
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Memory Safety for Today’s Languages and Architectures

Permalink
https://escholarship.org/uc/item/50m2k5wj

Author
Disselkoen, Craig

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/50m2k5wj
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Memory Safety for Today’s Languages and Architectures

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Craig Disselkoen

Committee in charge:

Professor Deian Stefan, Co-Chair
Professor Dean Tullsen, Co-Chair
Professor Farinaz Koushanfar
Professor Sorin Lerner
Professor Stefan Savage

2022



Copyright

Craig Disselkoen, 2022

All rights reserved.



The dissertation of Craig Disselkoen is approved, and it is

acceptable in quality and form for publication on microfilm

and electronically.

University of California San Diego

2022

iii



EPIGRAPH

Whatever you do, work heartily, as for the Lord and not for men

—Colossians 3:23, ESV

iv



TABLE OF CONTENTS

Dissertation Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1 Memory safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Side-channel attacks and constant-time programming . . . . . . . . 2
3 Spectre attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
4 ARM MTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
5 WebAssembly (Wasm) . . . . . . . . . . . . . . . . . . . . . . . . 5
6 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 1 PRIME+ABORT: A Timer-Free High-Precision L3 Cache Attack using Intel
TSX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1 Background and related work . . . . . . . . . . . . . . . . . . . . . 11

1.1.1 Cache attacks . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.2 Relevant microarchitecture . . . . . . . . . . . . . . . . . . 15
1.1.3 Transactional memory and TSX . . . . . . . . . . . . . . . 19

1.2 Potential TSX-based attacks . . . . . . . . . . . . . . . . . . . . . 22
1.2.1 Naïve TSX-based attack . . . . . . . . . . . . . . . . . . . 23
1.2.2 PRIME+ABORT–L1 . . . . . . . . . . . . . . . . . . . . . 24
1.2.3 PRIME+ABORT–L3 . . . . . . . . . . . . . . . . . . . . . 25
1.2.4 Finding eviction sets . . . . . . . . . . . . . . . . . . . . . 26

1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.3.1 Characteristics of the Intel Skylake architecture . . . . . . . 29
1.3.2 Dynamically generating eviction sets . . . . . . . . . . . . 30
1.3.3 Detecting memory accesses . . . . . . . . . . . . . . . . . 32
1.3.4 Attacks on AES . . . . . . . . . . . . . . . . . . . . . . . . 36

1.4 Potential countermeasures . . . . . . . . . . . . . . . . . . . . . . 37
1.5 Disclosure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

v



1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Chapter 2 Finding and Eliminating Timing Side-Channels in Crypto Code with Pitchfork 43
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.1.1 Constant-time programming . . . . . . . . . . . . . . . . . 44
2.1.2 Constant-time verification . . . . . . . . . . . . . . . . . . 46

2.2 Constant-time verification with Pitchfork . . . . . . . . . . . . . . 47
2.2.1 Taint propagation . . . . . . . . . . . . . . . . . . . . . . . 47
2.2.2 Analyzing protocol-level code . . . . . . . . . . . . . . . . 50

2.3 Implementation of Pitchfork . . . . . . . . . . . . . . . . . . . . . 51
2.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.5 Future and related work . . . . . . . . . . . . . . . . . . . . . . . . 58
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Chapter 3 Finding Spectre Vulnerabilities in Crypto Code with Pitchfork . . . . . . 61
3.1 Motivating example . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 Speculative constant-time . . . . . . . . . . . . . . . . . . . . . . . 64
3.3 Detecting violations . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.1 Schedule generation . . . . . . . . . . . . . . . . . . . . . 66
3.3.2 Implementation and evaluation . . . . . . . . . . . . . . . . 67

Chapter 4 SoK: Practical Foundations for Software Spectre Defenses . . . . . . . . 69
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.1 Spectre vulnerabilities . . . . . . . . . . . . . . . . . . . . 73
4.1.2 Breaking cryptography with Spectre . . . . . . . . . . . . . 73
4.1.3 Breaking software isolation with Spectre . . . . . . . . . . 75
4.1.4 Security properties and execution semantics . . . . . . . . . 76

