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ABSTRACT

Both the acceleration of cosmic rays (CRs) in supernova remnant shocks and their subsequent propagation through
the random magnetic field of the Galaxy are deemed to result in an almost isotropic CR spectrum. However, the
MILAGRO TeV observatory discovered sharp (∼10◦) arrival anisotropies of CR nuclei. We suggest a mechanism
for producing a weak and narrow CR beam which operates en route to the observer. The key assumption is that CRs
are scattered by a strongly anisotropic Alfvén wave spectrum formed by the turbulent cascade across the local field
direction. The strongest pitch-angle scattering occurs for particles moving almost precisely along the field line. Partly
because this direction is also the direction of the minimum of the large-scale CR angular distribution, the enhanced
scattering results in a weak but narrow particle excess. The width, the fractional excess, and the maximum momentum
of the beam are calculated from a systematic transport theory depending on a single scale l which can be associated
with the longest Alfvén wave, which efficiently scatters the beam. The best match to all three characteristics of
the beam is achieved at l ∼ 1 pc. The distance to a possible source of the beam is estimated to be within a few
100 pc. Possible approaches to the determination of the scale l from the characteristics of the source are discussed.
Alternative scenarios of drawing the beam from the galactic CR background are considered. The beam-related large-
scale anisotropic CR component is found to be energy independent, which is also consistent with the observations.

Key words: acceleration of particles – cosmic rays – diffusion – ISM: supernova remnants – magnetohydrodynamics
(MHD) – scattering – shock waves – turbulence

1. INTRODUCTION

The MILAGRO TeV observatory recently discovered colli-
mated beams dominated by hadronic cosmic rays (CRs) with a
narrow (∼10◦) angular distribution in the 10 TeV energy range
(Abdo et al. 2008). This is surprising since most of the CR accel-
eration and propagation models predict only a weak, large-scale
anisotropy. The acceleration models are based on the diffusive
shock acceleration (DSA) mechanism, widely believed to gen-
erate galactic CRs in supernova remnant (SNR) shocks. The
cornerstone of the DSA is a rapid pitch-angle scattering of CRs
by self-generated Alfvén waves in the shock vicinity. An en-
hanced scattering isotropizes particle distributions. Moreover,
when the shock releases the accelerated particles into the inter-
stellar medium (ISM), the ISM turbulence continues to scatter
them. Even though this scattering occurs at a significantly lower
rate, all sharp anisotropies carried over from the accelerator or
created otherwise should be erased during the long (�100 pc)
travel of the CRs from any hypothetical nearby SNR to the ob-
server, yet the astounding sharp beaming effect is argued to be
genuine.

Focusing instead on relatively distant accelerators (such as
nearby SNRs) and long-distance propagation effects as a pos-
sible cause of the MILAGRO beam(s), we do not consider
“local” scenarios that have already been discussed and largely
rejected by Drury & Aharonian (2008) and Salvati & Sacco
(2008). As for the remote accelerator with subsequent propa-
gation effects, some of them have also been suggested in the
above publications. In particular, Salvati & Sacco (2008) asso-
ciate the observed CR beam with the Geminga pulsar. How-
ever, Drury & Aharonian (2008) argue that this does not ex-
plain the sharp collimation, and suggest a magnetic nozzle as
such a collimation device. The magnetic nozzle scenario, how-

ever, poses a rather strong constraint on the nozzle mirror ratio
(Bmax/Bmin ∼ ϑ−2 � 1, where ϑ is the beam angular width).
The advantage of this scenario is that the beam density is equal
to the difference between the isotropic components of CRs on
each side of the mirror (by linearity of the transport equation).
Since the MILAGRO beam is very weak (∼10−4 of the CR den-
sity), this is a very mild requirement on the CR enhancement on
the far side of the mirror. It is also true that the existence of a
magnetic mirror of that strength cannot be warranted or denied
on any rational grounds. It should be noted that any anisotropic
distribution may become vulnerable to self-spreading in pitch
angle. As pointed out by Drury & Aharonian (2008), however,
the isotropic CR background should produce a stabilizing ef-
fect against the beam’s self-spreading. We will quantify the CR
stabilization in Section 4.4 required for both the collimation
mechanism suggested in this paper and for the magnetic nozzle
hypothesis.

In this paper, we suggest a novel mechanism for produc-
ing a narrow CR beam. It is based on the strong anisotropy
of the magnetohydrodynamic (MHD) turbulence in the ISM.
Such anisotropy is expected when the turbulence is driven at
a long (outer) scale, but unlike the isotropic Kolmogorov cas-
cade, the incompressible MHD cascade is directed perpendic-
ularly to the magnetic field in wave vector space. This was
shown by Goldreich & Sridhar (1995, hereafter GS; see also
Sridhar & Goldreich 1994 and Goldreich & Sridhar 1997)
and confirmed by numerical simulations (e.g., Cho & Vishniac
2000; Maron & Goldreich 2001; Beresnyak & Lazarian 2009).
The cascade proceeds to k⊥rg(p) � 1 in the perpendic-
ular wave number direction for the protons with gyroradii
rg ∼ 1016 cm, typical for the particles of MILAGRO beam
energies pc ∼ 10 TeV and ISM magnetic field of a few μG.
As opposed to the k⊥ direction, the spectrum spreading in k‖ is
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Figure 1. Schematic representation of initial and final pitch-angle distributions
and the diffusion coefficient Dμμ (μ).

suppressed, so that k‖ ∼ k
2/3
⊥ l−1/3 � k⊥, where l is the outer

scale.
As is known from the wave–particle interaction in plasmas,

the scattering of particles with Larmor radii exceeding the
wavelength in the perpendicular direction, k⊥rg � 1, is strongly
suppressed, since such particles suffer from a rapidly changing
electromagnetic force. Specifically, the CR scattering by the
GS anisotropic spectrum was investigated in a number of
publications (Chandran 2000; Yan & Lazarian 2002). What
is important for the purposes of this paper is that the pitch-
angle scattering rate is peaked at |μ| = |cos ϑ | ≈ 1, i.e., for
particles moving along the field line, since for these particles
k⊥rg (p⊥) � 1. Only particles with such small p⊥, i.e., with
pitch angles within sin2 ϑ � ε � 1 are scattered efficiently.
Looking at this problem mathematically, a peaked diffusion
coefficient D (μ) does not necessarily result in a peaked particle
distribution f (μ). Indeed, the time-asymptotic solution of the
diffusion equation with zero flux through the boundary is a
flat distribution even if the diffusion coefficient is not constant.
Nevertheless, consider the particle diffusion in pitch angle on
an intermediate timescale, i.e., when anisotropy is erased within
the strong peak of the diffusion coefficient D (μ), but is present
in the region where D (μ) is much smaller. The dominant
eigenfunction of the scattering operator has a relatively broad
minimum at μ = 1, i.e., where D is sharply peaked. Now, the
enhanced scattering fills up the very bottom of this minimum,
which appears as a narrow excess (Figure 1). In the context
of a classical Lorentz gas relaxation problem (Gurevich 1961;
Kruskal & Bernstein 1964), this is clearly a transient effect
associated with an incomplete decay of the anisotropic part of
the pitch-angle distribution. Note that the difference from the
Lorenz gas problem is in the sharply peaked D (μ). In addition,
our problem is a problem in z, which is the spatial coordinate
(rather than time) along a magnetic flux tube that connects the
CR source with Earth.

The demonstration of this phenomenon, facilitated and ob-
scured at the same time by the fact that the peak region
|sin ϑ | � 1 contains the singular points of the particle pitch-
angle diffusion operator at sin ϑ = 0, will be the main subject
of this paper.

Before we tackle this problem, we briefly discuss in the
following section how narrow the CR angular distribution can
be as it leaks from a hypothetical nearby SNR accelerator
magnetically connected with the heliosphere. This, or some
other moderately anisotropic distribution of CRs, created by a

recent SNR explosion, will be subjected in Section 3 to the
pitch-angle scattering analysis and to the propagation analysis
in Section 4. Next, in Section 4.4, we determine the maximum
energy of the beam beyond which it must spread on self-
generated Alfvén waves. Section 5 deals with the relation
between the beam maximum energy and the distance to its
possible source. We conclude with a brief discussion of the
results and of what the fascinating MILAGRO findings can
possibly reveal about a nearby accelerator and the structure of
ISM turbulence.

