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Mechanisms of Linezolid Resistance among Coagulase-Negative
Staphylococci Determined by Whole-Genome Sequencing

Ryan Tewhey,a,b Bing Gu,c Theodoros Kelesidis,d Carmen Charlton,e,f April Bobenchik,e Janet Hindler,e Nicholas J. Schork,g

Romney M. Humphriese

Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USAa; The Broad Institute of Massachusetts Institute of Technology
and Harvard, Cambridge, Massachusetts, USAb; Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Chinac; UCLA
David Geffen School of Medicine, Division of Infectious Diseases, Los Angeles, California, USAd; UCLA David Geffen School of Medicine, Department of Pathology and
Laboratory Medicine, Los Angeles, California, USAe; Alberta Health Services, Edmonton, Alberta, Canadaf; Scripps Translational Research Institute, the Scripps Research
Institute, San Diego, California, USAg

ABSTRACT Linezolid resistance is uncommon among staphylococci, but approximately 2% of clinical isolates of coagulase-
negative staphylococci (CoNS) may exhibit resistance to linezolid (MIC, >8 �g/ml). We performed whole-genome sequencing
(WGS) to characterize the resistance mechanisms and genetic backgrounds of 28 linezolid-resistant CoNS (21 Staphylococcus
epidermidis isolates and 7 Staphylococcus haemolyticus isolates) obtained from blood cultures at a large teaching health system
in California between 2007 and 2012. The following well-characterized mutations associated with linezolid resistance were iden-
tified in the 23S rRNA: G2576U, G2447U, and U2504A, along with the mutation C2534U. Mutations in the L3 and L4 ribopro-
teins, at sites previously associated with linezolid resistance, were also identified in 20 isolates. The majority of isolates harbored
more than one mutation in the 23S rRNA and L3 and L4 genes. In addition, the cfr methylase gene was found in almost half
(48%) of S. epidermidis isolates. cfr had been only rarely identified in staphylococci in the United States prior to this study. Iso-
lates of the same sequence type were identified with unique mutations associated with linezolid resistance, suggesting indepen-
dent acquisition of linezolid resistance in each isolate.

IMPORTANCE Linezolid is one of a limited number of antimicrobials available to treat drug-resistant Gram-positive bacteria, but
resistance has begun to emerge. We evaluated the genomes of 28 linezolid-resistant staphylococci isolated from patients. Multi-
ple mutations in the rRNA and associated proteins previously associated with linezolid resistance were found in the isolates in-
vestigated, underscoring the multifocal nature of resistance to linezolid in Staphylococcus. Importantly, almost half the S. epider-
midis isolates studied harbored a plasmid-borne cfr RNA methylase gene, suggesting that the incidence of cfr may be higher in
the United States than previously documented. This finding has important implications for infection control practices in the
United States. Further, cfr is commonly detected in bacteria isolated from livestock, where the use of phenicols, lincosamides,
and pleuromutilins in veterinary medicine may provide selective pressure and lead to maintenance of this gene in animal bacte-
ria.
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Linezolid is an oxazolidinone with activity against Gram-
positive pathogens, including methicillin-resistant Staphylo-

coccus aureus (MRSA) and methicillin-resistant coagulase-
negative staphylococci (CoNS) (1). Fourteen years after its
approval for clinical use in the United States, linezolid remains
highly active against clinical isolates of S. aureus and CoNS, with
�99% and 98% susceptibility reported from surveillance studies,
respectively (2). Nonetheless, linezolid-resistant staphylococci
have been reported worldwide (2).

