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Abstract: Enthusiasm exists for the potential of diet to impact the immune system, prevent disease
and its therapeutic potential. Herein, we describe the challenge to nutrition scientists in defining this
relationship through case studies of diets and nutrients in the context of allergic and autoimmune
diseases. Moderate-quality evidence exists from both human intervention and observational studies
to suggest that diet and individual nutrients can influence systemic markers of immune function and
inflammation; numerous challenges exist for demonstrating the impact of defined diets and nutrient
interventions on clearly influencing immune-mediated-clinical disease endpoints. A growing body of
evidence suggests that further consideration of dietary patterns, immune system and gut microbiome
composition and function, and subsequent epigenetic modifications are needed to improve our
understanding of diet–immune system interactions.
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1. Introduction

The complexity of the interaction between nutrition and immunology is vast. An individual’s
overall nutrition status, state of nourishment, and pattern of food intake (comprised of foods, nutrients
and non-nutritive bioactive compounds) impact the functioning of the immune system; this impact can
occur at the level of physical barriers (e.g., skin, intestinal mucous membranes), the microbiome, the
innate immune system (e.g., macrophage function and polarization) and the adaptive immune system
(e.g., T- and B-cell function). Conversely, the immune system impacts nutrition metabolism and needs,
and influences the physiological response to food. This complex relationship between nutrition, diet
and the immune system underlies the rationale behind this current review. Within, we will describe the
developing field of nutritional immunology through case studies of the relationship between nutrition
and the immune system.

2. Approaches to Studying Nutrition and the Immune System

Assessing the bidirectional relationship between diet and the immune system can be undertaken
utilizing multiple approaches. In human intervention studies, investigators have assessed the impact
of bioenergetic status [1], isolated nutrients [2–6], and dietary patterns, such as the Mediterranean
Diet [7,8], in both controlled feeding and free-living intervention studies on numerous indices of immune
function (e.g., circulating cytokines, high-sensitivity C-reactive Protein, antibodies, tissue-specific
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transcriptomes). To complement such intervention approaches, a growing body of literature, utilizing
observational study designs, has assessed dietary intakes via self-reported measures and circulating
biomarkers, and assessed their associations with similar immune function outputs, as well as disease
endpoints (e.g., allergy incidence, chronic disease risk). Such investigations have occurred in a variety
of populations, including pregnant women and young infants, adults, individuals with chronic disease,
metabolic syndrome, allergic, inflammatory and/or autoimmune diseases. Typically, these clinical
observations follow and are complemented by investigations in laboratory animals and cultured cells
to provide mechanistic insights, although important differences in immune system development and
function [9,10] and lack of in vivo interactions limit the direct translation of findings in animal studies
to humans.

It is critical to note that, at present, few large, randomized controlled trials exist with
clinical endpoints (e.g., event reduction; disease remission) that demonstrate an impact of diet
on immune-mediated disease risk. In some instances, such as the case of early dairy protein exposure
and risk of beta-cell autoimmunity, bioplausible hypotheses have not been confirmed in large clinical
trials [11]. The difficulties facing nutritional immunology and the caveats of relying on surrogate
endpoints are made further evident by the long history of testing the inflammation-atherosclerosis
hypothesis; researchers have spent decades employing numerous anti-inflammatory agents prior to
demonstrating an effect of interleukin (IL)-1 beta inhibition on cardiovascular event risk reduction.
While enthusiasm for nutrition and immune-mediated disease risk abounds, careful consideration of
the nature and quality of the data are paramount.

3. Nutrition and Immune-Mediated Disease Risk

Dietary intake throughout the life span ranging from conception to old age, has been hypothesized
to play a significant role in the development, management and treatment of noncommunicable
diseases including allergic diseases, cancer, diabetes, and cardiovascular disease. Notably,
such noncommunicable diseases have well-described immunopathological processes, raising the
possibility that immunomodulatory aspects of diet may causally influence disease risk and management.
The incidence of immune-mediated diseases is elevated in Westernized countries where the burden of
such diseases is high, typically ascribed to common dietary components such as the high intakes of
total calories, fat and added sugars, low intakes of fiber, and imbalanced fatty acid composition of
the diet. Consistent with these ecological correlations, specific nutrients and dietary patterns have
been associated with lower risk of allergic and chronic inflammatory disease development [12,13].
A growing body of preclinical and clinical literature has emerged describing the impact of individual
dietary components and dietary patterns on markers of immune function, potentially underlying
some of these associations (Table 1). A thorough description of the field of nutritional immunology is
beyond the scope of a single review; thus, to highlight specific ways that researchers have studied this
relationship, below we describe both allergic and autoimmune diseases and the possible impact of
nutrition on disease incidence and management.
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Table 1. Impact of diet patterns/types (A), nutrients (B) other nutritional factors (C) and food preparation/production (D) on gut barrier function, inflammation and
the microbiome.