2. ANGULAR DISTRIBUTION OF DIFFUSIVELY
ACCELERATED PARTICLES

To estimate the anisotropy of CRs escaping from an SNR
accelerator, we first briefly review the DSA mechanism and
its possible modifications that can enhance the CR anisotropy.
Within this mechanism, particles gain energy by scattering
upstream of the shock and back downstream repeatedly. The
scattering is supported by strong MHD waves unstably driven
by the accelerated particles themselves. In the early phase of
acceleration, an ion-cyclotron instability dominates. It is driven
by a weak pitch-angle anisotropy of particle distribution. It is
reasonable to assume, however, that a small fraction of particles
that reach sufficiently high energies can diffuse to the distant part
of the turbulent shock precursor where their self-confinement
becomes inefficient. In this way, a somewhat artificial notion of
the “free escape boundary” (FEB) was introduced, particularly
in Monte Carlo numerical schemes (Ellison et al. 1996) and other
analytical and numerical studies (Caprioli et al. 2009; Reville
et al. 2009). Particle escape also occurs naturally if the plasma
upstream is not fully ionized and the weak wave excitation at
the periphery of the turbulent shock precursor is suppressed
by the ion-neutral collisions (Drury et al. 1996). However, the
angular distribution of particles leaking through the FEB has not
been calculated systematically. Note that such calculation would
require a self-consistent treatment of wave generation and the
relaxation of the distribution of leaking particles. If the DSA
process inside the precursor maintains CR isotropy, the leaking
particles may be assumed to have a one-sided quasi-isotropic
distribution.

As the pressure from accelerated particles increases, other
instabilities may occur, including the non-resonant fire-hose in-
stability (Achterberg 1983; Shapiro et al. 1998; Bell 2004) and
an acoustic instability driven by the pressure gradient upstream
(Drury & Falle 1986; Zank et al. 1990; Kang et al. 1992). From
this point, particle transport becomes more complicated. In par-
ticular, acoustic waves turn into shocks and form a shock train
that compresses the magnetic field and creates a scattering envi-
ronment markedly different from the weakly turbulent scattering
field described above. It consists of a random sequence of rel-
atively weak shocks and was shown to produce a loss cone in
momentum space. However, preliminary calculations of parti-
cle dynamics in this environment (Malkov & Diamond 2006)
show that the opening angle of runaway particles is still too
large to account for the MILAGRO observations, particularly
when the subsequent self-spreading of the beam is taken into
account. This is clearly necessary since the stabilization on the
background CRs is not sufficient at this phase of beam propaga-
tion due to its relative strength. Apart from the magnetic nozzle
(Drury & Aharonian 2008), a remaining option is to generate
the beam on its way to Earth.

At first sight, this task appears to be like “squeezing blood out
of stone.” Intuitively, an intervening turbulence on the way to
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the Earth, if anything, can only further spread the beam. That the
turbulent particle beaming is possible nonetheless is primarily
due to the very sharp dependence of the scattering frequency on
the pitch angle near the magnetic field direction.

3. PITCH-ANGLE SCATTERING OF CRs BY
ANISOTROPIC ALFVÉN TURBULENCE

Systematic studies of wave–particle interactions in magne-
tized plasmas begun in the early 1960s by Sagdeev & Shafranov
(1961), Vedenov et al. (1962), and Rowlands et al. (1966), and
independently within the astrophysical and geophysical con-
texts by Jokipii (1966), Kennel & Engelmann (1966), and Völk
(1973). The angular profile of the scattering frequency depends
on the structure of the turbulence. We provide a concise deriva-
tion for the case of our interest in the Appendix. More generally,
particle scattering by an anisotropic turbulence with the spec-
trum suggested by GS was studied by Chandran (2000). Partic-
ularly, he demonstrated that the maximum contribution to the
pitch-angle scattering of the field-aligned particles is strongly
dominated by Alfvén wave magnetic perturbations, and so we
neglect the contributions of magnetosonic waves and velocity
perturbations in what follows. The neglected components are
essential for particles with |μ| � 1, but we are primarily in-
terested in those with μ ≈ 1, as they are assumed to make one
of the MILAGRO “hot spots.” Chandran (2000) also gives a
detailed description of the pitch-angle diffusion coefficient for
the GS spectrum and identifies its peaks at |μ| = 0, 1. However,
for the purposes of this paper we need the angular profile of the
peak at |μ| = 1, which we evaluate in this section.

We begin with the general expression for the pitch-angle
scattering coefficient (e.g., Völk 1973; Chandran 2000; see the
Appendix):

Dμμ = Ω2(1 − μ2)
∑
k,n

n2J 2
n (ξ )

ξ 2

×
∫ ∞

0
I (k‖, k⊥, τ )ei(k‖v‖+nΩ)τ dτ, (1)

where we have used the (standard) notations provided in the
Appendix. Assuming the GS spectrum for the spectral wave
density I, we have

I = 1

6π
k

−10/3
⊥ l−1/3g

(
k‖l1/3

k
2/3
⊥

)
e−τ/τk , (2)

where we have assumed the notations and normalization of
the spectrum used by Chandran (2000) rather than by GS.
In particular, g (x) = H (1 − |x|), where H is the Heaviside
function and τk = (l/VA) (k⊥l)−2/3 is the turbulence correlation
time. Focusing on the resonant interactions with particles, from
Equation (1) we obtain

Dμμ = π

3
l−1/3Ω2(1 − μ2)

∫ ∞

0
k

−7/3
⊥ dk⊥

∞∑
n=−∞

× n2J 2
n (ξ )

ξ 2

∫ ∞

−∞
g

(
k‖l1/3

k
2/3
⊥

)
δ(k‖v‖ − nΩ)dk‖. (3)

Note that the integral in k⊥ cuts off at the lower limit by virtue
of the function g. Therefore, from the last expression we can get

Dμμ = 2π

3

v

l |μ| (1 − μ2)y4/3S (y) , (4)

where we have introduced the notation

S (y) =
∞∑

n=1

Sn =
∞∑

n=1

n2
∫ ∞

y(n/|μ|)3/2
J 2

n (x) x−qdx, (5)

with y =
√

(1 − μ2)/ε, ε = v/lΩ, and q = 13/3. Assuming
y > 1, we can take an asymptotic limit x � 1 for Jn and recover
the corresponding result of Chandran (2000):

Dμμ � 2

13
ζ

(
9

2

)
v

l
ε3/2 |μ|11/2√

1 − μ2
, (6)

where ζ (s) = ∑∞
n=1 n−s is the Riemann ζ -function. Note that

ζ (9/2) ≈ 1.05, so that with a 5% accuracy the n = 1 term in
Equation (5) would suffice.

For larger values of y, namely, when δln (1/ε) �
ε3/2 |μ|11/2 (1 − μ2)−3/2, where δ = VA/v ≈ VA/c, the fi-
nite correlation time in the general form of Dμμ given by
Equations (2) and (3) should be taken into account. It is conve-
nient to perform the integral in k‖ first, then perform the one in
τ , which yields

Dμμ = 1

3
l−1/3 Ω

vμ
(1 − μ2)

∞∑
n=−∞

∫ ∞

1/l′

dk⊥
k

7/3
⊥

tan−1

×
{

1

δ

[
μ +

n

ε
(k⊥l)−2/3

]} n2

ξ 2
J 2

n (ξ ) . (7)

In contrast to the previous case, the integral here needs to
be cut at the lower limit by introducing the longest scale
l′ < l (Chandran 2000). Perturbations with k⊥l′ � 1 scatter
particles efficiently, while longer waves interact with particles
adiabatically. However, to simplify notations we set l′ = l below,
which is partly justified by a weak dependence of the turbulence
intensity on l (Equation (2)). We will discuss our choice of scales
l and l′ in Section 5.

