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A B S T R A C T   

The recent worldwide SARS-CoV-2 (COVID-19) pandemic has reshaped the way people live, how they access 
goods and services, and how they perform various activities. For public transit, there have been health concerns 
over the potential spread to transit users and transit service staff, which prompted transportation agencies to 
make decisions about the service, e.g., whether to reduce or temporarily shut down services. These decisions had 
substantial negative consequences, especially for transit-dependent travelers, and prompted transit users to 
explore alternative transportation modes, e.g., bikeshare. However, local governments and the public in general 
have limited information about whether and to what extent bikeshare provides adequate accessibility and 
mobility to those transit-dependent residents. To fill this gap, this study implemented spatial and visual analytics 
to identify how micro-mobility in the form of bikesharing has addressed travel needs and improved the resilience 
of transportation systems. The study analyzed the case of San Francisco in California, USA, focusing on three 
phases of the pandemic, i.e., initial confirmed cases, shelter-in-place, and initial changes in transit service. First, 
the authors implemented unsupervised machine learning clustering methods to identify different bikesharing trip 
types. Moreover, through spatiotemporally matching bikeshare ridership data with transit service information (i. 
e., General Transit Feed Specification, GTFS) using the tool called OpenTripPlanner (OTP), the authors studied 
the travel behavior changes (e.g., the proportion of bikeshare trips that could be finished by transit) for different 
bikeshare trip types over the three specified phases. This study revealed that during the pandemic, more casual 
users joined bikeshare programs; the proportion of recreation-related bikeshare trips increased; and routine trips 
became more prevalent considering that docking-station-based bikeshare trips increased. More importantly, the 
analyses also provided insights about mode substitution, because the analyses identified an increase in dockless 
bikeshare trips in areas with no or limited transit coverage.   

1. Introduction 

The SARS-CoV-2 virus responsible for the worldwide COVID-19 
pandemic has affected every aspect of daily life and resulted in a num-
ber of strategies, e.g., shelter-in-place, quarantine, social distancing, to 
minimize exposure and the spread of the virus around the world 
(Friedson et al., 2021; Taghrir et al., 2020). This pandemic has caused 
significant impacts to the transportation industry, including airline 
(Subramanya & Kermanshachi, 2021), railway (Wang et al., 2021), 
public transit (Parker et al., 2021), ride-hailing (Morshed et al., 2021), 
and shared micro-mobility (Li et al., 2020). However, different transport 

modes were affected, and are recovering, at different paces. Some modes 
are still struggling to attract more ridership and protect the health of 
both staff and passengers, particularly modes that cannot provide 
enough social distance while serving passengers. As reported by the 
National Association of City Transportation Officials (NACTO), the eight 
largest docking-station-based bikeshare systems in the USA experienced 
a 44% ridership decrease in March–May 2020 and transit ridership had a 
80% downturn compared with the same period in the previous year 
(Nacto, 2020). The significant drop in transit ridership (Walker, 2020) 
led several cities to reduce their public transit frequency, time avail-
ability, or coverage. These decisions have had substantial negative 

* Corresponding author. 
E-mail addresses: xdqian@wayne.edu (X. Qian), mjaller@ucdavis.edu (M. Jaller), gcircella@ucdavis.edu (G. Circella).  

Contents lists available at ScienceDirect 

Cities 

journal homepage: www.elsevier.com/locate/cities 

https://doi.org/10.1016/j.cities.2023.104290 
Received 1 March 2022; Received in revised form 3 October 2022; Accepted 9 March 2023   

mailto:xdqian@wayne.edu
mailto:mjaller@ucdavis.edu
mailto:gcircella@ucdavis.edu
www.sciencedirect.com/science/journal/02642751
https://www.elsevier.com/locate/cities
https://doi.org/10.1016/j.cities.2023.104290
https://doi.org/10.1016/j.cities.2023.104290
https://doi.org/10.1016/j.cities.2023.104290
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cities.2023.104290&domain=pdf


Cities 137 (2023) 104290

2

consequences, especially for transit-dependent residents. Some of them, 
especially those in front-line occupations, have had to decide whether or 
not to risk infection by traveling in public transit for essential purposes 
(e.g., working and food shopping), or find other options. Especially for 
shopping for basic necessities, some people relied on online shopping 
(Ali Taha et al., 2021), which may not available to residents with limited 
access to internet and smart communication devices. With a lack of al-
ternatives such as private vehicles available to some population groups, 
e.g., low-income households, micro-mobility has emerged as a prom-
ising mode to complement or replace traditional transit services. In New 
York City, for example, bicycle sales have increased significantly with 
long waiting times (Goldbaum, 2020); thus, individuals have found 
bikeshare as an option, without the need to own bikes. This shows the 
potential role of bikeshare to complement transit services and to 
improve the resilience of urban transport systems during an emerging 
situation, e.g., the coronavirus pandemic. 

Traditional bicycle-transit integration trips represent different pro-
portions of total transit ridership: 27% in Netherlands, 26% in Copen-
hagen, 13% in Munich, and 2% in the UK (Martens, 2004, 2007). 
According to a survey report by the NACTO, over 50% of docking- 
station-based bikeshare users are reported to use bikeshare to connect 
to transit in the USA (NACTO, 2019). As bikeshare services expand, their 
features of flexibility, including obviating the need for onboard storage, 
could further promote the connection between micro-mobility and 
transit (Ma, Ji, Yang, et al., 2018). However, there is a long debate about 
substitution and complementarity between bikeshare and transit (Kong 
et al., 2020; Song & Huang, 2020). Based on current studies, there is no 
global consensus on the relationship between these two modes, which is 
complicated and highly dependent on the study areas, the features of 
trips and other building environment factors. In addition, most current 
research applies stated preference surveys, which ask participants their 
choice of modes in hypothetical situations given a specific set of con-
ditions. It is very difficult to implement a real-world test to see how 
people actually would behave given a specific restriction on transport 
modes. The unexpected outbreak of the coronavirus pandemic, howev-
er, provides a unique lens through which we can observe the relation 
between transit and bikeshare, and even gain insights into the role of 
bikeshare in improving the resilience of urban transportation systems. 

The pandemic has provided a unique opportunity to evaluate the 
resilience of our transportation systems, and the impacts of disruptions 
on travel-related choices. Since the outbreak of the pandemic, some 
studies have noticed that bikeshare ridership has nearly returned to 
normal while transit ridership still struggles below the pre-COVID19 
levels (Padmanabhan et al., 2021; Wang & Noland, 2021). Meanwhile, 
bikeshare trip distance becomes longer, and the rate of recreational trips 
increases (Padmanabhan et al., 2021; Tokey, 2020). Understanding 
travel and use patterns allow us to better prepare transit and other 
transport services. Local transit agencies and bikeshare operators can 
learn from this period to adjust their planning strategies for future de-
velopments. Consequently, the objective of this work is to apply ma-
chine learning and visual analytics to explore the travel patterns of 
bikeshare users to identify how bikeshare has addressed travel needs 
during a disruption, and finally, whether bikeshare improves urban 
transportation resilience. 

