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S U M M A R Y
We investigated the likelihood of radial anisotropy in the shallow and deep upper mantle, in-
cluding the mantle transition zone (MTZ) under the Indian Ocean. Seismic anisotropy can be
an indicator of mantle deformation through lattice preferred orientation of anisotropic crystals
in the mantle. It has thus the potential to illuminate Earth’s dynamic interior, but previous
seismic tomography studies have not achieved consensus on the existence of radial anisotropy
below ∼250 km depth. We developed a fully nonlinear transdimensional hierarchical Bayesian
Markov Chain Monte Carlo approach to invert fundamental and higher mode surface wave dis-
persion data and applied it to a subset of a global Love and Rayleigh wave data set. We obtained
posterior model parameter distributions for shear wave velocity (VS) and radial anisotropy ξ

under the Indian Ocean. These posterior model distributions were used to calculate the proba-
bility of having radial anisotropy at different depths. We demonstrated that separate inversions
of Love and Rayleigh waves yield models compatible with the results of joint inversions within
uncertainties. The obtained pattern of VS anomalies agrees with most previous studies. They
display negative anomalies along ridges in the uppermost mantle, but those are stronger than
for regularized inversions. The Central Indian Ridge and the Southeastern Indian Ridge present
velocity anomalies that extend to ∼200 km depth, whereas the Southwestern Indian Ridge
seems to have a shallower origin. Weaker, laterally variable velocity perturbations were found
at larger depths. The anisotropy models differ more strongly from regularized inversion results
and their uncertainties were rather large. We found that anisotropy models from regularized
inversions also depend on the chosen parametrization, which is consistent with the existence
of a large model null-space. Apart from a fast horizontally polarized shear wave signal in the
top 100 km, likely reflecting the horizontal plate motion due to asthenospheric deformation,
no clear relation to surface geology was detected in the anisotropy models. We found that,
although the anisotropy model uncertainties are rather large, and lateral variations are present,
the data generally prefer at least 1 per cent anisotropy in the MTZ with fast vertically polarized
shear waves, within errors. Incorporating group velocity data did not help better constrain
deep structure by reducing parameter trade-offs. We also tested the effect of prior constraints
on the 410- and 660-km topography and found that the undulations of these discontinuities
had little effect on the resulting models in our study region.

Key words: Inverse theory; Probability distributions; Seismic anisotropy; Seismic tomogra-
phy; Surface waves and free oscillations.

1 I N T RO D U C T I O N

Seismic anisotropy, which is the directional dependence of wave
propagation, can provide clues to the properties and dynamics of the
mantle. Radial anisotropy is the change in seismic wave velocity be-
tween the horizontal and vertical direction. Seismic anisotropy can
occur via shape preferred orientation (SPO), which occurs where

multiple isotropic mediums are stacked on top of each other, such
as melt pockets and cracks (Kendall & Silver 1998; Faccenda et al.
2008; Sakamaki et al. 2013). Although the individual mediums
are isotropic, the bulk medium has directional dependence. Seis-
mic anisotropy can also develop due to the crystallographic or lat-
tice preferred orientation (CPO or LPO) of intrinsically anisotropic
crystals. If such crystals can deform by dislocation creep, they may
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partially align within the strain field caused by mantle convection,
resulting in bulk anisotropy that may be observable at the seismic
scale. There are abundant observations of seismic anisotropy in
the crust and upper mantle, both globally and regionally. Radial
anisotropy was first proposed by Anderson (1962) to explain ap-
parent discrepancies between shear wave velocity models derived
from inversions of Love wave dispersion curves and those resulting
from Rayleigh wave data. The Preliminary Reference Earth Model
(PREM, Dziewonski & Anderson 1981) was the first global model
to include this type of anisotropy in the top 220 km of the mantle.
Since then, many global and regional studies have found evidence
for its presence in the uppermost mantle (Montagner & Tanimoto
1991; Shapiro & Ritzwoller 2002; Visser et al. 2008a).

LPO of olivine is the prevailing explanation for the existence
of seismic anisotropy at these depths due to the abundance of this
mineral in the mantle and its high single crystal anisotropy (Main-
price et al. 2005). Mantle convection is thought to be the origin
of LPO in the upper mantle, which is supported by observations
of the seismically fast axes in the asthenosphere aligning with ab-
solute plate motion (Becker et al. 2003; Debayle & Ricard 2013;
Beghein et al. 2014; Burgos et al. 2014). Therefore, improving
our constraints on seismic anisotropy is important to better under-
stand the nature of mantle convection. In particular, determining
whether it is present in the mantle transition zone (MTZ) is im-
portant since this region likely plays an important role in Earth’s
thermal evolution, but it is a challenging problem. Improving con-
straints on upper mantle anisotropy can also help determine the
depth of the lithosphere–asthenosphere boundary (LAB), which
directly relates to the fundamental concept of plate tectonics. Ad-
ditionally, vertical changes in seismic anisotropy can indicate lay-
ering in the upper mantle. This, in turn, can provide insight on
the LAB depth and can indicate the existence of compositional
boundaries (Smith et al. 2004; Yuan & Romanowicz 2010; Beghein
et al. 2014).

While the presence of seismic anisotropy in the upper 250 km
of the mantle, in the lowermost mantle, and in the inner core is
well established, its existence in the rest of the mantle is still de-
bated. For decades, seismic anisotropy had not been observed in
the deep upper mantle or in most of the lower mantle, which was
interpreted as an indication that deformation at those depths did
not produce LPO (Karato & Wu 1993). More recently, however,
radial and azimuthal anisotropy observations below 250 km depth,
including in and below the MTZ, have challenged this view (e.g.
Gung et al. 2003; Panning & Romanowicz 2006; Yuan & Beghein
2013, 2014; Lynner & Long 2015; Huang et al. 2019). Constrain-
ing seismic anisotropy in the deep upper mantle is, however, not
straightforward. Body waves do not generally have good vertical
resolution as they travel quasi-vertically. Some shear wave split-
ting analyses using source-side measurements have been able to
identify seismic anisotropy originating from large depths, though
they cannot separate the contribution of the uppermost mantle from
that of the transition zone and lower mantle (Lynner & Long 2014,
2015). Tomographic studies that include higher mode surface wave
dispersion and/or long-period body waveforms generally result in
models with better depth resolution, but lower lateral resolution.
Several recent publications have reported seismic anisotropy of up
to a few percents in the transition zone (e.g. Panning & Romanowicz
2006; Yuan & Beghein 2013; Auer et al. 2014; Moulik & Ekström
2014; Yuan & Beghein 2014; Chang et al. 2015; Ferreira et al.
2019), but there are large discrepancies between models at those
depths (Schaeffer et al. 2016). Differences in the models can arise

from differences in the data sets, but also from different inversion
techniques and applied regularizations.

Tomographic inverse problems are typically solved by trying to
minimize a cost function that measures the distance between data
and model predictions in a least-squares sense. They are, however,
generally not well posed and can thus be highly non-unique, that is,
several solutions can explain the data equivalently well. Traditional
inverse methods deal with this non-uniqueness by imposing subjec-
tive regularizations, but those can have significant impacts on the
calculated solution. These regularizations include the choice of the
reference model, the model parametrization, and/or the choice of
ad hoc damping parameters that compromise between minimizing
the misfit and the size of the model (Trampert 1998). In addition,
regularized inversions can underestimate model uncertainties as the
posterior model covariance is generally smaller than the prior by
construction (Tarantola 2005). In addition, resolution analyses for
regularized inverse methods depend on the regularization, which
may give a false sense of certainty in some model parameters. It
should also be noted that errors in tomographic models can be
introduced by errors or approximations in the forward theory. One
common example in seismic tomography is solving linearized equa-
tions instead of the full nonlinear problem.

In this study, in order to avoid some of these issues, we de-
veloped a Hierarchical Transdimensional Bayesian (TB) inverse
method (Sambridge et al. 2005; Bodin et al. 2012, 2016; Gao &
Lekić 2018), which uses a reversible jump Monte Carlo Markov
Chain (rj-MCMC) algorithm (Green 1995, 2003; Gallagher et al.
2009) to solve the nonlinear forward problem associated with calcu-
lating higher mode surface wave dispersion from an interior model.
With advances in computing, Monte Carlo methods, which repet-
itively solve the forward problem, have become more and more
common in geophysics and seismic tomography in particular. An
advantage of these techniques is that they can solve nonlinear prob-
lems directly instead of relying on a linearized approximation of
the problem. In addition, besides the choice of the prior model
parameter distribution, they do not require as much regularization
as traditional inverse methods. By testing thousands or millions of
possible models, they can provide an ensemble of solutions that fit
the data instead of choosing a single one with a subjective regu-
larization. This provides quantitative posterior model uncertainties
and allows for an estimate of the probability of different values of
the model parameters. In our study, we used the resulting parameter
distributions to determine the likelihood of the presence of radial
anisotropy at different depths in the upper mantle.