Expanding tan−1 for a large argument (δ, ε � 1) and
summing the series of Bessel functions, we obtain

Dμμ � δε

3
Ω(1 − μ2)

∫ ∞

ε(1−μ2)1/2

dξ

ξ

1 − J 2
0 (ξ )

ξ 2

� 1

6

v

l
δ

[
ln

(
1

ε

)
− 1

2
ln(1 − μ2)

]
(1 − μ2). (8)

Again, within the assumed accuracy, the complete sum with the
Bessel functions in Equation (7) yields approximately the same
result as only the terms with n = ±1. We will show below that
in calculating the form of the peak of Dμμ (μ) at |μ| ≈ 1, it is
sufficient to take only the first few terms into account.

Now that we have reviewed the overall behavior of the pitch-
angle scattering frequency, we concentrate on the particular
region 1−μ2 � ε. For this, we evaluate the series in Equation (5)
for y � 1. It is clear that the main contribution comes from
n = 1, but since we also need the sum for y ∼ 1, we should
include a few subsequent terms and examine whether it will
change the result substantially. Based on the above remarks
about the dominant contribution of the low n terms, it will
hopefully not. First, we evaluate S1 by integrating it by parts
and rearranging the remaining integrals as follows:

S1 = y1−q

q − 3
J 2

1 (y) − 2

q − 3

(∫ ∞

0
J1 (x) J2 (x) x1−qdx

−
∫ y

0
J1 (x) J2 (x) x1−qdx

)
. (9)
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Note that the first term diverges as y → 0, the second is finite,
and the third one is small. Neglecting the third term, we obtain

S1 � 3

4
J 2

1 (y) y−10/3 + S ′
1,

where

S ′
1 = − 567

6400 × 21/3

Γ2 (1/3)

Γ3 (2/3)
� −0.22.

Adding to S1 the leading terms (constants, for y � 1) from the
first few Sn and substituting the obtained S (y) into Equation (4),
we arrive at the following final expression for the scattering
coefficient:

Dμμ = π

2

v

l
(1 − μ2)

[
J 2

1 (y)

y2
+ ry4/3

]
, (10)

where r ∼ 10−2 and y =
√

(1 − μ2)/ε. Clearly, we can neglect
the small second term in the brackets altogether and switch
to the expression given by Equation (8) for y � j1, where
j1 ≈ 3.8 is the first root of J1. Summarizing this section, the
most important part of the scattering coefficient Dμμ (y) is its
sharp peak near |μ| = 1 where it behaves as Dμμ ∝ J 2

1 (y).
As y grows and approaches y = j1, Dμμ/(1 − μ2) falls down
to ∼δ of its peak value at |μ| = 1 and remains approximately
constant (Equation (8)). The other peak occurs at μ ≈ 0 but it
is not important for our purposes.

4. PARTICLE PROPAGATION

Suppose that a source of CRs is within the same magnetic flux
tube with the Earth. This source could either be an SNR currently
accelerating CRs that gradually escape from the accelerator
or it could be due to the CRs that have been accelerated not
long ago, or any other region of enhanced CRs. We calculate
their propagation to Earth below. Obviously, the degree of CR
anisotropy near the source may be significantly higher than that
observed at Earth. The propagation problem may be considered
to be one dimensional and stationary with only the spatial
coordinate z, directed along the flux tube from the source to
Earth. However, we bear in mind the finite radius of the flux
tube by choosing the most important MHD mode that will scatter
particles. In particular, out of the three major MHD modes we
select the Alfvén wave (with a dispersion relation ω = k‖VA)
since it has no off-axis group velocity component and strong
damping as opposed to the fast and slow MHD waves. Note that
in a box geometry, rather than in a thin tube geometry, the other
modes are also essential for particle scattering (Yan & Lazarian
2002; Beresnyak et al. 2010). On the other hand, for μ ≈ 1
propagation, the shear-Alfvén wave is still the most important
mode (Chandran 2000).

As the CR particles are assumed to be scattered by Alfvén
waves almost frozen into the local fluid, the particle momentum
is conserved and the transport problem is in only two variables:
the coordinate z and the pitch angle ϑ (or μ ≡ cos ϑ). The
characteristic (ϑ-independent) pitch-angle scattering frequency
νϑ (typical for μ; not too close to μ = 0,±1, where the pitch-
angle diffusion coefficient has sharp peaks) can be deduced
from the previous section by unifying Equations (6) and (8)
(and omitting some factors that are close to unity):

Dμμ

1 − μ2
≈ νϑ ≡ v

l

(
δln

(
1

ε

)
+ ε3/2

)
/6. (11)

The equation for the CR distribution thus reads

(u + μ)
∂f

∂z
= ∂

∂μ
(1 − μ2)D (μ)

∂f

∂μ
. (12)

Here, u is the bulk flow (scattering centers) velocity along
z in units of the speed of light, u � 1, and μ = cos ϑ .
The coordinate z is normalized to the pitch-angle scattering
length c/νϑ ≈ v/νϑ , so that D (μ) = ν−1

ϑ Dμμ/(1 − μ2), being
normalized to νϑ , is close to unity except for the narrow peaks.

Our purpose is to find a narrow feature (which may be a bump
or a hole) on the otherwise almost isotropic angular spectrum
f (μ). Clearly, this feature must be pinned to one of the peaks
of D (μ). This feature will be shown to be weak, and so it can be
considered independent of the other possible features of f (μ)
that would be related to the remaining two peaks on the function
D (μ); in other words, we apply a perturbative approach.

Let us consider the particle scattering problem given by
Equation (12) in a half-space z � 0 and assume that at z = 0
(source) the distribution function is f (0, μ) = f0 (μ). Note that
f0 is not quite arbitrary since it also contains particles arriving
at the source (i.e., those with μ < 0). A similar problem occurs
in the DSA at relativistic shocks (Kirk & Schneider 1987; Kirk
& Duffy 1999) and in the problem of ion injection into the DSA
(Malkov & Voelk 1995). It is clear that if there are no particle
sources at z = ∞, then f (∞, μ) = f∞ = const, apart from the
dependence of f on the particle momentum as a parameter. It is
convenient to subtract f∞ from f:

Ψ (z, μ, p) = f (z, μ, p) − f∞(p), (13)

so that the new function Ψ satisfies the same Equation (12) as f
and the following boundary conditions:

Ψ =
{
φ (μ) = f0 (μ) − f∞, z = 0

0, z = ∞.

It is natural to expand the solution into series of eigenfunctions
Ψλ:

Ψ =
∑

λ

CλΨλ (μ) e−λz (14)

obtained from the following spectral problem:

d

dμ
(1 − μ2)D (μ)

dΨλ

dμ
+ λ (u + μ) Ψλ = 0. (15)

As is well known (Richardson 1918; see also Kirk & Schneider
1987), there exists a complete set of orthogonal eigenfunctions
{Ψλ}λi=∞

λi=−∞ with discrete spectrum λi having no limiting points
other than at ±∞. Therefore, the expansion coefficients Cλ are

Cλ = 1

‖Ψλ‖2

∫ 1

−1
(u + μ) Ψλ (μ) φ (μ) dμ, (16)

where ‖Ψλ‖ denotes the norm of Ψλ. Clearly, φ (μ) must
satisfy the set of conditions Cλ = 0 for all λ � 0. This
reflects the fact that φ is not an arbitrary boundary condition, as
we already noted. Nevertheless, since particles predominantly
propagate into the positive z-direction (away from the source), it
is reasonable to assume that φ (μ > 0) is larger than φ (μ < 0),
i.e., the source creates the anisotropy. As usual, if we consider
the formal solution given by Equation (14) at such a distance z
where (λ2 − λ1) z � 1, with λ1 and λ2 being the first (smallest)
positive eigenvalues, the solution will be dominated by the first
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Figure 2. Unperturbed eigenfunction Φ (μ) ≡ Ψ(0)
λ1

(numerical solution of
Equation (17); dashed line). Perturbed solution (Equations (19) and (23); solid
line). The inset shows the behavior of the solution at the end point, including
the logarithmic term of the outer solution.

eigenfunction Ψλ1 . We know that the anisotropy at Earth is
very small (∼10−3) and, assuming that it is not so small at
the source, we deduce that λ1z � 1 so that the inequality
(λ2 − λ1) z � 1 should be satisfied as well and we can limit
our treatment of the spectral problem given by Equation (15)
to the determination of only the first positive eigenvalue with
the corresponding eigenfunction. We return to this point in
Section 5. We also note that since u � 1, we can set u = 0 as
there is no significant influence of the region |μ| � 1 where
Equation (17) has a turning point, whereas we are primarily
interested in the behavior of the solution near a singular point
at μ = 1. Although the function D (μ) has a strong peak at
μ ≈ 1, this peak is very narrow (∼ε) and, as we mentioned,
a perturbation theory applies. We start with the outer solution,
i.e., with the solution outside of the peak area.