Linezolid exerts bacteriostatic activity via protein synthesis in-
hibition, by reversibly binding and blocking the ribosomal pepti-
dyl transferase center (PTC) (3). Modification of the ribosome at
the PTC, commonly by mutation of the V domain of the 23S
rRNA, is associated with resistance in clinical isolates of staphylo-

cocci (4, 5). The most common mutation at this site is G2576U (2,
6, 7). Other mutations, such as G2447U, C2461U, U2500A,
G2534U, G2603U, and U2504A, have also been identified in
linezolid-resistant staphylococci (2). A dosage effect has been de-
scribed for mutations in the 23S rRNA, whereby the number of
mutated rRNA copies is directly related to linezolid MIC (8). Li-
nezolid resistance has also been associated with mutations in the
ribosomal L3 and L4 proteins (3). In addition, acquisition of the
23S rRNA methyltransferase gene cfr can also provide resistance
via modification of A2503 in domain V of the 23S rRNA, thereby
impeding binding of linezolid along with the phenicol, lincos-
amide, pleuromutilin, and streptogramin A and the 16-member
ring macrolides to the ribosome (9–11). Isolates that carry cfr may
test linezolid susceptible (12) or resistant.
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In this study, we investigated the incidence of linezolid resis-
tance among CoNS isolated from blood at a large tertiary-care
hospital and an acute-care hospital in the United States. A collec-
tion of linezolid-resistant CoNS (LRCoNS) from 28 patients were
evaluated for mechanisms of linezolid resistance and evidence of
clonal spread.

RESULTS

Characterization of LRCoNS isolated from blood over a 5-year
period. During the study period of 2007 to 2012, we identified 47
patients with LRCoNS isolated from blood cultures, yielding an
annual incidence of linezolid resistance between 1.2 and 3.2%
(Fig. 1). No temporal trend was noted. Twenty-eight LRCoNS
were available for further characterization, and chart reviews were
performed for these patients. Twenty-one isolates (75%) were
identified as Staphylococcus epidermidis and 7 (25%) as Staphylo-
coccus haemolyticus.

The median patient age was 65 years (range, 17 to 97), and 21
(75%) were female. Prior infection with a multidrug-resistant or-
ganism (e.g., MRSA, extended-spectrum-beta-lactamase-
expressing Enterobacteriaceae, or vancomycin-resistant Enterococ-
cus) was noted in 25 (89%) patients. Comorbidities included renal
disease (n � 8; 29%), diabetes (n � 6; 21.4%), organ transplanta-
tion (n � 5; 17.9%), and liver disease (n � 3; 10.7%). All patients
except for one (patient 17) were hospitalized, with a mean dura-
tion of 38.5 days (range, 0 to 135 days) prior to the isolation of
LRCoNS (Table 1). For six patients, LRCoNS was isolated on the
first day of hospitalization (Table 1). Linezolid was administered
to 27 patients (96.4%) in the 3 months prior to isolation of LR-
CoNS (Table 1), with a mean treatment duration of 16 days

FIG 1 Incidence of linezolid resistance among clinically significant
coagulase-negative staphylococci isolated from blood. Data represent one iso-
late per patient.

TABLE 1 Linezolid use and linezolid MICs

Case Date LRCoNS was isolated (mo/yr)
Linezolid MIC
(�g/ml)

Hospital day LRCoNS
was isolated

No. of days of prior
linezolid exposure

S. epidermidis
1 1/2010 128 19 8
2 2/2011 256 7 7
3 3/2011 �256 37 9
4 6/2011 32 120 28
5 7/2011 8 1 20
6 9/2011 128 1 6
7 5/2007 16 20 6
13 11/2007 8 12 17
14 4/2008 �256 1 14
15 6/2008 �256 Outpatient 14
17 6/2008 32 84 24
18 8/2008 32 5 24
19 8/2008 32 135 7
20 10/2008 128 23 21
21 11/2008 32 97 22
22 11/2008 16 21 80
23 12/2008 �256 41 19
25 9/2009 �256 19 3
26 10/2009 64 64 31
27 9/2009 32 25 9
28 10/2009 128 9 3

S. haemolyticus
8 5/2007 64 64 42
9 4/2007 64 32 9
10 10/2007 64 1 17
11 10/2007 64 1 0
12 10/2007 128 57 30
16 7/2008 64 1 NDa

24 7/2009 64 123 23

Avg (SD) 38.5 (41.7) 16 (10)
a ND, no data.
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(range, 0 to 42 days). Patient 13 (Table 1) had no documented
exposure to linezolid. In all cases, linezolid use was parenteral.