It should be noted that a different fully nonlinear approach to
the same problem was previously taken by Visser et al. (2008a) to
determine the likelihood of radial anisotropy in the top 1400 km
of the mantle at the global scale. They had found that 1–2 per cent
radial anisotropy with vertically polarized shear waves travelling
faster than horizontally polarized shear waves was likely in the MTZ
globally. Our technique has, however, several possible advantages
compared to their work. First, it allows for the depth parametrization
to change during the model space search, letting the data guide how
complicated the model needs to be instead of imposing a fixed
set of basis functions a priori. Second, the hierarchical nature of
our MCMC algorithm enables us to include the data noise among
the unknowns. Using incorrect data noise can negatively impact
the accuracy of inversion results (Bodin et al. 2012). Instead, by
inverting for data noise, we allow the algorithm to decide how
much noise is needed in order to explain the measurements without
overfitting them.
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In this manuscript, we first present the data and method employed.
Second, we demonstrate the dependence of radial anisotropy mod-
els on the regularization imposed when performing linearized in-
versions. Third, we apply our TB technique to a fundamental and
higher mode surface wave data set sampling the Indian Ocean and
compare the results with those of a regularized inversion. Fourth,
we test the performance of the method with synthetic tests. Finally,
we briefly discuss the results before drawing conclusions.

2 DATA

The measurements used in this study are the Rayleigh and Love
wave fundamental and higher mode phase velocity maps measured
by Visser et al. (2008b). The authors used a model space search to
perform those measurements, which allowed them to also calculate
quantitative data uncertainties. Both Rayleigh and Love waves are
necessary to constrain radial anisotropy as they each are sensitive
to separate shear wave velocity polarization directions. Rayleigh
waves are primarily sensitive to vertically polarized shear wave
speed (VSV), and Love waves are primarily sensitive to horizontally
polarized shear wave speed (VSH). The Voigt average bulk shear
wave speed (VS) and radial anisotropy (ξ ) can be calculated from
VSV and VSH (Babuska & Cara 1991):

VS =
√

(2V 2
SV + V 2

SH )/3 (1)

ξ = V 2
SH /V 2

SV (2)

Both wave types are also sensitive to density, ρ, and Rayleigh waves
are additionally sensitive to elastic parameters relating to compres-
sional wave velocities. However, due to the existence of parameter
trade-offs, Rayleigh waves and Love waves can only resolve shear
wave parameters. We thus inverted explicitly only for the two S-
wave velocity parameters, VSH and VSV, and scaled the remaining
parameters, as detailed in Section 3.

Visser et al. (2008b) measured phase velocity dispersion for
branches up to the sixth overtone for Rayleigh waves and up to
the fifth overtone for Love waves. Including higher mode data is
critical to constrain elastic structure beyond the uppermost 200 km
of the mantle because they are sensitive to deeper structure than fun-
damental modes at the same period. Sensitivity curves for VS and ξ

for this data set are displayed in Fig. 1 at periods between 35 and
175 s. They show that the higher modes are much more sensitive to
structure below 200 km than the fundamental modes, and demon-
strate that the data set used in this study is sensitive to structure
well below the bottom of the MTZ. For this work, we employed the
commonly used approach of discretizing the phase velocity maps
into 5◦ × 5◦ cells, with each cell being assigned velocities based
on the values of the maps at the centre of the grid cell. The surface
wave velocities were inverted at each of the resulting 238 grid cells
separately using different methods, as described in Section 3, to
obtain 1-D shear wave velocity depth profiles. The obtained indi-
vidual 1-D velocity profiles were then used to construct shear wave
velocity and anisotropy maps.

One caveat of discretizing phase velocity maps, which result
from the linearized inversion of path-averaged measurements, is
that it implicitly assume each grid cell is independent of the other.
However, some trade-offs can be expected between structure along
paths, especially where coverage is imperfect. In addition, the inher-
ent differences in station-quake distribution for Love and Rayleigh
can yield differences in the lateral resolution, but in our case it
will mostly affect the small-scale features of the phase velocity

maps. Visser et al. (2008b) indeed determined that their fundamen-
tal modes had generally good coverage and they estimated the lateral
resolution of both their fundamental mode Love and Rayleigh wave
phase velocity maps to correspond to spherical harmonic degree
25. So, overall the two types of data have similar resolution and
it should not affect our discussion. A greater concern might be
that the resolution of the fundamental mode phase velocity maps
is greater than that of the overtones. Visser et al. (2008b) showed
that the higher modes path coverage was very good in the Northern
Hemisphere, but the Southern Hemisphere, where our study region
is located, may suffer from poorer lateral resolution. In addition, the
authors chose their regularization to insure that the relative model
uncertainty remains constant for all modes. They explained that they
opted for a compromise between aiming for a constant resolution
for all modes and an increasing uncertainty for higher modes. A
constant resolution would have been preferable for depth inversions
but they opted against it due to the large difference in the number
of data between modes. So, while we do not think these differences
in resolution affect the discussion of the longer wavelength features
we highlight in our paper, the reader should keep these caveats in
mind.

3 M E T H O D

In this study, we compared results from regularized linear inversions
of phase velocity maps with those obtained with a fully nonlinear
Bayesian approach. Both methods are described below.

3.1 Regularized inversion

The relation between perturbations in phase velocity, c and pertur-
bations in the parameters m describing the physical state of Earth’s
interior can be written as follows (Woodhouse & Dahlen 1978):

δd(T ) =
∫ R

0
Km(T, r )δm(r ) dr +

∑
b

δdb Kb(T ) (3)

where R is the radius of the Earth, δd represents the phase or group
velocity data, T is the period considered and b is the boundary
radius. Km(T, r) is a sensitivity kernel that maps perturbations to
the elastic model m at depth r to velocity change. Kb is a boundary
kernel for internal boundary b that relates perturbations in the depth
db of the boundary to a perturbation in phase velocity. The vector
m contains all the model properties, that is, density and elastic
parameters, and a sum over each one of them is implicit. Km are
sensitivity kernels, or partial derivatives, for model perturbations
δm. An identical relation exists for group velocities.

When constraining radial anisotropy, one needs to account for five
elastic parameters in addition to density. These elastic parameters
are : L and N, which relate to the speed of vertically and horizontally
polarized shear waves, respectively (V 2

SV = L/ρ and V 2
SH = N/ρ);

C and A, which relate to P-wave speed for waves travelling vertically
and horizontally, respectively (V 2

PV = C/ρ and V 2
P H = A/ρ); and

F, which describes waves travelling at intermediate angle. If we
define η = F/(A − 2L), we thus have (Montagner 1986):

δd(T ) =
∫ R

0
[KVSV (T, r )δVSV (r ) + KVSH (T, r )δVSH (r )

+ KVPV (T, r )δVPV (r ) + KVP H (T, r )δVP H (r )

+ Kη(T, r )δη(r ) + Kρ(T, r )δρ(r )] dr

+
∑

b

δdb Kb(T ) (4)
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Figure 1. Rayleigh (left) and Love (right) wave phase velocity (c) sensitivity kernels for perturbations in VS (top) and ξ (bottom) between 35 and 175 s period
for fundamental (n = 0) and higher modes (n > 0).