(A) Diet Patterns/Types

Gut Barrier Function Inflammation Microbiome

Overall diet can affect production of inflammatory/anti-inflammatory metabolites
by microbiome [14]

A “tolerant” gut microbiome may reduce expression of IL-33 and TSLP and may
protect against sensitization to food allergens [15].

(mainly murine models)

Western type diet: high saturated/trans fat and protein;
low fiber: may affect goblet cell function and reduce

mucus layer [16] in murine models

Western-type diet: high saturated/trans fat and protein; low fiber: Can lead to low
microbial diversity.

Reduces populations in the phylum Bacteroidetes and increases Firmicutes and
Proteobacteria in murine models

Reduces populations in the phylum Bacteroidetes and increases Firmicutes and
Proteobacteria in human studies [17–20]

Higher diet diversity is associated with a more diverse gut microbiome in human
studies. Diet diversity has been reported to prevent allergic disease [21], but it’s
direct role in the management of food allergy has not been investigated [22–24]

High levels of butyrate and proprioate and a diet high in fermented foods, fruit and
vegetables and fish infancy is also associated with reduced allergy outcomes [25].

(B) Nutrients

Gut Barrier Function Inflammation Microbiome

Vitamins–particularly Vitamin A and B9, affect T-regulatory cell
function and act as ligands [26,27] as demonstrated in murine models.

Omega-6 fatty acids: enhance tight junctions [28]
in murine models

Long chain poly-unsaturated fatty acids particularly omega-3 fatty
acids: suppress allergic inflammation via its effect on resolvin D1

and peroxisome proliferator-activated receptors (PPAR) in
murine models [29]

Can also affect the FADS1 genotype (rs174550) [18,19]

Acid; Docosahexaenoic Acid
(long chain omega 3 fatty acids) [30,31] hsCRP, IL-6, TNF-alpha [30,31]

Dietary Sodium [32–35] Increased Th-17/T-regulatory ratio

Dietary Genistein and Daidzein (soy isoflavones) [36] Decreased CRP

Amino acids: play and important role in cell wall structures
in murine models [37]

Amino acids: Certain amino acids such as D-tryptophan may affect the production
of bacterial products that can positively affect immune mediated diseases

as shown in murine [37].
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Table 1. Cont.

(C) Other Nutritional Factors

Gut Barrier Function Inflammation Microbiome

Advanced glycosylated end products (AGEs): may
affect epithelial cell function as shown in murine

models [38,39]

AGEs may affect inflammatory processes, particularly via its effect on
IL-33 and TSLP as shown in mice [40]

AGEs: may negatively affect the microbiome composition as shown in a rodent
model [41].

AGE content of foods may be affected by sugar content, grilling or roasting meats, high fat content, highly processed foods, fruit juices [42], high fructose corn syrup [43,44] and fizzy drinks [45]. Steaming, boiling,
slow-cooking and using acids when cooking can reduce the amounts of AGEs produced [40].

Prebiotics: selectively stimulate the growth of beneficial bacteria and might offer
protection against effects of AGEs as shown in a human trial [46]

Fiber: Short chain fatty acids (SCFAs) are produced
through the fermentation of polysaccharides and
improve gut barrier function via its effect on IL-22

(promoting mucus production) as shown in murine
models [47,48]

Fiber: Short chain fatty acids (SCFAs) are produced through the
fermentation of polysaccharides and reduce allergic inflammation as

shown in murine models [47,48]

Polyphenols: Increase gut microbial diversity [49,50] indicated by human studies

Emulsifiers e.g., polysorbate 80 and
carboxymethylcellulose may destroy the epithelial

mucous layer in the gut as shown in mice [51]

Emulsifiers e.g., polysorbate 80 and carboxymethylcellulose, promote
inflammation as shown in mice [51]

Emulsifiers e.g., polysorbate 80 and carboxymethylcellulose, alter gut microbial
composition as shown in mice [51]

