 0 and limn→∞ nhd
n = ∞.

3. For any c > 1, limx→∞
K(cx)
K(x) = 0.

4. For any x≥ 0, limn→∞
n

lognK( x
hn
) = ∞.

It suffices to show that the conditions of Theorem 2.4.4 are met for W . Before doing this,

we will describe one additional assumption we make for this case.

Additional Assumption:

We assume that D ,U are such that there exists some compact set X ⊂ Rd such that

for all x ∈ supp(µ), Ux ⊂X . This is primarily for convenience: observe that any distribution

can be approximated arbitrarily closely by distributions satisfying these properties (as each Ux
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is bounded by assumption). Importantly, because of this, we will note that it is possible for

conditions 2. and 3. of Theorem 2.4.4 to be relaxed to taking supremums over X rather than

Rd . This is because in our proof, we only ever used these conditions in their restriction to⋃
x∈supp(µ)

⋃
x′ ∈UxB(x′,rp(x′)).

Using this assumption, we return to proving the corollary.

Lemma B.2.17. W is consistent with respect to D .

Proof. Condition 1. of Corollary 2.4.6 imply that K is a regular kernel. This together with

Condition 2. implies that W is consistent: a proof can be found in [14].

To verify the second condition, it will be useful to have the following definition.

Definition B.2.18. For any p,ε > 0 and x ∈X , define rε
p as

rε
p(x) = sup{r : µ(B(x,r))−µ(B(x,rp(x))≤ ε}.

Lemma B.2.19. For any p,ε > 0, there exists a constant cε
p > 1 such that

rε
p(x)

rp(x)
≥ cε

p for all

x ∈X , where we set
rε

p(x)
rp(x)

= ∞ if rp(x) = 0.

Proof. The basic idea is to use the fact that X is compact. Our strategy will be to analyze

the behavior of
rε

p(x)
rp(x)

over small balls B(x0,r) centered around some fixed x0, and then use

compactness to pick some finite set of balls B(x0,r). This must be done carefully because the

function x→ rε
p(x)

rp(x)
is not necessarily continuous.

Fix any x0 ∈X . First, observe that rε
p(x0) > rp(x0). This is because B(x0,rp(x0)) =

∩r>rp(x0)B(x0,r), and consequently limr↓rp(x0) µ(B(x0,r)) = µ(B(x0,rp(x))).

Next, define

sε
p(x) = inf{r : µ(B(x,rp(x))−µ(B(x,r))≤ ε}.

We can similarly show that rp(x0)> sε
p(x0).
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Finally, define

r0 =
1
3

min(rε
p(x0)− rp(x0),rp(x0)− sε

p(x0)).

Consider any x ∈ Bo(x0,r0) where Bo denotes the open ball, and let α = ρ(x0,x). Then we have

the following.

1. rp(x)≤ rp(x0)+α . This holds because B(x,rp(x0)+α) contains B(x0,rp(x0)), which has

probability mass at least p.

2. rp(x) ≥ rp(x0)−α . This holds because if rp(x) < rp(x0)−α , then there would exists

r < rp(x0) such that µ(B(x0,r))≥ p which is a contradiction.

3. B(x0,sε
p(x0)) ⊂ B(x,rp(x)). This is just a consequence of the definition of r0 and the

previous observation.

By the definitions of rε
p and sε

p, we see that µ(B(x0,rε
p(x0))− µ(B(x0,sε

p(x0)) ≤ 2ε . By the

triangle inequality, B(x,rε
p(x0)−α)⊂ B(x0,rε

p(x0)) and B(x0,sε
p(x0))⊂ B(x,rp(x)). it follows

that

µ(B(x,rε
p(x0)−α))−µ(B(x,rp(x)))≤ 2ε,

which implies that r2ε
p (x)≥ rε

p(x0)−α . Therefore we have the for all x ∈ B(x0,r0),

r2ε
p (x)

rp(x)
≥

rε
p(x0)−α

rp(x0)+α
≥

2rε
p(x0)+ rp(x0)

rε
p(x0)+2rp(x0)

.

Notice that the last expression is a constant that depends only on x0, and moreover, since

rε
p(x0)> rp(x0), this constant is strictly larger than 1. Let us denote this as c(x0). Then we see

that
r2ε

p (x)
rp(x)

≥ c(x0) for all x ∈ Bo(x0,r0).

Finally, observe that {Bo(x0,r0) : x0 ∈X } forms an open cover of X and therefore has

a finite sub-cover C. Therefore, taking c = minBo(x0,r0)∈C c(x0), we see that
r2ε

p (x)
rp(x)

≥ c > 1 for all

x ∈X . Because ε was arbitrary, the claim holds.
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Lemma B.2.20. For any 0 < p < 1, limn→∞ES∼Dn[supx∈X ∑
n
1 wS

i (x)1ρ(x,xi)>rp(x)] = 0.

Proof. Fix p > 0, and fix any ε,δ > 0. Pick n sufficiently large so that the following hold.

1. Let cε
p be as defined from Lemma B.2.19.

sup
x∈X

K(cε
prp(x)/hn)

K(rp(x)/hn)
< δ . (B.4)

This is possible because of conditions 2. and 3. of Corollary 2.4.6, and because the

function x→ rp(x) is continuous.

2. With probability at least 1−δ over S∼Dn, for all r > 0, and x ∈X ,

|µ(B(x,r))− 1
n

n

∑
1

1xi∈B(x,r)| ≤ ε. (B.5)

This is possible because the set of balls B(x,r) has VC dimension at most d +2.

We now bound ES∼Dn[supx∈X ∑
n
1 wS

i (x)1ρ(x,xi)>rp(x)] by dividing into cases where S satisfies

and doesn’t satisfy equation B.5.

Suppose S satisfies equation B.5. By condition 1. of Corollary 2.4.6, K is decreasing,

and by Lemma B.2.19, rε
p(x)≥ cε

prp(x). Therefore, we have that for any x ∈X ,

n

∑
1

K(ρ(x,xi)/hn)1ρ(x,xi)≥rε
p(x) ≤

n

∑
1

K(cε
prp(x)/hn)

≤ nδK(rp(x)/hn)),

where the second inequality comes from equation B.4.

Next, by the definition of rε
p(x), we have that µ(B(x,rε

p(x))−µ(B(x,rp(x)))≤ ε . There-

fore, by applying equation B.5 two times, we see that for any x ∈X

n

∑
1

K(ρ(x,xi)/hn)1rp(x)<ρ(x,xi)≤rε
p(x) ≤ 3nεK(rp(x)/hn).
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Finally, we have that

n

∑
1

wS
i (x)≥

n

∑
1

K(rp(x)/hn)1ρ(x,xi)≤rp(x) ≥ n(p− ε)K(rp(x)/hn).

Therefore, using all three of our inequalities, we have that for any x ∈X

n

∑
1

wS
i (x)1ρ(x,xi)>rp(x) =

n

∑
1

wS
i (x)1ρ(x,xi)>rε

p(x)+
n

∑
1

wS
i (x)1rε

p≥ρ(x,xi)>rp(x)

=
∑

n
1 K(ρ(x,xi)/hn)1ρ(x,xi)>rε

p(x)+∑
n
1 K(ρ(x,xi)/hn)1rε

p≥ρ(x,xi)>rp(x)

∑
n
1 K(ρ(x,xi)/hn)

≤
nδK(rp(x)/hn))+3nεK(rp(x)/hn)

n(p− ε)K(rp(x)/hn).

=
δ +3ε

p− ε
.

If S does not satisfy equation B.5, then we simply have supx∈X ∑
n
1 wS

i (x)1ρ(x,xi)>rp(x) ≤ 1.

Combining all of this, we have that

ES∼Dn

n

∑
1

wS
i (x)1ρ(x,xi)>rp(x) ≤ δ (1)+(1−δ )

δ +3ε

p− ε
.

Since δ ,ε can be made arbitrarily small, the result follows.

By assumption, X is compact and therefore has diameter D < ∞. Define

tn =

√
n lognK(

D
hn

) for 1≤ n < ∞.

Lemma B.2.21. limn→∞ ES∼Dn[tn supx∈X wS
i (x)] = 0.

Proof. Because K is a decreasing function, we have that K(D/hn)≤ K(ρ(x,xi)/hn)≤ K(0). As
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a result, we have that for any x ∈X ,

tn sup
1≤i≤n

wS
i (x) =

tn sup1≤i≤n K(ρ(x,xi)/hn)

∑
n
1 K(ρ(x,xi)/hn)

≤ tnK(0)
nK(D/hn)

= K(0)

√
n lognK(D/hn)

n2K(D/hn)2

= K(0)

√
logn

nK(D/hn)
.

However, by condition 4. of Corollary 2.4.6, limn→∞
n

lognK(D/hn) = ∞. Therefore, since the

above inequality holds for all x ∈X , we have that

lim
n→∞

ES∼Dn[tn sup
x∈X

wS
i (x)]≤ lim

n→∞
K(0)

√
logn

nK(D/hn)
= 0.

Lemma B.2.22. limn→∞ ES∼Dn
logT (W,S)

tn
= 0.

Proof. For S∼Dn, recall that T (W,S) was defined as

T (W,S)|{Wx,α,β : x ∈X ,0≤ α,0≤ β ≤ 1}|,

where Wx,α,β denotes

Wx,α,β = {i : ρ(x,xi)≤ α,wS
i (x)≥ β}.

Our goal will to be upper bound logT (W,S).

The key observation is that Wx,α,β is precisely the set of xi for which ρ(x,xi)≤ r where r

is some threshold. This is because the restriction that wS
i (x)≥ β can be directly translated into

ρ(x,xi)≤ r for some value of r, as K is a monotonically decreasing function. Thus, T (W,S) is

the number of subsets of S that can be obtained by considering the interior of some ball B(x,r)
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centered at x with radius r.

We now observe that the set of closed balls in Rd has VC-dimension at most d +2. Thus

by Sauer’s lemma, there are at most O(nd+2 subsets of {x1,x2, . . . ,xn} that can be obtained from

closed balls. Thus T (W,S)≤ O(nd+2.

Finally, we see that

lim
n→∞

logT (W,S)
tn

= lim
n→∞

O(d logn)√
n lognK( D

hn
)
≤ lim

n→∞

√
O(d logn)

nK( D
hn
)

= 0,

with the last equality holding by condition 4. of Corollary 2.4.6.

Finally, we note that Corollary 2.4.6 is an immediate consequences of Lemmas B.2.17,

B.2.20, B.2.21, and B.2.22, as we can simply apply Theorem 2.4.4.

B.3 Useful Technical Definitions and Lemmas

Lemma B.3.1. Let µ be a measure over Rd , and let A denote a countable collections of

measurable sets Ai such that µ(
⋃

A∈A A)< ∞. Then for all ε > 0, there exists a finite subset of

A , {A1, . . . ,Am} such that

µ(A1∪A2∪·· ·∪Am)> µ(
⋃

A∈A
A)− ε.

Proof. Follows directly from the definition of a measure.

B.3.1 The support of a distribution

Let µ be a probability measure over Rd .

Definition B.3.2. The support of µ , supp(µ), is defined as all x ∈ Rd such that for all r > 0,

µ(B(x,r))> 0.

From this definition, we can show that supp(µ) is closed.
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Figure B.1. Our data distribution D = (µ,η) with µ+ shown in blue and µ− shown in red.
Observe that this simple distribution captures varying distances between the red and blue regions,
which necessitates having varying sizes for robustness regions.

Lemma B.3.3. supp(µ) is closed.

Proof. Let x be a point such that B(x,r)∩ supp(µ) 6= /0 for all r > 0. It suffices to show that

x ∈ supp(µ), as this will imply closure.

Let x be such a point, and fix r > 0. Then there exists x′ ∈B(x,r/2) such that x′ ∈ supp(µ).

By definition, we see that µ(B(x′,r/3)) > 0. However, B(x′,r/3) ⊂ B(x,r) by the triangle

inequality. it follows that µ(B(x,r))> 0. Since r was arbitrary, it follows that x ∈ supp(µ).

B.4 Experiment Details

Data Distribution

Our data distribution D = (µ,η) is over R2×{±1}, and is defined as follows. We let

µ+ consist of a uniform distribution over the circle x2 + y2 = 1, and µ− consist of the uniform

distribution over the circle (x−0.5)2 + y2 = 0.04. The two distributions are weighted so that we

draw a point from µ+ with probability 0.7, and µ− with probability 0.3. Finally, we utilize label

noise 0.2 meaning that the label y matches that given by the Bayes optimal with probability 0.2.

In summary, D can be described with the following 4 cases:

1. With probability 0.7×0.8, we select (x,y) with x ∈ µ+ and y =+1.
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2. With probability 0.7×0.2, we select (x,y) with x ∈ µ+ and y =−1.

3. With probability 0.3×0.8, we select (x,y) with x ∈ µ− and y =−1.

4. With probability 0.3×0.2, we select (x,y) with x ∈ µ− and y =+1.

We also include a drawing (Figure B.1) of the support of D , with the positive portion µ+ shown

in blue and the negative portion, µ− shown in red.

Computing Robustness Regions

Recall that in order to measure robustness, we utilize the so-called partial neighborhood

preserving regions V κ
x (Definition 2.3.5) for varying values of κ . In the case of our data

distribution D , V κ
x consists of points closer to x by a factor of κ than they are to µ− (resp.

µ+) when x ∈ µ+ (resp. µ−). To represent a region V κ
x , we simply use a function f that

verifies whether a given point x′ ∈ V κ
x . While this methodology is not sufficient for training

general classifiers (for a whole litany of reasons: to begin with it assumes full knowledge of the

distribution), it will suffice for our toy synthetic experiments.

Trained Classifiers

We train two classifiers, both of which are kernel classifiers.

The first classifier is an exponential kernel classifier with bandwidth function hn =
1

10
√

logn

and kernel function K(x) = e−x.

The second classifier is a polynomial kernel classifier with bandwidth function hn =
1

10n1/3

and kernel function K(x) = 1
1+x2 .

Both of these kernels are regular kernels, and both bandwidths satisfy sufficient conditions

for consistency with respect to accuracy. In other words, both of these classifiers will converge

towards the accuracy of the Bayes optimal.

However, the first classifier is selected to satisfy the criterion of Corollary 2.4.6, whereas

the second is not. This distinction is reflected in our experiments.
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Verifying Robustness

To verify the robustness of classifier f at point x (with respect to V κ
x ), we simply do a

grid search with grid parameter 0.01. We grid the entire regions into points with distance at most

0.01 between them, and then verify that f has the desired value at all of those points. To ensure

proper robustness, we also simply verify that f cannot change enough within a distance of 0.01

by constructing an upper bound on how much f can possibly change. For kernel classifiers, this

is simple to do as there is a relatively straightforward upper bound on the gradient of a Kernel

classifier.
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Appendix C

Appendix for Chapter 3

C.1 Expanded summary of [1]

In this section, we derive the formulation of Theorem 3.3.4 directly from their results. In

particular, their results are not stated in terms of Lrob and Lstd , and are instead framed in terms of

different parameters. To account for this, we first review these alternative parameters, and then

show how the statements in Theorem 3.3.4 can be

Recall, that [1] consider the setting in which the data distribution Dµ,Σ can be charac-

terized as a pair of Gaussians in Rd , N (µ,Σ) and N (−µ,Σ), that are symmetric about the

origin with each of them representing one label class. They consider robustness measured in any

normed metric in Rd , including the `p norm for p ∈ [1,∞].

For any such distribution (and robustness radius r), they introduce parameters srob(µ,Σ)

and sstd(µ,Σ), which they refer to as the robust and standard signal-to-noise ratios respectively,

that are defined as follows:

sstd(µ,Σ) = 2
√

µ tΣ−1µ,

srob(µ,Σ) = min
||z||p≤r

2
√
(µ− z)tΣ−1(µ− z),

where r represents the robustness radius and `p is the distance norm under which adversarial

perturbations are measured.
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They then show that these parameters fully characterize the sample complexity for robust

and standard learning respectively. They express this through the following results:

1. Let Φ denote the cumulative density function of the standard normal distribution, and let

Φ(x) = 1−Φ(x). Then for any Dµ,Σ,

• the optimally accurate classifier has standard loss Φ(1
2sstd).

• the optimally robust classifier has robust loss Φ(1
2srob).

2. For any learning algorithm, there exists some mixture of Dµ,Σ such that the expected

robust loss is at least Ω(e(−
1
8+o(1))s2

rob d
n ).

3. By contrast, for any distribution Dµ,Σ, it is possible to learn a classifier with expected

standard loss at most O(sstde−
1
8 s2

std d
n ).

4. Thus, by (2.) and (3.), the gap between the robust sample complexity and the standard

complexity can be bounded as

gap≥Ω

(
e(−

1
8+o(1))s2

rob d
n

sstde−
1
8 s2

std d
n

)
'Ω(e

−1
8 (s2

std−s2
rob)).

They then qualitatively analyze this gap, and observe that for large values of µ and large

values of r, this gap can be arbitrarily large, even as a function of d, the dimension.

We now show how to convert (2.), (3.), and (4.) into the statements appearing in Theorem

3.3.4. As before, let us define Lstd and Lrob as the best possible standard and robust losses for

Dµ,Σ respectively. In particular, by (1.), we have

Lstd = Φ(
1
2

s2
std), and Lrob = Φ(

1
2

s2
rob).

We now express the bounds in (2.) and (4.) in terms of Lstd and Lrob. To do so, we use the well
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known inequality bounding Φ(x) as

Ω(
x

x2 +1
e−x2/2)< Φ(x)< O(

e−x2/2

x
).

Substituting this into (2.) through (4.) imply the following, alternative forms.

2. For any learning algorithm, there exists some mixture of Gaussians, Dµ,Σ such that the

expected robust loss is at least Ω(Lrob
d
n ).

3. For any distribution Dµ,Σ, it is possible to learn a classifier with expected standard loss at

most O(Lstd
d
n ).

4. By (2.) and (3.), the gap between robust sample complexity and standard sample complex-

ity can be expressed as

gap≥Ω(
Lrob

Lstd
).

Together, these three statements comprise Theorem 3.3.4.

C.1.1 The limiting case

While a core difference between our works is that we consider separated distributions

whereas Gaussians are non-separated, we now consider the limiting case in which a pair of

Gaussians appear separated. To do this, we will consider a case in which Lrob is small, and

n∼O( 1
Lrob

). In this case, with high probability, a sample of size n will appear linearly r-separated.

Examining the bound in part 1 of Theorem 3.3.4, we see that their lower bound on the expected

robust loss reduces to O(1
n

d
n ) = O( d

n2 ), which is significantly weaker than ours (Theorem 3.3.2).

Thus, considering Gaussians that appear linearly r-separated does not generalize to the general,

linearly r-separated case.
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C.2 Proof of Theorem 3.3.2

We begin by broadly outlining our proof of Theorem 3.3.2. Let Π be a probability

distribution over Fr,ρ , and let A be a learning algorithm that returns a linear classifier.

1. Sample D ∼Π.

2. Sample S∼Dn.

3. Learn the classifier AS using algorithm A and training sample S.

4. Evaluate AS on D . That is, compute Lr(AS,D).

The basic idea of our proof is to show that for an appropriate choice of Π, the overall

expected loss of this procedure, Lr(AS,D), satisfies

ED∼Π[ES∼Dn[Lr(AS,D)]]≥Ω(
d
n
).

Our primary method for doing this is switching expectations. In particular, observe that

ED∼Π[ES∼Dn [Lr(AS,D)]] = ES∼Σ[ED∼Π|S[Lr(AS,D)]],

where Σ denotes the distribution over all S obtained from first sampling D ∼Π and then sampling

S ∼ Dn, and Π|S denotes the posterior distribution of D after observing S. It then suffices to

bound the quantity ED∼Π|S[Lr(AS,D)], which is a significantly more tractable problem since

we no longer need to deal with any specifics of the Algorithm A. In particular, S is fixed in this

expectation and consequently AS is just a fixed linear classifier. This bound subsequently follows

from the distribution Π|S having enough “variation” for this expectation to be sufficient large.

Our proof will have the following main steps, each of which is given its own subsection.

1. In section C.2.1, we construct the distribution Π, and prove several important properties

about it.
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2. In section C.2.2, by bounding ED∼Π|S[Lr(AS,D)], we show that the desired property of

Π holds.

C.2.1 Constructing Π

We let r be a fixed robustness radius, and `p be our norm with which we measure

robustness. Our construction of Π is a somewhat technical and lengthy process. We will organize

this construction into 4 subsections, outlined here:

• In section C.2.1, we define the distribution Da, characterized by parameter a∈ [0,1]d . This

forms the basis for constructing Π, which will comprise of distributions Da for certain

choices of a. We also show that Da is linearly r-separated.

• In section C.2.1, we define the constant ∆, which will be essential for specifying which

values of parameter a are permissible.

• In section C.2.1, we define functions g1,g2 : [0, ∆

3 ]→ [0, ∆

3 ] that will be used to construct

Π.

• In section C.2.1, we finally put together the previous 3 sections and construct Π. We also

show that any Da ∼Π satisfies ρ(Da)≤C.

Defining Da

Let e1,e2, . . . ,ed denote the standard normal basis in Rd . Define vi =Rei and u= R√
d ∑

d
1 ei,

where R = 9rd1/q

2
√

d
. It will also be convenient to define the following function, which we will

frequently use throughout the entirety of the appendix.

Definition C.2.1. For 1≤ l ≤ ∞, let fl : [0,1]d → R+ be the function defined as

fl(a) =
l

√√√√ d

∑
1
| 1√

d
+a−ai|l,
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where a = 1
d ∑

d
1 ai. For l = ∞, we take the convention that ∞

√
∑

d
1 |xi|∞ = max1≤i≤d |xi|.

To define Da, we first define the concept of a line segment in Rd .

Definition C.2.2. Let x1,x2 ∈ Rd be two points. A line segment joining x1,x2 is defined as one

of the following four sets.

• (x1,x2) = {tx1 +(1− t)xt : 0 < t < 1}.

• [x1,x2) = {tx1 +(1− t)xt : 0≤ t < 1}.

• (x1,x2] = {tx1 +(1− t)xt : 0 < t ≤ 1}.

• [x1,x2] = {tx1 +(1− t)xt : 0≤ t ≤ 1}.