Genetic backgrounds of LRCoNS. Six MLST sequence types
(ST) were identified for the S. epidermidis isolates, including ST5
(4 isolates), ST23 (9 isolates), ST24 (1 isolate), ST185 (1 isolate),
ST186 (5 isolates), and one 186-like ST (1 isolate) (Fig. 2A). Eval-
uation of the WGS data showed fine-resolution heterogeneity
within sequence types; isolates within the same sequence type had
an average of 33 single-nucleotide variants (SNVs) relative to
other isolates in that ST (range, 12 to 52 SNVs). In contrast, across
sequence types, isolates differed by an average of 6,229 SNVs
(range, 10 to 8,812) (Fig. 2A). Isolates in ST5 were all recovered
from patients in the same calendar year, whereas ST23 was iso-
lated over a 3- to 5-year period (Table 2). However, no given ST
predominated in any given study year (Table 2).

As no MLST database exists at present for S. haemolyticus, iso-
lates were evaluated by WGS data alone, which indicated that all
seven of the S. haemolyticus isolates were nearly identical (Fig. 2B).
These isolates were predominantly isolated in 2007 (Table 2), with
one isolate recovered in 2008 and one isolate recovered in 2009.

Resistance mechanism of LRCoNS isolates. WGS was used to
evaluate the putative resistance mechanisms present in the 28 LR-
CoNS isolates. Polymorphisms to the domain V region of 23S
rRNA were identified in 14 (62%) of S. epidermidis and 7 (100%)
of S. haemolyticus isolates. The polymorphisms identified in-
cluded G2576U (9/28 isolates; 32%), G2447U (8/28 isolates; 28%)
and U2504A (7/28 isolates; 25%); these polymorphisms have all
been clearly associated with linezolid resistance (3). The mutation
C2534U was also identified in 68% of the isolates studied (19/28
isolates; 68%). While C2534U has been reported by others in
linezolid-resistant staphylococci (3), the role of this polymor-
phism in linezolid resistance is not well characterized, and it is
typically found in isolates that harbor other mutations, either in
the V domain or to the L3 and L4 ribosomal proteins, as was the
case in our study (Table 2). All S. haemolyticus isolates harbored all
4 23S mutations (G2576U, G2447U, U2504A, and C2534U) in all
copies of the 23S rRNA (Table 2). Only three S. epidermidis iso-
lates harbored 23S rRNA mutations known to be associated with
linezolid resistance: isolates 19 and 22 had the G2576U mutation
in all copies of the 23S rRNA, and isolate 15 had the G2447U
mutation in all copies. In contrast, 20 to 100% of 23S rRNA copies
harbored the C2534U mutation in 12 S. epidermidis isolates with
this mutation (Table 2).

rplC, rplD, and rplV sequences were investigated for predicted
mutations in L3, L4, and L22 ribosomal proteins, respectively.
Alterations to L3 and/or L4 were identified in all but 2 S. epider-
midis isolates but in only one S. haemolyticus isolate (Table 2).
Only synonymous mutations were identified in rplV among the
isolates investigated (data not shown). Single-nucleotide variants
predicted to encode the following mutations were identified in
rplC (Table 2): H146Q (10 isolates), V154L (11 isolates), A157R
(12 isolates), D159L (7 isolates), and G139R (1 isolate). Two mu-
tations were identified in rplD: insertion of an asparagine at posi-
tion 71 (11 isolates) and K68N (1 isolate) (Table 2). These sites are
in close proximity to the linezolid binding site in the ribosome,
and mutations at these sites have been described in other studies of
linezolid-resistant staphylococci (3). However, site-directed mu-
tagenesis experiments have not been performed that conclusively
attribute linezolid resistance to these mutations.

