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ABSTRACT OF THE DISSERTATION

Quantifying the effects of spatial environmental variation and soil microbes on plant

community dynamics

by

Gaurav S. Kandlikar

Doctor of Philosophy in Biology

University of California, Los Angeles

Professor Nathan Kraft, Chair

Understanding the processes that determine the diversity and dynamics of plant com-

munities is a longstanding challenge in ecology. Many studies have inferred the role of

demographic processes by studying patterns of functional trait variation in natural com-

munities, but studies explicitly linking such functional trait differences to demographic

processes are lacking. There has also been a growing realization that the dynamics of

plant communities are also influenced by the composition of the soil microbial commu-

nity, but despite hundreds of empirical studies, predicting the influence of soil microbes

on the diversity and dynamics of natural plant communities remains a challenge. In my

dissertation I couple ecological theory with field and greenhouse experiments to build a

more complete and generalizable understanding of the processes that control plant bio-

diversity.

In Chapter One, I ask whether community-wide shifts in three key plant functional traits

across an environmental gradient reflect variation in the trait-performance relationship

across the landscape. To address this question I coupled observational data of varia-

tion in plant composition and functional with experimental data on species performance
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across the same landscape. I asked whether observed trait-environment interactions in

the experimental data match observed patterns of trait variation. I found that shifts

in community-weighted mean traits generally reflect the direction of trait-environment

interactions. But on the whole, the interactions we found were weak, and by themselves

might not be sufficient to explain community-wide shifts. This supports the value of

plant functional traits for predicting species responses to environmental variation, and

highlights a need for more detailed evaluation of how trait-performance relationships

change across environments to improve such predictions.

Chapters Two and Three focus on how soil microbes can influence diversity in plant

communities. Chapter Two begins with a re-analysis of a classic framework that has been

extensively used to study how feedbacks between plants and soil microbes can influence

species coexistence. A great deal of existing theoretical and empirical work has shown

that soil microbes can promote plant coexistence when they generate stabilizing feedback

loops, or can drive exclusion when they generate destabilizing feedback loops. I applied

insights from modern coexistence theory to show that existing work has largely neglected

another avenue by which plant-soil feedbacks can mediate plant coexistence, by driving

average fitness differences between plants. This chapter also extends classic models of

plant-soil feedback to include more biological detail to show how the effects of plant-soil

feedback on plant coexistence depends critically on how plants interact with each other

through other processes like resource competition.

In the final chapter of my dissertation, I applied the insights from Chapter Two to

ask how plant-soil feedbacks influence diversity in southern California annual grassland

communities. I conducted a greenhouse experiment to quantify microbially mediated sta-

bilization and fitness differences among fifteen pairs of annual plants. We found that soil

microbes frequently generate negative frequency-dependent dynamics that stabilize plant
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interactions, but they simultaneously generate large average fitness differences between

species. The net result is that if the plant species are otherwise competitively equivalent,

soil microbes would often drive exclusion among the focal species. This work illustrates

the importance of quantifying microbially mediated fitness differences, and points to

important avenues for future studies on how soil microbes shape plant diversity.
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Introduction to the thesis

Biological systems are complex. They comprise huge numbers of entities whose orga-

nization, dynamics, and interactions are governed by processes that operate at various

spatial and temporal scales. Understanding how component entities and process in-

teract with the dynamics of the whole system is a fundamental theme across the life

sciences. The goal of the research presented in this dissertation is to advance our un-

derstanding of a few processes that structure plant communities, the biological system

at the energetic base of all terrestrial ecosystems on Earth.

The same properties that make plant communities so enthralling – the incredi-

ble diversity of form and function within and between species, the mix of antagonistic

andmutualistic interactions, the various interactions between life and the abiotic envi-

ronment – also make the search for general explanations very challenging. How then

do we build our understanding of what shapes plant community dynamics? The ap-

proach I have adopted1 has been tomake careful assumptions that let us build tractable

but only partial mental pictures of how nature works, and cautiously extend the in-

sights build on these abstractions to describing nature.
1I thank the many thoughtful philsophers of science whose work has helped me develop an internal

framework for conducting science, but is not cited in this dissertation. Jay Odenbaugh’s work has been
especially helpful, and the approach of dialectical materialism developed in Levins and Lewontin (1980)
most closely matches my current perspective on ecological research.
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Figure 1: Photographs of the annual grassland at the University of California Sedg-
wick Reserve (Santa Barbara County, CA, USA). Panel (A) shows the landscape, with
a serpentine hummock in the foreground. Panel (B) shows Lasthenia californica (yellow
flowers) and Plantago erecta (white) growing together on a serpentine hummock. Both
photographs were taken in March 2016.

In the chapters that follow, I attempt to apply this approach to study how spa-

tial abiotic variation and interactions between plants and soil microbes influence plant

communities. I address two of these questions (Chapters One and Three) in an an-

nual grassland in coastal southern California (Fig. 1). As is characteristic of Medit-

teranean climate ecosystems, the grasslands in this region are incredibly species-rich,

and the growing season of the annual plants is restricted to the mild, rainy winters

that separate the hot, dry summers. In California, the grasslands occur over com-

plex edaphic backgrounds, encompassing a great deal of variation in soil physical and

chemical properties. It is thus an ideal system in which to study how various pro-

cesses structure diverse plant communities. In Chapter One, I focus on how plant

functional traits – physiological characteristics that capture plant ecological strategies

– influence species responses to environmental variation. Specifically, I ask whether
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observed shifts in the average physiological characteristics of whole plant communi-

ties reflect differences in how individual species respond to the gradient. For example,

if average leaf size decreases in soils with fewer nutrients, does this in fact mean that

smaller-leaved plant species are less sensitive to nutrient stress? If community-wide

patterns of trait turnover can serve as reliable proxies for how individual species with

different trait values respond to the gradient, then observed correlations between en-

vironmental gradients and the traits of dominant plants can serve as the basis for pre-

dictions about the relative performance of different plant species across environmen-

tal gradients. Accurately predicting of how species might respond to environmental

variation is of especial importance as human activity rapidly changes the climate and

other physical condition that plant species experience, and the results from this chap-

ter highlight both the value and potential dangers of making such predictions on the

basis of existing trait-environment relations.

In Chapters Two and Three, I turn my attention to interactions between plants

and other living components of their environment. Over the past few decades, our

growing awareness of the ubiquity of microbial life and its influence on large-scale

processes has challenged many branches of life sciences to revise existing paradigms

(Gilbert et al. 2012). But the fact that microbes can control the dynamics of larger

organisms has not been as much of a revalation for the botanical sciences, which has

a long history of studying the role of symbioses, especially in the forms of rhizobia

and mycorrhizae. What has been a revalation is that we are now developing rigorous

conceptual frameworks that let us organize and interpret the variety of effects soil mi-

crobes have on plant dynamics, and ever-improving technologies that allow us tomore

precisely characterize these effects. Chapter Two presents a critical re-evaluation of

Bever et al. (1997)’s classic theoretical framework for how soil microbes influence plant
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coexistence. This framework considers the interactions between two plant species that

differ only in the soil microbial communities they cultivate, and in how their growth is

influenced by these cultivated communities. Numerous empirical studies inspired by

this framework that have shown that soil microbes can have important consequences

for plant community structure in various ecosystems (Crawford et al. 2019). But our

re-evaluation identified important gaps in existing studies and generated three key

insights.

The first key insight is that previous work has left us with an incomplete under-

standing of the range of effects that soilmicrobes can have on plant species interactions,

in part because the potential for soil microbes to drive average fitness differences be-

tween species has been largely ignored. My coauthors and I derived a newmetric that

quantifies this microbially mediated fitness difference, and showed how this metric

can be parameterized empirically. Next, we showed that the effects of soil microbes

on plant diversity in species rich communitiesmight not be easily predicted from stud-

ies of plant-soil feedback among species pairs. Using simple examples, we show how

in systems with three plant species, soil microbes might promote diversity even when

they drive species exclusion in any single pairwise interaction, or might hinder diver-

sity even when they stabilize each pairwise interactions. Previous empirical studies

suggest that such dynamics may be common among naturally interacting plants. Fi-

nally, we showed that studying how soil microbes influence plant diversity in isolation

of other processes like resource compatition may obscure the role of soil microbes in

promoting (or hindering) plant diversity. Together, these results solidify the theoret-

ical foundation for plant-soil feedback studies, and identify several priority research

areas for this field.

Building on the first insight from Chapter Two, we conducted a greenhouse ex-
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periment to evaluate the degree to which soil microbes mediate pairwise stabilization

and fitness differences among 6 annual plant species that co-occur in southern Cal-

ifornia grasslands, including at Sedwgick Reserve. This experiment forms the basis

of Chapter Three. As expected based on studies of plant-soil feedback in other grass-

land communities, we found that species tend to grow more vigorously when their

soil microbial community was cultivated by individuals of a different species than by

individuals of their own species. As a result, soil microbes generally generate negative

frequency dependence among the plant species. However, by parameterizing the new

metric derived in Chapter Two, we found that soil microbes also generate large aver-

age fitness differences among the plants in this experiment. This result highlights the

potential for microbially mediated fitness differences to be a critical driver of microbial

effects on plant diversity, an effect that has been largely neglected by previous studies.

Quantifying microbially mediated fitness differences across ecosystems, and asking

whether they do so in a way that primarily exaggerates or reduces other competitive

asymmetries, is ripe for further research.

As is true of most ecological research (Holt 2007), the studies in this dissertation

generate new understanding and suggest avenues for future research, but also serve

as reminders of old lessons. Chapter One reminds us of the many-to-one mapping

between properties of individual species and properties of a community. In this case,

various combinations of how individual species’ demography changes across an envi-

ronmental gradient can give rise to the observed shifts in community-weighted means

across the gradient. One implication is that we cannot easily use patterns of variation

in community properties across gradients to infer the responses of individual species,

but our study highlights the value of combining experiments and observational studies

to show when plant functional traits are good predictors of how species may respond
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to environmental gradients. Chapters Two and Three remind us that as organisms

grow, they are simultaneously responding to and actively modifying the environment

they inhabit. More specifically, these chapters show that how plants modify the soil

microbial community (and how themicrobes in turn affect plant performance) canme-

diate the outcome of competitive interactions inways that have received little empirical

attention. Our results point to the value of studies that contextualize plant-microbe in-

teractions relative to other processes that simultaneously govern plant diversity.

As a whole, the results of my dissertation suggest that as the volume of informa-

tion available to plant ecologists expands, and questions of how plant communities

are structured become ever more important, a pluralistic approach that incorporates

relationships between what have been largely studied as distinct processes may be key

to addressing fundamental gaps in our understanding of ecological communities.
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Chapter 1

Variation in community-weighted mean traits

across environments reflects shifts in trait

optima in a California grassland

This chapter is in preparation for submission as Kandlikar, G.S., Kleinhesselink, A.,and

Kraft, N.J.B. Variation in community-weighted mean traits across environments gen-

erally reflects shifts in trait optima in a California grassland.

GSK conceived the problem with NJBK and AK. GSK and AK led the data collection,

and GSK led the analysis. GSK wrote the manuscript and all authors contributed re-

visions.
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Abstract

Turnover in species composition and community-wide functional traits across envi-

ronmental gradients is a ubiquitous pattern in ecology, but the processes that give rise

to these patterns remain unclear. We askedwhether shifts in the community-weighted

means of three key plant functional traits across an environmental gradient in a south-

ern California grassland reflect variation in the trait-performance relationship across

the landscape. We planted seeds of 17 annual plant species in cleared patches with

no competitors, and quantified the lifetime seed production of 1632 individuals. We

then asked whether models that included trait-environment interactions help explain

interspecific variation in demographic responses to the environment. This allowed us

to evaluate whether observed shifts in community-weighted mean traits matched the

direction of any trait-environment interactions detected in the plant performance ex-

periment. Our results indicate that commonly-measured plant functional traits help

explain variation in species responses to the environment - for example, the perfor-

mance of high-SLA species was more sensitive to soil Ca:Mg levels than that of low-

SLA species. We also found that shifts in community-weighted mean traits generally

reflect the direction of trait-environment interactions, but the interactionswe found are

not strong enough by themselves to drive community-wide shifts. Our results support

the value of plant functional traits for predicting species responses to environmental

variation, and highlight a need for more detailed evaluation of how trait-performance

relationships change across environments to improve such predictions.
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Introduction

Understanding how environmental variation shapes the diversity and dynamics of

plant communities is a fundamental challenge in ecology (Schimper 1898), made even

more compelling by rapid anthropogenic changes to environmental heterogeneity

(McKinney and Lockwood 1999). In addition to variation in species composition

(Whittaker 1960; Janzen 1967), turnover in the functional traits of plant communities

across abiotic gradients has emerged as a ubiquitous pattern across ecosystems

(Cavender-Bares et al. 2004; Hulshof et al. 2013; Bjorkman et al. 2018; Jardine et al.

2020). These functional traits reflect key physiological and life history strategies of

plants, which ultimately determine variation in plant fitness across different environ-

ments (Grubb 1998; Violle et al. 2007). Although shifts in the functional traits of plant

communities across environmental gradients is well-documented, the demographic

processes driving this pattern remains unclear.

One of the most common ways for plant ecologists to study trait-environmental

relationships has been to quantify variation in community-weighted mean (CWM) of

functional traits across landscapes. CWM trait values are calculated as species’ trait

values weighted by their relative biomass or cover, and reflect the functional proper-

ties of the dominant plant species growing in a community (Grime 1998; Garnier et al.

2004). Across ecosystems, communities with less harsh abiotic conditions (e.g. lower

drought stress, higher resource availability) tend to be dominated by plants with func-

tional traits that generally reflect resource-acquisitive strategies (e.g. higher specific

leaf area or leaf N concentrations, Wright et al. (2004)), and vice-versa in environ-

ments that are more restrictive for plant growth. Such shifts in CWM traits are often

assumed to reflect variation in trait optima across gradients, with species whose traits

closely match CWM expected to have highest fitness (Ackerly 2003; Shipley et al. 2006;
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Enquist et al. 2015).

Despite our thorough understanding of CWM trait shifts across environmental

gradients, predicting how variation in species functional traits drives variation in com-

munity composition – one of the key promises of functional trait ecology (McGill et al.

2006)– remains a challenge. For example, Muscarella and Uriarte (2016) found that

a substantial portion of tree species in a tropical forest were more abundant in sites

where their traits were more dissimilar from the site’s CWM, contrary to predictions

of the hypothesis that CWM shifts reflect shifts in trait optima. Part of the challenge is

that we lack a clear understanding of whether CWM trait shifts reflect variation in the

relationship between functional traits and the vital rates (e.g. germination rate, fecun-

dity, sensitivity to competitors) that determine species performance across landscapes

(Shipley et al. 2016). In one of the few studies that has investigated whether CWM

trait shifts reflect variation in trait optima, Laughlin et al. (2018) found CWM shifts in

leaf, root, and reproductive functional to be unreliable predictors of how traits influ-

ence survival rates across gradients, also contradicting the predictions of the idea that

CWM trait shifts reflect shifting trait optima.

One path to building a clearer understanding of whether CWM trait shifts across

environmental gradients reflect shifting trait-performance relationships is to compare

observed shifts in CWM traits to models that directly test whether trait-environment

interactions drive variation in species’ fitness across the same landscape (Laughlin and

Messier 2015). It is important for such analyses to quantify species fitness based on

their vital rates or population growth rates rather than species abundance measured

at a single time point, which can be influenced multiple abiotic and biotic processes

(e.g. dispersal, competition, natural enemies) and is thus a poor proxy for intrinsic

fitness (e.g. Fox 2012; Benning et al. 2019).
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Comparing CWM trait shifts to trait-environment interactions driving variation

in species performance across landscapes can have a wide range of results, some

of which are illustrated in Fig. 1.1. If trait-performance relations remain constant

across an environmental gradient (Fig. 1.1B), any observed CWM trait shifts likely

reflect the effects of species interactions or other processes rather than shifting trait

optima. Trait-performance relationships may differ in magnitude but not in sign

across a gradient in a way that matches observed shifts in CWM traits (Fig. 1.1C).

Such trait-performance relationships with the same sign across the environmental

gradient would not by themselves result in differential distribution of traits across

the landscape, but provide weak support that CWM trait shifts reflect shifting trait

optima. The strongest evidence that CWM trait shifts reflect shifting trait optima

would be if the sign of the trait-performance relationship changes across the gradient

in a way that is consistent with the CWM trait patterns (Fig. 1.1D). It is also possible

that we find strong trait-environment interactions when looking at the vital rates

even when there are no observed CWM trait shifts. This might indicate that other

processes obscure underlying trait-performance relationships. A major challenge in

testing for concordance between CWM trait shifts and variation in trait-performance

relationships is that quantifying how trait variation influences species demography

across landscapes is very data-intensive, requiring plant performance data across

large temporal and spatial gradients. Short-lived plant communities thus offer an

ideal system in which to test for concordance between trait-performance relationships

and CWM trait shifts. Here we ask whether CWM trait shifts reflect variation in

trait optima in a serpentine annual grassland community in southern California. We

surveyed the plant community at sites that captured a wide range of variation in

soil Ca:Mg, sand content, and depth, three axes of abiotic variation that are known

to be important in such serpentine communities. To capture various dimensions
11



Environmental Axis

Community
wide

trait mean

Sites with high value of 
environmental variable

Sites with low value of 
environmental variable

Strong support that CWM shifts 
reflect shifting trait optima

Sites with high value of 
environmental variable

Sites with low value of 
environmental variable

Weak support that CWM shifts 
reflect shifting trait optima 

Sites with high value of 
environmental variable

Sites with low value of 
environmental variable

No support that CWM shifts reflect 
shifting trait optima 

Figure 1.1: A) Variation in community-weightedmean (CWM) functional traits across
gradients is a common pattern in plant communities, though whether or not such
variation in CWM traits reflects shifts in trait optima across environmental gradi-
ents. Here we evaluate whether CWM shifts in plant functional traits reflect shifts
in trait-performance relationships across key environmental gradients. Panels B-D il-
lustrate how trait-performance relationships might vary across environments. B) The
trait-performance relationship may be identical at opposite ends of the environmen-
tal gradient, indicating that other factors (e.g. dispersal limitation) might drive ob-
served shifts in CWM traits. We interpret this as a lack of evidence that CWM trait-
environment relationships reflect variation in trait optima across the environment C)
The trait-performance relationship may change across the environmental gradient in
a direction that is consistent with observed CWM shifts, but the sign of the trait-
performance relationship may be the same at either end of the gradient. We interpret
this as providing weak evidence that CWM shifts reflect changing trait optima. D)
The sign of the trait-performance relationship may change across the gradient, such
that species with low trait values have a relative advantage at the low end of the envi-
ronmental gradient, and vice versa at the high end of the gradient. We interpret this
as strong evidence that CWM shifts reflect changing trait optima.
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of plant ecological strategies, we quantified community-wide variation in one leaf

trait (specific leaf area), one root trait (specific root length), and one whole-plant

trait (maximum height). In a parallel experiment, we quantified the intrinsic fitness

(lifetime fecundity of individuals growing without competitors, wi
1) of 17 annual

plant species that naturally occur in this community and that capture a wide range

of functional variation. We then asked whether observed CWM trait shifts reflect

trait-environment interactions that shape variation in species’ fecundity across this

gradient. Our results show that shifts in CWM traits can provide valuable information

into how trait optima shift across gradients, but also caution against predicting species

responses to environmental variation on the basis of shifts in CWM traits alone.

Methods

Study system

We studied trait-environment relations in the annual grassland community at the Uni-

versity of California Sedgwick Reserve in southern coastal California. This region ex-

periences a Mediterranean climate characterized by cool, wet winters and long, dry

summers. Plant phenology in this system is driven largely by the rainfall regime.

Seeds of annual plants germinatewith early-season rain storms. Plants begin to senesce

and reproduce with the onset of summer droughts, though there is substantial varia-

tion in the timing of reproduction among species (Godoy and Levine 2014; Kraft et al.

2015). The reserve encompasses significant topographic and edaphic hetereogeneity,

including oak-savanna, coastal sage scrub, andCalifornia grassland communities. Our

study focused on a part of the reservewith serpentine-derived soils that are dominated
1This term is denoted elsewhere as λ (e.g. Levine and HilleRisLambers (2009); Kraft et al. (2015)),

but as λ is also frequently used to denote the discrete population growth rate (i.e. Nt+1/Nt), we follow
Law and Watkinson (1987) in symbolizing the fecundity of plants without competitors as w.
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by invasive Avena and Bromus spp. In this area, rocky serpentine outcrops (“hum-

mocks”) are embedded within a matrix of deep, clay soil. The outcrops are consider-

ably less vegetated than the matrix soils, and act as spatial refuges for several native

plant species (Gram et al. (2004)). We studied trait-environment interactions at 16 sites

on this landscape, with 10 sites located on hummocks and 6 in the matrix.

Quantifying species performance across the landscape

In November 2015, before the first major rain storm of the season, we cleared any exist-

ing vegetation at our 16 focal sites and sowed six sub-plots with seeds of our 17 focal

species. Five sub-plots were sowed as replicate “no-competition” plots, in which we

sowed the equivalent of 20-60 viable seeds each focal species (Table 1.1) on a grid with

15 cm spacing between each point. The sixth sub-plot was a mixture plot, in which

we sowed a high density of seeds (equivalent of 100-200 viable seeds/focal species),

spread homogeneously across the sub-plot so that plants were growing in competition

. All seeds were collected in the spring prior to this study from hundreds of plants

growing across Sedgwick Reserve, and were homogenized within species to ensure

that local adaptation (Rajakaruna and Bohm 1999) or maternal effects (Germain and

Gilbert 2014) did not drive variation in plant performance across sites in our experi-

ment.

In February 2016, we counted the number of germinants at each grid point in

our no-competition plots, and thinned each grid point to leave only two individuals

of the focal species. In March, we further thinned each no-competition plot, leaving

only a single individual of each focal species growing without any competitors in a

15cm radius. Between April-June 2016, we quantified the seed output of each focal

individual in the no-competition plots and of up to five individuals of each focal species
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Table 1.1: Species used in the performance experiment, and their mean values for the
focal traits of our analysis.

Family Species Species code SLA (cm2/g) SRL (m/g) Max height (cm)

Asteraceae Agoseris heterophylla AGHE 253.40 313.51 30.25
Centaurea melitensis CEME 202.73 145.36 83.65
Chaenactis glabriuscula CHGL 142.76 32.85 13.97
Hemizonia congesta HECO 215.21 232.98 70.60
Lasthenia californica LACA 206.55 253.27 13.75
Micropus californica MICA 248.11 65.82 27.33

Boraginaceae Amsinckia menziesii AMME 203.87 218.95 58.75

Euphorbiaceae Euphorbia spathulata EUSP 208.23 224.07 20.00

Fabaceae Acmispon wrangelianus ACWR 128.49 203.59 23.50
Medicago polymorpha MEPO 237.77 271.43 11.50

Lamiaceae Salvia columbariae SACO 132.26 195.46 42.25

Onagraceae Clarkia bottae CLBO 177.35 247.74 32.45
Clarkia purpurea CLPU 205.70 266.02 58.50

Plantaginaceae Plantago erecta PLER 143.81 135.51 13.66

Poaceae Bromus madritensis BRMA 269.49 96.31 10.40
Hordeum murinum HOMU 276.38 60.92 16.80
Vulpia microstachys VUMI 146.22 85.89 15.25

from the “competition” plots at each site, for a total of 1632 individuals tracked across

the environment (see Appendix S1 for details on how seed output was quantified).

This design let us quantify three vital rates for each species at each site: germination

rate, per-germinant seed production in the absence of competitors (“low-density seed

production”, wi), and sensitivity to competitors. Each of these vital rates is know to

be an important determinant of annual plant demography in this community (Levine

and HilleRisLambers 2009), but we focus only on the low-density seed production as

a measure of species performance in the remainder of this study.