(D) Food Preparation/Production

Gut Barrier Function Inflammatory Processes Microbiome

Uncooked foods, cooking methods and processing can affect the natural microbial
load of foods—Fresh foods contain their own microbiome, including nonpathogenic

bacteria (e.g., Lactobacillus plantarum on fruits and vegetables) [52,53]

Phthalates (a chemical compound from packaging) found in fast foods [54] and
some initial data from murine models indicate that it may reduce microbioal

diversity in the gut [55]

AGEs: advanced glycytion end products; CRP: C-reactive Protein; IL: interleukin; FADS1, fatty acid desaturase 1; TNF: tumor necrosis factor; Th: T helper cell; TSLP: thymic stromal
lymphopoietin; SCFAs: short-chain fatty acids. Bold indicates the particular nutrient factor studied.



Nutrients 2020, 12, 818 5 of 15

4. Allergic Disease

Allergy is an immune-mediated reaction, specific to an encounter with a range of allergens such
as foods or environmental exposures [56]. It can present in almost every organ and launch a range of
symptoms such as anaphylaxis, urticaria, angioedema, allergic rhinoconjunctivitis, allergic asthma,
allergic vasculitis and atopic dermatitis (eczema) [57]. The four most common allergic diseases are
referred to as eczema, food allergy, asthma and rhinitis [58]. Eczema and food allergies usually develop
in infancy, and affected infants often progress onward, developing asthma and allergic rhinitis in
a sequential manner called the ‘allergic march’ [59]. The immunological processes underpinning
allergic diseases presents in two phases—the sensitization phase and the effector phase. During the
sensitization phase, naïve T cells recognize an allergen and differentiate into T helper (Th) 2 effector
cells that secrete IL-4, IL-5 and IL-13 that, in turn, induce allergen specific immunoglobulin (Ig) E
production by B-cells [60]. Allergen-specific IgE binds to the high-affinity receptor (FcεRI) on mast cells
and basophils completing the sensitization phase. When the immune system encounters the allergen
again the effector phase is induced. Here, the allergen binds to surface-bound IgE and cross-links
two FcεRI receptors on mast cells or basophils leading to consecutive release of pre-formed mediators
such as histamine and prostaglandin that provoke the typical allergic symptoms described above.
Whereas T-, B-, mast cells, eosinophils and basophils represent essential cellular mediators during
sensitization and effector inflammation, a defective epithelial barrier has been more recently shown to
allow penetration of allergens, bacterial toxins and other particles, leading to inflammation and release
of IL-25, IL-31, IL-33 and thymic stromal lymphopoietin (TSLP) [61] that stimulate the production of
allergen-specific IgE, the recruitment of eosinophils and other inflammatory cells, mucous production
and reduce contraction of smooth muscles [59]. Thereby, allergic reactions are induced by a complex
interaction of cells and mediators of both, innate and adaptive immunity.

Overall Diet

The best evidence that overall nutritional intake may play a role in allergy prevention comes
from the studies focusing on diet diversity in infancy. The European Academy of Allergy and Clinical
Immunology (EAACI) position paper [62] regarding diet diversity and prevention of allergies concludes
that diet diversity in infancy may be associated with reduced allergy outcomes in childhood and may
be beneficial given low to no risk of harm [62]. Diet diversity is defined as the number of different
foods or food groups over a reference period, and should ideally include frequency of consumption
and the health value of the food. It is thought that diet diversity may influence allergy outcomes
via its effect on the microbiome and immune system. This alteration in the immune system may be
mediated through a multitude of immune antigen tolerance mechanisms including T and B regulatory
cells, immune regulatory cytokines and suppressed IgE antibodies as demonstrated in other allergen
tolerance models [62]. So far, all studies into diet diversity have been conducted in infancy [21,62].
A recent study indicates that both increased diet diversity and allergen diversity in the first year of
life, is associated with a reduced risk of developing food allergy over the first ten years of life [21].
No studies focusing on diet diversity during the other life stages such as pregnancy and later life and
allergy outcomes have been published.

Data on other diet patterns, in particular, the Mediterranean diet, give some evidence that eating
according to these diet patterns in pregnancy may reduce wheeze or eczema in the infant. No study
focusing on diet patterns in infancy, and other life stages on allergy outcomes have been conducted [62].