Among these six parameters, only the two shear wave related
parameters can be reasonably well resolved with surface waves
(e.g. Beghein & Trampert 2004). It is customary to assume scal-
ing relationships for the other parameters and to invert for the
shear wave parameters only. Such relationships were derived by
Montagner & Anderson (1989) for the uppermost 200 km of the
mantle and are commonly used in surface wave inversions for

radial anisotropy (e.g. Panning & Romanowicz 2006; Xing &
Beghein 2015):

δ ln VP

δ ln VS
= 0.5 (5)

δ ln ρ

δ ln VS
= 0.33 (6)
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δ ln φ

δ ln ξ
= −2.5 (7)

δ ln η

δ ln ξ
= −1.5 (8)

While these relations are strictly only valid for the shallow upper
mantle, studies have shown that using them for the deeper mantle
does not affect the shear wave velocity or anisotropy model signifi-
cantly (Panning & Romanowicz 2006). We thus applied them to the
entire depth range of interest. Eq. (3) then becomes:

δd(T ) =
∫ R

0

[
K ′

VSV
(T, r )δVSV (r ) + K ′

VSH
(T, r )δVSH (r )

]
dr

+
∑

b

δdb Kb(T ) (9)

where the K
′
kernels are linear combinations of the kernels in eq. (4).

The problem can alternatively be described in terms of perturbations
in bulk shear wave velocity and anisotropy:

δd(T ) =
∫ R

0

[
KVS (T, r )δVS(r ) + Kξ (T, r )δξ (r )

]
dr

+
∑

b

δdb Kb(T ) (10)

where VS and ξ are defined in eqs (1) and (2).
These equations can be discretized by introducing a basis function

to parametrize the depth dependence of the model parameters. We
chose a basis function in terms of J splines Sj:

m(r ) =
J∑

j=1

m j S j (r ) (11)

eq. (3) then becomes:

δd(T ) =
2∑

i=1

J∑
j=1

m j
i

∫ R

0
Kmi (T, r )Sj (r ) dr

+
∑

b

δdb Kb(T ) (12)

where index i is for each one of the two elastic parameters we solve
for. The forward problem can thus be written as:

d = Gm (13)

where d is the data vector. G is the kernel matrix that maps the
model space into the data space:

Gkj =
∑

i

∫ R

0
K k

mi
(r )Sj (r )dr (14)

with Gkj an element of G, and K k
mi

(r ) the sensitivity kernel for the
ith model parameter in m and the kth measurement in d.

A generalized inverse matrix, Gg , can be calculated via singular
value decomposition (SVD) and can be used to determine a least-
squares solution m (Jackson 1972; Lanczos 1961; Wiggins 1972).
If G is a n × m matrix where n is the number of data points and m
is the number of model parameters, it can be decomposed into:

G = U�VT (15)

where U is a n × n matrix of eigenvectors that span the data space,
� is a n × m diagonal matrix whose columns are non-negative
eigenvalues λi and V is a m × m matrix of eigenvectors that span the
model space. The λ2

i are the singular values of G. The generalized

inverse of G is thus:

Gg = Vp�
−1
p UT

p (16)

where p is the number of non-zero eigenvalues. The estimated model
parameters mest are then given by a sum limited to the non-zero
eigenvalues to insure stability of the solution:

mest = Ggd (17)

Here, we applied the method of Matsu’Ura & Hirata (1982) to
determine p: we first normalize G by the data covariance matrix Cd

and a prior model covariance matrix Cm :

G† = C−1
d GCm (18)

We then calculated its eigenvalues and determined the solution us-
ing all the eigenvalues smaller or equal to unity. For Cd , we used
a diagonal matrix and the uncertainties estimated by Visser et al.
(2008b). The choice of model covariance matrix acts as implicit
regularization as it yields a different cutoff in the number of eigen-
values (Snieder & Trampert 2000).

In this study, we inverted Love and Rayleigh waves jointly using
the SVD technique described above, and compared models ob-
tained with different prior values for Cm and with different model
parametrizations (eqs 9 and 10). The goal was to illustrate the effect
of explicit and implicit choices of regularization on the solution.
The misfit (φd) was defined by:

φd = 1

N

N∑
i=1

(dobs
i − dpre

i )2, (19)

where N is the total number of measurements, dobs
i is the ith mea-

sured data and dpre
i is the ith predicted data calculated with eq. (12).

We followed Xing & Beghein (2015) and corrected for the effect
of the crust by applying nonlinear crustal corrections based on the
3-D crustal model CRUST 1.0 (Laske et al. 2013). To calculate
these nonlinear crustal corrections, we divided the phase velocity
maps into 1◦ × 1◦ cells and, at each grid cell, we created local 1-D
models composed of CRUST1.0 and the PREM mantle. At each
grid cell, we then used MINEOS (Masters et al. 2011) to predict
phase velocities for the local 1-D models and for the pure PREM.
The difference between the predicted phase velocities for those two
models constitutes the contribution of CRUST1.0 to the phase ve-
locities. Then, it was subtracted from the real measurements so that
the corrected data contain information about mantle structure only.
The corrected phase velocity maps were divided into 5◦ × 5◦ cells.
Inversions were performed at each grid cell using sensitivity kernels
calculated for the local reference model.

3.2 Transdimensional Hierarchical Bayesian method

While solving the inverse problem using the regularized method
described above is relatively simple and efficient, it yields solutions
that depend on the regularizations imposed, including the choice of
a reference model. In addition, posterior model uncertainties can
be underestimated if the model null-space is large (Trampert 1998),
and the nonlinear relation between phase velocity and structure are
approximated by linearized equations. We thus developed instead a
nonlinear model space search approach to find a range of plausible
solutions instead of choosing one with a subjective regularization.
Our technique is based on the hierarchical TB method of Bodin
et al. (2012) to explore the model space with an rj-MCMC method,
which we combined with Fortran code MINEOS (Masters et al.
2011) to solve the forward problem. At each iteration, the fully
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nonlinear forward problem is solved by using MINEOS directly to
calculate the dispersion, as opposed to using a linearized approach
with sensitivity kernels as done in the SVD method. As stated
before, some of the advantages of this method compared to tradi-
tional inversions include the fact that the depth parametrization can
change at each iteration, allowing the data themselves to constrain
how complicated the model needs to be. In addition, unknown data
noise can be simultaneously inverted for instead of being fixed at a
presumed level, which reduces the risk of mapping noise into the
model. Another advantage is that model parameters are described by
probability density functions (PDFs), which can be used to quantify
their uncertainties.

In this study, noise was assumed to be Gaussian, and we chose to
parametrize the models as a set of layers. For each layer, a Voronoi
nuclei defines its elastic parameter, and the boundaries between lay-
ers are the midpoints between adjacent nuclei. The number of points
and their depths are allowed to change at each iteration, meaning
that the model depth parametrization is a variable of the inversion,
in addition to the elastic parameters for each layer. Monte Carlo
inversions are generally time-consuming, and this is especially true
when solving the forward problem with MINEOS. Minimizing the
number of unknowns to solve for is thus important. For this purpose,
we inverted Love and Rayleigh waves separately for VSH and VSV,
respectively. We verified that the models obtained were equivalent
to joint inversion results (see Section 5.1). Scaling relations were
imposed on the other elastic parameters as in Section 3.1 (Mon-
tagner & Anderson 1989). The resulting distributions of 1-D VSH

and VSV profiles were then sampled and used to calculate VS and ξ

distributions (eqs 1 and 2).
With a hierarchical TB approach, model parameters or data noise

level are perturbed iteratively, and each new model and data noise
combination is either accepted or rejected based on an acceptance
criteria as described below. If a change is accepted, the iteration
repeats with the modified parameter, and a parameter is randomly
selected to be perturbed again. If rejected, the iteration repeats with
the model and noise used prior to the modification. Every 100
iterations, the current model is added to the ensemble of solutions.
This process is repeated thousands of times in order for the chain to
reach convergence, after which the saved ensemble of models gives
a posterior for VSH or VSV. For our application, each chain had a
burn-in period of 50 000 iterations before models were saved. We
then ran enough chains and iterations to get 10 000 samples after
the burn-in period.

Data noise perturbations consisted in random values generated
from a prior Gaussian distribution that were added to the original
noise following level. A model perturbation can consist in moving
a Voronoi nucleus, inserting or removing a nucleus, or randomly
modifying the elastic parameters at a nucleus using a prior Gaus-
sian distribution. The acceptance or rejection criteria used depends
on the likelihood and the prior probability as described in Bodin
et al. (2012). According to Bayes’ (1763) theorem, the posterior
probability of having model m when a set of observed data dobs is
fixed was given by:

p(m|dobs) ∝ p(dobs|m)p(m), (20)

where p(dobs|m) is the likelihood function, which gives the proba-
bility of observing data given a particular model, and p(m) is the a
priori probability of model m, which reflects our prior knowledge
on the parameters before having the observed data. The acceptance
criteria compares the posterior for the perturbed model to that of the
original model. The larger the perturbed model posterior, the higher
the likelihood the new model will be accepted. Here, the likelihood

function is defined by:

p(dobs|m) = 1√
(2πσ 2)N

e
−(dpre−dobs)2

2σ2 (21)

where dpre are the data predicted by model m, N is the total number
of measurements and σ is the total data noise level. The prior can
be written as:

p(m) = p(c, v|k)p(k)p(h), (22)

where c is the set of depths of the Voronoi nuclei associated with
m, v is the set of wave velocities, k is the number of Voronoi nuclei
and h is the set of noise parameters.