This study uses San Francisco as an example considering its partic-
ular case of reduced transit time availability and coverage after the virus 
breakout. The study identifies three key phases of the pandemic, i.e., 
initial confirmed cases, shelter-in-place, and the initial changes in transit 
service to conduct comparative analyses. Unlike survey-based studies, 
this study combines unsupervised machine learning and visual analytics 
to study the relationship between bikeshare and transit. Moreover, this 
study spatiotemporally matches transit and bikeshare by feeding Gen-
eral Transit Feed Specification (GTFS) into the OpenTripPlanner (OTP) 
tool. In doing so, the authors analyze the change of the spatial distri-
bution of bikeshare trips caused by the geographic change in transit 
service areas for the different bikeshare trip types over the three 

specified phases. Based on the findings and analyses, the authors provide 
planning recommendations for bikeshare and transit after the pandemic. 

2. Literature review 

This study mainly focuses on the relationship between bikeshare and 
transit during the pandemic. We investigate previous related research 
from two aspects: 1) the relationship between bikeshare and transit, and 
2) mobilities during pandemics. 

2.1. Bikeshare and public transit 

Since the arrival and growing popularity of bikeshare services, 
practitioners and researchers have been interested in their relationship 
with public transit. Academics have approached the topic using survey- 
based and data-driven analytical methods including spatial and visual 
analytics. Wang and Liu (2013) analyzed the characteristics of bike- 
transit trips using the National Household Travel Surveys (NHTS) and 
noticed a clear concentration of bicycle-transit integrators in large and 
high-density urban areas where most transit-dependent users lived. In 
their results, around 40% and 60% of bicycle-transit trips are for home- 
based work in 2001 and 2009 respectively, which shows an increasing 
trend. Another survey study in San Francisco shows that bikeshare and 
shared e-scooter can support local transit usage in different ways 
(Barnes, 2019). In San Francisco, bikeshare is more likely to replace e- 
hailing trips to relieve traffic congestion in urban areas and improve the 
travel time reliability of transit services at the same time, while shared e- 
scooters are more likely to provide first/last mile transit access to pro-
mote transit ridership (Barnes, 2019). Similarly, in the Netherlands, 
Villwock-Witte and van Grol (2015) found that some private vehicle 
trips could be replaced by transit-bikeshare trips. Moreover, survey re-
sults indicate a slight competition between dockless (free-floating) 
bikeshare and transit trips (Barnes, 2019). A study in Washington DC 
found that survey participants in less-dense areas (e.g., suburban) are 
more likely to connect transit with bikeshare than participants in city 
center areas (Martin & Shaheen, 2014). As stated in the introduction, 
most of the current survey studies applied stated preference question-
naires, which do not reflect the exact responses of participants when one 
mode is unavailable. 

The other direction of research uncovers the relationship between 
bikeshare and transit through data-driven analyses. Ma et al. (2015) 
developed a statistical regression model to test this relationship. Their 
results show that a 10% increase in bikeshare trips will lead to a 2.8% 
increase in Metrorail ridership in Washington DC. Wu et al. (2020) 
developed a parsimonious, continuous model to analyze the benefits of 
feeding transit by bikeshare. Their analytic results show that bikeshare 
can save costs for both transit users and agencies as a transit-feeder 
service compared to other transit-feeder services, e.g., feeder-bus. 
Tang et al. (2018) proposed a solution to match the demand of bike-
share trips connected to transit with an optimal capacity of bikeshare 
stations near transit stops. Among those data-driven analyses, spatial or 
visual analytics play an important role. Through spatial analyses and a 
spatial error model, Ma, Ji, Jin, et al., 2018 found that the proportion of 
local residents, job density, and the distance to the central business 
district (CBD) have significant effects on the space of metro-bikeshare 
trip activities. Using bikeshare smart card trip data and online points 
of interest, Bao et al. (2017) visualized the spatial distribution of bike-
share trip patterns and found that the most popular bikeshare trip pur-
pose is for eating in New York in the U.S. Similarly, Bargar et al. (2014) 
combined interactive visual analytics and algorithms to conduct ana-
lyses on bikeshare usage and system design, which can provide useful 
insights to policymaking or future research. Visual analytics is also 
applied to show the spatial-temporal differences of bikeshare travel 
patterns by gender (Beecham & Wood, 2014; Zhao et al., 2015). In the 
previous data-driven analyses, a spatial-temporal matching between 
bikeshare trips and transit services has not been fully considered, i.e., 
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combining both trip locations and transit schedule information. 
From the research above, the primary relationship between public 

transit and bikeshare is that bikeshare serves as a feeder to promote 
public transit. However, research by Ma et al. (2019) found that an in-
crease in bikeshare ridership near a bus stop will lead to reduction of bus 
ridership of that stop on weekend. Another study by Kong et al. (2020) 
used bikeshare trip data from four cities in the USA to investigate the 
relation between bikeshare and transit. Their results showed that bike-
share is more likely to replace transit at weekend and when bikeshare 
users are day-pass members. Thus, the relationship (substitution or 
complementarity) between bikeshare and transit is complex, and highly 
dependent on the features of trips, including trip time, trip length, trip 
cost, and travel time reliability, and cycling environment (Ma et al., 
2015; Ma et al., 2019; Kong et al., 2020). Moreover, the connection 
between cycling and transit depends on the cycling facility, e.g., street 
connectivity and bicycle lanes (Akar & Clifton, 2009; Duthie et al., 2010; 
Krizek et al., 2009). 

2.2. Mobility and disrupting events 

Regarding the relationship between mobility and pandemics, to the 
authors’ knowledge, the literature remains scant on the subject of 
bikeshare under pandemics. Teixeira and Lopes (2020) analyzed bike-
share and transit ridership during the first wave of COVID-19 in New 
York in the USA, and uncovers evidence of substituting bikeshare for the 
subway. However, the analyses only provide an aggregated view, i.e., 
the ratio between the daily subway and bikeshare ridership, instead of 
based on every single trip. 

