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Abstract of the Dissertation

Reduced order modeling
of soil structure interaction problems

by

Elnaz Esmaeilzadeh Seylabi

Doctor of Philosophy in Civil Engineering

University of California, Los Angeles, 2016

Professor Ertugrul Taciroglu, Chair

This dissertation is focused on creating the key ingredients of a numerical platform for re-

duced order modeling of soil structure interaction (SSI) problems. Specifically, a computer

code is developed for forward simulation of wave propagation in the two-dimensional (plane-

strain and axisymmetric) semi-infinite heterogeneous solid media. Perfectly matched layers

(PMLs) are used for absorbing the outgoing waves. The computationally efficient symmetric

hybrid PML formulation available for the plane-strain setting is extended to axisymmetric

problems. The domain reduction method (DRM) is used for translation of the remote exci-

tation within a PML-truncated medium. The methodologies are devised for using this finite

element (FE) solver to (i) compute the soil impedance functions and (ii) the modified input

motions (a.k.a. foundation input motion) of rigid and flexible interfaces embedded in hetero-

geneous half-spaces numerically. Existing semi-analytical solutions are used to verify these

methods comprehensively. The verified framework is validated using data from a large-scale

field test as well as centrifuge experiments. In order to demonstrate the framework’s applica-

tion: (i) the impedance functions and kinematic interaction transfer functions (KITFs) of a

number of SSI problems—for which existing analytical solutions are limited—are computed;

and (ii) the reduced order model of a buried structure in an elastic half-space is constructed.

In order to avoid integro-differential equations, stable discrete-time filters are used for de-

ii



vising time-domain representations of the computed soil impedance matrix. The dynamic

response of the resulting spatio-temporal reduced order model is compared against those

obtained from solving the same problem using the direct modeling approach, and excellent

agreement is observed.
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CHAPTER 1

Introduction

1.1 What is soil structure interaction (SSI)?

Almost all civil structures have foundations and other support elements that either rest

on, or are embedded in, soil. Because of complexities in modeling the mechanical behav-

ior of soils, and the high degree of uncertainty and variability in their properties, it is not

uncommon among structural engineers to completely ignore their effects on the structural

system. This simplistic approach, wherein the soil structure interaction (SSI) effects are un-

accounted for, might yield acceptable designs for certain cases—for example, for lightweight

aboveground structures resting on, or stiff underground structures buried in, rock and stiff

soils. Nevertheless, SSI effects can also bear perilous consequences under strong earthquakes.

Different types of agents—e.g., rotating machinery, earthquakes, traffic, etc.—excite a

structure. Depending on the nature of the loading, the ensuing structural vibrations result in

time-harmonic or time-varying tractions at the soil-structure interface. These tractions will

cause further deformations within the structure due to the soil’s flexibility, which may reach

significant levels under certain combinations of soil and structural properties—for example,

for a massive structure resting on soft soil (Mylonakis and Gazetas, 2000). On the positive

side, the surrounding/supporting soil transmits energy away from the structure in the form

of outgoing waves. The amount of this radiated energy depends, to a large extent, on the soil

profile and properties (Wolf, 1985). For buried structures, although these inertially induced

tractions may become negligible, the nominal incapability of their foundation systems to

conform to the soil deformations may significantly alter their responses.
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1.2 How to model the SSI effects?

One approach to take the effects of SSI into account is to use the finite element method (FEM)

to model a portion of the supporting/surrounding soil media along with the structure. This

approach is known as the direct modeling (Wolf, 1985; Bielak and Christiano, 1984) method.

Apparently, it is not possible to discretize the semi-infinite soil domain with a finite number

of elements; and thus, it is necessary to truncate it by introducing appropriate boundary

conditions. For an exact representation of the omitted domain—dubbed the far-field—, the

introduced boundaries on the computational domain (the near-field) must have the ability

to transmit the energy of the outgoing and incoming waves perfectly1.

In problems where the source of excitation is inside the near-field, all waves impinging

upon the imposed boundaries are outgoing; and the inserted boundary condition must absorb

the energy of these outgoing waves through the, so-called, absorbing-boundary-conditions

(ABCs). On the other hand, for problems where the source of excitation is outside the

near-field, the forged boundary conditions must not only absorb the energy of the outgoing

waves but also be transparent to all incoming waves. The latter device is usually referred to

as an open-boundary-condition (OBC).

Although domain truncation, together with the insertion of an appropriate boundary

condition, reduces the order of the original problem, it is still computationally expensive

and is rarely used in engineering practice. Therefore, it is desirable to entirely avoid the

discretization of the soil domain by defining the near-field boundaries at the soil-structure

interface. In this approach, which is known as the substructure method, special treatments

are required for taking into account the possible soil nonlinearities in the near-field.

For problems where the soil-structure interface is fairly rigid, the substructure modeling

approach reduces the order of the model significantly, by restricting the degrees-of-freedom

(DOFs) of the soil domain to those of the rigid interface2. However, it requires defining
1In this text, the terms “outgoing” and “incoming” refer to wave-fields within the near-field.
2These are typically the rigid body modes of the foundation—e.g., the lateral, vertical, and rocking DOFs

of the foundation for two-dimensional problems.
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an appropriate Dirichlet-to-Neumann (DtN) mapping function, which relates the interacting

force and displacement components. Moreover, in cases where the source of excitation is

within the soil medium—e.g., seismic excitations—the input motion at the soil-structure

interface—a.k.a. the foundation input motion, or FIM—may be different from the so-called

free-field motion. This is mainly because of the so-called “incoherency” effects, and requires

the free-field motion to somehow be transformed into an approximation of the (true) FIM

(Veletsos et al., 1997). Starting as early as 1960s, a fairly large number of studies focused

on deriving appropriate DtN-maps in the frequency domain (Kausel, 2010). These DtN-

maps are better known as “soil impedance functions,” which are frequency-dependent and

complex-valued functions that represents the stiffness and radiation damping at the soil-

structure interface. A number of studies were also focused on deriving transfer functions

for appropriate modification of the free-field motion to take the effects of incoherency into

account.

For linear SSI analysis, it is convenient to solve the problem in the frequency domain,

using the soil impedance functions and the modified input motion, together with dynamic

characteristic of the structure. While the use of impedance functions in linear SSI analyses

are quite straightforward, they cannot be used—at least, directly—in nonlinear SSI analysis,

even for cases where only the structural components are behaving nonlinearly. This is because

it is not nominally possible to solve nonlinear problems in the frequency domain. Therefore,

soil impedance functions must be transformed into the time domain.

The use of inverse Fourier transform techniques results in integro-differential equations,

which, in turn, leads to exact representations of the impedance functions in the time domain.

However, it is typically more appealing to deal with differential equations in time. This is

mainly because these equations can be solved using standard numerical schemes, such as

the finite element or finite difference methods. An alternative is to approximate the original

impedance function with another function using rational approximations. The resulting DtN-

map has the advantage of being represented in the time domain as differential (or difference)

equations (e.g. Wolf, 1994; Safak, 2006), and for certain simple cases, as discrete mechanical
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models (e.g. Wolf, 1994; Wu and Lee, 2002, 2004; Saitoh, 2007; Du and Zhao, 2010).

In engineering practice, common approaches for taking the effects of SSI into account are

typically based on modifying the dynamic properties of the structure by attaching represen-

tative soil springs and dashpots at the interface of the soil and structure, and by modifying

the input motion (e.g. NIST, 2012; NCHRP Report 611, 2008; Pitilakis and Tsinidis, 2014;

Brandenberg et al., 2015). The major drawbacks of these methods for above-ground or par-

tially embedded structures are their inability to include the frequency-dependency of the soil

impedance functions in time domain analyses and their limitations to represent the actual

dynamic characteristics of flexible soil-foundation interfaces. For underground structures,

the situation is even worse as the exact impedance functions and FIMs are not adequately

explored in open literature, even for rigid interfaces (e.g., Pitilakis and Tsinidis, 2014).

1.3 Objectives and the approach

Direct modeling of SSI problems usually suffer from defining inappropriate ABCs and input

ground motions (Jeremic et al., 2004; Zhang et al., 2008; Carbonari et al., 2011). In order to

increase the modeling accuracy, a large extent of the soil domain has to be discretized, and

this is usually fatal—from a practicing engineer’s point of view—because of the high level of

computational effort required (Solberg et al., 2013). On the other hand, to date, impedance

functions and FIMs have been devised only for simple foundation shapes and soil profiles,

which limits their usefulness in substructure modeling of SSI problems. The objective of this

work, therefore, is to devise an adequately general framework for reduced order modeling of

SSI problems in a two-dimensional setting. The main steps toward achieving this goal, along

with the tools developed in that process, are listed below:

• Direct modeling of SSI problems with high fidelity: A finite element code is developed in

Fortran that features perfectly matched layers (PMLs) to absorb the radiation energy

thoroughly, and the domain reduction method (DRM) to consistently prescribe the

input motions within the PML-truncated domain.
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• Computing the impedance functions for arbitrarily complex foundation geometry and

stiffness and soil heterogeneity: The direct modeling code discussed above is used to

devise methodologies for numerically computing the impedance functions for rigid and

flexible interfaces, using either time or frequency domain solvers.

• Computing the input motion modification factors (a.k.a. kinematic interaction trans-

fer functions or KITFs) for different types of soil-structure interfaces: Methods are

developed to deduce the KITFs under vertically propagating shear waves, given the

soil-structure interface geometry and stiffness.

1.4 Organization of the text

The remainder of this dissertation—i.e., Chapter 2—begins with a more detailed overview of

the direct and substructure modeling approaches, as well as existing methodologies for time

domain representations of impedance functions.

In Chapter 3, the finite element formulations used for the simulation of wave propaga-

tion in a heterogeneous half-space are provided. In Chapter 4, the methodologies devised

for computing the impedance functions of rigid and flexible soil-structure interfaces are ex-

plained. In Chapter 5, the approach used for computing the modified input motions (KITFs)

of a soil-structure interface is demonstrated.

The application of the developed framework is demonstrated in Chapter 6 with a specific

focus on the dynamic behavior of buried structures. First, the impedance functions and

KITFs of a number of buried rigid soil-structure interfaces are provided. Second, a reduced

order model for a rectangular structure buried in a homogeneous half-space is developed by

computing the soil impedance matrix and modified input motions for a flexible soil-structure

interface and by using a discrete-time filter method for time-domain representation of the

said impedance matrix.

Chapters 7 and 8 demonstrate the attempts made to validate different aspects of the
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developed numerical platform. Chapter 7 focuses on numerical simulations of a series of

centrifuge experiments conducted on underground reservoir structures. The capability of

the equivalent linear soil model in capturing the dynamic responses of the buried specimen

structures is explored. Moreover, the effects centrifuge container are studied by modeling and

simulating the same soil deposit using the developed FE solver to rest on an elastic bedrock

and to have an infinite lateral extent Chapter 8, on the other hand, is focused on numerical

simulations of a large-scale field test on a vertically vibrated drilled shaft. The vertical

impedance of the shaft is computed numerically and is compared against those obtained

from the test data. Furthermore, the potential of back-calculating small-strain dynamic soil

properties using the measured in-depth velocity data is explored.

The concluding remarks are provided in Chapter 9.
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CHAPTER 2

Background

2.1 Direct modeling of SSI problems

Problems involving unbounded domains—i.e., domains with infinite length, area, or volume—

frequently occur in different fields of engineering. In the field of earthquake engineering, a

pertinent example is the SSI problem where the semi-infinite domain (far-field) is the earth,

and the finite domain (near-field) is the structure and its surrounding soil as shown schemat-

ically in Figure 2.1.

One approach to solve this problem is the direct modeling approach. In direct modeling,

standard numerical (e.g., finite element and finite difference) methods are typically used to

discretize the problem domain in space and time. However, it is not possible to model the

semi-infinite domain directly by using finite elements, and only the near-field subdomain,

which usually encloses domain irregularities and/or nonlinearities, is discretized; the effects

of the truncated far-field subdomain mimicked by defining appropriate conditions at the

truncation boundary. For exact representation of the truncated far-field, the boundary con-

dition must be transparent to both outgoing and incoming waves in order to transmit the

energy of waves traveling from the inside and outside sources of excitation completely (Wolf,

1985).

In the past, extensive studies had been devoted for developing appropriate boundary con-

ditions for the far-field. While a review of the entire related literature will not be undertaken

here—which extends into physics, electromagnetics, acoustics, etc.—, the properties of two

important classes of local (approximate) ABCs in the context of forward wave propagation
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Figure 2.1: Schematic direct modeling of the SSI problem.

simulation will be discussed. Moreover, existing methods for considering the effects of remote

excitations will be reviewed—a topic that is also highly relevant to SSI problems.

2.1.1 Absorbing boundary conditions (ABCs)

ABCs may be classified as nonlocal and local. Nonlocal ABCs are derived by using analytical

solutions of waves propagating in the far-field, and are represented as a DtN-map, which is

nonlocal in both time and space. However, it is not always possible to derive the exact DtN-

maps for infinite domain problems and these maps are usually computationally expensive.

Therefore, different types of local ABCs were developed in an attempt to solve more complex

infinite domain problems with sufficient accuracy, using less computational effort. In the

subsequent sections, two major classes of local ABCs are introduced.

2.1.1.1 High-order local ABCs

Lysmer and Kuhlemeyer (1969) proposed the first local ABC, which could only absorb

waves traveling along a prescribed direction. Higdon (1990) proposed the m-th order multi-

directional boundary condition that can absorb traveling waves with m different angles of

incidence perfectly. Although the accuracy of this boundary condition increases by m, its us-

age in application is limited to m ≤ 2. This is because it is very difficult to define high-order
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derivatives in standard numerical schemes, such as the finite element method. High-order

local ABCs must have the following properties (Givoli, 2004):

• Increasing accuracy as a function of the order of the local ABC,

• Ability to be implemented in numerical applications regardless of the order of the local

ABC.

The local ABC devised by Collino (1993) can be considered as the first high-order local

ABC satisfying the above properties. Since then, different high-order ABCs are proposed

(Givoli, 2004). Almost all these boundary conditions are limited to scalar problems such

as electrodynamics and acoustic problems. Though many infinite domain problems involve

vectorial elastic waves, only a few high-order ABCs have been developed for elastodynam-

ics problems thus far (Baffet et al., 2012). High-order local ABCs proposed by Joly and

Tsogka (2010) and Rabinovich et al. (2011) are, respectively, the extensions of Collino ABC

and Hagstrom-Warburton (HW) ABC (Hagstrom and Warburton, 2004) to elastodynamics

problems. However, both ABCs suffer from long-time instability issues (Baffet et al., 2012).

Recently, Baffet et al. (2012) proposed the first long-time stable high-order local ABC.

Thus far, this high-order ABC is only available for the relatively simple case of 2D elastody-

namics with a single artificial boundary and two physical boundaries . Extensions to more

involved cases, such as problems in SSI analysis, which consist of a single physical boundary

and three artificial boundaries (see Figure 2.1), do not yet exist.

2.1.1.2 Perfectly matched layer (PML)

Another class of local ABCs is PMLs, which were originally introduced by Berenger (1994)

for absorbing electromagnetic waves, and extended to elastodynamic problems by Basu and

Chopra (2003). In short, a PML is an absorbing layer adjacent to the finite computational

domain–i.e., near-field—with two main properties (Rabinovich et al., 2010):

• It results in no reflections at the truncated near-field boundary (i.e., “perfect matches”
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it) for all non-zero-frequency impinging waves, irrespective of their angles of incidence.

• It attenuates the wave energy within itself.

Though only a few studies are devoted to comparing the advantages and disadvantages of

PMLs with respect to high-order ABCs, PMLs have become more popular than high-order

ABCs in dealing with infinite domain problems, which may be due to the easier imple-

mentation of PMLs in comparison to high-order ABCs (Rabinovich et al., 2010) and their

applicability for heterogeneous media (Kucukcoban and Kallivokas, 2011). However, one no-

ticeable advantage of high-order ABCs over PMLs may be their capability to be extended to

OBCs in order to take the effects of exterior sources of excitation into account (Rabinovich

et al., 2011).

Literature on different types of PMLs is extensive and a detailed review of the subject is

beyond the scope of this work and can be found elsewhere (e.g. Kucukcoban and Kallivokas,

2011, 2013). In this work, we employ the symmetric hybrid PML formulation proposed

by Kucukcoban and Kallivokas (2013) for simulation of wave propagation in heterogeneous

half-spaces. Detailed description of this formulation will be provided in Chapter 3.

2.1.2 Open boundary conditions (OBCs)

In problems with source of excitation outside the domain of interest, both outgoing and

incoming waves exist. One approach for solving infinite domain problems with exterior

source is introducing ABC with capability of handling both outgoing and incoming waves,

i.e., OBCs. Carpenter (1982) proposed a simple OBC, which was in fact the extension

of LK ABC, considering rational assumptions. Since LK ABC is in fact 0-th order ABC,

the resulting OBC has low-order of accuracy. Later, Mar-Or and Givoli (2009) modified

Carpenter scheme for scalar wave equation, replacing LK ABC with HW ABC, which has

high-order accuracy. The Carpenter OBC is more applicable to numerical weather prediction.

For SSI analysis, Zhang et al. (2003) proposed another OBC which was based on simulation of

wave propagation in semi-infinite soil column. In this approach, the far-field soil is replaced
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with LK ABC while the input motion is defined as an equivalent force on the imposed

boundary (Joyner, 1975). This approach again is susceptible to low-order accuracy of LK

ABC.

2.1.3 Domain reduction method (DRM)

Bielak and Christiano (1984); Bielak et al. (2003) proposed a two-step finite element method

for modeling a semi-infinite domain under remote excitations. The most appealing advantage

of their method is that the problem at hand is inverted to an equivalent problem in which

the effects of incoming waves due to remote excitations are translated inside the domain

truncated by ABCs. Therefore there is no need to define OBCs and robust ABCs can be

used with no difficulty. This method, which is employed in this work for quantification of

kinematic SSI effects, will be discussed in details in Chapter 3.

2.2 Substructure modeling of SSI problems

The method of dynamic substructuring involves (i) dividing the whole structure into its

components, (ii) modeling behavior of each substructure and (iii) coupling the sub-structural

models to evaluate the behavior of the whole structure (Craig and Kurdila, 2006). Dynamic

substructuring has some advantages over modeling the whole structure (de Klerk et al., 2008).

First, it allows analysis of too large or complex structures within reasonable amount of time

and memory. Second, local dynamic behavior of each components can be identified, which

in turn, may be used to disregard local dynamic properties that do not have appreciable

effects on behavior of the whole structure. Finally, it allows combining components that are

modeled from different approaches, i.e, numerical, analytical, and experimental.

In the context of SSI, dynamic substructuring is known as the substructure modeling

(Wolf, 1985) or three-step modeling (Kausel, 2010) approach and is usually the method of

choice in common practice. This is because design procedures usually involve too many

analyses. First, material and geometric properties of structural components must be ad-
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justed at the end of each analysis, and second, response analysis should be repeated for a

suite of strong ground motions, specially in the framework of performance-based earthquake

engineering (PBEE).

2.2.1 General formulation

A generic soil-structure system is shown schematically in Figure 2.2a and the uncoupled

components are shown in Figure 2.2b. Using the FEM to model the structure, the semi-

Excitation

Soil half-space

(a) (b)

Figure 2.2: A (a) generic soil-structure system and (b) its uncoupled components.

discrete equations of motion for the structure shown in Figure 2.2b—when partitioned to

non-interfacial (s) and interfacial (b) DOFs—are

Mss Msb

Mbs Mbb

 üs(t)

ü−b (t)

+

 fs(t)

f−b (t)

 =

fext(t)

fint(t)

 (2.1)

where Mss, Mbs = MT
sb, and Mbb are the non-interfacial, coupling, and interfacial mass sub-

matrices, respectively; uT =
[
uTs u−b

T
]
is the displacement response vector, and

[
fTs f−b

T
]

is the transpose of a (nonlinear) restoring force vector within the main structure; (̈ ) denotes

the second differentiation of the subtended variable with respect to time; fext(t) is the exter-

nal force vector applied to the non-interfacial DOFs of the structure; and fint(t) is the force

vector applied to the interfacial DOFs as a result of its coupling with the surrounding soil
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domain.

On the other hand, the soil behavior is replicated by the soil impedance matrix—i.e. a

DtN-map relating force and displacement vectors f+
b (t) and u+

b (t) (see Figure 2.2b). It is well-

known that the soil impedance function is frequency dependent and complex-valued. The

real part corresponds to the stiffness and inertial effects, and the imaginary part accounts for

radiation damping (Gazetas, 1983). The discrete form of this DtN-map in frequency domain

is

Ŝ(ω)û+
b (ω) = f̂+

b (ω), (2.2)

and in time domain is

∫ t

0

S(t− τ)u+
b (τ)dτ = S(t) ∗ u+

b (t) = f+
b (t) (2.3)

where Ŝ(ω) and S(t) are the soil impedance matrices in frequency and time, respectively;
ˆ( ) and (∗) stand for the Fourier transform and the convolution operators, respectively.

The compatibility and equilibrium conditions along the interface of the structure and the

surrounding soil should be satisfied setting

u−b (t) = u+
b (t), fint(t) + f+

b (t) = 0 . (2.4)

By substituting Eq. (2.4) into Eq. (2.3), and by enforcing the compatibility and equilibrium

conditions in Eq. (2.1), we get

Mss Msb

Mbs Mbb

 üs(t)

ü−b (t)

+

 fs(t)

f−b (t) + S(t) ∗ u−b (t)

 =

fext(t)

0

 . (2.5)

Finally, Eq. (2.5) should be modified as follows to incorporate the effects of seismic
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excitation (Wolf, 1985):

Mss Msb

Mbs Mbb

 üs(t)

ü−b (t)

+

 fs(t)

f−b (t) + S(t) ∗ u−b (t)

 =

 fext(t)

S(t) ∗ ug(t)

 (2.6)

where ug(t) is the modified input motion or the FIM to be determined along the interface

Γ+
b . For a structure with linear behavior, Eq. (2.6) can be reformulated in the frequency

domain as: Ŝss(ω) Ŝsb(ω)

Ŝbs(ω) Ŝbb(ω) + Ŝ(ω)

 ûs(ω)

û−b (ω)

 =

 f̂ext(ω)

Ŝ(ω)ûg(ω)

 (2.7)

whereŜss(ω) Ŝsb(ω)

Ŝbs(ω) Ŝbb(ω)

 = −ω2

Mss Msb

Mbs Mbb

+ iω

Css Csb

Cbs Cbb

+

Kss Ksb

Kbs Kbb

 . (2.8)

In Eq. (2.8) Css, Cbs = CT
sb, and Cbb are the non-interfacial, coupling, and interfacial damp-

ing matrices, respectively (assuming, without loosing generality, viscous damping behavior

within the main structure) and Kss, Kbs = KT
sb, and Kbb are the corresponding stiffness

matrices.