In Bodin et al. (2012), the prior p(c, v) was a uniform distribution
that was constant with depth. Thus, p(c, v|k) can be written as the
product of p(c|k) and p(v|k). The prior probabilities of models with
the same number of Voronoi nuclei are equal, but they differ when
layers are added and removed due to the prior on the velocities:

p(v|k) =
k∏

i=1

p(vi |k) (23)

p(vi |k) =
{

1
�v

Vmin ≤ vi ≤ Vmax

0 otherwise
(24)

where vi is the velocity of the ith Voronoi nuclei and �v is the range
of allowable velocities. In our case, the prior on VSV or VSH is a
uniform distribution within 10 per cent of CRUST1.0 in the crust
and within 10 per cent of PREM in the mantle. In contrast with our
linearized inversions, the data are not corrected for the effect of the
crust. Instead, the nonlinear inversions invert for structure in the
crust as well as in the mantle. Since velocities are generally increas-
ing with depth, δv increases with depth. This depth-dependent prior
means that points at shallower depths will generally have a higher
prior probability than points at larger depths.

4 L I N E A R I N V E R S I O N S R E S U LT S

4.1 Effect of explicit regularization and parametrization

Figs 2(a)–(h) and 3(a)–(h) illustrate how the choice of parametriza-
tion can affect the models in the case of a traditional inversion
method using linearized equations. Figs S1 and S2 in the Support-
ing Information show the effect of explicit regularization. In one
case, we parametrized the models in term of perturbations in VS

and ξ relative to PREM (eq. 10), and in the other case we tested
a parametrization in terms of VSV and VSH perturbations (eq. 9),
and calculated dlnVS and ξ using eqs (1) and (2). We changed
the regularization by modifying the prior model covariance matrix
Cm (eq. 18), which resulted in different numbers of independent
parameters. Increasing the prior model variance is equivalent to de-
creasing a damping factor (Snieder & Trampert 2000) and increases
the number of independent parameters. The models displayed here
were obtained with one iteration of the SVD method. We also tested
whether a quasi-nonlinear inversion technique with iterative inver-
sions and sensitivity kernels updated at each iteration would yield
different results, but it did not change the models significantly.

For dlnVS at 100 km depth, increasing the number of independent
parameters does not significantly affect the strength of the anomalies
or their overall distribution across the study region (Fig. S1, Support-
ing Information). In both cases shown, oceanic ridges are associated
with negative velocity anomalies and Southeastern Africa and the
southern tip of India are characterized by positive velocity anoma-
lies. We found, however, that changing the parametrization (Figs S1
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Figure 2. (a)−(h) Bulk shear wave velocity perturbations estimated from the SVD inversion and (i)–(l) from the mean of the posterior distribution obtained
with the nonlinear TB inversion. Panels (a)-(d) were obtained using a parametrization in terms of VS and ξ perturbations. Panels (e)–(h) were obtained using a
parametrization in terms of VSV and VSH perturbations. The CIR, SWIR and SEIR branches are labelled in the top panels for reference.
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Figure 3. Same as Fig. 2, but for shear wave anisotropy.

and 2, Supporting Information) affects the strength of the dlnVS <

0 anomalies located under and near mid-ocean ridges: for the same
number of independent parameters, the parametrization in terms of
ξ and VS shows stronger negative dlnVS than the parametrization in

terms of VSV and VSH at 100 km depth (Fig. S1, Supporting Informa-
tion). In addition, the change in parametrization produces different
results under Madagascar where inversions for VSH and VSV yield
dlnVS > 0 whereas inversions for VS and ξ yield dlnVS < 0. This
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difference is important as it can lead to different interpretations of
the results in terms of lithospheric thickness under Madagascar or
in terms of temperature under the ridge, for instance.

For anisotropy, we observe a similar dependence of the model on
the parametrization and less so on the explicit regularization. Fig. 3
and Fig. S2 in the Supporting Information show that for the VSV

and VSH inversions at 100 km depth, both regularizations give ξ <

1 (i.e. VSV > VSH) at several locations, including under Madagascar,
eastern Africa, and along the Central Indian Ridge (CIR). On the
contrary, with the ξ and VS parametrization, most of the study area
is characterized by ξ < 1 (i.e. VSV < VSH). This dependence of
the anisotropy model on parametrization is an indication that the
model null-space and thus the model uncertainties are likely large.
Our tests also ]illustrate how the prior choice of parametrization
can affect the results. This is a well-known caveat of regularized
inversions since the choice of parametrization consists in a form
of implicit regularization (Trampert 1998), and this can affect the
solution in the existence of parameter trade-offs as one can expect in
joint Love–Rayleigh inversions (Crampin 1976; Kirkwood 1978).

4.2 Effect of mantle transition zone topography

In theory, topography of the MTZ boundaries can affect higher mode
phase velocities (eq. 12). Higher modes have thus the potential to
contain information about the MTZ thickness, which could be used
to constrain its thermochemical state (Meier et al. 2009). Here, we
tested the effect of MTZ topography on our results by first inverting
the dispersion data provided by Visser et al. (2008b) and corrected
for the effect of the crust as described above, and then comparing the
models with those obtained by inverting the same data set corrected
with a prior model of MTZ topography. For this, we used the 410
and 670 km topography values obtained by Huang et al. (2019)
with SS precursors and calculated their contributions to Rayleigh
and Love wave phase velocities (eq. 12). Fig. S3 in the Supporting
Information displays examples of MTZ topography corrections for
MTZ sensitive modes and shows that they are at least an order of
magnitude smaller than the measurements in the study region, and
are thus unlikely to have an effect on the models. These contributions
were nevertheless removed from the dispersion measurements and
the remaining signal was inverted for at several grid cells.

Fig. S4 in the Supporting Information shows the 1-D VS and ξ

profiles obtained at two different locations within the study area us-
ing data corrected for the crust and data corrected both for the crust
and for deviations in the depth of the 440 and 660 km boundaries.
We see that the effect of the boundary topography on the model ve-
locities is not significant as both sets of inversions produced models
that were nearly identical. This is in agreement with the study of
Meier et al. (2009) who inverted these same higher mode dispersion
measurements using neural networks and found that the 410- and
660-km topographies were not well constrained with respect to the
prior PPDFs. We thus proceeded with uncorrected data for the rest
of the study.

5 N O N L I N E A R I N V E R S I O N R E S U LT S

5.1 Joint versus separate inversions

Nonlinear inversions with Monte Carlo methods are computation-
ally prohibitive. This is especially true for joint Love and Rayleigh
wave inversions as they double the number of unknowns compared
to separate inversions. Previous studies have shown that Love and

Rayleigh wave velocities are sufficiently independent of each other
to justify separate inversions since Love waves are mostly sensitive
to VSH and Rayleigh waves are mostly sensitive to VSV. However,
most of those studies were based on regularized linear inversions
(e.g. Ekström & Dziewonski 1998) and may not apply to our study.
An exception is the work of Visser et al. (2008b) who used a fully
nonlinear Monte Carlo approach to invert for radial anisotropy at
the global scale. By separating the anisotropic PREM model into
a horizontally polarized model and a vertically polarized model,
the authors verified that dispersion curves calculated for Love and
Rayleigh waves separately assuming isotropy did not differ signifi-
cantly from those calculated for anisotropic PREM. The differences
were within data errors. They did not, however, compare joint and
separate nonlinear inversions of real dispersion data. For complete-
ness, we thus decided to verify whether this assumption is valid for
our method using real data.