We will always distinguish which set we mean by using the notation above. In all cases, x1,x2

are said to be the endpoints of the line segment.

We now define Da.

Definition C.2.3. Let a ∈ [0,1]d be a vector, and let a = 1
d ∑

d
1 ai. Set λa =

r
R fq(a), where q is

the dual norm of p. Assume that for all 1≤ i≤ d, ai > λa (i.e. we only Da for a for which this

holds). Let S− and S+ be two sets of d disjoint line segments (as defined in Definition C.2.2)

defined as

S− = {[vi,vi +(ai−λa)u) : 1≤ i≤ d},

S+ = {(vi +(ai +λa)u,vi +u] : 1≤ i≤ d}.

Then Da is defined as the probability distribution of random variables (X ,Y ) where

• X is chosen by the following random procedure. First, sample an arbitrary segment from

S+∪S− with each segment chosen with probability proportional to its `2 length. Next, X

is selected from the uniform distribution over the chosen line segment. In particular, the

probability that X lies on any interval on any line segment contained within S+∪S− is

directly proportional to the length of the interval.
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• Y is −1 if X ∈ ∪S− and +1 if X ∈ ∪S+.

Figure C.1. An illustration of Da in two dimensions. S− is shown in red, and S+ is shown in
blue. The decision boundary, Ha, of the optimal linear classifier, fwa,1, is shown in purple.

We include an example of such a distribution in Figure C.1. Next, we explicitly compute

a linear classifier that linearly r-separates Da.

Definition C.2.4. Let a ∈ [0,1]d , and let a = ∑
d
i=1 ai. Then let wa be defined as

wa
i =

1
R
− dai

R
√

d +dRa
.

Lemma C.2.5. wa satisfies 〈wa,u〉= d√
d+da

and 〈wa,vi +aiu〉= 1, for all 1≤ i≤ d.
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Proof. By the definitions of vi,u, we have that

〈wa,u〉= 〈wa,
1√
d

d

∑
1

vi〉

=
1√
d

d

∑
1

Rwa
i

=
1√
d

d

∑
1

1− dai√
d +da

=
1√
d

d

∑
1

√
d +da−dai√

d +da

=
1√
d

d
√

d√
d +da

=
d√

d +da
,

Which proves the first claim. Next, we also have that 〈wa,vi〉= Rwa
i . Summing these, we get

Rwa
i +

dai√
d +da

= 1− dai√
d +da

+
dai√

d +da
= 1,

as desired.

We now prove that Da is linearly r-separated.

Lemma C.2.6. Da is linearly r-separated by the classifier fwa,1.

Proof. Let Ha denote the hyperplane passing through {vi +aiu : 1≤ i≤ d}. By Lemma C.2.5,

Ha is the decision boundary of fwa,1. Referring to Figure C.1, we see that ∪S+ lies entirely

above Ha while the set ∪S− lies entirely below the hyperplane Ha, which the classifier fwa,1 has

accuracy 1 with respect to Da. It suffices to show that fwa,1 is robust everywhere. In order to do

this, we must show that all points in the support of Da have `p distance at least r from Ha.

Fix any 1≤ i≤ d. Since the `p distance metric is invariant under translation and scales

linearly with dilations, it follows that the point xi = vi +(ai−λa)u is the closest point on the

segment [vi,vi +(ai−λa)u) to Ha. Suppose xi has distance D under the `p norm to Ha. Then

the key observation is that the `p ball, Bp(xi,D), must be tangent to Ha. Expressing this as an
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equation, we have maxz∈Bp(xi,D)〈z,wa〉= 1, which can be re-written as

max
||z−xi||p≤D

〈z− xi,wa〉= 1−〈xi,wa〉.

By Lemma C.2.5 , 〈wa,u〉= d√
d+da

and 〈wa,vi +aiu〉= 1. Substituting this, we see that

1−〈xi,wa〉= 1−〈vi +aiu−λau,wa〉

= 1−〈vi +aiu,wa〉+ 〈λau,wa〉

= 〈λau,wa〉

=
dλa√
d +da

.

However, by using the dual norm, we see that max||z−xi||p≤D〈z−xi,wa〉= D||wa||q. Thus

it follows that

D =
dλa

(
√

d +da)||wa||q

=
d r

R fq(a)

(
√

d +da)||wa||q

=
d r

R
q
√

∑
d
1 | 1√

d
+a−ai|q

(
√

d +da)||wa||q

=

r q

√
∑

d
1 | 1R

√
d+da−dai
(
√

d+da)
|q

||wa||q

=
r||wa||q
||wa||q

= r.

We can use an analogous argument holds for vi +(ai + ra)u, the closest point to Ha in S+. Thus

each point in the support of Da has distance strictly larger than r (as the endpoints were not

included) to Ha. Consequently fwa,1 linearly r-separates Da, as desired.

155



Defining ∆

Now that we have defined Da, we turn our attention to defining Π, which requires us to

specify a distribution over valid choices of a. In particular, although Da is defined for a ∈ [0,1]d ,

we will require a more stringent condition on a for our construction to work. To this end, we

begin by defining ∆, a key parameter that characterizes the domain of a. To define ∆, we use the

following lemma.

Lemma C.2.7. There exists a real number ∆ > 0 such that for all l ∈ {2,q}, and for all

a ∈ [1
2 −∆, 1

2 +∆]d ,

||∇ fl(a)||2 ≤
1

d2
√

d
,

where fl is as defined in Definition C.2.1.

Proof. Since 1 ≤ q < ∞, we see that for both choices of l, the function hl(x) = ( 1√
d
− x)l is a

convex function for x ∈ [− 1
2
√

d
, 1

2
√

d
]. Thus, if ∑

d
1 xi = 0, then by Jensen’s inequality, ∑

d
1 hl(xi)≥

∑
d
1 hl(0). Applying this, we see that for all l ∈ {2,q} and for all a ∈ [1

2 −
1

4
√

d
, 1

2 +
1

4
√

d
]d ,

fl(a) =
l

√√√√ d

∑
1
| 1√

d
+a−ai|l

= l

√√√√ d

∑
1

(
1√
d
+a−ai

)l

= l

√√√√ d

∑
1

hl(ai−a)

≥ l

√√√√ d

∑
1

hl(0)

= fl((
1
2
,
1
2
, . . . ,

1
2
)),

with the first equality holding since a−ai <
1√
d

and the first inequality holding since ∑
d
1 ai−a= 0.
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Thus fl(a) must be locally minimized when a = (1
2 ,

1
2 , . . . ,

1
2), and it follows that

||∇ fl(
1
2
,
1
2
, . . . ,

1
2
)||2 = 0, for l = 2,q.

Now observe that the map H(a) =maxl∈{2,q} ||∇ fl(a)||2 is a continuous map as long as |ai−a|<
1√
d

for all 1 ≤ i ≤ d. Thus there exists an open neighborhood U about (1
2 ,

1
2 , . . . ,

1
2) such that

H(a)≤ 1
d2
√

d
for all a ∈U . Taking ∆ so that [1

2 −∆, 1
2 +∆]d ⊆U suffices.

Definition C.2.8. Let ∆ be any constant for which Lemma C.2.7 holds. In particular, ∆ only

depends on `p, the robustness norm, and d, the dimension.

Defining g1 and g2

In this section, we define functions g1,g2 : [0, ∆

3 ]→ [0, ∆

3 ] which we will use to specify Π.

Before defining g1 and g2, we will first prove several technical lemmas.

Lemma C.2.9. Let I ⊆ R be an interval, and Φ : I→ R be a strictly convex function. For any

s ∈ R and t ≥ 0, let Φs(t) = Φ(s− t)+Φ(s+ t). Then Φs is a strictly increasing function.

Proof. Fix s, and let 0 ≤ t1 < t2. Then we see that by Jensen’s inequality (for strictly convex

functions),

Φ(s+ t1)<
(t2− t1)Φ(s+ t2)

t1 + t2
+

2t1Φ(s− t1)
t1 + t2

,

and

Φ(s− t1)<
(t2− t1)Φ(s− t2)

t1 + t2
+

2t1Φ(s+ t1)
t1 + t2

.
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Summing these inequalities, we see that

Φs(t1) = Φ(s− t1)+Φ(s+ t1)

<
(t2− t1)Φ(s+ t2)

t1 + t2
+

2t1Φ(s− t1)
t1 + t2

+
(t2− t1)Φ(s− t2)

t1 + t2
+

2t1Φ(s+ t1)
t1 + t2

=
t2− t1
t1 + t2

(Φ(s+ t2)+Φ(s− t2))+
2t1

t1 + t2
(Φ(s− t1)+Φ(s+ t1))

=
t2− t1
t1 + t2

Φs(t2)+
2t1

t1 + t2
Φs(t1).

Rearranging this yields Φs(t1)< Φs(t2), as desired.

Lemma C.2.10. Let I ⊆ R be an interval, Φ : I→ R be a strictly convex continuous function,

and x,y,z ∈ I be real numbers with x < y < z. Let ε > 0 be such that x− ε ∈ I and y+ ε ≤ z− ε .

Then there exist unique δ ,γ > 0 such that the following hold:

δ + γ = ε,

Φ(x−δ )+Φ(y+ ε)+Φ(z− γ) = Φ(x)+Φ(y)+Φ(z)

Proof. Fix any ε satisfying the desired conditions, and define Θ : [0,ε]→ R as Θ(t) = Φ(x−

t)+Φ(y+ε)+Φ(z+ t−ε). Then, utilizing the definition of Φs from Lemma C.2.9, we see that

Θ(t) = Φ x+z−ε

2
(
z− x− ε

2
+ t)+Φ(y+ ε).

By Lemma C.2.9, it follows that Θ is strictly increasing in t, and since Φ is continuous, so is Θ.

Next, we bound Θ(0) and Θ(ε) to put us in the configuration to apply the intermediate value
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theorem. To bound Θ(0), we have

Θ(0) = Φ(x)+Φ(y+ ε)+Φ(z− ε)

= Φ(x)+Φ y+z
2
(
z− y

2
− ε)

< Φ(x)+Φ y+z
2
(
z− y

2
)

= Φ(x)+Φ(y)+Φ(z),

and to bound Θ(ε), we have

Θ(ε) = Φ(x− ε)+Φ(y+ ε)+Φ(z)

= Φ x+y
2
(
y− x

2
+ ε)+Φ(z)

> Φ x+y
2
(
y− x

2
)+Φ(z)

= Φ(x)+Φ(y)+Φ(z).

Together, these equations imply Θ(0) < Φ(x)+Φ(y)+Φ(z) < Θ(ε). Since Θ is strictly in-

creasing and continuous, there exists a unique δ ∈ [0,ε] such that Θ(δ ) = Φ(x)+Φ(y)+Φ(z).

Setting γ = ε−δ , we see that

Θ(δ ) = Φ(x−δ )+Φ(y+ ε)+Φ(z− γ) = Φ(x)+Φ(y)+Φ(z),

as desired.

Next, we define a function that will be useful for simplifying notation, both in this section

and subsequent ones.

Definition C.2.11. Let ∆ be as in definition C.2.8. For x,y,z ∈ [0, ∆

3 ], let

F(x,y,z) = q

√(
1√
d
− x
)q

+

(
1√
d
− 2∆

3
+ y
)q

+

(
1√
d
+

2∆

3
+ z
)q

.
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We now define g1,g2.

Corollary C.2.12. Let ∆ be as in definition C.2.8. There exist 1-Lipshitz, monotonically non-

decreasing functions g1,g2 : [0, ∆

3 ]→ [0, ∆

3 ] such that for all t ∈ [0, ∆

3 ], g1(t)+ g2(t) = t and

F(t,g1(t),g2(t)) = F(0,0,0).

Proof. We have two cases.

Case 1: 1 < q < ∞:

Let Φ : [−∆,∆]→ R be defined as Φ(x) = ( 1√
d
− x)q. Since q > 1, and ∆ < 1√

d
, Φ is

strictly convex. Observe that

F(x,y,z)q = Φ(x)+Φ(2
∆

3
− y)+Φ(−2

∆

3
− z).

Next, fix any t ∈ [0, ∆

3 ]. Then observe that −2∆

3 ≥−∆ and that 2∆

3 − t ≥ 0+ t. This puts us in the

configuration to apply Lemma C.2.10. In particular, there exist unique reals δt ,γt > 0 such that

δt + γt = t,

Φ(−2∆

3
−δt)+Φ(t)+Φ(

2∆

3
− γt) = Φ(−2∆

3
)+Φ(0)+Φ(

2∆

3
).

We now define g1,g2 : [0, ∆

3 ]→ [0, ∆

3 ] as

g1(t) = γt and g2(t) = δt .

Then it is clear that F(0,0,0) = F(t,g1(t),g2(t)) and g1(t)+g2(t) (by directly substituting into

the equations above). All that remains is to show that g1 and g2 are 1-Lipschitz.

Fix any 0≤ t1 < t2 ≤ ∆

3 , and let t2− t1 = ε . The key idea is to apply Lemma C.2.10 to

−2∆

3 −g2(t1)< t1 < 2∆

3 −g1(t1) and ε . To do so, we first check the conditions of the lemma.
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We have that

−2∆

3
−g2(t1)− ε ≥−2∆

3
− t1− ε =−2∆

3
− t2 ≥−∆,

and

t1 + ε = t2

≤ ∆

3

≤ 2∆

3
− t2

=
2∆

3
− t1− ε

≤ 2∆

3
−g1(t1)− ε.

Thus ε satisfies the necessary conditions for Lemma C.2.10. Since Φ is strictly convex,

by Lemma C.2.10, there exist unique δ ,γ > 0 with δ + γ = ε such that

Φ(−2∆

3
−g2(t1)−δ )+Φ(t1 + ε)+Φ(

2∆

3
−g1(t1)− γ)

= Φ(−2∆

3
−g2(t1))+Φ(t1)+Φ(

2∆

3
−g1(t1)).

However, by the definition of g1,g2, we see that both of these quantities are equal to F(0,0,0)q.

Moreover, again by the definition of g1,g2, we also have that g1(t2) and g2(t2) are the unique

real numbers in [0, ∆

3 that satisfy

Φ(−2∆

3
−g2(t2))+Φ(t2)+Φ(

2∆

3
+g1(t2)) = F(0,0,0)q.

Thus, it follows that g2(t2)= g2(t1)+δ and g1(t2)= g1(t1)+γ . However, t2−t1 = ε , and δ ,γ < ε

(since they sum to ε). Thus, we see that |g1(t2)−g1(t1)| ≤ |t2−t1| and |g2(t2)−g2(t1)| ≤ |t2−t1|.

Since t1 and t2 were arbitrary, it follows that g1 and g2 are both 1-Lipschitz, as desired.

Finally, since δ ,γ > 0, it follows that g2(t2) > g2(t1) and g1(t2) > g1(t1). Since t1, t2
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were arbitrary, it follows that g1,g2 are monotonically non-decreasing.

Case 2: q = 1

In this case, since ∆ < 1√
d

(Lemma C.2.7), we see that F(x,y,z) = 3√
d
+y+ z−x. Setting

g1(t) = g2(t) = t
2 suffices, and clearly satisfies the desired properties.

Definition C.2.13. Let ∆ be as defined in Definition C.2.8. We let g1,g2 : [0, ∆

3 ]→ [0, ∆

3 ] be

defined as any function satisfying the conditions of Corollary C.2.12.

Putting it all together: defining Π

We are now ready to define Π. For convenience, we assume d is a multiple of 3.

Definition C.2.14. Let ∆,g1, and g2 be as defined in Definitions C.2.8 and C.2.13. Then Π is

defined as the distribution of distributions Da where a is a random vector constructed as follows.

Let t1, t2, . . . td/3 be drawn i.i.d from the uniform distribution over [0, ∆

3 ]. Then for 1≤ i≤ d/3,

we let

• ai =
1
2 + ti.

• ai+d/3 =
1
2 +2∆

3 −g1(ti).

• ai+2d/3 =
1
2 −2∆

3 −g2(ti).

Together the variables a1,a2, . . . ,ad compose a. Thus a random distribution D ∼ Π can be

constructed by sampling a as above and setting D = Da.

We now show that for all Da ∼Π, λa (Definition C.2.3) is constant.

Lemma C.2.15. There exists a constant Λ such that for all Da ∼Π, λa = Λ.

Proof. Let Da ∼ Π be arbitrary. By Lemma C.2.12, for all 1 ≤ i ≤ d, g1(ti) + g2(ti) = ti.
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Substituting this, we see that

a =
1
d

d

∑
1

ai

=
1
d

d/3

∑
1
(
1
2
+ ti)+(

1
2
+

2∆

3
−g1(ti))+(

1
2
− 2∆

3
−g2(ti))

=
1
d

d/3

∑
1

3
2

=
1
2
.

Recall that λa =
r
R fq(a) = r

R
q
√

∑
d
1 | 1√

d
+a−ai|q. By substituting that a = 1

2 and express-

ing each ai in terms of ti, we see that

λa =
r
R

q

√√√√ d

∑
1
| 1√

d
+a−ai|q

=
r
R

q

√√√√d/3

∑
1

∣∣∣∣ 1√
d
− ti

∣∣∣∣q + ∣∣∣∣ 1√
d
+g1(ti)−

2∆

3

∣∣∣∣q + ∣∣∣∣ 1√
d
+g2(ti)+

2∆

3

∣∣∣∣q

=
r
R

q

√√√√d/3

∑
1

F(ti,g1(ti),g2(ti))q,

where F is defined as in Definition C.2.11. Next, by Corollary C.2.12, F(ti,g1(ti),g2(ti)) =

F(0,0,0) for all 1≤ i≤ d
3 . Thus, if we set Λ = r

R(
d
3 )

1/qF(0,0,0), we have

λa =
r
R

q

√√√√d/3

∑
1

F(ti,g1(ti),g2(ti))q

=
r
R

q

√√√√d/3

∑
1

F(0,0,0)q

=
r
R

q

√
d
3

F(0,0,0)q

=
r
R
(
d
3
)1/qF(0,0,0) = Λ,
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proving the claim.

Definition C.2.16. We define Λ = r
R(

d
3 )

1/qF(0,0,0), where F is defined as in Definition C.2.11.

Next, we compute upper and lower bounds on Λ, both of which will be useful for

subsequent lemmas.

Lemma C.2.17. 1
9 < Λ < 1

3 .

Proof. By definition, Λ= d
3

1/q
F(0,0,0). Substituting the definition of f , we see that F(0,0,0) =

q
√
| 1√

d
|q + | 1√

d
− 2∆

3 |q + |
1√
d
+ 2∆

3 |q, and consequently,

31/q| 1√
d
− 2∆

3
| ≤ F(0,0,0)≤ 31/q| 1√

d
+

2∆

3
|.

By definition, 2∆

3 < 1
2
√

d
. It follows that

r
R

d1/q

2
√

d
< Λ <

r
R

3d1/q

2
√

d
.

Finally, since r
R = 2

√
d

9d1/q , substituting this yields 1
9 < Λ < 1

3 , as desired.

Next, we show that for all Da ∈Π, the aspect ratio (Definition 3.2.9), ρ(Da), is bounded

by a constant.

Lemma C.2.18. For all Da ∈Π, we have ρ(Da)≤ 18
√

3.

Proof. We first bound the `2 margin, γ(Da) (Definition 3.2.8). Recall that the margin, γ(Da) is

described as the largest possible `2 distance from the support of Da to the decision boundary of a

linear classifier. Thus, we can lower bound γ(Da) by computing the distance from the support of

Da to Ha, the decision boundary of fwa,1 (Definition C.2.4).

By referring to Figure C.1 (in Section C.2.1), it becomes clear that the closest point

(under the `2 margin) from S− to Ha is the point vi +(ai−λa)u, for some value of i. Thus it

suffices to compute the `2 distance from this point to the plane Ha.
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Recall that by Lemma C.2.5, the point vi + aiu satisfies 〈wa,vi + aiu〉 = 1, and conse-

quently must lie on the hyperplane Ha. Let D denote the `2 distance from vi +(ai−λa)u to Ha.

Since wa is the normal vector to Ha, it follows that

D = 〈vi +aiu− (vi +(ai−λa)u),
wa

||wa||2
〉

=
〈λau,wa〉
||wa||2

(1)
=
〈Λu,wa〉
||wa||2

(2)
=

Λ
d√

d+da

||wa||2
(3)
=

Λ
d√

d+da√
∑

d
1

(√
d+da−dai

R(
√

d+da

)2

=
RΛ√

∑
d
1(

1√
d
+a−ai)2

(4)
=

RΛ

f2(a)
.

Here, (1) holds by Lemma C.2.15, (2) holds by Lemma C.2.5, (3) holds by Definition C.2.4, and

(4) holds by Definition C.2.1.

Next, observe that since Da ∼ Π, we must have a ∈ [1
2 −∆, 1

2 +∆]d . Thus it follows

that ||a− (1
2 ,

1
2 , . . . ,

1
2)||2 ≤ ∆

√
d. However, by applying Lemma C.2.7, we also see that f2 is

1
d2
√

d
-Lipschitz over [1

2 −∆, 1
2 +∆]d . Thus, it follows that

f2(a)≤ f2(
1
2
,
1
2
, . . . ,

1
2
)+∆

√
d

1
d2
√

d
≤ 2,

with the latter inequality holding from the definition of ∆.

Substituting this and applying Lemma C.2.17, we see that

γ(Da)≥
RΛ

2
≥ R

18
.
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Next, to bound the aspect ratio, ρ(Da), we must also bound the `2 diameter of Da. However, the

`s diameter of Da is R
√

3, since it is the distance from vi +u to v j for i 6= j. Thus, it follows that

ρ(Da) =
diam2(Da)

γ(Da)
≤ R
√

3
R/18

= 18
√

3,

as desired.

Note that a tighter analysis (and selection of ∆) can give a smaller bound for ρ(Da), but

the most important fact is that ρ(Da) = O(1).

C.2.2 Bounding the expected robust loss

In this section, we finally prove our lower bound, Theorem 3.3.2. This will require a few

important steps, which we have separated into the following subsections.

• In section C.2.2, we give a useful lower bound for the loss Lr( f ,Da) where f is an

arbitrary linear classifier.

• In section C.2.2, we give an explicit computation for the posterior distribution Π|S where

S∼Dn
a is the observed training sample.

• Finally, in section C.2.2, we present the proof of Theorem 3.3.2.