Beyond virus pandemics, there are many other disrupting events that 
influence travel behaviors, e.g., public transit disruptions and weather- 
related disruptions. Saberi et al. (2018) uncovered that daily bikeshare 
ridership increased by 85%, and the average trip duration rose to 43 min 
from 23 min by comparing bikeshare trips after and before a public 
transportation disruption in London in 2015. van Exel and Rietveld 
(2001) found that, in the short-term effect caused by public transport 
strikes, 10–20% of commuter trips were canceled due to either no 
alternative transport modes or inflexibility in their departure/arrival 
times. In Chicago, Saxena et al. (2019) conducted a joint revealed 
preference cum stated preference survey to estimate the value of travel 
time due to public transit cancellation and disruptions, which can pro-
vide reference information for local governments to plan remedial ac-
tion. Besides public transit disruptions, there are a considerable number 
of studies on the effects of extreme weather events on transportation. In 
general, Markolf et al. (2019) summarized existing research on trans-
portation systems under extreme weather events and pointed out that 
indirect pathways of disruption (e.g., signal outage disruptions of traffic 
communication and routing services) are often ignored in traditional 
resilience analyses of transportation systems. Another example is that 
Pregnolato et al. (2017) fitted a curve to represent the relationship be-
tween the depth of standing water and vehicle speed, and finally, 
analyzed the disruptive impact of flooding on road transport. 

2.3. Research contribution 

This study aims to develop a trip-level analysis framework including 
unsupervised machine learning and visual analytics to understand the 
relationship between bikeshare and public transit throughout the 
COVID-19 pandemic. Specifically, this study applies an unsupervised 
machine learning method to group bikeshare trips and exactly matches 
those trips with transit services using GTFS and OTP. After the classifi-
cation and matching, this study measures the space-time change of 
shared bikeshare travel behaviors before and after transit services were 
affected by the virus crisis, interprets the results, and provides practical 
planning recommendations. 

3. Case study and data description 

This study chose San Francisco in California of the United States as 
the case study city, considering it provides an example for analyzing the 
bikeshare behavior changes before and during COVID-19. While the 
exploring study used a single case, the proposed analysis framework can 
be applied for other shared micro-mobility services, e.g., shared e- 
scooter and be implemented in any city around the world. The data used 
in the study is open source and does not need any permit, further 
increasing the adaptability of the analysis framework. This paper will 
introduce the details of the case study city and publicly available data in 
the following paragraphs. 

Currently, the bikeshare system named “Bay Wheels” in San Fran-
cisco operates 244 bikeshare stations (Fig. 1) and approximately 3000 
bikes. The bikeshare program provides publicly historical bikeshare trip 
data, including trip start day and time, trip end day and time, trip start/ 
end location, user type (Lyft, 2021). Bikeshare users can choose to park 
bikes from sharing systems at bikeshare stations, i.e., docking-station- 
based bikeshare trips, or at public bike racks at the cost of two dollars, 
i.e., dockless bikeshare trips. Note that the company’s open historical 
database changed the resolution for GPS information of bikeshare trip 
start/end locations. Meanwhile, dockless bikeshare trips represent a 
substantial proportion of the total trips. Thus, this study uses data from 
before the data policy change in June 2020, which can support the 
following spatial and visual analyses. The “Bay Wheels” system 
committed to providing equitable access to bikeshare and providing 
affordable membership plans, e.g., a $5 first-year annual membership 
(Bay Wheels, 2019). Based on the data in 2019, 20% of Bay Wheels users 
came from this affordable membership program (SFMTC, 2019). 

Following the outbreak of COVID-19 on March 5, 2020, in San 
Francisco, bikeshare travel significantly plummeted, as shown in Fig. 2. 
The Governor of California issued a state-wide “shelter-in-place” order 
on March 19, except for essential businesses (CA Gov., 2020). In San 
Francisco, 21 days later on April 10, the San Francisco Municipal 
Transportation Agency (SFMTA) restricted its Muni transit service areas 
into a reduced operational plan (with only 17 of the previous 79 transit 
lines in service, and with changes in frequency and time availability, as 
shown in Fig. 3) considering both transit staff’s health conditions and 
reduced ridership (Krogh, 2020). The authors developed Fig. 3 using 
GTFS data, which will later be explained in detail. Based on the latest 
census data before COVID-19 in the USA, the percentage of commuters 
who traveled by public transit was 20% in San Francisco, second to New 
York (approximately 35%) (Tan et al., 2020). This percentage is higher 
among low-income or other underserved populations (Tan et al., 2020). 
While a large percentage of the population changed their travel patterns, 
especially through remote work, many public transit commuters are 
front-line workers that have still been required to mobilize to their work 
locations during the pandemic. Thus, the reduction in transit services, 
including coverage, frequency, and time availability, affected these 
essential workers and other transit-dependent users. 

Considering the two critical dates, i.e., March 19 and April 10, and 
the timeframe when the initial cases were reported, this study selected 
three phases for the analyses. Phase 1, from February 1 to 21, represents 
the period when new cases were identified, but ridership was not 
affected; Phase 2, from March 19 to April 9, includes the period between 
the shelter-in-place mandate and when transit services were not 
changed; and Phase 3, from May 1 to 21, accounts for the period after 
transit services were reduced amid the pandemic. The team selected 
consistent periods before and after the start of these phases to match the 
3-week long period represented in Phase 2. In summary, Phase 1 is a 
normal period before COVID-19, while Phases 2 and 3 are after the virus 
outbreak and shelter-in-place order. Phase 3 is particularly after the 
reduction of transit services and when bikeshare activities are stable 
during the pandemic. These three phases offer different conditions and 
allow for identifying the potential effects of the pandemic and the 
change in transit services. The study analyzes the changes in bikeshare 
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ridership between the three aforementioned phases. In sum, there are 
249,595 trips in Phase 1, 36,873 in Phase 2, and 59,967 in Phase 3. 
These numbers show the significant impact of COVID19 on bikeshare 

ridership; however, even with the pandemic, there is still a slow increase 
of ridership before the reopening policy. For the distance between a 
bikeshare station and its nearest transit station, the average distance is 

Fig. 1. Bikeshare stations in San Francisco.  

Fig. 2. Bikeshare ridership in San Francisco in 2020.  
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125 m with a standard deviation of 88 m during Phases 1&2; while the 
average number increases to 182 m with a standard deviation of 214 m. 

Besides the publicly available bikeshare trip data, this study also 
collected transportation network data through OpenStreetMap, land use 
information from government open database, and public transit service 
data from OpenMobilityData. The OpenStreetMap is a collaborative 
database to provide free geographic data, including road networks and 
transit stops (OpenStreetMap, 2020). Land use information in San 
Francisco can be downloaded from U.S. Government open database 
(Data.gov, 2020). To retrieve the transit service schedules during these 
three phases, the authors downloaded the historical official GTFS from 
OpenMobilityData (OpenMobilityOrg, 2020). The GTFS provides his-
torical or current transit service schedules, including operating transit 
lines, transit stops, and service frequency. The following section will 
introduce the proposed methodology to analyze those data in detail. 