For this purpose, we inverted Love and Rayleigh wave funda-
mental and higher mode dispersion data separately at a few grid
cells, and compared the models with those obtained from joint Love
and Rayleigh wave TB inversions (Fig. 4). An important aspect of
these joint inversions is that they were performed using indepen-
dent depth parametrizations for VSH and for VSV. As demonstrated
by Gao & Lekić (2018), inversions performed in a TB framework
that use identical choices of depth parametrizations for the dif-
ferent unknowns can bias structure estimates. This ‘attached-type’
parametrization is very common in seismology and has the advan-
tage of potentially reducing the number of parameters, but it also
constitutes a form of implicit regularization that imposes the same
geometry to all parameters. It often results in a model geometry
that is determined by the best-resolved parameters but that does not
necessarily appropriate for the others. We verified that this is true
for our data set as well. Fig. 4 compares results of joint inversions
with independent parametrizations for VSH and for VSV and results
of separate Love and Rayleigh wave inversions using our nonlinear
TB inversion approach. It displays the mean models and their 90
per cent confidence intervals on the same plots for the two types
of inversions. We can see that there are few differences between
the mean VSV models and between the mean reconstructed VS mod-
els. Some differences are, however, visible between the mean VSH

models and, consequently, between the mean ξ models, especially
in the top 300 km. This may be in part related to the shallower
sensitivity of Love waves compared to Rayleigh waves at the same
period, including sensitivity to the crust and shallowmost mantle for
shorter period waves. This could imply that solving for crustal and
shallow mantle anisotropy benefits from jointly inverting Rayleigh
and Love wave data, though we were not able to confirm this with
synthetic tests (Fig. S5, Supporting Information). Nevertheless, we
can also conclude that separate inversions yield equivalent results
to joint inversions as long as model uncertainties are accounted for.
We thus proceeded with separate inversions for the rest of our study.

5.2 Effect of noise parametrization

As explained above, one advantage of the TB method is that it can in-
vert for unknown data noise jointly with other parameters to prevent
the mapping of data uncertainties into the model. While the phase
velocity maps we used here (Visser et al. 2008b) were published
with quantitative uncertainties at each period, these uncertainties
resulted from averaging the errors on each measured earthquake-
station pair. They therefore do not reflect the lateral variations in
the uncertainties that can be caused by differences in ray coverage,
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Figure 4. Comparison of VSV (a) and VSH (b) models obtained by independent and joint Love and Rayleigh wave inversions using our TB method at (38◦S,
79◦E). The solid lines represent the mean model and the dashed lines represent their 90 per cent confidence interval. (c) and (d) represent the resulting VS and
ξ models, respectively, and their 90 per cent confidence interval.

for instance. It is thus reasonable for us to invert for data noise in
addition to VS and ξ instead of taking the values estimated by Visser
et al. (2008b) at face value. However, assumptions have to be made
about the prior noise distribution. On one hand, assuming that all
the measurements have the same Gaussian noise adds only one un-
known to the inverse problem and does not significantly increase the
computational cost. This assumption may not, however, be valid, in
which case any unmapped data noise can get mapped into the poste-
rior distribution. On the other hand, assuming different noise levels
for the different types of data can increase the computational cost of
an already time-consuming technique and could increase trade-offs
between resolving data noise parameters and model parameters.

In order to determine the best approach for our problem, we com-
pared TB inversion results for different noise parametrizations. In

the first case we used one noise parameter for the Love wave inver-
sions and one for the Rayleigh wave inversions. In the second case,
each of the data subsets (Love and Rayleigh) were divided into two
groups: one group contains mode branches n = 0–2 and the other
group contains the mode branches n = 3 and higher. Each of these
groups had its own noise level. In the third case, each mode branch
within the two subsets had its own noise level. Results are shown
for VSV and VSH in Fig. 5. Figs S6–S8 in the Supporting Information
display results for the reconstructed VS and ξ and the noise param-
eter PPDFs. The models are not significantly different, though the
cases with additional noise parameters yielded less well-resolved VS

and ξ . This is expected when increasing the number of unknowns
in the inversion if trade-offs are present. However, the same general
trends still exist across these different model distributions. We also
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Figure 5. Comparison of inversion of Rayleigh (top) and Love (bottom) phase velocity data using a single noise parameter for all the modes ((a) and (b)), using
one noise parameter for n = 0–2 and another one for n ≥ 3 ((c) and (d)), and using one noise level per mode branch ((e) and (f)). The dashed lines represent
the mean models. The models shown here are for a grid cell at (3◦S, 79◦E).

note that the posterior noise parameters are generally larger for Love
waves than for Rayleigh waves, indicating that Love wave disper-
sion data are noisier. Additionally, the noise parameter distributions
we obtained generally indicate smaller values than or consistent
with the average values of Visser et al. (2008b). The exception is
for the sixth Rayleigh wave overtone for which we found larger
noise levels than estimated by Visser et al. (2008b). Considering
how little effect the number of noise parameters has on the velocity
and anisotropy models, we proceeded using only one for each data
set inversion.

5.3 Models

Results from both the linear and the TB inversions are shown in
Figs 2((i)–(l)) and 3((i)–(l)) for anomalies relative to PREM of VS

and ξ , respectively. The TB results are the mean of the posterior
model distributions at each grid cell. The data were not corrected
for topography at the 410 and 660 km boundaries since we showed
that it does not have a significant effect on the models (Figs S3 and
S4, Supporting Information).

We see that at 100 km both methods result in negative VS per-
turbations under the CIR, the Southwestern Indian Ridge (SWIR),
and Southeastern Indian Ridge (SEIR) branches. Under Madagas-
car, while the sign of the anomalies at that depth in the SVD results
depends on parametrization, the TB results show possible weak pos-
itive and negative anomalies. Between the CIR and the Indonesian
subduction zone the TB results display generally negative velocity
anomalies, in closer agreement with the SVD inversion that em-
ployed the VS and ξ parametrization than with the VSV and VSH

parametrization. At larger depths, we see a strong reduction in the
strength of the velocity anomalies, as often found in tomographic
mantle models, for the TB and the SVD models. At 200 km, the TB
results present evidence for dlnVS < 0 along the CIR and SEIR of
stronger amplitude (3–5 per cent) than in the SVD models. On the
contrary, at that depth, the TB model shows dlnVS > 0 under the
SWIR, whereas the SVD models still display some amount of nega-
tive anomalies. At 400 km, the two methods are in better agreement
with a ubiquitous dlnVS > 0 across the region but with stronger
anomalies in the TB model. In the upper MTZ, at 500 km, both
techniques show weak positive dlnVS around Indonesia, east of the
SEIR, and west of the CIR, as well as negative dlnVS near India.
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For radial anisotropy, the methods have generally less agreement
than for dlnVS (Fig. 3). At 100 km depth, both methods show a gen-
eral horizontally fast direction (ξ > 1). However, the total anisotropy
is greater for the TB inversion (ξ = 1.15–1.20) than for the SVD
inversions (ξ ∼ 1.10) and the ξ < 1 anomaly seen in the southern
part of the study area with the SVD method is not found with the
TB method. In addition, a strong vertically fast region south of the
Indonesian subduction zone is visible in the TB results but not in
the SVD models. At 200 km, the linearized results show a horizon-
tally fast zone throughout the region. On the contrary, the TB results
show a heterogeneous mixture of horizontally fast and vertically fast
regions. At 400 km, the results for both methods are heterogeneous
and the anisotropy is clearly stronger in the TB model, but the TB
results point toward a more widespread ξ < 1 over the region. This
suggests that the TB inversion tends to favour vertically fast shear
waves at that depth, which is in slightly better agreement with the
SVD inversions using the VS and ξ parametrization than those using
the VSV and VSH parametrization. In the MTZ, while details in the
pattern of the anisotropy differ between the two techniques, both
inversion methods favour mostly vertically fast shear waves. Both
models also suggest horizontally fast waves under the northern part
of the CIR.

The TB method does not only offer a way to invert data with
less assumptions than traditional methods, it also provides a way to
quantify model parameter uncertainties. Representing uncertainties
is nevertheless not simple as the Gaussian assumption one typically
makes when plotting uncertainty maps may not be valid. While one
can always try to fit a Gaussian through the posterior model distribu-
tion, it may give a false sense of uncertainty or certainty as it does not
convey any skew, multiple peaks, or other non-Gaussian features.
We thus decided instead to follow previous studies (Beghein &
Trampert 2006; Visser et al. 2008a) and use the posteriors to calcu-
late the likelihood of the presence of positive or negative anomalies
in the model parameters. These results are shown in Figs 6 and 7 for
dlnVS relative to PREM and in Figs 8 and 9 for radial anisotropy.