4.2 Choices in semantics . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2.1 Leakage models . . . . . . . . . . . . . . . . . . . . . . . 79
4.2.2 Non-interference and policies . . . . . . . . . . . . . . . . 85
4.2.3 Execution models . . . . . . . . . . . . . . . . . . . . . . . 89
4.2.4 Nondeterminism . . . . . . . . . . . . . . . . . . . . . . . 92
4.2.5 Higher-level abstractions . . . . . . . . . . . . . . . . . . . 95
4.2.6 Expressivity and microarchitectural features . . . . . . . . . 98

4.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.3.1 Systematization of Spectre attacks and defenses . . . . . . . 101
4.3.2 Hardware-based Spectre defenses . . . . . . . . . . . . . . 102
4.3.3 Software-hardware co-design . . . . . . . . . . . . . . . . 103
4.3.4 Other transient execution attacks . . . . . . . . . . . . . . . 103

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

vi



Chapter 5 Automatically Eliminating Speculative Leaks from Cryptographic Code
with Blade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.1.1 Two kinds of speculative leaks . . . . . . . . . . . . . . . . 109
5.1.2 Eliminating speculative leaks . . . . . . . . . . . . . . . . . 111
5.1.3 Automatically and efficiently repairing speculative leaks . . 113
5.1.4 Attacker model . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.5 Limitations and future work . . . . . . . . . . . . . . . . . . . . . 125
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Chapter 6 Progressive Memory Safety for WebAssembly . . . . . . . . . . . . . . . 128
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.1.1 Memory safety . . . . . . . . . . . . . . . . . . . . . . . . 131
6.1.2 WebAssembly (Wasm) . . . . . . . . . . . . . . . . . . . . 132
6.1.3 Hardware support for memory safety . . . . . . . . . . . . 134

6.2 Design goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.3.1 Handles and segments . . . . . . . . . . . . . . . . . . . . 137
6.3.2 Slicing handles . . . . . . . . . . . . . . . . . . . . . . . . 139
6.3.3 Segment allocation and deallocation . . . . . . . . . . . . . 139
6.3.4 Handle integrity . . . . . . . . . . . . . . . . . . . . . . . . 140

6.4 Implementation strategies . . . . . . . . . . . . . . . . . . . . . . . 142
6.4.1 Spatial safety . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.4.2 Handle integrity . . . . . . . . . . . . . . . . . . . . . . . . 144
6.4.3 Temporal safety . . . . . . . . . . . . . . . . . . . . . . . . 145

6.5 Compiling to MSWasm . . . . . . . . . . . . . . . . . . . . . . . . 147
6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.6.1 Compiling MSWasm . . . . . . . . . . . . . . . . . . . . . 149
6.6.2 Beyond heap memory safety . . . . . . . . . . . . . . . . . 150
6.6.3 Alternative paths to memory safety . . . . . . . . . . . . . 151
6.6.4 Future directions for hardware . . . . . . . . . . . . . . . . 152

Chapter 7 DMS: Deterministic Spatial Memory Safety with ARM MTE . . . . . . . 154
7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.1.1 Memory safety . . . . . . . . . . . . . . . . . . . . . . . . 156
7.1.2 Probabilistic enforcement with ARM MTE . . . . . . . . . 156

7.2 Deterministic spatial safety with DMS . . . . . . . . . . . . . . . . 158
7.2.1 Pointer classifications . . . . . . . . . . . . . . . . . . . . . 159
7.2.2 Safety checks for dirty pointers . . . . . . . . . . . . . . . 162

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

vii



Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

viii



LIST OF FIGURES

Figure 1.1: Comparison of the operation of various cache attacks . . . . . . . . . . . . 12
Figure 1.2: “Double coverage” of prototype groups generated by Algorithm 1 . . . . . 31
Figure 1.3: Access detection rates for PRIME+ABORT . . . . . . . . . . . . . . . . . 33
Figure 1.4: Access detection rates for unmodified PRIME+PROBE . . . . . . . . . . . 33
Figure 1.5: Access detection rates for our modified implementation of PRIME+PROBE 34
Figure 1.6: PRIME+ABORT and PRIME+PROBE attacks against AES . . . . . . . . . . 38

