
UC Berkeley
UC Berkeley Previously Published Works

Title
Data-driven airfoil shape optimization framework for enhanced flutter performance

Permalink
https://escholarship.org/uc/item/50d2w6gg

Journal
Physics of Fluids, 36(10)

ISSN
1070-6631

Authors
Jung, Jiyoung
Gu, Grace X

Publication Date
2024-10-01

DOI
10.1063/5.0232055
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/50d2w6gg
https://escholarship.org
http://www.cdlib.org/



View

Online


Export
Citation

LETTER |  OCTOBER 10 2024

Data-driven airfoil shape optimization framework for
enhanced flutter performance 
Special Collection: Fluid-Structure Interaction

Jiyoung Jung (정지영)  ; Grace X. Gu  

Physics of Fluids 36, 101706 (2024)
https://doi.org/10.1063/5.0232055

Articles You May Be Interested In

Prediction and optimization of airfoil aerodynamic performance using deep neural network coupled
Bayesian method

Physics of Fluids (November 2022)

Three-dimensional aerodynamic shape optimization with high-order direct discontinuous Galerkin schemes

Physics of Fluids (October 2024)

Flutter instability of rectangle and trapezoid flags in uniform flow

Physics of Fluids (December 2010)

 06 N
ovem

ber 2024 18:27:05

https://pubs.aip.org/aip/pof/article/36/10/101706/3316363/Data-driven-airfoil-shape-optimization-framework
https://pubs.aip.org/aip/pof/article/36/10/101706/3316363/Data-driven-airfoil-shape-optimization-framework?pdfCoverIconEvent=cite
https://pubs.aip.org/pof/collection/375715/Fluid-Structure-Interaction
javascript:;
https://orcid.org/0000-0003-3063-8462
javascript:;
https://orcid.org/0000-0001-7118-3228
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0232055&domain=pdf&date_stamp=2024-10-10
https://doi.org/10.1063/5.0232055
https://pubs.aip.org/aip/pof/article/34/11/117116/2848801/Prediction-and-optimization-of-airfoil-aerodynamic
https://pubs.aip.org/aip/pof/article/36/10/106109/3315347/Three-dimensional-aerodynamic-shape-optimization
https://pubs.aip.org/aip/pof/article/22/12/121701/256814/Flutter-instability-of-rectangle-and-trapezoid
https://e-11492.adzerk.net/r?e=&s=70wByZVTqV6rMG8PhT1LAPVPEJE


Data-driven airfoil shape optimization framework
for enhanced flutter performance

Cite as: Phys. Fluids 36, 101706 (2024); doi: 10.1063/5.0232055
Submitted: 4 August 2024 . Accepted: 25 September 2024 .
Published Online: 10 October 2024

Jiyoung Jung (정지영) and Grace X. Gua)

AFFILIATIONS

Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA

Note: This paper is part of the special topic, Fluid-Structure Interaction.
a)Author to whom correspondence should be addressed: ggu@berkeley.edu

ABSTRACT

This paper presents a machine learning-based airfoil shape optimization framework designed to increase flutter resistance and reduce drag.
Using the National Advisory Committee for Aeronautics airfoil as the base design and a Hicks–Henne bump function, we employ multi-
objective Bayesian optimization and harmonic balance-based flutter prediction. The optimization process yields a Pareto front revealing
trade-off relationships between the flutter speed index and drag coefficient. The optimized airfoils, resembling those of evolved marine ani-
mals, outperform the base design in terms of flutter resistance and drag. These results demonstrate the framework’s potential to enhance air-
craft performance and safety by addressing aeroelastic factors.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0232055

As the demand for fast and efficient aircraft structures in the avia-
tion industry increases, aircraft safety is also becoming more promi-
nent. Flutter, a form of flow-induced vibration, is a dynamic instability
of an elastic structure in a fluid flow that can lead to catastrophic fail-
ure or loss of control. Flutter occurs when the speed of the aircraft
exceeds the flutter point due to positive feedback between aerodynamic
forces, structural elasticity, and inertial effects, resulting in self-exciting
oscillations. Therefore, understanding and mitigating the onset of flut-
ter is a crucial area of research in aerospace engineering. Various meth-
ods are applied to the investigation and prediction of flutter.1–3 As the
analytical methods, potential flow-based methods or piston theory-
based methods are widely used. Theodorsen’s theory, a potential
flow-based method, assumes inviscid and incompressible flow using
linearized potential flow theory, suitable for low or moderate speeds.4