In Figs 6 and 7, we see that at 100 km depth, the probability P
that VS anomalies are negative underneath oceanic ridges is greater
or equal to 0.75, and that the anomalies are of at least 1 per cent
in strength. In addition, while the negative anomalies beneath the
SWIR are likely to be between 1 per cent and 5 per cent, the CIR
and SEIR are likely (P ≥ 0.75) characterized by stronger anomalies
of at least −5 per cent at that depth. These relatively low velocity
zones largely disappear at 200 km depth, with the exception of a
likely dlnVS < −1 per cent underneath part of the SEIR. At this
depth, positive relative velocity perturbations of at least 1 per cent
likely exist under East Africa and the SWIR, but they are unlikely to
be >5 per cent. At 400 km, an almost ubiquitious dlnVs > 1 per cent
is found with a high likelihood. This anomaly is, however, probably
lower than 5 per cent for much of the region, with the exceptions of
the region between Southern Africa and Madagascar and east of the
CIR. At 500 km, relative negative or positive velocity perturbations
of 5 per cent or more are very unlikely to exist. At those depths,
positive anomalies of at least 1 per cent may exist near La Réunion
Island and the SEIR, and negative anomalies of at least 1 per cent
may exist on the SWIR and east of the CIR.

Figs 8 and 9 reveal that at 100 km depth, there is a high likelihood
(P ≥ 0.75) for VSH > VSV with strength of at least 5 per cent under-
neath much of the Indian ocean. The exceptions are the Rodrigues
Triple Junction (RTJ), where the CIR, SEIR, and SWIR intersect,
and the region around the Indonesian subduction zone where the
likelihood of ξ > 1 is low (Fig. 8). At the RTJ, the likelihood of ξ <

1 is also weak (Fig. 9), suggesting the area may not have any radial

anisotropy. A small pocket of likely VSH < VSV with strength of at
least 5 per cent is also visible south of the Indonesian slab around
30◦S, 105◦E. At 200 km, the likelihood of anisotropy anomalies is
more heterogeneous and we see both horizontally fast and vertically
fast anomalies of about 1 per cent, indicating a likely reduction in
the amplitude of the anisotropy with depth. There is also a pocket
east of the RTJ with likely horizontally fast velocities with at least
5 per cent anisotropy. At 400 km depth, the likelihood of VSH > VSV

decreases further and a few locations are characterized by a prob-
ability of 0.7 or greater of having VSH < VSV with about 1 per cent
anisotropy (ξ 	 0.99). At that depth, a zone of likely vertically fast
velocities with at least 5 per cent anisotropy is found south of the
RTJ and in between the the CIR and Indonesian subduction zone.
At 500 km, we see that much of the region has likely VSH < VSV

with 0.95 < ξ < 0.99.

5.4 TB inversions synthetic tests

In order to test the robustness of the above results, we ran synthetic
tests using some of the mean models displayed in Figs 2 and 3
as input to calculate the synthetic data. The prior and the noise
parametrization were defined in the same way as in the real data
inversions. Fig. 10 shows the result of one such test. For VSV and
the reconstructed VS, we find that the posterior model distribution
encompasses the input model and that the mean of this distribution
is representative of the input model, especially above 400 km depth.
At greater depths, the uncertainties increase. For VSH, the peaks of
the posterior distribution are offset compared to the input model,
showing that the TB inversion tends to overestimate the model
amplitudes. However, the mean model follows the input model at
most depths except between 400 and 550 km where rapid vertical
changes in the input model are not accurately captured by the mean
of the posterior distribution. This is likely due to limitations in the
vertical resolution of the data. Additionally, the 50–150 km depth
range is characterized by multiple peaks in the posterior distribution
that indicate trade-offs: the data cannot distinguish between a high
velocity zone above a low velocity layer and a constant velocity
structure at these depths. Since ξ is the square of the ratio of VSH to
VSV, these differences between input and mean model are amplified
in the reconstructed ξ profile. We see that the general trend of the
posterior distribution roughly follows that of the input ξ model, but
the amplitudes of the input model and the mean or the peak of the
posterior distribution differ. Nevertheless, it should be noted that
the posterior ξ distribution encompasses the input model, which
highlights the importance of accounting for model uncertainties
when interpreting results.

A question that may still arise is whether we might be mapping
anisotropy into an isotropic structure. We thus ran another synthetic
test with an isotropic input model below 200 km (Fig. 11). As
in Fig. 10, we find a close match between the input model and the
mean of the posterior for VSV and VS down to about 400 km depth. At
greater depths, the posterior becomes wider, and the mean model
oscillates around the input model. For VSH, the same multimodal
peaks found in Fig. 10 are visible between 50 and 150 km, and devi-
ations are found between the input and mean posterior model around
200 km, which marks the abrupt transition between anisotropy and
isotropy in the input model. At larger depths, the mean VSH model
follows the input model relatively well, though with larger uncer-
tainties. For radial anisotropy, the mean model shows a strong ξ

< 1 near 200 km depth that peaks about 50 km deeper than the
corresponding anomaly of the input model. At larger depths, the
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Figure 6. Probability of dlnVS > 1 per cent (left) and dlnVS > 5 per cent (right) at different depths.

mean model oscillates around the isotropic input model, with peak
anisotropy approaching 5 per cent at some depths. If one were to in-
terpret these results based on the mean anisotropy model alone, one
would conclude that there is a risk of finding deep anisotropy with

our method that is not constrained by the data. However, we note that
the posterior ξ distribution below 200 km is wide and allows a wide
range of values of both ξ > 1 and < 1 at these depths. This deep
anisotropy found in the mean model is therefore not resolved, but
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Figure 7. Probability of dlnVS < −1 per cent (left) and dlnVS < −5 per cent (right) at different depths.

this again highlights how essential it is to determine the posterior
model uncertainties before interpreting the anisotropy signal.

In order to determine the level of confidence with which we can
interpret the likelihood map shown in Figs 8 and 9, we used the

posterior ξ distribution displayed in Fig. 11 to calculate the likeli-
hood of finding 1 per cent and 5 per cent anisotropy for both VSV

> VSH and VSH > VSV. The results are shown in Fig. 12. We see
a strong likelihood (P = 0.8) of finding ξ < 0.95 between 200
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Figure 8. Probability of having VSH > VSV (i.e. ξ > 1) at different depths with at least 1 per cent (left) and 5 per cent (right) anisotropy.

and ∼230 km, where the input model is isotropic. We attribute
this to the inability of the surface waves to recover a sharp ve-
locity or anisotropy vertical change. Most noteworthy, however,
is the fact that below ∼250 km depth, the probability that we
might find an anisotropy signal not constrained by the data is

generally less than 0.6. This means that, when discussing our re-
sults (Figs 8 and 9), we can confidently conclude that the deep
anisotropy signal in our models is constrained by the data as long as
we only interpret anisotropy associated with a likelihood higher than
0.6.
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Figure 9. Probability of having VSH < VSV (i.e. ξ < 1) at different depths with at least 1 per cent (left) and 5 per cent (right) anisotropy.

5.5 Joint group and phase velocity inversion

Some of the results presented above show multiple peaks in the
posterior distributions, indicating that trade-offs exist between the
different depth parameters (Fig. 4). In addition, it is clear that

Love wave phase velocity data alone cannot resolve VSH as well
as Rayleigh wave phase velocities can resolve VSV, resulting in
large uncertainties in ξ . Group velocity dispersion data are gen-
erally sensitive to shallower depths than phase velocities at the

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/228/1/78/6355441 by guest on 14 Septem

ber 2023



94 E. Weidner et al.

d
ep

th
 (

km
)

VSH(km/s)

200

400

600

800

1000

0 0.200

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.0

4 5 6 7

0.200

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.0

d
ep

th
 (

km
)

200

400

600

800

1000

0

VSV(km/s)
4 5 6 7

VS(km/s)

d
ep

th
 (

km
)

200

400

600

800

1000

0 0.200

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.0

4 5 6 7

d
ep

th
 (

km
)

VSH/VSV)2

200

400

600

800

1000

0
0.05

0.04

0.03

0.02

0.01

0.0
0.6 0.8 1.0 1.2 1.4 1.6

Figure 10. Example of a synthetic test. Top: posterior VSV and VSH distributions resulting from the separate Rayleigh and Love wave synthetic dispersion data;
and bottom: corresponding VS and ξ posterior distributions. The colour scale represents the probability that a model parameter has a specific value at a given
depth. The input model, which was the mean model from results at 38◦S, 69◦E, is shown by the dashed blue line. The dashed–dotted grey line is the mean of
the posterior distribution. The dashed white line in the VS and ξ profiles calculated using the mean VSV and mean VSH results.

same periods (Fig. 13) and may therefore help break trade-offs be-
tween shallow and deep structure. In this section, we tested whether
adding the group velocity data measured by Ma et al. (2014) could
reduce trade-offs and help better constrain the deep anisotropy
signal.