The presence of a cfr gene was found in 10 S. epidermidis iso-

lates (Table 2). Evaluation of WGS data indicated the cfr gene was
present on two different plasmids in our sample collection, a large
(17-kb) plasmid with 70% homology to the cfr-carrying plasmid,
pSCFS1, identified in Staphylococcus sciuri (13), and a small (2.8-
to 3.8-kb) plasmid with homology to the cfr-carrying plasmid
identified in Staphylococcus cohnii (14). The large plasmid was
�99.9% identical between isolates 8, 15, 21, 23, and 31, and the
small plasmid was 100% identical between isolates 3, 4, 17, 26, and
28. The large plasmid was identified only in ST23, and each isolate
was estimated to have 2 to 10 copies of the plasmid per cell, based
on WGS read coverage data. In contrast, the small plasmid was
found in ST5, ST24, and ST186 (Table 2). The copy number of the
small plasmid was estimated to be 1 to 4, based on coverage data.
We cannot exclude the possibility of a chromosomal integration
of this plasmid in isolate 2 from the WGS data, as it carries mul-
tiple transposases complicating de novo assembly, and integration
of the cfr plasmid in S. aureus has been reported (15). Regardless,
linezolid MICs were significantly higher for isolates that harbored
cfr than for those that did not carry this gene (Table 2) (modal
MIC, �256 �g/ml versus 64 �g/ml; P � 0.01). Interestingly, lin-
ezolid MICs were also significantly higher among isolates that
carried the small cfr plasmid than among those that carried the
large cfr plasmid (modal MIC, �256 �g/ml versus 128 �g/ml; P �
0.001). All isolates with the small cfr plasmid also harbored ribo-
somal mutations putatively associated with linezolid resistance:
C2534T, an asparagine inserted at position 71 in L4, and the mu-
tations V154L and A157R in L3. The mutation H146Q in L3 was
additionally present in four of these isolates (Table 2). These same
ribosomal mutations were identified in five S. epidermidis isolates
in the absence of cfr (isolates 1, 4, 21, 26 and 27) (Table 2), and
lower linezolid MICs were noted in these isolates (modal MIC, 32
versus �256 �g/ml; P � 0.001). These findings reinforce the ad-
ditive nature of resistance to linezolid, via these three mecha-
nisms.

Isolates 13, 18, and 28, all of ST23, carried cfr on the large
plasmid and harbored identical alterations to the 23S, L3, and L4
genes (Table 2). No epidemiological link could be found between
the three patients from whom these isolates were recovered. The
patients were located at two different facilities, our acute-care hos-
pital and our tertiary-care facility. Interestingly, linezolid MICs
for these isolates were 32, 8, and 128 �g/ml, respectively. No mu-
tations in or proximal to the cfr gene were identified in isolates 13
or 18 compared to isolate 28, nor was there an obvious difference
in plasmid copy number between the isolates, suggesting that ad-
ditional factors may impact linezolid MIC in these isolates. Eval-
uation of the WGS data did not reveal any apparent differences at
the level that might result in these disparate MICs. All MICs for
these isolates were confirmed in duplicate.

All seven of the S. haemolyticus isolates were nearly identical,
based on WGS data, with the core genes having between 7 and 36
SNVs during cross-comparisons. All isolates harbored identical
mutations associated with linezolid resistance. Five of the isolates
were recovered in 2007, with three (patients 10, 11, and 12) iso-
lated over an 11-day time period. All five patients were at the same
facility but in different wards of the hospital. The sixth and seventh
S. haemolyticus isolates (from patients 16 and 24) were isolated
one and two years later, respectively, at the acute-care hospital.

No chromosomal mutations in efflux genes capable of export-
ing linezolid or their upstream regions were identified in any of
the isolates investigated. Others have reported such mutations as-
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FIG 2 Dendrogram of WGS results for 21 linezolid-resistant S. epidermidis isolates (A) and 7 linezolid-resistant S. haemolyticus isolates (B). Phylogenetic trees
were constructed by aligning the core coding genome of both the S. epidermidis and S. haemolyticus isolates separately.
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sociated with increased expression and linezolid resistance, in
Streptococcus pneumoniae (16) and S. aureus (17). The presence of
vgaA and vgaB was investigated in the whole-genome data, and
two isolates (19 and 22) harbored vgaB.