4. Methodology 

The authors propose a 4-step analysis framework (Fig. 4) comprising: 
data compilation, data analysis (clustering), data visualization, and 

behavioral change analysis. The proposed analysis method is replicable 
and could be used to monitor and further evaluate changes in micro- 
mobility services. 

4.1. Bikeshare trip data compilation 

First, the study compiled bikeshare data, as well as other data 
sources. For the bikeshare data, the authors removed the bikeshare trips 
longer than 2 h and shorter than 1 min, which are used as thresholds to 
clean bikeshare trip data in research by McKenzie (2020). Moreover, this 
study also set the maximum speed for a bike as 20 miles/h. Thus, 
bikeshare trips with a speed faster than 20 miles/h will be treated as 
bikeshare operator-related activities, e.g., rebalancing. 

As mentioned in the case study section, this study has information 
about trip start/end date and time, trip start/end location, and user 
types. Additionally, this research included land use information, and 
classified the land use categories into seven main groups, as shown in 
Table 1. This study mainly listed land use for medical care as a separate 
land use category since trips for medical care may increase during this 
pandemic. 

Fig. 3. Transit coverage before and after April 10, 2020.  

Fig. 4. Flowchart of analysis framework.  
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For bikeshare trips starting or ending in bikeshare stations, the land 
use information was collected within 400-meter buffers, which is sug-
gested by Qian and Jaller (2020), and calculated the proportion of 
different land-use groups within the buffers. However, for bikeshare 
trips parking at public racks (dockless bikeshare trips), the study 
assumed the closest land use to the bicycle trip start/end location as the 
only land use category. 

Qian and Jaller (2020, 2021) have identified differences in bikeshare 
travel and use patterns between annual members and day-pass users. 
Due to these differences, the type of user could serve as a proxy for the 
type of trip. However, considering that the pandemic may have changed 
travel patterns, and induced new bikeshare users, the authors do not 
consider user type to make a priori assumptions about the trip purposes. 
Table 2 lists the key data used in the following cluster analyses. 

Figs. 5 to 7 show the distribution of all of the data listed in Table 2. As 
we can see, there are clear differences in the patterns of travel behaviors 
among the three phases in terms of trip start day, trip start time, trip 
duration, and start/end location land use. Most of the trips happened 
during weekdays in Phases 1 and 2, while the proportion of weekend 
trips became the greatest in Phase 3. Trips were more likely to happen in 
the afternoon in Phases 2 and 3, instead of showing two obvious peaks 
(morning and afternoon) in Phase 1. For the trip duration, the average 
bikeshare trip duration is 12.8 min (Phase 1), 17.9 min (Phase 2), and 
20.8 min (Phase 3) respectively. Trip time in Phase 3 tended to be longer 
than that in Phase 1, which is verified by a t-test (Phase 1 vs Phase 3: P- 
value 0.0). In Phase 1, the three most frequent land uses for both start 
and end locations are residential, mixture areas, and others (including 
traffic roads and vacant spaces). In Phases 2 and 3, residential areas 
dominated both trip start and end locations. However, medical-related 
land use is the least frequent land-use type no matter the phase. 

4.2. Data analysis through Gaussian Mixture Model (GMM) 

The authors proceeded to analyze the data, implementing an unsu-
pervised machine learning algorithm based on Gaussian Mixture Model 
(GMM) clustering. GMM has been widely used in unsupervised machine 
learning (e.g., clustering) since it does not need labeled data (Han & 
Sohn, 2016; Maugis et al., 2009; Ouyang et al., 2004). GMM is a com-
bination of multiple Gaussian distributions, each of which is distin-
guished from other components by its mean and covariance. Thus, the 

probability of a sample is a weighted sum of its probability under a 
specific Gaussian distribution, as shown in Eq. (1). 

f (xi) =
∑K

k=1
πkfk(xi|μk,Σk), for i = 1,…,N (1)  

where xi is the ith sample in our data, f(xi) is the mixture probability, K is 
the total number of Gaussian distributions, πk is the probability or 
weight of the kth group in the whole model, and fk(xi) is the single 
probability when xi is in kth group, μk is mean vector, and Σk is the 
covariance matrix of variables in kth group since xi is a high-dimension 
vector in this study. 

Before implementing this algorithm, the authors needed to decide 
the number of K in our GMM. Since the ground-truth data is not avail-
able, this study applied other criteria to decide the optimal value of K. In 
general, the Akaike information criterion (AIC) and Bayesian informa-
tion criterion (BIC) are used to decide the number of clusters in unsu-
pervised machine learning. Moreover, this study also applied the idea of 
the elbow method to identify the optimal number of clusters (Liu & 
Deng, 2020). The elbow point is the value of K at which improvement in 
criterion values declines the most and this study will stop dividing the 
data into more clusters. 

After deciding the value of K, there are three sets of parameters to 
estimate πk, μk, Σk for i from 1 to K. To estimate the parameters (πk, μk, 
Σk) in the GMM, this study applied the Expectation-Maximization (EM) 
algorithm, which has been broadly used in calibrating GMMs (Liu et al., 
2017). The EM algorithm consists of two steps: Expectation and Maxi-
mization, and the details of this algorithm are discussed in a book by 
Gupta and Chen (2011). To be simple, the EM algorithm starts with an 
initial random guess of these parameters (πk, μk, Σk). Then, this algo-
rithm will decide these parameters through the iterative loop of E-step 
and M-step. In the E-step, we need to calculate the probability that a 
sample belongs to a group as show in Eq. (2). The value of rk(xi) will be 
higher if xi is assigned to the right group. 

rk(xi) =
πkfk(xi|μk,Σk)

∑K

k=1
πkfk(xi|μk,Σk)

, for k = 1,…,K (2) 

In the M-step, we need to update πk, μk, and Σk by considering the 
probability rk(xi) from E-step using Eqs. (3)–(5). Finally, this iterative 
loop will converge and reach a threshold. 

πk =

∑N
i=1rk(xi)

N
, for k = 1,…,K (3)  

μk =

∑N

i=1
xi*rk(xi)

∑N

i=1
rk(xi)

, for k = 1,…,K (4)  

Σk =

∑N

i=1
(xi − μk)

T
(xi − μk)*rk(xi)

∑N

i=1
rk(xi)

, for k = 1,…,K (5) 

In this study, the main objective was to try to identify and classify 
different bikesharing use patterns. GMM can estimate the category of a 
bikeshare trip based on the maximum value of rk(xi). 