4.1. Angular Distribution Outside the Peak of the Pitch-angle
Diffusion Coefficient

Outside the peak region (outer expansion), we assume D = 1
as an exact value for D. Therefore, for (1 −μ2) � ε, the zeroth-
order approximation reads

d

dμ
(1 − μ2)

dΨ(0)
λ

dμ
+ λ(0)μΨ(0)

λ = 0. (17)

To find λ(0) we require the solution to be regular at both
singular points μ = ±1. The solution of this problem can
be found by a number of numerical methods, for example, by
decomposing Ψ(0)

λ into a series of Legendre polynomials (e.g.,
Kirk & Schneider 1987 and references therein). Since we have
set u = 0 (as opposed to the cited paper where u � 1), as
few as the first six polynomials would suffice, with a cubic
equation for λ. However, Equation (17) contains no parameters
(except λ, of course) so that the most practical approach is to
find the required single eigenvalue λ1 and the corresponding
eigenfunction by a direct numerical integration of the above
equation. The result is shown in Figure 2 and λ1 ≈ 14.54. Since
λ2 � 2λ1, the Wentzel–Kramers–Brillouin approximation can
be applied for all λ � λ2 points of the spectrum. However, the
first eigenfunction and the eigenvalue λ1 is sufficient for our
purposes.

Since D ≡ 1 in the outer region, the perturbation can be
associated only with the perturbation of λ. Therefore, we expand
λ and Ψλ as

λ = λ(0) + δλ + · · · (18)

Ψλ = Ψ(0)
λ + δλΨ(1)

λ + · · · . (19)

Here, λ can be an arbitrary point of the spectrum λ = λi > 0,
but we are primarily interested in the case λ = λ1. The equation
for Ψ(1)

λ takes the following form:

d

dμ
(1 − μ2)

dΨ(1)
λ

dμ
+ λ(0)μΨ(1)

λ = −μΨ(0)
λ . (20)

Since the right-hand side of this equation is not orthogonal to the
solution of its homogeneous part (Equation (17)), the operator
on the left-hand side of Equation (20) is not identical to the
operator in Equation (17). Namely, the regularity condition
at |μ| = 1 no longer applies. Instead, a singular, linearly
independent counterpart of the solution of Equation (17) should
be included (which is appropriate for the outer solution, but not
for the inner solution that will be considered in the following
subsection). Note that while we are interested in the behavior of
the overall solution near μ = 1, we can still require the solution
to be regular at μ = −1, since the unperturbed eigenfunction is
small there (e.g., Figure 2) and the perturbation at μ � −1 does
not significantly influence the overall behavior of the solution.
With this in mind, we can write the solution of the last equation
as follows:

Ψ(1)
λ = −Φ

∫ μ

−1

U (μ′)dμ′

Φ2(μ′)(1 − μ′2)
, (21)

where we have denoted Φ(μ) ≡ Ψ(0)
λ (μ), and

U (μ) ≡
∫ μ

−1
μ′Φ2(μ′)dμ′, (22)

for short. Two further remarks are in order here. First, the above
solution diverges logarithmically when μ → 1. But, it is not
applicable within 1 − μ � ε, where an inner expansion should
be obtained and matched to the solution given by the outer
expansion (Equations (19) and (21)). Second, the integral in
Equation (21) is improper because Φ (μ) has zeros, in particular
the one at μ = μ1 � 0.8 for λ = λ1. The integral should be
understood in terms of a principal value and the solution behaves
at μ ≈ μ1 as Ψ(1)

λ1
∝ (μ − μ1) ln |μ − μ1|. Before we turn to

the inner part of the solution, for the purpose of matching, it is
convenient to rewrite the outer solution, given by Equation (21),
in the following form:

Ψ(1)
λ = U (1)

2Φ2(1)
Φ(μ)ln

(
1 − μ

2

)
− Φ(μ)

×
∫ μ

−1

dμ′

1 − μ′

[
U (μ′)

(1 + μ′)Φ2(μ′)
− U (1)

2Φ2(1)

]
. (23)

Here, the first term is singular at μ = 1 while the second term
is regular there.

4.2. Angular Distribution of the Beam

Turning to the inner expansion of the solution of
Equation (15), it is convenient to stretch the variable μ at μ = 1
as follows:

w = 1 − μ

b
. (24)
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Note that b = εj 2
1 /2 is chosen in such a way that D (w = 1) ≈ 1

(see Section 3). Therefore, we represent D as

D (w) =
{
a−1F (w) + 1, w � 1
1, w > 1,

(25)

with

F (w) = π

2

1

j 2
1 w

J 2
1 (j1

√
w), w � 1, (26)

and F ≡ 0 for w > 1. Note that a = νϑ l/v � 1 (Section 3).
Equation (15) can be written as follows:

d

dw
[F (w) + a] (2 − bw) w

dΨi
λ

dw
+ baλ (1 − bw) Ψi

λ = 0,

(27)
where the index i stands for the “inner” solution. In contrast to
the outer problem, we must impose the regularity condition at
μ = 1 (w = 0). Since F vanishes for w > 1, the expansion
of the solution of this equation should be sought in a series of
powers of b, not ba, as an inspection of the second term of the
equation may suggest. The latter form of the expansion would
be valid only for w < 1, whereas we need to match the solution
of Equation (27) with the outer solution at w � 1. While the
regularity condition at w = 0 fixes one of the two arbitrary
constants of the solution, it is convenient to choose the second
constant as the value of the solution at w = 0, i.e., Ψi

λ(0).
Working up to the second order in b � 1, and integrating

Equation (27) by parts, we transform it into the following first-
order equation:

dΨi
λ

dw
+

λb

2
g′

[
1 − λb

2

(
h

w
− g

)]
Ψi

λ = 0,

with the following obvious solution:

Ψi
λ (w) = Ψi

λ(0) exp

{
− λb

2
g

(
1 +

λb

4
g

)

+
λ2b2

4

∫ w

0
g′hdw/w

}
, (28)

where we have used the notation

g (w) = a

∫ w

0

dw′

F (w′) + a
(29)

and

h =
∫ w

0
g(w′)dw′.

As it is seen from Equation (25), the function g can be evaluated
as follows:

g =
{

8
π
aw, w < 1

g1 + w − 1, w � 1,
(30)

where g1 � −√
2πa/J0 (j1). In order to match the inner

solution given by Equation (28) with the outer solution obtained
earlier (see Equations (19) and (23)), we need to expand both
solutions in powers of w or 1 − μ which are valid in an overlap
region. This is obviously a region where 1 − μ � 1 (to make a
series expansion of the outer solution accurate) and w > 1 (to
make the inner solution simple, e.g., to use Equation (30) for g).
As w = (1 − μ) /b with b � 1, the overlap region exists. Let

us write the outer solution given by Equations (19) and (23) in
terms of the inner variable

Ψλ = Φ(1) − Φ′(1)bw +
1

2
Φ′′(1)b2w2

+
U (1)

2Φ(1)
δλ (lnw + lnb) + O(δλ + b3), (31)

where the primes denote the derivatives of Φ (μ) at μ = 1.
The first three terms of the last expression are nothing but the
leading terms of the Frobenius expansion of the unperturbed
regular part of the solution of Equation (17) at the singular end
point μ = 1. The fourth term is a perturbative, singular part of
the expansion, which is entirely due to the fact that the spectral
parameter λ deviates from its eigenvalue, i.e., δλ = λ − λi �= 0.
Both expansions are written in terms of the inner variable w > 1,
and thus D (μ) = 1 in Equation (15).