Measuring compositional turnover across the landscape

In Spring 2017, we surveyed five replicate undisturbed plots (1x1m) adjacent to each

of our 16 experimental sites to quantify vascular plant community composition. Plots
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were genearlly arranged linearly, parallel to cleared plots in which we had experimen-

tally quantified plant performance. We ensured that the community composition plots

were generally located on similar soils as the experimental plots (e.g. if the experimen-

tal site was in the matrix but near a hummock, all community composition plots were

located in the matrix). In each plot, we visually estimated the relative cover of each of

species using 5% cover classes.

Functional trait measurement

Kraft et al. (2015) had previously measured 11 functional traits that are known to cap-

ture ecologically important variation in leaf, root, whole-plant, and reproductive func-

tioning of plant species for most (12/17) species in our demography experiment. In

Spring 2016, during our plant performance experiment, we supplemented this dataset

with additional measurements of four leaf traits (leaf size, leaf dry matter content,

specific leaf area (SLA), mass-based leaf [N]), two belowground traits (rooting depth

and specific root length (SRL)), two abovegroud whole-plant traits (maximum height

and canopy shape index), and two reproductive traits (flowering phenology and seed

mass) for the five species in our experiment that were not part of Kraft et al. (2015)’s

study (Bromus madritensis, Chaenactis glabriuscula, Hordeum murinum, Micropus califor-

nica, and Vulpia microstachys.). For these five species, all traits were measured from 5-8

individuals growing in an additional plot adjacent to one of the matrix sites in the per-

formance experiment. In spring 2017, wemeasured the same set of functional traits on

all species encountered within the community composition plots. Our trait sampling

followed standard protocols (Pérez-Harguindeguy et al. 2013), as detailed in Kraft et

al. (2015).

Based on a principal component analysis (PCA) of the functional traits measured
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for this study (Fig. S1.1), we identified specific leaf area (SLA), specific root length

(SRL), and maximum height as three biologically relavent and largely uncorrelated

axes of trait variation in our study. SLA, the ratio of leaf area to dry mass, is a key trait

that is strongly linked to species’ position along the leaf economics spectrum (Wright

et al. 2004) and that is positively correlated to photosynthesis and growth rates (Adler

et al. 2014). SRL, the ratio of fine root length to dry mass, reflects the area over which

roots can uptake resources relative to biomass investment, is an important compo-

nent of the belowground root economics spectrum (Laliberté 2016; Weemstra et al.

2020). At both a global scale (Weemstra et al. 2016) and within our study (Fig. S1.1),

SRL is largely uncorrelated with SLA. Species with higher SRL tend to have superior

nutrient acquisition, especially for phosphorus (Laliberté et al. 2014), but are gener-

ally more susceptible to attack by pathogenic microbes (Eissenstat 1992). Maximum

height is a globally relavent trait (Dı́az et al. 2016) that integrates across various di-

mensions of ecological strategy and can indicate the ability of adult plants to pre-empt

and intercept light (Westoby et al. 2002). In the plant community at Sedgwick Reserve,

maximum height is also correlated with the reproductive phenology of species, with

large statured species generally growing later into the summer drought and having

later flowering phenology [Kraft et al. (2015); Fig. S1.1]. The 17 focal species of our

performance experiment reflected a wide range of variation observed across the plant

community for these three traits (Fig. S1.2)

Environmental sampling

Wequantified various soil chemical and physical characteristics to identify the primary

axes of environmental variation among our study sites. We measured gravimetric wa-

ter content ((weight of fresh soil - weight of dry soil)/weight of dry soil) in the early-

and mid- growing season (March and April, respectively), and summarized across
17



these measurements to estimate the average soil moisture at each site. We collected

soil for analysis by A&LWestern Agricultural Laboratories (Modesto, CA) for a range

of soil chemical and physical properties: soil organic matter, P (Weak Bray and Olsen

methods), K (ppm), Mg (ppm), Ca (ppm), Na(ppm), pH, CEC, NO3, SO4, NH4, and

soil texture (sand, silt, and clay content). At each site, we collected a small volume of

soil at three points arranged in between the six sub-plots, and homogenized within

site prior to analysis. We also used iButtons (Maxim Integrated) programmed to log

temperature at 2-hr intervals to quantify the average daily maximum temperature at

each site. To avoid direct solar radiation on iButtons, we placed them in anchored PVC

tubes with holes for airflow. Based on a PCA of all environmental variables (Fig. S1.3),

we identified soil Ca:Mg, soil sand content, and soil depth as biologically relavent and

largely uncorrelated environmental variables that captured the primary axes of abiotic

variation among our study sites.

Analysis

Quantifying community-weighted trait turnover across the landscape

We used the community composition and trait data to calculate the community-

weighted mean (CWM) trait values, which represent the mean trait value of all species

growing at a site, weighted by the species’ relative cover. We calculated the CWM

for each trait (t) at each of our 16 sites (s) by averaging across the CWM of the five

sub-plots p at each site as follows: CWMt,s = 1
5 ∑5

p=1 ∑n
i=1 tici,p, where n is the number

of species found in each subplot, ti is the mean trait value of species i, and ci,p is the

relative cover of species i in the sub-plot p. We then evaluated whether CWM traits

vary across the environmental gradient in our study with simple bivariate linear

regressions between each of the three focal traits and each of the four focal environ-

mental characteristics. We also tested for evidence of nonlinear trait-environment
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relations by including a quadratic term in the predictor (environmental) variables, but

we found very little evidence for such relations (Table S1.1).

Evaluating variation in species responses to the environment

The ultimate goal of our analysis was to evaluate whether shifts in CWM traits across

environmental gradients are driven by shifts in trait optima. We began by simply eval-

uating whether the low-density seed production of each focal species in our demog-

raphy experiment varied across hummock and matrix sites. To do so, we used the

glmmTMB package (Brooks et al. 2017) to fit generalized linear mixed models with

a negative binomial distribution and log link function.2 We tested whether the num-

ber of seeds produced by each species varied as a function of the site type (hummock

or matrix), and included site number as a random effect to account for nonindepen-

dance of the samples. The models also included a zero-inflation term to account for

the fact that many species failed to produce seeds, especially in hummock sites. The

zero-inflation parameter was allowed to vary as a function of site type (hummock or

matrix). Models with zero-inflation terms did not converge for two species that had

high seed output throughout all sites (PLER and VUMI) and for two species that failed

to make seeds at nearly every site in our study (CLBO and CLPU), so we exluded the

zero-inflation terms for these species.

Quantifying the functional trait basis for variation in species responses to the envi-
ronment

After evaluating whether species vary in their demographic responses to hum-

mock vs. matrix sites, we next asked whether functional traits explain variation

in species’ responses to the environmental gradients in our study. To do so, we
2We chose a negative binomial rather than Poisson distribution because comparing the AICs of mod-

els fit with either the Poisson or Negative Binomial distribution always favored the Negative binomial
models with AIC > 2.
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built two sets of models that regressed seed production against species traits,

the local site environment, and a random effect of species identity. The first

set of models included only additive effects of species traits and environment

(e.g. Number of seeds ∼ γ Species identity + β1 Ca : Mg + β2 SLA), while the second

set of models also included an interaction between the trait and environment terms

(e.g. β3 Ca : Mg ∗ SLA). The models also included a term that allowed the zero-

inflation parameter to vary as a function of the environmental variable and species

identity. As in the previous analysis, these models used a negative binomial distri-

bution with log link function. For tractability we modeled each trait-environment

interaction in a separate model. We took AIC > 2 in favor of the model with the

trait-environment interaction term as evidence that variation in functional traits helps

explains variation in species’ responses to the environmental gradient. We scaled the

environmental variables to help with model convergence, and used log-transformed

trait values for improved linearity and normality of residuals.

When model comparisons supported a trait-environment interaction, we as-

sessed whether the direction of the interaction term matched the expectation based

on shifts in CWM traits across the gradient. We then used ggeffects (Lüdecke

2018) to calculate the slope of the trait-performance relationship in sites with the

highest and lowest value of the focal environmental gradient measured in our study

(averaged over the species random effects), and asked whether the sign of the trait-

performance relationship changed across the environmental gradient. We considered

trait-environment interactions that were supported by the AIC approach, but whose

slope did not change sign across the environmental gradient, as weak evidence that

CWM trait shifts reflect shifts in trait optima across the landscape (Fig. 1.1C). If the
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sign of the trait-performance sign shifted in the direction predicted by CWM trait

shifts, we considered this as strong evidence that CWM trait shifts reflect shifts in trait

optima across the landscape (Fig. 1.1D).

Results

Community-wide trait turnover at Sedgwick

The plant species in our study system vary considerably in their leaf functional traits.

Across the 55 species recorded in our focal community, we observed 3 fold variation

in SLA (5th percentile = 124.83cm2/g, 95th percentile = 433.8cm2/g), 9 fold variation

in SRL (5th percentile = 32.26cm2, 95th percentile = 290.67cm2), and 10 fold variation

in Maximum Height (5th percentile = 11.38 mg/g, 95th percentile = 108.7mg/g). Al-

though all sites in our study had a strong serpentine character (Ca:Mg ratio was well

under 1 in all plots; min = 0.118 and max = 0.327), our study captured substantial en-

vironmental variation. Our focal sites ranged in soil depth ranged from 12.8 - 45cm,

and sand content ranged from 19 to 71%.

Even though all of the soils in our study had a strong serpentine character,

we found considerable variation in plant functional traits among our focal sites.

Hummocks were on average dominated by plant species with lower specific leaf

areas (SLA) than plant communities growing in the matrix between hummocks

(Fig. 1.2A). When we regressed community-weighted mean traits against continuous

environmental variables, we found that CWM SLA increased significantly with soil

Ca:Mg ratio and depth, but did not vary significantly with soil sand content (Fig. 1.4).

CWM SRL did not vary significantly between hummock and matrix plots (Fig. 1.2B),

but did vary significantly with sand content, with sandier sites being dominated by
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Figure 1.2: Plant communities on matrix soils tend to be characterized by higher val-
ues of community-weighted mean SLA (panel A) and maximum height (C) than plant
communities on serpentine hummocks. Small grey points and errorbars indicatemean
CWM at each site ± 2 standard error of the mean; large red points and error bars rep-
resent estimates and 95% confidence intervals from linear models regressing CWM by
site environment.

plants with higher SRL (Fig. 1.5). Finally, CWM maximum height differed signifi-

cantly between hummock and matrix sites (Fig. 1.2C) and was significantly positively

associated with soil depth (Fig. 1.6).

Variation in species’ low-density seed production across the land-
scape

The species in our demography experiment varied considerably in their low-density

seed production rate across the landscape. In GLMMs that regressed the number of

seeds produced against site type (hummock vs. matrix), the mean low-density per-

capita seed production (wi) of three species (AMME, CLBO, CLPU) was predicted to

be less than 1 seed in either environment, indicating strong environmental filtering

of these species from the focal serpentine grassland community. Two species (MEPO
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Figure 1.3: Variation in species’ demographic responses to the environment. Small
grey points indicate field-measured seed production; large red points and errorbars
represent the predicted wi and 95% confidence interval from GLMM regressing seed
production by site environment and site number as a random effect. * Large error bars
are due to issues with model convergence in the SE parameter.

and MICA) had predicted w < 1 on hummocks but had a significantly higher w in

matrix sites, indicating that environmental filtering excludes these species from the

hummocks but not the matrix. Apart from the three species predicted to make no

seeds regardless of plot type, wi for two additional species (CHGL and LACA) did

not vary significantly between hummock and matrix sites. Most species (12/17) were

predicted to have significantly lower wi on hummocks than in matrix sites (Fig. 1.3).
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Do shifts in CWM traits match changes in trait optima across environ-
mental gradients?

Having verified that the performance of our focal species varies across the environ-

mental gradient inwhichwe documented shifts in CWM traits, we next askedwhether

variation in species’ functional traits explains variation in their performance in differ-

ent environments. Comparing any such trait-environment interactions to observed

shifts in CWM traits across environments allowed us to address the core question of

our study: do shifts in CWM traits reflect shifts in trait optima across environments

(Fig. 1.1)?

Our GLMM analyses indicated that the effect of SLA on plant performance varies

with soil Ca:Mg levels ( AIC = 4.2 in favor ofmodelwith trait-environment interaction,

Table 1.2). Evaluating the trait-performance relations at the low- and high-ends of the

Ca:Mg gradient in our study, we found that lower SLA species have higher wi than

high-SLA species in low Ca:Mg environments, but there is very little effect of SLA on

wi in high Ca:Mg sites (Fig. 1.4). Following Fig. 1.1, we interpret this as weak evidence

that the observed shifts in CWM-SLA across soil Ca:Mg reflects shifts in the optimal

SLA along this gradient. We also found a significant increase in CWM SLA with soil

depth, but found no evidence that this pattern reflects variation in the effects of SLA on

wi across soil depth gradients (Fig. 1.4). Finally, we did not observe shifts in CWMSLA

across soil sand content, and did not observe any variation in the SLA-performance

relationship across this gradient.

The effect of SRL on plant performance varies with soil sand content ( AIC = 10.6

in favor ofmodelwith trait-environment interaction, Table 1.2). Higher-SRL species are

predicted to have higherwi than lower-SRL species at all points across the gradient, but

the negative interaction term in this model indicates more positive SRL-performance
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relationships in less sandy soils (and a less positive relationship in sandier soils) (Fig.

1.5F). This providesweak evidence that the observed significant decrease in CWMSRL

in sandier sites (Fig. 1.5E) reflects variation in SRL optimum across this gradient. We

found no evidence that CWM SRL shifts monotonically with soil Ca:Mg, and similarly

did not find that the SRL-performance relationship varies along these gradients. We

found that CWM SRL varies non-linearly with Ca:Mg, with CWM SRL maximized at

intermediate values of Ca:Mg (Table S1.1), but were not able to test for non-linear shifts

in trait-performance relations in our demography dataset.

Finally, we found that that the effect of Maximum Height on plant performance

varies with soil depth ( AIC = 5.4 in favor of model with trait-environment interaction,

Table 1.2). Taller species outperform shorter species at all points across the soil depth

gradient in our study, though the relationship is stronger in deeper than shallower

soils (Fig. 1.6D). This provides weak evidence that the observed increase in CWM

maximum height with soil depth reflects variation in trait optima across the gradient

(Fig. 1.6C). We did not observe shifts in CWM maximum height across soil Ca:Mg or

sand content, and did not observe any variation in the maximum height-performance

relationship across this gradient.

Discussion

Variation in the physiological characteristics of plant communities across environmen-

tal gradients is a ubiquitous pattern in nature. However, whether such community-

wide shifts in functional traits reflect shifts in trait-performance relations across envi-

ronmental gradients remains poorly understood (Muscarella andUriarte 2016; Shipley

et al. 2016). As a result, predicting plant species’ demographic responses to environ-

mental variation on the basis of their functional traits remains challenging (Laughlin
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Figure 1.4: CWM turnover in SLA across environmental gradients often reflects vari-
ation in trait optima across environments (but not for soil depth)
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Figure 1.5: CWM turnover in SRL across environmental gradients often reflects vari-
ation in trait optima across environments (but not for Ca [ppm])
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Figure 1.6: CWM turnover in leaf size across environmental gradients often reflects
variation in trait optima across environments (but not for Ca [ppm] or soil depth)
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Table 1.2: Concordance betweenCWMtrait-environment relations in the observational
vs. experimental study. AIC > 2 in favor of the model including a trait:environment
interaction termwas taken as evidence that the trait-performace relationships changes
over the landscape.

AIC between models

Trait Environment CWM
turnover?

No trait-
environment
interaction

With trait-
environment
interaction

Evidence that
CWM turnover
is adaptive1

SLA Ca:Mg Yes 4.199 0 Weak
Depth Yes 0 1.429 None
Sand No 0 2.119 -

SRL Ca:Mg No 0 1.935 -
Depth No 0 1.087 -
Sand Yes 10.612 0 Weak

Max.
Height

Ca:Mg No 0 1.594 -

Depth Yes 5.447 0 Weak
Sand No 0 2.114 -

1 Strength of supporting evidence evaluated as described in Fig. 1

et al. 2018). Quantifying trait-performance relations across environmental gradients

at the community level is a key step in improving our ability to project how plant com-

munities will respond to environmental change. A clearer understanding of how trait-

performance relations across gradients shape community-weightedmean (CWM) trait

shifts is a key step in advancing our ability to make informed predictions of species-

and community-level responses to environmental variation. Here, we asked whether

patterns of turnover in three key plant functional traits reflect variation in the relation-

ship between these traits and plant species’ intrinsic demographic responses to en-

vironmental variation in a southern California serpentine grassland community. We

found that the effects of species traits on their performance depends on the environ-

mental gradients in a direction that is generally consistent with observed CWM shifts

in these traits (Figs. 1.4-1.6). However, shifts in trait-performance relations were gen-

erally weak (Fig. 1.1B) and CWM trait shifts likely reflect the combined effects of pro-
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cesses other than the trait-performance relations quantified in our study. Quantifying

how traits mediate species’ demographic responses across their life remains a key step

in improving our ability to use functional traits to predict plant community responses

to environmental variation.

Variation in species demography across the landscape

Anecessary condition for variation in CWM to be driven by shifting trait optima across

the gradient is that species’ vital rates respond differently to the underlying abiotic en-

vironment. This condition was met in our system. Most species (12/17) in our exper-

iment had significantly higher low-density seed production (wi) in matrix sites than

on hummocks. This finding is consistent with the expectation that the lower Ca:Mg

ratio of soils in serpentine hummocks, in conjunction with lower levels of macronu-

trients in these soils (Fig. S1.3), present a severe abiotic stress for many plant species

(Kruckeberg 1951; Huenneke et al. 1990). However, although most species had higher

wi in matrix than hummock sites, not all species were equally sensitive to the harsher

conditions of the hummocks (ratio of predicted wi in matrix vs. hummock sites ranged

from 1.8-630 among these 12 species, Fig 1.3).

Although most species in our experiment were predicted to have substantially

higher w in matrix sites than on hummucks, in our surveys of the naturally occurring

plant community on this landscape, we found individuals of these 12 species much

more frequently on hummocks than in matrix sites. This is likely due to competition

at the seedling stage between the species in our experiment and the invasive European

grasses that dominate the matrix habitat (primarily Avena and Bromus sp.), which pre-

vents establishment of the focal species in the matrix sites (DiVittorio et al. 2007). The

mismatch between the environments thatmaximize species’ intrinsic performance and

the ones inwhich they aremost common supports the idea that variation in abundance
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is a poor proxy for species’ fitness in different environments (Fox 2012; Muscarella and

Uriarte 2016).

Functional drivers of variation in species performance

The finding that plant species differ in their demographic responses to the landscape

leads to the question of whether species functional traits help explain this variation. At

the community level, we found strong correlations between each of the focal traits and

at least one environmental gradient in our study. The positive correlations between

CWM SLA and soil Ca:Mg and soil depth are generally consistent with the expecta-

tion that high-SLA species tend to have a suite of leaf traits that helps them dominate

less harsh abiotic conditions (Reich 2014). We found a negative correlation between

CWM SRL and soil sand content, which is consitent with results from some systems

(e.g. Hogan et al. 2019) but not others (e.g. Laughlin et al. 2018). We also found evi-

dence for a non-linear relationship betweenCWMSRL and soil Ca:Mg, such that CWM

SRL is maximized at intermediate levels of Ca:Mg, contrary to the general expectation

that SRL patterns are generaly coordinated with patterns in SLA (Reich 2014). In gen-

eral, how SRL and other root traits are coordinated with aboveground traits, and how

they influence plant growth over soil chemical and physical gradients remains an open

question (Kramer-Walter et al. 2016; Weemstra et al. 2020). Finally, we found a positive

correlation between CWM Max. height and soil depth, consistent with the hypothe-

sis that the higher water retention of deeper soils may sustain the growth of larger

statured species, which can in turn exclude shorter-statured species by pre-emtping

light and other nutrients (Freckleton and Watkinson 2001; Kraft et al. 2015).

Most importantly for the central question of our study (Fig. 1.1), pairing our ob-

servational study of the plant community at Sedgwick reserve with an experiment

to quantify trait-performance relations across this landscape allowed us to evaluate
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whether community-wide patterns accurately reflect shifts in trait optima across the

landscape. The observed increase in CWM SLA with soil Ca:Mg (Fig. 1.4A) appears

to be at least in part driven by the less negative SLA- wi relationship in high-Ca:Mg

than low Ca:Mg sites (Fig. 1.4B). Lower CWM-SRL in sandier soils (Fig. 1.5E) is con-

sistent with the result that the demographic advantage to high-SRL species diminishes

in sandier soils (Fig. 1.5F). Finally, higher CWMmaximum height in deeper soils (Fig.

1.6C) is consistent with the more positive maximum height- wi relationship in deeper

vs. shallower soil (Fig. 1.6D). However, we did not find any evidence that increase

in CWM SLA with soil depth (Fig. 1.4C) reflects shifts in the SLA- wi relationship,

showing that CWM shifts are not always evidence for shifting trait optima across the

landscape. On the other hand, there was no instance in which a trait-environment in-

teractions was detected in our experimental data but not in the natural plant commu-

nity, indicating that strong trait-environment relations are likely to manifest in CWM

trait turnover across the gradient. Taken together, we interpret our findings as provid-

ing consistent but weak and imperfect evidence that the observed shifts in CWM traits

reflect variation in the trait-performance relationships in this landscape.

It is important to note that we did not find that the sign of any trait-wi relationship

changes across the extent of the gradient in our study. As a result, the shifts in trait-wi

relations identified in our analysiswould not, by themselves, lead to the observed shifts

in CWM traits across the gradient. However, if traits affect other vital rates in the same

direction as they do wi, (e.g. if high-SLA species have lower wi in low-Ca:Mg sites, as

we found, and are also suppressed more by competitors in such conditions), then the

interactive effects of traits on multiple processes may build on the trait-wi relationship

we found here to influence CWM traits. This result is qualitatively similar to those of

Laughlin et al. (2018)’s analysis of whether shifts in CWM traits reflect shifts in trait-
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survival relations in a pine forest community. We echo their call for future studies that

quantify how functional traits influence all the vital rates that determine population-

level performance across environmental gradients.

Future directions for improving predictions of plant performance across gradients

Predicting the performance of organisms in different environmental contexts is a long-

standing challenge, and plant ecologists’ ability to do so will determine the efficacy of

future efforts to conserve and restore natural communities in a dynamic environment.

Our results support the value of cautiously applying trait-environment relations in de-

veloping such predictions, but also suggest several avenues for future research. First,

we were unable to account for the possibility that intra-specific variation driven by

local adaptation, phenotypic plasticity, or material effects – processes known to be

important in serpentine systems (Rajakaruna and Bohm 1999; Baythavong 2011; Ger-

main and Gilbert 2014) and elsewhere – mediate plant functional and demographic

responses to environmental variation. However, our findings that trait-performance

relationships change over environmental gradients generate predictions for how such

intraspecific trait variation (ITV) might be structured. For example, our results (Fig.

1.4B) predict that plants growing in high-Ca:Mg sites should have higher SLA than

plants of the same species growing in lower Ca:Mg soils. Understanding how the spa-

tial structure of ITV differs between species may be critical for predicting variation

between species in their demographic responses to environmental gradients.

Another important aspect of our study was that we were able to quantify CWM

traits across gradients, and also conduct a separate experiment that allowedus to quan-

tify a key vital rate (seed production in the absence of competitors, wi) for 17 species

that occur in this community. This dual approach allowed us to evaluate whether

CWM trait shifts reflect shifting trait-performance relationships in this system, but ex-
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perimentally quantifying vital rates across environmental gradients is a difficult task in

most systems. A promising approach to build on our results and better understand the

trait-performance relationships in longer-lived, more diverse, or less accessible ecosys-

tems may be to rely on statistical methods that use time series data to disentangle the

direct effects of environmental variation from the indirect effects of species interactions

(e.g. Seyednasrollah and Clark 2020). Coupling long-term monitoring data, which are

becoming increasingly abundant for various ecosystems (e.g. Anderson-Teixeira et al.