4.3. Data visualization for clustering validation 

After classifying bikeshare trips, this study visualized bikeshare data 
in different groups to validate the cluster results. This study applied the 
state-of-art visualization method for high dimension data: t-Distributed 
Stochastic Neighbor Embedding (t-SNE) (van der Maaten & Hinton, 
2008). The core idea behind t-SNE is measuring the similarity between 

Table 1 
Description of land-use groups.  

Land use group Code Details 

Office work 
locations  

1 Cultural and educational institutions, offices for 
management, information, professional services 

Industrial 
facilities  

2 Facilities for production, distribution, and repair 

Medical 
facilities  

3 Hospitals and dentists’ offices 

Residential  4 Residential facilities 
Recreation  5 Retails, entertainment, open space, hotels, visitor 

services 
Mixture  6 Mixed land use 
Others  0 For example, traffic roads and vacant space  

Table 2 
Summary of data used.  

Trip features Explanation 

Trip start day 1: start on weekday; 0: start at weekend 
Trip start time Start time in hh:mm:ss format 
Trip actual 

duration 
Time difference between trip start time and end time in 
seconds 

Start location land 
use 

The percentage of areas in different land use categories for trip 
start location 

End location land 
use 

The percentage of areas in different land use categories for trip 
end location  
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two data points by the Euclidean distance under high and low dimen-
sional space. The similarity in high dimensional space is measured by 
pair-wise datapoint (xi and xj) as show in Eq. (6). Likewise, the similarity 
in low space (yi and yj) is calculated using Eq. (7). 

pj|i =

exp
(

− ‖xi − xj‖
2

2σ2
i

)

∑
k∕=iexp

(
− ‖xi − xk‖

2

2σ2
i

) (6)  

where σi is the variance on datapoint xi. 

Fig. 5. Distribution of trip start day and time.  

Fig. 6. Histogram for trip duration (seconds).  
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qj|i =
exp

(
−
⃦
⃦yi − yj

⃦
⃦2

)

∑
k∕=iexp

(
− ‖yi − yk‖

2 ) (7) 

Finally, through minimizing the cost Eq. (8), which combines Eqs. 
(6) and (7), this study can find a low-dimensional cluster to maximize 
the similarity between high and low dimensional spaces. In the end, this 
study can visualize the high dimension bikeshare trip data and show the 
performance of the previous clustering. 

C =
∑

i
KL(Pi‖Qi) =

∑

i

∑

j
pj|ilog

pj|i

qj|i
(8)  

4.4. Identifying behavioral changes 

To identify the behavior changes, this study conducts both spatial 
and temporal analyses under various dimensions. For the temporal 
comparison, this study shows how travel behaviors, e.g., starting from a 
bikeshare station or not, change over the three phases. In the spatial 
analysis, both direct visualization and quantitative measurement are 
applied to display the change in trip spatial distributions. The following 
paragraphs will introduce those comparisons in detail. 

After clustering bikeshare trips, this study analyzed how travel be-
haviors changed across the three phases. In addition to the trip char-
acteristics (e.g., user types and start/end in bikeshare stations or not) 
directly from the “Bay Wheels” bikeshare system, this study explored 
metrics related to transit information for bikeshare trips. By comparing 
those metrics, we can uncover how bikeshare trips change according to 
the change in transit services. 

Since the available bikeshare trip data does not provide trip pur-
poses, this study required the identification of another proxy to repre-
sent the relation between bikeshare trips and transit services. Making 

the most of the spatial-temporal information in bikeshare trips, this 
study matches them with transit services. The connection includes: 1) 
whether a bikeshare trip starts/ends near transit stops; 2) whether this 
bikeshare trip can be finished by transit if starting at the same location 
and time; and 3) what is the ratio between trip time by transit if possible 
and by bikeshare. The following paragraphs will introduce the process of 
matching. 

First we analyzed if a bikeshare trip starts or ends near transit stops. 
Currently, there is limited research analyzing the walking distance for 
people to transfer between bikeshare and public transit. To overcome 
this limitation and identify whether a trip starts or ends near a transit 
station, this study estimated the average distance between bikeshare 
stations and their closest transit stations (Fig. 8). The average of the 
shortest walking distance is 182 m. Without any other supporting data, 
the team used 200 m as the threshold to classify if a docking-station- 
based bikeshare trip starts or ends near a transit station. For bikeshare 
trips parked in public racks, the distance threshold was selected as 50 m. 
It is important to consider these different transit networks between 
Phases 1&2 and Phase 3 due to the change in transit coverages (Fig. 3). 
Thus, the study conducted the threshold analysis for each phase 
separately. 

This study retrieved public transit information using OTP. OTP is an 
open-source software project that provides route information combining 
pedestrian, bicycle, and transit using OpenStreetMap and GTFS data. 
Moreover, the platform provides an Application Programming Interface 
(API) to programmatically calculate numeric routes at the same time. 
Because San Francisco had a change in transit services on April 10, as 
previously mentioned, this study retrieved the transit information 
before and after April 10 and matched that with bikeshare trips based on 
trip start dates. Phases 1 and 2 share the same transit service plan, while 
Phase 3 has a separate, reduced transit schedule. 

Fig. 7. Distribution of dominant land use of trip start/end locations.  
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Additionally, the study estimated two travel times for each bikeshare 
trip using the OTP platform. These were the travel times between origins 
and destinations using transit (if transit service was available), at the 
same start date and time, and the estimated shortest trip time and trip 
distance by cycling (Fig. 9). Table 3 lists the information used for the 
comparative analyses. Those comparison features make the most of the 
information reflected by bikeshare trips and transit services, and can 
help researchers identify the changes in travel behaviors across the three 
phases. 

Besides the visual analytics, the study also quantitatively compares 
the spatial difference between the distribution of transit service and 
bikeshare trips. In detail, this study applies the Wasserstein metric (i.e., 
earth mover’s distance (EMD)), which has been widely applied to 
compare spatial similarity (McKenzie, 2020). The Wasserstein metric is 
a distance function to measure the difference between two probability 
distributions. In this study, these two probability distributions refer to 
the spatial distributions of public transit stops and bikeshare trip start/ 
end locations. The distance can be viewed as the smallest “cost” or effort, 
to transform one distribution into another, like shaping one terrain into 
another in a sand table. The spatial analyses are conducted at the census 
tract level. We estimate the number of transit stops per census tract, as 
well as for bikeshare trip start/end locations. Considering that the 
number of bikeshare trips is larger than the number of transit stops, we 
normalize both distributions and estimate the Wasserstein metric to 
indicate the similarity or difference. 