As a result, for the analysis of a soil-structure system using the substructure model-

ing approach, one needs to determine the dynamic properties of the structure and the soil

medium, as well as the appropriate input motions to construct the reduced order model. De-

tailed description of these ingredients and the methodologies to compute them are provided

in Chapters 4 and 5.

2.2.2 Time domain representation of the impedance function

Time domain analysis is an indispensable part of nonlinear SSI problems. Nonlinearities

may be confined to the structure or extended to the surrounding soil. As discussed above,
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the exact representation of the soil impedance matrices in time results in integro-differential

equations. This hinders the use of standard numerical scheme, which is commonly used for

time domain analysis of structures.

A simple approach for taking the advantages of substructure modeling, while avoiding

the complexities associated with the inherent frequency dependency property of impedance

functions, is modeling the effects of surrounding soil through defining a set of springs and

dashpots with constant coefficients at the soil-structure interface. For more simplicity, usu-

ally the coupling of the interfacial DOFs is ignored as well. Figure 2.3 shows schematically

two examples of commonly used models in practice (e.g. Stewart and Tileylioglu, 2007; NIST,

2012). Coefficients of springs and dashpots are usually determined based on either static

properties of the surrounding soil or its dynamic properties at a specific frequency, using en-

gineering judgement. These simplifications, though acceptable for time-harmonic analysis,

e.g., vibrations of machinery foundations, may lead to unreliable results for seismic response

analysis of structures.

Concentrated Generalized Spring Distributed Generalized Spring 

Figure 2.3: Generalized spring (spring-dashpot) with constant coefficients.

2.2.2.1 Rational approximation method

As shown in Eqs. (2.2) and (2.3), the general form of the DtN-map equation that relates the

force at the i-th DOF due to the displacement at the j-th DOF along the interface Γ+
b is

f̂ j+b,i (ω) = Ŝij(ω)û+
b,j(ω) (2.9)
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in the frequency domain and is

f j+b,i (t) =

∫ t

0

Sij(t− τ)u+
b,j(τ)dτ = Sij(t) ∗ u+

b,j(t) (2.10)

in the time domain. In open literature, several attempts are made to avoid these integral

equations in time domain analyses (e.g. Wolf and Motosaka, 1989; Wolf, 1991; Wu and Lee,

2002, 2004; Saitoh, 2007; Du and Zhao, 2010; Safak, 2006; Xiuli and Zhao, 2010; Ruge et al.,

2001; Cazzani and Ruge, 2012; Gash, 2015). The underlying idea is to approximate the

original DtN-map equation with another function, which is in fact a DtN-map of another

dynamic system. This approximate transfer function must have two properties:

• to be transformed into the time domain as a continuous-time differential or discrete-

time difference equation; and

• to be a DtN-map of a stable dynamic system.

Rational functions, which are the ratio of two polynomials, satisfy the first property. How-

ever, the identified rational transfer function may not satisfy the second property. In

continuous-time systems, the poles, i.e., the roots of the denominator of the system transfer

function, must have negative real values in order to guarantee stability, which in turn calls

for adding more constraints on identification of the coefficients of the polynomials used for

rational approximation. In discrete-time systems, the poles of the system transfer function

must lie within a complex unit circle (Oppenheim et al., 1996). A number of studies has in-

vestigated the global stability of the approximate transfer functions in combination with the

structure and in combination with the utilized numerical integration scheme (e.g. Lesgidis

et al., 2015; Laudon et al., 2015; Gash, 2015).

In this work, we use the stable discrete-time filter method implemented by Gash (2015)

for time domain representation of the soil impedance functions to construct a reduced order

model for a buried structure in an elastic half-space. More details are provided in Chapter 6.
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CHAPTER 3

Simulation of wave propagation in a PML-truncated

heterogeneous half-space

As mentioned in §1.3, the first objective of this work is developing a numerical platform for

high-fidelity simulation of wave propagation in heterogeneous half-spaces. To achieve this, we

use PMLs to truncate the semi-infinite extent of soil. The DRM is used for translation of the

seismic excitation inside the truncated computational domain. Details of these ingredients

are provided in the following sections.

3.1 Complex coordinate stretching

The central idea in the PML formulation is to use a finite-sized layer that surrounds the

near-field and stretched internal spatial coordinates in order to mimic the effects of the

semi-infinite domain it replaces. This is shown schematically in Figure 3.1.

regular medium truncated medium

outgoing 	


wave

fixed 	


boundary

PML

attenuating 	


wave

reflected	


wave

s0 st � s0

s̃

Figure 3.1: Schematic geometry of a PML-truncated extent.

Different complex stretching functions were proposed in past research. Using a frequency-
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independent complex stretching function produces the standard PML formulation. An alter-

native is the frequency-shifted stretching function proposed by Kuzuoglu and Mittra (1996).

The resulting complex-frequency-shifted (CFS) PML outperforms the standard PML in pres-

ence of the evanescent waves, but has degrading performance in absorbing low frequency

propagating waves (Roden and Gedney, 2000; Berenger, 2002a,b). Consequently a second-

order PML was devised by Correia and Jin (2005), which combines the capability of the

standard PML in absorbing the low frequency propagating waves with the capability of CFS

PML in absorbing the evanescent waves.

Since we are interested in exploring the behavior of SSI problems under seismic excitations

where the frequency content of the input motions are in general predominant in low frequen-

cies, we employ the standard PML formulation (Fathi, 2015). The frequency-independent

complex coordinate stretching function is defined as:

s̃ =

∫ s

0

(αs(s
′) +

βs(s
′)

iω
)ds′ = ᾱs(s) +

β̄s(s)

iω
(3.1)

where αs and βs control the stretching behavior; i =
√
−1, ω is the angular frequency; and s

is the original coordinate to be stretched. The following second-order polynomials are used

to define αs and βs as suggested in Kucukcoban (2010):

αs(s) =


1 0 ≤ s ≤ s0

1 + 3b
2LPML

log( 1
|R|)(

(s−s0)ns
LPML

)2 s0 ≤ s ≤ st

(3.2)

βs(s) =


0 0 ≤ s ≤ s0

3crefp
2LPML

log( 1
|R|)(

(s−s0)ns
LPML

)2 s0 ≤ s ≤ st

(3.3)

where s denotes either x1 or x2; ns is the normal direction; R, LPML, and crefp are tuning

parameters controlling the performance of the PML in attenuating the outgoing waves; s0 is

the distance from the origin to the interface of the regular domain and PML and st is the

distance from the origin to the fixed boundary; b is the characteristic length.
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Using Eq. (3.3) to define αs and βs, parameters ᾱs and β̄s, as defined in Eq. (3.1), are:

ᾱs(s) =


s 0 ≤ s ≤ s0

s+ bn2
s

2L3
PML

log( 1
|R|)(s− s0)3 s0 ≤ s ≤ st

(3.4)

β̄s(s) =


0 0 ≤ s ≤ s0

crefp n2
s

2L3
PML

log( 1
|R|)(s− s0)3 s0 ≤ s ≤ st

. (3.5)

The wave physics within the standard PML can be clarified by studying the behavior of a

time-harmonic wave in the stretched coordinate system as follows (detailed mathematical

descriptions can be found in Kucukcoban and Kallivokas (2013, 2011); Kucukcoban (2010)):

e−iks̃eiωt =

e−ik ∫ s0 α(s′)ds′ e−
1
c

∫ s
0 β(s′)ds′︸ ︷︷ ︸

attenuating

 eiωt, (3.6)

where k = ω/c denotes the wavenumber, and c the wave speed. As shown in Eq. (3.6),

the propagating waves in the PML are subject to amplitude attenuation in their propa-

gation direction due to the elongated coordinate. Here, the order of the magnitude of the

attenuation—i.e., 1/c
∫ s

0
β(s′)ds′—is frequency-independent, and is controlled by the param-

eters used to define βs.

3.2 Formulation of a PML-truncated domain

Kucukcoban and Kallivokas (2011, 2010) proposed a fully-mixed unsymmetric PML formu-

lation for both plane-strain and axisymmetric problems. Displacement and stress fields were

considered as primary fields in both the regular domain and PMLs. Kucukcoban and Kalli-

vokas (2013) improved their work for plane-strain problems through providing a symmetric

hybrid approach in which a mixed-field formulation in the PML was coupled with non-mixed

displacement-based formulation in the regular domain. In this work, we are concerned with

both plane-strain and axisymmetric problems. For plane-strain problems, we employ the
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existing hybrid formulation as will be discussed in §3.2.1. For axisymmetric problems, we

extend the existing mixed formulation (Kucukcoban, 2010) to the hybrid one using the same

approach proposed by Kucukcoban and Kallivokas (2013) for plane-strain problems. This

will be discussed in §3.2.2.

3.2.1 Hybrid formulation of PML-truncated domain in a plane-strain setting

3.2.1.1 The governing equations

Figure 3.2: The problem geometry and boundary conditions of a PML-truncated domain in
a plane-strain setting.

Considering a linear elastic solid medium in the plane-strain setting as shown in Fig-

ure 3.2, the elastic wave equation in the regular domain (Ω0) is:

div(σ) = ρüa, x ∈ Ω0, (0, T ], (3.7)

where x = (x1, x2) and (0, T ] is the defined time interval; σ =
[
µ
(
∇ua + (∇ua)

T
)

+ λ div(ua)I
]

is the stress tensor; and λ and µ are the Lamé constants for an elastic solid, and both can

have arbitrary spatial variations. Their relationships with the Young’s modulus (E) and the

Poisson’s ratio (ν) are given as λ = νE/[(1 + ν) (1 − 2ν)] and µ = E/[2 (1 + ν)]; ρ is the
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mass density. The subscript ‘a’, in Eq. (3.7), denotes the variable of the equation satisfied

in Ω0; ˙( ) denotes the partial derivative of the subtended variable with respect to time.

In the PML domain (Ω \ Ω0) where the wave is attenuated, wave motion is governed by

the following partial differential equations1:

div
(
Ṡ
T

Λ̃e + ST Λ̃p

)
− ρ (aüb + bu̇b + cub) = 0, x ∈ Ω \ Ω0, (0, T ], (3.8a)

ΛT
e (D : S̈)Λe + ΛT

e (D : Ṡ)Λp + ΛT
p (D : Ṡ)Λe + ΛT

p (D : S)Λp

−1

2

[
ΛT
p∇ub + (∇ub)TΛp

]
− 1

2

[
ΛT
e∇u̇b + (∇u̇b)TΛe

]
= 0, x ∈ Ω \ Ω0, (0, T ], (3.8b)

where the subscript ‘b’ corresponds to the solution variables in the PML wave equation in

Ω \ Ω0; S(x, t) denotes the, so-called, stress-history tensor, defined as:

S(x, t) =

 S11(x, t) S12(x, t)

S21(x, t) S22(x, t)

 =

∫ t

0

σ(x, τ)dτ ; (3.9)

D(x) denotes the fourth-order compliance tensor; and (:) that follows D denotes the tensor

operation such that the strain tensor can be obtained as:

ε(x, t) = D : Ṡ(x, t), (3.10)

or  ∂u1
∂x1
, 1

2

(
∂u1
∂x2

+ ∂u2
∂x1

)
1
2

(
∂u2
∂x1

+ ∂u1
∂x2

)
, ∂u2

∂x2

 =
1 + ν

E

 (1− ν)σ11 − νσ22, σ12

σ21, (1− ν)σ22 − νσ11

 . (3.11)

1As mentioned before, we adopt the PMLs suggested in Kucukcoban and Kallivokas (2013, 2011); Ku-
cukcoban (2010), and its governing equations are recalled from Kucukcoban and Kallivokas (2013, 2011);
Kucukcoban (2010) to the following Eqs. (3.8-3.11) in this work.
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Coordinate stretching tensors Λe, Λp, Λ̃e and Λ̃p in Eq. (3.8) are defined as:

Λe =

 α1 0

0 α2

 , Λp =

 β1 0

0 β2

 , Λ̃e =

 α2 0

0 α1

 , Λ̃p =

 β2 0

0 β1

 . (3.12)

The following interface conditions are used to couple the two governing PDEs of Eqs. (3.7)

and (3.8):

ua(x, t) = ub(x, t), x ∈ Γint, (0, T ], (3.13)

σa(x, t)na = −
(
ṠΛ̃e + SΛ̃p

)
nb, x ∈ Γint, (0, T ], (3.14)

where na and nb denote the normal vectors, on Γint, pointing from the regular domain to the

PML domain and vice versa, respectively. The governing wave equations are also subject to

the following boundary conditions:

ub(x, t) = 0, x ∈ ΓFixed, (0, T ], (3.15a)

ua(x, t) = g, x ∈ ΓLoaded, (0, T ], (3.15b)

σa(x, t)na = 0, x ∈ Γ0,Free, (0, T ], (3.15c)(
Ṡ
T

Λ̃e + ST Λ̃p

)
nb = 0, x ∈ ΓPML,Free, (0, T ], (3.15d)

where the known displacement boundary condition g is imposed on ΓLoaded; Γ0,Free denotes

the traction-free top surface that is attached to the regular domain only; ΓPML,Free denotes

the traction-free top surface that is attached to the PML domain.
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3.2.1.2 The semi-discrete forms

The field variables of the two governing equations—i.e., Eqs. (3.7) and (3.8)—are approxi-

mated as follows:

u(x, t) =

 u1(x, t)

u2(x, t)

 ≈
 Φ(x)Tu1(t)

Φ(x)Tu2(t)

 ,
S(x, t) =

 S11(x, t) S12(x, t)

S21(x, t) S22(x, t)

 ≈
 Ψ(x)TS11(t) Ψ(x)TS12(t)

Ψ(x)TS21(t) Ψ(x)TS22(t)

 , (3.16)

where u1(t), u2(t), S11(t), S22(t), and S12(t) are the vectors of nodal solutions of u1(x, t),

u2(x, t), S11(x, t), S22(x, t), and S12(x, t). Then, the wave response of the soil model in

Figure 3.2 can be obtained by solving the following semi-discrete system of equations:

M d̈(t) + C ḋ(t) + K d(t) = f(t), (3.17)

where M, C, and K denote the mass, damping, and stiffness matrices; d denotes the solu-

tion vector, i.e., d(t) = [uT1 (t),uT2 (t),ST11(t),ST22(t),ST12(t)]T ; f denotes the force vector that

corresponds to the known traction on the free surface. We note that soil heterogeneity is

incorporated into the M, C, and K matrices when the element matrices are built through

numerical integration. Detailed description of M, C, K, and f can be found in Kucukcoban

and Kallivokas (2013).

3.2.2 Hybrid formulation of PML-truncated domain in an axisymmetric setting

3.2.2.1 The governing equations

Considering a linear elastic solid medium in the axisymmetric setting as shown in Figure 3.3,

the elastic wave equation in the regular domain (Ω0) is:

div{µ[∇u̇a + (∇u̇a)
T ] + λdiv(u̇a)I} = ρ

...
ua x ∈ Ω0, (0, T ] (3.18)
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r

z

Figure 3.3: The problem geometry and boundary conditions of a PML-truncated domain in
an axisymmetric setting.

where x = (r, z), and
...
( ) denotes the third-order time derivative of the subtended variable.

Other parameters are defined in the previous sections. In the PML domain (Ω \ Ω0), the

wave motion is governed by (Kucukcoban, 2010):

div[S̈
T

Λ̃e + Ṡ
T

Λ̃p + ST Λ̃w] = ρ(a
...
ub + büb + cu̇b + dub) x ∈ Ω \ Ω0, (0, T ]

D : [a
...
S + bS̈ + cṠ + dS] =

1

2
[∇übΛ̃e + Λ̃e(∇üb)T ] +

1

2
[∇u̇bΛ̃p + Λ̃p(∇u̇b)T ] +

1

2
[∇ubΛ̃w + Λ̃w(∇ub)T ] x ∈ Ω \ Ω0, (0, T ]

(3.19)

where S denotes the so-called stress-history tensor defined as:

S(x, t) =

∫ t

0


σrr(x, τ) 0 σrz(x, τ)

0 σθθ(x, τ) 0

σzr(x, τ) 0 σzz(x, τ)

 dτ (3.20)
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andD is the fourth-order compliance tensor, relating the first time derivative of stress-history

and strain tensors as in Eq. (3.21).

ε(x, t) = D : Ṡ(x, t) (3.21)

or
εrr 0 εrz

0 εθθ 0

εzr 0 εzz

 =


D1σrr −D2(σθθ + σzz) 0 1

2µ
σrz

0 D1σθθ −D2(σrr + σzz) 0

1
2µ
σzr 0 D1σzz −D2(σrr + σθθ)


(3.22)

where

D1 =
λ+ µ

µ(3λ+ 2µ)
, D2 =

λ

2µ(3λ+ 2µ)
. (3.23)

Coordinate stretching tensors Λ̃e, Λ̃p and Λ̃w in Eq. (3.19) are defined as (Kucukcoban, 2010):

Λ̃e = diag(
αzᾱr
r

, αrαz,
αrᾱr
r

), (3.24)

Λ̃p = diag(
αzβ̄r + ᾱrβz

r
, αrβz + βrαz,

αrβ̄r + ᾱrβr
r

), (3.25)

Λ̃w = diag(
βzβ̄r
r

, βrβz,
βrβ̄r
r

). (3.26)

In regular domain Λ̃e reduces to Identity tensor, and Λ̃p, and Λ̃w vanish. Parameters a, b, c

and d in Eq. (3.19) are defined as:

a =
αrαzᾱr

r
, (3.27)

b =
αrαzβ̄r + αrᾱrβz + ᾱrαzβr

r
, (3.28)

c =
αrβzβ̄r + αzβrβ̄r + ᾱrβrβz

r
, (3.29)
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d =
βrβzβ̄r
r

. (3.30)

The following interface conditions are used to couple the two governing PDEs of Eqs. (3.18)

and (3.19):

ua = ub x ∈ Γint, (0, T ] (3.31)

div{µ[∇u̇a + (∇u̇a)
T ] + λdiv(u̇a)I}na = −(S̈

T
Λ̃e + Ṡ

T
Λ̃p + ST Λ̃w)nb x ∈ Γint, (0, T ].

(3.32)

The governing wave equations are also subject to the following boundary conditions:

ub = 0 x ∈ ΓFixed, (0, T ] (3.33)

(S̈
T

Λ̃e + Ṡ
T

Λ̃p + ST Λ̃w)nb = 0 x ∈ ΓPML,Free, (0, T ] (3.34)

{µ[∇u̇a + (∇u̇a)
T ] + λdiv(u̇a)I}na = ġ x ∈ ΓLoaded, (0, T ] (3.35)

{µ[∇u̇a + (∇u̇a)
T ] + λdiv(u̇a)I}na = 0 x ∈ Γ0,Free, (0, T ] (3.36)

where g is the known imposed traction on ΓLoaded.

3.2.2.2 The semi-discrete forms

In order to solve the problem using the standard FEM, the field variables are approximated

as:

u(x, t) ≈

ΦTur(t)

ΦTuz(t)

 , S(x, t) ≈


ΨTSrr(t) 0 ΨTSrz(t)

0 ΨTSθθ(t) 0

ΨTSzr(t) 0 ΨTSzz(t)

 (3.37)

where ur, uz, Srr, Srz, Szz, Sθθ are vectors of nodal solutions for the introduced field variables.

Φ and Ψ are the defined shape function vectors for displacement and stress-history fields,

respectively. Using the introduced approximations in Eq. (3.37), the resulting semi-discrete
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form of the system of equations in time for wave propagation within a PML-truncated domain

can be written as:

M
...
d(t) + Cd̈(t) + Kḋ(t) + Gd(t) = ḟ(t) (3.38)

where the symmetric matrices M, C, K and G, and the force vector f are defined in Ap-

pendix A; d denotes the solution vector—i.e. d(t) =
[
uTr (t),uTz (t),STrr(t),S

T
θθ(t),S

T
zz(t),S

T
rz(t)

]T
.

3.3 DRM formulation in a PML-truncated domain

In order to compute the modified input motions and KITFs, we extend the hybrid PML

formulation in plane-strain setting such that the effective forces associated with the seismic

excitations can be incorporated. Considering a semi-infinite domain with localized near-field

features under remote seismic excitation (as shown in Figure 3.4a) and the same semi-infinite

domain with no localized features (as shown in Figure 3.4b), the total-field and free-field

elastic wave equations are:

div
{
µ
[
∇ufree + (∇ufree)

T
]

+ λdiv(ufree)I
}

=ρüfree, x ∈ Ω, (0, T ], (3.39)

div
{
µ
[
∇utotal + (∇utotal)

T
]

+ λdiv(utotal)I
}

=ρütotal, x ∈ Ω, (0, T ]. (3.40)

As discussed in Chapter 2, when the semi-infinite domain is truncated by ABCs, it is not

straightforward to use the remote excitation input that is embarked from the outside of the

ABC for modeling of wave response utotal within a truncated domain. To address this chal-

lenge, the DRM proposed by Bielak et al. (2003) can be used, which is shown schematically

in Figure 3.4c. The governing wave equation is:

div
{
µ
[
∇u + (∇u)T

]
+ λdiv(u)I

}
=ρü x ∈ ΩN ∪ ΩL, (0, T ], (3.41)
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fault

(a) Semi-infinite domain with a localized feature

fault

(b) Semi-infinite domain without localized feature

ABCs

(c) Truncated domain with a localized feature en-
closed by ABCs

Figure 3.4: (a) The total-field displacement utotal = ufree + uscattered around structures due
to the soil-structure interaction induced by the remote seismic excitation in a semi-infinite
domain; (b) the free-field displacement ufree due to remote seismic excitation in a semi-
infinite domain; (c) the DRM modeling approach for a domain truncated by ABCs (adopted
from Bielak et al. (2003)).
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with the response field u defined as follows:

u := utotal x ∈ ΩN, (0, T ], (3.42a)

u := utotal − ufree x ∈ ΩL, (0, T ]. (3.42b)

u, defined in Eqs. (3.42a) and (3.42b), is discontinuous on ΓNL, the interface between ΩN

and ΩL, which denote, respectively, the domain near the localized feature and the domain

surrounding the ΩN. Moreover, the scattered motion uscattered = utotal − ufree, satisfies the

radiation condition. Therefore, the equation in terms of u, defined in Eq. (3.42), can be

solved in a domain of the semi-infinite extent, truncated by ABCs. As will be shown later,

the aforementioned discontinuity (a.k.a. the jump condition (Bielak and Christiano, 1984))

serves as a driving or effective force vector.

