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Abstract

Pathogenic missense and truncating variants in the GABRG2 gene cause a spectrum of epilepsies, 

from Dravet syndrome to milder simple febrile seizures. In most cases, pathogenic missense 

variants in the GABRG2 gene segregate with a febrile seizure phenotype. In this case series, we 

report a recurrent, de novo missense variant (c.316 G>A; p.A106T) in the GABRG2 gene that was 

identified in five unrelated individuals. These patients were described to have a more severe 

phenotype than previously reported for GABRG2 missense variants. Common features include 

variable early-onset seizures, significant motor and speech delays, intellectual disability, 
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hypotonia, movement disorder, dysmorphic features, and vision/ocular issues. Our report further 

explores a recurrent pathogenic missense variant within the GABRG2 variant family and broadens 

the spectrum of associated phenotypes for GABRG2-associated disorders.
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Introduction

To date, most reported γ-aminobutyric acid (GABA) type A receptor pathogenic variants 

associated with idiopathic generalized epilepsies (IGEs) have been found in the γ2 subunit 

encoded by the GABRG2 gene (Lachance-Touchette et al., 2011; Huang et al., 2014; Kang 

et al., 2016). GABA type A receptors are pentameric ligand-gated ion channels primarily 

responsible for mediating fast inhibitory neurotransmission in the mammalian central 

nervous system (Barnard et al., 1998; Schwartzkroin, 1998). GABA type A receptors 

hyperpolarize neurons by fluxing chloride ions through a central anion-selective pore that is 

a pentamer assembled from 19 possible subunits. The most commonly expressed receptor 

consists of two α subunits, two β subunits, and one γ2 subunit (Sarto-Jackson & Sieghart, 

2008).

Pathogenic missense and truncating variants in the GABRG2 gene have been reported as 

causes of a wide spectrum of epilepsies, from Dravet syndrome and genetic (generalized) 

epilepsy with febrile seizures plus (GEFS+), to febrile seizures associated with childhood 

absence epilepsy (CAE) and milder simple febrile seizures (FS) (Macdonald et al., 2010). 

Additional phenotypes, including learning difficulties and behavioral problems, have been 

reported in one family with GEFS+ caused by a nonsense variant (p.R136X) in GABRG2 
(Johnston et al., 2014). A few individuals from a single family with another GABRG2 
nonsense variant (p.Q390X, also referred to as p.Q351X) have been reported to have a 

clinical diagnosis of Dravet syndrome (Harkin et al., 2002; Hirose, 2006). GABRG2 
pathogenic variants are typically inherited in an autosomal dominant manner and may cause 

different clinical presentations, even within the same family (Wallace et al., 2001; Harkin et 

al., 2002). Some individuals with GABRG2 pathogenic variants may never develop seizures, 

indicating incomplete penetrance (Wallace et al., 2001; Hirose, 2006). Only recently, a case 

series revealed evidence of GABRG2 missense variants being responsible for a more severe 

epileptic encephalopathy phenotype (Shen et al., 2017). Here we describe a recurrent 

pathogenic missense variant (c.316 G>A; p.A106T) in the GABRG2 gene in five unrelated 

patients with severe phenotypes which include significant motor and speech delays, 

intellectual disability, hypotonia, movement disorder, dysmorphic features, and visual 

impairment and other ocular issues, in addition to variable early-onset seizures.

Methods

For each proband, the recurrent p.A106T variant in the GABRG2 gene was detected by 

sequence analysis using one of several Next Generation sequencing platforms in different 

laboratories. Patient 1 (singleton), and patients 2 and 4 (along with their parents), were 
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tested using typical whole exome sequencing (WES). Patient 1 and parents also had whole 

genome sequencing (WGS) performed. WES testing involved enriching genomic DNA and 

capturing targeted exons with Nimblegen reagents using a HGSC custom-designed reagent 

called VCRome 2.1 (Patient 1) or with the Agilent SureSelect XT Human All Exon V5 Plus 

kit, per manufacturer’s protocol (Patients 2 and 4). Sequencing was completed on an 

Illumina HiSeq platform (Patients 1, 2, 4). Data analysis and variant calls were performed 

using Mercury 1.0, a custom-developed Atlas-SNP and Atlas-indel variant caller (Patient 1), 

using a proprietary custom-developed bioinformatics pipeline based on the human genome 

build UCSC hg19 reference sequence (CWES-1.2) (Patient 2), or using the Bench NGS Lab 

platform (Cartagenia, Leuven, Belgium) and GATK haplotype caller (v2.7–2) (Patient 4).