2014), with such statistical methods, may allow for more robust understanding of how

plant traits mediate species responses to the environment at various scales.

Conclusion

Understanding and forecasting how species and communities respond to environmen-

tal variation is a fundamental challenge in ecology. Predicting variation in species-level

demographic processes based on patterns in trait turnover across whole communities

is a promising approach, butmostmethods to do so have relied on the assumption that

variation in community-weighted mean (CWM) traits reflect shifts in trait optima over

landscapes. Our study found consistent but weak evidence that variation in CWM

traits across environmental gradients reflect the effects of changing trait-performance

relationships, but they also caution against inferring likely demographic responses of

plants to environments on the basis of CWM traits alone. Future efforts that link plant

traits to variation in population growth rates will help build towards more predictive

trait-based models of plant community dynamics.
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Figure S1.1: Biplots of axes 1/2 (Panel A) and axes 2/3 (Panel B) from a PCA of the
functional traits measured for this study. Light grey points indicate the position of the
species found across the community (N = 55), and red points indicate the position of
each of the focal species of the demography experiment (N = 17)

35



0

2

4

6

8

10 30 100

Maximum height (cm)

c
o
u
n
t

A

0.0

2.5

5.0

7.5

200 300 500

Specific leaf area (cm^2/g)

c
o
u
n
t

B

0

2

4

6

30 100 300

Specific root length (m/g)

c
o
u
n
t

C

Figure S1.2: Histograms of the three focal functional traits for all species encountered
in the Serpentine grassland at Sedgwick Reserve. Each red line at the bottom of the
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Figure S1.3: Biplots of axes 1/2 (Panel A) and axes 2/3 (Panel B) from a PCA of the
environmental gradients measured for this study.
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Table S1.1: We tested for quadratic relationships between CWM traits and environ-
ment and only found support for a non-linear relationship between CWM SRL and
soil Ca:Mg ratio

trait environment term estimate std.error statistic p.value
SLA Ca:Mg Intercept 4.1710630 0.3810 10.9473 0.0000
SLA Linear 6.7997132 3.7945 1.7920 0.0964
SLA Quadratic -8.8295749 8.8486 -0.9978 0.3366
SLA Depth Intercept 4.8685302 0.3669 13.2676 0.0000
SLA Linear 0.0039068 0.0296 0.1322 0.8968
SLA Quadratic 0.0001119 0.0005 0.2187 0.8302
SLA Sand Intercept 5.6767840 0.5039 11.2652 0.0000
SLA Linear -0.0211202 0.0225 -0.9375 0.3656
SLA Quadratic 0.0001628 0.0002 0.6820 0.5072

SRL Ca:Mg Intercept 1.3091538 0.9470 1.3824 0.1901
SRL Linear 24.1034774 9.4310 2.5558 0.0239
SRL Quadratic -53.0592298 21.9926 -2.4126 0.0313
SRL Depth Intercept 3.7116730 0.8014 4.6316 0.0005
SRL Linear 0.0093611 0.0645 0.1450 0.8869
SRL Quadratic -0.0001975 0.0011 -0.1768 0.8624
SRL Sand Intercept 3.6723606 0.7948 4.6207 0.0005
SRL Linear 0.0207823 0.0355 0.5849 0.5686
SRL Quadratic -0.0003831 0.0004 -1.0175 0.3275

Max. Height Ca:Mg Intercept 2.9756663 1.9356 1.5373 0.1482
Max. Height Linear 2.8657993 19.2769 0.1487 0.8841
Max. Height Quadratic 5.5585773 44.9527 0.1237 0.9035
Max. Height Depth Intercept 3.4516879 0.7104 4.8586 0.0003
Max. Height Linear -0.0486766 0.0572 -0.8508 0.4103
Max. Height Quadratic 0.0016727 0.0010 1.6891 0.1150
Max. Height Sand Intercept 4.4618081 1.7386 2.5663 0.0235
Max. Height Linear -0.0246015 0.0777 -0.3165 0.7566
Max. Height Quadratic 0.0001513 0.0008 0.1837 0.8571
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Appendix 1.1: Converting field measurements of reproductive output
to estimates of seed count per individual

For this study we quantified the seed output of 1632 plants in the field. When possible

we directly counted the number of seeds on each focal individual when plants were at

their maximum reproductive output, but for time constraits had to measure proxies of

reproductive output (e.g. diamater of flower head) for several species. In thisAppendix

we describe howwe converted these proxy measurements of reproductive output into

estimates of seed counts for each of the species in our experiment.

For AMME, BRMA, CEME, EUPE, HECO, HOMU, MICA, PLER, and VUMI we

could simply count the number of seeds on each focal plant in the field. For AGHE,

LOWR, andMEPO,we counted the number of seed heads or fruits per individual in the

field. We separately counted the number of seeds in 40mature seed heads or fruits, and

multiplied the fruit or seed head count by themean count of seeds per fruit to estimate

the number of seeds made by each plant in the field (Fig S1.4). For CHGL, LACA,

SACO, we measured the diamater of each flower head in the field. We separately built

a regression between the area of seed heads (calculated assuming the seed head was

circular) and number of seeds (Fig S1.5), and used the regression equation to estimate

the number of seeds produced by each species in the field. For CLBO and CLPU, we

measured the length of each fruit in the field, and again used a regression equation

between fruit length and number of seeds per fruit to calculate the seed production

of focal individuals (Fig S1.5). We rounded each calculated seed count down to the

nearest integer. When a focal individual was too large to count every seed, fruit or

flower head, we counted the reproductive units on a quarter or half of the plant, and

multiplied as appropriate for a whole-plant estimate.
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heterophylla, Centaurea melitensis, Lotus wrangelianus, and Medicago polymorpha

39



−11 + 2.8 × x,  r2 = 0.75

50

100

150

20 30 40 50

length of fruit (mm)

n
u
m

b
e

r 
o

f 
se

e
d

s Clarkia bottae

−12 + 3.6 × x,  r2 = 0.873

25

50

75

100

10 15 20 25 30

length of fruit (mm)
n
u
m

b
e

r 
o

f 
se

e
d

s Clarkia purpurea

+ 0.81 × x,  r2 = 0.723

30

40

50

60

70

80

20 30 40 50 60

area of flower head (mm^2)

n
u
m

b
e
r 

o
f 

se
e
d
s Chaenactis glabriuscula

+ 1.5 × x,  r2 = 0.489

25

50

75

100

10 20 30 40

area of flower head (mm^2)

n
u
m

b
e
r 

o
f 

se
e
d
s Lasthenia californica

−3.5 + 0.69 × x,  r2 = 0.868

0

100

200

300

400

500

200 400 600

area of flower head (mm^2)

n
u

m
b

e
r 

o
f 

se
e
d
s Salvia columbariae
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Abstract

Interactions between plants and soil microbes can strongly influence plant diversity

and community dynamics. Soil microbes may promote plant diversity by driving neg-

ative frequency-dependent plant population dynamics, or may favor species exclusion

by providing one species an average fitness advantage over others. However, past

empirical research has focused overwhelmingly on the consequences of frequency-

dependent feedbacks for plant species coexistence and has generally neglected the

consequences of microbially mediated average fitness differences. Here we use the-

ory to develop metrics that quantify microbially mediated plant fitness differences,

and show that accounting for these effects can profoundly change our understand-

ing of how microbes influence plant diversity. We show that soil microbes can gener-

ate fitness differences that favor plant species exclusion when they disproportionately

harm (or favor) one plant species over another, but these fitness differences may also

favor coexistence if they trade off with competition for other resources or generate

intransitive dominance hierarchies among plants. We also show how the metrics we

present can quantify microbially mediated fitness differences in empirical studies, and

explore howmicrobial control over coexistence varies along productivity gradients. In

all, our analysis provides a more complete theoretical foundation for understanding

how plant-microbe interactions influence plant diversity.
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Introduction

Interactions between plants and soil microbes are widespread and consequential for

plant performance (Selosse et al. 2015; Peay 2016). Over the past two decades, ecol-

ogists have begun to quantify the complex ways in which these interactions can in-

fluence plant competition and community dynamics (van der Putten et al. 1993; van

der Heijden et al. 2008; Bever et al. 2012). The soil microbial community has been

implicated in regulating a number of ecological processes. Negative frequency depen-

dent growth in plant populations driven by the soil microbial community can help

maintain plant diversity in various communities including old fields (Pendergast et

al. 2013), Mediterranean shrublands (Teste et al. 2017), and tropical forests (Mangan

et al. 2010). Spatial variation in the soil microbial community can lead to variation in

plant productivity (van der Heijden et al. 2008) and can influence the outcome of plant

restoration (Wubs et al. 2016). Interactions between plants and soil microbes have also

been shown to influence plant succession and species invasions (Inderjit and van der

Putten 2010). Nevertheless, predicting the influence of soil microbes on the diversity

and dynamics of natural plant communities remains a challenge.

Empirical research has highlighted two general avenues by which soil microbes

can modify plant community dynamics. First, differential responses of plant species

to soil microbes can contribute to negative frequency dependent plant population dy-

namics that can promote diversity (Mangan et al. 2010; Bever et al. 2015). Many studies

find that plants grow less vigorously in soil harboring a microbial community culti-

vated by conspecific individuals than in soil harboring a microbial community culti-

vated by heterospecific individuals (reviewed in Kulmatiski et al. 2008). Moreover,

plant species that experience more negative microbial effects in greenhouse experi-

ments tend to be less abundant in natural communities (Klironomos 2002; Mangan et
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al. 2010; Kempel et al. 2018, but see Maron et al. 2016), suggesting a link between the

strength of these interactions and plant abundance. Our ability to project the influ-

ence of plant-microbe interactions in stabilizing coexistence has been both facilitated

and motivated by a theoretical framework developed in Bever et al. (1997) and Bever

(2003) (Box 1) which summarizes the effect of microbial feedbacks in a metric termed

IS. In the context of modern coexistence theory (Chesson 2000), plant-microbe interac-

tions that generate frequency-dependent feedback loops have a “stabilizing” (negative

feedbacks) or “destabilizing” (positive feedbacks) effect on the plant community.

The second avenue through which the soil microbial community can influence

plant community dynamics is by driving the replacement of plant species, especially

during succession or invasion. In a seminal study, for example, van der Putten et al.

(1993) found that succession in foredune communities might be driven by the low sus-

ceptibility of late-succession plant species to the pathogenic microbes that accumulate

in soils colonized by early-succession plants. Plant-microbe interactions can similarly

exacerbate plant invasions when invasive species are less susceptible than native plant

species to soil-borne pathogens in the exotic range (Reinhart et al. 2003; Callaway et

al. 2004; Inderjit and van der Putten 2010). While in all of these examples, the plant-

microbe interactions will inevitably cause some frequency dependent dynamics, if one

averages over the range of plant species frequencies in these systems, one species (of-

ten the late-succession or invasive species) is on average less sensitive to the harmful

effects of cultivated soil biota than the other. Following Chesson (2000), we term such

average differences among plants in their susceptibility to soil-borne pathogens or in

the benefits they accrue from belowground mutualists as “microbially mediated fitness

differences”. Importantly, in Chesson’s framework, these fitness differences are an ab-

straction, analogous to competitive ability, that reflect species performances across the
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full range of conditions they can experience; they are not per-capita growth rate dif-

ferences as might be expected from conventional uses of the term “fitness” (Chesson

2018).

The net effect of soil microbes on plant diversity depends both on the extent to

which they stabilize or destabilize plant interactions due to frequency-dependent feed-

backs, and on the extent to which they give one species an average fitness advantage.

In the extreme, microbial interactions that have stabilizing effects on plant coexistence

can nonetheless drive species exclusion if they also generate plant fitness differences to

an extent that exceeds their stabilizing influence. A similar result was shown by Bever

et al. (1997), who found that plant species pairswhose interactions are stabilized bymi-

crobes (negative IS) could fail to coexist if the microbial communities overwhelmingly

favor one plant species (Box 1). Still, the original analysis in Bever et al. (1997) and

subsequent theoretical analyses and extensions of the model (Bever 2003; Kulmatiski

et al. 2011; Revilla et al. 2013; Eppinga et al. 2018) focus primarily on the frequency-

dependent stabilizing or destabilizing effects of microbes, with less attention paid to

microbially mediated fitness differences.

Box 1

Bever’s model of pairwise plant-soil feedback

Here we summarize the pioneering plant-soil feedback framework developed

Here we summarize the pioneering plant-soil feedback framework developed in

Bever et al. (1997) and Bever (2003), and briefly summarize its use in empirical

research. The Bever framework considers the effects of microbes in a system in

which each of two plant species 1 and 2 cultivates a particular microbial com-

munity denoted A and B respectively. The aggregate soil microbial community
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depends on the relative abundance and influence of each plant species. These in-

teractions can generate a frequency-dependent plant-soil feedback via a two-step

process. First, as a plant population grows in proportion, the microbial commu-

nity becomes more similar to that plant’s characteristic community. Second, the

altered soil community influences the performance of both plant species at a rate

m. The effects of each microbial community on the plant species that cultivates

it (i.e. the effect of microbe community A on plant 1 and of microbe community

B on plant 2, denoted m1A and m2B respectively) are termed “direct feedbacks”.

The effects of each microbial community on the other plant (i.e. the effect of mi-

crobe A on plant 2 (m2A) and of microbe B on plant 1 (m1B)) are termed “indirect

feedbacks” (Fig. 1). Bever et al. (1997) showed that microbes can stabilize plant

dynamics when they exert more negative (or less positive) direct feedbacks than

indirect feedbacks, resulting in a negative value for the metric they termed IS.

Bever (2003) extended the framework to show that microbial feedbacks could

dictate the outcome of community dynamics even when there is simultaneous

plant competition.

Bever et al. (1997) show that the degree to which the system is stabilized (neg-

ative frequency dependent dynamics between the plant species) or destabilized

(positive frequency dependence) is given by the following:

IS = m1A − m2A − m1B + m2B

This term measures the degree to which the microbial community cultivated by

each plant harms the competitor more than the cultivating plant (or favors the

cultivating plant over its competitors). Negative IS causes negative frequency de-
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pendent dynamics (tendency towards coexistence), while positive IS means pos-

itive frequency dependent dynamics (tendency towards priority effects). Bever

et al. (1997) also showed that in addition to a negative IS, stable coexistence

requires that the microbes cultivated by each plant species influence the culti-

vating species more negatively (or less positively) than the other plant species

(m1A < m2A and m2B < m1B). Revilla et al. (2013) later developed a metric

termed JS, which generalizes IS to describe the sign of microbial feedbacks when

the plant species are unequal competitors.

Part of the reason behind the lasting influence of the plant-soil feedback theory

is that Bever (1994) and Bever et al. (1997) outlined a two-phase experimental

approach to estimate the microbial effects relevant to IS that remains a gold-

standard (Pernilla Brinkman et al. 2010; Bever et al. 2012). In the first phase

of these experiments, plants of each focal species are grown in sterilized soil

containing a field-collected inoculum. In the second phase, plants from all focal

species are grown in sterilized soil that is inoculatedwith amicrobial community

cultivated either by conspecifics or by one of the other focal species. The biomass

of plants grown on previously cultivated soils is generally used to estimate the

fourm terms to calculate IS for each species pair (e.g. Fitzsimons andMiller 2010;

Smith and Reynolds 2015; Bauer et al. 2017).

Although IS incorporates the effects of both microbial communities on both

plant species, relatively few empirical studies motivated by Bever’s frame-

work quantify all four components of the pairwise stabilization term directly

(Smith-Ramesh and Reynolds 2017). Considerably more plant-soil feedback

studies evaluate individual (rather than pairwise) negative feedbacks by mea-

suring the growth of one or a few focal plant species in soil harboring a
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conspecific-cultivated microbial community and in soil harboring a microbial

community cultivated by other plant species. For example, negative values

of a log-response ratio (ln(
biomassconspecific microbes

biomassheterospecific microbes
)) indicate lower plant growth

in soils with conspecific-cultivated microbial communities than in soils with

heterospecific-cultivatedmicrobial communities (corresponding tom1A −m1B <

0 in Bever’s framework), resulting in negative individual feedback for the focal

species (Reinhart 2012; Baxendale et al. 2014; Pfennigwerth et al. 2017; Teste

et al. 2017). Although it is true that all else being equal, a more negative in-

dividual feedback suggests a diversity-maintaining role for microbes, it should

be clear that assessing the net stabilizing effects of plant-microbe interactions on

plant diversity requires simultaneously assessing their effects across both plant

species. Moreover, as we show in the main text, focusing only on the stabilizing

effects of plant microbe interactions and not comparing these stabilizing effects

to microbially mediated plant fitness differences can lead to false conclusions

regarding the influence of soil microbes on plant diversity.

Empirical studies have also tended to emphasize the positive or negative

frequency-dependency arising from plant-microbe interactions and have typically

ignored the effects of microbially mediated fitness differences (reviewed in Ke and

Miki 2015; but see Chung and Rudgers 2016; Siefert et al. 2019). It is therefore difficult

to draw inferences regarding the total or net effects of soil microbes on plant species

diversity from many empirical plant-soil feedback studies. Part of the problem relates

to our lack of a theoretically justified metric for the microbially mediated fitness differ-

ences, analogous to the metric IS for quantifying frequency-dependent effects. Only

with such a metric can we more accurately infer the effects of microbial interactions

on plant species diversity by analyzing the interplay between their (de)stabilizing
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effects and the fitness differences they generate. Here, we use theory to explore

how plant-microbe interactions can generate fitness differences between competitors,

and derive a metric essential for quantifying the effect of such interactions on plant

diversity. To do so, we first define the microbially mediated fitness differences in

Bever’s classic plant-soil feedback model, a difference that favors one plant over

the other and thereby counterbalances the stabilizing or destabilizing effects of soil

microbes. We then explore the biological processes that can contribute to these fitness

differences by expanding the classic plant-soil feedback model to include a greater

range of soil microbial dynamics. Through a series of scenarios, we illustrate how

not accounting for microbially mediated fitness differences can lead to erroneous

conclusions about how microbes influence plant diversity. Lastly, we show how our

model relates to a much larger body of work in coexistence theory that allows us

to predict, for example, how the importance of plant-microbe interactions changes

along productivity gradients. In the discussion we explain how the fitness differences

identified here can be quantified in empirical studies and propose avenues of research

to give a more complete picture of how soil microbes shape plant diversity.

Microbes drive a fitness difference between plants in the
classic plant-soil feedback model

Webegin by analyzing themodel of plant-soil feedbacks among competing plants from

Bever (2003) to develop a metric that quantifies microbially mediated fitness differ-

ences. The following analysis also applies to the original competition-implicit model

in Bever et al. (1997) (Appendix S1). Bever (2003) models two plant species N1 and

N2 that interact via Lotka-Volterra competition and via their effects on soil microbial

communities A and B. With some minor notational changes from Bever (2003), the
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Figure 2.1: A) A schematic of the framework we use to model plant-microbe inter-
actions. Plants N1 and N2 compete via Lotka-Volterra competition (c’s) and via their
interactions with microbes A and B. As in Bever’s classic plant-soil feedback models,
plant species 1 cultivates soil microbial community A, and plant species 2 cultivates
microbial community B. In thismodel, SA and SB denote the density ofmicrobes A and
B respectively. Plants 1 and 2 cultivate microbial communities A and B at a per-capita
rate vA1 and vB2, respectively, and eachmicrobial community has a per-capita effect on
each plant species (m terms). B) The classic framework for plant-microbe interactions
occuring among competing plant species as described in Bever (2003). Plants com-
pete via Lotka-Volterra competition (c’s) and via their interactions with soil microbes.
Microbes A represent the microbial community characteristic of plant 1’s soil, and mi-
crobes B represent the microbial community characterstic of plant 2’s soil. SA and SB
denote the proportion of of microbes A and B in the soil, so that SA + SB = 1. The rate
at which plant 2 cultivates microbes B, relative to the rate at which plant 1 cultivates
microbes A, is denoted v.
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dynamics of plant densities N are as follows:

1
N1

dN1

dt
= g1(1 − c11N1 − c12N2 + m1ASA + m1BSB) (Eqn. 2.1)

where g1 represents the intrinsic growth rate of plant species 1 in the absence of com-

petitors and microbial effects, and c11 and c12 represent the intra- and interspecific

per-capita competitive effects on plant 1, respectively. The microbial community char-

acteristic of plant 1’s soil is denoted A, and the microbial community characteristic of

plant 2’s soil is denoted B. SA denotes the proportional effect of plant 1 on the com-

position of the soil microbial community, and the proportional effect of plant 2 on the

soil microbial community, denoted SB, is equal to 1− SA. m1A is the growth of species

1 on soil containing only microbial community A minus its growth on uncultivated

soil (Bever et al. 1997); an analogous definition exists for m1B. Positive values of m1A

or m1B indicate higher plant performance in the presence of cultivatedmicrobes, while

negative values of m1A or m1B indicate lower plant performance in the presence of cul-

tivated microbes. The proportions SA and SB therefore scale the microbial effects on

plant growth.

In Bever’s model, the rate of change in SA depends on the relative frequency of

plants 1 and 2, and on the relative degree to which plant 2 versus plant 1 cultivate their

characteristic soil microbial community, with this relative degree denoted v:

dSA

dt
= SA(1 − SA)

�
N1

N1 + N2
− v

N2

N1 + N2

�
(Eqn. 2.2)

We focus on the effects of plant-microbe interactions on plant dynamics by assum-

ing that the intra- and inter-specific competitive effects of each plant species are equal

(i.e. c12 = c22 and c21 = c11; see Appendix S1 for the coexistence criteria when this as-
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sumption is violated). With this assumption, the per-proportion growth rate of plant

species 1 when invading a system with plant species 2 at equilibrium, denoted IGR1,

is as follows (see Appendix S1 for derivation):

IGR1 = g1(m1B − m2B)

This shows that the invasion growth rate of plant 1 is determined by the rela-

tive effect of the resident plant 2’s soil microbial community (i.e. microbial community

B) on each plant species. Note that g1, the growth in the absence of microbes, sim-

ply scales the relative effects of the resident microbial community on the two plant

species. Assuming g1 is positive, it has no effect on the sign of the invasion growth

rate and is therefore irrelevant to the mutual invasibility condition. Following Ches-

son (2000), we can express the scaled (IGR1/g1) invasion growth rate IGR
′
1 as the sumof

the microbially mediated fitness difference and the stabilizing effects of plant-microbe

interactions:

IGR
′
1 = (fitness1 − fitness2) + stabilization

As Bever et al. (1997) have shown, microbial interactions stabilize plant coexis-

tence whenmicrobes more strongly suppress (or more weakly promote) the growth of

their cultivating plant species than of the other plant. In the Chesson-type decompo-

sition of the invasion growth rate, the stabilization due to microbes, which contributes

to both species’ invasion growth rates, is as follows (Appendix S1):

stabilization = −1
2

IS = −1
2

(m1A − m1B − m2A + m2B) (Eqn. 2.3)
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Recall that m1A is the difference between species 1’s growth with soil microbial com-

munity A and its growth in uncultivated soil. Given that m1B is the difference between

species 1’s growth with microbial community B and its growth on the same unculti-

vated soil, m1A − m1B is independent of growth on uncultivated soil (Appendix S1).

Thus, as noted by Bever et al. (1997), the degree to which microbes stabilize plant

interactions is not affected by the growth of plants in uncultivated soils, simplifying

experimental parameterizations of IS. This result also makes intuitive sense, since IS

describes the average consequences of plants growing with soil microbes cultivated

by one plant species versus another; growth on uncultivated soil is irrelevant to this

problem. As in Bever’s past work, negative frequency dependent dynamics (negative

IS) increase invasion growth rates, and positive frequency dependent dynamics (pos-

itive IS) decrease invasion growth rates. However, as we explain next, the net effect of

plant-microbe interactions on plant diversity will depend on whether their stabilizing

effect exceeds the fitness difference they generate.