The inner solution given by Equation (28) can be written for
w > 1 as follows:

Ψi
λ = Ψi

λ(0)

[
1 − 1

2
λb (g1 + w − 1)

+
1

8
λ2b2

(
1

2
w2 − 2w + lnw

) ]
. (32)

Comparing the last two results, we deduce

Ψi
λ(0) ≈ Φ(1)

1 + λb/2
(33)

and

δλ = λ2Φ2(1)

4U (1)
b2. (34)

Using the matching procedure, we determined the initially
unknown arbitrary constant of the inner solution Ψi

λ(0) and the
perturbation of the eigenvalue λ by matching the terms in both
equations that are independent of w and proportional to ln w,
respectively. The linear and quadratic terms in w automatically
match to the appropriate accuracy ∼b2. This follows from the
two further relations

Φ′(1) = λ

2
Φ(1), Φ′′(1) = λ

4
Φ′(1),

which can be obtained from the Frobenius series of
Equation (17) at the singular end point μ = 1 with Ψ(0)

λ ≡ Φ.
The following two observations are important for the goal

of this paper. First, since U (1) in Equation (22) is positive
definite (which may be readily seen from the equation for Φ,
Equation (17), by multiplying it by Φ and integrating by parts),
δλ in Equation (34) is positive definite as well. Of course, this
property of the spectrum can be seen directly from Equation (15)
by virtue of the positive sign of the perturbation of the coefficient
D. Second, the perturbed absolute value of the eigenfunction
at μ = 1, given by Equation (33), is always less than the
unperturbed one, i.e., |Ψi

λ(0)| < |Φ(1)|. Below, we discuss the
observational consequences of these results.

4.3. Observational Appearance of the Beam

After we have determined the angular distribution of the
beam, the question is whether it is consistent with at least the
prominent MILAGRO hot spot A (Abdo et al. 2008). There are
two observationally testable properties of the solution. The first
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property is that the sign of the perturbative correction to the
distribution function is opposite, according to Equations (32)
and (33), to the sign of Φ(1). Of course, the latter can be
changed arbitrarily but then the main expansion coefficient,
Equations (14) and (16), will change its sign as well. Let us
fix Φ(1) ≡ Ψ(0)

λ1
(1) < 0 as shown in Figure 2. Then, the

perturbative correction will produce a logarithmic peak at μ = 1
if Cλ1 > 0 and a negative logarithmic hole in the opposite
case. As can be seen from Equation (16) and Figure 2, the
requirement Cλ1 > 0 constrains the initial distribution f0 (μ) as
follows. While being enhanced in the region μ > 0 (particles
propagate predominantly away from the source toward Earth),
f0 (μ) should not be concentrated too close to μ ≈ 1. One
simple conclusion from this observation is that if an accelerator
at z = 0 produces a beam of leaking particles, this beam should
not be collimated tightly at μ = 1, or even overpopulate the
region μ1 < μ < 1, where Φ (μ1) = 0 with μ1 � 0.8.

The second property of the solution is that the bump on the
particle angular distribution is located at the local minimum of
the unperturbed eigenfunction. This is formally not consistent
with the MILAGRO results. In contrast, the latter indicates that
the bump is in the region of monotonic change of the distribution
function. However, the particle distribution obtained above is
coming only from the flux tube that connects Earth with the
source of the beam. Therefore, to obtain the total distribution,
the CR background anisotropic component should be added.
The latter, being independent of the beam source, is most likely
to change monotonically in any randomly selected area, such as
the MILAGRO hot spot A, so there is no apparent contradiction
in this regard.

In Section 4.2, the two major beam parameters were calcu-
lated in terms of the small parameter of the theory,

ε = rg(p)

l
,

where rg is the particle gyroradius and l is the maximum wave-
length beyond which particles interact with waves adiabatically.
The first parameter of the beam is its angular width (in terms of
μ = cos ϑ)

b = j 2
1

2
ε ≈ 7.3ε (35)

and the second is its strength, which can be conveniently
expressed as the ratio of the beam excess to the amplitude of the
first eigenfunction (Equation (33)):

δΦ(1)

Φ(1)
≈ 1

2
λ1b ≈ 53.4ε . (36)

Since ε ∝ p, the spectrum of the beam should be one power
harder than the CR large-scale anisotropic component inside
the flux tube. This is consistent with the MILAGRO beam
spectrum, provided that Φ scales with momentum similarly with
the galactic CR background.

According to the MILAGRO Region A observations, the
beamwidth is about Δϑ ∼ 10◦, where Δϑ ≈ cos−1 (1 − b) ≈√

2b = j1
√

ε so that we obtain for ε the following constraint
from the observed MILAGRO Spot A:

ε ≈
(

Δϑ

j1

)2

≈ 2.1 × 10−3.

This estimate yields the strength of the beam given by
Equation (36) at the level of ≈0.1 which is also consistent

with the MILAGRO fractional excess of the beams A and B
measured with respect to the large-scale anisotropy.

In this section, we made a preliminary consistency check
of the beam, as it forms while the large-scale anisotropic CR
distribution propagates from its source to Earth. In the following
section, we verify conditions under which the beam can really
reach Earth without self-destruction, as it is well known that
beams in plasmas readily become unstable.

4.4. Beam Sustainability

Now that we have calculated the pitch-angle distribution of a
narrow CR beam formed from a wide-angle anisotropic CR flux
through its interaction with the background ISM turbulence, we
need to check whether the beam will survive the pitch-angle
scattering by self-generated waves. The threat is the cyclotron
instability of the beam but the hope (as already mentioned by
Drury & Aharonian 2008 with regard to the magnetic nozzle) is
that the isotropic part of the CR background distribution should
stabilize the beam. The dispersion relation is a standard one,
which can be written as follows (see, e.g., Achterberg 1983):

1 − ω2

k2V 2
A

+
4π2e2

k

∫
p2

⊥dp⊥dp‖
p2(kv‖ ± ωc − ω)

×
[
p⊥

∂F

∂p‖
−

(
p‖ − ωp

kc

) ∂F

∂p⊥

]
= 0, (37)

where the “±” signs correspond to the left/right polarized
Alfvén waves propagating along the field line at the Alfvén
speed VA (k ≈ k‖, ω ≈ ±kVA). The distribution function
F (p‖, p⊥) refers to the sum of the isotropic CR background
distribution FC, the beam distribution FB, and the large-scale
anisotropic part F1(p‖, p⊥). The last one, in turn, consists of
both the unperturbed solution Φ (μ,p), obtained in Section 4.1,
and the background large-scale anisotropic component, most
likely not related to the source of the beam. Thus, the total
distribution function can be represented as F = FC(p) +
FB(p‖, p⊥)+F1(p‖, p⊥). Since the beam is concentrated at small
pitch angles, i.e., 0 < p⊥ � p‖, we assume its contribution to
be larger than that of F1. Clearly, both FC and FB are small
compared to the background plasma density, which yields the
second term in Equation (37).

To simplify the calculations, it is convenient to introduce the
new variable ρ instead of using p⊥:

ρ = p − δp‖ ≡
√

p2
‖ + p2

⊥ − δp‖;

here, δ = ±VA/c, where the “±” signs relate to the forward
and backward propagating waves (ω = ±kVA), respectively.
Note that the lines of constant ρ coincide with the lines of the
quasi-linear diffusion of the distribution function F and with the
direction of the differentiation in the brackets in Equation (37).
Writing ω = ±kVA + γ (γ � kVA) and neglecting a small
term δ � 1 in the resonance denominator of Equation (37), we
obtain the following relation for the wave growth rate:

γ = 2π3e2

|k| δ

∫
p3

⊥
p

δ

(
p‖ ± eB0

kc

)
∂F

∂p‖

∣∣∣∣
ρ

dp⊥dp‖.