3.3.1 Governing equations of the scattered field in a PML-truncated domain

To address the scattered wave field that includes the jump condition and uses PML as ABC

(as shown schematically in Figure 3.5), the following wave equations are considered:

Figure 3.5: Schematic scattering problem modeled in a PML-truncated domain.

div
{
µ
[
∇u−a + (∇u−a )T

]
+ λdiv(u−a )I

}
= ρü−a x ∈ ΩN, (0, T ], (3.43a)

div
{
µ
[
∇u+

a + (∇u+
a )T
]

+ λdiv(u+
a )I
}

= ρü+
a x ∈ ΩL \ ΩPML, (0, T ], (3.43b)

div
(
Ṡ
T

Λ̃e + ST Λ̃p

)
− ρ (aüb + bu̇b + cub) = 0 x ∈ ΩPML, (0, T ], (3.43c)
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ΛT
e (D : S̈)Λe + ΛT

e (D : Ṡ)Λp + ΛT
p (D : Ṡ)Λe + ΛT

p (D : S)Λp

=
1

2

[
ΛT
p∇ub + (∇ub)TΛp

]
+

1

2

[
ΛT
e∇u̇b + (∇u̇b)TΛe

]
x ∈ ΩPML, (0, T ], (3.43d)

where the subscripts ‘a’ and ‘b’, in Eq. (3.43), denote the variables of the equations satisfied in

Ω\ΩPML and ΩPML, respectively. The superscripts ‘–’ and ‘+’ denote the total and scattered

fields in ΩN (per Eq. (3.43a)) and ΩL \ΩPML (per Eq. (3.43b)), respectively. S =
∫ t

0
σb(τ)dτ

is the stress-history tensor corresponding to the scattered fields ub and σb.

3.3.2 The semi-discrete form

Again, we introduce the Galerkin approximation of the solution variables as:

u−a (x, t) =

 u−a1(x, t)

u−a2(x, t)

 ≈
 Φ−(x)Tu−a1(t)

Φ−(x)Tu−a2(t)

 ,
u+
a (x, t) =

 u+
a1

(x, t)

u+
a2

(x, t)

 ≈
 Φ+(x)Tu+

a1
(t)

Φ+(x)Tu+
a2

(t)

 ,
ub(x, t) =

 ub1(x, t)

ub2(x, t)

 ≈
 Φ+(x)Tub1(t)

Φ+(x)Tub2(t)

 ,
S(x, t) =

 S11(x, t) S12(x, t)

S21(x, t) S22(x, t)

 ≈
 Ψ(x)TS11(t) Ψ(x)TS12(t)

Ψ(x)TS21(t) Ψ(x)TS22(t)

 , (3.44)

where Φ−, Φ+, and Ψ denote the shape function vectors to approximate the solutions. The

semi-discrete form of Eq. (3.43a) is:

 M−
u1u1

0

0 M−
u2u2

 ü−a1

ü−a2

+

 K−u1u1 K−u1u2
K−u2u1 K−u2u2

 u−a1

u−a2

 =

 ∫ΓNL
Φ−T−1 dΓ∫

ΓNL
Φ−T−2 dΓ

 (3.45)

where T−1 (or T−2 ) denotes the x1 (or x2) component of a traction T− = σ−n− on the

boundary ΓNL; n− is an outward unit normal vector from ΩN on ΓNL.
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The semi-discrete form of Eqs. (3.43b), (3.43c), and (3.43d) is:



M+
u1u1

0 0 0 0

0 M+
u2u2

0 0 0

0 0 M+
S11S11

M+
S11S22

0

0 0 M+
S22S11

M+
S22S22

0

0 0 0 0 M+
S12S12





ü+
1

ü+
2

S̈11

S̈22

S̈12



+



C+
u1u1

0 C+
u1S11

0 C+
u1S21

0 C+
u2u2

0 C+
u2S22

C+
u2S12

C+
S11u1

0 C+
S11S11

C+
S11S22

0

0 C+
S22u2

C+
S22S11

C+
S22S22

0

C+
S12u1

C+
S12u2

0 0 C+
S12S12





u̇+
1

u̇+
2

Ṡ11

Ṡ22

Ṡ12



+



K+
u1u1

K+
u1u2

K+
u1S11

0 K+
u1S21

K+
u2u1

K+
u2u2

0 K+
u2S22

K+
u2S12

K+
S11u1

0 K+
S11S11

K+
S11S22

0

0 K+
S22u2

K+
S22S11

K+
S22S22

0

K+
S12u1

K+
S12u2

0 0 K+
S12S12





u+
1

u+
2

S11

S22

S12


=



∫
ΓNL

Φ+T+
1 dΓ∫

ΓNL
Φ+T+

2 dΓ

0

0

0


(3.46)

where u+
1 and u+

2 denote the following vectors:

u+
1 =

 u+
a1

ub1

 , u+
2 =

 u+
a2

ub2

 , (3.47)

and T+
1 (or T+

2 ) denotes the x1 (or x2) component of a traction T+ = σ+n+ on the boundary

ΓNL; n+ is an outward unit normal vector from ΩL on ΓNL.

Now, we repartition Eqs. (3.45) and (3.46) by separating DOFs on ΓNL from the other
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DOFs, which results in:

 M−
ΩN\ΓNL

M−
(ΩN\ΓNL),ΓNL

M−
ΓNL,(ΩN\ΓNL) M−

ΓNL

 ü−a (ΩN \ ΓNL)

ü−a (ΓNL)


+

 K−ΩN\ΓNL
K−(ΩN\ΓNL),ΓNL

K−ΓNL,(ΩN\ΓNL) K−ΓNL

 u−a (ΩN \ ΓNL)

u−a (ΓNL)

 =

 0

f−ΓNL

 , (3.48)

and  M+
ΓNL

M+
ΓNL,(ΩL\ΓNL)

M+
(ΩL\ΓNL),ΓNL

M+
(ΩL\ΓNL)

 ü+
a (ΓNL)

s̈v+(ΩL \ ΓNL)


+

 C+
ΓNL

C+
ΓNL,(ΩL\ΓNL)

C+
(ΩL\ΓNL),ΓNL

C+
(ΩL\ΓNL)

 u̇+
a (ΓNL)

˙sv+(ΩL \ ΓNL)


+

 K+
ΓNL

K+
ΓNL,(ΩL\ΓNL)

K+
(ΩL\ΓNL),ΓNL

K+
(ΩL\ΓNL)

 u+
a (ΓNL)

sv+(ΩL \ ΓNL)

 =

 f+
ΓNL

0

 . (3.49)

u−a (ΓNL) denotes a vector of the total field displacement only at the nodes on ΓNL; u+
a (ΓNL)

denotes vector of the scattered field displacement only at the nodes on ΓNL; sv+(ΩL \ ΓNL)

denotes a vector of the components of sv+ except for u+
a at the nodes on ΓNL. f+

ΓNL
and f−ΓNL

are, respectively, parts of the following vectors:

 ∫ΓNL
Φ+T+

1 dΓ∫
ΓNL

Φ+T+
2 dΓ

 ,
 ∫ΓNL

Φ−T−1 dΓ∫
ΓNL

Φ−T−2 dΓ

 . (3.50)

Considering u−a (ΓNL) = u+
a (ΓNL) + ufree(ΓNL), the terms associated with known free field

motions—i.e. ufree(ΓNL)—can be moved from the left hand side of Eq. (3.49) to the right

hand side, which results in:

 M+
ΓNL

M+
ΓNL,(ΩL\ΓNL)

M+
(ΩL\ΓNL),ΓNL

M+
(ΩL\ΓNL)

 ü−a (ΓNL)

s̈v+(ΩL \ ΓNL)


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+

 C+
ΓNL

C+
ΓNL,(ΩL\ΓNL)

C+
(ΩL\ΓNL),ΓNL

C+
(ΩL\ΓNL)

 u̇−a (ΓNL)

˙sv+(ΩL \ ΓNL)


+

 K+
ΓNL

K+
ΓNL,(ΩL\ΓNL)

K+
(ΩL\ΓNL),ΓNL

K+
(ΩL\ΓNL)

 u−a (ΓNL)

sv+(ΩL \ ΓNL)


=

 f+
ΓNL

+ M+
ΓNL

üfree(ΓNL) + C+
ΓNL

u̇free(ΓNL) + K+
ΓNL

ufree(ΓNL)

M+
(ΩL\ΓNL),ΓNL

üfree(ΓNL) + C+
(ΩL\ΓNL),ΓNL

u̇free(ΓNL) + K+
(ΩL\ΓNL),ΓNL

ufree(ΓNL)

 . (3.51)

Since the solution vectors in Eqs. (3.48) and (3.51) share u−a (ΓNL), Eqs. (3.48) and (3.51)

can be coupled to the following form:


M−

ΩN\ΓNL
M−

(ΩN\ΓNL),ΓNL
0

M−
ΓNL,(ΩN\ΓNL) M−

ΓNL
+ M+

ΓNL
M+

ΓNL,(ΩL\ΓNL)

0 M+
(ΩL\ΓNL),ΓNL

M+
(ΩL\ΓNL)




ü−a (ΩN \ ΓNL)

ü−a (ΓNL)

s̈v+(ΩL \ ΓNL)



+


0 0 0

0 C+
ΓNL

C+
ΓNL,(ΩL\ΓNL)

0 C+
(ΩL\ΓNL),ΓNL

C+
(ΩL\ΓNL)




u̇−a (ΩN \ ΓNL)

u̇−a (ΓNL)

˙sv+(ΩL \ ΓNL)



+


K−ΩN\ΓNL

K−(ΩN\ΓNL),ΓNL
0

K−ΓNL,(ΩN\ΓNL) K−ΓNL
+ K+

ΓNL
K+

ΓNL,(ΩL\ΓNL)

0 K+
(ΩL\ΓNL),ΓNL

K+
(ΩL\ΓNL)




u−a (ΩN \ ΓNL)

u−a (ΓNL)

sv+(ΩL \ ΓNL)



=


0

f−ΓNL
+ f+

ΓNL
+ M+

ΓNL
üfree(ΓNL) + C+

ΓNL
u̇free(ΓNL) + K+

ΓNL
ufree(ΓNL)

M+
(ΩL\ΓNL),ΓNL

üfree(ΓNL) + C+
(ΩL\ΓNL),ΓNL

u̇free(ΓNL) + K+
(ΩL\ΓNL),ΓNL

ufree(ΓNL)

 . (3.52)

In Eq. (3.52), f−ΓNL
+ f+

ΓNL
can be rewritten as a function of the free field stress. To wit:

f−ΓNL
+ f+

ΓNL
= −

 ∫ΓNL
(Φ+(σfreen

+)1)dΓ∫
ΓNL

(Φ+(σfreen
+)2)dΓ

 . (3.53)

As shown in Eqs. (3.52) and (3.53), only the free field displacement and stress—i.e. ufree and
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σfree—are needed to compute the effective force vector that translates the effects of remote

excitation along the introduced fictitious interface ΓNL. Moreover, it is useful to note here

that, as shown in Bielak et al. (2003), the effective force vector can also be formulated such

that only a free-field displacement information over a one-layer element thickness surrounding

the interface ΓNL within the domain ΩL \ΩNL will be required. This is because (i) the mass,

damping and stiffness matrices in the region ΩL \ ΩPML are the same for both scattered-

and free-field problems and (ii) nonzero terms in matrices M+
ΓNL,(ΩL\ΓNL), C

+
ΓNL,(ΩL\ΓNL), and

K+
ΓNL,(ΩL\ΓNL) are only confined to elements sharing the nodes along the interface ΓNL.

In general, one needs to solve an auxiliary problem to obtain the free-field wave response.

Bielak et al. (2003) used the method provided by Hisada (1994) to compute the Green’s

functions of the layered half-space. Jeong (2013) also explored the accuracy of different

methods (e.g. Wang and Herrmann, 1980; Haskell, 1964; Zhu and Rivera, 2002) to compute

the input needed for the DRM. In this work, we assume that the incoming waves are vertically

propagating shear waves. Considering this assumption, the effective force vector can be

efficiently computed using a solution of a soil column as an auxiliary problem. Details of the

approach used is provided in Chapter 5.
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CHAPTER 4

Computing the soil impedance functions

The second objective of this work is to compute the impedance functions for complex interface

geometries and soil heterogeneity. Quite a number of studies have been carried out since the

late 1960s to compute the impedance functions for different types of soil-foundation systems.

In these efforts, various modeling techniques were employed including analytical and semi-

analytical approaches, the boundary element method (BEM), and the coupled boundary and

finite element method (BEM-FEM). As a result, most of the available impedance functions

are for relatively simple soil profiles and interface geometries. A non-exhaustive list of these

studies for plane-strain problems are summarized in Table 4.1.

In this work, we devise a fully discrete approach for computing the impedance functions

of a general soil-structure interface. Using the PML formulation (as explained in Chapter 3)

allows us to model wave propagation in heterogenous semi-infinite domains robustly and

efficiently. Moreover, using the FEM allows us to model any soil-structure interface geometry

and soil profile.

4.1 Impedance matrix of a rigid interface

Kinematics of a rigid foundation in a plane-strain setting (Figure 4.1) can be described

by three degrees of freedom—namely, the vertical, horizontal, and rotational motions, re-

spectively denoted here by ∆1,∆2, and θ. The subscripts 1 and 2 denote the x1 and x2

directions in the 2D Cartesian coordinate system. The displacement-reaction relationships
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Table 4.1: A list of theoretically-obtained impedance functions available in open literature.

Authors Analysis method Soil profile Foundation type Motion
Karasudhi et al. (1968) Analytic Homogenous elas-

tic halfspace
Rigid, surface V, H, R

Luco and Westmann (1972) Analytic Homogeneous
elastic halfspace

Rigid, surface V, H, R

Gazetas (1980) Semi-Analytic Non-homogenous
elastic halfspace

Rigid, surface V, H, R

Hryniewicz (1981) Analytic Homogeneous
elastic halfspace

Rigid, surface V, H, R

Rajapakse and Shah (1988) BEM Homogeneous
elastic halfspace

Rigid, embedded V, H, R

Israil and Ahmad (1989) BEM viscoelastic layer
on a viscoelastic
halfspace

Rigid, embedded V

Ahmad and Bharadwaj (1991) BEM viscoelastic lay-
ered halfspace

Rigid, embedded H

Bharadwaj and Ahmad (1992) BEM viscoelastic lay-
ered halfspace

Rigid, embedded R

Spyrakos and Xu (2004) BEM-FEM Elastic layered
halfspace

Flexible, embedded V, H

In the 5-th column, V, H, and R stand for, respectively, vertical, horizontal, and rotational movements.

Rigid interface

Finite element mesh

�1

�2

✓

(x1c, x2c)

Figure 4.1: Rigid foundation kinematics: the grids indicate the finite element meshes, and
the dots indicate the nodes along the soil-structure interface.
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in the frequency domain can be described by an impedance matrix, as in


R̂2

R̂1

M̂/b

 = πµ


K̂V 0 0

0 K̂HH K̂HM

0 K̂MH K̂MM




∆̂2

∆̂1

bθ̂

 , (4.1)

where R̂1 and R̂2 are resultant reaction forces in x1 and x2 directions, respectively. The

characteristic length b is used for normalizing M̂ and θ̂, which denote, respectively, the

moment and the rotation angle with respect to the point (x1c, x2c) (see Figure 4.1). It is

expedient to note here that the horizontal and rotational degrees of freedom—i.e., ∆̂1 and

θ̂—are coupled, and that the impedance function matrix in Eq. (4.1) is symmetric.

4.2 FE Solver for computing the nodal reaction forces in time and

frequency

In Chapter 3, we described the procedure to obtain the semi-discrete form of wave equations

in a PML-truncated domain in time, which is repeated here as:

M d̈(t) + C ḋ(t) + K d(t) = f(t). (4.2)

Eq. (4.2) can be solved using Newmark’s time-stepping method (Newmark, 1959). To treat

the Dirichlet boundary condition (ua = g on ΓLoaded∪ΓFixed), we partition the solution vector

and the matrices as follows:

d =

 dunkn

dkn

 , M( or C,K) =

 Munkn,unkn Munkn,kn

Mkn,unkn Mkn,kn

 , (4.3)

where dunkn and dkn denote the unknown and known nodal solution vectors, respectively.

Because of the partitioning, a new force vector needs to be constructed as well. Once we

obtain the unknown part of the solution vector (dunkn), we can compute the reaction force
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vector through the equation

Mkn,unknd̈unkn
j + Mkn,knd̈kn

j + Ckn,unknḋunkn
j + Ckn,knḋkn

j

+Kkn,unkndunkn
j + Kkn,kndkn

j = rj, (4.4)

where rj corresponds to the nodal reaction force vector at the nodes on ΓLoaded ∪ ΓFixed at

the j-th time step. Finally, we integrate the nodal reaction force values along the boundary

ΓLoaded into the vertical and horizontal forces, as well as the moment.

The wave governing equations can also be solved in the frequency domain. In this case,

at each frequency ω, a complex-valued algebraic system of equations needs to be solved. The

resulting frequency-domain semi-discrete form is

(−ω2M + iωC + K)d̂(ω) = f̂(ω), (4.5)

where (ˆ) denotes the Fourier transform of the subtended variable. Again, we use the

partitioning described in Eq. (4.3) to compute the unknown portion of the solution vector

(d̂unkn). We then compute the complex-valued reaction force vector r̂j at each frequency ωj

and, subsequently, the resultant forces and the moment.

4.2.1 Computing the impedance functions through time-domain forward anal-

yses

In order to compute each component of the impedance matrix using the time domain FE

solver, we first prescribe judiciously chosen displacement time-histories—i.e., ∆1(t), ∆2(t),

and θ(t)—, and subsequently compute reaction forces R1(t) and R2(t) and the momentM(t)

as described in §4.2. Then, we carry out the following procedure by considering that the

soil-structure interface is “welded”1:
1For “relaxed” soil-foundation interface assumption, the same procedure can be used by considering that

the displacement time-history is prescribed only at one degree of freedom (i.e., ∆1, ∆2 or θ).
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(i) Use Fourier transform to compute the vertical reaction R̂2 for a given vertical motion

(∆̂1 = 0, ∆̂2 6= 0, θ̂ = 0), and then compute K̂V = R̂2/πµ∆̂2.

(ii) Use Fourier transform to compute reactions R̂1 and M̂ for a given horizontal motion

(∆̂1 6= 0, ∆̂2 = 0, θ̂ = 0), and then compute K̂HH = R̂1/πµ∆̂1 and K̂MH = M̂/πµb∆̂1.

(iii) Use Fourier transform to compute reactions R̂1 and M̂ for a given rotational motion

(∆̂1 = 0, ∆̂2 = 0, θ̂ 6= 0), and then compute K̂HM = R̂1/πµbθ̂ and K̂MM = M̂/πµb2θ̂.

These steps will thus yield the impedance matrix components for the frequency spectrum

excited through the prescribed loading time-history.

4.2.2 Computing the impedance functions through frequency-domain forward

analyses

In order to use the frequency domain FE solver to obtain the impedance matrix for the

welded condition, constant-valued displacements and rotation must be prescribed—i.e., ∆̂1,

∆̂2, and θ̂—as enumerated in §4.2.1, and the resulting reaction forces and moment—i.e., R̂1,

R̂2, and M̂—must be computed. Then, obtaining the ratio of reactions with respect to the

prescribed displacements will directly yield the components of the impedance matrix. This

procedure must be repeated for different frequencies in order to obtain the impedance matrix

spectra.

4.2.3 Choosing the temporal variation of the input signal for time domain anal-

yses

A straightforward approach to obtain the steady-state response of the system is to prescribe

a harmonic displacement A sin(ωt) on the foundation boundary. Then, by fitting a sinusoidal

function to the resultant reaction histories, we can obtain their amplitude (F ) and phase shift

(φ) with respect to the imposed displacement. Once these data are available, the impedance
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functions at frequency ω can be computed as,

K̂(ω) =
F

A
(cosφ+ i sinφ). (4.6)

However, this procedure requires repeating the forward time-domain analyses for different

values of ω to cover the frequency range of interest. In order to avoid such time-consuming

frequency sweeps, we investigate here the feasibility of prescribing displacement time histo-

ries with a wide-band frequency spectra instead, and consider the Ricker wavelet (Eq. (4.7))

and the linear Chirp (Eq. (4.8)) loadings. With a Ricker wavelet, all frequencies are excited

simultaneously, whereas with the chirp, the excitation frequency increases linearly (and con-

tinuously) with time.

ΥRicker(t) =


13.0e−13.5−(0.25η2−0.5)e(−0.25η2)

0.5+13.0e−13.5 t ≤ t̄

0 t > t̄

,

η = 2πfctrt− 3
√

6, t̄ =
6
√

6

2πfctr
. (4.7)

ΥChirp(t) = sin

(
πf1

t1
t2
)
. (4.8)

The parameter fctr in Eq. (4.7) denotes the central frequency of the Ricker pulse signal,

and f1 in Eq. (4.8) is the instantaneous frequency of the linear Chirp at time t1. Given the

time-history, the motions can be prescribed through,

{∆1(t), ∆2(t), θ(t)} = A×ΥRicker/Chirp(t) (4.9)

where A is a chosen amplitude.

To examine the effectiveness of different input excitation types—namely, sinusoidal,

Ricker pulse and linear Chirp—, we use them to compute the horizontal impedance of a

strip foundation resting on the surface of an elastic half space for a wide range of frequencies
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Figure 4.2: Time history and Fourier amplitude of the prescribed (a) Ricker wavelet and (b)
linear chirp displacements, ∆(t), ∆̂(ω), and the resulting reactions, R(t), R̂(ω).
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and compare them to impedances obtained using frequency domain data. The width of the

foundation is 8 m. Young’s modulus, Poisson’s ratio, and density of the soil are E = 1 GPa,

ν = 0.4, and ρ = 2200 kg/m3, respectively. Figure 4.2 shows prescribed displacements and

the resulting reactions in both time- and frequency domains. The Ricker and linear chirp

parameters are fctr = 50 Hz, f1 = 100 Hz and t1 = 1 sec. The reference solution is obtained

using the frequency-domain FE solver for frequencies ranging from 1 to 100 Hz. Figure 4.3

displays the real and imaginary parts of the dynamic stiffnesses resulting from each method.