Patients 2, 3, and 5 were tested by Next Generation sequencing panels with exon-level array 

CGH for epilepsy-related genes. Coding regions and splice junctions of the genes on the 

epilepsy panels were either sequenced simultaneously by massive parallel sequencing 

(Patients 2 and 3) or enriched using a proprietary targeted capture system (Patient 5) and 

sequenced on an Illumina Next Generation sequencing platform, with sequence fill-ins and 

variant confirmations performed by conventional dideoxy sequencing. Concurrent deletion/

duplication testing was performed for most genes in the panels by array CGH using a 

custom-developed exon-level oligo array. Probe sequences and locations were based on 

human genome build GRCh37/UCSC hg19. Confirmation of the p.A106T variant was 

completed by traditional Sanger sequencing for all patients, the parental samples provided 

for Patients 1, 2, 3, and 4, and for the maternal sample provided for Patient 5. Paternal 

testing was not completed for Patient 5. The potential pathogenicity of the variant was 

evaluated using criteria from the American College of Medical Genetics (Richards et al., 

2015).

Results

The p.A106T variant in the GABRG2 gene was first identified in Patient 2 via an epilepsy 

panel. At that time, the variant was classified as a variant of unknown significance as 

missense pathogenic variants had been reported in association with febrile seizures, which 

Patient 2 did not have. Patient 2 then had whole exome sequencing performed, and the 

p.A106T variant was observed again. Subsequently, this variant was also identified in two 

patients via whole exome sequencing (Patients 1 and 4), and in two patients via epilepsy 

panels (Patients 3 and 5). Paternal testing was not completed in Patient 5, but the other four 

cases are confirmed (paternity and maternity confirmed) or assumed (paternity and/or 

maternity not confirmed) de novo. Based on this new evidence, the p.A106T variant was 

reclassified as pathogenic in 2016.

Genetic test information, demographics, and clinical features for the five patients were 

collected and compared (Table 1). One patient had a family history of seizures whereby a 

first cousin was reported with teenage-onset epilepsy. All five patients experienced early 

seizures and/or staring spells; age of onset ranged from the first day of life (generalized 

convulsions) to four months old. The types of seizures were highly variable; the majority 

(4/5) of the patients had generalized tonic-clonic seizures and 5/5 patients had intractable 

seizures. Patient 4 was successfully treated with pyridoxine/vitamin B6 and folinic acid for 
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almost 12 years until she experienced a new seizure episode, starting with a tonic-clonic 

seizure that coincided with menarche. On a regimen of high dose vitamin B, folinic acid, 

medroxyprogesterone injections, and oxcarbazepine, she was seizure free for a period of 

time, but when the vitamin B dose was lowered the seizures recurred. Focal, myoclonic, and 

neonatal seizures were also observed in some of the patients. Figure 1 includes 

representative EEG tracings for all five patients.

All patients have hypotonia and motor delays (including being non-ambulatory). With the 

exception of Patient 5, all patients exhibit intellectual disability, speech delays (including 

being non-verbal), and have at least one dysmorphic feature indicated. Four of the five 

patients have visual impairment or ocular issues, and four of the five patients have a 

movement disorder.

Patient 1

Patient 1 is a six-year-old female who was hypotonic from birth. Concerns for 

developmental delay and staring spells were raised at four to five months of age. By two 

years of age, she began having generalized tonic and atonic seizures, clinically characterized 

by head drop, and possibly myoclonic astatic seizures. Her seizures have been largely 

refractory to treatment; surgical treatment is now being considered. A twenty-four hour 

electroencephalogram (EEG) at age five years was abnormal, with one 15 second seizure 

and two brief (one to two second) seizures of generalized onset associated with reported 

head drop. There were near continuous multifocal spikes in sleep and absence of normal 

awake and sleep features, consistent with seizure of generalized mechanism of onset and a 

diffuse encephalopathy of non-specific etiology. She was noted to have a unilateral 

multicystic dysplastic kidney prenatally and has a history of contralateral vesicoureteral 

reflux, now resolved. Her mild dysmorphic features include prominent forehead and nasal 

bridge, short columella, slightly deep-set eyes, and a wide mouth. She has bilateral fifth 

finger clinodacytly, small fifth fingernails and toenails, slightly broad great toes, and 

prominent finger and toe pads. Brain magnetic resonance imaging (MRI) and magnetic 

resonance spectroscopy (MRS) at 27 months of age were normal, with cavum septum 

pellucidum et vergae, mild prominence of perivascular spaces noted. Studies on 

cerebrospinal fluid (CSF) at age four years were essentially normal: monoamine 

neurotransmitter metabolites, neopterin, tetrahydrobiopterin, 5-methyltetrahydrofolate, 

succinyladenosine, 2-hydroxybutyric acid, and sialic acid. Metabolic work-up and extensive 

genetic testing were non-diagnostic.