Figure 2.1: Excerpt from the function mbedtls_internal_aes_decrypt() . . . . . . . . . 48
Figure 2.2: Excerpt from the function NSC_DecryptFinal() . . . . . . . . . . . . . . . 50
Figure 2.3: Excerpt from the function NSC_Decrypt() . . . . . . . . . . . . . . . . . . 54
Figure 2.4: Excerpt from the function NSC_EncryptUpdate() . . . . . . . . . . . . . . 57

Figure 4.1: Code snippet which an attacker can exploit using Spectre . . . . . . . . . . 74

Figure 5.1: Code fragment adapted from the HACL* SHA2 implementation . . . . . . 110
Figure 5.2: Running example, with two different possible patches . . . . . . . . . . . 113
Figure 5.3: Subset of the def-use graph of the example program . . . . . . . . . . . . 114
Figure 5.4: Runtime of SHA256 (CT-Wasm) as the workload size varies . . . . . . . . 123
Figure 5.5: Runtime of SHA256 (CT-Wasm) as the workload size varies, presented on a

per-byte basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

ix



LIST OF TABLES

Table 1.1: Relevant cache parameters in the Intel Skylake architecture . . . . . . . . . 16
Table 1.2: Availability of Intel TSX in recent Intel CPUs . . . . . . . . . . . . . . . . 19
Table 1.3: Causes of transactional aborts in Intel TSX . . . . . . . . . . . . . . . . . . 20
Table 1.4: Runtimes of PRIME+ABORT- and PRIME+PROBE-based versions of Algorithm 1 30

Table 2.1: Functions verified by Pitchfork, up to its assumptions . . . . . . . . . . . . 55

Table 4.1: Comparison of various semantics and tools . . . . . . . . . . . . . . . . . . 80
Table 4.1: Comparison of various semantics and tools, continued . . . . . . . . . . . . 81
Table 4.2: Speculative security properties and their equivalent non-interference statements 88

Table 5.1: Performance results for BLADE . . . . . . . . . . . . . . . . . . . . . . . . 119

x



ACKNOWLEDGEMENTS

First of all, none of this would have been possible without my amazing coauthors, who

contributed to discussions, code, paper text, and just generally providing encouragement and

keeping things on track. Specifically (in alphabetical order) thanks to Gilles Barthe, Jay Bosamiya,

Fraser Brown, Sunjay Cauligi, Aidan Denlinger, Nathan Froyd, Zhao Gang, Tal Garfinkel, Anitha

Gollamudi, Klaus v. Gleissenthall, Radha Jagadeesan, Alan Jeffrey, Ranjit Jhala, Evan Johnson,

Rami Kıcı, David Kohlbrenner, Michael LeMay, Sorin Lerner, Amit Levy, Alexandra Michael,

Daniel Moghimi, Shravan Narayan, Bryan Parno, Marco Patrignani, Leo Porter, Eric Rahm, John

Renner, Tamara Rezk, James Riely, Ravi Sahita, Hovav Shacham, Michael Smith, Deian Stefan,

Dean Tullsen, Anjo Vahldiek-Oberwagner, Marco Vassena, and Conrad Watt.

But from this list (and beyond), a few names definitely stand out. Thanks to David

Kohlbrenner, who took a new and very green PhD student under his wing for my first year or

two. Thanks for showing me the ropes and making me excited about security. Thanks to Rob

McGuinness, who despite never being my co-author, somehow still felt like one. Thanks for

pushing me to play games and have fun and see friends once in a while. And thanks in particular

to Sunjay Cauligi, Shravan Narayan, and John Renner, who helped keep me (mostly) sane during

the long marathon that is a PhD. You gave me coding help during the frequent times I found

myself stuck; you were always free for a tangential discussion, coffee break, or a walk across

campus; and you were there for me when I needed you.

A very especial thanks to my advisors, Dean Tullsen and Deian Stefan. To Dean for

taking a chance on a less-than-typical PhD application, and supporting my gradual transition into

language-based security even though his main experience and expertise were elsewhere. And to

Deian for believing in me, putting up with my faults, and teaching me so much about writing,

talking, and research. This PhD wouldn’t have happened without either of you.

xi



Thanks to my parents Brent and Beth Disselkoen for being awesome and supportive and

always good sources of advice. (And for not complaining when we stubbornly continue to live

far away from Iowa.)