Piston theory assumes compressible flow and disturbances normal to
the surface, applicable for high-speed conditions.5 These analytical
methods offer computational cost advantages but may not be as accu-
rate under realistic aerodynamic conditions and typically not applica-
ble to complex or 3D geometries.

On the other hand, computational fluid dynamics (CFD) simu-
lates fluid flow by numerically solving Euler or Navier–Stokes equa-
tions. Time-marching CFD-CSD techniques can accurately capture
transient, unsteady phenomena, and nonlinear effects by directly simu-
lating and analyzing the interaction between fluid and structure over
time.6–9 The standard procedure for the coupled time-marching

approach involves three main steps: a steady simulation with a rigid
structure, an unsteady simulation with static structure damping set
close to 1, and a dynamic run from the converged deflection. While
time domain-based techniques can account for time-transient and
complex behaviors, their results are sensitive to time steps, often
requiring significant computational cost and storage. Frequency
domain-based approaches offer a more efficient alternative by analyz-
ing the system’s frequency response characteristics to predict flutter
phenomena. These approaches assume periodic solutions, bypassing
initial transient states and providing reliable predictions. State variables
in these approaches are represented as Fourier series, allowing conver-
sion from a time-domain problem to a frequency-domain problem.
The harmonic balance method, widely adopted for flutter prediction,
ensures each harmonic component is balanced. This technique has
been adapted for CFD analysis to study nonlinear flow in turboma-
chinery.10 Additionally, strategies have been improved to determine
flutter using the harmonic balance method,11,12 and a time spectral
method-based framework has been proposed as a variational form.13

The “one-shot” approach, where reduced frequency and reduced
velocity are iteratively solved by reducing residuals, has been presented
showing reliable solutions, stable convergence, and computational effi-
ciency.14–18

The advances in flutter prediction techniques have sparked stud-
ies on airfoil shape optimization. However, most studies have adopted
adjoint methods for airfoil shape optimization.19–23 These methods
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rely on gradient calculations of objective variables, enabling efficient
exploration of optimal designs, and making them a reasonable choice
for airfoil shape optimization, especially given the high computational
cost of CFD or flutter analysis. However, as in many other gradient-
based optimization methodologies, adjoint methods can be trapped in
local optima. From an optimization perspective, a gradient-free opti-
mization framework is needed; at the same time, it must also perform
effectively with a relatively small dataset considering the computational
cost. Bayesian optimization can be an excellent choice for these types
of problems. Bayesian optimization (BO) is a sequential design
approach to find a global optimum by repeatedly training a surrogate
model, typically Gaussian process regression (GPR), and recommend-
ing data points.24,25 Multi-objective Bayesian optimization (MBO)
extends BO to construct a Pareto front for multiple objectives in trade-
off relationships using the concepts of hypervolume and appropriate
acquisition functions.26 MBO efficiently explores the global optimum
with less data compared to other data-driven optimization meth-
ods.27,28 However, the computational cost of GPR-based BO increases
cubically with the number of observations.29 Therefore, MBO is an
optimal choice when the cost of data generation is high, making it dif-
ficult to obtain a large amount of data. Given the heavy computation
for flutter analysis, MBO is ideal for airfoil shape optimization.