Patient 2 (also Patient 2 in Shen et al., 2017)

Patient 2 is a 10-year-old male who first presented with seizures at three months of age. He 

subsequently developed intractable partial complex seizures. Some seizure episodes lasted 

for 10 to 60 seconds and involved head turning and stiffening of both arms. These occurred 

about every two weeks. Other episodes, occurring two to three times per week, consisted of 

the patient putting his head down, turning to the right, and staring blankly for about 30 

seconds. In some instances he would drop his head and start laughing. He presented with 

gastrointestinal issues in the first year of life, including gastroesophageal reflux disease, 

dysphagia, and constipation. This prompted placement of a gastrostomy-tube at 15 months 
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old. MRI of the brain was normal at two years of age, but a second MRI performed at age 

eight years revealed progressive volume loss in the frontal lobes and frontal horns of the 

lateral ventricles. A video EEG was performed at age three-and-a-half years and was 

abnormal due to multifocal sharp waves and diffuse excessive beta. Additionally, brain MRS 

was normal at age four years, and CSF monoamine neurotransmitter metabolite levels were 

normal at age two-and-a-half years.

Patient 3

Patient 3 is a five-year-old male who had episodes that were suspicious for seizures around 

six weeks of age, then began having convulsions at three months old. Phenobarbital 

treatment seemed effective for a period of time, but then he started experiencing generalized 

tonic-clonic seizures. These seizures lasted for 30 to 60 seconds and involved arching of the 

back, full-body twitching, non-purposeful extremity movement, and upward eye deviation. 

His parents believed that fevers, fatigue, and overstimulation triggered the seizures. They 

have reported episodes as he is falling asleep which entailed opening of his eyes, back 

arching, full-body stiffening, and arm extension for about five seconds before returning back 

to sleep. He experienced developmental regression when he initially had seizures, but his 

development has remained static since then. MRI of the brain was normal around seven-and-

a-half months of age, but brain MRS revealed elevated lactate levels. An EEG performed at 

one-and-a-half years of age revealed right frontotemporal discharges with background 

slowing. Previous CSF monoamine neurotransmitter metabolic testing was normal. CSF 

folate was not measured.

Patient 4

Patient 4 is a 13-year-old female who presented with generalized convulsions and hypotonia 

on her first day of life. She was born at full term, but delivery was induced due to decreased 

fetal movement and oligohydramnios. She began having generalized convulsions which 

were not well characterized. The convulsions were controlled with phenobarbital and the 

patient was discharged after one week. She was readmitted at age seven months due to 

persistent myoclonic seizures. The myoclonic seizures did not respond to phenobarbital. The 

patient was treated with pyridoxine (vitamin B6) and folinic acid, given extremely low 

GABA levels in her cerebrospinal fluid. This treatment was effective for years, but a seizure 

was observed again at age 12 years and four months. She is now also treated with 

oxcarbazepine and medroxyprogesterone injections, as hormonal influences are suspected. 

The seizures appear to be related to her menarche. After the vitamin B6 dose was lowered 

due to fear of toxicity, the patient started experiencing seizures again. At age 13, she has 

complex partial seizures four to five times a month with smile, drooling, and head turn. She 

experienced abnormal eye movements with delayed visual maturity during the first two 

years of life, and electroretinography at age six years showed signs of a retinopathy. Brain 

MRS has not been performed for this patient, but MRI of the brain was normal at ages two, 

six, and 12 years. Repeat cerebrospinal fluid studies revealed normal GABA levels. An 

electromyogram (EMG) was inconclusive. An EEG at 12 years old showed diffuse beta 

activity with short clusters of left frontolateral sharp waves, but no epileptiform discharges. 

Additionally, an EEG at 12 years old revealed bilateral peak waves in the frontal areas.
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Patient 5