The microbially mediated average fitness of plant 1 is determined by the aver-

age degree to which the two microbial communities A and B benefit or harm plant 1

(Appendix S1):

fitness1 =
1
2

(m1A + m1B) (Eqn. 2.4)

An analogous expression exists for plant 2. When microbial communities A and B are

on averagemore pathogenic or lessmutualistic towards one plant species than another,

they generate a fitness difference:

fitness difference =
1
2

(m1A + m1B − m2A − m2B)

Importantly, proper parameterization of the microbially mediated fitness differ-
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ence requires measuring the plant growth on uncultivated soil, something that is not

required for determining the stabilizing effect (IS). Following from the definition of

each m term as the growth G on cultivated (subscripted A or B) versus uncultivated

(subscripted O) soils (e.g. m1A = G1A − G1O, Bever et al. (1997)), the fitness difference

can be calculated as follows:

fitness difference =
�

1
2

(G1A + G1B) − G1O

�
−

�
1
2

(G2A + G2B) − G2O

�
(Eqn. 2.5)

The fitness difference can therefore be interpreted as the difference between species 1

and 2 in howmuch their growth benefits or suffers, on average, from the soil microbial

community cultivated by the two competitors. This benefit or harm is measured with

reference to growth on uncultivated soil (G1O or G2O, depending on the focal plant

species).

In the absence of stabilization, the invasion growth rate is positive for only one

species, and coexistence is impossible. Whenmicrobial stabilization of plant dynamics

is sufficiently large to overcome the fitness disadvantage of the weaker plant, microbial

interactions can cause both plants to have positive invasion growth rates and therefore

coexist. This condition is equivalent to the feasibility criteria from Bever et al. (1997)

stating that stable coexistence is possible when IS is negative and the effects of each

microbial community are more negative (or less positive) on the species that cultivates

it than on the other plant (i.e. m1A < m2A and m2B < m1B; Appendix S1). In sum,

soil microbes enhance plant coexistence with negative values of IS, but also mediate

an average fitness difference that favors the exclusion of one plant species.
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A closer evaluation of microbial effects on plant fitness
differences

A deeper understanding of the microbial interactions that drive plant fitness differ-

ences can come from a fuller exploration of the dynamics of soil microbes. Following

Eppinga et al. (2006), we expand the microbial population dynamics in Bever’s frame-

work to model the density (rather than frequency) of the two soil microbial commu-

nities. Increasing the range of microbial dynamics possible in the model admittedly

makes the theory less easily parameterized with soil training experiments, but allows

us to include a greater range of soil microbial dynamics that can favor one plant over

another. We can then see how these dynamics are encapsulated within the inter- and

intra-specific competitive coefficients underlying coexistence or exclusion, and what

assumptions need to be made to yield versions of the model that are more easily pa-

rameterized. Moreover, by removing some of the constraints onmicrobial dynamics in

the original formulation of the plant-soil feedback model, we can derive stabilization

and fitness difference terms that integrate the effects of both plant competition and

microbial feedbacks, and formally link the model to broader coexistence theory. As

we show in the final section of this paper, doing so allows us to explore, for example,

how resource availability influences the importance of plant-microbe interactions for

competitive outcomes.

In our expanded model, plant dynamics still follow Eqn. Eqn. 2.1, but we now

model the density S of soil microbial communities A and B that are cultivated by plant

species 1 and 2 respectively, and suffer from density-dependent mortality:

1
SA

dSA

dt
= vA1N1 − qASA (Eqn. 2.6)
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An analogous equation exists for SB. This model assumes that species 1 cultivates soil

microbial community A at a constant per-capita rate vA1, and that the density of A

declines due to density-dependent mortality, qA (Stevens and Holbert 1995; Woody et

al. 2007). Following classic plant-soil feedback theory, SA and SB denote densities of

the unique microbial communities cultivated by plant species 1 and 2 respectively. In

this framework, the densities SA and SB can vary independently of each other– they

are no longer proportions constrained to sum to 1, and SB can no longer be expressed

as 1 − SA. Although the two microbial communities SA and SB may directly interact

with each other in natural systems, we assume in the main text that these interactions

do not significantly affect the overall microbial dynamics (see Appendix S2 for amodel

that includes microbial competition). As this model is coupled to the plant dynamics

in Eqn. Eqn. 2.1, the m terms in the plant dynamics equation are now interpreted

as the per-capita effect of each microbial community on plant growth. The units and

definitions of the parameters are summarized in Table S2.1.

These changes to the microbial dynamics equations can increase the range of be-

havior themodel is capable of producing relative to the original Bevermodels, but they

inevitably make the model less coupled to the two-phase experiments that so nicely

parameterize Bever’s model (Box 1). However, as we show in the following scenarios

and in the discussion, many insights provided from the model developed here apply

regardless of whether one begins with a frequency-based framework or our extended

version.

To evaluatemicrobial effects on plant dynamics in terms of fitness differences that

favor one plant over the other, and niche differences that stabilize their interaction by

favoring species that drop to low density, we assume that microbial dynamics operate

on a faster time scale than the plants. This assumption is consistent with the general
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expectation thatmicrobes have shorter generation times and faster dynamics than their

plant hosts (Bever et al. 2012; but see Treseder and Lennon 2015). With this separation

of timescale assumption, the per-capita effect of plant j on plant i, which is used to

calculate the degree of niche overlap and the magnitude of the fitness difference, is

termed αij and is expressed as follows (see Appendix S2 for derivation):

cαij =
�

cij −
miXvXj

qX

�
(Eqn. 2.7)

where X = A when j = 1, and X = B when j = 2. This expression shows that two

processes influence the per capita effect of plant j on plant i. First, plant j harms plant

i through direct competition (cij) independent of the soil microbial community. Sec-

ond, plant j can cultivate a microbial community X that affects plant i’s population

growth. The sign of this effect depends on whether the microbial community culti-

vated by plant j is on average beneficial for plant i (with positive m’s that weaken the

total per capita suppression) or suppressive (with negative m’s that increase the per

capita suppression). The strength of this effect is determined by how strongly the mi-

crobes growwith plant j (vXj), how strongly the microbes affect plant i (miX), and how

well the microbes survive in the soil (qX). The effect of plant j on plant i due to com-

petition alone or due microbial interactions alone can be assessed by setting the other

mechanism equal to zero. For example, in the absence of competition (cij = 0), the per

capita suppression of plant species i by species j is simply determined by the degree

to which plant species j promotes a microbial community that harms species i.

When the cultivated microbial community has a net positive effect on a plant

species (miXvXj
qX

> 0), there is the potential for net facilitation (αij < 0). For example,

plant 2 may facilitate plant 1 when the microbial community it cultivates (commu-

nity B) is more beneficial for plant 1 than plant 2’s competitive suppression of plant 1
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(i.e. c12 < m1AvB2
qB

, resulting in α12 < 0). Such interspecific facilitation generally makes

coexistence a non-issue. When only one plant species is facilitated, coexistence sim-

ply requires that the species being facilitated limits itself more than it limits the other

species (α21 < α11 in this example). When both plant species facilitate one another,

coexistence is assured. We therefore focus the remainder of this paper on cases where

the net effects of plants on neighbors are negative, meaning interspecific competition is

stronger than any microbially mediated interspecific facilitation (i.e., c12 > m1BvB2
qB

and

c21 > m2AvA1
qA

). Similarly, because species can never indefinitely facilitate themselves

(which would lead to unbounded growth), we also assume net negative intraspecific

interactions. These conditions are automatically satisfied when microbe effects (miX)

are themselves negative.

The relative strength of interspecific and intraspecific suppression determines the

degree of niche overlap ρ as follows (Chesson 2012):

ρ =
�

α12α21

α11α22
(Eqn. 2.8)

This term reflects the degree towhich the two plant species limit heterospecifics versus

conspecifics. There is complete niche overlap (ρ = 1) when each plant species equally

affects the growth of con- and heterospecifics. The niche difference is simply the com-

plement of the niche overlap (1 − ρ). In this model, two types of biological differences

can stabilize coexistence by reducing niche overlap. First, species differences that drive

stronger intra- than interspecific competition (c11 > c21 and c22 > c21) can stabilize co-

existence. Second, microbial interactions can stabilize coexistence when the microbial

community cultivated by each plant is on average more harmful (or less beneficial)

to the cultivating species than to the other plant. The stabilization due to competition

alone (ρcomp) or due tomicrobial interactions alone (ρmicr) can be assessed by setting the
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microbial or competition terms, respectively, equal to zero in ??. Assuming symmetry

in all parameters except the microbial effects on plants, the niche overlap term ρ has a

nearly identical interpretation to IS in Bever’s framework: strong conspecific andweak

heterospecific microbial suppression drive a negative plant-soil feedback indicated by

negative values of IS, and they drive low niche overlap (ρ < 1) in our framework.

Whether species coexist is determined both by the degree of niche overlap, and by

their average fitness differences. The ratio of the two species’ geometric mean suppres-

sion by intraspecific and interspecific individuals determines their fitness difference

κ2/κ1 as follows (Godoy and Levine 2014):

κ2

κ1
=
�

α11α12

α22α21
(Eqn. 2.9)

The fitness difference reflects the relative degree to which each species is influenced by

competition and microbial interactions, irrespective of which plant cultivates the mi-

crobes. Fitness differences are large when species differ in their sensitivity to competi-

tion, as explained in Chesson (2000) and Godoy and Levine (2014), or when they differ

in their sensitivity to the microbial community. As above, the fitness differences gen-

erated by competition alone (κ2/κ1
comp) or by microbial interactions alone (κ2/κ1

micr)

can be calculated by setting the other process equal to zero in ??.

Coexistence depends on small niche overlap (a large niche difference) relative to

the fitness differences as follows:

ρ <
κ2

κ1
<

1
ρ

(Eqn. 2.10)

Algebra shows that this inequality is equivalent to the well-known condition from

two-species coexistence in Lotka-Volterra competition models, which requires that in-
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traspecific competition is stronger than interspecific competition (i.e. α21 < α11 and

α12 < α22, Appendix S2, and the two species equilibrium exhibits the same stability

properties). Species with large fitness differences (κ2/κ1 further from 1) can coexist

only when there is low niche overlap (ρ → 0); conversely when species have high

niche overlap, coexistence is only possible if the two species have very similar ecolog-

ical fitness (κ2/κ1 close to 1, Fig. 2.2A). Microbial interactions can also drive positive

frequency dependence leading to a priority effect when they cause net intraspecific

suppression to be weaker than interspecific suppression, resulting in ρ > 1; stable

coexistence is impossible in such cases.

It is important to note here that the terms describing plant-microbial interactions

are essential to determine the interaction terms α, which in turn determine both niche

overlap and fitness difference. Thus, the microbial influence on plant species diversity

will result from effects on both the niche overlap and the fitness difference.

Why microbially mediated fitness differences matter

We now elaborate three scenarios that demonstrate why quantifying microbially me-

diated fitness differences is important for understanding how soil microbes influence

plant coexistence. Rather than forging new theoretical results (see Bever 2003; Revilla

et al. 2013; Eppinga et al. 2018), each of these scenarios aims to make obvious for

empiricists measuring only IS that the microbially mediated fitness difference is an

equally important metric for inferring microbial effects on coexistence.

Our three scenarios include one in which microbes favor exclusion even when

they cause negative plant-soil feedback, one in which microbes favor coexistence even

when they cause no plant-soil feedback, and one in which microbes promote diver-
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Figure 2.2: Outcomes of coexistence in the microbe density model. A) Coexistence is
possible when stabilizing effects between species are stronger than the fitness differ-
ence between them, i.e. when the inequality ρ < κ2/κ1 < 1/ρ is satisfied. Arrows indi-
cate the change in net fitness and niche differences due to plant-microbe interactions.
B) In Scenario S1, plants coexist when microbial effects are set to zero (dashed lines).
The plant-interactions further stabilize this interaction; however, the net effect of mi-
crobes is to drive the exclusion of N1 (solid lines) due the large fitness difference they
generate. C-E) In Scenario S2, neither competition nor microbial interactions alone sta-
bilize coexistence among the plant species (C, D). However, when both mechanisms
occur simultaneously, they promote coexistence both by equalizing fitness and driving
a niche difference (E).
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sity in multi-species plant communities despite favoring exclusion among pairs. The

parameter values used in each of these scenarios are presented in Appendix S3.

Scenario 1: Microbes favor exclusion even when they cause negative
plant-soil feedback

We first consider a scenario (S1 in Fig. 2.2A) where measuring the microbially medi-

ated fitness differencewould be key to properly inferring that the net effect of microbes

is to favor plant species exclusion. The results of this scenario also follow from the fea-

sibility criteria of Bever et al. (1997), though this earlier result was not expressed in

terms of microbially mediated fitness differences. We consider a plant species pair

that can coexist in the absence of microbial effects due to stronger intraspecific than

interspecific competition (dashed lines in Fig. 2.2B). The plant-microbial interactions

in this scenario further stabilize the system (ρmicr = 0.617).

However, in this scenario, microbes also have the effect ofmore strongly suppress-

ing plant 1 than plant 2, causing a substantial fitness difference ((κ2/κ1)micr = 3.086)

that overcomes their stabilizing effect. Indeed, when competition and plant-microbe

interactions act together, plant 1 is excluded from the system because its microbial in-

teractions give it such low fitness. Thus, contrary to the conclusion from analyzing

microbe effects on niche differentiation alone, properly predicting that the net effect

of microbial interactions is to drive the exclusion of species 1 (solid lines in Fig. 2.2B)

requires measuring the microbially mediated fitness difference as well.
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Scenario 2: Microbes promote coexistence even without generating
negative plant-soil feedback

Next, we consider a scenario (S2 in Fig. 2.2A) that highlights how measuring micro-

bially mediated fitness differences is key to inferring the interactive effects of compe-

tition and plant-microbe interactions. The model developed here and its associated

measure of the niche difference (Eqns. ?? and Eqn. 2.9) not only allows us to more pre-

cisely define the basis of microbially mediated fitness and niche differences, but also

to quantify the effects of new stabilizing mechanisms that are more difficult to resolve

under the Bever framework. For example, it is well known that a competition-defense

trade-off can create opportunities for plant coexistence beyond the stabilizing opportu-

nities from each mechanism alone (Holt et al. 1994; Mordecai 2011). This tradeoff can

also involve plant-microbe interactions (Laliberté et al. 2014; Bever et al. 2015; Lekberg

et al. 2018).

We consider a system in which plant species differences in their sensitivity to

competition drive a competitive fitness difference in favor of plant 1 (κ2/κ1
comp = 0.5),

and there is no competition-mediated stabilization (ρcomp = 1). Thus, in the absence of

microbial interactions, competition would cause the exclusion of plant 2, the inferior

competitor (Fig. 2.2C). However, there is a tradeoff such that plant 1, the stronger

competitor, is more sensitive to pathogenic soil microbes. By also assuming that the

two plants have complete microbial niche overlap, microbes drive a fitness difference

in favor of plant 2 (κ2/κ1
micr = 2.5) and provide no stabilization (ρmicr = 1). Thus,

independent of competition, plant-microbe interactions simply favor the exclusion of

plant 1 (Fig. 2.2D).

However, when the effects of competition and plant-microbial interactions are

considered simultaneously, it becomes clear that microbes in fact promote coexistence
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in this system (Fig. 2.2A, 2E). Two processes contribute to this outcome. First, com-

petitive and microbial interactions jointly equalize plant fitness (κ2/κ1
net = 1.025), as

species 1 has superior competitive ability but suffers more from microbes, and vice-

versa for species 2. Second, competitive and microbial interactions reduce net niche

overlap from 1 to ρnet = 0.878 (Fig. 2.2A). In other words, although plant-microbial

interactions alone do not create a negative plant-soil feedback that stabilizes plant co-

existence in this scenario, their interplaywith plant competition provides an additional

axis for niche differentiation that promotes species diversity in this system (Chesson

and Kuang 2008). This scenario provides another example of how the total effects of

soil microbes on diversity in natural plant communities can only be understood by

studying microbially mediated stabilization and fitness differences relative to those

caused by other ecological process like competition.

Scenario 3: Microbially mediated fitness differences can help main-
tain plant diversity in multispecies systems through indirect effects
among competitors

As in the previous two scenarios, most theoretical and empirical plant-soil feedback

research has focused on the effects of plant-microbial interactions on pairwise plant

competition (but see Eppinga et al. (2018) for an n-species version of IS that incorpo-

rates the structure of the feedback network). Our next scenario illustrates that while

inferring the effects of soil microbes from the pairwise stabilization and fitness differ-

ences they generate might obscure their role in influencing plant diversity in systems

of more than two species, this role can be understood from the network of pairwise fit-

ness differences. To explore such a multispecies system, we extend Eqns Eqn. 2.1 and

Eqn. 2.6 to model the interactions between three plant species and the microbial com-

munities they each cultivate (Appendix S3). Importantly, the inequality in Eqn. 2.10
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(or the equivalent condition that each species suppress itself more than it suppresses

the other) no longer fully explains coexistence in this multispecies model (Barabás et

al. 2016), though lower values of αij/αjj generally favor diversity (Chesson 2018). In

other words, evaluating the stabilization and fitness differences that microbes medi-

ate between each species pair might not predict whether they promote plant diversity

across the entire system, because the outcome of any given pairwise interaction can be

modified by the indirect effects of microbes cultivated by other plant species.

For this scenario, we examine a system of three species where microbially medi-

ated pairwise fitness differences can promote multispecies coexistence by creating an

intransitive dominance hierarchy (i.e. no single species has a fitness advantage over all

others, May and Leonard 1975; Soliveres et al. 2018), a condition which was recently

explored by Eppinga et al. (2018). We parameterize the system such that each plant’s

microbial community gives the cultivating species a fitness advantage over one other

species in the system. Specifically, the interactions with soil microbes generate an eco-

logical “rock-paper-scissors” dynamic (Allesina and Levine 2011; Gallien et al. 2017)

in which plant 1 has an advantage over plant 2, plant 2 an advantage over plant 3, and

plant 3 an advantage over plant 1. In this scenario, microbial interactions also stabilize

the interaction between each pair, but this stabilizing effect is not sufficient to over-

come any of the pairwise fitness differences they generate (Fig. S3.1). Thus, for any

given plant species pair, the microbially mediated fitness differences drive exclusion

(Fig. 2.3B-D). Nonetheless, by evaluating the dynamics of this system when all three

plant species are present, it becomes clear that the indirect effects of the microbially

mediated fitness differences in this scenario in fact create an intransitive loop that al-

lows coexistence of all three species (Fig. 2.3A). In the present parameterization, all

three plant species coexist even when the soil microbial community drives exclusion
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among any given pair, but one can also construct scenarios in which the network of mi-

crobially mediated fitness differences reduces diversity in multispecies systems even

when microbial stabilization allows each individual species pair to coexist (Appendix

S3). In general, accurately predicting whether soil microbes favor or hinder plant di-

versity in speciose systems from studies of pairwise plant interactions is a difficult task,

one that will be made more tractable by interpreting microbial effects on the stability

of plant interaction networks in diverse communities (Barabás et al. 2016; Levine et al.

2017; Eppinga et al. 2018).

Integrating plant-microbe interactions into broader coex-
istence theory generates useful predictions

As demonstrated in the three scenarios of the prior section of this paper, the plant-

microbe interaction model developed here allows us to integrate our work into a large

body of theory regarding the coexistence of species competing for resources and in-

teracting via organisms at other trophic levels. This allows us to model a wide range

of ecological scenarios– for example, one can modify the multispecies model used in

Scenario 3 to decompose the effects of the soil microbial community as awhole into the

effects of particular microbial taxa or guilds (Appendix S4). As the last section of this

paper, we demonstrate the value of integrating plant-microbe feedbacks with broader

coexistence theory by considering a model of explicit resource competition and plant-

microbe interactions that we use to make theoretically justified predictions regarding

the relative importance of microbial interactions across a productivity gradient.

Recent advances in coexistence theory have made it clear that the effects of den-

sity dependence arising from trophic interactions are symmetric to those of resource
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competition, and that the relative importance of each mechanism to determining the

diversity of a given guild depends on a variety of ecological conditions (Chesson and

Kuang 2008). These insights can be extended to provide a theoretical basis for un-

derstanding the relative importance of plant-microbe interactions and competition in

natural communities. To do so, we unite the effects of explicit resource competition

and plant-microbe interactions into a single model with plants as the focal guild con-

suming resources and interacting with microbes (Fig. 2.4A). For simplicity, the effects

of microbes on plant growth in ourmodel operate independently of plant resource up-

take; models in which plant-microbe interactions directly influence the nature of plant

resource uptake also yield valuable insights (Umbanhowar and McCann 2005; Jiang

et al. 2017). The plant-microbe interactions in this model follow exactly from the pre-

vious model (Eqns Eqn. 2.1 and Eqn. 2.6). Following MacArthur (1970) and Chesson

andKuang (2008), wemodel resources l that accumulate logisticallywith a low-density

growth rate of rl until they reach a resource carrying capacity of 1/sl. Plants consume

resources at a rate u and convert resources into plant population growth. Equations

and analyses for this model are presented in Appendix S5.

Assuming that both resource and microbe dynamics occur more rapidly than

plant dynamics (MacArthur 1970; Chesson and Kuang 2008), the per-capita suppres-

sion of plant species i by species j in this model (α′ij) is as follows (see Appendix S5 for

derivation):

α′ij =




resource competition effect� �� �
∑

l

uilujl

slrl
−

microbe effect� �� �
miXvXj

qX


 (Eqn. 2.11)

where X = A when j = 1 and X = B when j = 2. The left term in α′ij shows that the
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strength of resource competition depends on the rate of resource consumption (u’s)

and on the nature of resource dynamics in the system (sl and rl). When plants i and j

consume entirely distinct resources, the left term is equal to zero, and plant j’s inter-

action with plant i is determined only via the effect of the soil microbial community it

cultivates. However, when plant species overlap in resource consumption, their over-

all interaction is determined jointly by resource competition and the microbial com-

munity each plant cultivates. As in the interaction term for the previous model (??),

the sign and strength of microbial effects is determined by the rate at which plant j

cultivates microbes that affect the growth of plant i. The niche overlap ρ and fitness

differences κ2/κ1 in this model are calculated in the sameway as in the previous analy-

sis (Eqns. Eqn. 2.8 and Eqn. 2.9 respectively) (Chesson 2012). Importantly, this model,

a simple extension of Chesson and Kuang (2008), can be used to make theoretically

justified predictions regarding the relative contribution of resource competition and

plant-microbe interactions to the outcome of plant competition as a function of site

productivity (rl). In this model formulation, the interspecific interaction parameters

α′, and ultimately the net niche overlap ρ, are more strongly driven by the degree to

which plants overlap in their resource use in low-productivity communities (i.e. low

values of rl). By contrast, in productive communities (high rl), species interactions are

more strongly influenced by the soil microbial communities, and these interactions

strongly determine the net niche overlap (Fig. 4B). A similar result can be derived for

the fitness differences (Fig. S5.1 in Appendix S5). Moreover, the qualitative result that

microbial niche differences more strongly influence net niche overlap at high resource

levels than at low resource levels also holds in systems in which microbial effects on

plants (i.e. the m terms) themselves shift from being mutualistic in low-resource envi-

ronments, to pathogenic in high-resource environments (Revillini et al. 2016, Figure

S5.2). This result is not due to changes in resource niche overlap along the gradient– in
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Figure 2.4: A) Schematic of amodel with explicit resource competition. Plant-microbe
interactions (top two trophic levels) are modeled as in Fig. 1A. Populations of plants
1 and 2 grow as they take up resources l. The u terms denote the per-capita resource
uptake rates of each resource by each plant. Resources are modeled as experiencing
logistic growth with a low-density growth (replacement) rate of rl until they are satu-
rated at the carrying capacity 1/sl. See Appendix S5 for dynamics equations. B) The
net niche overlap between plants represents the joint influence of the niche overlap
due to shared resource consumption and the niche overlap due to shared microbial
interactions. The resource use niche overlap exerts a relatively strong influence on the
net ho when resource replacement rates are low; at higher levels of resource replace-
ment rate, the net ho is more strongly influenced by the niche overlap due to microbial
interactions.
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our analysis, the niche overlap due to resource competition is just as high in productive

sites as in low-productivity sites. Rather, this model predicts that when resources are

less limiting, resource competition more weakly affects plant community dynamics.