Bounding the loss Lr( f ,Da)

In this section, we find a lower bound on the loss Lr( f ,Da) where f is a linear classifier.

We begin by first restricting f to be in the set of classifiers

f ∈ { fwb,1 : b ∈ [0,1]d},

where wb is as defined in Definition C.2.4. These are precisely the classifiers that have a decision

boundary that passes through some point on every line segment in {[vi,vi +u] : 1≤ i≤ d}. We
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are able to only consider these classifiers since all other linear classifiers clearly have a very high

loss with respect to Da as they necessarily misclassify at least half the points on the line segment

[vi,vi +u] for some value of i.

We now find an initial lower bound on Lr( fwb,1,Da).

Lemma C.2.19. Fix any Da ∈Π, and let b ∈ [0,1]d be arbitrary. Let wb be the vector defined

as in Definition C.2.4, and λb =
r
R fq(b) where f is as defined in Definition C.2.1. Then

Lr( fwb,1,Da)≥
d(λb−λa)+∑

d
1 |ai−bi|

d−2dΛ
.

Proof. By Lemma C.2.6, fwb,1 precisely r-separates Db. This implies that for all 1≤ i≤ d,

fwb,1(x) =


1 x ∈ (vi +(bi +λb)u,vi +u]

−1 x ∈ [vi,vi +(bi−λb)u)

not robust x ∈ [vi +(bi−λb)u,vi +(bi +λb)u]

.

Without loss of generality, suppose that bi ≥ ai. The key observation is that for all 1≤ i≤ d, if

x ∈ [vi+(ai+λa)u,vi+(bi+λb)u], then fwb,1(x) =−1 for fwb,1 is not robust at x. In both cases,

we see that fwb,1 is either inaccurate or not robust for all points in [vi+(ai+λa)u,vi+(bi+λb)u].

This interval has `2 length at least (|ai−bi|+(λb−λa))||u||2. Note that in the case that

ai ≤ bi we can get an identical expression. Thus, combining this for all i, we see that fwb,1 is

either inaccurate or not robust for a total length of [d(λb−λa)+∑
d
1 |ai−bi|]||u||2. Dividing by
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the total length of the support of Da, we find that

Lr( fwb,1,Da)≥
[d(λb−λa)+∑

d
1 |ai−bi|]||u||2

∑
d
1 ||[vi,vi +(ai−λa)u)+(vi +(ai +λa)u,vi +u]||2

=
[d(λb−λa)+∑

d
1 |ai−bi|]||u||2

∑
d
1 ||u2||(1−2λa)

=
d(λb−λa)+∑

d
1 |ai−bi|

d(1−2λa)

=
d(λb−λa)+∑

d
1 |ai−bi|

d−2dΛ
,

with the last equality holding since by Lemma C.2.15, λa = Λ.

Lemma C.2.20. For all Da ∈Π and b ∈ [0,1]d , d(λa−λb)≤ 1
2 ∑

d
1 |ai−bi|.

Proof. We have two cases.

Case 1:

b ∈ [1
2 −∆, 1

2 +∆]d .

Observe that λb =
r
R fq(b) and λa =

r
R fq(a). By Lemma C.2.7, we see that fq is 1

d2
√

d
-

Lipschitz over the domain [1
2 −∆, 1

2 +∆]d . It follows that

λa−λb =
r
R
( fq(a)− fq(b))

≤ r
R
||a−b||2

1
d2
√

d

=
2
√

d
9d1/q

||a−b||2
1

d2
√

d

<
||a−b||1

2d
,

with the last inequality following since the `2 norm is smaller than the `1 norm. Rearranging this

gives the statement of the Lemma as desired.

Case 2:

b /∈ [1
2 −∆, 1

2 +∆]d .
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The main idea in this case will be to find b′ ∈ [1
2 −∆, 1

2 +∆]d such that λb ≥ λb′ and such

that ||b′−a||1 ≤ ||b−a||1. We will then apply Case 1 to get the desired result.

Without loss of generality, assume that b1 ≥ b2 ≥ ·· · ≥ bd , and that b1,b2, . . .bk >
1
2 +∆,

bk+1, . . . ,bl ∈ [1
2 −∆, 1

2 +∆], and bl+1, . . .bd < 1
2 −∆ for some values of k and l.

We will construct b′ in four steps. In each of these steps, we will change the values of bi

such that neither ||a−b||1 nor λb are increased. At each step, we let bi refer to its value at the

end of the previous step.

Finally, for reference, recall that

λb =
r
R

fq(b) =
r
R

q

√√√√ d

∑
1
| 1√

d
+b−bi|q.

Step 1:

We set

bi←



1
k ∑

k
j=1 b j 1≤ i≤ k

bi k+1≤ i≤ l

1
d−l ∑

d
j=l+1 b j l +1≤ i≤ d

.

Since a ∈ [1
2 −∆, 1

2 +∆]d , we see that these operations do not change ||a−b||1, as ∑
k
1 |bi−ai|=

∑
k
1 bi− ai and ∑

d
l+1 |bi− ai| = ∑

k
1 ai− bi. Also, observe that this operation preserves b, and

consequently since the function f (x) = | 1√
d
+b−x|q is convex, we see that by Jensen’s inequality

that λb is not increased by this operation.
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Step 2:

Let β = ∑
k
1(bi− 1

2 −∆)−∑
d
l+1(

1
2 −∆−bi). Then we set

bi←





1
2 +∆+ β

k 1≤ i≤ k

bi k+1≤ i≤ l

1
2 −∆ l +1≤ i≤ d

β ≥ 0



1
2 +∆ 1≤ i≤ k

bi k+1≤ i≤ l

1
2 −∆+ β

d−l l +1≤ i≤ d

β < 0

.

Observe that this operation cannot increase ||a−b||1, since it doesn’t increase |ai−bi|

for any value of i. Furthermore, this operation also does not change b, and a similar convexity

argument on the function f (x) = | 1√
d
+b− x|q can show that this does not increase λb.

Finally, if β = 0, we set b′= b, since we have reached a state such that b∈ [1
2−∆, 1

2 +∆]d .

Step 3a:

We run this step if β > 0. Let α =
∑

d
k+1(

1
2+∆−bi)

β
. We then set

bi←




1
2 +∆ 1≤ i≤ k

(1
2 +∆)(α−1

α
)+ bi

α
k+1≤ i≤ d

α ≥ 1


1
2 +∆+ β

k (1−α) 1≤ i≤ k

1
2 +∆ k+1≤ i≤ d

α < 1

.

In this step, we can similarly verify that ||a−b||1 does not increase (as |ai−bi| is strictly reduced

for 1≤ i≤ k by an exact amount to offset the possible increases in |ai−bi| for k+1≤ i≤ d).

We also see by the same convexity argument as usual that this operation reduces λb.
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Step 3b:

We run this step if β < 0. Let α =
∑

d
k+1(bi− 1

2+∆)

β
. We then set

bi←




(1

2 −∆)(α−1
α

)+ bi
α

1≤ i≤ l

1
2 −∆ k+1≤ i≤ d

α ≥ 1


1
2 −∆ 1≤ i≤ l

1
2 −∆+ β

d−l (1−α) l +1≤ i≤ d
α < 1

.

The justification for this step is analogous to 3a.

Step 4:

We only run this step if α < 1. Observe that if α ≥ 1, then both Step 3a and Step 3b

result with b ∈ [1
2 −∆, 1

2 +∆]d , which we set as b′. Observe that in this case, either bi ≥ ai for all

i, or bi ≤ ai for all i. Thus we simply set

bi← b.

This operation does not change ||a−b||1, and it also reduces λb (by a convexity argument).

Step 5:

Finally, for all 1≤ i≤ d∆, we set bi =
1
2 −∆ if b < 1

2 −∆ and otherwise set bi =
1
2 −∆

if b > 1
2 +∆. In both cases, λb is not changed, and ||a− b||1 is strictly reduced. In this step,

we finally set b′ = b. Note that we do not always reach this step, as it was possible in any

of the previous steps to reach some b ∈ [1
2 −∆, 1

2 +∆]d , at which point we would have simply

terminated.

Conclusion:

Through steps 1 through 5, we have found b′ ∈ [1
2 −∆, 1

2 +∆]d such that λb′ ≤ λb and

||a−b′||1 ≤ ||a−b||1. By applying Case 1 to b′, we see that d(λa−λb′) ≤ 1
2 ||a−b′||1. Thus,
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we have that
1
2
||a−b||1 ≥

1
2
||a−b′||1 ≥ d(λa−λb′)≥ d(λa−λb),

which implies the result by the transitive property.

From the previous two lemmas, we immediately have the following:

Corollary C.2.21. For all Da ∈Π and b ∈ [0,1]d ,

Lr( fwb,1,Da)≥
1

2d

d

∑
1
|ai−bi|.

Proof. We have that

Lr( fwb,1,Da)
(a)

≥ d(λb−λa)+∑
d
1 |ai−bi|

d−2dΛ

≥ ∑
d
1 |ai−bi|−d(λa−λb)+

d
(b)

≥ ∑
d
1 |ai−bi|− 1

2 ∑
d
1 |ai−bi|

d

=
1

2d

d

∑
1
|ai−bi|,

where (a) holds by Lemma C.2.19 and (b) holds by Lemma C.2.20.

Computing the posterior distribution, Π|S

Recall that our ultimate goal is to show that

ED∼Π[ES∼Dn[Lr(AS,D)]]≥Ω(
d
n
),
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where A denotes any learning algorithm returning a linear classifier. The main idea for showing

this is to “switch expectations” and realize that

ED∼Π[ES∼Dn [Lr(AS,D)]] = ES∼Σ[ED∼Π|S[Lr(AS,D)]],

where Π|S denotes the posterior distribution over Π after observing S. In this section, we fully

characterize the distribution Π|S, and prove several important properties about it.

Recall (Definition C.2.14) that Da ∼ Π is generated by first choosing t1, t2, . . . , td/3 ∼

U[0, ∆

3 ] i.i.d, and then letting a = (a1,a2, . . . ,ad) be a function of t = (t1, . . . , td/3). Thus, to

compute the posterior Π|S, it suffices to focus on the posterior distribution of t|S for any

1≤ i≤ d
3 . We begin by first defining the likelihood of observing S given that it is generated from

parameter t.

Definition C.2.22. Let S = {(x1,y1),(x2,y2), . . . ,(xn,yn)} be any set of n points in Rd×{±1},

and let t ∈ [0, ∆

3 ]
d/3 be a vector. Let a ∈ [1

2 −∆, 1
2 +∆]d be defined as in Definition C.2.14. That

is, let

• ai =
1
2 + ti.

• ai+d/3 =
1
2 +

2∆

3 −g1(ti).

• ai+2d/3 =
1
2 −

2∆

3 −g2(ti).

Then we define L(S|t) as the likelihood of observing the set S from Dn
a . In particular, for any

measurable region of points R⊆ (Rd×{±1})n, we have that

PS∼Dn
a
[S ∈ R] =

∫
x∈R

L(x|t)dx.

Lemma C.2.23. Let S⊂ Rd×{±1} be a set with n points. Then for all t ∈ [0, ∆

3 ]
d/3,

L(S|t) ∈
{

0,
(

1
(d−2Λ)||u||2

)n}
,
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where Λ is as defined in Definition C.2.16 and L(S|t) is as defined in Definition C.2.22.

Proof. Let Da be an arbitrary distribution in Π. Observe that Da is uniform over the set of

all points in its support. Thus for every point in its support, we have that the likelihood L(x|t)

satisfies L(x|t) = 1
(d−2Λ)||u||2 .

Taking the product of this over all points in S, we get the desired result. Note that if S

contains some point not in the support of Da, then the likelihood becomes 0, since the likelihood

of observing some point not in the support of Da is 0.

Definition C.2.24. For any dataset S, let PS denote the set of all “permissible” t, that is t ∈ [0, ∆

3 ]
d

such that L(S|t) 6= 0. Formally,

PS = {t : L(S|t)> 0}.

We now fully characterize PS when S is drawn from some D ∼Π.

Lemma C.2.25. Fix n > 0. For all D ∼ Π and S ∼ Dn, there exist intervals (possibly open,

closed, half open) IS
1 , I

S
2 , . . . , I

S
d/3 ⊆ [0, ∆

3 ] such that PS = ∏
d/3
1 IS

i .

Proof. Let S = {(x1,y1),(x2,y2), . . . ,(xn,yn)}. Since S∼Dn, we see that for 1≤ j ≤ n, x j must

satisfy x j ∈ [vi,vi +u] for some 1≤ j ≤ d. Using this, for 1≤ i≤ d let

s−i = argmax
{x j:x j∈[vi,vi+u],y j=−1}

||x j− vi||2,

and

s+i = argmax
{x j:x j∈[vi,vi+u],y j=+1}

||x j− (vi +u)||2.

s−i and s+i can be thought of as the points from S on segment [vi,vi +u] that are closest to each

other and labeled as − and + respectively. As a default, if no such points exist, we set s−i = vi

and s+i = vi +u.

Next, consider any t ∈ [0, ∆

3 ]
d/3, let a ∈ [1

2−∆, 1
2 +∆]d be defined as in Definition C.2.14.

That is, let
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• ai =
1
2 + ti.

• ai+d/3 =
1
2 +

2∆

3 −g1(ti).

• ai+2d/3 =
1
2 −

2∆

3 −g2(ti).

The key idea of this lemma is that t ∈ PS (i.e. L(S|t)> 0) if and only if for all 1≤ i≤ d,

[vi +(ai−Λ)u,vi +(ai +Λ)u]⊆ (s−i ,s
+
i ).

To see this, observe that if the claim above holds, then we must have that s−i ∈ [vi,vi +(ai−Λ)u)

and s+i ∈ (vi +(ai +Λ)u,vi + u], and it consequently follows that all points in S are elements

of the support of Da (Definition C.2.3), as all other points in S are “further” from the interval

[vi +(ai−Λ)u,vi +(ai +Λ)u] than the points s+i and s−i . Conversely, if L(S|t) > 0, we must

have that S⊆ supp(Da), which immediately translates to the statement above. Thus, it suffices

to find all t such that this condition holds.

To do this, observe that the interval [vi +(ai−Λ)u,vi +(ai +Λ)u] is a line segment of

length 2Λ||u||2 that is centered at the point vi+aiu. Thus, in order for this to be a sub-segment of

(s−i ,s
+
i ), we only need that ai satisfy vi +aiu ∈ (s−i +Λu,s−i −Λu). This condition is equivalent

to the condition that ai ∈ JS
i for some open interval JS

i ⊆ [0,1], where JS
i is only dependent on

s−i ,s
+
i and Λ (which is a constant). In summary, there exist interval JS

1 ,J
S
2 , . . . ,J

S
d such that t ∈ PS

if and only if ai ∈ JS
i for 1≤ i≤ d.

Finally, note that for 1≤ i≤ d/3, ai,ai+d/3,ai+2d/3 are all functions of ti, and moreover

these functions are 1-lipschitz, and monotonic. As a consequence, by taking the intersections of

the pre-images of these functions, we find that this condition holds if and only if ti ∈ IS
i where IS

i

is some interval that is a subset of [0, ∆

3 ]
d/3. This proves the claim.

Corollary C.2.26. For any S ∼ D where D ∼ Π, let IS
i be defined as in Lemma C.2.25 for

1≤ i≤ d/3. Then the posterior distribution t|S is equal to the uniform distribution over the set

∏1≤i≤d/3 IS
i , where ti is sampled from IS

i .
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Proof. First, recall that our prior on t is U([0, ∆

3 ]
d), where U denotes the uniform distribution. By

Lemma C.2.23, we see that for all t ∈ PS, L(S|t) =
(

1
(d−2Λ)||u||2

)n
, and for all other t, L(S|t) = 0.

Furthermore, by Lemma C.2.25, we see that PS = ∏
1≤i≤d/3
1 IS

i . Thus, applying Bayes rules gives

the desired result.

We conclude this section by lower bounding the expected length of the interval IS
i ,

denoted `(IS
i ).

Lemma C.2.27. For an interval (c,d) ⊂ R, we let its length, denoted `((c,d)) be defined as

`((c,d)) = d− c. Then for 1≤ k ≤ d/3, the expected length (taken over Da ∼Π and S ∼Dn
a )

of the interval IS
k is at least Ω(d

n ). That is,

EDa∼ΠES∼Dn
a
[`(IS

k )]]≥Ω(
d
n
).

Proof. Fix any Da∗ ∼ Π, and let t∗ denote the value of t used to generate a (as in Definition

C.2.14). We will show that ES∼Dn
a∗
[`(IS

k )]]≥Ω(d
n ), for all 1≤ k ≤ d/3. We begin by explicitly

computing the interval IS
k .

Fix 1≤ k ≤ d/3. Then tk∗ ∈ [0, ∆

3 ]. Assume that t∗k > 0; we will handle the case t∗k = 0

separately. Recall from the proof of Lemma C.2.25 that for 1≤ i≤ d, we defined

s−i = argmax
{x j:x j∈[vi,vi+u],y j=−1}

||x j− vi||2,

and

s+i = argmax
{x j:x j∈[vi,vi+u],y j=+1}

||x j− (vi +u)||2.

for 1≤ i≤ d.

Next let t ∈ [0, ∆

3 ]
d/3 be a vector, and let a ∈ [1

2 −∆, 1
2 +∆]d be defined as ak =

1
2 + tk,

ak+d/3 =
1
2 +

2∆

3 − g1(tk) and ak+2d/3 =
1
2 −

2∆

3 − g2(tk), for 1 ≤ k ≤ d/3. Note that g1,g2 are

the functions defined in Definition C.2.13.
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As we argued in the proof of Lemma C.2.25, it then follows that tk ∈ IS
k if and only if

[vi +(ai−Λ)u,vi +(ai +Λ)u]⊆ (s−i ,s
+
i ),

for i = k,k+d/3,k+2d/3. Finally, as we did in Lemma C.2.25, for each 1≤ i≤ d, we define

intervals JS
i ⊆ [1

2 −∆, 1
2 +∆] such that ai ∈ JS

i if and only if [vi +(ai−Λ)u,vi +(ai +Λ)u] ⊆

(s−i ,s
+
i ).

We now have the following three claims.

Claim 1:

Let α = min
(
||s−k −(vk+(a∗k−Λ)u)||2

||u||2 , t∗k
)

. If tk ∈ (t∗k −α, t∗k ], then

[vk +(ak−Λ)u,vk +(ak +Λ)u]⊆ (s−k ,s
+
k ).

Proof: First, observe that since s+k and s−k were sampled from Da∗ , it follows that

[vk +(a∗k−Λ)u,vk +(a∗k +Λ)u]⊆ (s−i ,s
+
i ).

Consider any tk ∈ [t∗k −α, t∗k ]. Then substituting the definitions of ak,a∗k imply that ak ∈ [a∗k−

α,a∗k ]. Because of this, it follows that

||(vk +(ak−Λ)u)− (vk +(a∗k−Λ)u)||2 = ||(ak−a∗k)u||2

< α||u||2

≤ ||s−k − (vk +(a∗k−Λ)u)||2,

which implies that vk +(ak−Λ)u ∈ (s−i ,vk +(a∗k −Λ)u]. Furthermore, the fact that ak ≤ a∗k

implies that vk +(ak +Λ)u ∈ (vk +(ak−Λ)u,vk +(a∗k +Λ)u].
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Together, these observations imply the desired result, as it follows that

[vk +(ak−Λ)u,vk +(ak +Λ)u]⊂ (s−k ,vk +(a∗k +Λ)u]⊂ (s−k ,s
+
k ).

�

Claim 2:

Let β = min
(
||s+k+d/3−(vk+d/3+(a∗k+d/3+Λ)u)||2

||u||2 ,g1(t∗k )
)

. If tk ∈ (g−1
1 (g1(t∗k )−β ), t∗k ], then

[vk+d/3 +(ak+d/3−Λ)u,vk +(ak+d/3 +Λ)u]⊆ (s−k+d/3,s
+
k+d/3).

Proof: First, we observe that β is well defined since g1 is a monotonic 1-Lipschitz

function, and consequently has an inverse. Next, we also see that 0 ≤ g1(t∗k )− g1(tk) ≤ β .

Substituting the definitions of a∗k ,ak, it follows that 0≤ ak−a∗k ≤ β (notice the order switch).

At this point, we can apply the same argument as in Claim 1 to get the desired result. �.

Claim 3:

Let τ = min
(
||s+k+2d/3−(vk+2d/3+(a∗k+2d/3+Λ)u)||2

||u||2 ,g2(t∗k )
)

. If tk ∈ (g−1
2 (g2(t∗k )− τ), t∗k ], then

[vk+2d/3 +(ak+2d/3−Λ)u,vk+2d/3 +(ak+2d/3 +Λ)u]⊆ (s−k+2d/3,s
+
k+2d/3).

Proof: Completely analogous to Claim 2. �.

Combining these claims, we see that

tk ∈ (t∗k −α, t∗k ]∩ (g−1
1 (g1(t∗k )−β ), t∗k ]∩ (g−1

2 (g2(t∗k )− τ), t∗k ] =⇒ tk ∈ IS
k .

Since these three intervals all have an endpoint in t∗k , it follows that there is an interval with
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length η that is a subset of IS
k , where

η = min(`((t∗k −α, t∗k ])), `((g
−1
1 (g1(t∗k )−β ), t∗k ]), `((g

−1
2 (g2(t∗k )− τ), t∗k ])).

However, by substituting that g1,g2 are 1-Lipschitz, we see that `((g−1
1 (g1(t∗k )−β ), t∗k ]) ≥ β

and `((g−1
2 (g2(t∗k )− τ), t∗k ]))≥ τ . Thus, it follows that

`(IS
k )≥ η ≥min(α,β ,τ).

Thus it suffices to show that ES∼Da∗ [min(α,β ,τ)]≥Ω(d
n ).

To do this, observe that

• α||u||2 is the distance from the closest point labeled − on the segment [vk,vk +u] to the

point vk +(a∗k−Λ)u

• β ||u||2 is the distance from the closest point labeled + on the segment [vk+d/3,vk+d/3 +u]

to the point vk+d/3 +(Λ+a∗k+d/3)u

• τ||u||2is the distance from the closest point labeled + on the segment [vk+2d/3,vk+2d/3+u]

to the point vk+2d/3 +(Λ+a∗k+2d/3)u.