Patient 5 is a seven-month-old female who presented on day two of life with neonatal 

seizures. Pregnancy and delivery were unremarkable, with an initial Apgar score of five. The 

baby was floppy and cyanotic requiring vigorous stimulation, suctioning, and continuous 

positive airway pressure by mask. Apgar score at five minutes was eight and the baby was 

slow to feed. Head computed tomography (CT), sepsis evaluation, transaminases, and lactate 

were normal. On the second day of life, the patient developed apnea episodes felt to be 

seizures. MRI showed two tiny periventricular cysts but was otherwise normal. The seizures 

resolved upon treatment with levetiracetam. An attempt was made to taper the medications 

but bilateral upper extremity jerking episodes occurred and levetiracetam was resumed. At 

four months of age, episodes of stiffening with behavioral arrest occurred. Urine organic 

acids, Fragile X, karyotype, and microarray were normal. Examination and video EEG 

monitoring were unremarkable. Seizures recurred at seven months of age; video EEG 

monitoring captured focal onset electrographic seizures with little clinical accompaniment, 

episodes of behavioral arrest and eye deviation associated with a focal ictal pattern, and 

episodes of sudden arousal from sleep with eye deviation associated only with diffuse 

slowing. The EEG background showed excessive beta activity not attributable to sedative 

medications. Oxcarbazepine was administered in addition to levetiracetam and seizures 

resolved. The physical examination over time became more concerning with lack of a social 

smile and poor visual interaction.

Discussion

To date, pathogenic variants in the GABRG2 gene, including 11 truncating variants (four 

nonsense, four frame-shifts, two splice-sites, and one large deletion) and 16 missense 

variants, have been reported in a subset of families and individuals with a variety of 

phenotypes ranging from epileptic encephalopathies (including Dravet syndrome) to genetic 

(generalized) epilepsy with febrile seizures plus (GEFS+), to febrile seizures associated with 

childhood absence epilepsy (CAE) and milder simple febrile seizures (FS) (Baulac et al., 

2001; Wallace et al., 2001; Harkin et al., 2002; Kananura et al., 2002; Audenaert et al., 2006; 

Hirose, 2006; Sun et al., 2008; Macdonald et al., 2010; Shi et al., 2010; Cantarín-Extremera 

et al., 2011; Lachance-Touchette et al., 2011; Balan et al., 2013; Carvill et al., 2013; Tian et 

al., 2013; Johnston et al., 2014; Boillot et al., 2015; Reinthaler et al., 2015; Shen et al., 

2017). In these studies, the majority of pathogenic variants in GABRG2 segregated 

predominantly with a FS phenotype. Additional genetic or epigenetic modifiers have been 

proposed to determine the associated variable epilepsy component (Sun et al., 2008). 

However, until now the link between FS and GABRG2 defects has been poorly understood.

Here we describe a recurrent pathogenic missense variant (c.316 G>A; p.A106T) in exon 3 

of the GABRG2 gene (RefSeq#: NM_000816.3) in five unrelated patients. The A106T 

variant was not observed in any publicly available variant databases, indicating it is not a 

common benign variant in these populations. This variant was reported as a de novo 

pathogenic variant in four of the five patients tested by an epilepsy gene panel and/or whole 

exome or whole genome sequencing (the fifth patient has not had paternal testing 

completed). While the seizure types are highly variable, only one of the five patients 
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reported a possible history of FS (Patient 3), whereas FS is the most common type of seizure 

in most GABRG2 positive cases. All five patients in this case series show complex 

phenotypes. Note that the fifth patient is much younger (seven months old) than the other 

cases, so some of the complex phenotypic features seen in the other four patients may not 

yet be apparent in Patient 5. The most frequent phenotypes in this case series include 

significant gross motor delay (non-ambulatory), fine motor delay, speech delay (non-verbal), 

intellectual disability, and hypotonia (Table 1). Furthermore, variable movement disorder, 

dysmorphic features, and visual impairment and ocular issues have also been seen in most of 

these patients (Table 1). While these features are highly variable, they have not been 

recognized in other GABRG2-associated cases published prior to 2016, but are consistent 

with a recent report of five pathogenic/likely pathogenic missense variants in GABRG2 
(Shen et al., 2017).

The p.A106T variant was located in the β1-β2 inner loop of the N-terminal extracellular 

topological domain of the GABRG2 protein that contributes to the subunit interface at the 

junction of the transmembrane domain. It is highly possible that this de novo variant may 

decrease the GABA potency by disrupting this structural domain important for GABA type 

A receptor function. A recent in vitro functional study from Shen et.al demonstrated that not 

only did the p.A106T variant decrease macroscopic GABA-evoked currents in p.A106T 

transfected HEK293T cells by 30%, but it also reduced surface levels of mutant γ2L 

subunits by 26% compared to co-expressed wild-type γ2L subunits. These results all 

suggest that the p.A106T variant reduces biogenesis of GABA type A receptors (Shen et al., 

2017).