It is important to note that this result is in part due to our formulation of a model in

which the direct microbial effects on plant-plant interactions operate separately from

plant resource uptake (i.e. microbes do not directly change plant resource uptake dy-

namics), as a result of which the productivity term rl appears only in the denominator

of the resource competition component of Eqn. 2.11.

Discussion

Plant-microbe interactions can drive a fitness difference that provides one plant species

an average fitness advantage over the other in pairwise competition. These fitness dif-

ferences arise from differences in plant species’ ability to tolerate the pathogenic soil

microbes or benefit from the mutualistic soil microbes cultivated by different plant

species. We show that ignoring microbially mediated fitness differences and only con-

sidering the stabilizing or destabilizing effects of plant-microbe interactions, as is fre-

quently done in empirical analyses, can lead to erroneous conclusions regarding the to-

tal effects of soil microbes on plant diversity. With an extension of Bever et al. (1997)’s

pioneering theoretical framework of plant-soil feedbacks, we show that the degree to

which soil microbes can drive plant coexistence or exclusion is influenced by the rela-

tive sensitivity of each plant to the microbial communities, as well as the rate at which

each plant influences the growth of persistent soil microbial communities. Finally, we

show thatmodelingmicrobial dynamics in terms of their density allows us to organize,

interpret, and predict the effects of microbes in light of a large body of coexistence the-

ory that considers the drivers of coexistence among consumer-resource communities.
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We focus our discussion on the implications of our theoretical results for empir-

ical work testing how interactions between plants and soil microbes influence plant

diversity. To do so, we first show how microbially mediated plant fitness differences

can be quantified in typical plant-soil feedback experiments. We then discuss some

limitations to the standard experimental approach used in these studies. Last, we sug-

gest avenues for future research to integrate insights from our theoretical work and

develop a more complete understanding of how soil microbes influence plant diver-

sity.

Empirically measuring the microbially mediated plant fitness differ-
ence

Our plant-soil feedback model with microbial density dynamics showed that micro-

bial effects on plant diversity depend on microbe dynamics terms that are difficult to

measure in two-phase plant-soil feedback experiments (e.g. the v and q terms in Eqn.

2.6). Thus, we expect that until it becomes more feasible to quantify these microbial

dynamics parameters, most empirical studies of plant-soil feedback will continue to

use the two-phase approach (Box 1) to parameterize Bever’s microbe frequency-based

framework. Nevertheless, the conceptual insights from our microbial density-based

model apply to the interpretation of these empirical studies. Moreover, our analysis

suggests that variation in microbial community dynamics can be consequential to de-

termining the effects of soil microbes on plant diversity, and that empirically testing

assumptions regardingmicrobial dynamics that are implicit in the standard two-phase

experimental approach should help refine our understanding of how plant-microbial

interactions influence plant species diversity. For example, assumptions about how

each plant species favors its microbial community can be tested with greenhouse ex-
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periments capturing the temporal dynamics of plant-soil feedbacks (e.g. Hawkes et

al. 2012; Wubs and Bezemer 2017; Bezemer et al. 2018) and with more refined mea-

surements of microbial population dynamics now possible with advances in DNA se-

quencing and cell counting technologies (e.g. QuantitativeMicrobiome Profiling (Van-

deputte et al. 2017)).

Regardless of whether one begins with the model of Bever (2003) (or Bever et al.

(1997)) or amore complex version like the onewe develop here, our analyses show that

empirically quantifying the microbially mediated fitness difference is an essential step

for understanding the full effects of soil microbes on plant coexistence. Doing so is

rather straightforward following Eqn. Eqn. 2.5. One simply needs the growth of both

plant competitors on soils cultivated by both plants and on a reference uncultivated

soil, as noted in the text before Eqn. 2.5. Thus, at a minimum, soil feedback exper-

iments following the two-phase approach with an additional uncultivated soil treat-

ment during the second phase provide the necessary empirical data for parameterizing

both the stabilization term and the microbially mediated fitness difference. With such

information, one can compare the magnitude of the stabilization term (− 1
2 IS) to the

microbially mediated fitness difference (Eqn. 2.5).

Recommendations for future empirical plant-soil feedback studies

One limitation of the classic plant-soil feedback experimental design (Box 1) is that the

coexistence consequences of soil microbes are not clear without contextualizing mi-

crobially mediated fitness differences within those generated by competition or other

ecological processes. For example, soil microbes can favor plant diversity (reduce the

degree of niche differentiation required for coexistence) even when they generate no

negative frequency dependence if they simply give a fitness advantage to a weak re-
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source competitor. Indeed, in Scenario 2, the joint effect of competition and plant-

microbe interaction was to stabilize plant interactions even when neither mechanism

alone promotes coexistence. Similarly, whether microbially mediated fitness differ-

ences quantified in soil feedback studies actually reduce diversity in nature will de-

pend on whether they ameliorate or augment fitness differences based on plant com-

petitive ability. Although this competitive information is not frequently quantified in

empirical plant-soil feedback studies, evidence is accumulating that plant species ex-

perience trade-offs between competitive ability and susceptibility to soil pathogens or

mutualists (Laliberté et al. 2014; Lekberg et al. 2018). This suggests that soil microbes

might indeed frequently promote plant diversity in nature by equalizing competitive

fitness differences.

We therefore echo recent calls (Smith-Ramesh and Reynolds 2017; Lekberg et al.

2018) for experiments that explicitly investigate the joint effects of plant-microbe in-

teractions and resource competition in nature. The niche and fitness difference terms

we derive from our density-based model of plant-microbe interactions (Eqns. ??–Eqn.

2.9) provide a foundation for future studies that couple population dynamics models

with greenhouse and field experiments (Hart et al. 2018) to more thoroughly assess

the influence of soil microbes on plant diversity.

When should microbes most strongly influence plant diversity?

The final goal of our analysis was to show that modeling microbial population dy-

namics in terms of their absolute abundance can allow us to apply insights from a

vast body of ecological theory to understanding the role of plant-microbial interac-

tions in shaping plant diversity. Specifically, we explored how the relative importance

of plant-microbe interactions and resource competition changes along a productivity
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gradient, a topic for which a number of authors have recently posed hypotheses (van

der Putten et al. 2016; Smith-Ramesh and Reynolds 2017; Lekberg et al. 2018). These

hypotheses are generally motivated by empirical observations of variation in the ef-

fect sizes of competition and plant-microbe interactions on the growth of individual

plants at different sites. However, the consequences of such variation in plant growth

for the population dynamics of competing species are difficult to evaluate without a

theoretical model (Chesson and Huntly 1997; Chase et al. 2002; Hart and Marshall

2013). Our analysis of one such model shows that even when the strength of com-

petitive and microbial interactions is held constant, the relative importance of plant-

microbe interactions for plant dynamics increases with productivity (Fig. 2.4B, Fig.

S5.1). We encourage future modeling efforts to incorporate observed variation in the

direction and strength of plant-microbe interactions across productivity gradients into

plant population dynamicsmodels, aswell as the potential formicrobes to directlyme-

diate plant resource uptake. Such models and associated empirical studies will refine

our understanding of the relative importance of soil microbes in shaping natural plant

communities.

While tremendous progress has been made by treating the soil microbial com-

munity cultivated by plants as a black box, our ability to predict the consequences of

plant-microbe interactions to the dynamics of natural plant communities will also im-

prove with a more mechanistic understanding of how the population dynamics and

effects of individual components of the microbial community (e.g. pathogens, mutu-

alists, saprophytes) vary across environments (van der Putten et al. 2016; Bennett and

Klironomos 2018; Lekberg et al. 2018). A growing number of studies are building this

understanding by performing experiments that involve modifying targeted compo-

nents of the microbial community across resource gradients (e.g. Jiang et al. 2018), but
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it is difficult to evaluate results from these studies in the context of plant-soil feedback

theory and the paired two-phase experimental approach, which focus on the effects of

the whole microbial community cultivated by each plant species.

In this paperwe followed classic plant-soil feedback theory to define the soil com-

munities A and B in our density-basedmodel as the uniquemicrobial communities cul-

tivated by plants 1 and 2. However, the modeling framework we use here can be easily

extended to evaluate the coexistence consequences of particular groups of microbes.

To do so, one can define the S terms in Eqn. Eqn. 2.5 as the density of individualmicro-

bial taxa or guilds, and extend the model to any n number of such microbial groups.

Suchmodels can be used, for example, to evaluate the coexistence consequences ofmu-

tualistic microbes that can be cultivated by any plant species but to which plant species

vary in their response (Appendix S4). Parameterizing such models is challenging, and

beyond the elegant simplicity of the two-phase feedback experimental approach. Inte-

grating the dynamics and effects of particular components of themicrobial community

to better understand when these interactions can most strongly influence plant com-

munity dynamics will require studies that combine careful experimental methods and

modern molecular technology to embrace the complex nature of these plant-microbial

interactions.

Conclusion

Ecologists have learned a great deal regarding the importance of soil biota for plant

coexistence since the pioneering work of Bever et al. (1997). Here, we have identified

the conditions under which microbes can favor one plant species over others, and this

simple result has important implications for how we interpret the results of empirical
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investigations of feedbacks between plants and the soil microbial community. Analyz-

ing empirical data in ways that quantify both the stabilizing effects of plant-microbe

interactions and their effect on frequency-independent fitness differences should be a

top priority to improve our understanding of how soil microbes influence plant diver-

sity. In addition, alongwith Eppinga et al. (2018), ourwork also suggests that the focus

on pairwise approaches in the plant-soil feedback literature might obscure an impor-

tant role for soil microbes in maintaining diversity in multispecies plant communities.

More generally, we expect that our understanding of the net effects of microbes on

plant diversity will improve with future studies that couple experimental approaches

to population dynamics models capturing the many ways soil microbes can influence

plant diversity.
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Chapter 2 Supplementary Materials

Appendix 2.1: Deriving the niche and fitness difference due to mi-
crobes in Bever’s classic plant-soil feedback model

In this Appendix we analyze the effects of microbial interactions in Bever (2003) in

terms of the fitness difference and stabilization they generate.

Bever (2003) models growth of plant species that are interacting via Lotka-

Volterra competition and via cultivating soil microbial communities that affect plant

performance (Eqn. 2.1, Fig 2.1B in main text), given by:

dN1

dt
= g1N1(1 − c11N1 − c12N2 + m1ASA + m1B(1 − SA)) (Eqn. S2.1)

For clarity we write the model from Bever (2003) with some notational changes. First,

we index the plant species as N1 and N2 rather than NA and NB, and denote their

intrinsic growth rates independent from any competitive or microbial effects as g1 and

g2 rather than rA and rB. Second, we denote the per-proportion effect of microbes as

m rather than α and β. Third, we express the self-limitation of a species in terms of

intraspecific competition parameters c11 and c22, and not in terms of their carrying

capacity. Fourth, recognizing that the relative influence of plant 2 on the soil microbial

community (SB in Bever (2003)) is always equal to 1minus the proportion representing

plant 1’s effects, we we use the expression (1 − SA) in place of SB. The definitions of

all parameters are provided in the main text and in Table S2.1 (Appendix S2).

Bever’s framework models the relative influence of plant species 1 on the soil mi-

crobial community (SA) as a function of the relative frequency of plants 1 and 2, and
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on the strength of plant influence on microbial community as follows:

dSA

dt
= SA(1 − SA)

�
N1

N1 + N2
− v

N2

N1 + N2

�
(Eqn. S2.2)

As microbial effects depend only on the relative frequency of each microbial commu-

nity, which in turn relies on the relative frequency of each plant species, we can write

a single expression to account for the frequency of plant species A and B. We define

F1 as the relative frequency of plant species 1:

F1 =
N1

N1 + N2

Now, we apply the quotient rule to Eqn. S2.1, and model the change in F1 accord-

ing the following equation:

dF1

dt
=

d N1
N1+N2

dt
=

1
(N1 + N2)2 ∗ (N1 + N2)(g1N1(1 − c11N1 − c12N2 + m1ASA + m1B(1 − SA)))

−N1(g1N1(1 − c11N1 − c12N2 + m1ASA + m1B(1 − SA))

+g2N2(1 − c21N1 − c22N2 + m2ASA + m2B(1 − SA)))

(Eqn. S2.3)

We can simplify this expression to the following:

dF1

dt
=

1
(N1 + N2)2 (N1N2)(g1N1(1 − c11N1 − c12N2 + m1ASA + m1B(1 − SA))

−g2N2(1 − c21N1 − c22N2 + m2ASA + m2B(1 − SA)))

(Eqn. S2.4)
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Which can be rearranged as follows:

dF1

dt
=

N1

N1 + N2

N2

N1 + N2
(g1N1(1 − c11N1 − c12N2 + m1ASA + m1B(1 − SA))

−g2N2(1 − c21N1 − c22N2 + m2ASA + m2B(1 − SA)))
(Eqn. S2.5)

Recognizing that N1
N1+N2

= F1 and N2
N1+N2

= 1 − F1, we can express the per-proportion

rate of change in F1 as:

1
F1

dF1

dt
= (1 − F1)(g1N1(1 − c11N1 − c12N2 + m1ASA + m1B(1 − SA))−

g2N2(1 − c21N1 − c22N2 + m2ASA + m2B(1 − SA)))
(Eqn. S2.6)

We can now determine the conditions under which species 1 increases in frequency

when it is invading an equilibrium community of species 2 (i.e. the invasion growth

rate of species 1). When plant 1 is absent from the system (i.e. N1 = 0), the community

only consists plants of species 2 (i.e. F1 = 0) and the microbial community is only influ-

enced by plant 2 (i.e. SA = 0). From an analysis of species 2’s population growth equa-

tion, the population size of plant 2 at its single-species equilibrium can be expressed as

N∗
2 = (1 + m2B)/c22. Substituting these values into Eqn. S2.1 gives the invasion growth

rate of species 1 as the following:

IGR1 = g1

�
1 − c12

c22
(1 + m2B) + m1B

�
(Eqn. S2.7)

Following Bever (2003), we focus on the contribution of microbes to the invasion

growth rate by setting aside species competitive differences. To do so we assume

equal competition among species (c12 = c22), an assumption we relax below in the

section “Coexistence when plants are unequal competitors”. With the assumption

that plants have equal intra- and intraspecific competitive effects, Eqn. S2.7 can be
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simplified as follows:

IGR1 = g1(m1B − m2B) (Eqn. S2.8)

Note that g1, the growth in the absence of microbes, simply scales the relative effects of

the resident microbial community on the two plant species. Assuming g1 is positive,

it has no effect on the sign of the invasion growth rate and is therefore irrelevant to

the mutual invasibility condition. We show below that this is identical to the invasion

growth rate in the exponential growth rate model used in Bever et al. (1997). Follow-

ing Eqn. 3 of Chesson (2000), the scaled (IGR1/g1) invasion growth rate IGR
′
1 can be

decomposed into the effect of each species’ average ecological fitness and the effect of

niche stabilization in the system: IGR
′
1 = ((fitness1 − fitness2) + stabilization).

The average microbially mediated fitness of each plant species can be calculated

as its average growth rate over all possible soil states (Chesson 2018):

fitness1 =

� 1
0 m1B + (m1A − m1B)SAdSA� 1

0 dSA
= m1BSA +

(m1A − m1B)
2

SA
2|10=

m1A + m1B

2

In other words, the microbially mediated average fitness of each plant species is

equal to the arithmetic mean of its response to each microbial community. Using this

expression of fitness, we can express the invasion growth rate as the sum of the fitness

difference and the stabilization as follows (Chesson 2000, 2018):

IGR
′
1 = (m1B − m2B) =

�
1
2

(m1A + m1B) − 1
2

(m2A + m2B)
�

+ stabilization (Eqn. S2.9)

Algebra shows us that the stabilization term is as follows:

stabilization = −1
2

IS =
1
2

(m1B + m2A − m2B − m1A) (Eqn. S2.10)
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Stabilization is also related to Revilla et al. (2013)’s JS measure of plant soil feedback as

follows:

stabilization = −1
2

(JS + m1Bm2A − m1Am2B)

As Bever et al. (1997) have shown, negative values of IS stabilize coexistence,

whereas positive values of IS create positive frequency dependence that destabilizes

coexistence. Bever et al. (1997) also show that, following the definition of m1A as the

growth of plant 1 with microbial community A minus the growth of plant 1 in un-

cultivated soils (i.e.m1A = G1A − G1O) the degree to which microbes stabilize plant

interactions is not affected by the growth of plants in uncultivated soils:

stabilization =
1
2

((G1B − G1O) + (G2A − G2O) − (G2B − G1O) − (G1A − G1O))

=
1
2

(G1B + G2A − G2B − G1A)

The net effect of microbes is to promote coexistence when they generate sufficient

stabilizing niche differences to allow the weaker competitor to persist in the system,

i.e. when the following inequality is satisfied:

1
2

IS < fitness1 − fitness2 < −1
2

IS (Eqn. S2.11)

Algebra shows that this inequality is consistent with the feasibility condition derived

in Bever et al. (1997). The left hand side of Eqn. S2.11 can be written as follows:

1
2

IS < fitness1 − fitness2

1
2

(m1A − m1B + m2B − m2A) <
1
2

(m1A + m1B − m2A − m2B)
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(m1A − m1B + m2B − m2A) < (m1A + m1B − m2A − m2B)

(m2B − m1B) < (m1B − m2B)

2(m2B − m1B) < 0

(m2B − m1B) < 0

m1B > m2B

Through a similar analysis of the right hand side of Eqn. S2.11, we find that the

second condition for stable coexistence is that m2A > m1A.

Coexistence when plants are unequal competitors

In the derivation of the fitness difference and stabilization metrics above, we assumed

that the two plant species have equal intra- and interspecific competitive effects,

i.e. c12 = c22 and c21 = c11. Recall that without this assumption, the invasion growth

rate of species 1 is given by Eqn. S2.7. Species 1 can invade from rarity provided that

the term in the parentheses is greater than zero, i.e.

�
1 − c21

c22
(1 + m2B) + m1B

�
> 0

Rearranging this inequality shows that the invasion condition for species 1 is as

follows:

c22

c12
>

(1 + m2B)
(1 + m1B)
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Similarly, the invasion condition for species 2 is that c11
c21

> (1+m1A)
(1+m1B) . Multiplying

these two inequalities yields the following condition for mutual invasibility:

c22c11

c21c12
>

(1 + m1A)(1 + m2B)
(1 + m2A)(1 + m1B)

This inequality, which is equivalent to Eqn 5 of Bever (2003) and to Eqn 10 of

Revilla et al. (2013), shows that mutual invasibility is favored by higher intra-specific

than interspecific competition, which increases the left hand side of the inequality,

and more negative (or less positive) intra-specific microbial effects than interspecific

microbial effects, which decreases the right hand side of the inequality.

Invasion growth rate in Bever et al. (1997)’s exponential growthmodel

In Bever et al. (1997)’s framework, the two plant species do not compete with each

other- instead, they are assumed to grow exponentially at a rate determined by their

interactions with the soil microbial community as follows:

dN1

dt
= N1(m1ASA + m1B(1 − SA)) (Eqn. S2.12)

The parameter definitions are the same as in Eqn. S2.1. The microbial community is

modeled in the same way as in Eqn. S2.2. As in the analysis of Bever (2003) above,

we define F1 as the relative abundance of N1 and use the quotient rule to rewrite Eqn.

S2.12 as follows:

dF1

dt
=

d N1
N1+N2

dt
=

1
(N1 + N2)2 ∗ [(N1 + N2)N1(m1ASA + m1B(1 − SA))

−N1(N1(m1ASA + m1B(1 − SA)) + N2(m2ASA + m2B(1 − SA)))]

(Eqn. S2.13)
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This equation can be simplified as follows:

dF1

dt
=

(N1N2)[(m1ASA + m1B(1 − SA)) − (m2ASA + m2B(1 − SA))]
(N1 + N2)2 (Eqn. S2.14)

Eqn. S2.14 can be rewritten as follows:

dF1

dt
=

N1

N1 + N2

N2

N1 + N2
((m1ASA + m1B(1 − SA)) − (m2ASA + m2B(1 − SA)))

Recognizing that N1
N1+N2

= F1 and that N2
N1+N2

= 1 − F1, we rewrite this as follows:

dF1

dt
= F1(1 − F1)((m1ASA + m1B(1 − SA)) − (m2ASA + m2B(1 − SA))) (Eqn. S2.15)

To calculate the invasion growth rate of plant 1 (IGR1), we set F1 = 0 and SA = 0. Thus,

as in Eqn. S2.8, the invasion growth rate is simply equal to the difference in how the

soil microbes of the resident species 2 (i.e. microbes B) influence the invading species:

IGR1 = m1B − m2B (Eqn. S2.16)

Note that there is no term that describes innate growth in the Bever et al. (1997) model,

there is no need to scale the invasion growth relative as we had done in the previous

analysis.
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Appendix 2.2: Deriving interaction parameters in themicrobe density
model

In this appendix, we first describe the derivation of the interspecific interaction terms

α12 (?? in main text) in our microbe density model. Then, we derive the same interac-

tion term for a model in which the two microbial communities A and B compete with

each other. Finally, we present the dynamics equations for a multispecies extension of

the plant and microbe population dynamics, which we parameterize in Scenario 3 of

the main text.

Recall from the main text (Eqn. 2.1) that we model plant population dynamics

according to the following differential equation:

1
NA

dNA

dt
= g1(1 − c11N1 − c12N2 + m1ASA + m1BSB) (Eqn. S2.17)

and that we model density S of soil microbial communities A and B, which are culti-

vated by plant species 1 and 2 respectively, and suffer from density-dependent mor-

tality (Eqn. 2.6 of the main text):

1
SA

dSA

dt
= vA1N1 − qASA (Eqn. S2.18)

An analogous equation exists for microbial community B, which is cultivated by plant

2. The definitions of all parameters are provided in the main text and in Table S2.1.

To analyze this model, we follow the approach of Chesson and Kuang (2008) and

assume that microbes operate on a much faster timescale than the plants. In other

words, the microbial population density immediately equilibrates to the density of

the two plants in the system. This assumption allows us to express the equilibrium
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microbial density at any time as follows:

S∗
A =

vA1N1

qA
(Eqn. S2.19)

A corresponding equation exists for SB. We can substitute these expressions into Eqn.

S2.17 to express plant dynamics as follows:

1
N1

dN1

dt
= g1

�
1 − c11N1 − c12N2 +

m1AvA1N1

qA
+

m1BvB2N2

qB

�

which can be rearranged as follows:

1
N1

dN1

dt
= g1

�
1 −

�
c11 −

m1AvA1

qA

�
N1 −

�
c12 −

m1BvB2

qB

�
N2

�
(Eqn. S2.20)

Evaluating Eqn. S2.20 at Species 2’s single-species equilibrium (i.e. when N1 = 0 and

N2 = N∗
2 = 1

c22−(m2BvB2)/qB
shows that the invasion growth rate of species 1 is as follows:

IGR1 = g1 ∗
�

1 −
c12 − m1BvB2

qB

c22 − m2BvB2
qB

�
(Eqn. S2.21)

Note that unlike the invasion growth rate expression in Bever (2003) (Eqn. S2.7), IGR1

in this model is influenced not only by the competitive effects of species 2 and the

microbial effect on species 1, but also by themicrobial population dynamics themselves

(the v and q terms).