DISCUSSION

CoNS are common causes of various types of infections, including
bloodstream infections, some of which are health care associated
(18, 19). Increasing antibiotic resistance, in S. epidermidis and
S. haemolyticus in particular, has led to limited therapeutic options
for treatment of infections caused by these organisms (20). In
addition, S. haemolyticus can frequently be non-vancomycin sus-
ceptible, further limiting available treatments. We identified an
overall 1.2 to 3.2% annual incidence of linezolid resistance in
blood isolates of CoNS. This incidence rate parallels that reported
by surveillance studies in the United States (21–24). Importantly,
linezolid resistance may emerge in CoNS after only short treat-

ment courses with linezolid, in the range of days. In contrast,
linezolid resistance in S. aureus occurs only after months of ther-
apy (2). In our study, patients were exposed to linezolid for an
average of 16.9 days prior to the isolation of a resistant isolate
(Table 1). This rapid acquisition of linezolid resistance may relate
to the highly plastic nature of the S. epidermidis genome, which is
driven largely by insertion sequences and other mobile genetic
elements (25). Over the 5-year study period, the laboratory iden-
tified only a single linezolid-resistant S. aureus isolate (data not
shown).

Linezolid-resistant isolates of the same ST with identical lin-
ezolid resistance mechanisms (i.e., isolates 13, 18, and 28) were
isolated from patients over a 3-year period and across two geo-
graphically distant hospitals, indicating that LRCoNS may persist
within and across the health care system for extended periods of
time. Such persistence of LRCoNS has been reported by others
(21, 26). As infection control practices for MRSA, such as contact

TABLE 2 Genetic characteristics of LRCoNS (n � 28)

Case Species ST cfr
cfr
plasmid

% of 23S rRNA copies harboring SNV
L3
mutation(s)

L4
mutation

Linezolid
MIC
(�g/ml)aG2576U C2534U G2447U U2504A

1 S. epidermidis 5 0 20 0 0 H146Q, V154L,
A157R

71 N 128

2 5 Present Smallb 0 20 0 0 H146Q, V154L,
A157R

71 N 256

3 5 Present Small 0 20 0 0 H146Q, V154L,
A157R

71 N �256

4 5 0 20 0 0 H146Q, V154L,
A157R

71 N 32

6 23 Present Largec 0 0 0 0 D159L 128
7 23 0 0 0 0 D159L K68N 16
19 23 100 100 0 0 32
20 23 Present Large 0 0 0 0 D159L 128
5 23 0 0 0 0 D159L 8
13 23 Present Large 0 0 0 0 D159L 8
18 23 Present Large 0 0 0 0 D159L 32
28 23 Present Large 0 0 0 0 D159L 128
22 23 100 0 0 0 16
14 24 Present Small 0 40 0 0 H146Q, V154L,

A157R
71 N �256

15 185 0 0 100 0 A157R �256
27 186 0 40 0 0 H146Q, V154L,

A157R
71 N 32

23 186 Present Small 0 40 0 0 V154L, A157R 71 N �256
17 186 0 40 0 0 H146Q, V154L,

A157R
71 N 32

25 186 Present Small 0 40 0 0 H146Q, V154L,
A157R

71 N �256

26 186 0 40 0 0 H146Q, V154L,
A157R

71 N 64

21 186-like 0 40 0 0 H146Q, V154L,
A157R

71 N 32

8 S. haemolyticus 100 100 100 100 64
10 100 100 100 100 64
24 100 100 100 100 64
11 100 100 100 100 64
12 100 100 100 100 128
16 100 100 100 100 G139R 64
9 100 100 100 100 64
a Determined by broth microdilution.
b Small (2.8- to 3.8-kb) plasmid with homology to the cfr-carrying plasmid identified in Staphylococcus cohnii (14).
c Large (17-kb) plasmid with 70% homology to the cfr-carrying plasmid pSCFS1, identified in Staphylococcus sciuri (13).
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precautions, are not used for CoNS, even MDR isolates, LRCoNS
may go unnoticed in various health care settings.