As seen in Figure 4.3, all results are in an excellent agreement.
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Figure 4.3: The (a) real and (b) imaginary parts of the horizontal impedance function of a
strip foundation on the surface of elastic half space with ν = 0.4.

It is important to note here that one may consider prescribing tractions (instead of

displacements and rotations) on ΓLoaded to compute the compliance matrix, and subsequently

the impedance matrix. This procedure, in general, would need longer analysis times, because

the responses need to reach the steady-state (or at-rest) condition in the case of harmonic

(or broadband) input forces (Day and Frazier, 1979). Furthermore, the foundation boundary

should still be constrained as a rigid boundary using kinematic boundary conditions. Both

issues are circumvented by prescribing kinematic boundary conditions (displacements and/or

rotations) at the foundation-soil interface completely. It should be noted, however, that in

the case of very short-duration kinematic excitations, it may be necessary to apply zero-

padding at the ends of the time-domain input and output signals prior to their Fourier

transformation in order to increase the resolution of the computed impedance functions in
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the frequency domain while preserving the time resolution.

4.2.4 Computational costs of time and frequency domain solutions

Since both the frequency- and the time-domain (with broadband input) approaches produce

accurate results, the choice between the two should be based on computational cost. Here,

we offer a quantified assessment in this regard by applying both approaches on problems with

different domain sizes and by counting the floating point operations (flops) needed to solve

the resulting sparse systems of linear equations. The primary portion of the said computa-

tions consist of LU factorizations and forward/backward substitutions2. We have developed

the FE solver using Portable, Extensible Toolkit for Scientific Computation (PETSc) (Balay

et al., 2016a,b, 1997) for matrix algebra and Supernodal LU package (SuperLU) (Li and

Demmel, 2003; Grigori et al., 2007) for solving the system of linear equations.

The model problem used in the computational cost study is the strip foundation resting

on homogenous half space shown in Figure 4.6(a). The smallest domain considered had the

dimensions LD = LPML = 0.5LH = 5 m, and the largest had LD = LPML = 0.5LH = 20 m.

The other problems’ domain sizes varied from the smallest to the largest in 1m increments.

In all of the calculations, the finite element sizes were uniform within the domains, and

were kept constant at 1 m × 1 m. Thus, increasing domain sizes meant increasing number

of DOFs—smallest problem had 661 nodes, 200 elements; largest problem had 9841 nodes,

3200 elements. For all domain sizes considered, the factored matrices L had nearly identical

sparsity patterns and percentages of nonzero matrix elements in both time and frequency

domain analyses.

Figure 4.4 displays the variation of flops with the number of nonzero terms (nnz) in

the sparse matrix L for both approaches, along with least-squares fits to data from the

computational experiments. Using these results, the computational cost ratio for obtaining
2The main computational cost of obtaining the impedances is due to solving the resulting systems of

linear equations and time-stepping. Other calculations and operations are either negligible (e.g., stiffness
assembly) or almost equal between the two approaches (e.g., mesh generation).

43



the impedance functions between the frequency and the time domain approaches can be

approximated as,

Cost Ratio =
[39.86 (nnz)

1.27 + 16.13nnz]nf
8.073 (nnz)1.27 + (4.042nnz)×N

(4.10)

where N and nf denote the number of time steps and number of frequencies used for time

and frequency domain simulations, respectively. It is useful to note here that in order to

attain the same frequency resolution for the computed impedance functions from the time-

and the frequency-domain approaches, N and nf need to be selected based on the duration of

the input signal, allowable ∆t, and ∆f . Once these choices are made/known, then Eq. (4.10)

can be used to compute the cost ratio for different problem sizes. To explore and visualize

the possible values of the Cost Ratio, we plot its values for the smallest and the largest

domain sizes in Figure 4.5. As seen, the time-domain approach is usually cheaper than the

frequency domain approach (i.e., Cost Ratio is greater than 1 for most combinations of N

and nf ).
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Figure 4.4: Floating point operations of (a) LU factorization and (b) forward/backward
substitutions to solve Ax = b in time and frequency domains.
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Figure 4.5: The contour of the cost ratio for (a) small and (b) large size problems.

4.3 Verification Problems

The proposed time and frequency domain approaches are verified using (semi-)analytic so-

lutions available in open literature for surface and embedded strip foundations (Figure 4.6).

Eight-noded quadratic elements are used for discretizing both the regular and the PML

portions of the computational domain. To ensure accuracy, both the spatial and temporal

discretizations should be judiciously chosen. An element size is determined such that at least

20 nodes are enclosed within the smallest wavelength Vs/fmax (Bao et al., 1998), where Vs

denotes the smallest shear wave speed and fmax denotes the maximum discernible frequency.

The size of the time step should be sufficiently small such that ∆t ≤ h/(3Vp), where h de-

notes the size of the quadratic elements, and Vp denotes the largest P-wave speed considered

in the numerical model (Wang et al., 1992; Tokmashev et al., 2013).

4.3.1 Impedance functions of an elastic homogeneous half-space

The proposed time-domain FE solver is used to compute the impedance function of the

strip foundation shown in Figure 4.6a, resting on the surface of an elastic homogeneous

half-space. The reference solution for this problem is due to Luco and Westmann (1972).
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Figure 4.6: Rigid foundations of different types in a two-dimensional setting.

B denotes the half-width of the foundation, and Vs is the shear wave velocity of the soil.

The soil Poisson’s ratio is 0.25. The impedance components K̂V , K̂HH , K̂MM , and K̂HM are

obtained by considering the “welded” interface condition. Ricker pulse with the dimensionless

central frequency a0ctr = ωctrB/Vs = 1.18 and a total wave response observation time of

approximately 10LD/Vs is used. The total observation time is set to be ten times LD/Vs

— i.e., arrival time of shear waves, departing from the excitation source, to the interfaces

between the regular domain and the PML areas. A verification study using such a long

observation time allows the detection of errors due to wave reflections of the PML areas (i.e.,

possible failure of the PMLs).

As shown in Figure 4.7a, the numerically-evaluated impedance functions show an excel-

lent agreement with the reference solutions. We note that, as discussed in Luco and West-

mann (1972); Muskhelishvili (1963), the compliances (real parts) of the strip foundation for

horizontal and vertical directions exhibit singular behaviors as the frequency approaches to

zero. That is, the real parts of the impedance functions of a strip foundation along the hor-

izontal and vertical directions vanish at zero frequency. On the other hand, the real part of

the rocking component is nonzero, hence its compliance is finite. However, it should be noted

that the zero frequency component of the rocking mode can only be retrieved asymptotically
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by using the FE solver proposed in the present study, as it cannot accommodate perfectly

static loads (Kucukcoban, 2010).
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Figure 4.7: Impedance function of a rigid strip surface foundation computed using a Ricker
pulse versus the reference solution by Luco and Westmann (1972).

Next, the impedance function for a rigid foundation embedded in a homogenous soil

(see Figure 4.6b) is considered. Here B denotes the half-width of the foundation, and D

the depth of the excavated boundary. The rotational centroid is located at x1c = 0 and

x2c = −D. The embedment ratio is D/B = 1. The side wall and bottom boundary of the

embedded foundation are considered to be completely attached to the surrounding soil. The

reference solution for this problem is due to Wang and Rajapakse (1991). Other parameters

are set identical to those for the previous verification case. As seen in Figure 4.8, numerically

computed impedances are in very good agreement with their analytic counterparts.

4.3.2 Impedance functions of a viscoelastic two-layered half-space

In frequency domain analyses, soil viscoelasticity can be easily incorporated into the model

by modifying the Lamè parameters as in λ∗ = λ(1 + 2iξ) and µ∗ = µ(1 + 2iξ) where ξ is

the soil material damping. For verifying our frequency-domain FE solver, the horizontal

and rocking impedances of a strip foundation embedded in a two-layered viscoelastic soil are
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Figure 4.8: Impedance function of a rigid strip embedded foundation computed using a
Ricker pulse versus the reference solution by Wang and Rajapakse (1991).

computed. The reference BEM solutions for this problem are due to Ahmad and Bharadwaj

(1991); Bharadwaj and Ahmad (1992). In all analyses, the height of the first layer over the

half-space is 4B. Three different values of E1/E2 = 0.5, 1, 2 are considered where E1 and

E2 are Young’s modulus of the first and the second layers, respectively. Two embedment

ratios of D/B = 0, 1 are considered. The Poisson’s ratio and the material damping of both

layers are 0.4 and 5%, respectively. The numerically computed impedance functions K̂HH

and K̂MM are normalized as follows to be consistent with those provided in the reference

solutions:

Horizontal: spring coefficient =
Re(K̂HH)

k0Hµ
, dashpot coefficient =

Im(K̂HH)

2ωBρVs1

Rocking: spring coefficient =
Re(K̂MM)

k0MµB2
, dashpot coefficient =

Im(K̂MM)

ωρVLaIbz
(4.11)

where k0H and k0M are constant values defined in Table 4.2; Vs1 is the shear wave speed of

the first layer; VLa = 3.4Vs1/[π(1 − ν)] and Ibz = 2B3/3. Figures 4.9 and 4.10 display the

resulting spring and dashpot coefficients along with the reference solutions, which again are

in excellent agreement.
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Table 4.2: Values of parameters k0H and k0M in Eq. (4.11).

k0H k0M
D/B E1/E2 = 0.5 E1/E2 = 1 E1/E2 = 2 E1/E2 = 0.5 E1/E2 = 1 E1/E2 = 2
0 1.39 1.21 1.02 2.82 2.76 2.62
1 1.95 1.55 1.19 6.76 6.6 5.94
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Figure 4.9: Horizontal impedance function of a rigid strip foundation embedded in viscoelas-
tic two-layered half-space computed using frequency domain FE solver versus the reference
solution by Ahmad and Bharadwaj (1991).
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Figure 4.10: Rocking impedance function of a rigid strip foundation embedded in viscoelastic
two-layered half-space computed using frequency domain FE solver versus the reference
solution by Bharadwaj and Ahmad (1992).
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4.3.3 Impedance functions of a viscoelastic incompressible soil on a rigid bedrock

In order to explore the capability of the developed FE solver for computing the impedance

functions for a viscoelastic incompressible soil layer on a rigid bedrock, we compute the

complex-valued compliance functions, as defined in Eq. (4.12) (Gazetas, 1981), of a surface

rigid foundation with the geometry shown in Figure 4.11. The material damping of the

soil layer is 5% and the interface condition is “welded”. Three cases of H/B = ∞, 1, 3 are

considered. The reference solution is due to a semi-analytical solution proposed by Gazetas

(1981).

2B

⌦PML ⌦PMLH

rigid

Figure 4.11: Rigid foundation on a surface of a soil layer supported by a rigid bedrock.

ĈV = E
∆̂2

R̂2

, ĈHH = E
∆̂1

R̂1

, ĈMM = EB2 θ̂

M̂
. (4.12)

Frequency domain FE solver is used to compute the impedance matrix for each config-

uration. Then, the compliance matrix can be computed through inverting the impedance

matrix. In order to handle the incompressibility of the soil layer, in all numerical simu-

lations, the Poisson’s ratio of the soil layer is ν = 0.49. Figure 4.12 shows the resulting

vertical, horizontal and rocking compliance functions, which are in good agreement with the

reference solutions. As expected, for the case of H/B =∞, the real and imaginary parts of

the vertical and horizontal compliance functions tend to infinity as frequency tends to zero.
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Figure 4.12: Real and imaginary parts of (a) vertical, (b) horizontal and (c) rocking com-
pliance functions of a surface rigid foundation on a viscoelastic incompressible soil layer
computed using the frequency domain FE solver versus the reference solution by Gazetas
(1981).
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4.4 Performance of PMLs in comparison to Lysmer-Kuhlemeyer

(LK) dashpots

In order to investigate the performance of PMLs in absorbing the outgoing waves in com-

parison to LK dashpots (Lysmer and Kuhlemeyer, 1969)—which are widely used in time

domain analyses—, we modified our time-domain FE solver such that the fixed degrees of

freedom on ΓFixed (see Figure 3.2) are released and replaced with dashpots. Coefficients of

these dashpots along the normal and tangent directions to the new boundary—i.e., ΓLK—are

set at ρVp/` and ρVs/`, respectively, where Vp and Vs are the longitudinal and shear wave

velocities—which can be computed based on the soil properties along ΓLK—and ` is the

length of the corresponding edge of ΓLK.

4.4.1 A strip foundation on the surface of an elastic half-space

Again, the reference solution is chosen as the horizontal impedance function of a strip

foundation resting on an elastic half-space (as discussed in §4.3.1). A Ricker pulse with

fctr = 10 Hz is used as the input signal. Soil properties are selected such that Vs = 150 m/s

and Vp = 259.81 m/s. The total observation time considered is T = 10 sec. The half-width of

the foundation is B = 4 m. Figure 4.13 displays the resulting impedance functions obtained

by prescribing ΓLK at different distances around the regular domain, and by using the PML

at the original distance considered earlier for the same problem. As expected, increasing the

size of the regular domain improves the accuracy of the impedances obtained using the LK

dashpots. This is because the incidence angle of the outgoing waves become closer to the

normal direction of ΓLK as the domain size increases, which in turn, results in a better perfor-

mance by the LK dashpots. Nevertheless, even as the accuracy of the LK-based impedances

increase with increasing domain size, they are plagued by noise, which indicates that LK

dashpots cannot absorb outgoing waves at all frequencies equally well. For larger domain

sizes, incidence angles become more favorable for the LK dashpots, but at the same time, the

modal space of the computational domain increases, and thus, higher modes become active
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that interact with the truncated LK boundary. This is very likely the cause of the increased

oscillations seen in Figure 4.13.

4.4.2 A strip foundation embedded in a two-layered elastic half-space

In order to explore the effects of soil heterogeneity and foundation embedment, horizontal

impedance of a strip foundation embedded in a two-layered elastic soil is computed. The

embedment ratio is D/B = 1, the height of the first layer is 4B, and the stiffness ratio is

E1/E2 = 0.5. Other parameters are the same as the previous example. Figure 4.14 shows

the resulting impedance functions obtained by prescribing ΓLK at different distances and by

using PML. Again, while the performance of LK dashpots increases by enlarging the size of

the domain, they exhibit more oscillatory behavior than their counterparts in the previous

example. Moreover, we need to use thicker PML in this example to achieve the desired

performance. This is mainly because the prescribed ABCs should absorb a larger amount

of energy created due to (i) the increased length of interface at which the input motion is

prescribed, and (ii) multiple reflections and refractions occur at the interface of the first and

second soil layers and at the free surface of the first layer.
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Figure 4.13: Horizontal impedance function of a strip foundation on surface of elastic half
space with ν = 0.25, computed by using LK dashpots and PMLs as ABC.
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Figure 4.14: Horizontal impedance function of a strip foundation embedded in a two-layered
elastic half space with ν = 0.25, computed by using LK dashpots and PMLs as ABC.

4.4.3 Computational cost

LK and PML approaches should also be compared based on their computational costs. To

provide a better understating in this regard, the total number of nodes used for discretization

of the computational domain for each analysis case, and the corresponding total number of

DOFs are shown in Table 4.3. Accordingly, for the case of strip foundation on surface of

elastic half-space, the number of DOFs for computing with LK dashpots at LH = 100B

is about 180 times that of the PML option with thickness B at LH = 4B. This is a

significant increase in computational cost, considering the fact that the number of flops for

nominal direct solvers for linear systems typically increase with order O(dof3). For the case

of a strip foundation embedded in two-layered soil, the computational cost of using LK

dashpots at LH = 100B is about 16 times that of the PML option with thickness of 3.75B

at LH = 10B. The comparisons above indicate that the PML approach yields significantly

more accurate impedance functions than the LK approach, and moreover, they are far more

efficient computationally.

55



Table 4.3: Computational cost of using PMLs versus LK dashpots to compute the horizontal
impedance function of a strip foundation.

ABC LH LPML Number of Number of DOFLK/DOFPML DOFLK/DOFPML
Nodes DOFs (on surface of half-space) (embedded in two-layered half-space)

LK 6B — 937 1874 0.7 —
LK 10B — 2521 5042 1.9 0.2
LK 20B — 9841 19682 7.3 0.6
LK 100B — 241201 482402 179 15.8
PML 4B 1B 937 3581 1.0 —
PML 10B 3.75B 7473 30549 — 1.0

4.5 Impedance matrix of a flexible interface

Nearly all of the available impedance functions were obtained based on the simplifying as-

sumption that the soil-structure interface behaves rigidly. As mentioned before, this assump-

tion reduces the size of the problem and yields only the impedance functions for rigid modes

of the interface, which are 3×3 and 6×6 matrices for two- and three dimensional problems,

respectively. However, this rigid interface assumption may not always be appropriate for

all foundation configurations and geometries, and for problems that require the impedance

functions to be defined at an interface within the flexible soil domain—i.e., problems that

involve near-field nonlinearities such as soil inelasticity (Preisig, 2005), or soil-foundation

gapping/contact (Rha and Taciroglu, 2007).

The effects of interface flexibility on the impedance functions and the dynamic response of

structures have been the subject of a number of studies. Table 4.4 provides a (not necessarily

exhaustive) list of existing studies on response of flexible foundations from the late 70s to

date. It is observed in these cited studies that the responses of flexible foundations depend

on several factors—namely, the stiffness of the foundation relative to the surrounding soil,

the foundation geometry, the soil stratification, the spatial variability and frequency content

of the applied loading, and the spatial distribution of the foundation mass and stiffness.

Recently, Maravas et al. (2013) extracted nodal impedances for a rectangular foundation

using the computer program ACS SASSI (Ghi, 2010), which can only handle horizontally

layered soil domains. In their approach, Maravas et al. (2013) imposed unit harmonic forces
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Table 4.4: A list of existing studies on impedance functions and response analysis of flexible
foundations.

Authors Analysis method Foundation type Soil profile
Savidis and Richter (1979) Analytic & FEM Surface, Rectangular Elastic half-space
Iguchi and Luco (1981) Continuum approach & FEM Surface, Rectangular (with rigid

core or edge)
Elastic half-space

Riggs and Waas (1985) Semianalytic & FEM Surface, Circular (with concentric
rigid walls)

Elastic layer over bedrock

Karabalis and Beskos (1985) Time domain BEM & FEM Surface, Rectangular Elastic half-space
Spyrakos and Beskos (1986) Time domain BEM & FEM Surface, Strip Elastic half-space
Kokkinos and Spyrakos (1991) Frequency domain BEM & FEM Surface, Strip Elastic layered half-space
Gucunski and Peek (1993) Stiffness matrix approach & finite

difference energy method
Surface, Circular Elastic layered half-space

Liou and Huang (1994) Substructure technique Surface, Circular Visco-elastic half-space
Gucunski (1996) Stiffness matrix approach & finite

difference energy method
Surface, Circular Elastic layered half-space

Spyrakos and Xu (2004) Frequency domain BEM & FEM Embedded, Massive, Strip Elastic layered half-space
Saitoh and Watanabe (2004) Closed-form formula based on wave

propagation theory
Embedded, Cylindrical Elastic layer over bedrock

Chen and Hou (2009) Modal stiffness matrix approach Surface, Circular Elastic half-space
Maravas et al. (2013) FEM Surface, Rectangular Elastic half-space

successively at different surface interaction points and used the resulting displacements at

all interaction nodes to extract compliance functions. The resulting compliance matrix was

then inverted to obtain the impedance matrix. The other pertinent study is by Chen and

Hou (2009) who studied modal impedances of a surface circular foundation. Chen and Hou

(2009) also opted to use a flexibility approach—that is, they applied a “unit modal load” and

computed corresponding displacements at the soil-foundation interface using an analytical

solution by Kausel and Roesset (1981).

In this section we describe the extension of the devised methodology to compute the

impedance functions of a flexible soil-structure interface, which is again based on prescribed

displacements that result in the direct extraction of nodal impedance matrices. We verify

the accuracy of the numerically computed impedance functions in Chapter 6 where the

substructure modeling approach will be used to compute the response of a reduced order

SSI problem.

4.5.1 Computing the nodal impedance matrix

We want to obtain the impedance matrix Ŝ(ω) for a discretized interface (Figure 4.15). This

can be done by obtaining the DtN-map relating the displacements to the reactions/forces
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Flexible interface

Finite element mesh

Figure 4.15: Flexible interface kinematics: the grids indicate the finite element meshes, and
the dots indicate the nodes along the soil-structure interface.

along the interface. The general form of a DtN-map written in frequency domain is

Ŝ(ω)d̂(ω) = r̂(ω) (4.13)

where d and r are interfacial displacement and reaction force vectors, respectively. Consid-

ering Nb discretization nodes (the black points in Figure 4.15), the total number of DOFs

along the interface would be 2Nb for a two-dimensional problem, and therefore d̂(ω) and

r̂(ω) would be ∈ C2Nb , and Ŝ(ω) ∈ C2Nb×2Nb . Thus, the general procedure for deriving the

nodal impedance matrix in frequency domain can be described as follows:

1. Prescribe a known steady-state displacement ĥ(ω) in the direction of the j-th DOF

while keeping all the other interface DOFs fixed—i.e., d̂k(ω) = 0 for k = 1, . . . , j −
1, j + 1, . . . , 2Nb and d̂k(ω) = ĥ(ω) for k = j).

2. Obtain the reaction forces r̂k(ω) for k = 1, . . . , 2Nb.

3. Compute the j-th column of the nodal impedance function matrix as:

Ŝij(ω) =
r̂i(ω)

ĥ(ω)
for i = 1, . . . , 2Nb . (4.14)

4. Repeat the above procedure for all DOFs along the interface, i.e., j = 1, . . . , 2Nb, which

will yield the full expression of the nodal impedance matrix Ŝ(ω).
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CHAPTER 5

Computing the kinematic interaction transfer functions

As outlined in Chapter 1, the third objective of this work is to compute KITFs for different

types of soil-structure interfaces. Since late 1960s, a number of studies have been carried out

to obtain the response of rigid embedded foundations under different types of incoming waves

by solving the scattering problem (e.g., Day, 1977; Elsabee and Morray, 1977; Dominguez,

1978). Luco (1986) used the reciprocity theorem to convert the scattering problem—i.e.,

the problem of foundation response under seismic waves—to the radiation problem—i.e.,

the problem of foundation response under external forces. As a result, the scattered re-

sponse of the foundation interface, or the so called FIM, could be evaluated if one knows the

soil impedance matrix, the distribution of tractions along the excavated soil interface, and

the free-field displacement and traction responses. Iguchi (1982) proposed an approximate

method to compute the FIM using only the foundation geometry and impedance, and the

free-field motion. The accuracy of this approximate method was investigated by Pais and

Kausel (1989).