We now collect the per-capita inter-specific effects of competition and microbial

interactions in Eqn. S2.20 into a single term α12, which describes the effect of an indi-
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vidual of species 2 on the dynamics of species 1 (?? in the main text):

α12 =
�

c12 −
m1BvB2

qB

�
and α21 =

�
c21 −

m2AvA1

qA

�
(Eqn. S2.22)

Likewise, we can collect the per-capita intra-specific effects of competition and micro-

bial interaction into a single term α22 as follows:

α11 =
�

c11 −
m1AvA1

qA

�
and α22 =

�
c22 −

m2BvB2

qB

�

These α terms, together with the invasion growth rate expression in Eqn. S2.21, show

that both species can invade when rare (i.e. satisfy the mutual invasibility criterion

and therefore coexist) provided that α12 < α22 and α21 < α11, which is the standard

invasion criterion for two-species Lotka-Volterra competition models.

With the α terms thus defined, it becomes clear that in our framework, the plant

population dynamics equation (Eqn. S2.20) parallels a standard two-species Lotka-

Volterra competition model, with the α terms reflecting the effects both of competition

and of microbial interactions:

1
NA

dNA

dt
= g1(1 − α11N1 − α12N2)

Following Chesson (2012) the niche overlap ρ for this model can be expressed as fol-

lows:

ρ =
�

α12α21

α11α22
=

���� (c12 − m1BvB2
qB

)(c21 − m2AvA1
qA

)

(c11 − m1AvA1
qA

)(c22 − m2BvB2
qB

)
(Eqn. S2.23)
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Following Godoy and Levine (2014), the fitness difference is expressed as follows:

κ2

κ1
=
�

α11α12

α22α21
=

���� (c11 − m1AvA1
qA

)(c12 − m1BvB2
qB

)

(c22 − m2BvB2
qB

)(c21 − m2AvA1
qA

)
(Eqn. S2.24)

As explained in Eqn. 2.9 of the main text, species can coexist when the strength of

stabilization exceeds the fitness difference as follows (Chesson and Kuang 2008):

ρ <
κ2

κ1
<

1
ρ

(Eqn. S2.25)

Algebra shows that this condition is equivalent to the standard coexistence criterion in

two-species LotkaVolterra competitionmodel, inwhich stable is coexistence is possible

when each species limits itself more than it limits the competitor. The left hand side of

the inequality in Eqn. S2.25 can be expressed as follows:

�
α12α21

α11α22
<

�
α11α12

α22α21

Or equivalently,

α21

α11
<

α11

α21

Which requires that α21 < α11. Simplifying the right hand side of the coexistence

inequality similarly leads to the requirement that α12 < α22.

Interaction terms in a model with microbe competition

In the main text we assume that interactions between the microbial communities cul-

tivated by plants 1 and 2 are weak and do not impact the dynamics of SA and SB, an
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assumption we relax here. In this model we maintain plant dynamics as in Eqn. 2.1 of

the main text, and model the plant dynamics as follows:

1
SA

dSA

dT
= vA1N1 − qAASA − qABSB

where qAA represents the density-dependent mortality rate due to competition within

SA, and qAB represents the density-dependent competitive effects of SB on microbial

community A.

As in the analysis above, we assume that microbial dynamics operate faster than plant

dynamics, and derive an expression for the equilibrium value of SA:

S∗
A =

vA1N1 − qAB
qBB

vB2N2

qAA

�
1 − qABqBA

qAAqBB

�

Similarly, the equilibrium value of SB is as follows:

S∗
B =

vB2N2 − qBA
qAA

vA1N1

qBB

�
1 − qABqBA

qAAqBB

�

Substituting the above expressions for SA and SB into Eqn. 2.1 of the main text

yields the following dynamics equation for the focal plant populations:

1
N1

dN1

dT
= g1


1 − c11N1 − c12N2 + m1A


vA1N1 − qAB

qBB
vB2N2

qAA

�
1 − qABqBA

qAAqBB

�


 + m1B


vB2N2 − qBA

qAA
vA1N1

qBB

�
1 − qABqBA

qAAqBB

�






As in the previous analysis, we can collect the per-capita inter-specific effects via com-

petition and microbial interactions into a single term α12, which describes the effect of

an individual of species 2 on the dynamics of species 1:
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α12 = c12 +
m1A

qAB
qBB

vB2

qAA

�
1 − qABqBA

qAAqBB

� − m1BvB2

qBB

�
1 − qABqBA

qAAqBB

�

The niche and difference terms for this model can then be derived as in the previous

analysis.

Mapping our microbe density-based model onto Bevers’ frequency-
based framework

Although fully parameterizing our extended plant-soil feedbackmodel, whichmodels

microbial dynamics in terms of their density rather than their frequency, requires a de-

tailed understanding ofmicrobial population dynamics thatmay be difficult to achieve

inmany natural systems,making some assumptions regarding thesemicrobial dynam-

ics shows that the insights our extended framework projects onto Bever (2003)’s model.

We redefine the m terms as the per-capita effects of microbes on plants, scaled by the

degree to which plants cultivate their microbial community and the persistence of the

microbial community, i.e. m′
1A = (m1AvA1)/qA and m′

1B = (m1BvB2)/qB. As empirical

studies rarely quantify microbial dynamics, these rescaled m terms are more represen-

tative of the microbial effects measured in these studies. With this simplifications to

our model equations, can rewrite Eqn. S2.20 as follows:

1
N1

dN1

dt
= g1

�
1 −

�
c11 − m′

1A
�

N1 −
�
c12 − m′

1B
�

N2
�

(Eqn. S2.26)

Following the logic in the main text, we focus our analysis on cases when plants have

net negative effects on their neighbors, i.e. c11 −m′
1A > 0 and c12 −m′

1B > 0. Evaluating

Eqn. S2.26 at the single-species equilibrium of N2 shows that the invasion growth rate

of N1 is as follows:
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IGR1 = g1

�
1 − (c12 − m′

1B)
(c22 − m′

2B)

�

An analogous expression exists for the invasion growth rate of N2. N1 has a positive

growth rate provided that (c12 − m′
1B) < (c22 − m′

2B). Assuming that both species are

equal competitors (i.e. c12 = c22, as was done in our analysis of the Bever (2003) model,

Appendix S1), IGR1 > 0 if m′
1B > m′

2B. N2 can similarly invade when rare (i.e. there

is mutual invasibility, and stable coexistence is possible) if m′
2A > m′

1A. This is the

identical coexistence criterion from our analysis of the Bever (2003) model (Appendix

S1).

Multispecies extension of the Lotka-Voterra competition/microbial
interaction model

We now describe the generalized Lotka-Volterra model of competition and plant-

microbial interactions that is used to model Scenario 3 in the main text. To do so

we extend Eqns. 1 and 5 from the main text to model plant-microbe interactions in

multispecies plant communities by developing a more generalized Lotka-Volterra

model with plant dynamics modeled as follows:

1
Ni

dNi

dt
= gi(1 − ∑

j
cijNj + ∑

k
mikSk) (Eqn. S2.27)

As before, the growth of each microbe k is influenced by the effects of all plants j:

1
Sk

dSk
dt

= ∑
j

vkjNj − qkSk (Eqn. S2.28)
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Table S2.1: Parameter definitions in Bever’s model and our extension

Term Units and Definition in Bever (2003) model Units and Definition in our extended model
Ni Number [of plants]; Population size of plant i same as in Bever (2003)
SA Dimensionless; proportion of soil community that

reflects the microbes cultivated by plant species 1
Number [of microbes]; Abundance of microbial
community A

SB Dimensionless; proportion of soil community
that reflects the microbes cultivated by plant
species 2 (constrained to equal 1 − SA)

Number [of microbes]; Abundance of microbial
community B

gi T−1; intrinsic rate of growth for plant species i same as in Bever (2003)
cij (Number [of plants])−1; per-capita competitive

effect of species j on species i
same as in Bever (2003)

m1
ij T−1; Effect of soil microbial community j on plant

species i
(Number of microbes)−1; per-capita effect of
microbial community j on plant species i

v Dimensionless; rate at which plant species 2
cultivates its microbial community, relative to the
rate at which plant species 1 cultivates its
microbial community

NA

vij NA (Number [of plants])−1; per-capita rate at which
plant species j cultivates microbial community i

qi NA (Number [of microbes])−1; Density-dependent
mortality rate of microbial community i

fi NA Intrinsic growth rate of microbial community i
(set to zero in all analyses in the main text)

1 Bever et al. (1997) define mij as the growth of plant i with microbial community j minus growth of plant i on uncultivated soil

Although the coexistence criteria from the two-species model does not apply in this

multispecies extension (Barabás et al. 2016; Chesson 2018), parameterizing this model

withmultiple plant andmicrobe communities can yield insight into dynamics of natu-

ral communities (see Appendix S4). In the Scenario 3 of themain text, we parameterize

this model such that each pairwise interaction between plants results in exclusion of

the weaker competitor, but the intransitive/rock-paper-scissors dynamic generated by

themicrobes permits stable coexistence of all three species. The parameter values used

for this scenario are provided in Table S3.2.
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Appendix 2.3: Parameter values used in main text scenarios

In this Appendix, we first list the parameter values used in the Main Text scenarios S1,

S2 and S3 (Tables 2.2 and 2.3). Then, in Fig S2.1, we show how the three species pairs

from Scenario 3 map on to the plot of niche and fitness differences. Finaly, we present

an additional scenario using the multispecies model to show that the network of mi-

crobiallymediated fitness differences can cause exclusion inmultispecies communities

even when microbes stabilize each pairwise plant interaction.

Parameter values used in the three scenarios of the Main Text

Table S2.2: Parameter values used in Scenarios 1-2 from the main text. In addition to

the parameters in the table, g1 = g2 = 1 in both scenarios

Competition coefficients Microbe effects on plant Microbe cultivation rates Net outcome Outcome due to microbes alone Outcome due to competition alone

c11 c12 c21 c22 m1A m1B m2A m2B vA1 vA2 vB1 vB2 ρ κ2/κ1 ρmicr κ2/κmicr
1 ρcomp κ2/κ

comp
1 ρ κ2/κ1 ρmicr κ2/κmicr

1 ρcomp κ2/κ
comp
1

Scenario 1 3e-03 0.0024 0.002 0.004 -0.050 -0.040 -0.01 -0.021 0.005 0 0 0.005 0.62146 2.48582 0.61721 3.08607 0.63246 0.94868 0.62146 2.48582 0.61721 3.08607 0.63246 0.94868

Scenario 2 5e-04 0.0010 0.001 0.002 -0.025 -0.025 -0.01 -0.010 0.005 0 0 0.005 0.87831 1.02470 1.00000 2.50000 1.00000 0.50000 0.87831 1.02470 1.00000 2.50000 1.00000 0.50000

Table S2.3: Parameter values used in Scenario 3 from the main text. In addition to

the parameters in the table, the following parameters were used for the scenario: all

competition coefficients cij = 0.002; g1 = g2 = g3 = 0.2; qA = qB = qC = 0.01

Microbe effects on plant 1 Microbe effects on plant 2 Microbe effects on plant 3 Microbe cultivation by plant 1 Microbe cultivation by plant 2 Microbe cultivation by plant 3

m1A m1B m1C m2A m2B m2C m3A m3B m3C vA1 vB1 vC1 vA2 vB2 vC2 vA3 vB3 vC3

-0.006 -0.005 -0.0133333 -0.0065 -0.0085 -0.0075 -0.00375 -0.009 -0.01 0.01 0 0 0 0.01 0 0 0 0.01
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Coexistence

Exclusion by species j

Exclusion by species i

S3, i,j = 1,2

S3, i,j = 1,3

S3, i,j = 2,3
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2.0

0.0 0.1 0.2 0.3

Niche difference (1−r)

k
i

k
j

Figure S2.1: In Scenario 3 of the main text, microbially mediated stabilization is insuf-
ficient to overcome microbially mediated plant fitness differences in all three species
pairs; however, because each species has an advantage over exactly one other species
(specifically, Species 1 over Species 2; Species 2 over Species 3; and Species 3 over
Species 1), all three can coexist in a three-species community.

Microbially mediated fitness differences can cause exclusion in mul-
tispecies systems

Herewe parameterize a scenario (Scenario S3.b) with themultispecies extension of our

plant-soil feedback (seeAppendix S2) such thatmicrobes stabilize coexistence between

three plant species pairs that have complete competitive niche overlap (i.e. all c’s are

equal, Table S3.3). In this system , microbially mediated stabilization is stronger than

the fitness differences in any given species pair, such that each two-species combination

can coexist (Fig. S2.2B-D; Fig. S2.3). However, plant species 3 is on average inferior to

both plants 1 and 2, andwhen all three plants are present in the system, themicrobially

mediated fitness differences drive the exclusion of plant species 3 (Fig. S2.2A).

Microbe effects on plant 1 Microbe effects on plant 2 Microbe effects on plant 3 Microbe cultivation by plant 1 Microbe cultivation by plant 2 Microbe cultivation by plant 3

m1A m1B m1C m2A m2B m2C m3A m3B m3C vA1 vB1 vC1 vA2 vB2 vC2 vA3 vB3 vC3

-0.0075 -0.005 -0.005 -0.005 -0.0065 -0.005 -0.007 -0.006 -0.006 0.01 0 0 0 0.01 0 0 0 0.01
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S3.b, i,j = 1,2
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Figure S2.3: Each species pair in Scenario S3.b above can stably coexist according to
the pairwise fitness and niche differences.
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Appendix 2.4: Connecting plant-microbe interactions to classic appar-
ent competition models

The plant microbe interaction model developed here allows comparisons with other

consumer resource models and extensions to any number of microbes or microbial

community subsets. For example, we may wish to investigate the consequences of

particular microbial species or community of interest (e.g. an emergent pathogen or

decomposing fungi as a guild) on plant diversity. This is difficult to conceptualize with

the classic plant-soil framework, which requires there to be as many distinct microbial

community types as there are plant species. However, we can extend the framework

we use here to divide the microbial community into as many guilds or species as are

of interest in any given study (Eqn. S2.27-Eqn. S2.28 in Appendix 2). For example,

we may wish to study the effects of plant-microbial interactions on plant diversity in

a system in which plants interact with specialist soilborne pathogens and a generalist

mutualist community (e.g. Figure S2.4A), a scenario that is quite likely in natural com-

munities (Smith and Read 2008; Sarmiento et al. 2017). We demonstrate the ability to

consider such a case in our framework using the multispecies extension in Appendix

2. We parameterize a scenario in which the specialist pathogens of two plant species

create enough niche differentiation to stabilize coexistence (Fig. S2.4B, S2.4C). We add

a third microbe in this scenario that has a mutualism with both plant species. If the

mutualist microbe provides a stronger benefit to one plant species than the other, as

it does here, the mutualist microbe can create a fitness difference that is stronger than

the stabilizing effects of specialist pathogenic interactions (Fig S2.4B, S2.4D). The abil-

ity to explicitly model the effects of particular microbes or microbial guilds may pro-

vide a framework for unifying empirical work on plant-soil feedback with other major

branches of research on the effects of particular groups of soil microbes in plant com-
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munities, such as the effect of ectomycorrhizal fungi in driving monodominance in

tropical tree communities (Hart et al. 1989; Corrales et al. 2016).

Table S2.4: Parameter values used in Figure S2.4. In addition to the values in the table,

the following parameters were used: all competition coefficients cij = 0.01; g1 = g2 = 1,

qA = qB = 0.01; qC = 0.005

m1A m1B m1C m2A m2B m2C vA1 vA2 vB1 vB2 vC1 vC2

Pathogens Only -0.02 0 - 0 -0.01 - 0.001 0 0 0.001 - -

All microbes -0.02 0 0.001 0 -0.01 0.02 0.001 0 0 0.001 0.001 0.001
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Appendix 2.5: Deriving interaction parameters in the resource com-
petition model

In this appendix we derive the expressions for niche and fitness differences for the

mechanistic resource competition model. In this system, we model the populations of

plants N1 and N2, which grow by consuming resources Rl at a rate u. Plants have a

maintenance cost µ, and convert excess resources into plant population growth.

1
N1

dN1

dt
= ∑

l
u1lRl + ∑

A
m1ASA − µ1 (Eqn. S2.29)

Resources have logistic growth with an intrinsic rate of growth rl until a carrying ca-

pacity of 1/sl. The resource pool is depleted as it gets consumed by plants 1 and 2:

1
Rl

dRl
dt

= rl(1 − slRl) − u1l N1 − u2l N2 (Eqn. S2.30)

Following Chesson (1990) and Chesson and Kuang (2008), we analyze this model in

terms of fitness and niche differences by assuming that nutrient dynamics operate

faster the dynamics of plant communities. This allows us to express the equilibrium

of the resource pool at any given plant abundance as follows:

R∗
l =

rl − u1l N1 − u2l N2

slrl
(Eqn. S2.31)

Microbial dynamics and their effects on plant growth remain the same as in the main

text Eqns. 1 and 3. Thus, we can substitute the equilibrium abundance of microbes

from Eqn. S2.19 (Appendix 2) and the equilibrium resource concentration from Eqn.

S2.31 (this appendix) into the plant growth model (Eqn. S2.29) to express plant dy-
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namics as follows:

1
N1

dN1

dt
= ∑

l

u1l
sl

− ∑
l

u2
1l N1

slrl
− ∑

l

u1lu2l N2

slrl
+

m1AvA1N1

qA
+

m1BvB2N2

qB
− µ1

(Eqn. S2.32)

We can now collect all the terms that describe the effect of species 2 on the growth of

species 1 into a single term that accounts for the effects via resource competition and

via microbial feedbacks. We denote this term α
′
12 to distinguish it from the interaction

coefficient in the earlier model.

α
′
12 =

∑l
u1lu2l

slrl
− m1BvB2

qB

∑l
u1l
sl

− µ1
(Eqn. S2.33)

Note that the denominator in this expression of α12 is required to make the term have

the same units as the interaction parameters in the Lotka-Volterra model, i.e. the pro-

portional reduction in the intrinsic growth rate of species 1 due to species 2 (Godoy

and Levine 2014).

We now use the interaction term in Eqn. S2.33 to define niche overlap as follows

(Chesson 2012):

ρ =
�

α12α21

α11α22
=

������

�
∑l

u1lu2l
slrl

− m1BvB2
qB

� �
∑l

u2lu1l
slrl

− m2AvA1
qA

�

�
∑l

u2
1l

slrl
− m1AvA1

qA

��
∑l

u2
2l

slrl
− m2BvB2

qB

� (Eqn. S2.34)

The fitness difference is written as follows (Godoy and Levine 2014):

κ2/κ1 =
�

α11α12

α21α22
=

∑l
u2l
sl

− µ2

∑l
u1l
sl

− µ1

�������

�
∑l

u2
1l

slrl
− m1AvA1

qA

��
∑l

u1lu2l
slrl

− m1BvB2
qB

�

�
∑l

u2lu1l
slrl

− m2AvA1
qA

��
∑l

u2
2l

slrl
− m2BvB2

qB

�

(Eqn. S2.35)
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Figure S2.5: The net fitness difference is more strongly influenced by the microbially
mediated fitness differences when resource replacement rates are high

The relative influence of microbial interactions on plant fitness differ-
ences increases with site productivity

In the Main Text (Fig. 2.4B) we show that the net niche overlap between competing

plant species ismore strongly determined by the strength of their microbial niche over-

lap than by their resource-mediated niche overlap at highly productive sites, and vice-

versa at low productivity sites. Fig. S2.5 shows that a similar result holds for plant

fitness differences:
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Varying microbial effects with resource replacement rates

In the model analysis in the main text, wemake predictions regarding the relative con-

tribution of plant-microbe interactions and resource competition to niche differences

while keeping the per-capita effect of microbes on plant performance constant across

the resource gradient. Our modeling approach allows us to relax this assumption, for

example to consider a scenario in which the microbial effects on plant performance

switch from primarily mutualistic (positive m terms) at low resource sites (low values

of rl) to primarily pathogenic (negative m terms) at high resource sites (Revillini et al.

2016; van der Putten et al. 2016). To do so, we maintain the plant, resource, and mi-

crobe dynamics equations as above, and simulate a system in which the m terms are

linear functions of the the resource replacement rate (rl). We parameterize the scenario

such that at low rl, the net effects of microbes on plants are positive, whereas at high

rl, the net effects of microbes on plants are negative (Figure S2.6A).

We find that allowing the m terms to be negative linear function of the resource

replacement does not change our result that the influence of microbial niche overlap

on net niche overlap grows with inreasing resource replacement rates (Figure S2.6B).

Interestingly, we find in this simulation that in low resource environments, positive

effects of microbes on plants can cause the net plant niche overlap to be lower than the

niche overlap predicted by resource competition alone, a result that is not possible if

plant-microbe interactions are constant across the resource gradient.

Abiotic resource model

We now show that qualitative results from our model analysis hold when resource

dynamics are modeled following an abiotic resource model (Stewart and Levin 1973;

Tilman 1977). In thismodel, microbial and plant dynamics remain the same as in Eqns.
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Figure S2.6: Microbes more strongly drive net pairwise stabilization when resource
replacement rates are high, even when microbial effects vary along the resource gra-
dients

1 and 3 from themain text. Resource dynamics are now dictated by a chemostat model

in which resources enter the system until they are at a maximum I, and as before, are

depleted as they are consumed by plants:

dRl
dt

= Il − Rl − u1lRl N1 − u2lRl N2 (Eqn. S2.36)

Again following the separation of timescales assumption, the equilibrium resource

concentration Rl is as follows:

R∗
l =

Il
1 − u1l N1 − u2l N2

(Eqn. S2.37)

We use the Taylor series approximation that a
b+c ≈ a

b (1 − c) to rewrite Eqn. S2.37 as

follows:

R∗
l = Il − u1l N1 Il − u2l N2 Il (Eqn. S2.38)
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We can now substitute the equilibrium abundance of microbes from Eqn. B3 (Ap-

pendix B) and the equilibrium resource concentration from Eqn. E8 into the plant

growth model (Eqn. E1) to express plant dynamics as follows:

1
N1

dN1

dt
= ∑

l
u1l Il − ∑

l
u2

1l Il N1 − ∑
l

u1lu2l N2 Il

+
m1A

qA
(vA1N1 + vA2N2) − µ1

(Eqn. S2.39)

We can group the effects of species 2 on species 1 to express α12 as follows:

α
′
12 =

∑l u1lu2l Il − m1BvB2
qB

∑l u1l Il − µ1
(Eqn. S2.40)

The niche and fitness differences can now be calculated as above (Eqn. S2.34 and Eqn.

S2.35).
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Chapter 3

Soil microbes generate stronger fitness

differences than stabilization among California

annual plants

This chapter is in press as Kandlikar, G.S., Yan, X., Levine, J.M., and Kraft, N.J.B. Soil

microbes generate stronger fitness differences than stabilization among California an-

nual plants. The American Naturalist (expected to be published in Volume 197, 2021).

©2021 by TheUniversity of Chicago. It is also available as a pre-print on BioRXiv (Kan-

dlikar et al. 2020).

GSK conceived the problem with NJBK and JML. GSK led the research with XY and

all authors provided input. GSK wrote the manuscript and all authors contributed

revisions.
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Abstract

Soil microorganisms influence a variety of processes in plant communities. Many the-

oretical and empirical studies have shown that dynamic feedbacks between plants

and soil microbes can stabilize plant coexistence by generating negative frequency-

dependent plant population dynamics. However, inferring the net effects of soil mi-

crobes on plant coexistence requires also quantifying the degree to which they provide

one species an average fitness advantage, an effect that has received little empirical

attention. We conducted a greenhouse study to quantify microbially mediated stabi-

lization and fitness differences among fifteen pairs of annual plants that co-occur in

southern California grasslands. We found that although soil microbes frequently gen-

erate negative frequency-dependent dynamics that stabilize plant interactions, they

simultaneously generate large average fitness differences between species. The net re-

sult is that if the plant species are otherwise competitively equivalent, the impact of

plant-soil feedbacks is to often favor species exclusion over coexistence, a result that

only becomes evident by quantifying the microbially mediated fitness difference. Our

work highlights that comparing the stabilizing effects of plant-soil feedbacks to the

fitness difference they generate is essential for understanding the influence of soil mi-

crobes on plant diversity.
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Introduction
The dynamics of plants and soil microorganisms are tightly intertwined. The com-

position of soil microbial communities responds strongly to different plant species,

in large part due to variation in plant species’ root exudate profiles and immune re-

sponses (Berg and Smalla 2009). Soil microorganisms in turn influence the growth of

plant species, with the direction and magnitude of their effect determined both by the

composition of themicrobial community and by the genetic and functional characteris-

tics of the plants (Laliberté et al. 2014; Keller and Lau 2018). These plant-soil feedbacks

can have important consequences for various processes in plant communities (van der

Putten et al. 2016), including species coexistence.