Unlike prior studies, where ST2 was predominant among
linezolid-resistant S. epidermidis strains (27), 42% of the linezolid-
resistant S. epidermidis isolates investigated herein were ST23, and
no isolates were ST2 (Table 2). The majority of isolates investi-
gated harbored one or more SNVs in the domain V region of the
23S rRNA. The most common mutation identified was C2534T,
which has been observed in other LRCoNS in the United States
(27) and is not clearly associated with linezolid resistance. In con-
trast, only two S. epidermidis isolates harbored the G2576T muta-
tion, which is frequently reported among linezolid-resistant
staphylococci (2). Interestingly, mutations in the 23S rRNA were
more frequent among S. haemolyticus isolates than S. epidermidis
isolates, in terms of both the number of SNVs identified and the
percentage of copies affected (Table 2). 23S rRNA mutations in
domain V are known to confer growth defects in other Gram-
positive bacteria, and it is possible that these mutations are less
costly, from a fitness perspective, to S. haemolyticus than S. epider-
midis. Alternatively, one or more of the 4 mutations in the 23S
rRNA identified in the S. haemolyticus isolates here may compen-
sate for growth defects caused by others. However, as the S. hae-
molyticus isolates in this study appear to be a single clone, this
finding needs to be validated across a larger number of isolates.
Nonetheless, the fact that an S. haemolyticus strain was isolated
2 years after the cluster of isolates identified in 2007 suggests per-
sistence of the clone and stable incorporation of linezolid resis-
tance determinants over extended periods of time. In contrast,
nearly all (19/21 isolates) S. epidermidis isolates harbored one or
more mutations in the L3 and/or L4 proteins, whereas only one
S. haemolyticus isolate harbored an L3 mutation (Table 2). An L3
mutation was shown to compensate for growth defects associated
with 23S mutations in Streptococcus pneumoniae (28). As only 2
S. epidermidis isolates harbored 23S mutations in the absence of an
L3 mutation, this may similarly indicate a cost disadvantage to 23S
mutations in S. epidermidis. Importantly, others have shown that
linezolid-susceptible S. epidermidis isolates do not exhibit L3/L4
mutations, suggesting that the observed alterations are not natu-
rally occurring polymorphisms and may not provide any addi-
tional benefits in this highly variable bacterium (27).

While mutations in the 23S rRNA are the most common mech-
anism of resistance, mutations in the L3 and L4 proteins are in-
creasingly associated with linezolid resistance. In this study, we
identified several strains with mutations in the ribosomal proteins
putatively associated with linezolid resistance; two linezolid-
resistant isolates harbored only a mutation in L3 and/or L4. Isolate
7 harbored a single L3 mutation, D159L, and isolate 9 harbored
mutations only in L3 (D159L) and L4 (K68N). While the linezolid
MICs for these isolates were low, 8 and 16 �g/ml, respectively
(Table 2), compared to other LRCoNS investigated herein, L3 and
L4 mutations in the absence of mutations of the primary target site
of linezolid (23S V domain) may confer resistance.

Unlike a prior study, where cfr was not identified in 40
linezolid-resistant S. epidermidis isolates obtained in the United
States between 2004 and 2007 (27), nearly half (48%) of the S. epi-
dermidis isolates investigated in our study harbored a cfr gene.
This was an important finding, in the context that only a single
other cfr-positive strain (an S. aureus isolate) has been identified to
our knowledge in the same geographical area as our study (29). cfr
has been identified in a number of both Gram-positive and Gram-