5. Single Nutrients

5.1. Omega-3 and Omega-6

Responses to immune stimuli require both the initiation and resolution of an immune response [63].
Central to this coordinated response are polyunsaturated fatty acids (PUFAs) of the omega-6 and
omega-3 series that serve as substrates for the synthesis of signaling molecules, including eicosanoids
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and docosanoids (Figure 1) [64]. Diet serves as a source of a variety of key PUFAs, including the
essential fatty acids, linoleic acid (18, 2n-6) and alpha-linolenic acid (18, 3n-3), as well as their longer
chain and more highly unsaturated products arachidonic acid (arachidonic acids (AA); 20, 4n-6),
eicosapentaenoic acid (eicosapentanoic acid (EPA; 20, 5n-3)) and docosahexaenoic acid (docosapentanoic
acid (DHA) 22, 6n-3). Nutritional manipulation of the membrane content of PUFAs, particularly of
the longer chain omega-3 series (LCn3PUFA), has generated great interest due to their enrichment
in various immune cell types, as well as their ability to both reduce AA contents of the membrane
and antagonize AA metabolism. Several eicosanoid derivates of AA, including prostaglandin E2
and 4-series leukotrienes, have been implicated in promoting sensitization to allergens and increased
disease severity, and thus, adequate LCn3PUFA status during both early immunological development
and at the time of established immune–antigen interfacing may modify disease risk.
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The EAACI position paper suggests that, in patients with the lowest preexisting levels of long-chain
polyunsaturated fatty acids (LC-PUFAs), supplementation may be beneficial in allergy prevention,
particularly in those with low levels of omega-3 fatty acids [65]. Such protective effects are most
commonly seen in pregnant and lactating women, whereby increasing maternal and breast milk
LCn3PUFA levels are associated with reduced risk of AD and development of food allergies, although
significant heterogeneity in the evidence base exists [65]. Sources of this heterogeneity need further
consideration, but likely relate to the dose of LCn3PUFA used in clinical trials, baseline and achieved
LCn3PUFA status, the timing of supplementation, common genetic variants throughout fatty acid
metabolism and immunity, and microbiome composition [65]. Current recommendations emphasize an
individualized approach to nutrition and further, well-designed human studies with challenge-proven
food allergy are necessary [66].

LCn3PUFA have received substantial interest for not only their role in prevention of
immune-mediated disease, but also their impact on reducing the severity of established disease.
In addition to the role of EPA and DHA in antagonizing AA metabolism, they serve as substrates for the
production of less potent eicosanoids (from EPA) and specialized pro-resolving mediators (SPMs) [64,67].
SPMs include resolvins (D- and E-series produced from DHA and EPA, respectively), protectins, and
maresins (derived from DHA), and appear to act primarily by inhibiting the recruitment and activation
of multiple immune cell types, conferring pro-resolving and analgesic properties [68,69]. These novel
compounds provide further enthusiasm for omega-3 fatty acids in managing immune-mediated
diseases and underlie the enthusiasm for EPA/DHA supplementation in autoimmunity.

Of the available literature base in autoimmune diseases, a substantial body of randomized
controlled trials testing the impact of LCn3PUFA, primarily EPA and DHA mixtures, exist for both
inflammatory bowel diseases and rheumatoid arthritis. To date, the literature in inflammatory
bowel disease has been disappointing. Available systematic reviews and meta-analyses of controlled



Nutrients 2020, 12, 818 7 of 15

trials [70–74] consistently show that LCn3PUFA supplementation does not prolong states of disease
remission in Ulcerative Colitis or Crohn’s Disease, and there is high uncertainty due to low quality
about the effect of LCn3PUFA in active disease. Notably, supplementation is not without side
effects, with patients exhibiting an increased risk of diarrhea and upper gastrointestinal side effects.
The complexity of the immunopathology of Ulcerative Colitis and Crohn’s Disease, involving impaired
mucosal barrier function, varied cell types of the innate and adaptive immune system and their
secreted mediators, gut microbial composition and the response to other various luminal factors make
it difficult to explain why LCn3PUFAs have likely failed to influence clinical disease. Recent studies
in animal models employing the dextran sulphate sodium model of colitis additionally suggest that
high-dose LCn3PUFA worsen disease phenotypes when started just prior to dextran-sulphate-sodium
provision [75], conflicting with existing evidence from transgenic Fat1 mice [76], capable of synthesizing
their own omega-3 fatty acids, that have demonstrated significant protection from colitis. Such data
suggest that the degree of tissue omega-3 status saturation, the relative impact on other fatty acid
species, and timing of increased omega-3 status require further investigation to determine any potential
efficacy of omega-3 fatty acids in humans with inflammatory bowel disease.