The effects of soil microorganisms on plant species coexistence are typically stud-

ied in the context of a theoretical framework developed by Bever et al. (1997). This

framework isolates the effects of soil microbes by modeling the dynamics of plant

species that differ only in the soil microbial communities they cultivate and in how

their growth is influenced by these cultivated communities. Bever et al. (1997) showed

that the soil microbial community stabilizes plant interactions when the microbial

community cultivated by each plant species limits the growth of the cultivating plant

species more (or benefits it less) than that of the other plant species in the system.

When this condition is satisfied, the microbial community generates a relative advan-

tage in favor of species that decline to low abundances as opposed to those that re-

main abundant, thereby generating negative frequency-dependent plant population

dynamics that should promote species coexistence. Alternatively, plant-soil feedbacks

can destabilize plant interactions if they create positive feedback loops that favor abun-

dant species over species that are rare. Results from numerous empirical studies moti-

vated by this framework indicate that plant-soil feedbacks often drive such frequency-

109



dependent plant population dynamics. Feedbacks most strongly stabilize interactions

among distantly related plant species that associate with similar mycorrhizal guilds

and interact with one another in their native range (reviewed in Crawford et al. (2019)).

Although plant-soil feedback research has revealed the potential for these interac-

tions to influence species diversity in plant communities, we still lack a general under-

standing of whether soil microbes generally favor plant coexistence or species exclu-

sion. This is in part because inferring the coexistence consequences of plant-soil feed-

backs from their stabilizing or destabilizing effects alone is incomplete. More specifi-

cally, theoretical and empirical studies of plant-soil feedback have emphasized the po-

tential stabilizing or destabilizing effects of soil microbes, but have largely neglected

the potential for soil microbes to mediate an average fitness difference between com-

peting plants (but see Chung and Rudgers 2016; Siefert et al. 2019). Not comparing the

(de)stabilizing effects to the degree to which soil microbes mediate an average fitness

difference between plant species can lead to false conclusions about how soil microbes

influence plant diversity (Chesson 2000; Kandlikar et al. 2019). This microbially me-

diated fitness difference reflects plant species’ variation in their average sensitivity to

the pathogenic or mutualistic soil microbes cultivated by both conspecifics and het-

erospecifics. In the classic plant-soil feedback model (Bever et al. 1997), species coexis-

tence is only possible when the stabilizing effects of plant-soil feedbacks exceed themi-

crobially mediated fitness difference, while soil microbes drive species exclusionwhen

they mediate larger fitness differences than stabilization (Kandlikar et al. 2019). In

more complex models that incorporate other competitive asymmetries among plants,

microbially mediated fitness differences can accelarate species exclusion if they exag-

gerate competitive asymmetries, but could also promote species coexistence if they

favor the otherwise weaker competitor (Bever 2003; Kandlikar et al. 2019; Ke andWan
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2019).

Empirically quantifying microbially mediated stabilization and fitness differ-

ences simply requires data from a standard two-phased feedback experiment (Bever

et al. 2010), with an additional treatment in the second phase to quantify plant growth

in a reference uncultivated soil microbial community (Kandlikar et al. 2019). The

reference soil community should reflect the field soil microbial community when

the focal plant species are absent (or very rare) in the system, i.e. the microbial

community of field soil that has not been conditioned by any of the focal plant species.

Though the two-phased feedback design has been used to study plant-soil feedbacks

among hundreds of plant species pairs (Crawford et al. 2019), the reference soil

experimental treatment is excluded in most studies of plant-soil feedback. Microbially

mediated fitness differences can also be quantified by parameterizing population

growth models with data from more complex experiments that vary both the soil

microbiota and the relative frequency of focal species (e.g. Chung and Rudgers 2016;

Siefert et al. 2019), though such experiments are less common because they require

manipulations that are not possible in many systems. Moreover, while previous

studies have identified microbially mediated fitness differences, it has not been done

in a way that allows easy quantitative comparison to the (de)stabilizing effects of soil

microbes documented in a majority of the plant-soil feedback literature, as is possible

with the modified two-phased feedback design (Kandlikar et al. 2019).

To evaluate the influence of microbially mediated stabilization and fitness differ-

ences on plant coexistence, we conducted a two-phased experiment (Bever et al. 2010)

in which we first grew monocultures of six plant species to cultivate their characteris-

tic soil microbial community, and then measured the growth of each species in soils

inoculated with a distinct microbial community – including a field-collected microbial
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inoculum that was not cultivated by any of the focal species. We used these data to

estimate the key parameters from Bever et al. (1997)’s model of plant-soil feedback.

Then, we quantified the degree to which soil microbes stabilize or destabilize pairwise

plant interactions and the degree to which they drive average fitness differences using

metrics derived in Kandlikar et al. (2019). Our study shows that even when plant-soil

feedbacks stabilize species interactions, their net effect can be to favor species exclusion

if they simultaneously drive strong fitness differences between plant species.

Methods

Study system

We studied the effects of plant-soil feedbacks on the pairwise interactions of six an-

nual plant species: Acmispon wrangelianus (Fabaceae), Festuca microstachys (Poaceae),

Hordeum murinum (Poaceae), Plantago erecta (Plantaginaceae), Salvia columbariae (Lami-

aceae), andUropappus lindleyi (Asteraceae). These species co-occur in thewinter annual

plant community in the University of California Sedgwick Reserve in Santa Barbara

County, California, USA (34 41’ N, 120 02’ W, 290-790m above sea level). This region

experiences a Mediterranean climate of cool, wet winters (October-May mean temper-

ature = 13.5◦C, mean monthly precipitation = 164mm) and hot, dry summers (June-

September mean temperature = 20◦C, mean monthly precipitation = 3.7mm). Seeds of

the annual plants in this system germinate after rainstorms begin early in the winter,

and plants complete their life cycle before the onset of the summer drought. The focal

species of this experiment commonly grow together near outcrops of serpentine soil

that are characterized by a low Ca:Mg ratio (Gram et al. 2004). As is common across

southern California grasslands, large portions of the reserve are dominated by inva-

sive annual grasses, especially Avena and Bromus species (Gram et al. 2004; D’Antonio
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et al. 2007).

Experiment Phase 1: Cultivating species-specific microbial communities

To cultivate the microbial community characteristic of each species’ soil, we grew five

replicate high-density monocultures (8g viable seed/m2) of each species in sterilized

3.6L pots. These pots were filled with 3L greenhouse soil (18.75% sand, 18.75% loam,

37.5% peat moss, 12.5% perlite, and 12.5% vermiculite) that we had autoclaved twice

for 2 hours each, with a 1-day rest period. To this sterile backgroundwe added 0.35L of

field-collected inoculum, and capped this layerwith 0.15L of sterilized greenhouse soil.

This resulted in 10% v/v of live inoculum:sterile soil. We collected the inoculum soil

in Sedgwick reserve 1 week prior to the experiment and stored it at 0◦C until planting.

To ensure that the microbial community of this field soil was not pre-conditioned by

any of the species in our experiment, we ensured that there were no individuals of

our six focal species growing in a 1m radius around the five distinct points at which

we collected the soil (the dominant plant around these points was the invasive grass

Avena fatua, which is one of the most abundant plant species in this landscape).

We grew plants from seeds collected in Sedgwick reserve in the spring prior to

the experiment. We surface-sterilized these seeds by soaking in 0.785% bleach for 3

minutes and washing in DI water twice for 1 minute each. After planting seeds, we

stored the pots at 0◦C for one week to trigger germination. We began this phase of

the experiment in February 2019 and allowed plants to grow in standard greenhouse

conditions for 11weeks. At the end of Phase 1, we harvested the aboveground biomass

from each pot and homogenized the soil from the five replicate monocultures of each

species to serve as the inoculum for the following phase of the experiment. We also

saved soil samples from each replicate monoculture of Plantago erecta to use as the in-

oculum in a parallel experiment aimed to assess whether homogenizing across repli-
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cate cultivations influences the effects of cultivated soils on plant growth, described in

Supplement S2.

Experiment Phase 2: Quantifying plant responses to soil microbial communities

In the second phase of the experiment, we grew individuals of each of the six focal

species in 125mL Deepots (Stuewe & Sons, Inc.) filled with 108mL greenhouse soil,

autoclaved as for Phase 1, and 12mL of soil inoculum. This again resulted in 10% v/v

of live inoculum, a proportion that is consistent with other studies of plant-soil feed-

back (Crawford et al. 2019) and that minimizes abiotic differences among treatments.

The inoculum for each pot came from one of eight sources: a control treatment of au-

toclaved greenhouse soil, the same live field soil that was used to inoculate Phase 1

pots (and stored at 0◦C during the first phase of the experiment), or soil cultivated by

one of the six focal species during Phase 1 of the experiment (see Supplement S1 for

graphical schematic of the experimental design). We grew 10 replicate individuals of

each species in each soil background, for a total of 480 pots (6 species*8 soil sources*10

replicates), arranged in a randomized block design. We added three germinants of

surface-sterilized seeds into each pot, and after 1 week thinned each pot to a single

plant. We added an additional seedling in pots that had no surviving germinants after

1 week. Six pots had no surviving plants 2 weeks after initial planting; we excluded

these pots from analyses. This phase of the experiment began in May 2019, and we

harvested aboveground biomass after 8 weeks of growth, before the plants began to

senesce and lose aboveground biomass. Weweighed the aboveground biomass of each

individual after drying for 72H at 60◦C.

Data analysis: Quantifying pairwise stabilization and fitness differences

We used the log-transformed aboveground biomass of plants at the end of Phase 2 to

calculate the degree of microbially mediated stabilization and fitness differences. Fol-
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lowing Kandlikar et al. (2019), we calculated the degree to which plant-soil feedbacks

stabilize each species pair by comparing growth in conspecific-cultivated soil commu-

nity to growth in the heterospecific-cultivated community:

stabilization1,2 = −1
2

(m1A − m1B − m2A + m2B) (Eqn. 3.1)

Each mix term represents the growth of plant species i with microbial community x,

minus the plant species’ growth in the reference (uncultivated) field soil (e.g. m1A =

ln(biomasssp 1, soil A) − ln(biomasssp 1, uncultivated soil)). Due to arithmetic, plant growth

on field soil cancels out of this equation and is not required to calculate microbially

mediated stabilization (Bever et al. 1997, see Supplement S1). Positive values of stabi-

lization indicate that soil microbes generate negative frequency-dependent feedback

loops that stabilize species interactions, whereas negative values indicate that plant-

soil feedbacks drive positive frequency-dependent feedback loops that destabilize in-

teractions and lead to loss of plant diversity through exclusion or priority effects. The

stabilization metric in Eqn. 3.1 is equal to negative one half of IS, the stabilization met-

ric originally derived by Bever et al. (1997), and it allows for direct comparison with

the microbially mediated fitness difference (Kandlikar et al. (2019); see Eqn. 3.3). This

stabilization term is also equal to negative one half of the sumof the two species’ log re-

sponse ratios (i.e.− 1
2

�
ln

�
biomass1A
biomass1B

�
+ ln

�
biomass2B
biomass2A

��
), a metric commonly calculated

in plant-soil feedback studies (Pernilla Brinkman et al. 2010; Crawford et al. 2019).

Inferring the net effects of plant-soil feedbacks requires also quantifying the mi-

crobially mediated fitness difference, which is calculated as the difference between the

two species’ average response to cultivated soil microbial communities (Kandlikar et

al. 2019):

fitness difference1,2 =
1
2

(m1A + m1B) − 1
2

(m2A + m2B) (Eqn. 3.2)
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Although growth in the reference field soil is not required for calculating the degree

of microbially mediated stabilization, this information is required for calculating the

fitness difference. For simplicity, we always define species 1 in any given pair to be the

fitness superior in this study.

Comparing the degree of microbially mediated stabilization and fitness differ-

ence allows us to infer the net effect of plant-soil feedbacks on species coexistence in the

classic plant-soil feedback model (Bever et al. 1997). Specifically, assuming that plant

species are otherwise equal competitors, differences in plant responses to soil micro-

bial communities result in species coexistence when stabilization is stronger than the

microbially mediated fitness difference, or species exclusion when fitness differences

mediated by microbes are larger than their stabilizing effects (Kandlikar et al. 2019):

fitness difference1,2 < stabilization (Eqn. 3.3)

This condition in Eqn. 3.3 is equivalent to the feasibility criteria presented of Bever

et al. (1997) and Eppinga et al. (2018), which states that plant-soil feedbacks allow co-

existence provided that they cause a negative IS and that the relative frequency of each

species at equilibrium, calculated as P̂1 = m2B−m1B
IS

and P̂2 = m1A−m2B
IS

, is between 0 and

1 (see Supplement S3). To assess whether the microbially mediated fitness differences

are weaker or stronger than the degree of stabilization, we calculated the stabilization

and fitness difference metric within each replicate Phase 2 block, and summarized

across blocks to calculate the mean and standard error.

We conducted all analyses in R v. 3.6.2 (R Core Team 2019). All data and code

to recreate analyses are deposited in the Dryad Digital Repository: https://doi.org/

10.5068/D1B688 (Kandlikar et al. 2020).

116



Results

Do the effects of cultivated soil microbial communities differ across species?

The influence of the soil microbial community on plant growth varied across plant

species (Two-factor ANOVA, focal species x soil source interaction term F35 = 14.07, P

< 0.001). Each plant species achieved its maximum biomass when growing with the

field-collected reference soil, and five out of six focal species grew larger in sterile soils

thanwhen inoculatedwith soil cultivated by any species in Phase 1 (Fig. 3.1). Only one

species (Acmispon wrangelianus) grewmore poorly in sterile soil than in soil containing

any live inoculum (88.9% lower biomass in sterile soil than average biomass with any

live inoculum, Fig. 3.1).

Do plant-soil feedbacks favor coexistence or exclusion among the focal species?

Plant species’ distinct responses to soil microbial communities resulted in complex

coexistence outcomes for the species in this study. Plant-soil feedbacks tended to drive

negative frequency-dependent feedback loops that stabilize the interaction for most

(14/15) species pairs in our study (meanvalue of stabilization> 0), though species pairs

differed in the strength of this effect. The mean stabilization± 2*SEM overlapped zero

for 9 of these pairs, meaning that only 5 pairs show strong (significant) stabilization.

For a single species pair (Salvia/Plantago), microbial effects tended to drive positive

frequency-dependent feedback loops that destabilize the pairwise interaction (mean

value of stabilization < 0, but mean± 2*SEM overlaped zero). Each species’ interaction

with at least one other species was strongly stabilized by plant-soil feedbacks (Table

1).

Soil microbes also drove a strong fitness difference in 9 out of the 15 species pairs

in our study (mean fitness difference ± 2*SEM does not overlap zero). These micro-
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bially mediated fitness differences favored certain species and harmed others. In par-

ticular, the legume Acmispon wrangelianus gained a fitness advantage due to micro-

bial feedbacks in its interactions with each of the other five species in our experiment.

Similarly, the grassHordeum murinum gained a fitness advantage over all other species

except A. wrangelianus.

Most importantly, using Eqn. 3.3 to compare the magnitude of microbially medi-

ated stabilization andfitness differences revealswhether plant-soil feedbacks generally

promote plant species coexistence or exclusion in the classic plant-soil feedbackmodel

(Bever et al. 1997). We found that soil microbes tended to promote species coexistence

in three pairs in our study (Plantago/Festuca, Salvia/Uropappus, andUropappus/Festuca).

For these pairs, the mean stabilization estimate was larger than the mean microbially

mediated fitness difference (Fig. 3.2), though the confidence intervals around the sta-

bilization estimates overlaps those of the fitness difference (Table 1). By contrast, for a

majority of the species pairs in our study (11/15), we found larger microbially medi-

ated fitness differences than stabilization (Fig. 3.2). There is especially strong evidence

that soil microbes favor exclusion in six of these pairs, for which the lower bound of

the fitness difference estimate was greater than the upper bound of the stabilization

estimate (Table 1). The fitness differences that drive exclusion in the Bever et al. (1997)

model can also favor diversity in nature if they benefit plant species that are otherwise

weak competitors.

119



AC_FE

AC_HO

AC_PL

AC_SA

AC_UR

HO_FE

PL_FE

FE_SA

UR_FE

HO_PL

HO_SA HO_UR

PL_UR

SA_PL

SA_UR coexistence

exclusion

−0.5

0.0

0.5

1.0

1.5

−0.5 0.0 0.5 1.0 1.5

Microbially mediated stabilization

- 1
2
 (m1A - m1B - m2A + m2B)

M
ic

ro
b
ia

lly
 m

e
d
ia

te
d
 f

itn
e
ss

 d
iff

e
re

n
ce

1 2
 (

m
1
A

+
m

1
B

-
m

2
A

-
m

2
B
)

Lower bound of fitness difference
estimate is greater than upper
bound of stabilization estimate

Confidence intervals of fitness
difference and stabilization
estimates overlap

Figure 3.2: In the classic plant-soil feedback model (Bever et al. 1997), soil microbes
favor species coexistence in the species pairs that fall below the dashed line, and ex-
clusion in the pairs that fall above the dashed line. The microbially mediated fitness
differences that always drive exclusion Bever et al. (1997)’s model may promote plant
diversity in more complex models that incorporate other interactions between plant
species if they benefit the otherwise inferior competitor (see Discussion). Error bars
show mean ± 2*SEM.
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Table 3.1: Microbially mediated stabilization and fitness differences among the fifteen
species pairs in our study. Bold terms indicate those valueswhose confidence intervals
do not overlap zero. The net effect of plant-soil feedbacks reflects the relative magni-
tude of stabilization vs. fitness differences in Bever et al. (1997)’s plant-soil feedback
model (Eqn. 3), though microbially medaited fitness differences may promote diver-
sity by equalizing fitness differences in more complex models.

Species pair Code Stabilization Fitness
Difference

Net effect of PSF
in Bever et al.
(1997) model

Plant-soil feedbacks tend to promote coexistence (stabilization > fitness difference)
P. erecta/
F. microstachys

PL_FE 0.116
(-0.13–0.362)

0.032
(-0.432–0.58)

coexistence

U. lindleyi/
F. microstachys

UR_FE 0.275
(-0.029–0.579)

0.059
(-0.555–0.889)

coexistence

S. columbariae/
U. lindleyi

SA_UR 0.161
(-0.147–0.469)

0.112
(-0.482–0.755)

coexistence

Plant-soil feedbacks tend to promote exclusion (fitness difference > stabilization)
A. wrangelianus/
S. columbariae

AC_SA 0.333
(0.169–0.497)

0.789
(0.363–0.759)

exclusion

A. wrangelianus/
U. lindleyi

AC_UR 0.227
(-0.069–0.523)

0.834
(0.468–0.593)

exclusion

F. microstachys/
S. columbariae

FE_SA 0.163
(-0.027–0.353)

0.306
(-0.024–0.493)

exclusion

H. murinum/
U. lindleyi

HO_UR 0.273
(0.055–0.491)

0.614
(0.182–0.705)

exclusion

P. erecta/
U. lindleyi

PL_UR 0.123
(-0.207–0.453)

0.173
(-0.065–0.361)

exclusion

Strong evidence that plant-soil feedbacks promote exclusion
(lower bound fitness difference estimate > upper bound of stabilization estimate)
A. wrangelianus/
F. microstachys

AC_FE 0.376
(0.204–0.548)

1.005 (0.781–0.6) exclusion

A. wrangelianus/
H. murinum

AC_HO 0.045
(-0.053–0.143)

0.724
(0.57–0.199)

exclusion

A. wrangelianus/
P. erecta

AC_PL 0.341
(0.077–0.605)

1.142
(0.846–0.637)

exclusion

H. murinum/
F. microstachys

HO_FE 0.031
(-0.115–0.177)

0.689
(0.395–0.325)

exclusion

H. murinum/
P. erecta

HO_PL 0.227
(0.017–0.437)

0.779
(0.451–0.555)

exclusion

H. murinum/
S. columbariae

HO_SA 0.038
(-0.118–0.194)

0.613
(0.383–0.268)

exclusion

Plant-soil feedbacks tend to destabilize plant interactions (stabilization < 0)
S. columbariae/
P. erecta

SA_PL -0.105
(-0.453–0.243)

0.024
(-0.28–0.199)

exclusion or
priority effect
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Discussion
Theoretical and empirical studies have shown that plant-soil feedbacks can influence

whether a pair of species coexists if they drive stabilizing feedback loops that favor

species that decline in abundance and disadvantage more abundant species (or desta-

bilizing loops that favor more abundant species and disadvantage rare ones) (Bever et

al. 1997; Crawford et al. 2019). However, recent theoretical advances have clarified

that species coexistence is also determined by the degree to which soil micobes medi-

ate an average fitness difference that gives one species a demographic advantage over

its competitor, regardless of its abundance in the system (Chesson 2000; Kandlikar et

al. 2019). Here, we show that empirically quantifying the microbially mediated fit-

ness difference and comparing it to the degree of microbial stabilization in Bever et

al. (1997)’s classic model of plant-soil feedback is essential for understanding how soil

microbes shape plant species coexistence. Specifically, we found that even though soil

microbes stabilize pairwise interactions by generating negative frequency-dependent

dynamics in nearly all pairs in our study, they often drive substantial fitness differences

that overwhelm their stabilizing effects.

That plant-soil feedbacks drive stabilization but also strong average fitness dif-

ferences is determined by the particular arrangement of interspecific differences in

species’ response to soil communities cultivated by conspecifics and heterospecifics.

In our experiment, species generally performed better with a soil community culti-

vated by heterospecifics than with a soil community cultivated by conspecifics (across

all species, growth with conspecific-cultivated microbes was on average 13% lower

than growth with heterospecific microbes). Thus, the effect of plant-soil feedbacks is

generally to stabilize rather than destabilize plant interactions (Fig. 3.2), a result which

is consistent with meta-analyses of similar experiments among grassland species (Kul-
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matiski et al. 2008; Crawford et al. 2019). Inferring the influence of plant-soil feedbacks

from this result alonemight lead us to conclude that soil microbes generally favor plant

diversity in this system. However, a novel aspect of our experiment is that we can

compare the stabilizing effects of soil microbes to the fitness difference they generate

to more fully assess their effects on plant coexistence. This comparison is possible be-

cause we also measured plant growth with the microbial community of field-collected

soil that had not been directly influenced of any focal species in our experiment, a

treatment has been omitted from most studies of plant-soil feedbacks.

All six species in our experiment grew less vigorously with microbes cultivated

during Phase 1 than when grown with the microbial community of uncultivated field

soil (Fig. 3.1). It is possible that this result is driven by slightly higher nutrient levels

in pots inoculated with a reference vs. cultivated soil inoculum, though we aimed to

minimize this possibility by adding only a small volume (10%) of inoculum soil into a

common sterile background (see Fig. S1). Assuming that variation in species’ growth

during the second phase of the experiment is primarily driven by differences in soil mi-

crobes, our results indicate that greenhouse-grown high-density monocultures of the

focal species might harbor more pathogenic (or fewer mutualistic) soil microbes than

field-collected reference soils. However, this effect was weak forAcmispon wrangelianus

– the only Fabaceae species in our experiment – which grew more similarly with mi-

crobes cultivated during Phase 1 as with the field-collected reference microbial com-

munity (A. wrangelianus growth was 28% lower with cultivated microbes than with

the reference field inoculum, vs. 71% lower growth on average for all other species).