And finally, thank you to my wife Monica, who has truly been by my side through all of

this. Thanks for moving across the country with me, for being the breadwinner of the family, and

for believing in me every step of the way.

The Introduction, in part, uses material from all works listed below.

Chapter 1, in part, is a reprint of the material as it appears in the USENIX Security

Symposium 2017. Disselkoen, Craig; Kohlbrenner, David; Porter, Leo; Tullsen, Dean. USENIX,

2017. The dissertation author was the primary investigator and author of this material.

Chapter 2, in part, is a reprint of the material as it was submitted to TECHCON 2020.

Disselkoen, Craig; Cauligi, Sunjay; Tullsen, Dean; Stefan, Deian. SRC, 2020. The dissertation

author was the primary investigator and author of this material.

Chapter 3, in part, contains material reprinted from the Proceedings of the ACM Confer-

ence on Programming Language Design and Implementation. Cauligi, Sunjay; Disselkoen, Craig;

v. Gleissenthall, Klaus; Tullsen, Dean; Stefan, Deian; Rezk, Tamara; Barthe, Gilles. ACM, 2020.

The dissertation author was the primary investigator and author of the reprinted material.

Chapter 4, in part, is a reprint of the material as it appears in the 43rd IEEE Symposium

on Security and Privacy (S&P '22). Cauligi, Sunjay; Disselkoen, Craig; Moghimi, Daniel; Barthe,

Gilles; Stefan, Deian. IEEE, 2022. The dissertation author was a primary investigator and author

of this material.

Chapter 5, in part, contains material reprinted from the Proceedings of the ACM on Pro-

gramming Languages (Issue POPL), 2021. Vassena, Marco; Disselkoen, Craig; v. Gleissenthall,

Klaus; Cauligi, Sunjay; Kıcı, Rami; Jhala, Ranjit; Tullsen, Dean; Stefan, Deian. ACM, 2021. The

dissertation author was the primary investigator and author of the reprinted material.

xii



Chapter 6, in part, is a reprint of the material as it appears in the Workshop on Hardware

and Architectural Support for Security and Privacy (HASP), 2019. Disselkoen, Craig; Renner,

John; Watt, Conrad; Garfinkel, Tal; Levy, Amit; Stefan, Deian. ACM, 2019. The dissertation

author was the primary investigator and author of this material.

Chapter 6 also contains material currently under submission for publication. Michael,

Alexandra; Gollamudi, Anitha; Disselkoen, Craig; Denlinger, Aidan; Bosamiya, Jay; Watt,

Conrad; Parno, Bryan; Patrignani, Marco; Vassena, Marco; Stefan, Deian. The dissertation author

was the primary investigator and author of the reprinted material.

Chapter 7, in part, is currently being prepared for submission for publication of the

material. Disselkoen, Craig; Tullsen, Dean; Stefan, Deian. The dissertation author was the

primary investigator and author of this material.

xiii



VITA

2015 Bachelor of Science in Engineering, Computer Emphasis
Dordt University

2015 Bachelor of Arts, Mathematics
Dordt University

2015-2016 Research and Teaching Assistant
Dordt University

2016-2022 Graduate Research Assistant, Computer Science
University of California San Diego

2017 Engineering Intern (PhD)
Qualcomm

2018 Research Intern (PhD)
Mozilla

2019 Master of Science, Computer Science
University of California San Diego

2021 Technical Intern (PhD)
Correct Computation

2022 Doctor of Philosophy, Computer Science
University of California San Diego

PUBLICATIONS

C. Disselkoen, D. Kohlbrenner, L. Porter, D. Tullsen. “Prime+Abort: A Timer-Free High-
Precision L3 Cache Attack using Intel TSX.” USENIX Security Symposium, August 2017.

M. Smith, C. Disselkoen, S. Narayan, F. Brown, D. Stefan. “Browser history re:visited.” USENIX
Workshop on Offensive Technologies (WOOT), August 2018.

C. Disselkoen, R. Jagadeesan, A. Jeffrey, J. Riely. “Code That Never Ran: Modeling Attacks on
Speculative Evaluation.” IEEE Symposium on Security and Privacy (S&P), May 2019.