Since the group and phase velocity data came from two different
studies, we included independent noise parameters for each data
type in our inversions. Fig. S9 in the Supporting Information repre-
sents the posterior noise distributions. It shows that the Love wave
data are generally noisier than the Rayleigh wave data and that the
group velocity data also contain a larger amount of noise than the
phase velocities. Fig. 14 compares the posterior model distributions
for an inversion with both phase and group velocity measurements

and an inversion with phase velocity measurements only. Both in-
versions use data at the same grid cell: (3◦S, 79◦E). We find that
the multimodal aspect of the VSH, and to some extent VSV, PPDFs
at shallow depths is less pronounced when group velocities are in-
cluded in the data set. This leads to narrower distributions for VS and
ξ in the top 50–100 km, showing that the addition of group velocities
improves constraints on the shallow structure. The amplitude of the
mean anisotropy model is also found to be slightly lower in the top
50 km when group velocities are included but the general trend does
not change significantly. Importantly, we find that the posterior dis-
tributions do not change significantly below ∼100 km. This suggests
that, although the group velocity data can help constrain the shallow
structure better, it does not change the model resolution in the rest
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Figure 11. Synthetic test using an input model that is isotropic below 220 km depth. The colour scale indicates the probability that the model parameter has a
specific value at a given depth. The input model is shown as a dashed blue line. The dashed–dotted grey line is the mean model of the posterior distribution.
The dashed white line in the VS and ξ plots was obtained from the mean VSV and mean VSH results.

of the upper mantle and does not affect our interpretation of the
results.

6 D I S C U S S I O N

The surface wave tomography of Debayle & Lévêque (1997) re-
vealed that the lowest shear wave velocity anomalies at 100 km
depth were located along the ridges, with the CIR and SEIR show-
ing stronger anomalies than the SWIR. Low velocities along the
CIR are also seen in the fundamental Rayleigh wave phase and
group velocity study of Mazzullo et al. (2017). This is in agreement
with our mean model (Fig. 2) and is confirmed by our likelihood
estimates (Fig. 7) and model distributions (Fig. 15). Figs 7 and 15
indeed show that both the CIR and SEIR are likely to have dlnVS ≤

−0.05 while the SWIR is characterized by a high likelihood of dlnVS

≤ −0.01 but not dlnVS ≤ −0.05. Interestingly, our results suggest
that the low velocity anomalies seen under the CIR and SEIR persist
down to about 200 km as in Debayle & Lévêque (1997), but that
the SWIR has a shallower origin. Debayle & Lévêque (1997) found
that these anomalies largely disappear at around 200 km. This is
qualitatively consistent with our results, which show a decrease in
the amplitude of the anomalies. At 400 km, our results favour a pos-
itive velocity perturbation of at least 1 per cent and likely less than
5 per cent across the whole study area, which suggests a relatively
cold mantle. This differs from several other studies (Kustowski et al.
2008; Ritsema et al. 2011; French & Romanowicz 2014), though
exceptions include the work of Panning & Romanowicz (2006) Pan-
ning et al. (2010) and Auer et al. (2014), which displayed dlnVS > 0
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Figure 12. Depth profile of likelihood of ξ anomalies relative to isotropy (ξ = 1) based on posterior distributions shown in Fig. 11.

along ridges at similar depths. In the MTZ, our models present weak
positive and negative velocity anomalies of about 1 per cent, qual-
itatively similar to other studies. However, we do not find a broad
high-velocity zone in the MTZ south of the SEIR that could be
interpreted as a subducting slab as found in Simmons et al. (2015).
We do not find evidence for a broad dlnVS > 0 in the MTZ south of
the SEIR as found in Simmons et al. (2015), which they interpreted
as a subducting slab.

As in Visser et al. (2008a), we find a high likelihood (P ≥ 0.75) of
VSH > VSV at 100 km depth throughout most of the study region. This
is consistent with previously published radial anisotropy models of
our study area (Lévèque et al. 1998) as well as in other regions and
globally (Ekström & Dziewonski 1998; Gung et al. 2003; Panning &

Romanowicz 2006; Kustowski et al. 2008; Panning et al. 2010; Auer
et al. 2014; French & Romanowicz 2014; Chang et al. 2015) and is
often interpreted as the signature of horizontal asthenospheric mo-
tion. At 200 km, our models present likely (P ≥ 0.75) VSV > VSH and
VSH > VSV anomalies with 1–5 per cent anisotropy scattered across
the region, which differs somewhat from Visser et al. (2008a) who
found a generally low likelihood of VSH > VSV at that depth. No clear
anisotropy pattern or relation to geological features emerges from
our results below 100 km depth except for a vertically fast signal at
200 km along the Indonesian subduction zone (Fig. 3), though it is
likely to be of small amplitude (Fig. 9). Contrary to the global mod-
els of Gung et al. (2003), Panning & Romanowicz (2006) and Zhou
et al. (2006), we do not see any clear anisotropy signal VSV > VSH
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Figure 15. Distributions of VS (top) and ξ (bottom) models obtained at the CIR, SEIR and SWIR. The colour scale represents the likelihood, the magenta solid
line represents the mean model and the dashed lines indicate 1 per cent and 5 per cent perturbations from PREM.

underneath ocean ridges below 100 km. Overall, the tendency of the
higher mode data to favour VSV > VSH in the deep mantle, including
the MTZ, found by Visser et al. (2008a) is similar to what we found,
though their results seem to suggest a more ubiquitous ξ < 1 sig-
nal than ours. Other models have previously shown small, laterally
variable radial anisotropy in the MTZ (Auer et al. 2014; Moulik
& Ekström 2014) though they do not necessarily share the same
patterns.

It is generally accepted that the [100](010) slip system is dom-
inant in the upper mantle and produces A-type olivine LPO for
which the fast seismic direction aligns with the direction of mantle
flow (Karato 2012). It should, however, be noted that the relation-
ship between fast seismic direction and mantle deformation is not
straightforward at greater depths and that we should not directly
conclude from our results that VSV > VSH implies vertical flow. Un-
like for the shallow mantle, the anisotropy fast axis may not be a
good proxy for flow direction as deformation could occur with a
different slip system than at shallower depths. A transition from
dominant [100] to [001] slip at high pressure can occur for olivine
between 250 and 400 km depth, which could lead to VSV > VSH in
horizontal flow (Mainprice et al. 2005). Similarly, there are many
uncertainties regarding the origin of observed seismic anisotropy
in the MTZ. Seismic anisotropy in the upper MTZ (410–520 km
depth) may be attributed to the LPO of wadsleyite as it can reach up
to 14 per cent single-crystal VS anisotropy (e.g., Zha et al. 1997).
However, the dominant slip system is still unclear. Kawazoe et al.
(2013) found that the [001](010) slip system is dominant in hydrous
wadsleyite, and interpreted fast vertically polarized shear waves in
the MTZ as indicating the preferred orientation of wadsleyite in
horizontal mantle flow. Other potential slip system have also been
proposed (e.g. Thurel et al. 2003; Farla et al. 2015; Ohuchi et al.
2015) and LPO patterns may depend on the water content (De-
mouchy et al. 2011). Ringwoodite, which can be found in the lower

part of the MTZ (between 520 and 670 km depth) is generally con-
sidered isotropic due its cubic structure (Kiefer et al. 1997) and
therefore not a candidate to explain MTZ anisotropy. Garnet and
clinopyroxene do not have sufficient single crystal anisotropy to
yield any observable seismic anisotropy (Mainprice et al. 2005)
Finally, SPO related to layering inside subducting slabs could also
result in seismic anisotropy (Faccenda et al. 2019).