This result, as well as our finding that A. wrangelianus grows much more vigorously

when inoculated with any live microbial community than in sterile soil (Fig. 3.1), is

consistent with other studies showing that growth of A. wrangelianus benefits from
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the presence of many strains of nitrogen-fixing soil bacteria in the genus Mesorhizo-

bium, strains likely present in our field soil inoculum (Porter et al. 2016, 2019). As

a consequence of the differences in species’ response to the microbial communities

cultivated by the focal species, plant-soil feedbacks generate a fitness advantage in fa-

vor of A. wrangelianus in its pairwise interaction with each of the other species in our

experiment (Table 1). Although empirical studies of plant-soil feedback have rarely

explicitly quantified microbially mediated average fitness differences, ours is one of a

growing number of studies finding that complex, diverse soil microbial communities

benefit Fabaceae species that associate withN-fixing bacteriamore than plants of other

functional groups (van der Heijden et al. 2015; Teste et al. 2017). This indicates that

plant-soil feedbacks may frequently drive a fitness advantage in favor of these legume

species.

The microbially mediated stabilization and fitness differences quantified in our

study and other two-phase feedback experiments are determined by the soil microbes

cultivated by focal plant species from the soil community of the reference inoculum.

This raises the question of what the appropriate reference inoculum is for plant-soil

feedback experiments, a question that has not been highlighted by previous studies

because growth in the reference soil is not essential for calculating the stabilization

metric that has been the focus of most existing research. The unconditioned soil in-

oculum should generally reflect the field soil’s microbial community when the soil has

not been conditioned by the focal species in the experiment (Bever et al. 1997). Ideally,

this reference inoculum captures the state of the soil microbial community when all

focal plant species are absent from the system (and the remainder of the plant com-

munity is at equilibrium). In practice, soil that has been previously conditioned by

the dominant plant species in the field may be an obvious first choice for reference
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soil, especially in systems that lack extensive spatial structure. When there is no clear

choice of a reference soil, or when the focal species in the experiment are themselves

dominant in the community, collecting multiple reference inocula (e.g. from individ-

uals of several dominant plant species, or from several locations on a spatial grid) and

quantifying the microbially mediated stabilization and fitness differences separately

from each of the reference inocula would be an ideal approach to evaluate the range of

possible coexistence consequences of soil microbes. For our experiment we collected

the reference soil near the invasive grass Avena fatua because Avena has long been one

of the dominant plants throughout southern California grasslands (D’Antonio et al.

2007), including at our field site. We therefore expect that the focal species in our ex-

periment often interact with each other in soils previously cultivated byAvena or other

non-native annual grasses. Our conclusions about effects of plant-soil feedbacks on

plant coexistence in this system may have been different had we used soil collected

near native California grassland species as the reference, because the soil communi-

ties of non-native plants in this ecosystem are often different from those of the native

species (Batten et al. 2007; Vogelsang and Bever 2009). Using the two-phased exper-

imental design with the additional reference soil treatment to evaluate the variation

in plant-soil feedback effects based on the microbial composition of reference inocula

will be an important priority for future research.

Although the two-phased feedback experiment design isolates the effect of soil

microbes on plant interactions, more thoroughly evaluating the consequences of soil

microbes on plant diversity requires also considering other processes like resource

competition that simultaneously influence species interactions (Bever 2003; Kandlikar

et al. 2019). Specifically, although stabilizing plant-soil feedbacks should promote

species coexistence regardless of other processes, the microbially mediated fitness dif-
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ferences that drive exclusion in Bever et al. (1997)‘s model may in fact favor plant

diversity in nature if they benefit the otherwise weaker competitor. Indeed, in a pre-

vious field experiment among annual plants in the same system that motivated our

study,A. wrangelianuswas predicted to be excluded in pairwise interactions with three

other focal species in our experiment (Plantago erecta, Salvia columbariae, and Uropap-

pus lindelyi) (Kraft et al. 2015, note that A. wrangelianus was Lotus wrangelianus and

U. lindelyi was Agoseris heterophylla in that study). In that study, A. wrangelianus was

grown with competitors in live field soil, and the outcome reflects the joint effects of

resource competition, plant-soil feedback, and other processes operating in nature.

Thus, the microbially mediated fitness advantage in favor of A. wrangelianus that we

identified appears to simply improve the performance of a weak competitor, though

the relative boost to A. wrangelianus’ performance due to the microbially mediated fit-

ness advantage appears to be insufficient to overcome other competitive asymmetries.

Similarly, Siefert et al. (2018) found that soil microbes are more likely promote coex-

istence of two highly co-occurring species of Trifolium by reducing their competitive

fitness differences than by generating negative density-dependent dynamics between

the two species. More generally, if soil microbes drive observed trade-offs between

plant species’ ability to compete for limiting resources and their sensitivity to natural

enemies (Bever et al. 2015; Peay 2016), microbially mediated fitness differences might

often promote plant diversity by reducing the degree of niche differentiation required

for stable coexistence. Future empirical studies designed to quantify how microbially

mediated stabilization and fitness difference change the outcome of other competitive

asymmetries (e.g. using the designs proposed by Ke and Wan (2019)) will help clar-

ify the interplay between plant-soil feedback and other processes that influence plant

species coexistence in nature.
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Our study highlights the potential for plant-soil feedbacks to simultaneously sta-

bilize pairwise interactions and also drive average fitness differences that always fa-

vor one species over the other, but our results have some important caveats. First, we

mixed the soils cultivated by replicate Phase 1 monocultures of each species to cre-

ate the soil inoculum for Phase 2. This is a common step in many plant-soil feedback

studies (e.g. Klinerová and Dostál (2020); Cortois et al. (2016)), but it can result in

falsely precise or inflated estimates of the soil microbial community’s effect on plant

growth (Reinhart and Rinella 2016). When we assessed the consequence of soil ho-

mogenization by comparing growth in soil homogenized across replicate monocul-

tures vs. growth with soil from a single monoculture (Fig. S2.1), we found that this

homogenizing across monocultures is unlikely to have significantly influenced the re-

sults of our main experiment. In general, however, we agree with Reinhart and Rinella

(2016) that more careful study of the variable nature of plant-microbe interactions will

be a fruitful avenue for future research.

A second limitation of our study is that it did not account for the fact that the

composition and dynamics of soil microorganisms in Mediterranean ecosystems are

also influenced by the length and intensity of the summer droughts that separate the

annual plant community’s growing seasons (Barnard et al. 2014). By not accounting

for the possibility that the cultivating effects of plant species on soil microbial commu-

nities erode over the six-month dry season, our experiment might have overestimated

the long-term effects of plant-soil feedbacks on species coexistence in this annual plant

system. Future studies that adapt the standard two-phase design of plant-soil feedback

experiments to capture relevant biological idiosyncrasies of focal plant communities

will be important for contextualizing our understanding of how soil microorganisms

shape plant diversity in natural systems (Smith-Ramesh and Reynolds 2017).
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In conclusion, we have demonstrated that dynamic feedbacks between plants and

soil microorganisms can have important consequences on plant coexistence. Existing

research has emphasized the potential for such feedbacks to stabilize or destabilize

plant interactions by generating negative or positive frequency-dependent dynamics.

Herewe conducted a two-phase feedback experiment with annual plants that co-occur

in southern California grasslands and showed that inferring the net effects of soil mi-

crobes by evaluating only their (de)stabilizing effects and not comparing these to the

microbially mediated fitness difference can lead to false conclusions regarding soil mi-

crobes’ effects on plant diversity. Comparing the strength of microbially mediated sta-

bilization and fitness differences in a wide range of ecosystems and plant functional

types should be a priority for future plant-soil feedback research. Ultimately, trans-

lating the consequences of plant-soil feedbacks into predictions for how soil microbes

mediate diversity in nature will require contextualizing the effects of soil microbes rel-

ative to those of competition and other processes that affect the dynamics of plant and

soil microbial communities.
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Chapter 3 Supplementary Materials

Appendix 3.1: Modifying the standard two-phase design of plant-soil
feedback experiments to quantifymicrobiallymediated fitness differ-
ences

Most studies that use a two-phase experimental design to study the coexistence conse-

quences of plant-soil feedbacks only grow plants with cultivated soil microbial com-

munities in the second phase of their experiment, and not with an uncultivated, refer-

ence soil community. This is because quantifying microbially mediated stabilization,

which is the focus of most such studies, does not require measuring plant growth with

uncultivated microbes. Specifically, Bever et al. (1997) showed that following the orig-

inal definitions of the mix terms as growth of plant i withmicrobes x minus the growth

of plant i with uncultivated microbes (mix = Gix − GiO), growth with uncultivated mi-

crobes is irrelavent for quantifying the stabilizationmetric IS. Following the same logic,

growth with uncultivated microbial communities also cancels out of the equation for

the stabilization metric derived in Kandlikar et al. (2019):

stabilization = −1
2

(m1A + m2B − m1B − m2A)

= −1
2

((G1A −✟✟✟G1O) + (G2B −❍❍❍G2O) − (G1B −✟✟✟G1O) − (G2A −❍❍❍G2O))

= −1
2

(G1A + G2B − G1B − G2A)

(Eqn. S3.1)

However, growth with uncultivated microbes is relevant for quantifying the mi-

crobially mediated fitness difference:
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fitness difference1,2 =
1
2

(m1A + m1B) − 1
2

(m2A + m2B)

=
1
2

((G1A − G1O) + (G1B − G1O)) − 1
2

((G2A − G2O) + (G2B − G2O))

=
�

1
2

(G1A + G1B) − G1O

�
−

�
1
2

(G2A + G2B) − G2O

�

(Eqn. S3.2)

Thus, simply using the standard two-phase design of plant soil feedback experiments

with an additional treatment of growth in uncultivated reference soil in the second

phase (see Fig. S1.1), gives all the measures required to quantify both the stabilization

and fitness difference mediated by soil microbes in Bever et al. (1997)’s model of plant-

soil feedback. In the Discussion section of the main text, we lay out general guidelines

for how to choose an appropriate reference soil community, and explain howwe chose

the reference soil for our experiment.

It is important to note that although plant growth with the uncultivated (refer-

ence) inoculum cancels out of the stabilizationmetric, the composition of the reference

soil microbial community can nevertheless influence the quantification of microbially

mediated stabilization in plant-soil feedback experiments. For example, a two-phase

feedback experiment might under-estimate stabilization if the unconditioned inocu-

lum is missing a host-specific pathogen that would otherwise proliferate in phase 1

and suppress conspecific growth in phase 2. Thus, choosing an appropriate reference

community that the focal plant species would be likely to experience when they are

absent from the community is important even for plant-soil feedback studies that only

aim to quantify the degree of microbially mediated stabilization.
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Figure S3.1: A schematic of experimental design. Note that plants were grown as high-
density monocultures (8g seed/m2) for the first (cultivation) phase, but shown as a
single plant here for simplicity. Plants were grown as single individuals in pots for
the second (response) phase of the experiment. Soils across the five replicate Phase 1
cultivations were homogenized to create the inocula for the second phase of the exper-
iment (but see Supplement 2 for results from a parallel experiment in which we tested
the effects of each Plantago-cultivated soil separately). Our experiment included six
focal species; we show only two here for clarity.
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Appendix 3.2: Evaluating the effects of homogenizing replicate Phase
1 cultivations

Homogenizing soils from across the replicate Phase 1 cultivations to create the inocula

for the second phase, a common step in plant-soil feedback experiments (Gundale et al.

2018) that we adopt in this study, makes such experiments more feasible but can lead

to biased and falsely precise results (Reinhart and Rinella 2016). To explore the varia-

tion in the effects of the replicate Phase 1 cultivations, we set up a parallel experiment

in which we grew ten replicate individuals of Plantago erecta and Festuca microstachys in

soils cultivated by each of the fivePlantagoPhase 1monocultures (2 species * 5 soil inoc-

ula * 10 replicates = 100 pots). Although this approach does not quantify the variation

in each focal species’ cultivation, it can yield insight into the potential consequences of

pooling across replicate Phase 1 monocultures on plant growth. As in Phase 2 of the

feedback experiment, we planted germinants from surface-sterilized seeds into 125mL

Deepots that contained 10% v/v live inoculum, and added an additional seedling in

pots that had no surviving germinants after 1 week. Two pots had no surviving plants

2 weeks after initial planting; we excluded these pots from analyses. We harvested

aboveground biomass after 8 weeks of growth, and weighed after drying for 72H at

60◦C.

Results: The biomass of Plantago erecta and Festuca microstachys grown with an inocu-

lum that came from a single Plantago phase 1 monoculture did not differ significantly

from their biomass when grown with an inoculummade by combining soil from each

of the five Plantago monocultures (one-factor Anova; Plantago: F5,55 = 1.16, p > 0.05;

Festuca: F5,52 = 1.78, p > 0.05, Fig. S3.2). Whether the inoculum was sourced

from a single Phase 1monoculture or was homogenized across replicate monocultures

also did not influence the variance in aboveground biomass (Levene’s test; Plantago
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Figure S3.2: Results from a parallel experiment to explore the effect of homogenizing
soil from replicate Phase 1monocultures on growth of twoplant species. Aboveground
biomass of Plantago erecta and Festuca microstachys grown with a soil inoculum that
was sourced either from a single Plantago phase 1 monoculture (blue circles) or with
an inoculum created by homogenizing soil from all five repilicate monocultures (yel-
low triangles), as was done for the main experiment. Large points indicate median
biomass, and the solid error bars extend to the lower and upper quartiles. Small points
and dashed lines show outliers, which were identified as points that were more than
(1.5*IQR) away from the lower or upper quartile. Note the log-transformed X-axis.

F5,55 = 0.82, p > 0.05; Festuca F5,52 = 0.44; p > 0.05).

134



Appendix 3.3: Comparing predictions of coexistence derived by com-
paring strength of stabilization and fitness differences to predictions
made via Bever et al. (1997)’s feasibility analysis

Our approach of inferring coexistence in terms of microbially mediated stabilization

and fitness differences using our experimental data yields conclusions that are con-

sistent with the feasibility analysis originally presented in Bever et al. (1997) (for an

algebraic explanation of this equivalence, see Appendix S1 of Kandlikar et al. (2019)).

In Bever et al. (1997)’s analysis of the plant-soil feedbackmodel, soil microbes stabilize

plant interactions when they result in a negative value for the stabilization metric IS,

calculated as IS = m1A + m2B − m1B − m2A. Importantly, negative IS is a necessary con-

dition for plant coexistence, but it is not sufficient: stable coexistence of plant species

also requires that both plants have a positive frequency at equilibrium, with this equi-

librium frequency P̂ calculated as P̂1 = m2B−m1B
IS

for species 1, and P̂2 = m1A−m2A
IS

for

species 2. In other words, plant-soil feedbacks result in stable coexistence provided

three conditions are satisfied (Bever et al. 1997; Eppinga et al. 2018):

IS < 0; 0 < P̂1 < 1; 0 < P̂2 < 1 (Eqn. S3.3)

In Table S3.1 below we show, for each species pair in each block, that analyzing exper-

imental data in terms of Eqn S3.1 above or the inequality in Eqn. 3.3 (from the Main

Text) yields the same conclusions regarding coexistence vs. exclusion.
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Colophon

This document is set in EB Garamond, Source Code Pro and Lato. The body text is set

at 11pt with TeXGyrePagella(0).

It was written in R Markdown and LATEX, and rendered into PDF using gau-

chodown and bookdown.

This document was typeset using the XeTeX typesetting system, and the Univer-

sity of Washington Thesis class class created by Jim Fox. Under the hood, the Uni-

versity of Washington Thesis LaTeX template is used to ensure that documents con-

form precisely to submission standards. Other elements of the document formatting

source code have been taken from the Latex, Knitr, and RMarkdown templates for UC

Berkeley’s graduate thesis, and Dissertate: a LaTeX dissertation template to support

the production and typesetting of a PhD dissertation at Harvard, Princeton, and NYU

The source files for this thesis, along with all the data files, have been organised

into an R package, xxx, which is available at https://github.com/xxx/xxx. A hard

copy of the thesis can be found in the University of Washington library.

This version of the thesis was generated on 2020-09-10 17:26:08. The repository is

currently at this commit:

The computational environment that was used to generate this version is as fol-

lows:
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- Session info ---------------------------------------------------------------
setting value
version R version 3.6.3 (2020-02-29)
os elementary OS 0.4.1 Loki
system x86_64, linux-gnu
ui X11
language en_US
collate en_US.UTF-8
ctype en_US.UTF-8
tz America/Los_Angeles
date 2020-09-10

- Packages -------------------------------------------------------------------
package * version date lib source
assertthat 0.2.1 2019-03-21 [1] CRAN (R 3.6.0)
backports 1.1.8 2020-06-17 [1] CRAN (R 3.6.3)
bookdown 0.17 2020-01-11 [1] CRAN (R 3.6.2)
broom 0.5.6 2020-04-20 [1] CRAN (R 3.6.3)
callr 3.4.3 2020-03-28 [1] CRAN (R 3.6.3)
cellranger 1.1.0 2016-07-27 [1] CRAN (R 3.6.0)
cli 2.0.2 2020-02-28 [1] CRAN (R 3.6.3)
colorspace 1.4-1 2019-03-18 [1] CRAN (R 3.6.0)
crayon 1.3.4 2017-09-16 [1] CRAN (R 3.6.0)
DBI 1.1.0 2019-12-15 [1] CRAN (R 3.6.2)
dbplyr 1.4.2 2019-06-17 [1] CRAN (R 3.6.2)
desc 1.2.0 2018-05-01 [1] CRAN (R 3.6.0)
devtools * 2.2.2 2020-02-17 [1] CRAN (R 3.6.3)
digest 0.6.25 2020-02-23 [1] CRAN (R 3.6.3)
dplyr * 1.0.0 2020-05-29 [1] CRAN (R 3.6.3)
ellipsis 0.3.1 2020-05-15 [1] CRAN (R 3.6.3)
evaluate 0.14 2019-05-28 [1] CRAN (R 3.6.0)
fansi 0.4.1 2020-01-08 [1] CRAN (R 3.6.2)
farver 2.0.3 2020-01-16 [1] CRAN (R 3.6.2)
forcats * 0.5.0 2020-03-01 [1] CRAN (R 3.6.3)
fs 1.3.1 2019-05-06 [1] CRAN (R 3.6.0)
gauchodown * 1.0 2020-03-28 [1] local
generics 0.0.2 2018-11-29 [1] CRAN (R 3.6.0)
ggplot2 * 3.3.2 2020-06-19 [1] CRAN (R 3.6.3)
ggrepel 0.8.1 2019-05-07 [1] CRAN (R 3.6.1)
git2r 0.26.1 2019-06-29 [1] CRAN (R 3.6.2)
glue 1.4.1 2020-05-13 [1] CRAN (R 3.6.3)
gtable 0.3.0 2019-03-25 [1] CRAN (R 3.6.0)
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haven 2.2.0 2019-11-08 [1] CRAN (R 3.6.2)
highr 0.8 2019-03-20 [1] CRAN (R 3.6.0)
hms 0.5.3 2020-01-08 [1] CRAN (R 3.6.2)
htmltools 0.5.0 2020-06-16 [1] CRAN (R 3.6.3)
httr 1.4.1 2019-08-05 [1] CRAN (R 3.6.1)
jsonlite 1.7.0 2020-06-25 [1] CRAN (R 3.6.3)
kableExtra * 1.1.0 2019-03-16 [1] CRAN (R 3.6.0)
knitr 1.29 2020-06-23 [1] CRAN (R 3.6.3)
labeling 0.3 2014-08-23 [1] CRAN (R 3.6.0)
lattice 0.20-40 2020-02-19 [1] CRAN (R 3.6.3)
lifecycle 0.2.0 2020-03-06 [1] CRAN (R 3.6.3)
lubridate 1.7.4 2018-04-11 [1] CRAN (R 3.6.0)
magrittr * 1.5 2014-11-22 [1] CRAN (R 3.6.0)
Matrix 1.2-18 2019-11-27 [1] CRAN (R 3.6.2)
memoise 1.1.0 2017-04-21 [1] CRAN (R 3.6.0)
mgcv 1.8-31 2019-11-09 [1] CRAN (R 3.6.2)
modelr 0.1.6 2020-02-22 [1] CRAN (R 3.6.3)
munsell 0.5.0 2018-06-12 [1] CRAN (R 3.6.0)
nlme 3.1-144 2020-02-06 [4] CRAN (R 3.6.2)
patchwork * 1.0.0 2019-12-01 [1] CRAN (R 3.6.2)
pillar 1.4.4 2020-05-05 [1] CRAN (R 3.6.3)
pkgbuild 1.0.8 2020-05-07 [1] CRAN (R 3.6.3)
pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 3.6.1)
pkgload 1.1.0 2020-05-29 [1] CRAN (R 3.6.3)
prettyunits 1.1.1 2020-01-24 [1] CRAN (R 3.6.2)
processx 3.4.3 2020-07-05 [1] CRAN (R 3.6.3)
ps 1.3.3 2020-05-08 [1] CRAN (R 3.6.3)
purrr * 0.3.4 2020-04-17 [1] CRAN (R 3.6.3)
R6 2.4.1 2019-11-12 [1] CRAN (R 3.6.1)
RColorBrewer 1.1-2 2014-12-07 [1] CRAN (R 3.6.0)
Rcpp 1.0.5 2020-07-06 [1] CRAN (R 3.6.3)
readr * 1.3.1 2018-12-21 [1] CRAN (R 3.6.0)
readxl 1.3.1 2019-03-13 [1] CRAN (R 3.6.0)
remotes 2.1.1 2020-02-15 [1] CRAN (R 3.6.3)
reprex 0.3.0 2019-05-16 [1] CRAN (R 3.6.0)
rlang 0.4.7 2020-07-09 [1] CRAN (R 3.6.3)
rmarkdown 2.3.2 2020-07-14 [1] Github (rstudio/rmarkdown@ff1b279)
rprojroot 1.3-2 2018-01-03 [1] CRAN (R 3.6.0)
rstudioapi 0.11 2020-02-07 [1] CRAN (R 3.6.3)
rvest 0.3.5 2019-11-08 [1] CRAN (R 3.6.2)
scales 1.1.1 2020-05-11 [1] CRAN (R 3.6.3)
sessioninfo 1.1.1 2018-11-05 [1] CRAN (R 3.6.0)
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stringi 1.4.6 2020-02-17 [1] CRAN (R 3.6.3)
stringr * 1.4.0 2019-02-10 [1] CRAN (R 3.6.0)
testthat 2.3.2 2020-03-02 [1] CRAN (R 3.6.3)
tibble * 3.0.2 2020-07-07 [1] CRAN (R 3.6.3)
tidyr * 1.1.0 2020-05-20 [1] CRAN (R 3.6.3)
tidyselect 1.1.0 2020-05-11 [1] CRAN (R 3.6.3)
tidyverse * 1.3.0 2019-11-21 [1] CRAN (R 3.6.2)
usethis * 1.5.1 2019-07-04 [1] CRAN (R 3.6.2)
vctrs 0.3.1 2020-06-05 [1] CRAN (R 3.6.3)
viridisLite 0.3.0 2018-02-01 [1] CRAN (R 3.6.0)
webshot 0.5.2 2019-11-22 [1] CRAN (R 3.6.2)
withr 2.2.0 2020-04-20 [1] CRAN (R 3.6.3)
xfun 0.15 2020-06-21 [1] CRAN (R 3.6.3)
xml2 1.2.2 2019-08-09 [1] CRAN (R 3.6.2)
yaml 2.2.1 2020-02-01 [1] CRAN (R 3.6.3)

[1] /home/gsk/R/x86_64-pc-linux-gnu-library/3.6
[2] /usr/local/lib/R/site-library
[3] /usr/lib/R/site-library
[4] /usr/lib/R/library
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