Here, we present a method that uses our developed FE solver to compute the scattered

responses as well as the associated KITFs of a soil-structure interface. As discussed in

Chapter 4, in order to solve the scattering problem using the DRM, we need to compute

free-field tractions and displacements at the fictitious interface (ΓNL) where we want to define

the effective force vector. For vertically propagating shear waves, we can efficiently compute

the free-field data from one-dimensional (1D) wave propagation analysis. This allows us to

solve a simpler auxiliary problem instead of computing the free-field information along the

soil-structure interface, as proposed by Luco (1986).
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5.1 Modeling 1D wave propagation in a soil layer on elastic bedrock

5.1.1 Wave physics in an elastic homogeneous bedrock

We consider 1D wave propagation in a soil column on an elastic bedrock (see Figure 5.1a)

here. The governing wave equation in the elastic bedrock is

ü(z, t) = V 2
b u,zz(z, t) (5.1)

where Vb is the shear wave velocity of the elastic bedrock; u is the horizontal displacement

response as function of depth z. The wave response can be expressed as:

u(z, t) = uR(t− z/Vb) + uI(t+ z/Vb) (5.2)

where uR and uI are the waves traveling downward (reflected) and upward (incident), respec-

tively. By taking the first derivative of the wave response with respect to z and by setting

z = 0, we obtain the shear stress τ(t) on surface of the elastic bedrock. To wit,

τ(t) = ρbV
2
b u,z(0, t) = ρbVbu̇I(0, t)− ρbVbu̇R(0, t) = 2ρbVbu̇I(0, t)− ρbVbu̇(0, t). (5.3)

Therefore, as already shown by Zhang et al. (2003), the elastic bedrock can be replaced by

a dashpot with coefficient ρbVb, while the incident wave can be replaced by an equivalent

horizontal force equal to 2ρbVbu̇I(0, t) at z = 0. This is shown schematically in Figure 5.1b.

5.1.2 Wave physics in a soil layer

Considering a horizontally layered soil with height H on an elastic bedrock, the governing

wave equation is:

µ(ufree),zz(z, t)− ρu̇free(z, t) = 0 (5.4)
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Soil layerElastic bedrock

(a)

Soil layerElastic bedrock

(b)

Soil layerElastic bedrock

(c)

Figure 5.1: Schematic (a) semi-infinite elastic bedrock; the replaced macro-element; and (c)
soil layer supported by the elastic bedrock macro-element.

and the boundary conditions at the soil surface and at its interface with the elastic bedrock

are:

(ufree),z(0, t) = 0 , (5.5)

µ(ufree),z(−H, t) = −ρbVbu̇b(t) + ρbVbu̇free(−H, t) , (5.6)

where ub(t) = 2uI(0, t); µ and ρ are the shear modulus and the density of the soil layer.

Eqs. (5.4) and (5.6) can be solved numerically using the standard finite element method.

5.2 Computing the effective force vector along the interface ΓNL

Here, we recall the effective force vector obtained in §3.3.2 for a PML-truncated domain to

employ DRM.

feff =


0

ffree(ΓNL) + M+
ΓNL

üfree(ΓNL) + C+
ΓNL

u̇free(ΓNL) + K+
ΓNL

ufree(ΓNL)

M+
(ΩL\ΓNL),ΓNL

üfree(ΓNL) + C+
(ΩL\ΓNL),ΓNL

u̇free(ΓNL) + K+
(ΩL\ΓNL),ΓNL

ufree(ΓNL)

 ,
(5.7)
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where

ffree(ΓNL) = −
∫

ΓNL

Φ+(σfreen
+)dΓ. (5.8)

As shown in Eq. (5.7), in order to compute feff, we need to compute ufree(ΓNL) and ffree(ΓNL).

We use the procedure discussed in §5.1 to characterize the free field information needed to

form the effective force vector.

Elastic homogeneous bedrock

Horizontally layered soil

Heterogeneous soil deposit

Structure

Figure 5.2: Schematic SSI problem in a PML-truncated domain for DRM analysis under
vertically propagating shear waves.

Here, we assume that the soil properties in “horizontally layered soil” and “elastic homo-

geneous bedrock” regions shown in Figure 5.2 are, respectively, the same as those chosen for

the soil layer and the elastic bedrock to obtain free field displacements and forces. The soil

region in ΩN may have arbitrary heterogeneity. After obtaining free field information, the

results at z = −H will be mapped along Γbottom
NL while the results for 0 ≤ z < −H will be

mapped along the left and right interfaces Γleft
NL and Γright

NL .
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5.3 Verification problems

5.3.1 Recovering the free field response in a PML-truncated domain using DRM

Here, we use the formulations presented in §3.3.2, §5.1 and §5.2 to compute the free field

response for a soil layer with H = 20 m on an elastic bedrock (see Figure 5.3). For both

40 m 5 m 10 m

20 m

5 m

10 m

CP1

CP2

CP3

CP4

CP5

CP6

CP8

CP7

Figure 5.3: Problem configuration for recovering free field wave response in 2D wave analysis
using DRM in PML-truncated domain.

soil and bedrock ρb = ρs = 1600 kg/m3, νb = νs = 0.3, and Vb = 450 m/s. Soil layer shear

wave velocity varies linearly from Vs = 50 m/s at surface to Vs = 150 m/s at depth of 20 m.

The Ricker wavelet is used to compute the equivalent force. To wit,

ub(t) = [1− 2(t− tctr)2π2f 2
ctr] exp[−(t− tctr)2π2f 2

ctr] (5.9)

where tctr is the time at which the wavelet is centered and fctr is the frequency at which

the Fourier amplitude of the wavelet is maximum. In our analyses, we set fctr = 10 Hz and

tctr = 0.15 s.

In the first example, we assume that the soil layer is undamped. We consider 8 control

points (CP) as shown in Figure 5.3. Figure 5.4 shows the wave response at these CPs com-

pared against those obtained from 1D wave propagation, which are in excellent agreement.

As expected the responses at CP7 and CP8 are zero. This is because, there is no scatterer

within ΩN to disturb the region outside ΓNL.
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CP1
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CP5

CP6

CP7 CP8

Figure 5.4: Free field wave responses for an undamped soil layer on an elastic bedrock
obtained from 1D and 2D analyses.
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In the second example, we obtain the wave response of a damped soil layer. For both 1D

and 2D wave propagation analyses we use the Rayleigh damping model with 10% of damping

ratio at control frequencies of 5 and 15 Hz. Figure 5.5 shows the wave responses at the same

CPs, which are again in excellent agreement.

CP1

CP2

CP3

CP4

CP5

CP6

CP7 CP8

Figure 5.5: Free field wave responses for a damped soil layer on an elastic bedrock obtained
from 1D and 2D wave propagation analyses.
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5.3.2 Computing KITFs for a rigid semi-circular section embedded in a homo-

geneous half-space

Here, we consider a rigid massless semi-circular foundation embedded in an elastic half-space.

The problem configuration is shown in Figure 5.6. In numerical analysis, it is assumed that

Elastic half-space

Figure 5.6: Geometry of a rigid semi-circle embedded in an elastic half-space.

the waves are embarking at depth H = 20 m. The properties of the homogeneous half-

space is Vs = 150 m/s, ρ = 1600 kg/m3, and ν = 1/3. The radius of the foundation is

R = 5 m. In order to impose rigidity along the interface, the Young’s modulus, mass density

and Poisson’s ratio of the semi-circular object is set to 1000 GPa, 0.01 kg/m3, and 1/3,

respectively. Moreover, in order to capture the response of the foundation for the wide range

of frequencies, Ricker wavelet with tctr = 0.15 s and fctr = 20 Hz is used. Figure 5.7 shows

the amplitude of the displacement field—i.e. |u| =
√
u2
x + u2

y—at t = 0.2, 0.3, 0.4, and 0.5 s.

Since the structure behaves rigidly, its motion can be defined based on the horizontal

(∆gx), vertical (∆gy) and rotational (θg) motions at (x0, y0) (see Figure 5.6). These rigid

body motions at each time increment can be extracted from the nodal displacements along
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Figure 5.7: The amplitude of the displacement response for a rigid semi-circular interface
embedded in a homogeneous elastic half-space with ν = 1/3 and subjected to vertically
propagating shear waves; The dashed white lines are the DRM interface (ΓNL) and the solid
white lines are the PML interface (Γint).
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Figure 5.8: The response of the rigid semi-circular section in time and frequency.

the interface, as in: 

1 0 −y1 + y0

0 1 x1 − x0

1 0 −y2 + y0

0 1 x2 − x0

...
...

...

1 0 −yn + y0

0 1 xn − x0


︸ ︷︷ ︸

A


∆gx(t)

∆gy(t)

θg(t)


︸ ︷︷ ︸

∆g(t)

=



ux1(t)

uy1(t)

ux2(t)

uy2(t)
...

uxNb(t)

uyNb(t)


︸ ︷︷ ︸

u(t)

(5.10)

where (xi, yi) for i ∈ 1, . . . , Nb is the position of node i along the interface Γ+
b (see Figure 5.6)

and (uxi, uyi) is the node displacement. Therefore, at each time increment t, we solve:

∆g(t) = (ATA)−1ATu(t) . (5.11)

Figure 5.8 shows the free field response as well as the rigid body motions of the interface in

time and frequency. We define the KITFs for the horizontal and rotational DOFs as follows:

TFH(ω) =
∆̂gx(ω)

ûf0(ω)
, TFR(ω) =

Rθ̂g(ω)

ûf0(ω)
(5.12)
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Figure 5.9: The KITFs of a rigid semi-circle embedded in elastic half-space with ν = 1/3,
compared against the reference solution due to de Barros and Luco (1995).

where uf0 is the free field motion at the surface of the elastic half-space with no excavation;

TFH and TFR are complex-valued KITFs for horizontal and rotational DOFs. The real and

imaginary parts of the resulting transfer functions are shown in Figure 5.9 as a function

of dimensionless frequency a0 = ωR/Vs. The reference solution for this problem is due to

de Barros and Luco (1995) who used the indirect boundary integral equation method to

compute the response of the foundation to seismic waves. As shown, the numerical results

are in excellent agreement with the reference solution.

69



CHAPTER 6

Application studies I: Reduced order modeling of buried

structures

In this work, we presented detailed description of a numerical platform we used for direct

modeling of linear SSI problems in a 2D setting, which took advantages of PML as the ABC

and DRM as a proxy to solve the scattering problems efficiently. Moreover, we presented the

methodologies we used to compute the impedance functions for rigid and flexible interfaces

within the heterogeneous half-spaces as well as KITFs. We used a variety of existing the-

oretical solution to verify the numerically computed impedances and KITFs, which are the

ingredients of constructing the representative reduced order model of the actual SSI problem.

As mentioned in Chapter 1, the existing solutions for the impedance functions and FIMs

of buried structures are very limited. In this chapter, we use our numerical platform to

have a closer look on the dynamic behavior of rigid and flexible buried structures through

studying their impedances, KITFs, and reduced order models.

6.1 Impedance matrix of a rigid void embedded in an elastic half-

space

Figure 6.1 shows two buried structures with rectangular and circular cross sections in an

elastic half-space. We use the verified FE solver to explore the effects of the soil profile

and interface geometry on the impedance functions. The dimensions for the rectangular

and circular voids are B = L = D/3 and R = 4B/π, respectively, and the location of the

rotational centroid is (x0, y0) = (0, −D). The radius of the circular void is purposely selected
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such that both voids, though their geometries are different, have the same length of contact

with the surrounding soil. Two cases of E1,0/E2 = 0.5 and 1 are studied. The Poisson’s ratio

of the soil is 0.25 for both layers and E1,H = E2.

(a) Rectangular void (b) Circular void (c) Soil profile

Figure 6.1: Rigid void embedded in a heterogenous soil domain.

The computed impedances are shown in Figure 6.2. As these results indicate, both

the real and imaginary parts of all impedance components—i.e., K̂V , K̂HH , K̂MM , and

K̂HM—are highly sensitive to the modulus gradient. Moreover, the oscillatory behavior

of the impedance functions—even for the homogeneous soil—is significant. This is due to

constructive (or destructive) interferences of waves occur within the space between the void

(tunnel) and the ground surface, so that the reaction at the tunnel boundary is amplified

(or reduced).

For the vertical and horizontal DOFs, the impedance functions of rectangular and circu-

lar voids are very close to each other at frequencies with a0 < 1. This is because at small

frequencies the wavelength of propagating waves can become very large in comparison with

dimensions of the void and therefore less sensitive to the exact shape of the soil-structure

interfaces possessing same peripherality and depth of embedment. The constant shift be-

tween rocking impedances of circular and rectangular voids at small frequencies is due to

the higher inertia of the circular interface. At higher frequencies, sensitivity to interface

geometry increases, and therefore impedances of rectangular and circular void deviate from

each other.
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Figure 6.2: Impedance functions of a rectangular and circular voids embedded in soils with
linearly-depth-dependent Young’s modulus with ν = 0.25; b = B in Eq. (4.1).
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6.2 KITFs of a rigid void embedded in an elastic half-space

Here we consider a rigid interface shown in Figure 6.1a. We set L = 5 m, Vs1,0 = Vs1,H =

150 m/s, and H = 20 m. The soil density and Poisson’s ratio for both layers are 1600 kg/m3

and 0.3, respectively. The Ricker wavelet with central frequency of 10 Hz is used as the

input motion embarking vertically at the interface of the two layers at depth H. Eight cases

with B/L = 1, 2, D/L = 1, 1.5, and E1,0/E2 = E1,H/E2 = 0.5, 1 are considered to explore

the effects of structure aspect ratio, embedment, and soil profile on the kinematic response

of the structure.

Figure 6.3a,c shows the amplitude of the horizontal and rotational transfer functions

computed at (x0, y0) for the homogeneous case and Figure 6.4a,c shows the variation of

these transfer functions for the non-homogeneous case. In order to have a closer look at the

effects of the wavelength of the incoming waves (λ), the horizontal axis in both figures is

λ/2L = πVs1,0/ωL.

As shown, the amplitude of the horizontal and rotational KITFs are close to 1 and zero,

respectively, for large values of λ. This is a well-known trend, and is due to the fact that the

deformation of the soil particles are almost in phase with each other at small frequencies.

As λ decreases, the horizontal TF decreases while the rotational TF increases due to the

relative rigidity of the interface with respect to the surrounding soil.

For the homogeneous soil, with increasing the embedment and aspect ratio of the struc-

ture, the translational movement decreases and increases, respectively. This trend is reversed

for the rotational movement of the structure. On the other hand, for the inhomogeneous

case, we observe more oscillations in the translational and rotational KITFs, which happen

around those obtained for the homogenous case.

Figures 6.3b,d and 6.4b,d show the polar plots of the computed KITFs, which show how

soil heterogeneity deteriorates the smooth variation of real and imaginary parts of the KITFs.
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û
f0
)

(b) Polar Plot, Horizontal

1 10
0

0.1

0.2

0.3

0.4

0.5

λ/2L

|L
θ̂
g/
û
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Figure 6.3: The amplitude and polar plot of the KITFs for horizontal and rotational DOFs
of a rectangular void embedded in a two-layered soil with E1,0/E2 = E1,H/E2 = 1.
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Figure 6.4: The amplitude and polar plot of the KITFs for horizontal and rotational DOFs
of a rectangular void embedded in a two-layered soil with E1,0/E2 = E1,H/E2 = 0.5; the
gray solid lines are the amplitude of the KITFs for the homogeneous case in Figure 6.3.
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6.3 Time domain substructure modeling of a flexible buried struc-

ture in an elastic half-space

The main objective of this work was to devise a general framework for reduced order modeling

of SSI problems. Here, we show how we can use this framework to compute the response of

a buried structure (see Figure 6.5) using the substructure modeling approach. As mentioned

before, the main advantage of this approach is that once we construct the soil reduced order

model, the response of different structural models can be investigated.

CP1

CP2

CP3

(a) (b)

Figure 6.5: Schematic (a) box structure embedded in an elastic half-space represented by S
and ug and (b) excavated elastic half-space.

6.3.1 Step I: Computing the nodal impedance matrix Ŝ(ω) along the interface Γ+
b

We consider an excavated half-space shown in Figure 6.5b. Soil properties are Vs = 150 m/s,

ν = 0.3, ρ = 1600 kg/m3, and ξ = 0. Dimensions of the excavation are L = B = 5 m.

Quadratic elements with element size of 1 m are used for discretization of the half-space,

which results in Nb = 61 nodes, and therefore 2Nb = 122 DOFs, on the interface Γ+
b . We

use the procedure described in Chapter 4 to compute the nodal impedance matrix Ŝ(ω) ∈
C122×122 for 0 < ω ≤ 50π. At each DOF, we prescribe a known displacement while keeping

all other DOFs fixed and compute the reaction forces. We repeat this procedure for all DOFs

along the interface Γ+
b shown in Figure 6.5b.
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In order to verify the accuracy of the computed nodal impedance matrix, we use the

substructure modeling formulation provided in §2.2 to recover the impedance matrix of a rigid

surface foundation. We consider a soil block with dimensions B = L = 5 m. For computing

the horizontal, vertical and rocking impedance functions, we apply known displacements ∆1,

∆2 an θ, respectively, on DOFs along the surface of the soil block from x = −B to x = B.

This is shown schematically in Figure 6.6. Then, for each case, we solve Eq. (2.7), which is

Figure 6.6: Prescribed displacements on the surface of the soil block to recover the impedance
matrix of a surface rigid foundation.

repeated here as in Eq. (6.1), setting f̂ext = 0 and ûg = 0.

Ŝss(ω) Ŝsb(ω)

Ŝbs(ω) Ŝbb(ω) + Ŝ(ω)


︸ ︷︷ ︸

ŜROM

 ûs(ω)

û−b (ω)


︸ ︷︷ ︸

ûROM

=

0

0

 . (6.1)

We compute the reaction forces at DOFs along which the known displacements are prescribed

using

r̂ = [ŜROM
kn,kn − ŜROM

kn,unkn(ŜROM
unkn,unkn)−1ŜROM

unkn,kn]ûkn (6.2)

where ŜROM is partitioned as follows:

ŜROM =

 ŜROM
unkn,unkn ŜROM

unkn,kn

ŜROM
kn,unkn ŜROM

kn,kn

 . (6.3)

Then, using the similar procedure described in Chapter 4, we can compute the impedance

matrix of the rigid surface foundation. The components of the resulting impedance matrix
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along with those obtained from the direct modeling approach are shown in Figure 6.7. In

the direct modeling, we compute the impedance functions through simulation of the PML-

truncated half-space using the frequency domain FE solver. As shown, the results from both

approaches are in excellent agreement.
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Figure 6.7: Comparison of the impedance functions of a rigid surface foundation obtained
from the substructure modeling (solid lines) and direct modeling (scatter points) approaches.

6.3.2 Step II: Computing the modified input motion vector ug(t) along the

interface Γ+
b

We use the procedure described in Chapter 5 to compute the displacement vector along

the interface Γ+
b under vertically propagating shear waves. Again, in order to verify the

accuracy of the procedure, we consider the same soil block as in §6.3.1. In order to compute

the response of the soil surface from x = −B to x = B, we solve Eq. (2.7) setting fext = 0.

Figure 6.8a shows the horizontal and vertical displacements of all DOFs on the soil block

surface normalized by the free field motion ûf0. We define the free-field motion as the

motion recorded on the surface of the soil half-space with no excavation. As shown, the

horizontal displacements of all DOFs are the same as the free field displacement and the

vertical displacements are negligible.

78



0 5 10 15 20 25

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Frequnecy (Hz)

|û
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Figure 6.8: Comparison of the soil surface response obtained from the reduced order model
and the direct modeling approach.

6.3.3 Step III: Computing the discrete-time filter matrix Sfilter along the inter-

face Γ+
b

As mentioned in Chapter 2, one approach for time domain representation of soil impedance

functions is the rational approximation of the function. Gash (2015); Gash et al. (2016)

implemented a numerically stable discrete-time filter method and studied the frequency

dependent effects of soil on inelastic response of multi-degree-of-freedom structures with

rigid foundation in a layered soil half-space.

Here, we use the same approach to obtain the coefficients of stable discrete-time filters for

time domain representation of each components of the computed nodal impedance matrix

(Ŝij). To wit,

Sfilter
ij =

b0,ij + b1,ijz
−1 + · · ·+ bM−1,ijz

−(M−1)

1 + a1,ijz−1 + · · ·+ aM,ijz−M
for i, j = 1, . . . , 2Nb (6.4)

where M is the order of the rational function and z = eiωd ; i =
√
−1 and ωd is the dis-

crete frequency. Figure 6.9 shows the map of the filter order in which indices i and j are
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corresponding to the components of the computed impedance matrix partitioned as follows:

Ŝ =

 Ŝxx Ŝxy

Ŝyx Ŝyy

 . (6.5)

In Eq. (6.5), x and y denote the horizontal and vertical DOFs along Γ+
b , respectively.
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Figure 6.9: The map of the filter order for each components of the matrix Sfilter.

Figure 6.10 shows two examples of the impedance functions. As shown, as we get farther

from the diagonal terms the impedance functions become wavier and therefore higher order

filters would be needed to capture the function oscillations.