5. Empirical results 

5.1. GMM clusters 

The first step involves identifying the optimal K value, through the 
analysis of the AIC and BIC scores (the left panel in Fig. 10). It is obvious 
that the greater the cluster number, the better the GMM fits the data in 
terms of the AIC/BIC score. However, the gradient of AIC/BIC score (the 
right panel in Fig. 10), shows that to avoid over-fitting, the optimal 

value of clusters K is 14, based on the elbow method. 
Therefore, the authors grouped the bikeshare trip data into 14 

clusters. Table 4 lists the trip features of every group. For the column 
“Weekday code,” the value is the mean of all values (1 or 0) of trips 
belonging to this group. The “Start time” column is the average trip 
starting time of all trips in a specific group. The number of trips in most 
clusters is approximately 20,000, except for Clusters 3, 5, 8, and 12. 
Some clusters have a similarity in several trip features, e.g., trip duration 
and start/end location land uses. For example, Clusters 3 and 10 have a 
longer trip duration and a later trip start time compared with other 
clusters. 

Referring to the study by Han and Sohn (2016), this study further 
classified all of these 14 clusters into a smaller number of trip types for 
the convenience of the following comparison. Based on previous survey 
studies, the primary trip purposes for bikeshare trips are work 
commuting, personal or recreational purposes (Buck et al., 2013; McNeil 
et al., 2017). Moreover, based on the features of bikeshare trips (i.e., trip 
start time, duration, and land use) in Table 4, and for tractability pur-
poses, the authors aggregated the 14 clusters into three main trip types 
and assigned corresponding labels: typical work trip, mix-purpose trip, 
and recreational trip. These three types are distinct from each other 
across trip start time, duration, and land use (Table 5) and follow pre-
vious studies, though the number of trip types may change for other case 
studies. 

It is important to note that directly selecting the value of K to be three 
and re-running the model, is not adequate. This is because the cluster 
results from GMMs are not stable when the K value is small. When K is 
small, one record will be more likely to be randomly classified into any 
cluster when the boundary of clusters is not clear. 

After classifying bikeshare trips into three main types, this study 
applied the t-SNE visualization method to show the performance of the 
GMM in clustering (Fig. 11). These three different trip types are 
apparently separated even though small sub-groups exist within the 
large trip types, which, from another angle, is consistent with the split by 
the statistics of trip features in Table 5. 

5.2. Changes in bikeshare trip patterns 

The change of bikeshare travel behaviors was then further analyzed 
during the three phases. It is clear that the proportion of Type 3 trips 
significantly increases, whereas Types 1 and 2 decrease (Fig. 12). As 
expected, work-related bikeshare trips decreased because the shelter-in- 
place order came into effect. However, Type 3 bikeshare trips, mainly 
weekend recreational trips, increased, as people wanted to improve 
emotional health during this pandemic. 

The study then compared the potential change of these metrics for 

Fig. 8. The histogram of the shortest walking distance between bikeshare 
stations and transit stops (before April 10). 

Fig. 9. OTP estimation for bikeshare trips.  

Table 3 
Comparison features.  

Comparison features Explanation 

User types 1: Member (annual or monthly); 0: casual user (single 
ride) 

Start in bikeshare 
stations (or not) 

Self-explanatory 

End in bikeshare stations 
(or not) 

Self-explanatory 

Start near transit stops 
(or not) 

Self-explanatory 

End near transit stops (or 
not) 

Self-explanatory 

Transit service 
availability 

Check whether this bikeshare trip can be replaced by a 
transit trip under the constraint that maximum walk 
distance to a transit stop is 850 m (Zhao & Li, 2017) 

Trip time ratio 1 The ratio between the actual bikeshare trip time and 
shortest trip time by cycling 

Trip time ratio 2 The ratio between the total trip time (including walking 
time, waiting time, and on-board time) by transit (if 
possible) and shortest trip time by cycling  
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the different trip types over the three phases. First, the authors examined 
the ratio of bikeshare trips by subscriber members and found that their 
trips keep decreasing for all trip types, though work trips decrease less 
than the other trip types (see Fig. 13). This may be because some new 
users may have joined as casual bikeshare users due to personal health 
concerns. 

For transit service availability, the percentage of bikeshare trips with 
available transit services decreases significantly after the reduction of 
transit services. Even though the percentage decreases, it can still be as 
high as 94% during this period, because people are allowed to walk as 

long as 850 m to get access to transit stops when this study applied the 
OTP API. Thus, transit service is still available for the majority of 
bikeshare trips after April 10. However, transit users have to walk longer 
distances, wait longer times, or transfer more times if they choose to 
make these bikeshare trips by transit. The drops in transit service 
availability (2% for trip Type 1, near 3% for Type 2, and 6% for Type 3) 

Fig. 10. The AIC and BIC index of GMM.  

Table 4 
Mean values of bikeshare trips in every cluster.  

Cluster Number of 
trips 

Weekday code (1: weekday; 0: 
weekend) 

Start time (hh:mm:ss in 
24 h) 

Duration 
(seconds) 

Domain land use in start 
location 

Domain land use in end 
location  

1  18,879  0.74 13:48:00  805  6  0  
2  18,905  0.71 13:58:00  875  4  4  
3  33,831  0.00 14:28:00  1223  4  4  
4  14,459  0.73 14:26:00  844  2  6  
5  46,874  1.00 14:01:00  826  4  4  
6  27,976  0.67 14:54:00  898  5  6  
7  24,615  0.82 14:25:00  735  0  6  
8  53,810  1.00 14:07:00  829  4  4  
9  25,060  0.84 14:13:00  743  1  6  
10  21,718  0.60 14:39:00  1124  5  5  
11  13,802  0.70 14:24:00  785  6  6  
12  7366  0.78 14:21:00  754  2  4  
13  21,866  0.70 14:31:00  842  6  4  
14  13,274  0.70 13:46:00  834  4  6  

Table 5 
Description of the resultant clusters based on mean values.  

Cluster 
group 

Most likely description Most likely title 

Trip start 
time 

Duration Dominant land 
use 

2, 4, 5, 
8, 9, 
12 

Most 
weekday 
peak hour 

Short Resident/ 
industrial work/ 
office work 
locations 

Typical work trip 

1, 7, 11, 
13, 14 

Most 
weekday 

Moderate Mixture/ 
resident/other 

Mix-purpose trip (e. 
g., work-related, 
transit connection, 
afternoon shopping) 

3, 6, 10 Most 
weekend 
afternoon 

Long Recreation/ 
resident/ 
mixture 

Recreation trip  

Fig. 11. Patterns on t-SNE feature space for compiled bikeshare trip data.  
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show that a certain number of bikeshare trips complement transit ser-
vices when this service is completely unavailable. 