In this study, we present airfoil shape optimization frameworks
using MBO to simultaneously enhance flutter resistance and reduce
drag as shown in Fig. 1. Our study implements the harmonic balance-
based one-shot method for predicting the onset of flutter, balancing
accuracy, and computational cost. With the National Advisory
Committee for Aeronautics (NACA) 64A010 airfoil as the base design,
10-dimensional parameters for the Hicks–Henne bump function30 are

selected as inputs to modify the shape of the airfoil, with flutter speed
index and drag coefficient chosen as outputs. The trade-off relation-
ship between the flutter speed index and drag coefficient is explored
via the Pareto front. The optimized airfoil shapes on the Pareto front
are further investigated to identify design characteristics enhancing
flutter resistance and reducing drag. This optimization approach has
the potential to significantly enhance aircraft structure performance by
designing wings that comprehensively consider various aeroelasticity
factors, ultimately leading to improved aircraft performance and
safety.

A 2D airfoil has been considered to verify the airfoil shape opti-
mization framework. The airfoil possesses two degrees of freedom:
pitch and plunge. The airfoil is assumed to be rigid, disregarding any
deformation on surfaces. The structural behavior of the airfoil is mod-
eled using two linear springs associated with the pitch and plunge
motions, as illustrated in Fig. 2. Damping effects have been neglected
in this analysis. Assuming small displacements, the aeroelastic 2D air-
foil system is governed by the following linear differential equations:

m€h þ Sa€a þ Khh ¼ �L; (1)

Sa€h þ Ia€a þ Kaa ¼ M; (2)

where L ¼ q1cCL; M ¼ q1c2CM : (3)

Here, a and h are pitching and plunging displacements, respectively. L
andM refer to the lift and pitching up moment,m is a mass of the air-
foil, Sa is a static moment of inertia about the elastic axis, Ia is the sec-
ond moment of inertia at the elastic axis, Ka is stiffness of pitching
mode, Kh is stiffness of plunging mode, c is chord length, q1 is
dynamic pressure, and CL and CM are lift and moment coefficients,

FIG. 1. (a) Shape change methodology for airfoil using the Hicks–Henne bump function, considering NACA64A010 as the base design. (b) Workflow diagram for Bayesian opti-
mization to optimize the shape of airfoil.
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respectively. These equations can be rearranged as the matrix form as
follows:

M€g þ Kg ¼ f ; (4)

where M � m Sa

Sa Ia

" #
; K � Kh 0

0 Ka

" #
;

f � �L

M

" #
; g � h

a

" #
:

(5)

Here, q is displacement vector, M is a mass matrix, K is stiffness
matrix, and f is a force vector. Equation (4) can be further rearranged
using the dimensionless variables as follows:

1
x2

a

1 xa
xa r2a

� �
€h=b
€a

" #
þ

xh

xa

� �2

0

0 r2a

2
64

3
75 h=b

a

� �
¼ V2

F

p
�Cl

2Cm

� �
; (6)

where r2a �
Ia
mb2

; l � m
pq1b2

; VF � U1
xab

ffiffiffi
l

p ; xa � Sa
mb

:

(7)

Here, r2a is dimensionless inertia, l is a mass ratio, VF is flutter speed
index, xa is dimensionless static unbalance, b is half of the chord
length, U1 is freestream velocity, q1 is freestream density, and xa

and xh are uncoupled natural frequencies of pitching and plunging
modes, respectively. This approach allows for a simplified yet reason-
able representation of aeroelastic behavior, facilitating flutter modeling
while maintaining computational efficiency.

We have applied the harmonic balance-based flutter prediction
approach to predict the onset of flutter using the open-source software
called SU2.31–33 The technique that we have used is briefly introduced
in this section.18 The frequency domain-based harmonic balance
method is computationally efficient compared to the time-marching
approaches. The harmonic balance method assumes that flow is peri-
odic, structural vibrations are undamped, and most unsteady aerody-
namic problems related to aeroelastic phenomena are periodic in time.
In the harmonic balance method, aeroelastic variables can be approxi-
mated by a truncated Fourier series, and a vector of conservative varia-
bles can be presented with the prescribed number of harmonics (NH)
and given frequency (x) as follows:

w x; tð Þ ¼ ŵ0 þ
XNH

n¼1

½ŵA;n xð Þcos xntð Þ þ ŵB;n xð Þsin xntð Þ�; (8)

where ŵ0, ŵA;n, and ŵB;n are spatial Fourier coefficients of the variable
and they can be expressed in time-discrete form as follows:

ŵ ¼ Ew�; (9)

where ŵ ¼ ŵ0; ŵA;1; ŵB;1;…; ŵA;NH ; ŵB;NHf gT , w� ¼ w t0ð Þ;�
w t1ð Þ; …; w t2NHð ÞgT , and tn ¼ 2np=xð2NH þ 1Þ. The equilibrium
equation of Eq. (6) is transformed into Eq. (10) using the truncated
Fourier series and truncated modal shape as follows:

~x2 �D2
~q� þ ~X

2
~q� ¼ V2

F
Sb
2V

~f
�
: (10)

Then, the Eqs. (12) and (13)18 can be discovered as follows (see
supplementary material for complete derivation):

L x;VFð Þ � 1
2
RT
s Rs

whereRs � ~x2 �D2
~q� þ ~X

2
~q� � V2

F
Sb
2V

~f
�
;

(11)

@L
@ ~x

� 2~x �D2q�
� 	T

Rs ¼ 0; (12)

@L
@VF

� �2VF
Sb
2V

~f
�T
Rs ¼ 0; (13)

where ~x is normalized frequency, ~q� and ~f
�
are dimensionless gener-

alized displacements and external forces at discrete time-instances, ~X

is normalized natural frequency matrix, VF � U1ffiffi
l

p
bx1

� 	
is flutter speed

index, S is a reference surface, and V is the volume of the wing. In the
one-shot method for flutter prediction using the harmonic balance
method, Eqs. (12) and (13) are iteratively solved by proceeding with
the following steps. The first step involves conducting harmonic
balance-based computational fluid dynamics (CFD) using initial val-
ues. Next, perform harmonic balance-based computational structural
dynamics (CSD) to update the amplitude and phase of displacements.
Following this, update VF based on Eq. (13). Then, conduct another
round of harmonic balance-based CFD. Subsequently, update x based
on Eq. (12). If the solution has converged, the iteration process is ter-
minated. If not, return to conducting CSD with the updated variables
and repeat the process until convergence is achieved. For verification
of the framework, the bifurcation diagrams of the one-shot harmonic
balance method on NACA64A010 are compared to those of previous
studies in Fig. S1 (see supplementary material). Our prediction model
shows good agreement with the results from previous research.14,18,34

Detailed explanation of the computational simulations can be found in
Methods section.

The airfoil shape optimization is performed following the flow
chart in Fig. 1 illustrating the simulation-based MBO framework. For
the CFD simulation, a two-dimensional 200� 80 quadrilateral ele-
ments are generated using Gmsh software35 for the NACA64A010,
which is considered a base design, as shown in Fig. S2 (see supplemen-
tary material). For the aeroelastic setup of the airfoil, the elastic axis is
placed at e ¼ 0:2, static unbalance (xa) is set to 0.25, dimensionless
inertia (r2a) is 0.75, mass ratio (l) is 75, and the natural frequency ratio
(xh=xa) is set to 0.5 as in previous research.18 Mach number is set to

FIG. 2. Schematic of two-dimensional airfoil with two degree of freedom. The struc-
tural behavior of the airfoil is modeled using two linear springs associated with the
pitch and plunge motions.
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0.8 and mean of angle of attack is set to zero. Initial values of reduced
velocity and frequency for the one-shot harmonic balance method are
set at V0 ¼ 3:05 and x=xa ¼ 0:7, and the initial phase difference is
set to 5 �. To predict the onset of flutter, the magnitude of the pitching
angle is set to 0.05 �, which should be small enough. The mesh is
morphed according to the given 10-dimensional input by employing
the Hicks–Henne bump function,30,36 which is expressed as follows:

ynew xð Þ ¼ ybase xð Þ þ
Xn
i¼1

aisin
t pxlog10 0:5ð Þ=log10 hið Þð Þ; (14)

where ynew and ybase are y-coordinates of the modified and original
design, and ai is the amplitude of the Hicks–Henne bump function.
The number of control points (n) is set to 10, Hicks–Henne exponents
(t) is five, and x-coordinates of the control points (hi) along the chord
line are defined by “one-minus-cosine” function as follows:

hi ¼ 1
2

1� cos
ip

nþ 1

� �� �
: (15)