6.3.4 Step IV: Constructing the reduced order model

Here, we want to use the computed modified input motions ug and the filter matrix Sfilter

to obtain the response of the buried structure shown in Figure 6.5a. We assume that the

structure behaves linearly and there is no damping in the structure. Moreover, ρ = 1.5ρs,

ν = 0.3, and t = 1 m. Two stiffness ratios of E = 1000Es and E = 10Es are considered to

represent the relatively stiff and flexible structures, respectively. At each time step tn = n∆t,
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Figure 6.10: The real and imaginary parts of the impedance functions computed using the
FE solver and approximated using the discrete-time filter method at two positions of (a)
i = j = 1 and (b) i = 1 and j = 61.
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we rewrite Eq. (2.6) as follows:

Mss Msb

Mbs Mbb

 üs[n∆t]

ü−b [n∆t]

+

Kss Ksb

Kbs Kbb

us[n∆t]

u−b [n∆t]

+

 0

f+
b [n∆t]

 =

 0

fg[n∆t]

 . (6.6)

Using the inverse z-transform (Oppenheim et al., 1996), each components of the input force

vector fg[n∆t] ∈ R2Nb can be written as:

fg,i[n∆t] =

2Nb∑
j=1

f jg,i[n∆t] for i = 1, . . . , 2Nb (6.7)

where

f jg,i[n∆t] =
M−1∑
k=0

bk,ijug,j[(n− k)∆t]−
M∑
k=1

ak,ijf
j
g,i[(n− k)∆t] . (6.8)

At each time step, we know the value of the displacement vector ug, and therefore the right

hand side of Eq. (6.8) is known. On the other hand, each components of the force vector

f+
b [n∆t] can be defined as follows:

f+
b,i[n∆t] =

2Nb∑
j=1

f j+b,i [n∆t] for i = 1, . . . , 2Nb (6.9)

where

f j+b,i [n∆t] = b0,iju
−
b,j[n∆t] +

M−1∑
k=1

bk,iju
−
b,j[(n− k)∆t]−

M∑
k=1

ak,ijf
j+
b,i [(n− k)∆t]︸ ︷︷ ︸

pj+b,i[n∆t]

. (6.10)

Therefore,

f+
b [n∆t] = B0u

−
b [n∆t] + p+

b [n∆t] (6.11)
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where

B0,ij = b0,ij for i, j = 1, . . . , 2Nb (6.12)

and

p+
b,i[n∆t] =

2Nb∑
j=1

pj+b,i [n∆t] for i = 1, . . . , 2Nb . (6.13)

In contrary to Eq. (6.8), the first term in the right hand side of Eq. (6.10) is not known a

priori and in fact is the part of the solution vector to be computed at time step n∆t. As a

result, we can reformulate Eq. (6.6) as follows:

Mss Msb

Mbs Mbb

 üs[n∆t]

ü−b [n∆t]

+

Kss Ksb

Kbs Kbb + B0

us[n∆t]

u−b [n∆t]

 =

 0

fg[n∆t]− p+
b [n∆t]

 .

(6.14)

As mentioned before, a common approach for time domain representation of a soil impedance

function is to ignore the frequency dependency of the real and imaginary parts of the function.

This will result in:

f0
g [n∆t] =K0ug[n∆t] + C0u̇g[n∆t] (6.15)

f0+
b [n∆t] =K0u

−
b [n∆t] + C0u̇

−
b [n∆t] (6.16)

where the instantaneous stiffness (K0) and damping (C0) matrices are defined as follows:

K0,ij = Re{Ŝij(ω = ω0)} and C0,ij =
Im{Ŝij(ω = ω0)}

ω0

(6.17)
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and ω0 is the frequency at which the impedance functions are computed. Using this approx-

imation, we need to solve the following system of linear equations instead:

Mss Msb

Mbs Mbb

 üs[n∆t]

ü−b [n∆t]

+

0 0

0 C0

 u̇s[n∆t]

u̇−b [n∆t]


+

Kss Ksb

Kbs Kbb + K0

us[n∆t]

u−b [n∆t]

 =

 0

f0
g [n∆t]

 . (6.18)

For the latter, we also consider the case that only the diagonal entries of the impedance

matrix are used to create the matrices. To wit,

Kdiag
0 = diag(Re{diag[Ŝ(ω0)]}), Cdiag

0 = diag(
Im{diag[Ŝ(ω0)]}

ω0

) . (6.19)

We use the Newmark’s time stepping method to solve Eqs. (6.14) and (6.18).

We also use our time domain FE solver to model the same problem, which is considered

as the reference solution. We consider the Ricker wavelet with the central frequency of

2.5 Hz as the input motion. First, we use ω/2π = 2.5 Hz to compute the constant-valued

impedances.

Figures 6.11 and 6.12 show, respectively, the time-series and Fourier amplitude of the total

horizontal displacements of a relatively stiff and flexible structures at three control points

CP1, CP2, and CP3 depicted in Figure 6.5a. As shown, the impedance filter results could

capture those obtained from direct modeling approach for both stiff and flexible structures.

On the other hand, the accuracy of the models with constant-valued springs and dashpots

decreases, specially for the model that omits the off-diagonal terms of the impedance matrix.

In order to explore the effects of the chosen ω0 on accuracy of the approximate impedance

matrices, we repeat the analyses using ω/2π = 5 Hz. Figures 6.13 and 6.14 show the

displacement responses at the control points for rigid and flexible structures, respectively.

As shown, using ω/2π = 5 Hz does not affect the performance of the model that uses Kdiag
0

and Cdiag
0 . This is mainly because the diagonal stiffness and damping values are almost
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Figure 6.11: The response of the buried structure in an elastic halfspace with E/Es = 1000,
fctr = 2.5 Hz, and ω0/2π=2.5 Hz.
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Figure 6.12: The response of the buried structure in an elastic half-space with E/Es = 10,
fctr = 2.5 Hz, and ω0/2π=2.5 Hz.
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constant with frequency and therefore the constructed model is not sensitive to ω0. On the

other hand, the performance of the model that uses K0 and C0 is decreased noticeably.

This ascertains the importance of correct representation of the impedances that have wavier

behavior—i.e. off-diagonal terms in this example—in time domain analysis.
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Figure 6.13: The response of the buried structure in an elastic halfspace with E/Es = 1000,
fctr = 2.5 Hz, and ω0/2π=5 Hz.
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Figure 6.14: The response of the buried structure in an elastic half-space with E/Es = 10,
fctr = 2.5 Hz, and ω0/2π=5 Hz.
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As mentioned in Chapter 2, some global stability problems have been reported when the

stable soil impedance subsystem is combined with the structure or with a numerical time

integration method used to solve the resulting system of equations in time. In the example

explored in this section, we do not observe any stability issue when the impedance filter is

used for reduced order modeling of the buried structure. However, it is noticed that when

we use constant-valued springs and dashpots for representation of the impedance matrix,

the resulting reduced order model may become unstable depending on the value of ω0 and

the stiffness of the structure. To have a closer look, we compute the Eigenvalues (λi) of the

system matrix A for the case E = 10Es. To wit,

A =

 0 I

−M−1K −M−1C

 (6.20)

where

M =

Mss Msb

Mbs Mbb

 , C =

0 0

0 C0(ω0)

 , K =

Kss Ksb

Kbs Kbb + K0(ω0)

 (6.21)

Figure 6.15 shows the contribution of the Eigenvalues with a positive real part as a function

of ω0. As shown, for frequencies greater than 5 Hz, the dynamic system has Eigenvalues

with positive real part, which will cause instability. For instance, for the case we studied, we

use ω0/2π = 7 Hz to build the constant-valued stiffness and damping matrices. Figure 6.16

shows the response of the flexible structure at the same controlling points, which ascertain

the instability of the resulting system.
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Figure 6.15: The map of the Eigenvalues of the matrix A with real parts greater than zero
for the buried structure with E/Es = 10.
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Figure 6.16: The response of the buried structure in an elastic halfspace with E/Es = 10,
fctr = 2.5 Hz, and ω0/2π=7 Hz.
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CHAPTER 7

Application studies II: Numerical simulation of

centrifuge experiments on underground structures

Seismic response of underground structures is a complex soil-structure interaction problem

influenced primarily by (i) the structure geometry, inertia, and stiffness, (ii) soil hetero-

geneity and nonlinearity, and (iii) input motion characteristics. The existing methods for

analyzing the response of such structures are usually based on simplified analytical or nu-

merical methodologies and their range of applicabilities are not adequately validated against

physical model studies (e.g. Pitilakis and Tsinidis, 2014).

Recently, Hushmand et al. (2016) conducted a series of centrifuge experiments at the Uni-

versity of Colorado Boulder to investigate the seismic performance of relatively stiff structures

buried in dry sand. Three different simplified box structures were designed to represent the

characteristics of prototype reinforced concrete reservoir structures with varying stiffnesses.

These structures were restrained from excessive rotational movements at top and bottom by

their roof and floor.

Investigation of experimental results showed that the commonly used procedures could

not adequately capture the loadings and deformations experienced by this class of under-

ground structures for the range of stiffness and ground motions regularly considered in their

design (Hushmand et al., 2016). This is mainly because these procedures are usually based

either on the assumption of a yielding (e.g. Seed and Whitman, 1970) or a rigid-unyielding

wall (e.g. Wood, 1973). A yielding wall is expected to deform enough to result in an active or

yielding condition in the backfill soil, while a rigid-unyielding wall undergoes no deformation.

The structures of interest in this study are expected to deform depending on their flexural
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stiffness, but their deformation is restrained. Therefore, these structures do not fall in either

of the commonly assumed categories.

Although soil behavior can be highly nonlinear during strong shaking, use of nonlinear soil

constitutive models may not always be practical due to general complexities in calibrating

their many parameters (Deng et al., 2016, e.g.). In this study, we explore the capabilities

of calibrated linear soil models in capturing the seismic response of buried box structures

as observed in centrifuge. Dynamic soil properties are determined such that the response of

a soil column can capture the overall recorded acceleration responses of the far-field soil in

centrifuge.

Moreover, we examine the effects of enforced boundary conditions in the numerical mod-

eling of experiments on the response of buried structures. We use the developed FE solver

to model the same problem in a heterogeneous soil deposit on an elastic bedrock. This

is particularly important when extending the numerical simulations beyond the simplistic

conditions considered in centrifuge.

7.1 An overview of the centrifuge tests

Figure 7.1: Layout of the centrifuge tests studied (dimensions in prototype scale meters).
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The centrifuge test layout and instrumentation are shown in Figure 7.1. Dimensions

and properties of the model structures used for the experiments are provided in Table 7.1.

The density, Young’s modulus and Poisson’s ratio of the steel structures were 7870 kg/m3,

200 GPa, and 0.29, respectively. The dry Nevada sand with Gs = 2.65, emin = 0.56, emax =

0.84, D50 = 0.13 mm, and Cu = 1.67 was pluviated inside a flexible shear beam container

such that an approximately uniform soil layer with dry unit weight of 15.6 kN/m3 or a

relative density (Dr) of about 60% could be achieved.

Table 7.1: Dimensions and properties of model structures in prototype scale.
Thickness Fundamental frequency

Structure Base (m) Roof (m) Walls (m) (Hz)
Flexible 0.5 0.28 0.28 1.9
Baseline 0.69 0.37 0.56 3.9
Stiff 1.46 1.12 1.13 9.1

Figure 7.2 shows the 5%-damped spectral accelerations and Arias intensity time histories

of the base motions as recorded in centrifuge. In this study, numerical results are presented

and compared with experimental recordings for four cases that cover the range of stiffness and

ground motion intensities considered: the flexible and stiff buried structures when subjected

to Northridge-L and Northridge-H motions (referred to as AL and AH). The experiments

using the flexible and stiff structures are referred to as T-Flexible and T-Stiff, respectively.

The properties of the Northridge-L and H motions as recorded during the T-Flexible-AL

and AH experiments are tabulated in Table 7.2. The mean frequency is the reciprocal of the

mean period defined by Rathje et al. (1998), and the predominant frequency is the frequency

at which the maximum %5-damped spectral acceleration occures.

Table 7.2: Properties of the base motions as recorded in T-Flexible.
Base motion PGA Arias Intensity Significant Mean frequency Predominant

name (g) IA (m/s) duration D5−95 (s) fm (Hz) frequency fp (Hz)
Northridge-L 0.22 1.13 16.18 1.19 2.70
Northridge-H 1.02 9.95 25.91 1.44 3.57
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Figure 7.2: (a) 5%-damped spectral accelerations and (b) Arias intensity time histories of
the container base motions recorded for the test on flexible structure.

7.2 Numerical modeling of the centrifuge experiments

In the numerical simulations, only the soil inside the container and the structure are modeled.

8-node quadratic elements are used for the discretization of both soil and structure. The

element size is chosen such that approximately 12 discretized nodes exist within the minimum

wavelength (Bao et al., 1998). It is assumed that the interface of the structure and soil is

perfectly bonded. The FE solver is adapted such that centrifuge experiment boundary

conditions can be satisfied reasonably. In this regard, since the flexible shear beam container

is used for the experiments, the periodic boundary conditions are imposed on horizontal

degrees of freedom at the left and right vertical edges of the domain while their vertical

degrees of freedom are fixed. This numerical model is referred to as NM 1 in subsequent

analyses. We assume linear behavior for the structure and equivalent linear for the soil. The

properties of the structure are the same as those provided in the previous section. The soil

properties are obtained through an optimization-based procedure. Details of this procedure

are provided below.
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7.2.1 Optimization of equivalent linear properties for the soil domain

We use the accelerations recorded by sensors A1, A2, A3, and A4 (see Figure 7.1) to optimize

the shear wave velocity profile as well as the equivalent viscous damping of the soil domain.

It is assumed that the soil density is constant and is equal to 15.6 kN/m3. We use the

relationship proposed by Rovithis et al. (2011) to define the general form of a shear wave

velocity profile, as in:

Vs = VH [b+ (1− b) z
H

]n (7.1)

where b = (V0/VH)1/n; n is the dimensionless inhomogeneity factor and z is the downward

vertical coordinate measured from the soil surface; V0 and VH are shear wave velocities at

z = 0 and z = H, respectively. We approximate damping of the soil domain using the

Rayleigh damping model, as in:

ξ1

ξ2

 =

1/4πf1 πf1

1/4πf2 πf2

a0

a1

 (7.2)

where f1 and f2 are the control frequencies, ξ1 and ξ2 are the associated damping ratios, and

a0 and a1 are the coefficients to define the viscous damping matrix as a function of mass and

stiffness matrices, respectively. Although usually the first- and third-mode frequencies of

the soil columns are used for determination of control frequencies in site response analyses,

it has been reported that selection of controlling frequencies can influence the response of

the system significantly and should be selected such that the system does not experience

significant over damping in the dominant range of frequencies (Park and Hashash, 2004;

Hashash et al., 2010). As a result, in this study, all four parameters (f1, f2, ξ1, ξ2) are

considered as the optimization parameters.

For any given set of shear wave velocity parameters (V0, VH and n) and Rayleigh damping

parameters (f1, f2, ξ1, and ξ2), we solve a 1D wave propagation problem of a soil column

subjected to seismic input motion at its rigid base. The acceleration responses at locations
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Table 7.3: Optimized shear wave velocity profile and Rayleigh damping model coefficients.
Test V0 (m/s) VH (m/s) n f1 (Hz) f2 (Hz) ξ1 ξ2

T-Flexible-AL 23.5 142.0 1.00 1.00 3.36 0.34 1
T-Stiff-AL 22.2 147.0 0.81 0.84 2.32 0.31 0.66

T-Flexible-AH 22.3 114.7 0.90 1.25 3.33 0.45 1
T-Stiff-AH 15.4 124.3 0.72 1.25 3.50 0.44 1

A1, A2, A3, and A4 in the far-field soil column are then computed to define the following

minimization problem:

min
x

f(x) =
1

2

i=4∑
i=1

j=n∑
j=1

E∗i (ωj)Ei(ωj) (7.3)

where Ei(ωj) =
√
|Aei (ωj)|[Aei (ωj) − Ai(ωj)]; ()∗ is the conjugate transpose of the vari-

able; Aei (ωj) and Ai(ωj) are the complex-valued experimental and numerical acceleration

responses of the ith sensor at the frequency ωj, respectively, in frequency domain; and

x = (V0, VH , n, ξ1, ξ2, f1, f2) is the optimization variable vector. We only consider a frequency

range of 0 to 10 Hz for optimization.

In total, we solve this optimization problem for four cases. The resulting optimal param-

eters are provided in Table 7.3. The variation of the shear wave velocity profile with depth

as well as the variation of the Rayleigh damping model with frequency are shown in Fig-

ure 7.3. In general, one may use the free-field soil column to obtain dynamic soil properties

as prescribed above.

Figure 7.4 shows the 5%-damped spectral accelerations for the far-field array in each

test along with those obtained from the 1D wave propagation analyses using the optimized

dynamic soil properties. The Rayleigh damping curve is also shown. For low amplitude

motions—i.e. T-Flexible-AL and T-Stiff-AL— there are good agreements between the 1D

simulations and those obtained from the far-field array experimentally. The goodness of

the comparisons is slightly deteriorated during the strong motions—i.e. T-Flexible-AH and

T-Stiff-AH—which is due to a higher level of soil nonlinearity and scattering effects as well
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Figure 7.3: The optimized (a) shear wave velocity profile and (b) Rayleigh damping model.

as spurious resonances that may happen in an equivalent linear soil model.

It is known that the first natural frequency of the uniform soil layer on rigid bedrock is

Vs/4H where Vs is the shear wave velocity and H is the height of the soil layer. Here, in

order to obtain the natural frequencies of the nonuniform soil layer with properties shown in

Table 7.3, we compute the stiffness matrix K and mass matrix M of the soil column. Then,

with the assumption of classical damping behavior, we can compute the Eigenvalues of the

matrix M−1K. Table 7.4 shows the resulting natural frequencies for the considered cases.

Table 7.4: The first three natural frequencies of the soil column with the optimized dynamic
properties.

Test f1 (Hz) f2 (Hz) f3 (Hz)
T-Flexible-AL 1.23 2.81 4.52
T-Stiff-AL 1.33 3.01 4.84

T-Flexible-AH 1.05 2.44 3.95
T-Stiff-AH 1.15 2.56 4.08

In order to have a closer look at the contribution of soil’s damped natural frequencies

as well as the predominant and mean frequencies of the base motion (see Table 7.2), we
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Figure 7.4: 5%-spectral acceleration obtained from far-field array in the experiment and
from the 1D wave propagation analysis using optimized dynamic soil properties; the dashed
curve indicates Rayleigh damping.
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compute the time-frequency distribution of the energy density for acceleration time-series at

locations A15 (base), A4 (far-field surface), and A14 (structure surface). Figure 7.5 shows

the resulting time-frequency decomposition (TFD) for each signal in T-Flexible-AL and AH.

For T-Flexible-AL, the first damped natural frequency of the far-filed soil column is very

close to the mean frequency of the base motion. As shown, for both A14 and A15, the signal

energy also increases around the predominant frequency of the base motion. This is while

the signal energy at A4 is more influenced by the soil dynamic properties. The correlation

between the first damped natural frequency of the soil layer and the mean frequency of the

base motion decrease in T-Flexible-AH. This may be attributed to the fact that the measured

accelerations at the base of the centrifuge container are always influenced by the dynamic

properties of the container, soil, and the structure. For lower amplitude motions these effects

may become more significant.

In both cases, however, we expect the system response to be more dominated by the soil

deposit free vibration as we approach the end of the signal’s duration. This can already be

seen in T-Flexible-AH in Figure 7.5 as the signal energy is concentrated around a frequency

of 1 Hz. In T-Flexible-AL, we compute the TFD of the modulated signals such that the

signal amplitude remains constant with time. Figure 7.6 shows the TFD of the modulated

signals for T-Flexible-AL. As shown, the signal energy becomes more significant around the

fundamental frequency of the far-field soil column after t = 25 s, which is also in agreement

with the significant duration of the base motion.

7.2.2 Quantification of scattering due to centrifuge container boundaries

In order to quantify the spurious effects of the rigid base and the periodic boundaries—

which resemble a flexible shear beam container—on the response of numerically modeled

buried structures, we also model the same soil deposit with depth H = 18.6 m and width

W = 42 m to rest on an elastic bedrock and to extend infinitely laterally. We use the

procedure prescribed in Chapter 5 to compute the free-field information, analyzing a soil

column with properties the same as those in the soil deposit. In the centrifuge test, üg(t)—
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Figure 7.5: TFD of acceleration time-series for T-Flexible-AL and AH; horizontal white
dashed lines are the first two damped natural frequencies of the far-field soil column; hori-
zontal green solid line is the predominant frequency of the base motion; magenta horizontal
solid line is the mean frequency of the base motion; vertical white dashed lines span the
significant duration of the base motion.
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Figure 7.6: TFD of modulated acceleration time-series for T-Flexible-AL; horizontal white
dashed lines are the first two damped natural frequencies of the far-field soil column; hori-
zontal green solid line is the predominant frequency of the base motion; magenta horizontal
solid line is the mean frequency of the base motion; vertical white dashed lines span the
significant duration of the base motion.
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i.e. the base motion of the container— is known and is prescribed at the rigid bedrock in

NM 1 numerical simulations. In the subsequent scattering analyses, we assume that the

shear modulus of the elastic bedrock is about 9 times the shear modulus of the soil layer at

z = H, and therefore we assume that ug(t) = ub(t)
1.

7.3 Comparison of numerical and experimental results

In this section, we explore the capability of the numerical simulations in capturing the main

features of the conducted centrifuge experiments in terms of acceleration, racking, bending

strains, and dynamic lateral earth pressures along the walls of the structures in tests T-

Flexible-AL, T-Stiff-AL, T-Flexible-AH, and T-Stiff-AH.

7.3.1 Acceleration

Figure 7.7 compares the 5%-damped spectral accelerations obtained numerically and exper-

imentally at different locations for different tests and motions. During the low amplitude

base motion, in which we expect less soil nonlinearity, the resulting spectral accelerations

are in good agreement with their experimental counterparts at all locations. Discrepancies

at higher frequencies are mainly due to overdamping of the numerical model which becomes

significant at the location of A14 (on top of the buried structure). During high amplitude

motions, as we get close to the soil surface, discrepancies between the equivalent-linear soil

model and experimental accelerations increase both in the far-field and on the structure.

These discrepancies are correlated with those depicted in Figure 7.4.

In order to explore the effects of the assumed boundary conditions on the responses of

the far-field soil and structure, we use the NM 2 numerical modeling approach described in

the previous section to compute the response of the same soil deposit and structure rested

on an elastic bedrock. It is assumed that ρb = 15.6 kN/m3 and Vb = 450 m/s ≈ 3VH .
1 The accuracy of this assumption depends on the rigidity of the elastic bedrock. In case the bedrock is

very flexible one may use the deconvolution method to obtain the within motion from those recorded at the
soil surface to be used in scattering analyses.
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Figure 7.7: 5% damped spectral acceleration at far-field (A2, A3, A4) and on structure (A12,
A13, A14) for T-Flexible-AL, Stiff-AL, Flexible-AH, and Stiff-AH obtained numerically and
experimentally.
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The scattering effects in both numerical models—i.e. NM 1 and NM 2— are quantified

through computing the scattering transfer function Ai/Ai,free-field. Ai is the Fourier transform

of the acceleration response at location i (see Figure 7.1) and Ai,free-field is the Fourier trans-

form of the corresponding free-field acceleration response. The latter is computed through

numerical modeling of the studied cases with no structure.