Conclusions

It is evident that the position and severity of the pathogenic variants in GABRG2 determine 

the spectrum of associated phenotypes, but genotype-phenotype correlations are still poorly 

understood at this time. Further studies are needed to explain the phenotypic variations 

caused by different pathogenic variants in this gene. The phenotypes identified in four of our 

five patients with the de novo p.A106T variant include variable early-onset seizures, 

intellectual disability, motor and speech delays, hypotonia, movement disorder, dysmorphic 

features, and/or visual impairment/ocular issues. Recent electrophysiological in vitro studies 

demonstrated that the p.A106T variant resulted in a significant reduction in current 

amplitude. Additionally, there was impairment of the ³2 subunit surface expression. The 

authors concluded that the p.A106T variant has a major effect on GABAA receptor function 

and alters kinetic properties (Shen et al., 2017). The p.A106T variant is de novo in all 

patients for whom both maternal and paternal testing was completed, which is also 

consistent with a more severe outcome for this variant. This observation stands in contrast to 

a majority of other reported GABRG2 pathogenic variants with milder outcomes, which are 

inherited. Further in vitro and in vivo studies are needed to explore the molecular 

mechanism behind the complex and unique phenotypes associated with the p.A106T variant 

and other missense variants causing a severe early-onset encephalopathy phenotype. Our 

report further explores a recurrent pathogenic missense variant within the fast growing 

GABRG2 variant family and broadens the spectrum of phenotypes associated with variants 

in the GABRG2 gene.
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Figure 1: Representative EEGs
Patient 1 - Seizure with head drop and behavioral arrest at 5 years old, generalized spikes 

followed by relative voltage attenuation, fast generalized spike-wave complexes.

Patient 2 - Runs of spike and slow wave at 1 Hz. EEG obtained at 10 years old.

Patient 3 - Sleep epileptiform discharges at 6 years old. High amplitude spike and polyspike 

discharges with prominence in the temporal-occipital regions bilaterally (T5-O1, T6-O2).

Patient 4 - Bilateral peak waves in the frontal areas. EEG obtained at 12 years old.

Patient 5 - Stage II sleep with symmetrical sleep spindles at 4 months old. Excess beta range 

activity and frequent bifrontal, synchronous spike and wave discharges.
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Table 1:

Summary of Patient Phenotypes

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

Gender Female Male Male Female Female

Age 6 years 10 years 5 years 13 years 7 months

Age of seizure onset 4 months,

2 years
a

3 months 6 weeks Day 1,

7 months
b

Day 2

Family history of epilepsy No No
Yes

c No No

Testing platform Singleton Whole 
Exome 

Sequencing and 
Trio Whole 

Genome 
Sequencing

Epilepsy Panel, 
Trio Whole 

Exome 
Sequencing

Epilepsy Panel Trio Whole 
Exome 

Sequencing

Epilepsy Panel

Inheritance confirmed de novo confirmed de novo assumed de novo confirmed de novo not completed

CLINICAL INFORMATION Frequency

Seizures (5/5)

Epileptic encephalopathy + + + 3/5

Focal seizures + + + + 4/5

Generalized tonic-clonic seizures + + + + 4/5

Neonatal seizures (general 
convulsions)

+ + 2/5

Myoclonic seizures + + 2/5

Intractable seizures + + + + + 5/5

Physical/Cognitive Development (5/5)

Intellectual disability + + + + N/A
4/4

d

Gross motor delay (non-ambulatory) + + + + + 5/5

Fine motor delay + + + + + 5/5

Speech delay (non-verbal) + + + + N/A
4/4

d

Developmental regression + 1/5

Movement (4/5)

Cerebral palsy + 1/5

Dysmetria + + 2/5

Hyperkinetic movements + 1/5

Ataxia/movement disorder + + 2/5

Constant stereotypic, jerky 
movements

+ 1/5

Visual Impairment (4/5)

Cortical blindness/visual impairment + + + + 4/5

Ocular (4/5)

Esotropia + (bilateral) + (unilateral) 2/5

Nystagmus + + + (resolved) + 4/5
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Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

Dysmorphic Features (4/5)

Dysmorphic facial features (mild) + + 2/5

Downslanting palpebral fissures + + 2/5

Ptosis + 1/5

Bilateral inverted nipples + 1/5

Gastrointestinal (3/5)

Dysphagia + + 2/5

Gastrointestinal reflux + 1/5

Constipation + + 2/5

Gastrostomy tube placement + + 2/5

Other Clinical Features (5/5)

Hypotonia + + + + + 5/5

Failure to thrive + 1/5

a
onset of staring spells and delays at age 4 months; onset of generalized seizures at age 2 years

b
onset of generalized convulsions at day 1 of life; onset of myoclonic seizures at age 7 months

c
paternal first-cousin (female) with teenage-onset epilepsy

d
total count did not include Patient 5, who was too young to have exhibited the sign/symptom

yo = years old
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