The 10 amplitude values of the Hicks–Henne bump function (ai) are
adopted as design variables. The profiles of the Hicks–Henne bump
function and the locations of control points are presented in Fig. S3
(see supplementary material). The amplitude values (ai) for each con-
trol point are limited to the range of 6 20% of the y-coordinate of the
airfoil profile at the control point, which implies a maximum 20%
shape change on the airfoil profile. The airfoil profiles for upper and
lower surfaces are symmetrically morphed. As the objectives, the flut-
ter speed index and drag coefficient of the airfoil are considered where
the flutter speed index is obtained using the one-shot harmonic bal-
ance method, and the drag coefficient is calculated with zero angle of
attack. The flutter speed index is related to the stability of the aircraft
because a higher flutter speed index implies a later flutter occurrence
while a lower drag coefficient means better fuel efficiency. Therefore,
an airfoil with a higher flutter speed index and lower drag coefficient
would typically be preferred for better performance of aircraft.

MBO is employed for airfoil shape optimization, considering 10-
dimensional parameters of the Hicks–Henne bump function as input
and the flutter speed index and drag coefficient as output. GPR is

adopted as a surrogate model for MBO, which probabilistically pre-
dicts objective function for a given input, which enables MBO to
explore both high objective regions and high uncertainty regions in a
balanced manner using an acquisition function. Detailed procedures
for MBO can be found in the Methods section. For initializing MBO,
40 data points are collected using random sampling from a uniform
distribution over the input space, as presented in Fig. 3(a). During the
data generation, non-converging cases for the one-shot method to cal-
culate the flutter speed index are observed due to an unrealistically
wavy airfoil shape as shown in Fig. S4 (see supplementary material).
The values of the flutter speed index for those cases are set to zero.
MBO is carried out until no further improvement in hypervolume is
observed for 15 consecutive iterations, resulting in the process termi-
nation after 53 iterations (see Fig. S5 to see MBO iterations vs hypervo-
lume plot in supplementary material). The drag coefficient vs flutter
speed index plot after 53 iterations of MBO is shown in Fig. 3(b).
From the result, a Pareto front with a high flutter speed index and low
drag coefficient is observed. Several optimized designs on the Pareto
curve are chosen as shown in Fig. 4(a), and the profiles of those designs
are plotted in Fig. 4(b). The values of design parameters and corre-
sponding amplitude values of Hicks–Henne bump functions are sum-
marized in Table S1 (see supplementary material). The flutter speed
index and drag coefficient values for the optimized designs are summa-
rized in Table I. One of the optimized designs demonstrates 66.96%
enhancements in the flutter speed index at the cost of increasing the
drag coefficient 295.05%. Alternatively, another optimized design
shows both a 5.15% improvement in the flutter speed index and an
18.09% improvement in the drag coefficient. These results reveal the
trade-off relationship between the flutter speed index and drag coeffi-
cient on the Pareto front. To emphasize the efficiency of data explora-
tion with MBO, the drag coefficient vs flutter speed index plot using
93 randomly generated inputs is presented in Fig. S6, which is the
identical number of data used for MBO (see supplementary material).
Comparing Fig. 3(b) and Fig. S6, the result from MBO shows a signifi-
cantly improved Pareto front compared to that from randomly gener-
ated data, which shows the effectiveness of the proposed MBO
framework. We note that the obtained Pareto front in Fig. 3(b) does

FIG. 3. Drag coefficient (CD) vs flutter speed index (VF ) plots for (a) 40 initial data with randomly generated inputs and (b) results of MBO after 53 iterations of the optimization
loop.
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not guarantee the global optimum, but it would approach global opti-
mum as MBO further proceeds. As shown in Fig. S7 (see supplemen-
tary material), the hypervolume would progressively increase as MBO
proceeds, approaching the global optimum. However, considering
optimization efficiency and computational cost, the MBO iteration is
terminated once the stopping criterion is satisfied.