For bikeshare trips starting/ending at bikeshare stations, the per-
centage increases between Phases 1 and 2; the only exception is the trips 
starting in bikeshare stations of Type 2. One reason is that the shelter-in- 
place reduced the majority of non-essential flexible trips (parked at 
public racks). Another potential reason is the change in operational 
rebalancing strategy, i.e., bikes are more likely to be relocated to 
physical bikeshare stations for management convenience. However, 
there are no data available to validate this assumption. Comparing 
Phases 2 and 3, there are not too many changes in the percentage of 
bikeshare trips starting/ending in bikeshare stations. Thus, bikeshare 
users’ travel behaviors regarding choosing flexible bikeshare trips or 
not, are not significantly affected by the change in transit service on 
April 10. 

For bikeshare trips starting/ending near transit stops, the percentage 
increases from Phase 1 to Phase 2. More trips started or ended in bike-
share stations and majority of bikeshare stations are within 200 m of 
transit stops. Thus, the percentage of bikeshare trips connected with 
transit stops or near transit stops increases. However, after April 10, 
fewer bikeshare trips are connected with transit services since fewer 
transit lines are operating, or there are transit frequency decreases. 

The research team then examined the ratio between actual bikeshare 
trip time and planned (shortest) trip time by cycling (the top panel in 
Fig. 14). The distribution of this ratio is similar across all three different 
trip types over the three phases. However, when comparing the ratio 
between planned transit trip time and shortest cycling trip time (the 
bottom panel in Fig. 14), the distribution of this ratio is different, 
particularly between Phase 1 (or 2) and Phase 3. During Phase 3, more 
bikeshare trips are taken, which will take four-fold to six-fold time if by 
transit. Note that there is a peak of around 400% in Phase 3 for all trip 
types. The reason is that the OTP estimates transit travel time by 
combining walking time to transit stops, waiting time at transit stops, 
and on-board time. If a user can walk directly to a destination with less 
time than by taking transit, this trip will be finished by walking, which is 
true among short distance trips (less than 850 m, the maximum walking 
distance to transit stops set in OTP). Besides, cycling speed is four-times 
the walking speed in OTP. 

5.3. Sensitivity analysis for walking distance to transit stops 

Since this study set a maximum walking distance (850 m) to transit 
stops based on previous research (Zhao & Li, 2017), the authors wanted 
to test how this value influenced transit service availability. Thus, this 
study conducted a sensitivity analysis on the value of maximum walking 
distance to transit stops. Note that in this section, the authors focused on 
bikeshare trips in Phase 3, when transit services were affected by the 

pandemic. Fig. 15 shows the change in the percentage of transit service 
availability for replacing bikeshare trips. As people are less likely to 
walk a long distance to transit stops, more bikeshare trips can not be 
finished by transit, even when people consider taking transit. This trend 
is true for all kinds of bikeshare trip purposes. Moreover, the slope of this 
curve is steeper when the maximum walking distance is between 200 
and 400 m. Unfortunately, lack of access to bikeshare trip users (e.g., age 
and income) limits our ability to understand which segments of the 
populations are most affected by the change in transit services during 
the crisis. 

5.4. Spatial distribution of bikeshare trips under different categories 

After temporally analyzing the change of bikeshare behaviors, this 
paper visualized those trips over three phases (Fig. 16). There is no 
noticeable difference in the geographic distribution of bikeshare trips 
between Phase 1 and Phase 2. The significantly less dense trip distri-
bution in Phase 2 compared with Phase 1 is because of the plummeted 
ridership after the virus outbreak. Comparing Phase 2 and Phase 3, the 
data shows more bikeshare trips taking place in the southwest of San 
Francisco, where transit services were affected after April 10. Consid-
ering that some of those trips are of type 1 (work) and type 2 (mix 
purpose), it could be expected that most of those trips were previously 
taken by transit because the only change between Phases 1/2 and Phase 
3 in transportation services is transit services. For Type 3 or recreational 
trips, there is not enough evidence to identify if the new bikeshare trips 
are because of mode substitution, or are the result of individuals trying 
to exercise or wander around as the shelter-in-place progressed. 

Besides the direct visualization in Fig. 16, this study applied the 
Wasserstein metric (i.e., earth mover’s distance (EMD)) to calculate the 
similarity between two spatial distributions, as suggested by McKenzie 
(2020). The smaller the Wasserstein metric values, the higher the sim-
ilarity between different spatial distributions. 

The authors measured the similarity of bikeshare trip distribution 
and transit stop distribution (Table 6). In this analysis, the transit stops 
refer to those before the shelter-in-place and reduced transit service. The 
similarity between these two distributions before the pandemic is not 
significant compared with after the virus outbreak. Before the pandemic, 
most of the bikeshare trips happened in the city center areas. The reason 
for this is that most of the bikeshare stations are in the northeast of San 
Francisco (covering city center areas), and the majority of the bikeshare 
trips are docking-station-based bikeshare trips. Before the pandemic, 
transit served most of San Francisco city with more frequent services in 
the city center areas. However, during the pandemic, particularly after 
the transit services were reduced, the bikeshare trips extend to other 
areas without bikeshare stations, and areas with transit services before 
the pandemic to meet travel demand there in Phase 3. This trend causes 

Fig. 12. The change in the number of different trip types among the three phases.  
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the similarity between the spatial distributions of bikeshare trips during 
Phase 3 and transit stops in Phase 1 to be significant. Moreover, the 
similarity between dockless bikeshare trips and normal time transit 
services is more significant than that between docking-station-based 
bikeshare trips and normal time transit services. The reasons may be 
that bikeshare users could park bikes very close to transit stops for 

transit-bikeshare trips, or users took dockless bikeshare trips to substi-
tute for transit trips that were unavailable after transit service was 
changed. However, the difference between the trips during 0 am–12 pm, 
and the trips during 12 pm–24 pm is not significant. 

Fig. 13. The metric changes for different trip types over three phases.  
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6. Discussion and conclusion 

6.1. Bikeshare activities during COVID-19 

To analyze how other modes may help relieve the transportation 
challenges caused by disruptive events, this study develops a framework 
combining unsupervised machine learning and visual analytics to 
examine how bikeshare activities changed amid the COVID-19 
pandemic. As reflected by the results, the proposed analysis frame-
work can successfully group different trip types by merging various data 
sources, including bikeshare trip data and land use information. Even 
though previous survey-based studies can identify a similar trend, e.g., 
the increase in casual users and recreation trips, and longer trip times 
(Chibwe et al., 2021; Heydari et al., 2021; Shang et al., 2021; Wang & 

Noland, 2021), the proposed method does not require a time-consuming 
process to collect survey data and can provide timely and reliable in-
sights during the early stage of unexpected disruptive events. In addi-
tion, our method can enhance other data-drive modeling (Song et al., 
2022a; Tokey, 2020) to further predict the trip purposes of bikeshare 
trips. 