Finally, it is not difficult to see that for sufficiently large n, with high probability each of

these distances will be Ω(d
n ). This is because with high probability there will be Θ( n

d ) points on

each of the respective line segments, and we are considering the closest point among them to

some reference point. Thus, it follows that with high probability ES∼Da∗ [min(α,β , tau)]≥Ω(d
n ),

as desired.

Putting it all together, the proof

We prove the following key lemma, which directly implies Theorem 3.3.2.
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Lemma C.2.28. Let M be any learning algorithm that outputs a linear classifier. For any

training sample of points S = {(x1,y1),(x2,y2), . . . ,(xn,yn)}, we let MS denote the classifier

learned by M from S∼D . Then it follows that

ED∼ΠES∼Dn[Lr(MS,D)]]≥Ω(
d
n
).

Proof. Let Fn denote the distribution over (Rd×{±1})n defined as the composition D ∼ Π

and S ∼ Dn. That is, S ∼Fn follows the same distribution as D ∼ Π,S ∼ Dn. Then we can

write the expectation above as

ED∼ΠES∼Dn[Lr(AS,D)]] = ES∼FnED∼(Π|S)[Lr(MS,D)]],

where Π|S denotes the posterior distribution of D conditioned on observing S. First, fix any such

S. We will bound ED∼(Π|S)[Lr(MS,D)]. First, by reparametrizing in terms of t ∈ [0, ∆

3 ]
d/3 and

applying Corollary C.2.26, we have that

ED∼(Π|S)[Lr(MS,D)] = Et1∼U(IS
1 )
[. . . [Etn∼U(Id/3)

[Lr(MS,Da)] . . . ],

where IS
1 , I

S
2 , . . . , I

S
d/3 ⊂ [0, ∆

3 ] are the intervals defined in Lemma C.2.25, and a is defined as in

Definition C.2.14.

Next, let b ∈ [0,1]d be such that MS = fwb,1, where wb is defined as in Definition C.2.4.

Then it follows from Corollary C.2.21 that

Lr(MS,Da)]≥
1

20d

d

∑
1
|ai−bi|

≥ 1
20d

d/3

∑
1
|1
2
+ ti−bi|

with the last inequality coming from substituting the definition of ai and (and ignoring ai for
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i > d/3). We now take the expectation of this inequality over t1, t2, . . . , td/3. To do so, observe

that by simple algebra, Eti∼U(IS
i )
|12 + ti−bi| ≥

`(IS
i )

4 . Substituting this, we see that

Et1∼U(IS
1 )
[. . . [Etn∼U(IS

d/3)
[Lr(MS,Da)] . . . ]≥

1
80d

d/3

∑
i=1

`(IS
i ).

Finally, by taking expectations over S∼Fn, we see that

ED∼ΠES∼Dn[Lr(AS,D)]] = ES∼FnED∼(Π|S)[Lr(MS,D)]]

≥ ES∼Fn

1
80d

d/3

∑
i=1

`(IS
i )

=
1

80d

d/3

∑
1
ES∼F [`(IS

i )]

=
1

80d

d/3

∑
1
ED∼ΠES∼Dn[`(IS

i )]

≥ 1
80d

d/3

∑
1

Ω(
d
n
) = Ω(

d
n
),

where the last step follows from Lemma C.2.27.

Finally, we can prove Theorem 3.3.2.

Proof. (Theorem 3.3.2). First, by Lemmas C.2.6 and C.2.18, we see that Π ⊆ Fr,ρ (pro-

vided ρ > 10). Next, by Lemma C.2.28, for any n there must exists some D ∼ Π such

that ES∼Dn[Lr(MS,D)] ≥ Ω(d
n ). Thus selecting this distribution suffices. This concludes

the proof.

C.3 Proofs for Algorithm 2

This section is divided into 2 parts. In section C.3.1, we show that for the case in which

our data distribution D is linearly r-separated by some hyperplane through the origin, the desired

error bound holds. That is, we prove Theorem 3.4.3 under this assumption.
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Next, in section C.3.2, we show how to generalize Algorithm 2 to arbitrary linearly

r-separated distributions, and subsequently prove Theorem 3.4.3 in the general case.

C.3.1 Origin Case

We begin by precisely stating the conditions required in the “origin” case. We assume the

following properties hold for our data distribution D . We let S+r and S−r be defined as in section

3.4.

1. There exists R > 0 such that for all x ∈ S+r ∪S−r , ||x||2 ≤ R.

2. There exists a unit vector u ∈ Rd and γr > 0 such that

• Lr( fu,0,D) = 0, where fu,0 denotes the linear classifier with decision boundary

〈u,x〉= 0.

• S+r ∪ S−r has distance at least γr from the decision boundary of fw. That is, ||S+r ∪

S−r −Hu,0||2 ≥ γr.

3. By the previous conditions, it follows that 〈u,yx′〉 ≥ γr for all (x,y)∼D , and x′ ∈ Bp(x,r).

This is because u is a unit vector.

Next, before analyzing Algorithm 2, we will first give a slight modification of the

algorithm that lends itself to better analysis. The only difference is that in this new algorithm,

we first randomly sample k ∼ {1,2, . . . ,n}, and then only train on the first r data-points of our

182



training sample.
Algorithm 8: Modified-Adversarial-Perceptron

1 Input: S = {(x1,y1), . . . ,(xn,yn)} ∼Dn,

2 w← 0

3 k ∼ U({0,1,2, . . . ,n})

4 for i = 1 . . .k do

5 z = argmin||z−xi||p≤r yi〈w,z〉 if 〈w,yiz〉 ≤ 0 then

6 w← w+ yiz

7 end if

8 end for

9 return fw,0

We will show that Algorithm 8 satisfies the guarantees of Theorem C.3.2. We begin with

the following, key lemma.

Lemma C.3.1. Under the assumptions above about D , Algorithm 8 makes at most R2

γ2
r

updates

to w.

Proof. Let wt denote our weight vector after we make t updates. Observe that wt = wt−1+ytxt +

z′ where (xt ,yt) denotes the point we made a mistake on, and z′ = argmin|z|p≤r〈w,z〉. Letting

x′t = xt + ytz′, we see that wt = wt−1 + ytx′t . Now the key observation is that (x′t ,yt) ∈ S+r ∪S−r ,

and as a result, it follows that 〈u,ytx′t〉 ≥ γr. Using this, we see that

〈u,wt〉= 〈u,wt−1 + ytx′t〉

= 〈u,wt−1〉+ 〈u,ytx′t〉

≥ 〈u,wt−1〉+ γr.

Thus, by a simple proof by induction, we see that 〈wt ,u〉 ≥ tγr.

Next, observe that we must have 〈wt−1,ytx′t〉 ≤ 0. This is because wt−1 must missclassify

(x′t ,yt) (thus failing to be astute at (xt ,yt)) in order for it to be updated. Substituting this, we see
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that

||wt ||2 =
√
〈wt ,wt〉

=
√
〈wt−1 + x′tyt ,wt−1 + x′ty〉

=
√
〈wt−1,wt−1〉+2〈wt−1,x′tyt〉+ 〈x′t ,x′t〉

≤
√
||wt−1||22 +0+R2,

with the last inequality holding since |x′t |2 ≤ R. Thus, by a simple proof by induction, we see

that ||wt ||2 ≤ R
√

t.

Finally, since u is a unit vector, it follows that ||wt ||2 ≥ 〈wt ,u. Substituting our inequal-

ities, we find that R
√

t ≥ γrt which implies that t ≤ R2

γ2
r

. Since t is the number of mistakes we

make, the result follows.

Lemma C.3.2. Let D be a distribution with the assumptions above. For any S ∼ Dn, let fS

denote the classifier learned by Algorithm 8. Then

ES∼DnLr( fS,D)≤ R2

γ2
r (n+1)

.

This Theorem directly follows from the classic online to offline result (Theorem 3 of

[44]). For completeness, we include a proof in our context.

Proof. Fix any n and consider running Algorithm 8 on S ∼ Dn. Let Lt denote the expected

robust loss of our classifier conditioning on k = t, and let L∗ denote the expected overall loss of

our classifier. It follows that

ES∼DnL∗ =
1

n+1

n

∑
t=0

ES∼Dn[L∗|k = t] =
1

n+1

n

∑
t=0

ES∼Dn[Lt ].

Next, let T ∼Dn+1 be a separate i.i.d drawn sample, and suppose we run the adversarial

perceptron algorithm on the entirety of T (i.e. rung Algorithm 8 on T by setting k = n+1). For
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1≤ t ≤ n+1, let Xt be the indicator variable for whether the tth point in T requires an update on

w (i.e. the classifier is not astute at w). There are two important observations to make.

First, we have that ET∼Dn+1[Xt ] =ES∼Dn[Lt−1]. This is because Xt is an indicator variable

for a classifier trained on precisely t−1 i.i.d training examples lacking astuteness for a randomly

drawn point from D . Second, we have that ∑
n+1
t=1 Xt ≤ R2

γ2
r

. This is because each ∑Xt is precisely

the number of updates that perceptron makes on T , which is bounded by Lemma C.3.1. By

combining these two observations, we see that

ES∼Dn[L∗] =
1

n+1

n

∑
t=0

ES∼Dn[Lt ]

=
1

n+1

n

∑
t=0

ET∼Dn+1 [Xt+1]

=
1

n+1
ET∼Dn+1[

n+1

∑
t=1

Xt ]

≤ R2

γ2
r (n+1)

,

as desired.

C.3.2 General Case

In general case, we no longer assume that the optimal classifier fu,b passes through the

origin. To account for this, we will need to first adapt our algorithm. The basic idea is to simply

append a 1 to the vectors x and increase the dimension d by 1. We are then left with solving a

d +1 dimensional problem in which the data is once-again separated by a hyperplane passing

through the origin.

We begin with two useful sets of notation.

Definition C.3.3. We use the following notation:

• For any x∈Rd and R∈R, we let x|R∈Rd+1 denote the d+1 dimensional vector obtained

by appending the value R to x.
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• For w ∈ Rd+1, let ||w||∗q denote the `q norm of the first d coordinates of w.

• For x ∈ Rd+1, let B∗p(x,r) denote all z ∈ Rd+1 such that ||z− x||p ≤ r and such that z and

x both share the same last coordinate.

• For S = {(x1,y1), . . . ,(xn,yn)} ⊂ Rd+1×{±1}, let RS denote maxi 6= j ||xi− x j||2.

We now propose the following modified version of Algorithm 2, that is capable of

handling any dataset, including ones that aren’t separated by a hyperplane through the origin.
Algorithm 9: General-Adversarial-Perceptron

1 Input: S = {(x1,y1), . . . ,(xn,yn)} ∼Dn,

2 x′i← xi− x1.

3 RS = diam2(S)

4 w← 0 ∈ Rd+1

5 Randomly permute S

6 Randomly choose k ∈ {1,2,3, . . . ,n}.

7 for t = 1 . . .k do

8 if 〈w,yt(xt |RS)〉 ≤ r||w||∗q then

9 z′ = argmin|z|p≤r〈w,z|0〉

10 w← w+ yt(xt |RS)+ z′|0

11 end if

12 end for

13 w∗← first d coordinates of w

14 b← the last element of w

15 Return fw∗,〈w∗,x1〉−bRS

The basic idea of the algorithm is to first translate S so that one point is the origin, and

then append RS to every vector in S so that each vector is now d +1 dimensional. After doing

this, we apply Algorithm 2 as before with one important difference: for our adversarial attacks,

we make sure to not change the last coordinate.
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We now show that this algorithm has a similar performance to our old algorithm. We

first prove a helpful lemma.

Lemma C.3.4. Let D be any linearly r-separated distribution, and let S∼Dn such that S has

positively and negatively labeled examples. Let x′i = xi− x1 for 1≤ i≤ n. Then the following

hold.

• There exists a unit vector u ∈ Rd+1 such that for all (xi,yi) ∈ S, minz∈B∗p(x′i)
〈u,yi(z|RS)〉 ≥

γr(D)√
2
.

• For all (xi,yi) ∈ S, ||x′i|RS||2 ≤
√

2diam2(D).

Proof. Without loss of generality, we will assume x1 = 0 so that we can safely ignore the

differences between x′i and xi. Since D is r-separated, there exist w,b (with w a unit vector) such

that

〈w,zy〉 ≥ by+ γr(D),

for all (x,y)∼D and z ∈ Bp(x,r). Furthermore, since x1 = 0, it follows that ||x||2 ≤ diam2(D)

for all (x,y)∼D . This immediately implies that ||xi|RS||2≤
√

diam2(D)2 +R2
S ≤
√

2diam2(D),

yielding the second part of the lemma.

For the first part, observe that we can rearrange the equation above, we see that

〈w|− b
RS

,zy|RS〉 ≥ γr(D).

The key observation is that the first equation implies that b ≤ RS. This is because S contains

positively and negatively labeled examples, and consequently 〈w,xi〉 ≥ b+ γr(D)> b for some

xi such that |xi|= RS. Thus, it follows that the unit vector u =
w|−b

RS√
1+b2/R2

S
has the desired property,

by observing that
√

1+b2/R2
S ≤
√

2.

Lemma C.3.4 allows us to analyze the performance of Algorithm 9. The basic idea is

that our performance on the transformed data in Rd+1 is isomorphic to its performance on the
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data in Rd . As a consequence, we can apply the same argument as in Theorem C.3.2 to get a

bound on the error estimate. However, this bound must be given in terms of the diameter and

robust margin of the transformed data: quantities that have been bounded in Lemma C.3.4. Thus,

putting this all together, Theorem 3.4.3 follows.

C.4 Details for Kernel Algorithm

Next, we find analogs of linear r-separability and the robust margin when considering

kernels. First, we define an embedding function.

Definition C.4.1. Let K : Rd ×Rd → R+ be a kernel similarity function. Then there exists a

Hilbert space H and map φ : Rd → H such that for all x1,x2 ∈ Rd, we have

K(x1,x2) = 〈φ(x1),φ(x2)〉.

We call φ the embedding function and H the embedding space.

The key idea of this section is that Kenrel classifiers correspond to linear classifiers in

embedded space. This is the essence of the “kernel trick.” Formally, we have the following,

well-known theorem.

Theorem C.4.2. Let T = {(x1,y1), . . . ,(xm,ym)} ⊂ Rd×{±1} be a set of labeled points. Let

K : Rd×Rd → R+ be a kernel similarity function, and α ∈ Rm be a vector of m real numbers.

Then for all x ∈ Rd , we have that

m

∑
i=1

αiyiK(xi,x) =
〈 m

∑
i=1

αiyiφ(xi),φ(x)
〉
.

Because of this, if we let w = ∑
m
i=1 αiyiφ(xi), then the kernel classifier f k

T,α satisfies f k
T,α(x) =

fw,0(φ(x)), where the latter classifier is the linear classifier in H with weight vector w.
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The main idea behind Algorithm 3, is that it corresponds to running Algorithm 2 inside

the embedded space of the kernel K. In particular, the kernel-perceptron update step precisely

corresponds to the dual-form of the perceptron-update step inside embedded space. It follows

from Theorem C.4.2 that the following algorithm is identical to Algorithm 3.
Algorithm 10: Adversarial-Kernel-Perceptron

1 Input: S = {(x1,y1), . . . ,(xn,yn)} ∼Dn, Similarity function, K,

2 w← 0

3 for i = 1 . . .n do

4 z = argmin||z−x||p≤r yi〈w,φ(z)〉

5 if 〈yiw,φ(z)〉 ≤ 0 then

6 w = w+ yiφ(z)

7 end if

8 end for

9 return fw,0 ◦φ

In particular, by comparing Algorithms 3 and 10, we have by Theorem C.4.2 that for all

time steps t,

w = ∑
(z,y)∈T

yφ(z).

Therefore, to analyze the performance of Algorithm 3, it suffices to analyze Algorithm 10.

However, we already have built to the tools for doing this: all of the results from Section C.3.1

apply to Algorithm 10 since the only difference is replacing Rd with H, the embedding space of

K.

We now proceed by giving the corresponding assumptions on D needed for Theorem

3.4.5. We begin by first defining (K,r)-separability and K-robust margin, γr,K , the Kernel analogs

of linear r-separability (Definition 3.2.12) and the robust margin (Definition 3.4.1).

Definition C.4.3. For any r > 0, a distribution D over Rd×{±1} is (K,r)-separable if there

exists a kernel classifier f K
S,α such that Lr( f K

S,α ,D) = 0.
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To define the K-robust margin, we will once again need the sets S+r and S−r defined in

equation 3.1 (top right of page 7). Recall that these sets denote the positively and negatively

labeled elements from supp(D) including all adversarial perturbations of those points.

Definition C.4.4. Let D be a (K,r)-separable distribution over Rd ×{±1}. Then D has K-

robust margin γr if γr is the largest real number such that there exists a kernel classifier f K
T,α ,

such that the following conditions hold.

1. Lr( f K
T,α ,D) = 0.

2. Let φ ,H be the embedding function/space of K, let w = ∑(z,y)∈T yφ(z), and let Hw = {z ∈

H,〈z,w〉= 0} be the decision boundary in H of f K
T,α . Then for all x ∈ S+r ∪S−r , φ(x) has

`2 distance at least γK
r from Hw inside H. That is,

inf
x∈S+r ∪S−r

inf
z∈Hw

√
〈φ(x)− z,φ(x)− z〉= γ

K
r .

We now state the main theorem giving the performance of Algorithm 3.

Theorem C.4.5. Let D be a distribution over Rd ×{±1} such that the following conditions

hold.

1. There exists R > 0 such that for all x ∈ S+r ∪S−r , 〈φ(x),φ(x)〉 ≤ R2.

2. D is K,r-separable, and has K-robust margin γK
r > 0.

Then for any S∼ Dn, if f k
T,α denotes the classifier learned by Algorithm 3, then

ES∼Dn[Lr( f k
T,α ,D)] = O

(
(γK

r )
2

R2(n+1)

)
.

Proof. The key idea is to observe that Lemmas C.3.1 and C.3.2 both directly translate from

Algorithm 9 to Algorithm 10. In particular, neither proof used the dimension, d, of Rd , and
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consequently would equally apply to even an infinite dimensional Hilbet Space, H. Thus, the

proof is completely analogous to the proof of Theorem C.3.2.
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Appendix D

Appendix for Chapter 4

D.1 Details for the proof of Theorem 4.4.2

Proof. We want to show that for any m ∈ N, any learner on m samples must fail with constant

probability. Toward this end, set M =
(3m

m

)
, and let Z(M)

1 ,Z(M)
2 , . . . ,Z(M)

M be subsets of Rd as

described by Lemma 4.4.3 (we will drop the superscript in what follows). Let M denote the set

of all subsets of {1, . . . ,3m} with exactly m elements. Associate with each Zi a unique element

of M , thus allowing us to rename our subsets as {ZT : T ∈M }. We will now construct a set of

robustness regions U from these subsets. For 1≤ i≤ 3m, define

Uxi = ∪T :i∈T ZT ,

where xi is an arbitrary point inside Uxi . Note this is well-defined since the Z(M) are mutually

disjoint.

By Lemma 4.4.3, it follows that if all xi are given a label of −1, then any classifier

h ∈HW satisfies that h(z) = 1 for some subset T and some z ∈ ZT . However, this will imply

that h lacks robustness on all x ∈ {xi : i ∈ T}, meaning that there are at least m points among

{x1, . . . ,x3m} where h has robust loss 1. Furthermore, the second part of Lemma 4.4.3 implies

that for any T ∈M , there exists a classifier hT for which hS is −1 over all ZT ′ for T ′ 6= T . This

implies that hT is robust at all xi except for xi with i ∈ S.
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With these observations, we are now prepared to show that for any learner L, there exists

a distribution D for which L has large expected robust loss. To do this, we use a standard lower

bound technique found in [64] that was adapted to the robust setting in [11].

The idea will be to pick D to be the uniform distribution over a random subset of 2m

points in {x1, . . . ,x3m}. We will then argue that because L only has access to m points from D, it

won’t be able to distinguish which subset D corresponds to, and this will lead to a large expected

loss.

To this end, for any T ∈M , let DT be the data distribution over Rd ×{±1} where x

is chosen at uniform from {xi : i /∈ T} and y is always −1. We may assume without loss of

generality that our learning algorithm, L, always outputs a classifier among the set {hT : T ∈M }.

This is because Lemma 4.4.3 implies that any classifier in h ∈HW has robust loss that is at least

as bad some hT (namely, if the decision boundary of h crosses ZT ).

Next, let T,T ′ ∈M be arbitrary. By definition, hT lacks robustness on all xi with i ∈ T ,

and is perfectly accurate and robust at all other points. It follows that among the 2m points in

the support of DT ′ , there are m−|T ∩T ′| where hT lacks robustness, implying the the loss of

classifier hT with respect to distribution DT ′ is 1
2 −

|T∩T ′|
2m . Note that this implies that hT has 0

robust loss over DT (thus meeting the first stipulation of Theorem 4.4.2).

Finally, we bound the expected loss of the learner L with respect to a uniformly random

choice of DT . Let M also denote the uniform distribution over itself, and let U denote the

uniform distribution over {1,2,3, . . . ,3m}. Taking expectations over T ∼M and S∼ Dm
T , and

letting hL(S) denote the classifier learned by L, we have that

ET∼MES∼Dm
T

[
`U(hL(S),DT )

]
= ES∼U mET∼(M |S)

[
`U(hL(S),DT )

]
= ES∼U mET∼{T ′:T ′∈M ,S∩T ′= /0}

[
1
2
− |T ∩L(S)|

2m

]
.

To bound the inner expectation, observe that since |S|= m, T ′ has a conditional distribution that

is an arbitrary (at uniform) subset of at least 2m indices. Since L(S) is fixed, it follows that the
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probability that any element in L(S) is an element of T ′ is at most 1
2 , meaning that the expected

value of |T ∩L(S)| is at most |L(S)|2 = m
2 . Substituting this, we have that

ET∼MES∼Dm
T

[
`U(hL(S),DT )

]
≥ ES∼U mET∼{T ′:T ′∈M ,S∩T ′= /0}

[
1
2
− m

4m

]
=

1
4
.