C. Disselkoen, J. Renner, C. Watt, T. Garfinkel, A. Levy, D. Stefan. “Position Paper: Progressive
Memory Safety for WebAssembly.” Workshop on Hardware and Architectural Support for
Security and Privacy (HASP), June 2019.

xiv



S. Cauligi, C. Disselkoen, K. v Gleissenthall, D. Tullsen, D. Stefan, T. Rezk, G. Barthe. “Constant-
Time Foundations for the New Spectre Era.” 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), June 2020.

S. Narayan, C. Disselkoen, T. Garfinkel, N. Froyd, E. Rahm, S. Lerner, H. Shacham, D. Stefan.
“Retrofitting Fine Grain Isolation in the Firefox Renderer.” USENIX Security Symposium, August
2020.

C. Disselkoen, S. Cauligi, D. Tullsen, D. Stefan. “Finding and Eliminating Timing Side-Channels
in Crypto Code with Pitchfork.” TECHCON, September 2020.

M. Vassena, C. Disselkoen, K. v Gleissenthall, S. Cauligi, R. Kıcı, R. Jhala, D. Tullsen, D. Stefan.
“Automatically Eliminating Speculative Leaks from Cryptographic Code with Blade.” 48th ACM
SIGPLAN Symposium on Principles of Programming Languages (POPL), January 2021.

S. Narayan, C. Disselkoen, D. Moghimi, S. Cauligi, E. Johnson, Z. Gang, A.Vahldiek-Oberwagner,
R. Sahita, H. Shacham, D. Tullsen, D. Stefan. “Swivel: Hardening WebAssembly against Spectre.”
USENIX Security Symposium, August 2021.

S. Cauligi, C. Disselkoen, D. Moghimi, G. Barthe, D. Stefan. “SoK: Practical Foundations for
Spectre Defenses.” IEEE Symposium on Security and Privacy (S&P), May 2022.

A. Michael, A. Gollamudi, C. Disselkoen, A. Denlinger, J. Bosamiya, C. Watt, B. Parno, M. Pa-
trignani, M. Vassena, D. Stefan. “MSWasm: Soundly Enforcing Memory-Safe Execution of
Unsafe Code.” In submission.

C. Disselkoen, D. Tullsen, M. LeMay, D. Stefan. “DMS: Deterministic Spatial Memory Safety
with ARM MTE.” Unpublished.

xv



ABSTRACT OF THE DISSERTATION

Memory Safety for Today’s Languages and Architectures

by

Craig Disselkoen

Doctor of Philosophy in Computer Science

University of California San Diego, 2022

Professor Deian Stefan, Co-Chair
Professor Dean Tullsen, Co-Chair

Memory safety vulnerabilities remain one of the most critical sources of exploitable

security problems in today’s software. Despite the growing popularity of modern, memory-safe

languages, much of today’s software remains written in C and C++, which are prone to these

vulnerabilities; and rewriting all of this C and C++ code would be prohibitively expensive and

time-consuming. At the same time, microarchitectural side-channel attacks threaten to violate

memory safety in increasingly complex ways. But, new languages such as WebAssembly (Wasm),

and new hardware features such as ARM MTE, give programmers new tools in the fight against

xvi



memory safety vulnerabilities — and with clever use of these tools, we can obtain strong security

guarantees for today’s software.

In this dissertation, we present a variety of tools for improving memory safety for today’s

C and C++ codebases, on today’s side-channel-prone microarchitectures. In the domain of

finding memory-safety vulnerabilities, we first demonstrate how new microarchitectural features

sometimes introduce new side-channel attacks (Chapter 1); then, we present program analysis

tools which help keep programs secure from that class of side-channel attacks (Chapter 2) and

from a newer and particularly relevant class of side-channel attacks, Spectre attacks (Chapter 3).