The pressure contours for the optimized designs and base design
are presented in Fig. 4(c), demonstrating different forms of shock
waves that characterize the behavior of airfoil. A stronger shock wave
is observed in Design #1 compared to Design #3 since Design #1 has
more variety in terms of its profile. Interestingly, these optimized
designs resemble the top views of marine animals, which have evolved
over thousands of years to swim smoothly through fluid, as shown in
Fig. 4(d). As the design approaches Design #1, which focuses on stabil-
ity, it features a gently curved front section and a thickened midsection,
reminiscent of the shape of a whale. In contrast, as the design
approaches Design #2 and #3, the overall thickness of the airfoil is
reduced, resembling the shapes of a striped marlin and a needlefish,
which have sharp noses, respectively, while the base design resembles a

mackerel. These similarities highlight potential bioinspired airfoil
shapes, even though the flight environments of aircraft and the swim-
ming environments of marine animals are different. Air flow is often
assumed to be incompressible in subsonic regime and compressible in
transonic and supersonic regime while water is nearly incompressible.
Additionally, water is approximately 800 times denser and 50 times
more viscous than air. Aircraft are primarily designed to enhance aero-
dynamic efficiency by reducing drag and increasing lift, while ensuring
stability, particularly flutter resistance, under specific operating flight
conditions. In contrast, marine animals have evolved streamlined
shapes to balance drag reduction with other factors like maneuverabil-
ity, habitat, and predator avoidance. Nonetheless, it is interesting to
note that the optimized airfoil shape presented in this paper shares
similarities with the various streamlined shapes observed in marine
animals, highlighting potential parallels in their respective approaches
to optimizing performance. This highlights the potential discovery of
bioinspired airfoil shapes through machine learning-based optimiza-
tion approaches and the promising application of different airfoil
designs depending on different engineering purposes. We believe that
this kind of exploration of nature’s solutions can inspire and inform
innovations in various engineering designs.

While this study has focused on airfoil shape optimization at a
fixed Mach number, it is important to note that enhancing flutter per-
formance at one Mach number may affect performance at others. To
explore the effect, flutter simulations are performed on the optimized
airfoil designs across various Mach numbers, as shown in Fig. S8 (See
supplementary material). The results demonstrate that optimization at
a specific Mach number does not necessarily lead to improved perfor-
mance at others. Therefore, to achieve comprehensive flutter resistance
across the full operational speed of an aircraft, our optimization

FIG. 4. (a) Optimized designs on Pareto front. (b) Airfoil profiles of optimized designs and NACA64A010, which is base design. (c) Pressure contours for optimized designs
and NACA64A010 from harmonic balance method at t ¼ 0. (d) The images of marine animals (photo credit: Shutterstock) including the whale, striped marlin, needlefish, and
mackerel, which are analogous to the airfoil designs.

TABLE I. The flutter speed index and drag coefficient values for NACA64A010 and
optimized designs. The relative values are calculated by considering NACA64A010
as a reference.

VF CD Change in VF Change in CD

NACA64A010 0.6605 0.001616 	 	 	 	 	 	
Design #1 1.1028 0.006384 66.96% 295.05%
Design #2 0.8772 0.005771 19.65% 65.08%
Design #3 0.7052 0.0005721 5.10% �18.09%
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framework can be extended by incorporating flutter performance at
multiple Mach numbers as an objective function.

We have demonstrated a data-driven airfoil shape optimization
framework for improved flutter resistance and drag reduction using
Bayesian optimization and a harmonic balance-based flutter prediction
framework. From the optimization, the Pareto front is obtained reveal-
ing the trade-off relationship between the flutter speed index and drag
coefficient. The optimized airfoil shape demonstrates superior perfor-
mance compared to the base design in both flutter resistance and drag
reduction. Results show that the optimized airfoil designs could have
higher flutter resistance capabilities by sacrificing the drag coefficient
or reduced drag coefficient with moderate flutter resistance capabilities
along the trade-off relationship. In addition, the optimized designs are
reminiscent of the shape of marine animals, which can lead to further
investigations on bioinspired airfoil designs. We believe that the meth-
odologies demonstrated in this study can be extended to consider a
broader range of aerodynamic characteristics and contribute signifi-
cantly to the comprehensive optimization of aircraft wings. This
advancement holds the promise of making a substantial impact on the
aerospace industry, driving innovation, and enhancing the overall per-
formance and safety of future aircraft designs.