By Markov’s inequality, any random variable between 0 and 1 with expectation 1
4 is strictly

larger than 1
8 with probability at least 1

7 . Since the loss above is bounded between 0 and 1, it

follows that PrT∼M PrS∼DT [`U(hL(S),D)> 1
8 ]≥

1
7 . Thus, for some D = DT , the desired claim

holds, finish the proof.

D.2 Sample Oracle Lower Bounds

-v v-v’

h1h2

D/2 D/2

γγ

2γ2γ

v’
2.5γ2.5γ

γγ

Figure D.1. Illustration for the sampling oracle lower bound in Proposition 4.5.3 in R2.

We now show a lower bound on the number of oracle calls required for tolerant learning

in Ashtiani et al. [62]’s sample oracle model. We first recall the model itself for completeness,

focusing on the case of (Rd, `2) endowed with the standard Lebesgue measure for simplicity.

Definition D.2.1 (Sampling Oracle [62]). Let U : Rd → P(Rd) be any perturbation function

such that U(x) has finite Lebesgue measure for all x ∈ Rd . The sampling oracle OU inputs

any x ∈ Rd , and outputs a sample y from the induced distribution on U(x) under the Lebesgue

measure.
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We prove that tolerant learning requires exponentially many calls to the sampling oracle.

Proposition 4.5.3. For any D > 10γ > 0, there exists a hypothesis class H and a set of

robustness regions, U such that the following holds. There exist constants ε and δ such that for

any n > 0, any learner L on n samples that achieves

`U(L(S),D)≤ min
h∈H

`Uγ (h,D)+ ε

with probability at least 1−δ must make at least Ω

((
D
γ

)d
)

calls to the sampling oracle for

some valid data distribution D ,

Proof of Proposition 4.5.3. Appealing to Yao’s Minimax Principle, it is enough to find a class

H and strategy for the adversary (over valid choices of perturbation sets and data distributions)

such that any deterministic learner using at most O((D
γ
)d) oracle calls incurs at least constant

error (ε) over the optimum in H with constant probability (δ ).

With this in mind, fix D0 = D− 9γ , let r = 4γ , and let e1 denote the first canoni-

cal basis vector in Rd . Our (marginal) data distribution will consist of two points in Rd{
(D0

2 +4γ)e1,−(D0
2 +4γ)e1

}
. For the ease of notation, we denote v := (D0

2 + 4γ)e1. Note,

||v− (−v)||2 = D0 + 2r. We now define the underlying hypothesis class H which consists

of two linear classifiers H := {h1,h2} such that h1 = sgn(〈e1, ·〉) and h2 = (〈e1, ·〉−D0−4γ).

Note that h1 is a perpendicular bisector of the line segment joining v and −v, and h2 is parallel

to h1 but biased to the left of v.

Finally, we construct two perturbation sets with bounded diameter U and V . Fix v′= 2γe1.

We define balls of radius r > 0 for any given x ∈ Rd as B2(x,r) :=
{

x′ ∈ Rd : ||x′− x||2 ≤ r
}

.

First, we define a perturbation U and its γ-perturbed region U γ as follows:

U := {Uv,U−v}where for any x ∈ {v,−v} ,Ux = B2

(
x,

D0

2

)
,

U γ :=
{

U γ
v ,U

γ

−v
}

where for any x ∈ {v,−v} ,U γ
x = B2

(
x,

D0

2
+ γ

)
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Similarly, we define another perturbation set V and its γ-perturbed region V γ :

V := {Vv,V−v}where for any x ∈ {v,−v} ,Vx =Ux∪B2

(
x′,

5γ

2

)
,

V γ :=
{

V γ
v ,V

γ

−v
}

where for any x ∈ {v,−v} ,V γ
x =U γ

x ∪B2

(
x′,

7γ

2

)

where x′ = v′ or −v′ if x = v or −v respectively. We assume that the perturbation set for

Rd \ {v,−v} is null for simplicity. Observe that
⋂

x′∈{v,−v}
Ux′ = /0 and so is the intersection of

perturbations in U γ . But, we note that
⋂

x′∈{v,−v}
Vx′ 6= /0. This entire construction is illustrated in

Figure D.1.

We are now ready to describe the adversary’s strategy, who chooses one of U or V

independently with probability 1/2, and employs a single fixed choice of data distribution

D where Pr[Y = −1|− v] = Pr[Y = 1|v] = 1, and the marginal distribution is uniform over v

and −v. Note that if the perturbation set is U , then h1 is optimal as `U (h1,D) = 0 whereas

`U (h2,D) = 1/2. On the other hand if V is chosen then h2 is optimal as `V (h2,D) = 1
2 and

`V (h1,D) = 1. The idea is to show that the learner cannot distinguish between U and V with

high probability, and thus cannot choose the right hypothesis. We note that since the data

distribution is fixed and known to the learner, we only need to consider randomness over the

sample oracle—labeled samples have no effect on the bound.

More formally, we split our analysis into two cases based on whether or not the learner

draws an (oracle) sample in V γ \U γ . First, note that conditioned on the fact that the learner

draws no such sample, by construction the posterior probability of U is strictly higher than that

of V . This means the learner’s expected excess error is minimized by always outputting h1 on

such samples. On the other hand, if the learner observes a sample in V γ \U γ , they can always

achieve optimal error by outputting h2.

Since the above learning rule minimizes the learner’s expected excess error, it is enough
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to bound the expected error of this rule:

EZ,S∼OZ [OPTZ− `Z(A (S),D)]≥ 1
2

Pr[S⊂U γ ∧Z =V ]

=
1
2

Pr[Z =V ]Pr[S⊂U γ |Z =V ]

=
1
4

Pr[S⊂U γ |Z =V ]

The key observation is then simply to notice that Pr[S⊂U γ |Z =V ] is constant whenever

the learner draws at most O((D
γ
)d) oracle samples. This follows from the fact that under the

induced distribution PV γ on V :

PV γ (V γ \U γ) =
µ(V γ \U γ)

µ(V γ)
≤

µ(B2(v′,
7γ

2 ))

µ(U γ
v )+µ(B2(v′,

7γ

2 ))
≤

(7
2γ)d

Dd
0

where µ is the standard Lebesgue measure. Similarly we then have

PV γ (U γ)≥ 1−
(7

2γ)d

Dd
0

and finally that

Pr[S⊂U γ |Z =V ]≥

(
1−

(7
2γ)d

Dd
0

)|S|

which is at least some constant when |S| ≤ c(D0
γ
)d for some sufficiently small absolute constant

c < 0. Since D0 = D−9γ , there exists c′ such that this holds when |S| ≤ c′(D
γ
)d which implies

the proposition.

We note that in Ashtiani et al. [62], the sampling oracle is defined more generally for any

doubling-measure µ , that is any measure for which there exists some “doubling-constant” C > 0
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such that for all x ∈ Rd and r ∈ R+:

0 < µ(B(x,2r))≤Cµ(B(x,r))< ∞.

In this more general setting, one can prove a lower bound that scales with the doubling-constant

(typically exponential in the associated doubling-dimension of the metric space) simply by

appropriately increasing the concentration of measure on U γ .

D.3 Robust VC for k points

In this section, we prove that the size-k perturbation sets only cost a log(k) factor over

the VC dimension of the original class. To formalize this, we first recall a few basic definitions

standard to the (adversarially robust) learning literature.

Definition D.3.1 (Robust Loss Class). Given a hypothesis h : X → {0,1} and perturbation

function U : X → P(X ), let h`U : X ×{0,1} be the function over labeled samples measuring

the robust loss of h:

h`U(x,y) =


0 if ∀x′ ∈U(x) : h(x′) = y

1 else.

The robust loss class of (X ,H ) is the hypothesis class over X ×{0,1} given by:

L U
H := {h`U : h ∈H }.

We are interested in analyzing a standard complexity measure of the robust loss class

called VC dimension

Definition D.3.2 (VC Dimension). The VC dimension of a hypothesis class (X ,H ) is the

size of largest subset S ⊆X such that H obtains all 2|S| labelings on S. We say such a set is

shattered by H .
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We show the VC dimension of the robust loss class incurs at most log(k) blow-up over

the original class.

Proposition D.3.3 (Overhead of Robust VC). Let (X ,H ) be a hypothesis class of VC-

dimension d and U : X → P(X ) any perturbation function with support bounded by some

k ∈ N. Then the VC dimension of L U
H is at most O(d log(dk)).

This result was also independently communicated to us by Omar Montasser. The proof

of Proposition D.3.3 relies on the classical Sauer-Shelah-Perles lemma, which we recall here for

completeness.

Lemma D.3.4 (Sauer-Shelah-Perles [82, 83]). Let (X ,H ) be a hypothesis class of VC-

dimension d. Then for any finite subset S⊆X , H obtains at most O(|S|d) distinct labelings on

S.

Proposition D.3.3 simply follows from using Sauer-Shelah-Perles to bound the total

number of permissible patterns across perturbation sets of a sample in the loss space.

Proof of Proposition D.3.3. Let m∈N and assume there exists a sample S=(x1,y1), . . . ,(xm,ym)

that is shattered by L U
H . We will show m≤O(d log(kd)). With this in mind, let T =

⋃m
i=1U(xi)

denote the set of at most km points corresponding to the robustness regions of our sample. The

key observation is the following (essentially trivial) claim:

Claim 1. Any two g`U ,h
`
U ∈L U

H that give distinct labelings of S correspond to g,h ∈H with

distinct labelings of T .

By robust shattering, there exist 2m distinct labelings of S by L U
H , so the above claim

implies H must have 2m distinct labelings of T . However the latter has at most O((km)d)

labelings by VC dimension, so

2m ≤ O((km)d)⇒ m≤ O(d log(dk))
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by standard manipulations. Finally, we note the claim is immediate from definition, since the

behavior of a function h`U ∈L U
H on S depends only on the labels of its corresponding hypothesis

h ∈H on T by definition.

D.4 Proof of Theorem 4.6.6

We begin by defining vball , which is the adversarial VC dimension when the robustness

regions are all balls of a fixed radius. We start by precisely defining these robustness regions.

Definition D.4.1. Let U r be the set of robustness regions defined by {U r
x = B(x,r)}, where B(x,r)

denotes the closed ball of `2-radius r centered at x.

We now define the adversarial VC dimension of a set of classifiers H for a fixed set of

regions, U r.

Definition D.4.2. Let H be a set of classifier. Then the adversarial VC dimension of H with

respect to U r is the maximum integer v, for which there exist v labeled points, (x1,y1), . . . ,(xr,yr)

so that for any subset S⊂ {(x1,y1), . . . ,(xr,yr)}, there exists hS ∈H with

`(hS,(xi,yi) =


0 i ∈ S

1 i /∈ S
.

We denote this by vr
ball .

Finally, we define vball as the maximum value of vr
ball over all r > 0. Note that this

quantity has been well studied – for example [51] shows that for linear classifiers, vball = O(d).

Proving Theorem 4.6.6

We now turn our attention towards the proof. The key observation is that the main steps

from the proof of Theorem 4.1.2 perfectly carry over. In particular, Lemma 4.6.7 exactly holds

in this setting, and the argument given in the proof of Theorem 4.1.2 also holds provided that an
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appropriate choice of V exists. The only issue arises from Lemma 4.6.8, which requires that H

be regular. To remedy this, we now state and prove a different version of this lemma that uses a

union of balls (of fixed radius) for Vx rather than a finite set of points.

Lemma D.4.3. Let H by an arbitrary hypothesis class. For all r ∈ [ εδγ

7 ,γ], let α , U r and U r−α

be as described in the proof of Theorem 4.1.2. Then there exists a set of robustness regions

V r = {V r
x : x ∈ Rd} satisfying the following two properties.

1. V r
x is a union of O

((
D

εδγ

)d
)

balls of radius , where D denotes the maximum diameter of

Ux.

2. Let α = εδγ

7 . For all labeled points (x,y) and for all classifiers h ∈H ,

`U r−α (h,(x,y))≤ `V r(h,(x,y))≤ `U r(h,(x,y)).

Proof. Since U r−α
x has diameter at most D, it follows that it can be covered with O

((
D

εδγ

)d
)

balls of radius α

2 . We let V r
x be any such cover that is minimal (meaning that (1.) is satisfied),

meaning that each ball intersects U r−α
x . It follows that for all x, U r−α

x ⊆ V r
x ⊆ U r

x , which

immediately implies (2.) and completes the proof.

Finally, to prove Theorem 4.6.6, we note that the proof of Theorem 4.1.2 essentially

works. The only differences are that instead of bounding the robust VC dimension of H with

respect to VX in terms of v, we must use vball as we are now considering unions of balls rather

than points. As a detail, note that we are using the following minor modification of Proposition

D.3.3 to bound the robust VC dimension of unions of balls using the robust VC dimension for

balls.

Proposition D.4.4. Let (X ,H ) be a hypothesis class whose robust loss class with respect to

r-balls has VC dimension vr
ball. Then the loss class of (X ,H ) with respect to perturbations that

are a union of at most k r-balls has VC dimension at most O(vr
ball log(vr

ballk)).
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Proof. The proof is largely the same as D.3.3. Denote the original perturbation family as U , and

the k-union perturbation family by Uk. Given a sample S = (x1,y1), . . . ,(xm,ym), let Ci denote the

centers of the at most k balls appearing in the perturbation set of xi. It is enough to observe that

any two distinct labelings of S = (x1,y1), . . . ,(xm,ym) by L Uk

H correspond to distinct labelings

of the extended sample T =
⋃m

i=1(Ci,yi) with respect to L U
H , where (Ci,yi) denotes the sample⋃

c∈Ci
(c,y1). The bound then follows from the same double counting argument as in Proposition

D.3.3.
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Appendix E

Appendix for Chapter 5

E.1 An Example over the Halfmoons dataset

In this section, we give an overview of our experiments over the Halfmoons dataset.

Further details can be found in sec

(a) ρ = 0.1 (b) ρ = 0.4

Figure E.1. The blue points are sampled from p, and the red points from q. The parameter ρ

is the proportion of examples of q that are from qcopy, with the rest coming from qunder f it . The
combination of qcopy and qunder f it make data-copying detection difficult for [3]’s method.

Our theoretical results show that given enough data, Algorithm 6 is guaranteed to detect

data-copying. By contrast, the non-parametric test provided in [3] can only guarantee detection

in cases in which data-copying globally occurs. For more local instances of data-copying, they

rely on k-means clustering to partition the input space into localized regions, and then run their

global test over each region separately.

Their approach clearly cannot detect all forms of data-copying – a pathological generative
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distribution might copy in complex regions that are impossible to find using k-means clustering.

However, for many practical examples considered in their paper, [3] demonstrated considerable

success with this approach.

This motivates the following question:

Do there exist natural data distributions over which Algorithm 6 offers a mean-
ingful advantage?

We provide a partial answer to this question by experimentally comparing our approach

with [3]’s over a simple example on the half moons dataset.

E.1.1 Experimental Setup

Data Distribution:

Our data distribution, p, is the Halfmoon dataset with Gaussian noise (σ = 0.1).

Generated Distribution:

Our generated distribution, q, is trained from an i.i.d sample of 2000 points from p,

S∼ p2000. Because our focus is on distinguishing data-copy detection algorithms, we design q

to have a large amount of data-copying that is nevertheless subtle to detect. The key idea is to let

q be a mixture of two distributions, qcopy and qunder f it . qcopy will be an egregious data copier,

and qunder f it will be designed to average away the effects of qcopy.

To construct qcopy, we first select a subset, S′ ⊂ S, of 20 training examples. Then, we

define qcopy to randomly output points from S′ combined with a small amount of spherical noise

(with radius 0.02). Thus, qcopy can be sampled from by sampling a point, x, from S′ at uniform,

and returning x+η where η is drawn at uniform from a disk of radius 0.02.

To construct qunder f it , we combine our original data distribution, p, with a moderate

amount of spherical noise (with radius 0.25). Thus, qunder f it can be sampled from by first

sampling x ∼ p, and returning x+η where η is drawn at uniform from a disk of radius 0.25.

This distribution is meant to represent a fairly noisy and thus underfit version of p.

Finally, we define q as a mixture of qcopy and qunder f it , with q outputting a point from
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qcopy with probability ρ . In total, we have

q = ρ ·qcopy +(1−ρ) ·qgood.

We let, ρ , the weight of qcopy within the mixture, be a varying parameter that gives rise to

different generated distributions. Intuitively, the larger ρ is, the higher the data-copying rate.

This is illustrated in Figure E.1. In the both panels, we plot a sample of 200 training points

p along with 200 points from q. In the left panel, we let ρ = 0.1 in the right, we use ρ = 0.4.

Although both cases show examples of data-copying, the right panel shows a visibly higher level

of it. This is expected, as it is drawn from a distribution in which qcopy is much more likely to be

queried.

Data-copying Detection Algorithms:

We run our algorithm, Data Copy Detect, on (S,q), We fix λ = 20 and γ = 0.00025 as

constants for data-copy detection. λ represents a healthy level of data-copying, and γ = 0.00025

ensures that our condition for ’copying’ is quite stringent. Full details of our implementation

(including our practical choices for parameters such as b and m) are given in Appendix 5.5.2.

For comparison, we also include an implementation of [3]’s algorithm with varying

amounts of clusters being used for the initial k-means clustering. To avoid confusion with the

intrinsic dimension, k, we let c denote the number of clusters, and consider c ∈ {1,5,10,20}.

E.1.2 Results

The results are summarized in Table E.1, with each column corresponding to a given

choice of p,q (determined by the parameter ρ), and each row corresponding to a separate data-

copying detection algorithm. As a baseline, we include the case where q = p (meaning we have

a perfect generated distribution) in the first column.

We run our algorithm with parameters λ and γ fixed as 20 and 0.00025 in all cases. For

[3]’s algorithm, we consider their data-copy detection score over the most egregious cluster.
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Although our algorithm outputs real number estimates of the true data-copying rate, crq,

[3]’s algorithm outputs a score indicating the statistical significance of their metric under a null

hypothesis of no data-copying occurring. To facilitate a simple comparison between our methods,

for all algorithms, we simply output a simple yes or no to indicate whether our results were

statistically significant up to the p = 0.05 level. We include full results of our experiments along

with several extensions (with varying parameters) in section E.1.3.

As expected, neither of our algorithms detect data-copying on the baseline, q = p.

However, in all other cases, our algorithm successfully detects data-copying. On the other hand,

for the smaller values of ρ , [3]’s does not. Their algorithm is only able to achieve detection when

the weight of ρ = 0.4, and even in this case they are unable to consistently do so.

These results match the simple intuition of our algorithms. As seen in Figure E.1, the red

data is sometimes very close to the blue data (when it comes from qcopy) but at other times fairly

distant (when it comes from qunder f it). These effects have a strong canceling effect in [3]’s test.

However, our test is able to adjust for this by considering each training example separately.

Table E.1. Statistical Significance of data-copying Rates over Halfmoons

Algo q = p ρ = 0.1 0.2 0.3 0.4
Ours no yes yes yes yes
c = 1 no no no no no
c = 5 no no no no yes

c = 10 no no no no yes
c = 20 no no no yes yes

E.1.3 Further Experimental Details

We begin by reviewing the definitions of p and q. p is the Halfmoons dataset with

Gaussian noise (σ = 0.1). To define q, we have a mixture of two distributions, qcopy and

qunder f it , which are defined as follows.

We draw S ∼ p2000 i.i.d, and then randomly select S′ ⊂ S with |S′|= 20. These points
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will form a basis for the support of qcopy. To sample x∼ qcopy, we take the following two steps.

1. Sample z∼ S′ at uniform.

2. Sample η ∼U(B(0,0.02)), where U(B(0,r)) denotes the uniform distribution over the

ball of radius r.

3. Output x = z+η .

qcopy can be thought of as an egregious data memorizer that injects a small amount of noise to

give its inputs some (paltry) variety.

By contrast, to sample x∼ qunder f it , we do the following:

1. Sample z∼ p.

2. Sample η ∼U(B(0,0.25)).

3. Output x = z+η .

In this case, the larger amount of noise serves to induce underfitting, in which qcopy does not

assign the support of p enough probability mass.

Finally, to sample from q, we do the following.

1. With probability ρ , sample x∼ qcopy.

2. With probability 1−ρ , sample x∼ qunder f it .

[3]’s test:

Their test works as follows. Let S denote the original training sample, Q denote a sample

of generated examples, with Q ∼ qn, and P denote a fresh set of test examples, with P ∼ pn.

They then check to see if Q is systematically closer to S than P, (thus suggesting data copying).

To do so, they use a statistical test as follows:

1. Let S = {x1,x2, . . . ,xn}, P = {y1,y2, . . . ,yn}, Q = {z1,z2, . . . ,zn}.

207



2. Let ∆ denote the number of pairs (i, j) for which d(yi,S) < d(z j,S). A large value of ∆

indicates that a small amount of data copying, as it implies that Q is further from S than P.

A small value of ∆ indicates a large amount of data copying.

3. Reflecting this, let Z =
∆− n2

2√
n2(2n+1)

12

. This gives a Z-score of ∆. [3] show that, p = q, then the

probability of results as significant as Z <−5 would be at most the probability of getting

a −5σ event when sampling from a Gaussian. We use Z < −3 to indicate statistically

significant results, and output the corresponding P-values (P = 0.0027 being significant)

in our results.

Finally, to account for data copying occurring within specific regions, [3] perform a

preprocessing step in which they cluster the training data, S into c regions using k-means

clustering. They then run their test separately on each region by assigning points from P and Q

into the regions containing them. We output the lowest Z-score over any region, and vary the

number of clusters with c = 1,5,10,20.

Our test:

We run Algorithm 6 with input (S,q) with a few adjustments.

1. We directly set m = 200,000. While the theoretical value of m is significantly higher

(growing O(n2)), we note that this is primarily done for achieving theoretical guarantees.

In practice, often a much lower amount of data is needed.

2. For Est(x,r,S), we set b = 400, which is a bit lower than the theoretically predicted

value. As for m, we do this because for practical (and well-behaved) datasets, Est(x,r,S)

converges much more quickly than theory suggests.

3. We set λ = 20 and γ = 1
4000 , giving relatively stringent conditions on data copying.

Finally, our test outputs, ĉrq, which is an estimate of the data copy rate. Technically, any non-zero

of ĉrq indicates a degree of data copying. To facilitate a more direct comparison with [3], we

convert our results into statistical tests by doing the following.
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1. We compute ĉrp, which is an estimate for the data copying rate when the generated

distribution exactly equals p over 1000 different instances (each instance corresponding to

a freshly drawn training set S).