Figure 7.8 shows the amplitude of the computed transfer functions. As mentioned before,

NM 1 is the numerical model with the assumption of a rigid bedrock and periodic side

boundaries. On the other hand, NM 2 is the numerical model with the assumption of elastic

bedrock and semi-infinite extent of the soil deposit laterally. The main observations are as
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Figure 7.8: Amplitude of scattering transfer functions for NM 1 (numerical model with rigid
base and periodic side boundaries) and NM 2 (numerical model with elastic bedrock and
laterally infinite soil extent) for T-Flexible-AL and T-Stiff-AL.

follows:

• As the frequency increases, the scattering effects become more significant. This is

mainly because at small frequencies all particles move in phase with each other and

therefore the effects of scatterer diminishes. This is in agreement with trends of kine-

matic transfer functions observed for embedded foundations and retaining walls.
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• The far-field response is influenced by scatterings, even for NM 2, due to its proximity

to the buried structure. Depending on the stiffness of the structure and the input

excitation frequency, it may result in amplification or de-amplification of scattering

transfer functions. Existence of a rigid bedrock as well as the periodic boundaries in

NM 1 can accentuate the effects of instructive and destructive interferences, especially

for T-Flexible-AL.

• The scattering amplifications in T-Stiff-AL is generally smaller than those in T-Flexible-

AL, which is in agreement with experimental observations on tested structures (Deng

et al., 2016) and may be partly due to the higher inertial effects of the flexible structure.

In order to compare the numerical and experimental results, we also compute the ratio of the

structure to far-field acceleration responses. Figure 7.9 shows the amplitude of the resulting

transfer functions. For experimental data, we use the procedure suggested by Mikami et al.

(2008) to reduce the noise levels in computed transfer functions. A 0.2 Hz Hamming window

with 21 points is used for smoothing the power spectral densities of the acceleration time-

series. Despite discrepancies at higher frequencies, the experimental transfer functions are

in general agreement with numerically computed ones.

7.3.2 Racking of the structure

Racking deformation is generally defined as the relative lateral displacement of the roof of

the buried structure with respect to its base, and is an important parameter in displacement-

based design procedures for buried structures. In order to compute the racking deformation

from the experimental data, we double integrate the acceleration responses at locations

A14 and A12 and subtract the latter from the former. Numerical racking can be computed

directly from subtracting the total displacements at A12 from A14. As shown in Figure 7.10,

in all cases the numerical and experimental results are in a good agreement.

Figure 7.11 shows the transfer function of total displacements on the structure and in the

far-field, to evaluate scattering effects in different models. For numerically computed transfer
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Figure 7.9: Numerical and experimental amplitude of the structure to far-field soil transfer
functions for T-Flexible-AL and T-Stiff-AL.
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Figure 7.10: Time-series and Fourier amplitude of the experimental and numerical racking
of the south wall of the structures.
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functions, the peak for the flexible structure is larger than that in the far-field. This is reverse

for the stiff structure. Moreover, as the frequency increases, the far-field transfer functions

obtained in T-Flexible and T-Stiff start deviating from each other, which demonstrates the

different scattering effects of the flexible and stiff structures on the far-field soil. Further, it

is shown that the experimental transfer functions follow the numerical ones better for the

stiff structure.
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Figure 7.11: The total displacement transfer functions obtained from numerically computed
displacements and experimentally measured accelerations in the far-field and on the struc-
ture.
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7.3.3 Bending strain

Bending strains and moments are an important measure of the seismic performance of buried

structures and are used regularly in design. In order to measure the bending strain along the

walls of the structures in centrifuge, 8 strain gauges were installed outside of each wall. In

numerical simulations, for reservoir elements with one side in contact with soil, we compute

the tangential strain at the center of the element side. Figure 7.12 shows the numerically

computed and experimentally measured strain values at the location of SG8 shown in Fig-

ure 7.1, at the bottom of the north wall. For both structures (flexible and stiff) the numerical

and experimental results are in a good agreement. It should be mentioned that a low-pass

Butterworth filter is used to reduce the noise in strain data measured for the stiff structure.

In order to have a closer look at the spatial distribution and temporal variation of bend-

ing strains along the structure wall, we use the method of proper orthogonal decomposition

(Kerschen et al., 2005). We (i) create the data matrix: X =
[
e1 e2 . . . en

]T
where ei

for i = 1, 2, . . . , n is a strain time-series at location i; (ii) compute the correlation matrix:

R = XXT/N , where N is the total number of data points of the time-series; (iii) obtain the

Eigen decomposition of the matrix R, which is R = ΦΛ2ΦT . Φ = [φ1 . . .φn] contains the

so-called mode shape vectors φi and Λ is a diagonal matrix with entries λi to be the i-th sin-

gular value of the matrix X; and (iv) compute the so-called modal contribution coefficients,

which is Q = [q1 . . .qn]T = ΦTX.

Figure 7.13 shows the first and second proper orthogonal modes of the numerical results

compared against those obtained from experimental data. As shown, for all cases numerical

simulations can capture both spatial and temporal variations of the experimentally measured

bending strains successfully. The discrepancies in the second mode of the stiff structure

are due to the noise level in experimental data. In general, we expect the contribution of

the second mode to be less for the stiff structure. Participation of the proper orthogonal

components shown in Figure 7.13 can be quantified through the Eigenvalues of the correlation

matrix, using Eq. (7.4). The resulting values for the first and second modes are provided in
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Figure 7.12: Time-series and Fourier amplitude of the experimentally measured and nu-
merically computed dynamic bending strain of the sensor SG8 at the bottom of the north
wall.
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Table 7.5, which shows the significant contribution of the first mode in all cases.

Eλi =
λ2
i∑i=n

i=1 λ
2
i

for i = 1, . . . , n . (7.4)

Table 7.5: Energy of the first and second proper orthogonal components of numerical and
experimental strain data.

NM 1 Experimental
Test Eλ1(%) Eλ2(%) Eλ1(%) Eλ2(%)

T-Flexible-AL 99.54 0.34 97.98 1.30
T-Stiff-AL 99.97 0.03 84.07 7.75

T-Flexible-AH 99.58 0.33 98.70 1.00
T-Stiff-AH 99.94 0.05 95.25 2.37

7.3.4 Dynamic lateral earth pressures on the structure walls

Dynamic lateral earth pressures were experimentally measured on the walls of buried struc-

tures using tactile pressure sensors (manufactured by Tekscan Inc.) that were statically and

dynamically calibrated as detailed by Gillis et al. (2015). Data was averaged over each row

of sensels to reduce scatter (Hushmand et al., 2016). Even though significant effort went into

the understanding and calibration of tactile sensors by the authors for this particular appli-

cation, in general, earth pressures in dynamic centrifuge experiments are difficult to measure

reliably. Therefore, a degree of uncertainty is embedded in all experimental recordings of

earth pressure that should be considered when comparing them with numerical results. To

compute dynamic earth pressures numerically, first the normal nodal forces applied on the

walls are computed at their interface with soil elements. Then, normal stresses are obtained

at the center of the side of each element through dividing the nodal force by the length of

the element side.

We use the same procedure, as described in the previous section, to obtain the spatial and

temporal variations of the dynamic stresses along the walls of buried structures. Figure 7.14
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Figure 7.13: Spatial distribution and temporal variation of the first two proper orthogonal
components of the dynamic bending strain along the walls of the structures.
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shows the resulting distributions for both experimental and numerical data. As shown, for

the flexible structure, even though the temporal variations of the first proper orthogonal

component are slightly underestimated, the spatial distributions are captured well. For the

stiff structure, on the other hand, capturing the spatial distribution is not as successful

as that of the more flexible structure. This may be attributed partially to the perfectly

bonded assumption used for soil-structure interface modeling in numerical analyses as well

as, to some extent, the uncertainties in experimental recordings (particularly since dynamic

strains compared very well).
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Figure 7.14: Spatial distribution and temporal variation of the first two proper orthogonal
components of the dynamic stresses along the walls of the structures.
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CHAPTER 8

Application studies III: Interaction of a pile with layered

soil under vertical excitations

Whereas numerical models of manufactured construction materials (e.g., concrete, steel,

masonry, wood) are deemed as accurate proxies for their real-life behavior, the same cannot

be said for most natural, or even engineered, soils. In fact, accurate prediction of soil behavior

still remains a challenge. This is, on one hand, due to the high cost of large-scale field tests

that naturally limits the number of such experiments; and on the other hand, due to the lack

of adequately validated numerical models specially for dynamic problems. As such, efforts to

devise numerical modeling approaches and to validate them with experimental data–to the

extent possible—are essential for understanding the in-situ soil behavior, and for setting-up

more insightful experiments.

Moreover, despite current advances in computing impedance functions for different types

of soil-foundation systems, very few field validation studies of these impedance functions

exists in literature, and those that do are only for shallow foundations (e.g., Tileylioglu et al.,

2011; Givens, 2013). As such, field measurements of impedance functions and validation of

modeling techniques are highly valuable, especially for deep (pile) foundations.

In this work, we explore measurements from a full-scale field test program on soil-pile

interaction, which was conducted by Kurtulus (2006) as part of a NEES (Network for Earth-

quake Engineering Simulation) project (Grant No. CMS-0324326). We use the axisymmetric

FE solver formulated in Chapter 3 to compute the vertical impedance function of a drilled

shaft. We also attempt to numerically extract the small-strain—i.e., less than %10−3—

dynamic properties of the soil by using the results of a steady-state forced-vibration test. In
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a previous study (Kurtulus and Stokoe II, 2008), the measured velocities were used to cal-

culate the in-situ shear wave velocity by dividing the distance between the transducers that

recorded the responses by the wave travel time. It was assumed that the vertically vibrated

drilled shift would produce pure cylindrical shear wave at the depth where measurements

were conducted. Moreover, no recipe was provided for measuring the in-situ material damp-

ing.

8.1 An overview of the field experiments

Here, only a brief overview of the field experiments is provided. Further details may be

found in Kurtulus (2006). The field tests involved axial loading of a 12 ft-long (3.7 m) and

15 in-diameter (381 mm) drilled concrete shaft using a variety of excitation sources. Two of

these dynamic sources, of which the test results will be used in the present study, were (i)

a hand-held instrumented hammer that was used to generate small impulses with varying

frequency contents, and (ii) a vibroseis shaker (a.k.a. the NEES “Thumper”) that generated

steady-state single-frequency dynamic loadings.

The drilled shaft was reinforced with a steel cage and was constructed using concrete that

had a compressive strength of approximately 4800 psi (33 MPa). Prior to construction, the

rebar cage of the shaft was instrumented with vertical velocity transducers at two depths

within the shaft. Based on modal hammer tests performed in the field, and laboratory

tests conducted on concrete cylinder samples, the shaft had an unconstrained compression

wave velocity of approximately 12,700 fps (3870 m/s), and a unit weight of approximately

130 pcf (20 kN/m3). The shaft was extended about 6 inches (152 mm) above the ground

surface to allow the loading system to be mounted.

Several small-diameter—as small as 2 in. (or 51 mm )—boreholes were installed in the

soil adjacent to the shaft at successively larger radial distances. The distance from the edge

of the drilled shaft to the nearest borehole was about 5 in. (127 mm). The boreholes were

instrumented with geophones at two depths, which are approximately 12 in. (305 mm) apart.
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Each sensor was 1.5 in. (38 mm) in diameter and 2.3 in. (58 mm) in length and consisted

of a single 14-Hz geophone oriented in the vertical direction. The unit weight of the sensors

was approximately 135 pcf (21 kN/m3) while the unit weight of the surrounding soil at the

time of testing was around 110 pcf (17 kN/m3). A schematic illustration of the field test

configuration is shown in Figure 8.1. The exact locations of the sensors were obtained by

excavating the test area after completion of all field tests (Figure 8.1c).

	
  
Figure 8.1: The field test configuration (Kurtulus, 2006).

In the first stage of the dynamic testing, an instrumented hand-held hammer was used to

perform tests in the small-strain range (less than %10−3) by generating small impacts at the

top of the shaft. During these tests a 14-Hz geophone was also attached to the top surface of

the shaft. In the second stage, Thumper was mounted on top of the shaft and was operated

in the vertical direction to apply 15 cycles of sinusoidal loading of 180 lb. (0.8 kN) at a se-

lected frequency of 55 Hz. This frequency was selected because the frequency response curve

measured in the field had a resonance around this frequency, so that “large” motions could be

excited at the shaft (Kurtulus, 2006). A static vertical hold-down load of 2000 lb. (8.9 kN)

was also exerted on the shaft in order to apply dynamic loading. A sampling rate of 200 sam-

ples/sec was used to simultaneously record the response of all embedded geophones to the

applied loading.
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The calculated strains in the aforementioned tests—i.e. the hammer test and the lowest

amplitude dynamic loading from the Thumper tests—were in the order of %10−4 (Kurtulus,

2006). Moreover, these small-strain tests were performed prior to any high-amplitude testing.

Prior to any testing, Spectral-Analysis-of-Surface-Waves (SASW) tests were conducted to

estimate the shear wave velocity profile of the natural soil in the test area (Kurtulus, 2006).

Figure 8.2 shows the average property of each layer as well as properties of the shaft. This soil

profile is used in subsequent numerical simulations to extract the pile impedance function.
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E = 4500 ksi

⇢ = 130 pcf

⌫ = 0.225

Vs = 660 fps

⇢ = 110 pcf

⌫ = 0.33

Figure 8.2: Average properties of in-situ soil layers extracted from SASW test.

8.2 Numerical simulation of the soil-pile interaction problem

As mentioned in §8.1, the circular drilled shaft was loaded vertically in all tests. The soil

medium is assumed to be horizontally layered, and thus, the problem at hand is treated as

an axisymmetric elastodynamics problem. In order to obtain a realistic representation of the

in-site soil’s dynamic behavior, it is important to accurately model the effects of radiation

and material dampings in numerical simulations. This is because an inaccurate accounting

of the former will yield inaccurate estimates of the latter.

To take the effects of semi-infinite extent of soil into account accurately and efficiently, we

use the hybrid PML formulation for axisymmetric problems as already discussed in Chap-
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ter 3. We repeat the resulting semi-discrete form of the system of equations (Eq. (3.38))

here, as in:

M
...
d + Cd̈ + Kḋ + Gd = ḟ . (8.1)

We are concerned about small-strain dynamic properties of the soil-pile system, and we ex-

pect the system to behave linearly. This allows us to solve the frequency domain counterpart

of Eq. (8.1). To wit,

[
(iω)3M + (iω)2C + (iω)K + G

]
d̂(ω) = (iω)f̂(ω) (8.2)

Detailed description of all the parameters in Eq. (8.2) can be found in Chapter 3 and Ap-

pendix A.

8.2.1 Modeling material damping

Experimental evidence indicate that small-strain behavior of soil can be represented through

linear viscoelastic models (Ishihara, 1996), which can be easily handled in the frequency

domain by introducing complex-valued moduli. In a rigorous form, the complex-valued

velocity V ∗i can be defined as (Lai and Rix, 2002):

V ∗i (ω) =
Vi(ω)√

1 + 4ξ2
i (ω)

[
1 +

√
1 + 4ξ2

i (ω)

2
+ iξi(ω)

]
(8.3)

where i ∈ {s, p, r} denotes shear, pressure and Rayleigh waves, respectively. For weakly

dissipative media (i.e., small material damping values), Eq. (8.3) may be simplified by only

retaining the first-order terms (Rix et al., 2000). Moreover, based on several experimental

data sets, it is usually assumed that the small-strain material damping is approximately

frequency independent over the seismic bandwidth ranging from 0.001 to 10 Hz (Lai and
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Rix, 2002). As a result, the complex-valued velocity may be re-stated as,

V ∗i = Vi(1 + iξi) (8.4)

where it is also assumed that the variation of Vi(ω) with respect to frequency is negligible.

This form is usually used for linear SSI analyses (as already shown in §4.3.2 for computing

the impedance functions of viscoelastic two-layered soil) and frequency domain site response

analyses (Kramer, 1996; Ostadan et al., 2004).

Since we solve the governing equations in the frequency domain, the shear wave velocity

definition in Eq. (8.4) can be modified to incorporate hysteretic small-strain damping ξ in

our wave propagation analyses. This will result in the modification of Lamè constants µ and

λ that are used to form the system matrices.

8.3 Vertical impedance function of the drilled shaft

In order to obtain the dynamic stiffness of a pile at each frequency ω,numerically, we follow

the same procedure provided in Chapter 4 to compute the impedances of soil-structure

interfaces in a plane-strain setting. We prescribe a known vertical displacement along its

top surface to compute the reaction forces along the same surface. This calls for solving a

complex-valued system of linear equations as in Eq. (8.2). Summing up the reaction forces

and dividing the resultant by the prescribed displacement will then yield the impedance

function of the pile at the selected frequency ω. Repeating this procedure for different

frequencies will result in the following function:

ŜV (ω) = K0 [KV (ω) + i a0CV (ω)] (8.5)

where SV (ω) is the vertical impedance function of the pile; K0 is a normalization factor,

which may be chosen as the static stiffness, if exists; a0 = ωD/Vs is the dimensionless

frequency; D is the diameter (characteristic length) of the pile; and KV and CV are the
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normalized real and imaginary parts of the impedance function.

8.3.1 Verification studies

Using the above procedure, we compute the impedance function of a single pile in homoge-

neous viscoelastic half-space with L/D = 15, ρs/ρp = 0.7, νs = 0.4, and νp = 0.25—where

D and L denote the pile diameter and length, respectively; Ep, ρp and νp denote the elastic

modulus, mass density and Poisson’s ratio of the elastic pile, and Es, ρs and νs are elastic

modulus, mass density and Poisson’s ratio of the soil half-space, respectively. The soil damp-

ing is ξ = 0.05, and Ep/Es = 1000, which represents a soft soil condition. Figure 8.3 displays

the real and imaginary parts of the numerically computed impedance function normalized

by K0, which are in excellent agreement with the analytical solutions provided by Miura

et al. (1994).
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Figure 8.3: Dynamic stiffness of a single pile embedded in a homogeneous viscoelastic half-
space.

8.3.2 Validation studies against in-situ measurements

In order to investigate the capability of the FE solver in replicating the field conditions,

the impedance of the drilled shaft with specifications provided in Figure 8.2 is computed
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numerically. The recorded data of the hammer test are used to extract the “field” impedance

function of the shaft. It should be noted here that in order to compute the field impedance

function, the applied force as well as the top surface response of the shaft must be recorded

synchronously. Five successive hammer tests are analyzed here. Figure 8.4 shows the fre-

quency content—i.e., amplitude and phase angle—of the hammer-induced vertical force fH(t)

for one of the tests. Vs1 in the horizontal axis label of Figure 8.4 is the shear wave velocity

of the first layer (see Figure 8.2).
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Figure 8.4: (a) The normalized Fourier amplitude and (b) phase angle of the hammer-induced
force fH(t).

Both homogeneous and layered soil profiles are considered in the numerical simulations.

First, the soil is considered as a homogeneous half-space with soil properties of the first

layer shown in Figure 8.2. For the layered configuration, soil properties are taken to be

the same as those provided for the first three layers in Figure 8.2. Since the bedrock is at

a depth of three times the pile length—and thus adequately far away from the source of

dynamic loading—, only the first three layers are modeled. It should be noted here that the

motivation for modeling the one-layered/homogenous case is to assess the capability (or lack
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thereof) of the hammer tests in capturing the layering effects at higher frequencies. Because

the wavelength of the outgoing waves traveling at a specified velocity becomes shorter as the

excitation frequency increases, these waves will not have enough time to reach the underlying

layers and reflect back during the tests’ observation windows. Also, it is assumed here that

the soil material damping is the same for all layers.

Figure 8.5 displays the real and imaginary parts of the numerically computed impedances

versus the field results obtained from each hammer test. Here, 5% material damping is

assumed for numerical analyses. As mentioned earlier, the resonant frequency of the site is

around 55 Hz, for which the dimensionless frequency a0 is approximately equal to 0.65. As

shown in Figure 8.5, numerically computed and field measured damping coefficients are in a

very good agreement except for a0 ≤ 0.2. On the other hand, the field stiffness coefficients

start to deviate from the numerically computed coefficients when a0 ≤ 0.2 and a0 ≥ 1.4.

Therefore, only the mid-range frequencies with 0.2 ≤ a0 ≤ 1.4 is considered for further

investigations.
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Figure 8.5: Field impedance function of the drilled shaft from different hammer tests.

Figure 8.6 shows the mean ± one standard deviation of the real and imaginary parts

of the field vertical impedance. In numerical simulations, since the level of damping is

unknown, different values ranging from zero to 10% are considered. Numerically computed
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impedance functions for different values of material damping ξ are plotted in the same figure

for the two aforementioned cases of homogeneous and layered soils. Figures 8.6a and 8.6b

indicate that, as the frequency increases, the average field stiffness coefficients make a gradual

transition from the numerically computed layered to numerically computed homogeneous soil

stiffnesses. On the other hand, Figures 8.6c and 8.6d indicate that the average field damping

coefficient exhibits the same trend as the numerical damping coefficients. For frequencies

close to resonant frequency, it lies within the numerically obtained curves with ξ = 0.04 and

ξ = 0.06; and for other frequencies it follows curves with ξ = 0.08 and ξ = 0.1.
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Figure 8.6: Real and imaginary parts of the vertical impedance function for homogenous
and layered soils.
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It is expedient to note here that Kurtulus (2006) used a combined resonant column

and torsional shear device for determining the variation of shear modulus and material

damping with strain and excitation frequency. Small-strain damping values measured for

the undisturbed silty sand and silt samples were approximately 0.015 and 0.03, respectively.

Moreover (as also mentioned earlier), the average soil properties used for computing the

numerical impedance functions were obtained from the SASW tests at the natural soil area,

which were carried out prior to any testing/construction activity at the site. Therefore,

the actual site properties during the hammer tests may have been different. Moreover,

unlike the numerical model, the pile-soil interface is not perfectly bonded. Nevertheless, the

obtained results show that the numerically computed impedances capture the experimentally

computed impedances reasonably well, despite these inherent uncertainties.