The impact of LCn3PUFA in rheumatoid arthritis is more promising. Supplementation has been
shown to reduce leukotriene B4 [77], a chemotactic factor released from neutrophils that is a key driver
of inflammatory arthritis [78]. Consistent with this reduction in causal pathophysiological mediators of
disease, systematic reviews and meta-analyses of small clinical trials in rheumatoid arthritis consistently
identify reduced non-steroidal anti-inflammatory use, improved pain, joint tenderness and improved
physical functioning [79,80]. Effective doses of LCn3PUFA in shorter term supplementation trials have
tended to be in the pharmacological range (>2.5 g/d EPA + DHA), though self-reported intakes of food
sources of omega-3 fatty acids are associated with improved self-reported disease scores [78,81]. Large,
confirmatory trials in patients with rheumatoid arthritis are needed for LCn3PUFA status monitoring
and supplementation to become standard of care; indeed, the available evidence leaves many questions
about the optimal dose, duration, and composition of omega-3 fatty acids, their effectiveness alongside
modern medications (e.g., TNF-alpha inhibitors), and their role in sero-positive vs sero-negative
disease states.

5.2. Fiber

In line with the role of nutrition on the immune system, we have more a glimpse than a profound
understanding of how the microbiome can be beneficially influenced by dietary compounds. However,
it is well appreciated that fibers as non-digestible parts of fruits, vegetables and cereals are an important
energy source for bacteria that, by fermentation, lead to the production of short-chain fatty acids (SCFA)
as essential nutrients for humans. In numerous studies using different fiber interventions, fibers have
been attributed to maintain intestinal homeostasis by enhancing epithelial barrier function, inhibiting
pathogen-induced cytotoxicity and preventing colonization with pathogenic bacteria.

Despite most studies having been performed in in vivo animal models, there is early proof
that fiber intake can also ameliorate pathology in humans in various organs. A high-fiber diet
favors microbial diversity and production of SCFA and prevents the fermentation of less favorable
substrates such as proteins and amino acids, leading to a reduced risk for colorectal cancer and Crohn’s
disease [82,83]. In addition, SCFA are absorbed and distributed systemically via blood circulation
and thereby, may also prevent pathologies outside the gut. Patients suffering from asthma or cystic
fibrosis present with a reduced microbial diversity in the gut leading to a shift from SCFA production
to lipid, amino acid and carbohydrate metabolism [84,85]. A long-term fiber-rich diet has been shown
to improve lung function and to lower the risk for COPD [86,87]. In addition to this microbial gut–lung
axis, evidence exists that the gut–brain axis can also be influenced by fibers beneficially. Studies using
dietary supplementation with Glucose-oligosaccharides or human milk oligosaccharides indicated
a reduction of anxiety scores in irritative bowel syndrome patients and acetate influenced appetite
by enhancing the production of regulatory neuropeptides [88,89]. Furthermore, people following
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a Mediterranean diet (30 g fiber/day) have a lower risk for type-2 diabetes and patients at risk for
cardiovascular disease show lower incidence of events, highlighting the beneficial effects of fibers
on metabolic syndrome [90–92]. Mechanistically, high-fiber diets may influence immune-mediated
diseases, e.g., by the impact of SCFAs on signaling through G-protein coupled receptors (GPR), namely
GRP41, GPR43 and GPR109A [93–95], that are highly expressed on a variety of tissues including
myeloid-derived immune cells. Additionally, acetate and butyrate, two common SCFAs, exhibit the
capacity to inhibit histone deacetylase activity [95,96], broadly influencing chromatin structure and the
epigenetic state of the cell. Further in vivo animal work and human studies are needed to assess the
contribution of epigenetic modifications to immune cell function, though a significant body of work
suggests that HDAC inhibition in epithelial cells is critical for barrier function and influencing the
immune response [97].

This highlights the potential of fibers as an important tool for disease prevention [98]. The challenge
in the future will be to integrate fibers into our diets and efforts should be undertaken to educate
children (and adults) to at least reach the recommended intake of 25–31 g fiber/day or even higher
amounts (Table 2). However, personalized approaches also need to be implemented as one-size does not
fit all and, under certain underlying diseases (e.g., inflammatory bowel disease) and prompt increase
of dietary fiber content, unwanted side effects of a high-fiber diet such as flatulence, stomachaches,
constipation and diarrhea might occur.

Table 2. Institute of Medicine guidance on fat and fiber intake [99].