2. We then compute ĉrq when q is as above.

3. We finally output the fraction of the time that ĉrp > ĉrq, thus giving us a P-value by giving

us the rate at which the null-hypothesis gives results as significant as those that we observe.

Results:

We give a more complete version of Table E.1, with the P-values themselves being

outputted in the table. For consistency, we output the median P-value obtained over 10 runs for

each experiment.

Table E.2. P-values of data-copying Rates over Halfmoons

Algo q = p ρ = 0.1 0.2 0.3 0.4
Ours 1.000 0.000 0.000 0.000 0.000
c = 1 0.5412 1.000 1.000 0.858 0.026
c = 5 0.113 0.976 0.780 0.081 0.007

c = 10 0.090 0.814 0.294 0.013 0.000
c = 20 0.035 0.279 0.093 0.005 0.000

We also remark that the computed data-copying rates by our algorithm exactly match the

value of ρ in all cases (up to 3 decimal points).

E.2 Estimating k

The main idea of our method is to simply pick any point xi in the training sample,

S = {x1,x2, . . . ,xn}, choose two small balls centered at xi, and then measure the ratio of their

probability masses as well as their radii. For sufficiently small balls, these ratios will be related

by a power of k, and we can consequently just solve for an estimate of k, k̂. Finally, since for our
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purposes it is extremely important that our estimate be exactly correct, we round k̂ to the nearest

integer. While this clearly fails in cases that k is not an integer, for most distributions k precisely

equals the dimension of the underlying data manifold (see for example Proposition 5.4.2). These

steps are enumerated in the following algorithm, Estimate k(S).

Algorithm 11: Estimate k(S)

1 n← |S|
2 Pick x ∈ S arbitrarily.

3 b← 64(d+2) ln 16n
δ

ε2 .

4 r∗ = min{r : |S∩B(x,r)|= 2b}.
5 s∗ = min{s : |S∩B(x,s)|= b}
6 k̂ = round

(
1

log2
r∗
s∗

)
7 Return k̂.

We now give sufficient conditions under which Algorithm 11 successfully recovers k.

Proposition E.2.1. Let p be an k-regular distribution, and let δ > 0 be arbitrary. Let φ = 1
2k .

Then there exists a constant C such that if

n≥C
d ln d

δφ pφ

φ 2 pφ

,

with probability at least 1−δ over S∼ pn, Estimate k(S) = k.

Proof. We begin by first applying standard uniform convergence over `2 balls in Rd (which have

a VC dimension of at most d +2). To this end, let

βn =

√
4(d +2) ln 16n

δ

n
.

Then by the standard result of Vapnik and Chervonenkis, with probability 1−δ over S∼ pn, for

all x ∈ Rd and all r > 0,

|S∩B(x,r)|
n

−βn

√
|S∩B(x,r)|

n
≤ p(B(x,r))≤ |S∩B(x,r)|

n
+β

2
n +βn

√
|S∩B(x,r)|

n
. (E.1)
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Next, assume that

n≥
1776(d +2) ln

(
28416(d+2)

δφ 2 pφ

)
φ 2 pφ

. (E.2)

It is clear that for an appropriate constant, we have n = O

(
d ln d

δφ pφ

φ 2 pφ

)
. Thus, it suffices to show

that if Equation E.1 holds, then k̂ = k (as the former holds with probability 1−δ over S). We

now show the following claim.

Claim: Let r > 0 be any radius with |S∩B(x,r)| ≥ b. Then

(
1+

φ

9

)−1

≤ |S∩B(x,r)|
np(B(x,r))

≤
(

1+
φ

9

)
.

Proof. From the definition of b, we have that

b
n
=

400(d +2) ln 16n
δ

nφ 2 =
100β 2

n
φ 2 . (E.3)

Let c =
√

b′
nβ 2

n
. Then b′ ≥ b implies that c≥ 10

φ
. It follows that

c+1
c2 ≤ 1

c−1
≤ φ

9
. (E.4)

Substituting Equations E.3 and E.4 into Equation E.1, we have

b′

np(B(x,r))
≥

b′
n

b′
n +β 2

n +βn

√
k′
n

=
c2

c2 +1+ c

=

(
1+

c+1
c2

)−1

≥
(

1+
φ

9

)−1

(E.5)
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and

b′

np(B(x,r))
≤

b′
n

b′
n −βn

√
b′
n

=
c2

c2− c

= 1+
1

c−1

≤ 1+
φ

9
,

(E.6)

Together, Equations E.5 and E.6 imply our claim.

We now return to the proof of Proposition 5.4.3. We now show that

p(B(x,s∗)≤ p(B(x,r∗))≤ pφ .

To do so, we first bound β 2
n as follows. We have,

β
2
n =

4(d +2) ln(16n/δ )

n

= 4(d +2) ln
(

28416(d +2)
δφ 2 pφ

ln
(

28416(d +2)
δφ 2 pφ

))
φ 2 pφ

1776(d +2) ln
(

28416(d+2)
δφ 2 pφ

)
≤ 8(d +2) ln

(
28416(d +2)

δφ 2 pφ

)
φ 2 pφ

1776(d +2) ln
(

28416(d+2)
δφ 2 pφ

)
=

pφ φ 2

222
.

(E.7)
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Next, by Equations E.1 and E.7 along with the fact that b =
100β 2

n
φ 2 (Equation E.3) that

p(B(x,r∗))≤
|S∩B(x,r∗)|

n
+β

2
n +βn

√
|S∩B(x,r∗)|

n

=
2b
n
+β

2
n +βn

√
2b
n

= β
2
n

(
200
φ 2 +1+

20
φ

)
≤

pφ φ 2

222
221
φ 2 = pφ .

It follows from Definition 5.4.1 that

(
1+

φ

3

)−1 p(B(x,r∗))
p(B(x,s∗))

≤ rk
∗

sk
∗
≤
(

1+
φ

3

)
p(B(x,r∗))
p(B(x,s∗)

. (E.8)

However, |S∩B(x,s∗)|= b and |S∩B(x,r∗)|= 2b, which means that we can safely apply

our claim to both of these cases. By substituting Equations E.5 and E.6 (for both r∗, s∗) into

Equation E.8, along with the fact that
(

1+ φ

3

)(
1+ φ

9

)
≤
(

1+ φ

2

)
, it follows that

(
1+

φ

2

)−1

≤ rk
∗

2sk
∗
≤
(

1+
φ

2

)
(E.9)

Finally, by taking logs of Equation E.9 and simplifying, we have that

k

1+ log2

(
1+ φ

2

) ≤ 1
log2

r∗
s∗

≤ k

1− log2

(
1+ φ

2

)
It consequently suffices to show that k is the unique integer between k

1+log2(1+8ε) and k
1−log2(1+2ε) .

However, this is simply a result of the assumption that φ = 1
2k and standard manipulations, which

completes the proof.
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E.3 Proofs

All proofs to theorems and propositions in the main body are in this section. For each

result, we include a restatement for convenience.

E.3.1 Proof of Theorem 5.2.3

We prove a stronger version of Theorem 5.2.3.

Theorem E.3.1 (Theorem 5.2.3). Let 1 < λ and γ > 0. Let σn be a sequence of bandwidths and

K be any regular kernel function. For any n > 0 there exists a probability distribution π with full

support over Rd such for any S∼ πn, a KDE trained with bandwidth σn and kernel function K

has data-copy rate crq ≥ 1
2 .

We begin by giving necessary conditions for a kernel K to be regular.

Definition E.3.2. A kernel function, K : Rd → R≥0 is regular if it satisfies the following condi-

tions.

1. K is radially symmetric. That is, there exists h : R→ R such that K(x) = h(||x||).

2. K is regularized. That is,
∫
Rd K(x)dx = 1.

3. K decays to 0. That is, limt→∞ h(t) = limt→−∞ h(t) = 0.

It is well known that under suitable choices of σn and several technical assumptions that

a regular KDE converges towards the true data distribution in the large sample limit. We now

prove Theorem 5.2.3.

Proof. Fix any n, and for convenience let denote σn by σ . Because K is non-negative, by

condition 2. of Definition E.3.2, there exists R > 0 such that
∫
||x||≤R K(x)dx = 1

2 . Let

D = Rσ

(
max

(
2nλ ,

1
γ

)
ωd

)1/d

,
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where ωd denotes the volume of the unit ball in d dimensions. We let π denote the uniform

distribution over [0,D]d , and claim that this suffices.

Let S ∼ πn be a training sample, with S = {x1,x2, . . . ,xn}, and let q be a KDE trained

from S with bandwidth σ and kernel function K. Suppose x∼ q satisfies that x ∈ B(xi,Rσ). We

claim that q (λ ,γ)-copies x.

To see this, it suffices to bound π((B(xi,Rσ)) and q(B(xi,Rσ)). The former quantity

satisfies

π((B(xi,Rσ))≤ vol(B(xi,Rσ))

Dd

=
ωd(Rσ)d

Dd

=
1

max
(

2nλ , 1
γ

)
≤min

(
γ,

1
2nλ

)
,

which implies that the third condition of Definition 5.2.1 is met. Meanwhile, q((B(xi,Rσ)) can

be bounded as

q((B(xi,Rσ)) =
∫

B(xi,Rσ)

1
nσ

n

∑
j=1

K
(

x− x j

σ

)
dx

≥
∫

B(xi,Rσ)

1
nσ

K
(

x− xi

σ

)
dx

=
∫
||u||≤R

1
n

K(u)du

≥ 1
2n

,

which implies that q((B(xi,Rσ)) ≥ λ p(B(xi,Rσ)) giving the second condition of Definition

5.2.1. Thus, it follows that q (λ ,γ)-copies all x ∈ B(xi,Rσ). It consequently suffices to bound

q(
⋃n

i=1 B(xi,Rσ)).

To do so, let η denote the probability distribution over Rd with probability density
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function η(x) = 1
σ

K( x
σ
), and let q̂ denote the probability density function induced by the

following random process:

1. Select 1≤ i≤ n at uniform.

2. Select x∼ η .

3. Output x+ xi.

The key observation is that q̂ has precisely the same density function as q – qs density function

is clearly a convolution of selecting xi and then adding x∼ η . Applying this, we have

Pr
x∼q

[
x ∈

n⋃
i=1

B(xi,Rσ)

]
= Pr

x∼q̂

[
x ∈

n⋃
j=1

B(x j,Rσ)

]

=
1
n

n

∑
i=1

Pr
x∼τ

[
x ∈

(
n⋃

j=1

B(x j,Rσ)− xi

)]

≥ 1
n

n

∑
i=1

Pr
x∼τ

[x ∈ (B(xi,Rσ)− xi)]

=
∫

B(0,Rσ)
τ(x)dx

=
∫

B(0,Rσ)

1
σ

K
( x

σ

)
dx

=
∫

B(0,R)
K(u)du

≥ 1
2
,

completing the proof.

E.3.2 Proof of Proposition 5.4.2

Proposition E.3.3 (Proposition 5.4.2). Let p be a probability distribution with support precisely

equal to a smooth, compact, k-dimensional sub-manifold of Rd , M. Additionally, suppose that p

has a continuous density function over M. Then it follows that p is k-regular.
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To prove this, we begin with the following lemma.

Lemma E.3.4. Let k > 0 be a constant. Let p be a probability distribution for which the

following properties hold:

1. The map supp(p)×R+→ R+ defined by (x,r) 7→ p(B(x,r)) is continuous.

2. The map supp(p)→ R+ defined by x 7→ limr→0
p(B(x,r)

rk is well defined, continuous,

and strictly positive over its domain.

3. p has compact support.

Then p is k-regular.

Proof. The map r→ rk is clearly continuous. It follows by properties (1.) and (2.), the following

is a continuous map: F : supp(p)×R≥0→ R+ where

F(x,r) =


p(B(x,r))

rk r > 0

lims→0
p(B(x,s))

sk r = 0,
.

Next, fix ε > 0, as arbitrary. We desire to show that pε exists for which the conditions of

Definition 5.4.1 hold. Without loss of generality, we can assume ε < 1, as the case ε ≥ 1 can

easily be handled by just using pε for a smaller value of ε .

For any x > 0, since F is continuous, there exists ρx > 0 such that for any x′,∈ B(x,ρx)

and r ≤ ρx,

|F(x′,r)−F(x,0)|< F(x,0)
ε

9
.

It follows for any such x′ that

p(B(x′,ρx)) = F(x,ρx)ρ
k
x ≥ (F(x,0))(1− ε

9
), (E.10)
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and for any 0 < s < r < ρx, we have

p(B(x′,r))
rk = F(x′,r)

≤ F(x,0)(1+
ε

9
)

≤ F(x′,s)
1+ ε

9
1− ε

9

≤ F(x′,s)
(

1+
ε

3

)
,

and

p(B(x′,r))
rk = F(x′,r)

≥ F(x,0)(1− ε

9
)

≥ F(x′,s)
1− ε

9
1+ ε

9

≥ F(x′,s)
(

1+
ε

3

)−1
,

which together imply that

(
1+

ε

3

)−1 p(B(x,s))
sk ≤ p(B(x,r))

rk ≤
(

1+
ε

3

) p(B(x,s))
sk . (E.11)

Finally, observe that the balls B(x,rx) cover the support of p. Since supp(p) is compact, it follows

that there exists a finite sub-cover of such balls, C. We finally let pε = minB(x,rx)∈C F(x,0)(1− ε

9).

It then follows by Equations E.10 and E.11, that p has met the criteria necessary for p to be

k-regular, as desired.

We are now prepared to prove Proposition 5.4.2.

Proof. It suffices to show that the conditions of Lemma E.3.4 hold. Conditions 1. and 3.

immediately hold since the probability mass of the surface (i.e. points on the boundary) of a ball

B(x,r) will be 0 as its intersection with M would be a (k−1)-dimensional manifold.
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Thus, it remains to verify condition 2. For any x,y ∈M, let dM(x,y) denote the geodesic

distance between x and y (with ||x− y|| still denoting their euclidean distance in Rd as M is

embedded in Rd). Since M is a smooth, compact manifold, it follows that for any x ∈M,

lim
r→0

sup
||x−y||=r

||x− y||
dM(x,y)

= 1.

In other words, at a small scale, the geodesic distance and the Euclidean distance converge. It

follows that

lim
r→0

p(B(x,r))
rk = lim

s→0

p(BM(x,s))
sk ,

where BM(x,s) denotes the geodesic ball of radius s centered at x on M. However, the lat-

ter quantity is precisely equal to the density function over M (up to a constant factor, since

lims→0
volM(BM(x,s))

sk = ωk, where ωk is the volume of the k-sphere). Since by assumption our

density function is continuous and non-zero everywhere on the manifold, it follows that the

map above must be well defined and continuous giving us condition 2. of Lemma E.3.4, as

desired.

E.3.3 Proof of Proposition 5.4.3

Proposition E.3.5 (Proposition 5.4.3). Let p be an k-regular distribution, and let ε > 0 be

arbitrary. Then if n = O
(

d ln 1
δε pε

ε2 pε

)
with probability at least 1−δ over S ∼ pn, for all x ∈ Rd

and r > 0, (
1+

ε

2

)−1
p(B(x,r))≤ Est(x,r,S)≤

(
1+

ε

2

)
p(B(x,r)). (E.12)

Proof. We begin by first applying standard uniform convergence over `2 balls in Rd (which have

a VC dimension of at most d +2). To this end, let

βn =

√
4(d +2) ln 16n

δ

n
.
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Then by the standard result of Vapnik and Chervonenkis, with probability 1−δ over S∼ pn, for

all x ∈ Rd and all r > 0,

|S∩B(x,r)|
n

−βn

√
|S∩B(x,r)|

n
≤ p(B(x,r))≤ |S∩B(x,r)|

n
+β

2
n +βn

√
|S∩B(x,r)|

n
. (E.13)

Next, assume that

n≥
888(d +2) ln

(
14208(d+2)

δ min(ε,1)2 pε

)
min(ε,1)2 pε

. (E.14)

It is clear that for an appropriate constant, we have n = O
(

d ln d
δε pε

ε2 pε

)
. Thus, it suffices to show

that if Equation E.13 holds for all x,r, then the desired bound, Equation E.12, does as well.

To this end, let x,r be arbitrary, and let b be as defined in Algorithm 5. Let b′ =

|S∩B(x,r)| be the number of elements from S in B(x,r). Then we have two cases.

Case 1: b′ ≥ b

It follows from Algorithm 5 that Est(x,r,S) = b′
n . We now set b as

b
n
=

400(d +2) ln 16n
δ

nmin(ε,1)2 =
100β 2

n
ε2 , (E.15)

which clearly obeys the desired asymptotic bound given in Algorithm 5. Let c =
√

b′
nβ 2

n
. Then

b′ ≥ b implies that c≥ 10
min(ε,1) . It follows that

c+1
c2 ≤ 1

c−1
≤ min(ε,1)

9
. (E.16)
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Substituting Equations E.15 and E.16 into Equation E.13, we have

Est(x,r,S)
p(B(x,r))

≥
b′
n

b′
n +β 2

n +βn

√
b′
n

=
c2

c2 +1+ c

=

(
1+

c+1
c2

)−1

≥
(

1+
min(ε,1)

9

)−1

(E.17)

and

Est(x,r,S)
p(B(x,r))

≤
b′
n

b′
n −βn

√
b′
n

=
c2

c2− c

= 1+
1

c−1

≤ 1+
min(ε,1)

9
.

(E.18)

Together, Equations E.17 and E.18 imply that Est(x,r,S) is sufficiently accurate.

Case 2: b′ < b

We begin by bounding β 2
n in terms of pε . We have,

β
2
n =

4(d +2) ln(16n/δ )

n

= 4(d +2) ln
(

14208(d +2)
δ min(ε,1)2 pε

ln
(

14208(d +2)
δ min(ε,1)2 pε

))
min(ε,1)2 pε

888(d +2) ln
(

14208(d+2)
δ min(ε,1)2 pε

)
≤ 8(d +2) ln

(
14208(d +2)

δ min(ε,1)2 pε

)
min(ε,1)2 pε

888(d +2) ln
(

14208(d+2)
δ min(ε,1)2 pε

)
=

pε min(ε,1)2

111
.

(E.19)

Now, let r∗ be as defined in Algorithm 5. Then |S∩B(x,r∗)| = b. Our main idea will be to
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show that p(B(x,r∗) ≤ pε , and then use Equations E.17 and E.18 for r∗ (which is possible

since |S∩B(x,r∗)|= b) along with the definition of pε (Definition 5.4.1) to bound Est(x,r,S) in

terms of p(B(x,r)). To this end, we have by Equations E.13 and E.19 along with the fact that

b =
100β 2

n
min(ε,1)2 (Equation E.15) that

p(B(x,r∗))≤
|S∩B(x,r∗)|

n
+β

2
n +βn

√
|S∩B(x,r∗)|

n

=
b
n
+β

2
n +βn

√
b
n

= β
2
n

(
100

min(ε,1)2 +1+
10

min(ε,1)

)
≤ p2

ε min(ε,1)2

111
111

min(ε,1)2 = pε .

It follows from Definition 5.4.1 that

(
1+

ε

3

)−1 p(B(x,r∗))rk

rk
∗

≤ p(B(x,r))≤
(

1+
ε

3

) p(B(x,r∗))rk

rk
∗

. (E.20)

Finally, by the definition of Est(x,r,S)) (Algorithm 5), we have that Est(x,r,S) = Est(x,r∗,S)rk

rk
∗

.

Combining this with Equation E.20 the definition of Est(x,r,S) (Algorithm 5) along with

Equations E.17 and E.18 (which can be safely applied to r∗ by reverting to Case 1), we have

Est(x,r,S)
p(B(x,r))

=

Est(x,r∗,S)rk

rk
∗

p(B(x,r))
≤

Est(x,r∗,S)rk

rk
∗

(
1+ ε

3

)
p(B(x,r∗))rk

rk
∗

=
Est(x,r∗,S)

(
1+ ε

3

)
p(B(x,r∗))

≤
(

1+
ε

3

)(
1+

min(ε,1)
9

)
≤ 1+

ε

2
,
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and

Est(x,r,S)
p(B(x,r))

=

Est(x,r∗,S)rk

rk
∗

p(B(x,r))
≥

Est(x,r∗,S)rk

rk
∗

p(B(x,r∗))rk

rk
∗

(
1+ ε

3

)
=

Est(x,r∗,S)
p(B(x,r∗))

(
1+ ε

3

) ≥ (1+
ε

3

)−1
(

1+
min(ε,1)

9

)−1

≥
(

1+
ε

2

)−1
,

which concludes the proof.

E.3.4 Proof of Theorem 5.5.1

Theorem E.3.6 (Theorem 5.5.1). Data Copy Detect is a data-copying detector (Definition

5.3.2) with sample complexity at most

mp(ε,δ ) = O

(
d ln d

δε pε

ε2 pε

)
,

for all regular distributions, p.

Proof. Let C be the constant defined in Proposition 5.4.3, and let n ≥ C
d ln d

δε pε

ε2 pε
. Let S ∼ pn

be a set of n i.i.d training points, {x1,x2, . . . ,xn}, and let q ∼ A(S) be an arbitrary generated

distribution.

By Proposition 5.4.3, the subroutine Est(x,r,S) is accurate over any x and r up to a factor

of (1+ ε) with probability at least 1− δ

3 (we can achieve this by simply making n a bit larger

and substituting δ

3 into Proposition 5.4.3). Suppose this holds, meaning that that for all x ∈ Rd

and all r > 0, the condition of Proposition 5.4.3 holds, and

(1+ ε)−1 p(B(x,r))≤ Est(x,r,S)≤ (1+ ε)p(B(x,r)). (E.21)
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We desire to show that

cr−ε
q − ε ≤ DataCopyDetect(q,S)≤ crε

q + ε.

To do so, we begin applying uniform convergence over T ∼ qm. To this end, let

βm =

√
4(d +2) ln 48m

δ

m
.

Then by the standard result of Vapnik and Chervonenkis, with probability 1− δ

3 over T ∼ qm,

for all x ∈ Rd and all r > 0,

|T ∩B(x,r)|
m

−βm

√
|T ∩B(x,r)|

m
≤ q(B(x,r))≤ |T ∩B(x,r)|

m
+β

2
m +βn

√
|T ∩B(x,r)|

m
.