Since FC = FC(p) and ∂FC/∂p‖
∣∣
ρ

≈ δ∂FC/∂p, the contribu-
tion of FC to the growth rate is stabilizing (∂FC/∂p < 0) for
both signs of δ and both wave polarizations. The contribution of
the beam is destabilizing for both polarizations, as long as the
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real part of the frequency is taken as ω ≈ +kVA, i.e., δ > 0. If
the beam density were above the instability threshold, it would
rapidly spread in pitch angle on the self-generated waves along
the lines ρ = const. Therefore, the beam momentum distribu-
tion can be obtained from the instability threshold condition,
i.e., from an assumption that the imaginary contributions from
the beam and from the background CRs cancel. Thus, splitting
the total distribution as F = FC(p)+FB(p‖, p⊥) and integrating
the terms with FB by parts in p⊥, we obtain for the growth rate
(0 < δ � 1)

γ = 2π3e2

|k| δ

∫ ∞

0

p3
⊥

p2
dp⊥dp‖δ

(
p‖ − eB0

|k| c
)

×
(

2
p2

‖
p2

⊥
FB + δp

∂Fc

∂p

)
. (38)

The beam contribution to the growth rate suggests the introduc-
tion of a beam distribution integrated in p⊥:

FB(p‖) ≡ 1

p2
‖

∫
p⊥FB(p⊥, p‖)dp⊥. (39)

Note that for the beam particles p‖ ≈ p. Assuming a power-law
momentum scaling for FC(p) ∝ p−qc (with qc = 4.6–4.7,
appropriate for the background CR momentum distribution)
from Equation (38), we can obtain an expression for the
instability threshold distribution Fth(p‖). As we noted, this is
the beam distribution that cancels γ in Equation (38):

Fth(p‖) ≡ δ

qc − 2
FC(p‖), (40)

so that if FB(p‖) � Fth(p‖), the beam can sustain its angular
distribution. Otherwise, it will spread in pitch angle to satisfy the
last inequality. Assuming, however, that this inequality holds,
we calculate FB using our results from the previous section.
First, unlike the threshold function Fth(p‖), which is determined
by the isotropic CR background, the momentum dependence of
FB(p‖) is prescribed by the wide-angle anisotropic component,
denoted earlier as Φ (μ) (Equations (31)–(33) and (36)). The
particle momentum entered this function as a parameter (which
we omitted, for brevity) since we were considering only the
pitch-angle scattering under the conserved momentum. Using
the expressions for the width of the beam and for its amplitude
relative to Φ (μ,p) given by Equations (35) and (36), respec-
tively, we can represent FB(p‖) as follows:

FB(p‖) = λ1b
2

2
F0(p‖) = 1

8
λ1j

4
1 ε2F0(p‖), (41)

where we have denoted F0(p) ≡ Φ (μ = 1, p). Then, our
constraintFB(p‖) � Fth(p‖) can be represented in the following
way:

F0(p) � A
VA

c

l2

r2
g (p)

FC(p), (42)

where rg = pc/eB0 is the particle gyroradius. We denoted by
A the following numerical factor:

A = 8

λ1j
4
1 (qc − 2)

≈ 10−3.

Due to the factor r−2
g in the relation given by Equation (42),

the function F0(p) is constrained at high momenta. Assuming

that F0 is not much steeper than the background distribution
FC, we infer from Equation (42) that there exists a maximum
momentum pBmax beyond which the beam would spread in pitch
angle and dissolve in the CR background. In fact, we can extract
more information from the last constraint. To conform with
the MILAGRO results, we assume F0 ∼ F̃C , where F̃C is the
anisotropic part of the CR background distribution. It is known
to be about α ∼ 10−3 of the isotropic part FC, so we can estimate
F0 ∼ αFC . The last estimate along with Equation (42) brings
us to the maximum beam energy:

pBmax

mc
� 1

K

√
VA

c

A

α
, (43)

where we have introduced the following parameter, which is the
major small parameter of the theory:

K ≡ c

lωc

= ε
mc

p
. (44)

Here, ωc is the proton cyclotron (non-relativistic) frequency and
l is the maximum turbulence scale beyond which the particles’
response becomes adiabatic. Based on the two independent
MILAGRO measurements of the width and the fractional excess
of the Beam A, we inferred earlier the parameter ε ∼ 10−3.
Assuming that this value of ε relates to the 1 TeV median
energy of the MILAGRO collaboration’s angular analysis, we
obtain for K the value K ∼ 10−6. Taking VA/c ∼ 10−4

and α ∼ A ∼ 10−3, we obtain pBmax ∼ 10 TeV. This is
encouragingly close to the MILAGRO estimates of the beam
cutoff energy. We will consider approaches to the independent
determination of the theory’s small parameter K and the beam’s
maximum momentum in the following section. Of course,
depending on which of the MILAGRO beam measurements
(the width, excess, or cutoff momentum) is the most reliable,
this quantity may be used to determine K or l.

To conclude this section, we estimate the possible losses of
the beam due to the energy-dependent curvature and gradient
drifts. Assuming ∇ × B = 0 and a small propagation angle to
the magnetic field (curvature drift dominates), the particle drift
velocity can be written as

Vcd = p

mc

c2

ωcB2
B × ∇B. (45)

We can estimate particle displacement across the field line
upon traveling a distance of one correlation length lB as
Δr ∼ rg(p)lB/R, where R is the typical field curvature. The
total displacement from the field line is thus r ∼ rg

√
LSlB/R ∼

rg

√
LS/l, where LS is the distance from the source to the

observer. The displacement r may be not much larger than the
SNR radius, for example, so there should be no significant loss
of particle flux due to the drift-related spreading.

5. DISTANCE TO THE SOURCE, BEAM ENERGY
WINDOW, AND THE MAXIMUM SCALE l

Assuming only one free parameter K = c/lωc with l being a
scale of turbulence (unknown a priori) beyond which particles
are not scattered in pitch angle, we have advanced our theoretical
construction to the point where it successfully matches the three
major MILAGRO observables. These are the angular width of
the beam, its excess, and its maximum momentum pBmax. Each
of those three quantities consistently points to the same value
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of K ∼ 10−6 or l ∼ 1 pc/BμG. In this section, we relate K to
two further independent quantities. One of these quantities is
the maximum momentum pmax of the CRs accelerated in the
SNR which may be responsible for the MILAGRO beam. The
other quantity is the distance to this remnant, Ls, or to any other
source of energetic particles from which the beam originates.
Starting from the source, we represent the decay of the large-
scale anisotropic part of the distribution function as follows (see
Equations (11), (12), and (14)):

FS (z, p) ∼ FS (0, p) exp
[
−L−1 z

l

]
, (46)

where L−1 (ε) is the inverse dimensionless particle scattering
length

L−1 (ε) = λ1

6

(
δln

1

ε
+ ε3/2

)
and FS (0, p) is the anisotropic part of the distribution at the
source. As we argued earlier, for the beam to appear at Earth
(z = LS) as observed, FS (LS, p) should be of the order of the
anisotropic part of the local background CRs. Moreover, L−1 (ε)
has a minimum (≈1.7 × 10−3) at ε = (2δ/3)2/3 � 1.6 × 10−3

for δ ≡ VA/c = 10−4. This value of ε is remarkably close
to that inferred earlier from the MILAGRO measurements of
the beamwidth and its fractional excess (ε � 2 × 10−3). Since
ε ∝ p, the anisotropic part FS (z, p) decays rapidly with p.
Therefore, for the beam to be observable at 10 TeV, the distance
Ls should not significantly exceed the quantity

LSmax ≈ 6l

λ1ε3/2 (pBmax)
Ln (47)

with

Ln = ln
Fs (0, p)

Fs (LSmax, p)

which can be recast as

LSmax � 0.4
c

ωc

(
mc

pBmax

)3/2

K−5/2Ln

or, assuming K = 10−6, as inferred from the MILAGRO Spot
A parameters, and B = 3 μG, we obtain

LSmax � 130 × Ln ×
(

10 TeV

EBmax

)3/2

pc. (48)

Given that Ln may be a factor of a few, the last estimate
constrains the distance to any SNR, held responsible for the
MILAGRO beam, to a few hundreds of parsecs. In fact there is
also the lower bound to LS which, being formally a technical
one, may still be meaningful. Indeed, in our calculations
of the beam profile, we neglected the contributions of the
eigenfunctions corresponding to the eigenvalues λn with n � 2.
Since λ2 � 2λ1, the neglected terms in the spectral expansion of
the distribution function would not contribute near p ∼ pBmax,
but they could become essential at lower momenta where L−1

has a minimum as a function of p. That is why we required
L−1 z

l
� 1 in Section 4. It does not mean, however, that the

beam would not form at these momenta but that its shape may
change. Unfortunately, the available MILAGRO data are not
sufficient to distinguish between the cases of single and multiple
beam eigenfunctions. Nevertheless, the apparent absence of a
mesoscale anisotropy (i.e., scales between the narrow beam and

the first angular harmonics) hints at the relative unimportance
of the higher eigenfunction in the spectral expansion. If this is
the case, then the upper bound on LS given by Equation (48)
should be rather close to the lower bound as well.