Calorie Level(s) Assessed 1000 1200 1400, 1600 1600 1800 1800 2200, 2800, 3200

Macronutrients

Total fat, % kcal AMDR 30–40 25–35 25–35 25–35 25–35 25–35 25–35

Saturated fat, % kcal DGA <10% <10% <10% <10% <10% <10% <10%

Linoleic acid, g AI 7 10 10 10 12 11 16

Linolenic acid, g AI 0.7 0.9 0.9 1 1.2 1.1 1.6

Fiber 14 g/1000 kcal 14 16.8 19.6 22.4 25.2 25.2

AI = Adequate Intake, Intake Level, AMDR = Acceptable Macronutrient Distribution Range, DGA = 2015–2020
Dietary Guidelines recommended limit; 14 g fiber per 1000 kcal = basis for AI for fiber.

6. Future Directions

The relationship of diet to allergy prevention and autoimmune disease management illustrates
the complexity of the questions at hand, in addition to the limitations of the available evidence base.
Numerous diet-x-immune-x-microbiome interactions are likely relevant, in addition to the heterogeneity
in patient and at-risk population characteristics. Such complexity obscures clear identification of signals
for dietary modification, although many bioplausible relationships exist. In addition to well-controlled
feeding trials and rigorous prospective cohort studies, below we discuss additional considerations
for advancing this field of study in allergy and autoimmune diseases, with relevance to additional
immune-mediated pathologies.

Accounting for Dietary Patterns

Individual nutrient approaches allow for clear tests of hypotheses about their relationship to
disease risk and management. However, individual nutrients are consumed in the context of overall
dietary patterns and interpretation of results must be appropriately contextualized in this manner.
The effect size of individual nutrients is often small and thus, diets differing in multiple nutrients may
be of interest to assess their impact on disease outcomes; however, some nutrients target common
pathways and it is difficult to know whether multi-nutrient interventions will have additive, interactive,
or antagonistic effects on each other. Similar to the trials of the Dietary Approaches to Stop Hypertension
(DASH) diet, and DASH-Sodium trials [100,101], trials of whole dietary patterns thought to influence
the immune system and disease risk, concomitantly modifying individual nutrients hypothesized
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to strongly influence outcomes of interest, are warranted in the field of nutritional immunology.
Further characterization of the total diet and derivation of dietary patterns that appear protective
against the development of immune-related diseases may further advance the field and provide the
basis for future, rigorous trials and preclinical investigations to identify novel, immunomodulatory
dietary components.

7. The Way Forward

Nutritional interventions contain the potential to prevent or improve disease. However, until
reliable recommendations can be given to physicians and patients, mechanistic studies of nutritional
patterns and/or single nutrients on immune function, microbiological and epigenetic changes have to be
performed to fully understand the role of nutrition on disease outcomes (Figure 2, Box 1). In addition,
studies are needed that comprehensively link all three components together and determine causal
mediators of nutrient-induced physiological changes and health outcomes.
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Figure 2. Future direction of nutritional research.

To study these multifactorial exposures requires coordinated interdisciplinary efforts, but
performed well, can lead to a global change in the prevention and management of non-communicable
diseases. Addressing the current state of the literature and undertaking such interdisciplinary efforts
will require a commitment from the broader scientific community to funding well-powered, controlled
feeding studies in both preclinical designs and human trials across diverse populations.

Box 1. The way forward in nutrition research.

1. Randomized controlled trials using food patterns/whole diets controlling for environmental factors such as
air quality, water content, exposure to sunlight.

2. Single-nutrient studies controlling for other dietary/environmental factors
3. Mechanistic studies focusing on how food impacts on the immune system, microbiome, epigenome and

genome and interaction of these components
4. Trials controlling for sex, ethnicity and race
5. Improved tools to measure dietary intake

8. Conclusions

Clinicians strive to provide answers to their patients, but there are many unanswered questions
related to the role of nutrition on disease prevention [102,103]. Two of the nutrients often studied (but
not exclusively studied) in their relation to the immune system are LCn3PUFA and fiber, but much
information is required before disease-specific recommendations can be made with high confidence.
Perhaps the answer does not lie in single nutrients alone; more focus on randomized controlled
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trials modifying multiple immune-modulating dietary components as part of a broader dietary
patterns should be conducted. Until clear answers are found, the nutrition world will continue to,
often contentiously, argue for specific dietary recommendations on low-quality evidence. Once we
truly know how the enjoyment of eating can be linked with evidence-based medicinal outcomes,
we can then focus on effective implementation of such interventions.
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