negative bacteria isolated from clinical, veterinary, and environ-
mental Gram-positive and Gram-negative bacteria (30). This
spread is attributed to the low fitness cost of the gene in Gram-
positive bacteria, coupled with not only selective pressure of anti-
microbials used in human medicine but also the use of phenicols,
lincosamides, and pleuromutilins in veterinary medicine. Animal
isolates of Staphylococcus may be an important reservoir of cfr. cfr
was associated with the highest linezolid MICs, with the exception
of isolates 13 and 18, which had linezolid MICs of 8 and 32 �g/ml,
respectively (Table 2). These two isolates also had only one ribo-
somal mutation, D159L, in L3. Indeed, only two S. epidermidis
isolates without cfr, isolates 1 and 15, had a linezolid MIC of
�64 �g/ml. Isolate 1 had mutations in both L3 (H146Q, V154L,
and A157R) and L4 (71N), along with the C2534U mutation in the
23S rRNA. This combination of mutations was found in 5 other
isolates in our study and was associated with linezolid MICs rang-
ing from 32 to 64 �g/ml in these other isolates (Table 1). Similarly,
others have reported such mutations in S. epidermidis in isolates
with linezolid MICs of 16 �g/ml by (31), and thus it is unclear why
isolate 1 had a much higher MIC. In contrast, isolate 15 harbored
a 23S G2447U mutation and L3A157R. These two mutations were
detected previously in S. epidermidis strain 1653059, which simi-
larly has a documented linezolid MIC of 256 �g/ml (32). Both
mutations are thought to directly interfere with the key bases of
the PTC that are targeted by linezolid.

Not all clonal isolates harbored identical mutations associated
with linezolid resistance; for instance, ST23 isolates harbored 4
different ribosome-associated SNVs, plus cfr in only selected iso-
lates (Table 2). This suggests the occurrence of independent mu-
tational events, presumably following exposure to linezolid,
rather than a single mutation event and subsequent spread
throughout our health system that was maintained by widespread
linezolid consumption in the environment.

In conclusion, we describe clinical and microbiological data for
a series of LRCoNS from a tertiary-care and an acute-care center.
These data contribute to the expanding knowledge of oxazolidone
resistance mechanisms and incidence of linezolid resistance
among CoNS. Furthermore, these findings underscore the need to
develop strategies to prevent the emergence of linezolid resistance.

MATERIALS AND METHODS
Bacterial isolates and patient characteristics. Linezolid-resistant
coagulase-negative staphylococci (LRCoNS) were identified through ret-
rospective review of laboratory records between January 2007 and January
2012 for CoNS isolated from blood with a linezolid MIC of �8 �g/ml.
Linezolid susceptibility testing was routinely performed by the clinical
laboratory on CoNS isolated from patients with �2 blood culture sets or
upon physician request for CoNS isolated from a single blood culture set.
Incidence of LRCoNS in blood cultures was calculated using the total
number of single-patient CoNS bloodstream isolates with susceptibility
test results as the denominator. Isolates were stored at room temperature
on tryptic soy agar slants (BD, Sparks, MD) with mineral oil overlay for up
to 2 years. All isolates were subcultured twice on sheep blood agar (BD)
prior to testing in this study. Patient medical records were reviewed to
determine patient demographics and linezolid exposures. This study was
approved by the UCLA Institutional Review Board with exemption of
informed consent, as this was a review of existing data.

Bacterial identification and antimicrobial susceptibility testing. Iso-
lates were identified to the species level using Vitek2 GP cards (bioMéri-
eux, Durham, NC).

Antimicrobial susceptibility testing was performed at the time of
CoNS isolation from blood cultures by the reference broth microdilution

Tewhey et al.

6 ® mbio.asm.org May/June 2014 Volume 5 Issue 3 e00894-14

mbio.asm.org


(BMD) method using panels prepared in house according to Clinical and
Laboratory Standards Institute (CLSI) standards (33). All MICs were con-
firmed following storage using BMD with 2-fold dilutions of linezolid at
concentrations ranging from 1 to 256 �g/ml. Linezolid resistance was
defined as an MIC of �8 �g/ml. Quality control was assessed using the
strains S. aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 (33).