Let us turn to the question of determining the scale l. The
simplest possibility is to associate l with the outer scale of
the ISM turbulence. Its typical estimates extend from 1 pc
(spiral arms) up to 100 pc for the inter-arm space (Haverkorn
et al. 2008). However, a 100 pc scale can hardly be relevant
to our analysis for the simple reason that the Larmor radii
of the particles of interest are 5 orders of magnitude smaller.
Clearly, such long scales should be attributed to the ambient
field rather than to the particle scattering field component. On
the other hand, as the turbulent energy injected at such long
scales cascades to much shorter scales where the wave can
interact with 1–10 TeV particles, the spectral energy density
is already too low to provide efficient scattering. Clearly, a
realistic estimate of the outer scale of turbulence l, relevant
to the wave–particle interaction, should be somewhere between
these extremes. If particles are propagating from an accelerator,
there must be energy injection into the GS cascade at a scale
associated with this accelerator. Obviously, l cannot exceed the
accelerator (shock) radius. It is interesting to note that the recent
optical observations of the SNR 1006 indicate that ripples on
the shock surface have a scale ∼1 pc (Raymond et al. 2007),
which is the preferred scale to match the MILAGRO data. From
a theoretical standpoint, we need to make an assumption about
the accelerator. There are a few possibilities, such as a nearby
SNR or a massive blue star surrounded by a wind bubble with the
termination shock. Each of these, being magnetically connected
with Earth, may accelerate particles and load the connecting
flux rope with both the accelerated particles and Alfvénic
turbulence. In order to avoid further uncertainties associated
with the accelerator, we assume that the turbulence is driven
primarily by escaping particles. This is almost certainly the
case, once particles escape at a rate sufficient to be detected at
Earth. The turbulence, however, may significantly decay along
the flux rope due to the relaxation of initially strongly unstable
(anisotropic) particle distribution and due to the lateral losses
of particles and waves. Note that if these are significant, one
should replace zD (μ) → ∫

Ddz in our treatment of particle
propagation in Section 4.

The mechanisms of particle escape from an SNR shock,
for example, are numerous (Drury et al. 1996; Malkov et al.
2002; Malkov & Diamond 2006; Caprioli et al. 2009; Reville
et al. 2009). In almost all cases, the escaping particles are
close to the maximum energy achievable in the accelerator and
have an anisotropic momentum distribution. Therefore, they
should drive Alfvén waves at a scale l ∼ rg (pmax). Since
rg(p) � 10−6B−1

μG (p/mc) pc, to recover the scale l ∼ 1 pc,
inferred earlier from the beam parameters, it is necessary to
assume Emax ∼ 3 PeV (for BμG ∼ 3) or precisely the “knee”
energy.

6. SUMMARY AND DISCUSSION

The principal results of this paper are as follows. Assum-
ing only a large-scale anisotropic distribution of CRs (gener-
ated, for example, by a nearby accelerator such as an SNR)
and GS cascade of Alfvénic turbulence originating from some
scale l, which is the longest scale relevant for wave–particle
interactions, we calculated the propagation of the CRs down
their gradient along the interstellar magnetic field. It is found
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that the CR distribution develops a characteristic angular shape
consisting of a large-scale anisotropic part (first eigenfunc-
tion of the pitch-angle scattering operator) superposed by a
beam, tightly focused in the momentum space in the local
field direction. The large-scale anisotropy carries the momen-
tum dependence of the source, while both the beam angular
width and its fractional excess (with respect to the large-scale
anisotropic component) grow with momentum (as

√
p and p,

respectively). Apart from the width and the fractional excess
of the beam, the theory predicts its maximum momentum be-
cause beyond this momentum the beam destroys itself. All the
three quantities are completely determined by the turbulence
scale l. Even if l is considered unknown, it can be inferred from
any of the three independent MILAGRO measurements. These
are the width, the fractional excess, and the maximum energy
of the beam, and all three consistently imply the same scale
l ∼ 1 pc. The calculated beam maximum momentum encourag-
ingly agrees with that measured by MILAGRO (∼10 TeV/c).
The theoretical value for the angular width of the beam is found
to be Δϑ � 4

√
ε, where ε = rg(p)/l � 1. The beam fractional

excess related to the large-scale anisotropic part of the CR dis-
tribution is �50ε. Both quantities also match the MILAGRO
results for E ∼ 1–2 TeV. Thus, the beam has a momentum scal-
ing that is one power shallower than the CR carrier it is drawn
from. This finding will receive its due discussion.

Obviously, the determination of the absolute value of the
beam excess would require the source intensity. Due to the
lack of such information, an indirect inference was made in
Section 4.3 about the galactic CR (GCR) large-scale anisotropy
being of the same order as the large-scale anisotropy responsible
for the beam.

Below, the rationale for this admission is given, which we
open with the following notations.

1. F̃GCR and F̄GCR are the large-scale anisotropic and isotropic
parts of the galactic (not assumed to be related to the source
of the beam) distribution, respectively.

2. F̃S and F̄S (i.e., f∞ in Section 4) are the similar quantities
related to the source of the beam at the distance LS.

3. FB is the beam distribution on the top of F̃S .

Unless the source of the beam is also responsible for the
GCR, the quantities F̃S and F̃GCR are independent of each other
and cannot be related since the source intensity, the distance to
it, LS, and the losses are unknown. Even if the beam and its
carrier F̃S propagate without significant losses (or suffer similar
losses), the current theory determines only a fractional excess
FB/F̃S ∼ 50ε (independent of LS). For the same reasons, we do
not know what is the source contribution F̄S to the total isotropic
CR background F̄ GCR + F̄S . However, since the beam A is not
observed at the minimum4 of the (measured) total large-scale
F̃S + F̃GCR as it would, were F̃S � F̃GCR the case (see Figure 2),
we infer F̃GCR � F̃S . Furthermore, since FB/F̃S is calculated
and F̃S + F̃GCR is measured along with FB, both quantities F̃S

and F̃GCR can also be determined.
We found that FB/F̃S ∼ 0.1 for l ∼ 1 pc which was, in turn,

deduced from two other independent measurements (beamwidth

4 It is interesting to note that Abdo et al. (2008) point out that there is a deep
deficit bordering the excess regions. This deficit could be identified as a
minimum of the dominant eigenfunction, but they attribute it to the effect of
including the excess regions into the background. In other words, the deficit is
an artifact of the data analysis.

Δϑ and its maximum energy EBmax). Since MILAGRO measure-
ments indicate that FB/(F̃GCR + F̃S) ∼ 0.1, we conclude that
F̃S ∼ F̃GCR. A more specific relation between the two would
not be meaningful since the measurements of FB(p) are rather
limited. If particle losses from the flux tube are negligible, it fol-
lows that F̃S (LS) ∼ F̃S(0) for p � pBmax (0 being the source
position).