(E.22)

Observe that by the definition of m, we have

β
2
m =

4(d +2) ln(48m/δ )

m

= 4(d +2) ln
(

98304n2(d +2)
δε2 min(ε,1)2 ln

(
98304n2(d +2)
δε2 min(ε,1)2

))
ε2 min(ε,1)2

2048n2(d +2) ln
(

98304n2(d+2)
δε2 min(ε,1)2

)
≤ 8(d +2) ln

(
98304n2(d +2)
δε2 min(ε,1)2

)
ε2 min(ε,1)2

2048n2(d +2) ln
(

98304n2(d+2)
δε2 min(ε,1)2

)
=

ε2 min(ε,1)2

256n2 .

(E.23)

Next, suppose x,r satisfy that q(B(x,r)) ≥ ε

2n . For convenience, let ̂q(B(x,r)) denote
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|T∩B(x,r)|
m . By applying Equations E.22 and E.23, it follows that

̂q(B(x,r))
q(B(x,r))

≤ q(B(x,r))+βm

q(B(x,r)

≤ 1+
βm

q(B(x,r)

≤ 1+
min(ε,1)

8
,

and

q(B(x,r))
̂q(B(x,r))

≤ q(B(x,r))

q(B(x,r))−β 2
m−βm

√
̂q(B(x,r))

≤ q(B(x,r))
q(B(x,r)−2βm

=
1

1− 2βm
q(B(x,r))

≤ 1

1− min(ε,1)
4

≤ 1+
min(ε,1)

3
.

Combining these, we have

(
1+

min(ε,1)
3

)−1

≤ q(B(x,r)
̂q(B(x,r))

≤
(

1+
min(ε,1)

3

)
(E.24)

Next, for 1≤ i≤ n, let r∗i be the radii defined in Algorithm 6. Define r−ε

i and rε
i to be the

maximal radii r for which q respectively (λ (1+ ε),γ(1+ ε)−1)-copies, and (λ (1+ ε)−1,γ(1+

ε))-copies p about xi. Then we have the following claims.

Claim 1: For 1≤ i≤ n, if q(B(x,r∗i ))≥ ε

2n , r∗i ≤ rε
i .

Proof. Because Est(xi,r∗i ,S) ≤ γ , it follows by Equation E.21 that p(B(xi,r∗i )) ≤
(
1+ ε

2

)
γ .
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Furthermore, by also applying Equation E.24 we have that

q(xi,r∗i )
p(xi,r∗i )

≥
|B(xi,r∗i )∩T |

m

Est(xi,r∗i ,S)
(

1+ min(ε,1)
3

)(
1+ ε

2

) ≥ λ (1+ ε)−1.

Thus q (λ (1+ ε)−1,γ(1+ ε))-copies all points in B(xi,r∗i ) implying r∗i ≤ rε
i .

Claim 2: For 1≤ i≤ n, if q(B(x,r−ε

i ))≥ ε

2n , then r−ε

i ≤ r∗i .

Proof. For the left hand side, we use a similar argument. By Equation E.21 along with the

definition of rε
i , we have Est(xi,r−ε

i ,S)≤ γ(1+ ε)−1 (1+ ε

2

)
≤ γ . By Equations E.21 and E.24,

we have
|B(xi,r−ε

i )∩T |
m

Est(xi,r∗i ,S)
≥

q(B(xi,r−ε

i ))

p(B(xi,r−ε

i ))
(

1+ min(ε,1)
3

)(
1+ ε

2

) ≥ λ ,

with the last inequality coming again from the definition of r−ε

i . Thus, r−ε

i meets the criteria

from Algorithm 6 required to be selected as r∗i . As a technical note, because Algorithm 6 only

considers finitely many radii, it may not consider precisely r−ε

i . However, this is not a problem,

as the nearest considered radii to this point have nearly unchanged values of Est(x,r,S) and
|B(x,r)∩T |

m , meaning that some similar radius will be considered.

Finally, armed with our claims, we now consider the total region of points in which

Algorithm 6 claimed data-copying occurs. Let S1 and S2 be the sets of indices for which the

conditions are violated for claims 1 and 2 respectively. Then it follows from Claim 1 that

crε
q−q(∪n

i=1B(xi,r∗i )) = q(∪n
i=1B(xi,rε

i ))−q(∪n
i=1B(xi,r∗i ))

≥ q(∪n
i=1B(xi,rε

i ))−q(∪i/∈S1B(xi,r∗i ))−q(∪i∈S1B(xi,r∗i ))

≥−ε

2
.

Here we are using Claim 1 to hand all terms that are not in S1, and then crudely bounding the
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remaining terms with ε

2n . Similarly, by Claim 2, we have

q(∪n
i=1B(xi,r∗i ))− cr−ε

q = q(∪n
i=1B(xi,r∗i ))−q

(
∪n

i=1B(xi,r−ε

i )
)

≥ q(∪n
i=1B(xi,r∗i ))−q

(
∪i/∈S2B(xi,r−ε

i )
)
−q
(
∪i∈S2B(xi,r−ε

i )
)

≥−ε

2
.

Combining these, we see that

cr−ε
q −

ε

2
≤ q(∪n

i=1B(xi,r∗i ))≤ crε
q +

ε

2
.

All the remains is to show that our last step of Algorithm 6, in which we estimate this mass, is

accurate up to a factor of ε

2 . However, this immediately follows from the fact that we use
20log 1

δ

ε2

samples (last line of Algorithm 6). In particular, because this holds with probability 1− δ

3 , we

can apply a union bound with our other two probabilistic events (Est being sufficiently close,

and T yielding uniform convergence) to get a total failure probability of δ , as desired.

E.3.5 Proof of Theorem 5.6.1

Theorem E.3.7 (Theorem 5.6.1). Let B be a data-copying detector. Let ε = δ = 1
3 . Then there

exist 1-regular distributions p for which pε is arbitrarily small and B has sample complexity

mp(ε,δ )≥Ω(
1
pε

).

More precisely, for all integers κ > 0, there exists a probability distribution p such that 1
9κ
≤

pε ≤ 1
κ

, and mp(ε,δ )> Ω(κ).

Proof Outline: Let κ be a sufficiently large integer. Then we take the following steps.

1. We define the probability distribution pT , where T ⊂ [2κ] = {1,2, . . . ,2κ} is a subset with

|T |= κ that parametrizes our distribution. We then show that for all T , pT is a 1-regular

distribution satisfying 1
9κ
≤ (pT )ε ≤ 1

κ
.
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2. We define a generative algorithms AT and A′T , where as before T ⊂ [2κ] with |T |= κ . We

then show that if S∼ pO(κ)
T , AT (S) is likely to have a high data-copy rate with respect to

pT , whereas A′T (S) has a data-copy rate of 0.

3. We construct families

F = {(pT ,AT ) : T ⊂ [2κ], |T |= κ} and F ′ = {(pT ,A′T ) : T ⊂ [2κ], |T |= κ},

and show that (S,A(S)) follows very similar distributions when S is drawn from pO(κ)

and (p,A) is drawn from F and F ′ respectively, meaning that it is difficult to tell which

family the pair (p,A) is drawn from.

4. We show that if B has sample complexity at most O(κ), then by (2.) it would be able

to distinguish (S,AT (S)) from (S,A′T (S)) thus contradicting (3.) We thus conclude B has

sample complexity Ω(κ), as desired.

Proof. We follow the outline above proceeding step by step.

Step 1: constructing pT

First, set γ < 1 arbitrarily, and let λ = 13. Note that these constants are chosen out of

convenience, and for different values of ε,δ , different ones can be chosen.

Let κ > 0 be any integer, and let [2κ] = {1,2,3, . . . ,2κ}. Let C1,C2, . . . ,C2κ be 2κ

disjoint unit circles in Rd with distance at least 3 between any two circles. All data distributions,

pT , that we construct will have support over ∪2κ
i=1Ci, and will further obey the constraint that

their marginal distribution over any Ci is precisely the uniform distribution. Thus, a distribution

pT is uniquely specified by the probability mass it assigns to each circle. To this end, we define

pT as follows.

Definition E.3.8. Let T ⊂ [2κ] be a subset of indices with |T | = κ . Then pT is the unique
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probability distribution satisfying the criteria above such that

pT (Ci) =


1

3κ
i ∈ T

2
3κ

i /∈ T

Lemma E.3.9. pT is 1-regular, and satisfies 1
9κ
≤ (pT )ε ≤ 2

3κ
when ε = 1

3 .

Proof. First, we observe that by Proposition 5.4.2, we immediately have that pT is 1-regular as a

union of disjoint circles is a 1 dimensional closed manifold, and the density function of pT with

respect to each circle is uniform and therefore continuous. For convenience, we let p denote pT ,

as by symmetry, (pT )ε is equal for all values of T .

Next, for r ≤ 2 and x∼ p, we compute p(B(x,r)
r . Suppose x ∈Ci. The key observation is

that the density of p over Ci is uniform, and thus since r ≤ 2, the mass of B(x,r) can be found by

simply computing the arc length. It follows that

p(B(x,r))
r

= p(Ci))
4arcsin( r

2)

2πr
. (E.25)

By some basic properties about arcsin, it follows that p(B(x,r)
r is monotonically increasing

with 0 < r ≤ 2 and satisfies limr→0+
p(B(x,r)

r = p(Ci)
π

and p(B(x,2))
2 = p(Ci)

2 . Using this, we now

prove the upper and lower bounds for pε beginning with the upper bound.

Assume towards a contradiction that pε >
2

3κ
. By Definition 5.4.1, this implies that for

any sufficiently small r > 0, we have

(
1+

ε

3

)−1 p(B(x,r))
r

≤ p(B(x,2))
2

≤
(

1+
ε

3

) p(B(x,r))
r

,

as for any x ∼ p, p(B(x,2) is at most 2
3κ

. Substituting equation E.25 and taking the limit as

r→ 0+, it follows that p(Ci)
2 ≤ 7

6
p(Ci)

π
, which is a contradiction giving us that pε ≤ 2

3κ
.

Next, for the lower bound, it suffices to show that for any x and any 0 < s ≤ r with

229



p(B(x,r))≤ 1
9κ

that

(
1+

ε

3

)−1 p(B(x,s))
s

≤ p(B(x,r))
r

≤
(

1+
ε

3

) p(B(x,s))
s

. (E.26)

Applying Equation E.25 with r = 1, we have for any x∼ p,

p(B(x,1))
1

= p(Ci)
4arcsin(1

2)

2π
= p(Ci)

1
3
≥ 1

3κ

1
3
=

1
9κ

.

Since p(B(x,r)
r is monotonic in r, it follows that p(B(x,r)) ≤ 1

9κ
only if r ≤ 1. We are now

prepared to prove Equation E.26.

The left inequality immediately holds since p(B(x,r)
r is monotonic in r. For the right

inequality, we have that if r satisfies p(B(x,r)≤ 1
9κ

, then r ≤ 1 implying for x ∈Ci,

p(B(x,r))
r

≤ p(B(x,1)
1

= p(Ci)
1
3

≤ (1+
1
9
)

p(Ci)

π

=
(

1+
ε

3

)
lim
t→0

p(B(x, t))
t

≤
(

1+
ε

3

) p(B(x,s))
s

,

as desired.

Step 2: defining AT and A′T

Having defined our probability distributions, pT , we now define our generative algorithms

AT and A′T . Recall that a generative algorithm, A, is any process that takes as input a set of points

S ∈ Rd and then returns a probability distribution, A(S) over Rd . The algorithm is allowed to

have randomization.

AT and A′T will always be constrained to output distributions that are similar to pT in the

sense that they have support over a disjoint union of circles, and their marginal distribution over
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any circle (within the support) is the uniform distribution. The only change is that we add one

extra circle, C0, that satisfies

||C0−Ci|| ≥ 2+max
i, j
||Ci−C j||,

meaning that it is very far from all Ci. Thus, any outputted distribution by AT or A′T can be

specified by specifying the probability mass it assigns to each circle in {C0,C1, . . . ,C2κ}.

Both AT and A′T will operate under the assumption that the training sample of points S is

relatively well behaved. In the event that this does not hold, AT and A′T will output the uniform

distribution over C0 as a default. We now formally define this criteria upon S.

Definition E.3.10. Let S be a finite set of points and T ⊂ [2κ] be a set of indices with |T |= κ .

We say that S covers T the sets L = {i : i ∈ T, |Ci∩S|= 1} and L′ = {i : i /∈ T, |Ci∩S|= 1} both

satisfy |L|, |L′| ≥ κ

8 .

Observe that this definition if symmetric with respect to complements meaning that S

covers T if and only if S covers [2κ]\T . We now use this to define AT and A′T beginning with

AT .

Definition E.3.11. Let T ⊂ [2κ] be a subset of indices with |T | = κ , and let S be any set of

points in Rd . Then AT consists of the following steps. We let q denote its output, and AT (S)

denote the full distribution of potential generated distributions q.

1. If S does not cover T , then output the uniform distribution over C0 as q.

2. Otherwise, let L = {i : i ∈ T, |Ci∩S|= 1} be as defined in Definition E.3.10.

3. Randomly select L∗ ⊂ L with |L∗|= κ

8 at uniform.
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4. We then let q be the unique probability distribution satisfying the criteria above with

q(Ci) =



λ (1+ε)
3κ

i ∈ L∗

0 i ∈ [2κ]\L∗

1− λ (1+ε)
24 i = 0

Having defined AT , we define A′T by having A′T = A[2κ]\T . That is,

Definition E.3.12. Let T ⊂ [2κ] be a subset of indices with |T | = κ , and let S be any set of

points in Rd . Then A′T (S) is precisely A[2κ]\T (S) where [2κ]\T is the complement of T .

Observe that if S covers T , then by Definitions E.3.11 and E.3.12, AT (S) and A′T (S) will

both have supports non-trivially intersecting the set of circles over which pT is based, ∪2κ
i=1Ci. We

now show that this condition is sufficient for our desired behavior with respect to data-copying.

Lemma E.3.13. Let κ satisfy 1
3κ
≤ γ . For any T ⊂ [2κ], let S be any set of points in the support

of pT that covers T . Then with probability 1 over the randomness of AT and A′T , qT ∼ AT (S)

and q′T ∼ A′T (S) have respective data-copy rates cr−ε
qT

and crε

q′T
satisfying

cr−ε
qT
≥ λ (1+ ε)

24
,

crε

q′T
= 0.

Proof. Let L and L′ be as in Definition E.3.10. We begin with cr−ε
qT

, which was the data-copy

rate of qT with parameters (λ (1+ ε),γ(1− ε)) (Definition 5.3.3).

Since |L| ≥ κ

8 , there exists L∗ ⊂ L with |L∗| = κ

8 such that qT has support over C0 ∪

{Ci}i∈L∗ . For any i ∈ L∗, let xi denote the unique point in the intersection of Ci and S. Observe

that by the definition of L, pT (B(xi,2)) = 1
3κ

. On the other hand, we have qT (B(xi,2)) =

qT (Ci) =
λ (1+ε)

3κ
, with the first equality holding since Ci is the only circle that intersects B(xi,2).

It follows by Definition 5.2.1 that qT (λ (1+ ε),γ(1+ ε)−1)-copies all x ∈Ci. Taking the total
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measure (under qT ), we have

cr−ε
qT
≥ qT (∪i∈L∗Ci) =

κ

8
λ (1+ ε)

3κ
=

λ (1+ ε)

24κ

as desired.

Next, we show crε

q′T
= 0. To do so, it suffices to show that for all x ∈ S and r > 0,

q′T (B(x,r))< λ (1+ ε)−1 pT (B(x,r)),

as this would imply that no points are (λ (1+ ε)−1,γ(1+ ε))-copied.

Observe that M =∪1≤i≤2κCi is a 1-dimensional manifold containing the entire support of

pT , and that furthermore the marginal distribution of q′T (S) over M has a well defined probability

density with respect to M. Since x ∈ S and S⊂M (as S⊂ supp(pT )), we can consider two cases:

if B(x,r) intersects C0 (the only region in the support of A′T (S) outside M), and if B(x,r) does

not intersect C0.

Case 1: B(x,r) intersects C0

Observe that by the definition of C0, Ci ⊂ B(x,r) for all 1≤ i≤ 2κ . This is because C0 is

very far from all the other circles. However, this implies M ⊂ B(x,r) meaning that pT (B(x,r))≥

pT (M) = 1. However, q′T (B(x,r)) is clearly at most 1, making the desired inequality trivially

hold as λ (1+ ε)−1 > 1.

Case 2: B(x,r) does not intersect C0

Observe that this implies supp(pT )∩B(x,r) = supp(q′T ∩B(x,r)⊆M, as both of these

distributions only have support on M when outside of C0. Since pT and q′T both have well defined

probability densities over M, their masses over B(x,r) can be found by integrating their densities

over this region.

However, by the definition of A′T , for any y ∈ supp(q′T ), we have that y ∈ Ci where
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i ∈ [2κ]\T . By letting pT and q′T denote their respective density functions, it follows that

pT (y) =
2

3κ(2π)
, and q′T (y) =

λ (1+ ε)

3κ(2π)
.

It follows that q′T (y)
pT (x)

= λ (1+ε)
2 < λ (1+ ε)−1. Thus, it follows from integrating as y goes over

B(x,r) that q′T (B(x,r))< λ (1+ ε)−1 pT (B(x,r)) as desired.

As a slight technical detail, while this inequality will no longer be strict if pT (B(x,r)) = 0,

we know that this is never the case since pT (B(x,r)) is strictly positive for all x ∈M.

Next, we bound the probability that set of κ points drawn i.i.d. from pT , S ∼ pκ
T , will

cover T . To do so, we begin with a combinatorial lemma.

Lemma E.3.14. Let m,n be an integers with n
4 ≤ m ≤ 3n

4 . Suppose m numbers are chosen

uniformly at random from {1,2, . . . ,n}. Then with probability at least 1−2exp
( −n

2048

)
, at least

n
8 numbers in {1,2, . . . ,n} are selected exactly once.

Proof. Let b1,b2, . . . ,bm denote our m numbers chosen from {1,2, . . . ,n}. For 1≤ i≤ m, let Xi

be an indicator variable for bi being distinct from x j for all 1≤ j < i, and let Yi = 1−Xi be an

indicator variable for the opposite. By convention we take X1 = 1 and Y1 = 0. Let X = ∑
m
i=1 Xi

and Y = ∑
m
i=1Yi. The key observation is that if Z denotes the number of elements in {1, . . . ,n}

that are selected exactly once, then Z ≥ X−Y .

To see this, observe that if we maintain Z as a set while observing b1,b2, . . . ,bm, then it

follows that whenever Xi = 1, we append an element to Z (as its corresponding number bi will

have occurred for the first time and thus be chosen exactly once), and we remove an element

from Z only when Yi = 1, as a repeat of a number necessarily implies Yi = 1. It follows that to

bound Z, it suffices to bound X−Y .

To this end, observe that for any 1≤ i≤m, regardless of the outcomes of X1,X2, . . . ,Xi−1,

E[Xi] ≥ n−i+1
n , as there are at least n− i+ 1 numbers in {1, . . . ,n} that have not been chosen
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yet. It follows that if X∗i = ∑
i
j=1 Xi− n−i+1

n for 1≤ i≤ m, then X∗i is a sub-martingale (as each

term in the sum has expected value at least 0) satisfying |X∗i −X∗i−1| ≤ 1. Applying Azuma’s

inequality, we see that

Pr[X∗m ≥−
n

32
]≥ 1− exp

(
−n2

2048m

)
≥ 1− exp

(
−n

2048

)
.

We now apply a similar trick for Y1, . . . ,Ym. In this case, observe that for 1 ≤ i ≤ m,

regardless of the outcomes of Y1, . . . ,Yi−1, E[Yi] ≤ i−1
m , as there can be at most i− 1 numbers

that have already been chosen and Yi = 1 if and only if the corresponding bi is equal to one of

those i−1 numbers. It follows that Y ∗i = ∑
i
j=1Yi− i−1

m is a super-martingale (as each term has

expected value at most 0) with |Y ∗i −Y ∗i−1| ≤ 1. Applying Azuma’s inequality, we see that

Pr[Y ∗m ≤
n

32
]≥ 1− exp

(
−n2

2048m

)
≥ 1− exp

(
−n

2048

)
.

Applying a union bound, we see that with probability at least 1− 2exp
( −n

2048

)
, X∗m ≥ −n

32 and

Y ∗m ≤ −n
32 . By substituting these inequalities in, it follows that with probability 1−2exp

( −n
2048

)
,
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Z satisfies

Z ≥ X−Y

=
m

∑
i=1

Xi−
m

∑
j=1

Yi

=
m

∑
i=1

(
Xi−

n− i+1
n

)
+

m

∑
i=1

(
n− i+1

n

)
−

m

∑
i=1

(
Yi−

i−1
n

)
−

m

∑
i=1

(
i−1

n

)
= X∗m−Y ∗m +

m

∑
i=1

(
n− i+1

n

)
−

m

∑
i=1

(
i−1

n

)
≥− n

32
− n

32
+

m

∑
i=1

(
n− i+1

n

)
−

m

∑
i=1

(
i−1

n

)
=− n

16
+m

(
n+(n−m+1)

2n

)
− m(m−1)

2n

=− n
16

+
m
2n

(2n−m+1−m+1)

=− n
16

+
m(n−m+1)

n

≥− n
16

+
3n
16

=
n
8
,

with the last inequality holding since n
4 ≤m≤ 3n

4 . This concludes our proof since we have shown

Z ≥ n
8 with the desired probability.

We now apply Lemma E.3.14 to bound the probability that S∼ pκ
T covers T .

Lemma E.3.15. Let T ⊂ [2κ] be a set of κ indices, and let S ∼ pκ
T be a set of κ i.i.d points .

Then with probability at least 1−4exp
(
− κ

2048

)
, S covers T .

Proof. Let S = (x1,x2, . . . ,xκ), and let A = (a1,a2, . . . ,aκ) be the unique indices such that xi ∈ ai.

By Definition E.3.10, L and L′ are the number of values in T and [2κ]\T that appear exactly

once in A. We desire to bound the probability that |L| ≥ κ

8 and |L′| ≥ κ

8 . To do so, the key idea is

to condition on M, which we define as the number of 1≤ i≤ κ such that ai ∈ T .