In the remainder of the dissertation we focus on automatically preventing memory-safety vul-

nerabilities. We systematically compare and critique proposed software-based defenses against

Spectre (Chapter 4); then we present one such defense, a tool which automatically and efficiently

secures cryptographic programs against Spectre (Chapter 5). Starting with Chapter 6 we return to

non-side-channel memory safety vulnerabilities, proposing an extension to Wasm which provides

memory safety even inside its software sandbox; and finally, in Chapter 7 we present a compiler-

based defense which works in conjunction with ARM MTE to automatically secure C and C++

programs from spatial memory safety vulnerabilities.
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Introduction

Every day, attackers use exploits to hijack devices, leak confidential information, and

spread malware. Even widely-used and thoroughly-tested software is routinely found to contain

exploitable vulnerabilities: In 2021 alone, for instance, the CVE database recorded 308 vulner-

abilities in Google Chrome, 485 in Windows 10, 312 in macOS, 574 in Android, and 360 in

iOS [45]. In one extreme but noteworthy example of the damage that can be caused by these

kind of software vulnerabilities, in 2018, according to Citizen Lab and UN reports [10], the

Saudi Arabian government used exploits developed by the NSO Group to spy on journalists and

dissidents, leading to the murder of Saudi Arabian journalist Jamal Khashoggi. Understandably,

one major focus of the security community is defending against these exploits, and the software

vulnerabilities they rely on.

1 Memory safety

In a large majority of today’s exploits, attackers are leveraging memory safety vulnerabili-

ties in existing code. Memory safety vulnerabilities include, e.g., out-of-bounds violations, where

an attacker can access memory outside of the intended array or object; and use-after-free errors

(UAFs), where an attacker can continue to access the memory assigned to an array or object after

that memory has been freed and reused for a different purpose. Memory safety problems are

widely exploited in real systems: They represent around 70% of all vulnerabilities in Microsoft
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products, according to a 2019 Microsoft report [151]; and they have also caused around 70% of

high- or critical-severity security bugs in Chromium since 2015 [41].

One obvious solution to memory-safety vulnerabilities is to rewrite all of our security-

critical software in memory-safe programming languages, such as Rust or Go. However, today’s

software systems are enormous, and rewriting them in a new language is an onerous proposition.

For instance, Chromium alone contains over 14 million lines of C and C++ [201]; rewriting it

would be prohibitively expensive and time-consuming.

In this dissertation, we propose ways to automatically improve memory safety for the

huge body of existing code already written in C and C++. If we can enforce memory safety

automatically and invisibly to the programmer, we reap the security benefits without incurring the

tremendous cost of rewriting in a safe language.

2 Side-channel attacks and constant-time programming

Today’s systems have even more kinds of memory safety problems to worry about than

those of yesteryear. Not only do systems still have an abundance of “traditional” memory safety

vulnerabilities, such as out-of-bounds violations and UAFs, but in recent years researchers have

repeatedly demonstrated how attackers can use side-channel attacks to violate memory safety

in more insidious ways. In particular, using a side-channel attack, an attacker may be able to

learn values stored in out-of-bounds memory, without directly reading the values: The attacker

can simply watch the changes made to microarchitectural state by the target program. In this

dissertation, the side channel we focus on is the CPU cache: how secret information may influence

the CPU cache state, and how an attacker can exfiltrate the secret information from the CPU

cache state even without direct read access to the targeted memory.
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The de-facto approach to defending critical code — in particular cryptographic code —

from cache side-channel attacks is constant-time programming. Constant-time programming can

be distilled down to three rules:

1. Secret values must not influence the program’s control flow;

2. Secret values must not influence the addresses of memory accesses;

3. Secret values must not influence the inputs to any variable-time machine operation (such as

integer division on many processors).

Unfortunately, it is notoriously hard to write constant-time code: Not only do experts fail to

adequately write truly constant-time code [20, 26, 152], but even the process of fixing these

mistakes can lead to further vulnerabilities [4, 199]. In this dissertation, we not only describe

novel ways for attackers to exploit cache side channels, but we also propose a method (and tool)

for developers to ensure their code correctly follows constant-time programming.

3 Spectre attacks

Even if the target program is written extremely carefully — using bounds checks and

constant-time programming techniques — attackers can often still leak the program’s secrets

anyway by turning to transient execution attacks such as Spectre. Spectre attacks exploit particu-

lar microarchitectural features, such as branch predictors, which are widely adopted by today’s

processors. With these features, the processor may ignore important safety checks when executing

speculatively, relying on its ability to roll back execution if its prediction was incorrect. Unfortu-

nately, today’s processors do not roll back the state of many microarchitectural structures — in

particular, the CPU cache state. Thus, an attacker can learn secret data by observing changes

to the cache state made by transiently executed code. Software defenses for Spectre need to go

beyond the safety checks and constant-time programming principles which were sufficient for
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other kinds of cache side-channel attacks. In this dissertation, we examine already-proposed

software Spectre defenses and their theoretical underpinnings; and even further, we propose novel

software defenses of our own.