More details on the methods for multi-objective Bayesian optimi-
zation and computational simulations are discussed below. MBO is
employed to optimize the shape of the airfoil, and GPR is chosen as a
surrogate model. GPR predicts unknown outputs assuming the obser-
vation data (y ¼ yiji ¼ 1;…; n

� 

) and the prediction (y� ¼ f x�ð Þ)

for unknown input feature (x�) are correlated via multivariate
Gaussian distribution as follows:

Py;y� ¼ y
y�

� �

 N 0;

K k
kT k x�; x�ð Þ

� �� �
; (16)

where K ¼ Kij ¼ kðxi; xjÞ is a kernel matrix and k¼ ki ¼ k xi; x�ð Þ is
a kernel vector whose elements are calculated by a kernel function
kðxi; xjÞ. Here, Matern 5/2 function is adopted as kernel function as
follows:

k xi; xjð Þ ¼ r2f 1þ
ffiffiffi
5

p
r

l
þ 5r2

3l2

� �
exp �

ffiffiffi
5

p
r

l

� �
þ dijr

2
� ; (17)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xjð ÞT xi � xjð Þ

q
: (18)

Detailed explanation of the GPR model can be found in Sec. 12 of the
supplementary material. To perform multi-objective optimization,
MBO adopts the concepts of the Pareto front and hypervolume. The
Pareto front represents the set of non-dominated solutions, capturing
the tradeoffs between conflicting objectives. Hypervolume measures
the region of the objective space dominated by the Pareto front. Based
on these concepts, MBO follows a structured sequence of steps to
guide the optimization process. First, the GPR model is trained with
initial data. Then, the next sample point is recommended where the
acquisition function is maximized. Among various acquisition func-
tions, expected hypervolume improvement (EHVI) is adopted as an
acquisition function, which is specifically designed for multi-objective
optimization, where the goal is to improve the hypervolume domi-
nated by the Pareto front.37 EHVI effectively balances between exploi-
tation and exploration. Exploitation focuses on refining the current
Pareto-optimal solutions while exploration encourages sampling in
less-explored regions to potentially better understand the objective
space. Flutter simulation is conducted on the recommended sample

point, and newly collected data are added to the previous dataset.
The process of training GPR and recommending the next sample are
iterated until optimization criteria are satisfied. GPR is implemented
by using the Python open-source library “GPy.”38

For computational simulations, SU2 is implemented, which is
open-source software for numerically solving partial differential equa-
tions (PDE) in fluid dynamics and aerodynamics problems.31–33 It
includes a built-in coupled fluid–structure interaction solver and a har-
monic balance implementation.39 In this study, 7.5.1. The “Blackbird”
version for SU2 is used to conduct CFD simulations. The harmonic
balance-based CFD simulation framework in SU2 is integrated with
Python scripts for implementing a one-shot method to predict the
onset of flutter. Euler solver is adopted for the CFD simulations. To
obtain the drag coefficient, another CFD simulation under steady-state
conditions is conducted at zero angle of attack. The Mach number is
set to 0.8, the freestream temperature is 273.15K, and the freestream
pressure is 101.325kPa. For simulation, the circular mesh domain is
shown in Fig. S2 (see supplementary material), and the diameter of
far-field is 100 times the chord length.

SUPPLEMENTARY MATERIAL

See the supplementary material for the nomenclature and further
details on the one-shot harmonic balance method and Hicks–Henne
bump function. Additionally, bifurcation diagrams for flutter predic-
tions, two-dimensional structured mesh for CFD, non-converging
cases for flutter prediction, MBO iterations vs hypervolume plots, and
results for randomly generated data are presented, and the optimized
design parameters are summarized. Detailed explanation of the GPR
model is discussed here.
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