Suppose that M = m. Observe that the conditional distribution of A (viewed as a multiset)
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given M = m is precisely the distribution obtained by selecting m indices at uniform from T and

κ−m indices at uniform from [2κ]\m. This holds because pT is uniform when restricted to

∪i∈TCi or ∪i∈[2κ]\TCi. Suppose that κ

4 ≤ m≤ 3κ

4 . Then the same must hold for κ−m. it follows

by applying Lemma E.3.14 to selecting m indices from T and κ−m indices from [2κ]\T that

with probability at least 1−2exp
(
− κ

2048

)
that |L| ≥ κ

8 and |L|′ ≥ κ

8 . Thus, by summing over all

such m, we see that

Pr
S∼pκ

T

[|L| ≥ κ

8
, |L′| ≥ κ

8
] =

κ

∑
m=1

Pr
S∼pκ

T

(M = m)Pr[|L| ≥ κ

8
, |L′| ≥ κ

8
|M = m]

≥
3κ/4

∑
m=κ/4

Pr
S∼pκ

T

(M = m)Pr[|L| ≥ κ

8
, |L′| ≥ κ

8
|M = m]

≥
3κ/4

∑
m=κ/4

Pr
S∼pκ

T

(M = m)
(

1−2exp
(
− κ

2048

))
=
(

1−2exp
(
− κ

2048

))
Pr

S∼pκ
T

[
κ

4
≤M ≤ 3κ

4
].

To bound the latter probability, we simply apply a Chernoff bound, as M =∑
κ
i=11(ai ∈ T )

is the sum of κ independent indicator variables each with expected value 1
3 . Using a two sided

Chernoff bound, we see that Pr[κ

4 ≤M ≤ 3κ

4 ]≥ 1−2exp
(
− κ

144

)
. Substituting this, it follows

that

Pr
S∼pκ

t

[|L| ≥ κ

8
, |L′| ≥ κ

8
]≥
(

1−2exp
(
− κ

2048

))(
1−2exp

(
− κ

144

))
≥ 1−4exp

(
− κ

2048

)
.

Step 3: Constructing F and F ′

We start by defining F and F ′ as distributions of pairs (p,A) where p is a data distribu-

tion and A is a generative algorithm.

Definition E.3.16. F and F ′ are the uniform distributions over {(pT ,AT ) : T ⊂ [2κ], |T |= κ}

and {(pT ,A′T ) : T ⊂ [2κ], |T |= κ} respectively.
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Next, we use F and F ′ to construct distributions Q and Q′ over pairs (S,q), where S is

a set of points, and q is generated distribution.

Definition E.3.17. Let Q be the distribution of (S,q) where (pT ,AT ) ∼F , S ∼ pκ
T , and q ∼

AT (S). Similarly, let Q′ be the distribution of (S,q) where (pT ,A′T )∼F ′, S∼ pκ
T , and q∼A′T (S).

Our goal will be to show that Q and Q′ follow similar distributions. Our strategy will be

to show that for the majority of (S,q) in their supports, they have similar probability masses. To

this end, we first characterize the values of (S,q) that we are interested in considering.

Definition E.3.18. We say that (S,q) is nice if S is a sample of points from some pT , and q is a

generated distribution from either AT or A′T that has no support over C0. More precisely, (S,q)

is nice if the following conditions hold:

1. S⊂ ∪2κ
i=1Ci, with |S|= κ .

2. There exists a set of κ

8 distinct indices, L∗ ⊂ [2κ], such that for 0≤ i≤ 2κ ,

q(Ci) =



λ (1+ε)
3κ

i ∈ L∗

0 i ∈ [2κ]\L∗

1− λ (1+ε)
24 i = 0

3. For every i ∈ L∗, |S∩Ci|= 1, meaning exactly one element from S is in Ci.

We now prove a quick lemma relating nice pairs to instances in which S covers T .

Lemma E.3.19. Let T ⊂ [2κ] satisfy |T | = κ . Let S ∼ pκ
T and let q and q′ be generated

distributions with q = AT (S) and q′ = A′T (S). Then the following three are equivalent:

1. (S,q) is nice.

2. (S,q′) is nice.
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3. S covers T .

Proof. Suppose S covers T . Then the sets L and L′ (Definition E.3.10) each have size at least κ

8

implying that when running AT or A′T , the set L∗ will be non-trivial. This in turn will imply that

(q,S) and (q′,S) are nice, regardless of the choice of L∗.

Otherwise, suppose S does not cover T . Then by Definition E.3.11, AT (S) and AT ′(S)

will both be the uniform distribution over C0 thus violating Definition E.3.18.

We now show that Q and Q′ assign identical probability masses to nice pairs.

Lemma E.3.20. Let (S,q) be a nice pair. Then Q(S,q)=Q′(S,q) with these expressions denoting

the probability that (S,q) is chosen over Q and Q′ respectively.

Proof. Let S = {x1,x2, . . . ,xκ}. Let M denote the set of indices in {1,2 . . . ,2κ} such that exactly

one point of S lies in the corresponding circle. That is, M = {i : |S∩Ci|= 1}. Let L∗ be the set of

indices in {1,2, . . .2κ} where q assigns non-trivial probability mass to the corresponding circle.

That is, L∗ = {i : q(Ci)> 0,1≤ i≤ 2κ}. Since (S,q) is a nice pair (Definition E.3.18), L∗ is a

subset of M, and satisfies |L∗|= κ

8 . Furthermore, q is uniquely determined by L∗.

We now compute Q(S,q) and Q′(S,q) by summing the conditional probabilities of (S,q)

given (pT ,AT ) and (pT ,A′T ) respectively as T ranges over all subsets. By utilizing the fact that

(S,q) is nice (meaning it can only occur if S covers T ) along with the definition of AT , we have

that

Q(S,q) = ∑
|T |=κ:T⊂[2κ]

1(2κ

κ

) Pr[(S,q)|pT ,AT ]

= ∑
|T |=κ:T⊂[2κ]

1(2κ

κ

) Pr[S|pT ]Pr[AT (S) = q|S,T ]

= ∑
T :S covers T

1(2κ

κ

) Pr[S|pT ]Pr[AT (S) = q|S,T ].

= ∑
T :S covers T

1(2κ

κ

) Pr[S|pT ]
1(L∗ ⊆ T )(|T∩M|

κ/8

) .
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with the last equality holding because AT (S) randomly chooses a κ/8 element subset of T ∩M

for the support of q (see Definition E.3.11). The term 1(L∗ ⊆ T ) is necessary because if L∗ 6⊆ T ,

then it is impossible for it to be chosen making the probability 0.

Similarly, letting T c denote the complement of T , we have

Q′(S,q) = ∑
T :S covers T

1(2κ

κ

) Pr[S|pT ]
1(L∗ ⊆ T c)(|T c∩M|

κ/8

) ,

with the only real difference being the support is chosen from T c∩M rather than T ∩M.

To show that these sums are equal, we will further group the sums by using M to define an

equivalence relation over {T : T ⊂ [2κ], |T |= κ}. For T1,T2 ⊂ [2κ], we say they are equivalent

if their intersections with [2κ]\M, the complement of M, are equal. That is,

T1 ∼ T2⇐⇒ T1∩ ([2κ]\M) = T2∩ ([2κ]\M).

The usefulness of this equivalence relation is in the following claim.

Claim: Let T1 ∼ T2 be equivalent subsets of κ indices. Then the following hold:

1. Pr[S|pT1] = Pr[S|pT2 ].

2. |T1∩M|= |T2∩M| and T c
1 ∩M|= |T c

2 ∩M|.

3. S covers T1 if and only if S covers T2.

Proof. (Of Claim) Let T be any set of indices, let S = {x1,x2, . . . ,xκ}, and let a1,a2, . . .aκ denote

the respective indices of the circles that x1, . . . ,xκ are on. Without loss of generality (relabeling if

necessary), suppose that a1,a2, . . . ,am are the unique indices that constitute M (defined above).

Since pT has probability mass 1
3κ

on every index in T and 2
3κ

on the others, we have that
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the probability density of S (denoted Pr[S|pT1]) satisfies,

Pr[S|pT ] =
κ

∏
i=1

2−1(ai ∈ T )
κ

1
2π

=

(
m

∏
i=1

2−1(ai ∈ T ∩M)

κ

1
2π

)(
κ

∏
i=m+1

2−1(ai ∈ T ∩ ([2κ]\M))

κ

1
2π

)

=

(
2|T

c∩M|

(2πκ)m

)(
κ

∏
i=m+1

2−1(ai ∈ T ∩ ([2κ]\M))

κ

1
2π

)
,

with the last equality exploiting the fact that {a1,a2, . . . ,am} precisely equals M (by the definition

of M). Next, observe that if T1 ∼ T2, then by definition, T1∩ [2κ]\M = T2∩ [2κ \M implying

that the second part of the product is equal. However, since |T1|= |T2|= κ , the first part must

be equal as well, as |T c∩M|= κ−|T c∩ [2κ]\M|. It follows that the probability densities are

the same. Note that this observation also implies the second claim, that |T1∩M|= |T2∩M| and

T c
1 ∩M|= |T c

2 ∩M|

Finally, to show the second part of the claim, we simply observe that for a set T , the sets

L and L′ from Definition E.3.10 are precisely T ∩M And T c∩M. For T = T1,T2, by the second

claim, these have equal sizes.

We now return to the proof of Lemma E.3.20. Having shown the claim, we now return

to our original computation. Let T1,T2, . . . ,Tr denote sets of κ indices with [T1], [T2], . . . , [Tr]

denoting their respective equivalence classes such that [T1], . . . , [Tr] partition {T : S covers T}.

This is possible from the third part of our claim.

For 1≤ i≤ r, let mi = |Ti∩M| and m′i = |T c
i ∩M| where T c

i denotes the complement of

Ti. It follows from second part of our claim that |T ∩M|, |T c∩M| both equal mi as well for all

T ∈ [Ti].
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By partitioning our sum for Q(S,q) in using [T1], . . . , [Tr], we have

Q(S,q) = ∑
T :S covers T

1(2κ

κ

) Pr[S|pT ]
1(L∗ ⊆ T )(|T∩M|

κ/8

)
=

r

∑
i=1

∑
T∈[Ti]

1(2κ

κ

) Pr[S|pT ]
1(L∗ ⊆ T )(|T∩M|

κ/8

)
=

r

∑
i=1

Pr[S|pTi](2κ

κ

) ∑
T∈[Ti]

1(L∗ ⊆ T )( mi
κ/8

)
=

r

∑
i=1

Pr[S|pTi](2κ

κ

) (m−κ/8
mi−κ/8

)( mi
κ/8

) ,

with the last equality coming by counting the number of T ∈ [Ti] such that L∗ ⊆ T . This counting

problem essentially forces all κ/8 elements in L∗ to be in T leaving us to choose the remaining

elements in M that can be part of T .

By using the exact same line of reasoning for Q′(S,q), we have

Q′(S,q) = ∑
T :S covers T

1(2κ

κ

) Pr[S|pT ]
1(L∗ ⊆ T c)(|T c∩M|

κ/8

)
=

r

∑
i=1

∑
T∈[Ti]

1(2κ

κ

) Pr[S|pT ]
1(L∗ ⊆ T c)(|T c∩M|

κ/8

)
=

r

∑
i=1

Pr[S|pTi](2κ

κ

) ∑
T∈[Ti]

1(L∗ ⊆ T c)( m′i
κ/8

)
=

r

∑
i=1

Pr[S|pTi](2κ

κ

) (m−κ/8
m′i−κ/8

)
( m′i

κ/8

) ,

Here the only difference ends up being that we use m′i instead of mi since we have effectively

replaced T with T c. However, this replacement only takes place for q, the component of the

probability that deals with S is identical for both Q and Q′.

Finally, based on these equations, it suffices to show that
(m−κ/8

m′i−κ/8)

(
m′i

κ/8)
=

(m−κ/8
mi−κ/8)

( mi
κ/8)

. To do so,
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since mi = |Ti∩M| and m′i = |T c
i ∩M|, it follows that mi +m′i = m. Using this, we have that

(m−κ/8
mi−κ/8

)( mi
κ/8

) =
(m−κ/8)!(κ/8)!(mi−κ/8)!

(mi−κ/8)!(m−mi)!mi!

=
(m−κ/8)!(κ/8)!

m′i!mi!
.

Applying the same manipulation to
(m−κ/8

m′i−κ/8)

(
m′i

κ/8)
completes the proof.

Step 4: finishing the overall proof.

Let κ be a sufficiently large integer. It suffices to show that there exists a probability

distribution p with 1
9κ
≤ pε ≤ 2

3κ
such that mp(ε,δ )> κ . Assume towards a contradiction that

no such p exists, meaning that mp(ε,δ )≤ κ for all p satisfying the above.

Let T ⊂ [2κ] satisfy T = [2κ]. By Lemma E.3.9, 1
9κ
≤ (pT )ε ≤ 2

3κ
. It follows that with

probability at least 1−δ over S∼ pκ
T and q∼ AT (S) along with the randomness of B,

cr−ε
q − ε ≤ B(S,q)≤ crε

q + ε,

with cr−ε
q ,crε

q denoting the appropriate data-copying rates for q with respect to p.

By Lemma E.3.13, if S covers T , then cr−ε
q ≥

λ (1+ε)
24 =

13 4
3

24 > 2
3 . By Lemma E.3.15, S

covers T with probability at least 1−4exp
(
− κ

2048

)
. Substituting this, we have

1−δ ≤ ES∼pκ
T
Eq∼AT (S)EB1

(
B(S,q)≥ cr−ε

q − ε
)

= ES∼pκ
T
1(S does not cover T )+ES∼pκ

T
1(S covers T )Eq∼AT (S)EB1

(
B(S,q)>

1
3

)
≤ 4exp

(
− κ

2048

)
+ES∼pκ

T
1(S covers T )Eq∼AT (S)EB1

(
B(S,q)>

1
3

)
,

with the substitutions for cr−ε
q − ε utilizing that ε = 1

3 .

Applying this over the distribution, F (Definition E.3.16), which comprises of all
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(pT ,AT ) with T chosen at uniform over all subsets of size κ , and then substituting the definition

of Q (Definition E.3.17), we have

1−δ −4exp
(
− κ

2048

)
≤ E(pT ,AT )∼FES∼pκ

T
Eq∼AT (S)1(S covers T )EB1

(
B(S,q)>

1
3

)
= E(S,q)∼Q1((S,q) is nice)EB1

(
B(S,q)>

1
3

)
=

1
1−Pr(S,q)∼Q[(S,q) is not nice]

E(S,q)∼Q∗EB1

(
B(S,q)>

1
3

)
≤ E(S,q)∼Q∗EB1

(
B(S,q)>

1
3

)
,

(E.27)

where Q∗ denotes the marginal distribution of Q over all nice (Definition E.3.18) pairs (S,q).

Note that the manipulation above holds because of Lemma E.3.19, which implies that (S,q) is

nice if and only if S covers T .

Next, we apply the same exact reasoning to the pair (pT ,A′T ). To this end, we have that

with probability at least 1−δ over S∼ pκ
T , q∼ A′T (S), along with the randomness of B,

cr−ε
q − ε ≤ D(S,q)≤ crε

q + ε.

By Lemma E.3.13, if S covers T , then crε
q = 0. Applying the same argument as above

using Lemma E.3.15, we have that

1−δ −4exp
(
− κ

2048

)
≤ ES∼pκ

T
1(S covers T )Eq∼A′T (S)

EB1

(
B(S,q)≤ 1

3

)
.

Applying this over the distribution F ′ (Definition E.3.16) and using a similar set of manipulations
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as we did with F and Q, we have that

1−δ −4exp
(
− κ

2048

)
≤ E(pT ,A′T )∼F ′ES∼pκ

T
Eq∼A′T (S)

1(S covers T )EB1

(
B(S,q)≤ 1

3

)
≤ E(S,q)∼Q′∗EB1

(
B(S,q)≤ 1

3

)
,

(E.28)

where Q′∗ denotes the marginal distribution of Q′ over nice pairs (S,q).

Finally, by Lemma E.3.20, Q′∗ and Q∗ follow the exact same distribution. This means

that summing equations E.27 and E.28, we can combine the summands inside the expectation

giving us that

2−2δ −8exp
(
− κ

2048

)
≤ E(S,q) simQ∗EB

(
1

(
B(S,q)>

1
3

)
+1

(
B(S,q)≤ 1

3

))
= 1.

This gives a contradiction as this equation is clearly false when κ is sufficiently large (as δ = 1
3 ).
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Canada, pages 5234–5243, 2018.

[71] Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen. Improved techniques for training gans. CoRR, abs/1606.03498, 2016. URL
http://arxiv.org/abs/1606.03498.

[72] Eitan Richardson and Yair Weiss. On gans and gmms. In Samy Bengio, Hanna M. Wallach,
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[77] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret
sharer: Evaluating and testing unintended memorization in neural networks. In Nadia

253

https://doi.org/10.1109/ICIP40778.2020.9191083
http://arxiv.org/abs/1606.03498
https://proceedings.neurips.cc/paper/2021/file/eae15aabaa768ae4a5993a8a4f4fa6e4-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/eae15aabaa768ae4a5993a8a4f4fa6e4-Paper.pdf
https://doi.org/10.1145/3447548.3467198
https://arxiv.org/abs/2202.07646


Heninger and Patrick Traynor, editors, 28th USENIX Security Symposium, USENIX Security
2019, Santa Clara, CA, USA, August 14-16, 2019, pages 267–284. USENIX Association,
2019.

[78] Cynthia Dwork. Differential privacy. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone,
and Ingo Wegener, editors, Automata, Languages and Programming, 33rd International
Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part II, volume
4052 of Lecture Notes in Computer Science, pages 1–12. Springer, 2006.

[79] Adam Block, Zeyu Jia, Yury Polyanskiy, and Alexander Rakhlin. Intrinsic dimension
estimation using wasserstein distances. Journal of machine learning research, 1533-7928,
2022.

[80] Robert B. Ash. Information theory. Dover Publications, 1990.

[81] Sanjoy Dasgupta, Daniel J. Hsu, and Claire Monteleoni. A general agnostic active learning
algorithm. In John C. Platt, Daphne Koller, Yoram Singer, and Sam T. Roweis, editors,
Advances in Neural Information Processing Systems 20, Proceedings of the Twenty-First An-
nual Conference on Neural Information Processing Systems, Vancouver, British Columbia,
Canada, December 3-6, 2007, pages 353–360. Curran Associates, Inc., 2007.

[82] Norbert Sauer. On the density of families of sets. Journal of Combinatorial Theory, Series
A, 13(1):145–147, 1972.

[83] Saharon Shelah. A combinatorial problem; stability and order for models and theories in
infinitary languages. Pacific Journal of Mathematics, 41(1):247–261, 1972.

254


	Dissertation Approval Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	When are Non-Parametric Methods Robust?
	Introduction
	Related Work

	Preliminaries
	Setting
	Notions of Consistency
	Non-parametric Classifiers

	Warm Up: r-separated distributions
	General Distributions
	The r-Optimal Classifier and Adversarial Pruning
	Convergence Guarantees

	Validation
	Experimental Setup
	Results
	Discussion

	Conclusion
	Acknowledgment

	Consistent Non-Parametric Methods for Maximizing Robustness
	Introduction
	Preliminaries
	The Neighborhood preserving Bayes optimal classifier
	Neighborhood Consistency

	Neighborhood Consistent Non-Parametric Classifiers
	Splitting Numbers
	Sufficient Conditions for Neighborhood Consistency
	Nearest Neighbors and Kernel Classifiers
	Histogram Classifiers

	Validation
	Related Work

	Sample Complexity of Robust Linear Classification on Separated Data
	Introduction
	Related Work

	Preliminaries
	Standard and Robust Loss
	Expected Loss and Sample Complexity
	Linear classifiers
	Linear r-separability

	Lower Bounds
	Comparison with ravikumar20 and Schmidt18
	Intuition behind Theorem 3.3.2

	Upper Bounds
	Generalization to Kernel Classifiers


	Robust Empirical Risk Minimization with Tolerance
	Introduction
	Related Work
	Preliminaries
	Robust PAC-learning

	Robust Empirical Risk Minimization on Linear Classifiers
	Tolerant PAC learning
	Tolerant RERM oracles

	Tolerant PAC learning for Regular Hypothesis Classes
	Regular hypothesis classes
	Our Algorithm
	Proof of Theorem 4.1.2


	Data-Copying in Generative Models: A Formal Framework
	Introduction
	Related Work

	A Formal Definition of Data-Copying
	Examples of data-copying
	Limitations of our definition

	Detecting data-copying
	Regular Distributions
	Distributions with Manifold Support
	Estimation over regular distributions

	A Data-copy detecting algorithm
	Performance of Algorithm 6
	Applying Algorithm 6 to Halfmoons

	Is smoothness necessary for data copying detection?
	Conclusion

	Appendix for Chapter 1
	Proofs for r-separated distributions
	Proofs for general distributions
	Experimental Details
	Optimal attacks against histogram classifiers


	Appendix for Chapter 2
	Further Details of Definitions and Theorems
	Non-Parametric Classifiers
	Splitting Numbers
	Stone's Theorem

	Proofs
	Proofs of Theorems 2.3.3 and 2.3.4
	Proof of Theorem 2.4.1
	Proof of Theorem 2.4.4
	Proof of Corollary 2.4.5
	Proof of Corollary 2.4.6

	Useful Technical Definitions and Lemmas
	The support of a distribution

	Experiment Details

	Appendix for Chapter 3
	Expanded summary of ravikumar20
	The limiting case

	Proof of Theorem 3.3.2
	Constructing 
	Bounding the expected robust loss

	Proofs for Algorithm 2
	Origin Case
	General Case

	Details for Kernel Algorithm

	Appendix for Chapter 4
	Details for the proof of Theorem 4.4.2
	Sample Oracle Lower Bounds
	Robust VC for k points
	Proof of Theorem 4.6.6

	Appendix for Chapter 5
	An Example over the Halfmoons dataset
	Experimental Setup
	Results
	Further Experimental Details

	Estimating k
	Proofs
	Proof of Theorem 5.2.3
	Proof of Proposition 5.4.2
	Proof of Proposition 5.4.3
	Proof of Theorem 5.5.1
	Proof of Theorem 5.6.1


	Bibliography