4 ARM MTE

While microarchitectural features can be the cause of high-profile vulnerabilities (e.g.,

cache side-channel attacks and Spectre), they can also be part of the broader solution for all types

of memory safety vulnerabilities. For one example relevant to this dissertation, ARM recently

introduced its Memory Tagging Extension (MTE) [12]. MTE adds a 4-bit hardware tag to each

16-byte (aligned) granule of memory, and also repurposes 4 otherwise-unused bits of virtual

address as a tag value for each pointer. On every pointer dereference (load or store), the hardware

compares the pointer’s tag value to the tag value of the memory being accessed, and if they do

not match, a fault is generated.

MTE hardware naturally lends itself to providing low-overhead memory-safety enforce-

ment, as described in ARM’s own whitepaper [12]. When an MTE-aware memory allocator

chooses a tag value (perhaps randomly) for each new memory allocation, the hardware provides

probabilistic spatial and temporal safety. For instance, suppose a pointer with tag value T is

incremented to point out-of-bounds of its intended memory allocation. With high probability, the

out-of-bounds memory will have a tag value other than T, so when the pointer is dereferenced,

the tags will mismatch, causing a hardware fault. Or suppose a memory region with tag value

T is freed and reallocated. If an old (dangling) pointer with tag value T attempts to access the

now-reallocated memory, with high probability the memory now has a tag value other than T, so

the tags will mismatch, causing a hardware fault.

In this dissertation, we suggest novel ways to use MTE (e.g., to improve the performance of

MSWasm in Chapter 6), and we also propose a system which builds on top of MTE’s probabilistic
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protection in order to provide fully deterministic spatial memory safety through cooperating

hardware and software checks.

5 WebAssembly (Wasm)

One of today’s tools for fighting memory safety vulnerabilities is WebAssembly (Wasm).

Wasm is a platform-independent bytecode designed to run C/C++ and similar languages at near

native speed in the browser. Wasm is designed to allow browsers to run code in a sandbox,

isolating the impact of memory safety vulnerabilities in Wasm code from the rest of the browser.

Unfortunately, keeping the browser safe from Wasm code is not the same as keeping Wasm code

safe from itself — isolation doesn’t prevent attackers from exploiting memory-safety bugs to

compromise the Wasm code and any data it handles. In this dissertation, we propose defense

mechanisms for memory safety vulnerabilities inside the Wasm sandbox; and we also use Wasm

as a solid starting point for defenses against more sophisticated attacks, namely Spectre.

6 Overview

In this dissertation we address the problem of memory safety vulnerabilities from several

different angles, with a particular emphasis on how these vulnerabilities can be detected and

prevented in today’s languages and on today’s architectures.

In Chapter 1, we demonstrate how a then-novel Intel architectural feature called TSX

(Transactional Synchronization Extensions) can actually open programs up to a new kind of

memory safety vulnerability. Specifically, we show how attackers can use TSX to leak the

contents of memory they shouldn’t have access to. We present an attack PRIME+ABORT which

is reminiscent of the well-known cache side-channel attack PRIME+PROBE, but outperforms
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PRIME+PROBE in both accuracy and efficiency — and does so without relying on timers, allowing

it to bypass many common side-channel defense mechanisms.

In Chapter 2, we present a novel tool called Pitchfork that helps programmers keep their

programs secure from side-channel attacks — including the PRIME+ABORT attack described in

Chapter 1 — by automatically finding violations of the constant-time programming paradigm.

Pitchfork uses symbolic execution to find code locations where constant-time programming is

violated and secret data may be leaked. Critically, Pitchfork is designed to analyze not only

cryptographic primitives, but also protocol-level cryptographic code — flaws in which have been

responsible for high-profile vulnerabilities such as Lucky 13 [4]. We describe how we used

Pitchfork to verify protocol-level code in both libsignal [198] and Mozilla’s NSS cryptographic

library [157]. Our verification effort, however, also revealed several constant-time vulnerabilities

in NSS, including a critical memory-safety vulnerability which was assigned CVE-2019-11745.