Whole-genome sequencing. DNA preparation and sequencing were
performed as previously described (34). Briefly, DNA was isolated from
overnight cultures in tryptic soy broth (BD, Franklin Lakes, NJ) and ex-
tracted with a BIOstic DNA isolation kit (MO BIO Laboratories, Carlsbad,
CA). Genomic DNA was sheared to an average size of 300 bp using a
Covaris S2 instrument (Covaris, Woburn, MA). Illumina library creation
was performed using a NEBNext master mix set (New England Biolabs,
Ipswich, MA) with “bead carryover” between reactions as previously de-
scribed (35). Equimolar concentrations of uniquely bar-coded samples
were pooled and size selected on a 2% NuSieve GTG agarose gel (Lonza,
Rockland, ME) followed by 4 cycles of PCR enrichment with Phusion
polymerase. Library quantification was performed using a Qubit fluo-
rometer (Life Technologies, Carlsbad, CA) and a Bioanalyzer 2100 instru-
ment (Agilent Technologies, Santa Clara, CA) prior to sequencing on an
Illumina HiSeq 2000 sequencer with v3 chemistry using 100-bp paired-
end reads at a raw cluster density of ~550,000 clusters/mm2.

Approximately 500 Mb of sequence data was obtained for each isolate.
To determine the presence and absence of genes, de novo assembly was
performed using the overlap consensus assembler Edena v3 using an over-
lap of 65 and a coverage cutoff at contig ends of 10 reads or greater (36).
Assembled contigs are available upon request.

Identification of cfr was performed with BLAT by aligning the Cfr
protein (accession no. A5HBL2) to the six de novo contigs, that were frame
translated. For the identification of point mutations and small indels,
reads were mapped with Stampy (37) using either S. epidermidis ATCC
12228 or S. haemolyticus JCSC 1435 as a reference. Mutations in rplC,
rplD, and rplV were determined using SAMtools and custom Perl scripts,
as previously described (34). For mutations in the 23S subunit, allele
counts were summed across the five copies found in ATCC 12228. Copy
number was estimated by calculating 5*A/(A � B) and rounding to the
nearest integer, where A and B represent the number of reads correspond-
ing to the alternate and reference allele, respectively. For the purpose of
these calculations, the 23S operon copy number was assumed to be 5,
although some strains of S. epidermidis may harbor 6 copies of the operon
(38). Throughout the study, the numbering convention for the 23S mu-
tations was based on Escherichia coli numbering, whereas L3 and L4 mu-
tations were based on staphylococcal numbering.

Phylogenetic tree reconstruction. Phylogenetic trees were con-
structed by aligning the core coding genome of both the S. epidermidis and
S. haemolyticus isolates separately. The annotated reference genomes
S. epidermidis ATCC 12228 and S. haemolyticus JCSC 1435 were used as
the starting seed for each respective species. Coding sequences were
aligned to each of the draft assemblies using BWASW (39). Alignments
were accepted if the gene was nonrepetitive (mapping score greater than
or equal to 125) and had a sequence identity of �90%. A total of 2,093
genes in the S. epidermidis and 2,219 in the S. haemolyticus met this crite-
rion. Acceptable genes were concatenated end to end, producing a single
continuous sequence for each isolate. Concatenated sequences were then
aligned against each other using Fast statistical analysis (FSA), resulting in
a multiple sequence alignment of the core genome (40). Phylogenetic
trees were estimated using RAxML using 100 bootstraps and final trees
drawn in FigTree (41).

Strain typing. S. epidermidis multilocus sequence typing (MLST) was
performed by mapping all reported sequences deposited at http:
//sepidermidis.mlst.net/ against the de novo contigs. Perfect matches were
identified, and profiles were queried against the existing database for se-
quence type identification. The single S. epidermidis isolate labeled 186-
like aligned with six of the seven loci of 186 in the database.

Nucleotide sequence accession number. Raw reads for all genomes
have been deposited in the NCBI Sequence Read Archive, under accession
number SRP039360.
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