8.4 Small-strain dynamic properties of the in-situ soil

8.4.1 On the validity of purely cylindrical shear wave propagation assumption

In the previous experimental study conducted by Kurtulus (2006); Kurtulus and Stokoe II

(2008), the measured responses of the Thumper test were used to extract the shear wave

velocity of the soil. It was expected that the vertically loaded drilled shaft would behave as

a line source creating cylindrical shear waves within the soil domain, especially at horizontal

planes that lie within the mid-depth of the pile where the geophones rested. With this

assumption, the shear wave velocity was computed by dividing the horizontal distance of

the sensors by the time interval it took for the waves to travel that distance. However, the

plausibility of this assumption was not further investigated.

In order to have a better insight regarding the displacement envelope of the waves em-

anating from the shaft, the aforementioned Thumper test is simulated numerically here. A

vertical sinusoidal force of 180 lb. (0.8 kN) is applied at (r, z) = (0, 0). Two different fre-

quencies are studied—i.e., f = 5 and 55 Hz. The latter is the frequency that was used in

the actual Thumper test (Kurtulus, 2006). The soil material damping is assumed to be 5%.
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Figures 8.7a and 8.7b display the spatial variations of the amplitude of the resulting steady-

state vertical displacement Uz(r, z, ω), normalized by the maximum displacement amplitude

Umax
z , for f = 5 and 55 Hz, respectively. Uz(r, z, ω) is computed using the following equation:

Uz(r, z, ω) =
√
{Re[ûz(r, z, ω)]}2 + {Im[ûz(r, z, ω)]}2 . (8.6)

The sensors’ positions used for recording responses in the Thumper test are shown in the

same figure as black squares. As seen, the spatial variation of the amplitude of the vertical

displacement field is not purely cylindrical and depends highly on the frequency of the applied

loading.
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Figure 8.7: Spatial variation of the normalized amplitude of the vertical displacement field
within the soil domain for (a) f = 5 Hz and (b) f = 55 Hz.

For further investigation, the phase velocity in horizontal direction V h
p at each point

(ri, zi) is computed within the regular soil domain as follows:

V h
p (ri, zi) = ω

∆r

∆φ
(8.7)

where ω is the frequency in which the steady-state response is measured; ∆r = |ri+1 − ri|;
∆φ = |φi+1 − φi|; ri+1 and ri are radial distances between adjacent points i + 1 and i,

respectively; φi+1 and φi are the corresponding phase angles of the steady-state vertical
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displacement response, which can be computed as follows:

φi = arctan

(
Im[ûz(ω, ri, zi)]

Re[ûz(ω, ri, zi)]

)
. (8.8)

Figure 8.8 shows the spatial variation of the computed phase velocity within the regular

domain for the numerically simulated Thumper test. Again, soil material damping is 5%.

As r goes to zero (i.e., as locations become closer to the shaft), the irregularities in the phase

velocity field increases. Also, it is seen that the phase velocity is not constant within the

second layer and its value varies between 580 fps (177 m/s) and 660 fps (201 m/s) within the

area that the sensors are located. This all but ascertains that the test conditions will not

produce purely cylindrical wave fronts within the soil, and longitudinal and Rayleigh waves

may also contribute to the responses measured in the field.
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Figure 8.8: Spatial variation of the horizontal phase velocity within the soil domain for
f = 55 Hz.

8.4.2 Numerical approximations of equivalent small-strain dynamic properties

of the in-situ soil

As mentioned earlier, extracting soil material damping from experimental data is a challeng-

ing task. This is mainly because the measurements necessarily include radiation (as well as

geometric) damping. Here, we use the data from the steady-state tests to estimate field val-
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ues of equivalent shear wave velocity and material damping at depth. In total, velocity data

for 10 points (sensor locations) are available, as shown in Figure 8.1. However, only 6 data

points—i.e., G3, G4, G5, G8, G9 and G10—are used here to determine equivalent dynamic

properties due to the complexities found in the measured responses at the remaining data

points (for details, see Kurtulus, 2006).

For the present investigation, the actual soil profile is replaced by a homogeneous half-

space with a shear wave velocity V eq
s and material damping ξeq, and each of these parameters

were varied over reasonable ranges of values. The soil density and Poisson’s ratio are se-

lected to be the same as those in the second layer of the actual test1. As noted above, the

effects of radiation damping are taken into account through the use of PMLs, and thus, the

approximated damping ξeq would be representative of the average material damping within

the soil domain tested in the field.

For each test case, displacement responses are recorded at sensor locations. Then, the

following error function is defined,

E(V eq
s , ξeq) =

∑
i={3,4,5,8,9,10}

|
U i
z,fld − U i

z,num

U i
z,fld

|+
∑

i={4,5,9,10}

|
φifld − φinum

φifld
| (8.9)

where Uz,fld and Uz,num are the vertical displacement amplitudes obtained from field data

and numerical simulations, respectively; φfld and φnum are the corresponding phase angles.

The minimization of this function with respect to the updating parameters (V eq
s and ξeq) will

yield the best agreement between measured and numerically obtained response quantities.

In order to compute the error function, we need to obtain the amplitude and phase an-

gle of the vertical displacement at each point. In our frequency domain analyses, we use

Eqs. (8.6) and (8.8) to compute these parameters. For processing the field measurements,

which are originally in the time domain, an appropriate procedure should be used. Figure

8.9a shows displacement responses obtained by post-processing the recorded velocity data,
1This is because all sensors are almost in the mid-depth of the second layer and it is expected that

properties of this layer dominantly control the measured responses.
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which involves (i) removing the linear trend in the data, (ii) transforming data to the fre-

quency domain via Fourier transforms, (iii) calibrating the data using amplitude and phase

calibration curves of the 14-Hz geophone, (iv) dividing the calibrated data by iω to con-

vert it to displacement data, and (v) transforming the displacement data back to the time

domain using inverse Fourier transforms. After this 5-step procedure, a sinusoidal function

is fitted to the steady-state part of the response at each sensor location in order to obtain

the amplitude of the displacement history. Figure 8.9b displays an example of the fitted

functions at locations G3, G4, and G5. The time delay ∆t is calculated by obtaining the

lags that produce a maximum cross-correlation between each recorded displacement history

and its counterpart at the reference point—i.e., G3 for G4 and G5, and G8 for G9 and G10.

Then, the phase angle at any point i with respect to its reference point is computed as

φifld = ω∆t . (8.10)

In subsequent analyses, first, the viability of the approach described above for extracting

equivalent dynamic properties is investigated by studying two synthetic examples. These

numerical experiments do not bear the adverse effects of modeling and measurement errors

that naturally exist in field experiments, and thus they will only provide an understanding the

general topology of the objective function described in Eq. (8.9). The information gleaned

from the said numerical experiments will then be used to estimate the field shear wave

velocity and damping values from the test data.

Two-layered half-space: Here, in order to create a “pseudo-reference” solution, the

problem of a soil layer over half-space is solved numerically and displacement responses are

recorded at the same locations where the actual sensors are located (6 points). These results

are used in lieu of the field data (denoted with subscripts "fld" in Eq. (8.9)). The thickness

of the first layer is 12.5 ft (3.8 m). The properties of the first layer and the underlying

half-space are respectively the same as properties of the second and third layers of the field

(see Figure 8.2). The soil material damping is assumed to be 5% in both layers. Then,
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Figure 8.9: (a) Displacement responses and (b) sinusoidal fitted curves at sensors G3, G4,
and G5.
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the analyses are repeated to test different equivalent parameters. A total of 1890 cases

are simulated with 400 fps≤ V eq
s ≤845 fps (121 m/s≤ V eq

s ≤ 258 m/s) at 5 fps (1.5 m/s)

increments and 0 ≤ ξeq ≤ 0.2 at 0.01 increments. Then, the corresponding error functions

are obtained using Eq. (8.9).

Figure 8.10a shows the variation of error with V eq
s and ξeq. The optimal updating pa-

rameter values—i.e., V opt
s and ξopt—are shown as well. The dashed line shows the line of

minimum variations in error, which lies along the major axis of the ellipsoidal contour lines.

In order to obtain this line, the V eq
s values are varied within the lowest error function contour

for each equivalent damping ξeq value, and the locations of the minimizers for each of those

specific optimization sub-problems are obtained. Then, a linear function is fitted through the

said minimizers. As seen, by only using the information of 6 points, we are able to approxi-

mate the dynamic properties of the first layer with sufficient accuracy. However, the results

have only a small sensitivity along the line of minimum errors. Substituting ξeq = 0.05 in

the equation given for the dashed line results in V eq
s = 662.75 fps (202 m/s), which is close

to the value set for the first layer. This observation also suggests that the properties of the

underlying half-space do not affect the results.

Three-layered half-space: The same study is repeated for the case of approximating

equivalent dynamic properties of the three-layered half-space soil profile. The layer properties

are the same as those given in Figure 8.2. The soil damping for all layers is 5%. Figure 8.10b

shows the resulting error contours along with the optimal point and the line of minimum

variation in error. Using the information of six data points, the best approximation is

attained with V opt
s = 610 fps (186 m/s) and ξopt = 0.02. However, If we substitute ξeq = 0.05

in the given equation for the line of minimum error, then the equivalent shear velocity will be

V eq
s = 598 fps (182 m/s). It is useful to note that the average shear wave velocity of the first

two layers is (5× 535 + 7.5× 660)/(5 + 7.5) = 610 fps (186 m/s) based on a one-dimensional

wave propagation assumption.

The parametric studies (on two- and three-layered half spaces) described above suggest

that the method devised around the error function described in Eq. (8.9) can be used to
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Figure 8.10: Error analysis of (a) two-layered and (b) three-layered half-space pseudo exam-
ples.

produce reasonable approximations of field equivalent dynamic properties. The trend of

the minimum error line in Figure 8.10 indicates that, as expected, the estimation of the

damping ratio is coupled with the estimation of the shear wave velocity. In other words, the

overestimation of damping ratio will result in an underestimation of shear wave velocity and

vice versa (e.g. Esmaeilzadeh Seylabi et al., 2012). Therefore, a priori information regarding

one of these parameters can help significantly improve the accuracy in the estimation of the

other parameter. A similar observation was also reported by Ahn (2007) who opted to use

pre-defined damping curves for more accurate estimation of shear modulus reduction curves.

The same procedure employed in the parametric studies above is used now to approximate

equivalent dynamic properties of the in-situ soil by using the actual field measurements when

computing the error/objective function values. Figure 8.11 displays the error contours for

the case of a vertical load applied at 55 Hz with amplitude of 180 lb. (0.8 kN). Again, it

is seen that the error contours are inclined and indicate sensitivity to material damping.

Moreover, picking any (V eq
s , ξeq) combination along the indicated line of minimum error

will not significantly change the objective function value. The topography of the objective

function value can thus be used in understanding and quantifying the sensitivity of the

estimates obtained for (V eq
s , and ξeq).
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Table 8.1 shows the values of field shear wave velocity obtained from extracting the

phase differences using the procedure described earlier in §8.4, which is based on Eq. (8.7).

As seen, the shear wave velocity ranges from 758 fps to 886 fps depending on the location of

the sensors. These values, which are the representative of localized shear wave velocity field,

differ from those obtained from the aforementioned minimization procedure that is based

on Eq. (8.9), which yields the representative of average shear wave velocity for the first two

layers. This comparison indicates that using the phase difference to approximate shear wave

velocities may not always be a reliable approach, because the wave field may become complex

(as opposed to cylindrical, for example) depending on the setting of the field test. As a result,

it appears that obtaining in-situ dynamic soil properties through an optimization method

that uses an appropriate numerical model as its computational engine is a better approach

(Ahn et al., 2009) compared to simplified approaches based on time-of-arrival and/or phase

differences.

Table 8.1: Local shear wave velocity obtained from using the field data using Eq. (8.7).
Sensor Distance (in.) Phase difference Excitation frequency (Hz) Shear wave velocity (fps)
G3-G4 5.00 0.18983 55 758.52
G4-G5 5.63 0.19862 55 816.29
G8-G9 4.94 0.16698 55 851.97
G9-G10 6.00 0.19510 55 885.64
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Figure 8.11: Error analysis for approximating equivalent dynamic properties of the in-situ
soil.
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CHAPTER 9

Summary and Conclusions

The main objective of this work has been the development of a numerical platform for reduced

order modeling of SSI problems in a two-dimensional setting. In the following sections, we

provide a summary of the steps we took to achieve this goal as well as the core findings from

this study.

9.1 Chapters 1-3: Introduction, background, and simulation of wave

propagation in a PML-truncated heterogeneous half-space

After providing a synopsis on different aspects of the SSI problem and the existing modeling

techniques, we presented a detailed description of the formulations we used to develop a

finite element code for direct modeling of SSI problems with high fidelity. A standard hybrid

symmetric PML formulation was used to truncate the semi-infinite extent of soil, and the

DRM was used to translate the seismic excitation within the PML-truncated model.

9.2 Chapter 4: Computing the soil impedance functions

We presented a numerical approach that was devised to compute the soil impedance functions

for rigid and flexible soil-structure interfaces. The conducted numerical experiments showed

that it was indeed feasible to evaluate impedance functions of foundation systems resting

on (or embedded in) heterogeneous soils by using both time- and frequency-domain FEM-

PML wave solvers. While it was simpler to implement the soil material damping in the
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frequency-domain solver, inverting the large complex-valued system matrices arising in a

frequency-domain solver requires larger computational costs than solving its real-numbered

counterpart in the time-domain. This issue would be even more crucial in a three-dimensional

setting. Moreover, the temporal characteristics of the input signal would not affect the

quality of the numerically computed impedance functions, as long as the frequencies in

which the impedance values were computed lay within the frequency-band of both the input

and output spectra.

9.3 Chapter 5: Computing the kinematic interaction transfer func-

tions

We described a numerical method to compute the response of a soil-structure interface em-

bedded in a heterogeneous soil deposit on an elastic bedrock and subjected to vertically

propagating shear waves. The presented numerical experiments showed that the imple-

mented approach was successful both in recovering the free-field soil response when there

was no scatterer, and in capturing the kinematic responses of an embedded rigid scatterer.

9.4 Chapter 6: Application studies I – Reduced order modeling of

buried structures

We solved different types of problems to demonstrate the direct application of the developed

framework. First, we computed the impedance functions and KITFs for different types of

rigid buried structures to show how the spectra of these functions could be influenced by

wave reflections, refractions, and interferences induced by the soil heterogeneity as well as

interface geometry.

Second, we provided a step-wised procedure to construct a reduced order model of a non-

rigid buried structure in an elastic half-space, including detailed description of the method

we used for time-domain representation of the numerically computed impedance functions as
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a discrete-time filter. We showed that the portrayed approach could accurately capture the

response of the studied cases while other simplified approaches that were previously proposed

by other researchers might result in erroneous outcomes. We also showed the importance

of exploring the stability of the models used for time-domain representations of the soil

subsystem as they interact with the structure.

9.5 Chapter 7: Application studies II – Numerical simulation of

centrifuge experiments on underground structures

We used the developed FE solver for numerical simulations of a series of centrifuge experi-

ments conducted on buried reservoir structures. Due to inherent complexities of nonlinear

soil models, we examined the capabilities of the equivalent linear soil model in capturing

experimentally measured responses. We used an optimization based method to calibrate

the shear wave velocity profile and the Rayleigh damping model of a soil column using the

available far-field acceleration data. We showed that the numerical simulations with the cal-

ibrated equivalent linear dynamic soil properties could capture the measured accelerations,

racking, bending strains as well as dynamic earth pressures with acceptable accuracy even for

the high amplitude base motion case. Therefore, for the soil and structural properties evalu-

ated in this study, one can use the results of nonlinear site response analyses of a soil column

to calibrate the equivalent linear soil model properties. Then, 2D linear wave propagation

analyses can be conducted for the numerical simulations of a buried structure.

Due to the limited width and height of the centrifuge containers, it may not be possible to

study the behavior of deep soil deposits with large lateral extents resting on elastic bedrocks

purely by experimental means. We showed that the centrifuge container boundaries affect

the measured responses significantly, especially closer to the soil surface. Moreover, the

scattering effects of the centrifuge container were influenced by the specimen structures’

stiffnesses. The proposed numerical modeling methodology therefore enables the exploration

of more realistic site conditions when designing underground reservoir structures for seismic
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loading.

9.6 Chapter 8: Application studies III – Interaction of a pile with

layered soil under vertical excitations

Finally, we used the developed FE solver to simulate experimental data from dynamic field

testing of a drilled shaft for model validation. The study showed that the devised numerical

tool is capable of extracting in-situ foundation and soil properties of the instrumented drilled

shaft-soil system from measured data. The field impedance function was calculated directly

using data from a set of small-strain impact hammer tests that were carried out at the top

of the shaft. The numerically extracted frequency-dependent vertical impedance function—

which was first verified against a simpler analytical solution for a pile in homogenous half-

space–, compared well with the said field impedance function obtained directly from data

for a certain range of frequencies, including the resonant frequency of the soil-pile system.

The developed numerical tool was also able to simulate the small-strain field response of

the soil layers as excited by steady-state dynamic loading. Successful extraction of in-situ

material damping ratio of soils at depth requires explicit delineation between the radiation-

and material-based constituents of the overall soil damping. The numerical model devised

in the present study took advantage of the PML-truncated boundaries in order to handle

the radiation damping correctly. It was shown that small-strain shear stiffness and material

damping ratio of soil layers could be extracted using this numerical tool by solving an

optimization problem. We also quantified the degree of coupling between the estimates of

equivalent shear wave velocity and material damping values, and highlighted that simplified

approaches based on localized calculations may bear significant estimation errors of dynamic

soil properties.

137



Appendix A

Ingredients of system matrices: the axisymmetric setting

M =



Murur 0 0 0 0 0

Muzuz 0 0 0 0

MSrrSrr MSrrSθθ MSrrSzz 0

MSθθSθθ MSθθSzz 0

MSzzSzz 0

MSrzSrz


(A.1)

C =



Curur 0 CurSrr CurSθθ 0 CurSrz

Cuzuz 0 0 CuzSθθ CuzSrz

CSrrSrr CSrrSθθ CSrrSzz 0

CSθθSθθ CSθθSzz 0

CSzzSzz 0

CSrzSrz


(A.2)
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K =



Kurur Kuruz KurSrr KurSθθ 0 KurSrz

Kuzuz 0 0 KuzSθθ KuzSrz

KSrrSrr KSrrSθθ KSrrSzz 0

KSθθSθθ KSθθSzz 0

KSzzSzz 0

KSrzSrz


(A.3)

G =



Gurur 0 GurSrr GurSθθ 0 GurSrz

Guzuz 0 0 GuzSθθ GuzSrz

GSrrSrr GSrrSθθ GSrrSzz 0

GSθθSθθ GSθθSzz 0

GSzzSzz 0

GSrzSrz


(A.4)

ḟ =



ḟr

ḟz

0

0

0

0


, ḟr =

∫
ΓLoaded

ΦġrdΓ, ḟz =

∫
ΓLoaded

ΦġzdΓ (A.5)

Each block matrices are defined as:

Murur = Muzuz =

∫
Ω0

ρΦΦTdΩ +

∫
ΩPML

aρΦΦTdΩ (A.6)

MSrrSrr = MSθθSθθ = MSzzSzz = −
∫

ΩPML

aD1ΨΨTdΩ (A.7)

MSrrSθθ = MSrrSzz = MSθθSzz =

∫
ΩPML

aD2ΨΨTdΩ (A.8)
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MSrzSrz = −
∫

ΩPML

a
1

µ
ΨΨTdΩ (A.9)

Curur = Cuzuz

∫
ΩPML

bρΦΦTdΩ (A.10)

CurSrr = CuzSrz =

∫
ΩPML

αzᾱr
r

Φ,rΨ
TdΩ (A.11)

CurSθθ =

∫
ΩPML

αrαz
r

ΦΨTdΩ (A.12)

CurSrz = CuzSzz =

∫
ΩPML

αrᾱr
r

Φ,zΨ
TdΩ (A.13)

CSrrSrr = CSθθSθθ = CSzzSzz = −
∫

ΩPML

bD1ΨΨTdΩ (A.14)

CSrrSθθ = CSrrSzz = CSθθSzz =

∫
ΩPML

bD2ΨΨTdΩ (A.15)

CSrzSrz = −
∫

ΩPML

b
1

µ
ΨΨTdΩ (A.16)

(A.17)

Kurur =

∫
Ω0

[(2µ+ λ)Φ,rΦ
T
,r +

λ

r
Φ,rΦ

T + µΦ,zΦ
T
,z +

λ+ 2µ

r2
ΦΦT +

λ

r
ΦΦT

,r]dΩ +

∫
ΩPML

cρΦΦTdΩ

(A.18)

Kuruz =

∫
Ω0

[λΦ,rΦ
T
,z + µΦ,zΦ

T
,r +

λ

r
ΦΦT

,z]dΩ (A.19)

KurSrr = KuzSrz =

∫
ΩPML

αzβ̄r + ᾱrβz
r

Φ,rΨ
TdΩ (A.20)

KurSθθ =

∫
ΩPML

αrβz + βrαz
r

ΦΨTdΩ (A.21)

KurSrz = KuzSzz =

∫
ΩPML

αrβ̄r + ᾱrβr
r

Φ,zΨ
TdΩ (A.22)

Kuzuz =

∫
Ω0

[µΦ,rΦ
T
,r + (2µ+ λ)Φ,zΦ

T
,z]dΩ +

∫
ΩPML

cρΦΦTdΩ (A.23)

KSrrSrr = KSθθSθθ = KSzzSzz = −
∫

ΩPML

cD1ΨΨTdΩ (A.24)
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KSrrSθθ = KSrrSzz = KSθθSzz =

∫
ΩPML

cD2ΨΨTdΩ (A.25)

KSrzSrz = −
∫

ΩPML

c
1

µ
ΨΨTdΩ (A.26)

Gurur = Guzuz =

∫
ΩPML

dρΦΦTdΩ (A.27)

GurSrr = GurSrz =

∫
ΩPML

βzβ̄r
r

Φ,rΨ
TdΩ (A.28)

GurSθθ =

∫
ΩPML

βrβz
r

ΦΨTdΩ (A.29)

GurSrz = GuzSzz =

∫
ΩPML

βrβ̄r
r

Φ,zΨ
TdΩ (A.30)

GSrrSrr = GSθθSθθ = GSzzSzz = −
∫

ΩPML

dD1ΨΨTdΩ (A.31)

GSrrSθθ = GSrrSzz = GSθθSzz =

∫
ΩPML

dD2ΨΨTdΩ (A.32)

GSrzSrz = −
∫

ΩPML

d
1

µ
ΨΨTdΩ (A.33)
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