Our study compliments current discussion on the impacts of COVID- 
19 on bikeshare activities including docking-station-based and dockless 
services, which uncovers the different changes between them during this 
pandemic. During the pandemic, the proportion of docking-station- 
based bikeshare trips increase, which shows that bikeshare users are 
more likely to finish routine activities within fixed routes. Our study 
confirms the statement that the popularity of bikeshare increases during 
the pandemic (Nikiforiadis et al., 2020; Song et al., 2022b). However, 
for dockless bikeshare trips, different from the studies by Tokey (2020) 
and Song et al. (2022a) that the spatial distribution shows a significant 
centrality, we notice that the geographic distribution of dockless bike-
share trips has expanded compared to the pre-pandemic norm of 
concentrating in the city center areas. More dockless bikeshare trips are 
also generated in the southwest of San Francisco after Phase 3, where 
there are no bikeshare stations, and transit service was reduced (Fig. 3), 
which is due to the physical flexibility of dockless bikeshare. This insight 
brings an important policy or operation suggestion that city urban areas 
may focus more on docking-station-based systems while suburban areas 
can leverage dockless systems to enrich mobility options there. 

There is still uncertainty for whether these trends observed are 
temporal or will be permanent during the post-pandemic period. In 
order to retain those casual users and keep replacing more vehicle trips 
with longer bikeshare trips, bikeshare operators need to monitor the 
change in their user profiles and identify the critical factors causing this 
trend. Then, targeted membership incentives or corresponding opera-
tion strategies can be adopted to keep this trend when some factors, e.g., 
health risk, do not exist in the future. 

Fig. 14. Histogram for two ratios (in the unit of percentage).  

Fig. 15. The percentage of transit service availability for replacing bike-
share trips. 
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6.2. The relationship between bikeshare and transit 

In this study, the flexibility of bikeshare and the resilience it provides 
in the context of disruptions (e.g., the virus pandemic), could help it 
grow in popularity in areas where transit services are limited or un-
available. There was a certain proportion of transit users switching to 
alternative modes including bikeshare due to safety considerations 
(Haque & Board, 2021). After the change in transit service, that pro-
portion grew, especially among those who had no other mode besides 
transit previously. The result is similar to what Saberi et al. (2018) 
discovered in London (UK) during a public transit disruption, Wang and 
Noland (2021) found in New York City (USA), and Kim and Cho (2021) 
uncovered in Seoul (Korea) during this pandemic. These changes 
demonstrate the potential of bikeshare to improve the resilience of 
urban transportation systems, which can provide an international 
reference other than only for San Francisco. The studies by Wang and 
Noland (2021) and Kim and Cho (2021) draw a similar conclusion after 
examining the bikeshare activities during this pandemic. Besides, the 
expansion of bikeshare service in the southwest of San Francisco shows 
that shared micro-mobility can take a timely reaction during unexpected 
disruptions, e.g., transit service shutting down. The consistent trip 

activities in those areas indirectly prove that rebalance operation hap-
pens there to meet those emerging demands. However, the study by Jobe 
and Griffin (2021) found that more communication between bikeshare 
operators and local communities is needed to make residents more 
aware of the operation. Especially, low-income populations may have 
limited access to smartphones and the internet. Thus, it is critical to 
timely inform them of this emerging mobility option. Due to the limi-
tation of data sources, we cannot estimate the proportion of users from 
low-income or disadvantaged groups, who joined after the outbreak. 

Different from previous research, this study directly uncovers how 
the distance between transit stops and bikeshare stations will boost the 
process of bikeshare substituting transit. The average distance between 
bikeshare stations and transit stops increased significantly after transit 
services were affected. This caused more bikeshare trips to switch from 
transit feeding into transit substitution. As indicated by Fig. 15, if resi-
dents are less willing to walk a long distance, e.g., over 400 m, 
approximately 30% of bikeshare trips cannot be replaced with transit 
trips. Considering the flexibility of bikeshare, e.g., trip start time or 
arrival time, and a much shorter trip time compared with transit 
(Fig. 14), this proportion could be higher. This phenomenon leads to 
suggestions for both transportation agencies and bikeshare operators. 

Fig. 16. Spatial distribution of bikeshare trips.  
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Transportation agencies can require bikeshare stations closer to transit 
stops and allow greater service areas for bikeshare operators. Bikeshare 
operators can target this transit service gap by adding more dockless 
bikes/e-scooters or releasing restrictions on bike/e-scooter parking, e.g., 
no penalty fee for parking at public racks. 

Envisioning the near future, we may leverage this fact to promote 
more bikeshare services in sub-urban areas or areas with limited transit 
services. Basu and Ferreira (2021) pointed out the critical points that we 
need to provide bicycle infrastructure and regulatory support for cycling 
to keep this trend. Combs and Pardo (2021) found that there is a trend of 
reallocating traffic lanes to walking and cycling during this pandemic. 
To take this chance to promote bikeshare activities in areas with limited 
mobility options, we also need to investigate more on bicycle infra-
structure there, not to replace transit with bikeshare but to complement 
transit. Local governments may also consider promoting shared micro- 
mobility combined with on-demand transit services in areas where 
fixed-route transit is unavailable, the walking distance to transit services 
is very large, or disadvantaged populations resident. 

6.3. The research limitations and future research directions 

However, this research has several limitations, including its lack of 
access to real trip purpose data. In the future, one short question could 
appear in users’ smartphones after every trip to collect their trip pur-
poses since most of the bikeshare trips are reserved through cellphone 
APPs. With such information, this and future studies could develop a 
more accurate spatial and temporal correlation between transit rider-
ship and bikeshare trips. Moreover, this study could further analyze how 
bikeshare serves traditional transit “desert” areas. Second, there is no 
information on whether the bicycles used were electric or not. As 
noticed in a study by Qian et al. (2020), electric bikes can help extend 
the service areas of bikeshare systems. The emerging technologies, e.g., 
electric bikes and e-scooters, could change the existing relationship 
between shared micro-mobility and transit, which could be an inter-
esting research direction for the future. Lastly, whether populations 
from disadvantaged communities take advantage of share micro- 
mobility services during unexpected public transit disruption remains 
unclear. Further research in this direction can help understand the 
relationship between transportation equity and transport system 

resilience. 
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