These findings allow us to speculate about the possible source
of the beam. First, if the source is an active accelerator that emits
strongly anisotropic particle flux, the last relation implies that
F̄S ∼ F̃S . Since by observations F̃S � F̄GCR, such source can-
not contribute significantly to the “knee” region at �3 PeV. In
this case, our inferences of l from three independent measure-
ments—all strikingly pointing at the 3 PeV accelerator cutoff en-
ergy (with l ∼ rg (Emax))—must be either a coincidence or a dif-
ferent mechanism couples the galactic “knee” particles with the
scale of the turbulence that generates the beam. If it is not a coin-
cidence and the source contributes significantly to the observed
CR background, the escaping particle flux should be quasi-
isotropic, F̃S � F̄S (to allow for F̄S ∼ F̄GCR). In combination
with the assumption that particles escape in the wide range
1 TeV–3 PeV (both to form the beam and to inject MHD energy
at the scale l), the source is unlikely to be an active accelerator,
but rather a region of enhanced CR density, with a steep cutoff at
�3 PeV. The near isotropy at the source is not inconsistent with a
currently working accelerator, but escape in such a broad energy
range probably is inconsistent. Indeed, the available (known to
us) mechanisms,which offer a broad energy escape from an SNR
along with the spectrum steepening (i.e., spectral break, starting
1–2 orders of magnitude below the cutoff, e.g., Malkov et al.
2005; Malkov & Diamond 2006), at least seem to fall short in
covering 3 orders of magnitude in energy. Moreover, for the
source to be a recent accelerator (such as a recent SNR, sug-
gested by Erlykin & Wolfendale 1997 with the spectrum E−2)
the mechanism should be found that makes the spectrum of the
escaping particles at least 0.5 steeper (and steeper still if the
acceleration was strongly nonlinear). Combined with the non-
linear acceleration (which is required in the Malkov & Diamond
2006 model) this would make an acceptable spectrum but again
it is not clear how these particles can initiate the MHD cascade
at such a long scale to ensure the required value of l.

Our argument against the beam and the bulk CR F̃GCR
coming from the same source is that the observed beam is
not located at the minimum of the angular distribution of
the first eigenfunction, so we need to allow for a second
component. This is largely a technical limitation, stemming
from the one-dimensional transport model, in which FB and
F̃S are coupled, as well as from the single eigenfunction
approximation. By removing this latter simplification alone
(which is probably even necessary for an accurate description
of F̃S at TeV energies; Section 5), the above constraint can be
relaxed. Another possibility is the lateral diffusion and drifts of
the F̃S component from the flux tube.

An interesting obvious conjecture from the common origin
of the beam and F̃GCR would be that the proton “knee” at �3
PeV is also of the same origin as the beam. However, the beam
spectrum is calculated to be one power flatter than its carrier.
According to MILAGRO the beam index is about 1.5, so that the
carrier should have an index �2.5, which is closer to the GCR
than to the hypothetical “recent SNR.” In particular, this would
not support the single-source hypothesis of the GCR “knee”
(Erlykin & Wolfendale 1997). Equally problematic would be an
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active accelerator scenario, unless the steepening mechanisms
of the runaway CR mentioned above can be adopted after due
modifications.

All told, the beam is likely to be at least partly drawn from the
GCR (due to the relation between the indices qB � qGCR − 1)
but the GS turbulence that creates the beam must be driven
by considerably more energetic �1 PeV particles (due to the
constraint l � rg), unless the spiral-arm 1 pc value (Haverkorn
et al. 2008) for l is, indeed, acceptable. To explore the possibility
of the GCR origin of the beam, an extension of the above
model is necessary. At a minimum, the model should include
the transport of energetic particles across the flux tube. On the
other hand, the particle beaming processes should remain similar
to that described in Section 3. However, such consideration is
beyond the scope of this paper, particularly because the transport
across the flux tube requires a separate study.

Yet another possibility is that the required GS cascade starts in
the local interstellar cloud (LIC). It has a suitable size of ∼5 pc
(Redfield & Linsky 2000) and there would be no problem with
the spectrum slope since the beam would be drawn from the
GCR with the “right” spectral index qGCR � 2.7. Whether the
turbulence energy can be injected at the required scale remains
to be studied. If it can, the above transport and beam focusing
mechanism would be applicable since a parsec wavelength and
the GS cascade are the only requirements to draw the beam out
of the background CR distribution.

To conclude, the model presented in this paper offers an
explanation of the most pronounced MILAGRO beam A, though
there are two more beams that need to be explained. One of them
is the beam B, ∼50◦ away from beam A, and the second one is in
the Cygnus loop area ∼100◦ away. Any attempt to incorporate
these two beams into our current model would be speculative.
We merely note that the local ISM environment is complicated
indeed, thus offering many possibilities in explaining various
CR anomalies (e.g., Amenomori et al. 2007). Approaches to
the explanation of all three beams based on such a complexity
could hardly pass the Occam’s razor test. In contrast, the model
suggested in this paper is devoid of free parameters, if the knee
energy at ∼3 PeV can be associated with the maximum CR
energy of the source of Beam A. Even though such an association
is not proven, our propagation model predicts the following
three beam characteristics: its width, fractional excess, and
maximum energy are the functions of a single quantity, the
longest wave–particle interaction scale l. They all give the
correct MILAGRO values for l � 1 pc, which is unlikely to
be coincidental. However, the exact origin of this particular
value remains unclear.
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Note added in proof: During the final editing of this paper
we became aware of an alternative explanation of MILAGRO
results suggested by Lazarian & Desiati (2010) that will be
published in ApJ.

APPENDIX

In this appendix, we provide a sketch of the derivation of
the pitch-angle diffusion coefficient Dμμ for the anisotropic

turbulence of Alfvén waves suggested by Goldreich & Sridhar
(1995). We follow a standard line of argument (e.g., Völk 1973).
However, we include the finite autocorrelation time as required
by the GS spectrum. We start with the equation for the particle
momentum p:

dp
dt

= Ωp × B/B0, (A1)

where Ω = eB0/p, p � mc, and B0 is the magnitude of the
unperturbed magnetic field B0, assumed to be in the z-direction.
We also decompose the total magnetic field B in the following
standard way:

B = B0ẑ +
∑

k

Bke
ikr, (A2)

where ẑ is the unit vector along the z-axis. Note that for the shear
Alfvén waves, Bk ⊥ k, ẑ. As usual, we introduce a spherical
coordinate system in the momentum space with the axis along
the unperturbed magnetic field: p‖ = pμ = p · ẑ, p⊥ =
p
√

1 − μ2, and px + ipy = p⊥ exp (iφ). The corresponding
notations in k-space are k‖ = k · ẑ, kx + iky = k⊥ exp (αk) ,
and similarly for Bk: Bk,x + iBk,y = Bk exp (iχk), where
χk = αk ±π/2, where the “±” sign corresponds to the direction
of the wave propagation, ω = ±|k‖|VA. With these notations,
and also using the relation

kr = k‖v‖t − ξ sin (φ − αk) ,

with ξ = k⊥v⊥/Ω, from Equation (A1) we obtain

dμ

dt
= ± Ω

B0

√
1 − μ2

∑
k,n

Bke
ik‖v‖t+in(Ωt−φ0+αk) n

ξ
Jn (ξ ) , (A3)

where φ0 comes from the unperturbed particle orbit φ =
φ0 − Ωt and Jn stands for the Bessel function. Denoting by
Δμ the variation of μ in time t, for an ensemble-averaged

〈
Δμ2

〉
we obtain

〈Δμ2〉 = Ω2(1 − μ2)
∑
k,n

∫ ∫ t

0
dt ′dt ′′

× I (k‖, k⊥, t ′ − t ′′)e(ik‖v‖+inΩ)(t ′−t ′′) n
2

ξ 2
J 2

n (ξ ) ,

where
Ik(t ′ − t ′′) = 〈Bk(t ′)B̄k(t ′′)〉/B2

0

is assumed to be axially symmetric in k-space. Extracting the
secular term from the last equation, we obtain Equation (1). Note
that it can be further simplified by performing the summation
in n:

Dμμ = − (1 − μ2)
∑

k

1

ξ 2

∫ ∞

0
I (k‖, k⊥, τ )

× eik‖v‖τ dτ
∂2

∂τ 2
J0

(
2ξ sin

Ωτ

2

)
.
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