7 C O N C LU S I O N

We developed a nonlinear inversion method based on Markov Chain
Monte Carlo within a transdismensional Bayesian framework to
constrain Earth’s interior structure with fundamental and higher
mode surface wave dispersion measurements. Besides the ability to
solve the nonlinear problem, the advantages of this approach include
the fact that the choice of the depth parametrization is iteratively
driven by the data. The results are therefore not influenced by an
arbitrary prior choice of the number of model parameters. Another
advantage lies in the ability to invert the noise level jointly with
the model parameters, which reduces the risk of mapping unknown
data noise into the models. In addition, the use of a Monte Carlo
approach enables us to sample all possible models and to represent
the ensemble of solutions with a distribution of parameters instead
of choosing one model among many possibilities. This allowed us
to account for model uncertainties by calculating a likelihood for
every parameter of interest.

We applied our technique on a subset of the global phase veloc-
ity maps obtained by Visser et al. (2008b) for Love and Rayleigh
waves up to the fifth and sixth overtones, respectively. We focused
on the Indian Ocean and determined how well these data can con-
strain radial anisotropy in the deep upper mantle and transition zone.
We found that correcting the measurements for the effect of per-
turbations in the depth of the MTZ boundaries did not impact the
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resulting models significantly, despite the higher mode data having
sensitivity to these depths. We also demonstrated that separate Love
and Rayleigh wave inversions produced results equivalent within
model uncertainties to those of joint inversions, as long as the depth
parametrizations for VSV and VSH are allowed to differ in the joint
inversions.

The velocity models resulting from the mean of the posterior
model distribution were in general agreement with results from lin-
earized inversions, though with stronger negative anomalies along
ridges in the upper 100–200 km. Stronger deviations between the
models were found in the MTZ. This suggests that using a fully
nonlinear TB method to constrain shear wave velocities with higher
mode surface waves may not result in significant changes in the
model compared to regularized inverse methods at least in the up-
per mantle above the MTZ. Our results show, however, that using
such as a technique and quantifying model uncertainties is essential
when discussing models of radial anisotropy. Large discrepancies
were indeed found between the two methods for ξ , even at 100 km
depth where the data sensitivity was high, and model uncertainties
were larger below ∼300 km. Despite these large posterior model un-
certainties, we were able to calculate the likelihood of anisotropy at
different depths and determine how well-resolved deep anisotropy
signal is. Overall, while the dominant signal at 100 km is VSH > VSV

as expected for seismic anisotropy resulting from horizontal mantle
motion, we found likely lateral variations in ξ at greater depths,
with a tendency for the data to favour a small amount of anisotropy
with VSV > VSH across most of the region in the deep upper mantle
and MTZ. The synthetic tests we performed also demonstrated that
the anisotropy signal found at these depths is resolved by the higher
mode data and does not result from leakage. We also found that the
inclusion of group velocity dispersion data may help reduce param-
eter trade-offs in the top 100 km of the mantle but does not improve
the model resolution in the deep upper mantle or MTZ.

For our TB inversions, we chose a prior that would not signifi-
cantly influence the results. Thus, the posterior distribution is mostly
a function of the likelihood of a model given the misfit of the pre-
dicted data and the observations. This results in models that can
explain the data used, but may not necessarily be in agreement with
other data sets. This is reflected in some of the very large deviations
of ξ from 1 (isotropy), with the posterior distributions sometimes
including anisotropy of 25 per cent or more. Additional informa-
tion could improve constraints on model parameters, guiding the
posterior distributions to more realistic values. This could take the
form of complementary types of data that reduce trade-offs from the
current data set. This could also take the form of a narrower prior,
which could be based on mineral physics. This will be implemented
in future work.
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Supplementary data are available at GJI online.

Figure S1. dlnVS model at 100 km depth resulting from linearized
inversions with 15 (left) and 18 (right) independent parameters.
Top: dlnVS calculated from inversions parametrized in terms of
VSV and VSH perturbations. Bottom: dlnVS resulting from inversions
parametrized in terms of dlnVS and dlnξ .
Figure S2: ξ model at 100 km depth resulting from linearized
inversions with 15 (left) and 18 (right) independent parameters.
Top: ξ calculated from inversions parametrized in terms of VSV and
VSH perturbations. Bottom: resulting from inversions parametrized
in terms of dlnVS and dlnξ .
Figure S3: Comparison between overtone phase velocity maps mea-
surements ((a) and (b) and calculated contributions to the phase
velocities due to MTZ topography ((c) and (d)). The phase velocity
data are from Visser et al. (2008a) and the MTZ model is from
Huang et al. (2019). Data are for the third overtone Rayleigh wave
at a period of 78 s (top) and for the third overtone Love wave at 69 s
(bottom). Both are sensitive to structure at MTZ depths. The calcu-
lated effect of the topography MTZ on the phase velocities is more
than an order of magnitude smaller than the measured anomalies.
Figure S4: Comparisons of SVD inversion results with and without
corrections for the effect of MTZ boundary topography. The dashed
lines indicate results from inversions of data corrected for MTZ
boundary topography and the solid lines indicate inversions of data
with no MTZ boundary topography correction. (a) is for the grid
cell at 3◦S, 79◦E and (b) is for 18◦S, 89◦E. All models shown have
18 independent parameters.
Figure S5: Synthetic test comparing (a) VSV and (b) VSH models ob-
tained by independent and joint Love and Rayleigh wave inversions

using our TB method. The solid black line is the input model, the
solid red and blue lines represent the mean model, and the dashed
lines represent their 90 per cent confidence interval. (c) and (d)
represent the resulting VS and ξ models, respectively, and their 90
per cent confidence interval
Figure S6: Posterior distribution of noise parameters for inversion
of (a) all Rayleigh wave phase velocities and (b) all Love wave phase
velocities at 3◦S, 79◦E using our nonlinear TB inversion. The noise
parameter is the standard deviation of the Gaussian distribution
that represents the uncertainty around the measured velocity. The
vertical dashed line in (a) and (b) represent the noise level estimated
by Visser et al. (2008a). The TB method finds that the Rayleigh wave
data are well explained with a lower level of noise than the Love
wave data. (c) and (d) represent the distribution of VS and ξ models
obtained, respectively. The colour scale represents the likelihood
and the dashed black line is the mean model.
Figure S7: (a)–(d) Posterior distribution of noise parameters for
inversion of Rayleigh wave phase velocities and Love wave phase
velocities at 3◦S, 79◦E using our TB technique. The noise parameter
is the standard deviation of the Gaussian distribution that represents
the uncertainty around the measured velocity. The vertical dashed
line in (a) and (b) represent the noise level estimated by Visser et al.
(2008a). The Rayleigh wave data were split into two groups: one
group with fundamental modes and the first two overtones (n ≥ 2)
and the other group with the remaining higher modes (n ≤ 3). The
same was done for the Love wave data set. Each group has their
own noise parameters, as shown above. (e) and (f) represent the
distribution of VS and ξ models obtained, respectively. The colour
scale represents the likelihood and the dashed black line is the mean
model.
Figure S8: Posterior distribution of noise parameters for inversion
of (a)–(g) Rayleigh wave phase velocities and (h)–(m) Love wave
phase velocities at 3◦S, 79◦E using our TB method. The noise pa-
rameter is the standard deviation of the Gaussian distribution that
represents the uncertainty around the measured velocity. The ver-
tical dashed line in (a) and (b) represent the noise level estimated
by Visser et al. (2008a). Each mode branch has its own noise pa-
rameter, as shown above. For Love waves, the fundamental mode is
found to be the least noisy data while the first or fourth overtone is
found to be the noisiest data set. For Rayleigh waves, each of the
branches that have a corresponding Love wave branch (n = 0–5) is
less noisy than its Love wave counterpart. (n) and (o) represent the
distribution of VS and ξ models obtained, respectively. The colour
scale represents the likelihood and the dashed black line is the mean
model
Figure S9: Posterior distribution of noise parameters for inversion
of (a) Rayleigh wave phase and (b) group velocities and (c) Love
wave phase and (d) group velocities at 3◦S, 79◦E using the nonlinear
TB. The noise parameter is the standard deviation of the Gaussian
distribution that represents the uncertainty around the measured
velocity. Rayleigh wave phase velocity data are found to be less
noisy than Love wave phase velocity data, and this relationship
remains true for Rayleigh wave group velocity and Love wave group
velocity data. Group velocity data are also noisier than the phase
velocity counterpart.
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