In Chapter 3, we extend Pitchfork’s analysis to speculative execution, showing how a

variation of Pitchfork can be used to find Spectre vulnerabilities in cryptographic code. This

version of Pitchfork found Spectre vulnerabilities in protocol-level code in the cryptographic

libraries libsodium and OpenSSL.

Starting with Chapter 4, we turn our attention from finding memory-safety vulnerabilities

in existing code, to automatically preventing them in today’s languages and on today’s architec-

tures. In Chapter 4, we present a novel systematization of the wide variety of software-based

Spectre defenses created or proposed from 2018 (when Spectre became public) until the end of

2021, comparing these defenses in terms of the strength of their theoretical underpinnings and the

resulting security guarantees. Based on our analysis, we present opinionated recommendations

about the best directions for this research area moving forward. Specifically, we encourage devel-

opers to use leakage models derived from constant-time programming, rather than weaker models

which only consider leaks via the data cache; we emphasize the necessity of considering multiple

Spectre variants rather than just Spectre-PHT (even if the program analysis tool itself only directly
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reasons about Spectre-PHT); and we recommend against modelling microarchitectural details

such as intricate cache structures or port contention, which introduce unnecessary complexity and

sacrifice portability.

In Chapter 5, we present BLADE, a tool which automatically secures cryptographic code

against Spectre attacks. BLADE is built on the insight that to stop leaks via speculative execution,

it suffices to cut the dataflow from expressions that speculatively introduce secrets (sources) to

those that leak them through the cache (sinks), rather than prohibit speculation altogether. We

formalize this insight in a static type system that types each expression as either transient, i.e.,

possibly containing speculative secrets, or as being stable; BLADE prevents speculative leaks

by requiring that all sink expressions are stable. Finally, we implement BLADE in the Cranelift

WebAssembly compiler, where it ensures that attackers cannot break out of the Wasm sandbox

even using (particular variants of) Spectre attacks. We evaluate our approach by repairing several

verified, yet vulnerable WebAssembly implementations of cryptographic primitives, and find

that BLADE can fix existing programs that leak via speculation automatically, without user

intervention, and efficiently, imposing less than 20% performance overhead.

In Chapter 6, we return to traditional (non-side-channel) memory safety vulnerabilities,

such as out-of-bounds and use-after-free. We show how, despite Wasm’s strong sandboxing, these

vulnerabilities remain a concern even inside the Wasm sandbox. Then we propose MSWasm,

which automatically prevents these vulnerabilities in Wasm code. MSWasm captures important

low-level C/C++ memory semantics such as pointers and memory allocation in Wasm, at compile

time, allowing MSWasm implementations to leverage this information at deployment time to

enforce memory safety. We discuss how MSWasm can be efficiently implemented on today’s

and tomorrow’s architectures, using features such as ARM MTE. And we present a full-scale

compiler based on CHERI LLVM which compiles C/C++ to MSWasm, showing how MSWasm

can enforce memory safety for arbitrary C/C++ code.
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Finally, in Chapter 7, we present DMS, a compiler-based defense which automatically

secures arbitrary C/C++ programs against memory safety vulnerabilities, without requiring them

to be compiled through Wasm. DMS supplements ARM MTE with a layer of software checks

in order to achieve fully deterministic spatial memory safety enforcement, with much better

performance than would be possible in software alone. DMS identifies which memory accesses

are provably (deterministically) safe, and which accesses may “slip through the cracks” of MTE’s

probabilistic enforcement. Then, DMS inserts software checks at each insecure memory access.

Together, MTE’s hardware enforcement and DMS’s software checks provide fully deterministic

spatial safety for legacy applications. With DMS, we can secure today’s programs from memory

safety vulnerabilities on tomorrow’s architectures.
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Chapter 1

PRIME+ABORT: A Timer-Free

High-Precision L3 Cache Attack using Intel

TSX

State-of-the-art cache attacks [75, 82, 104, 114, 136, 169, 170, 174, 233] leverage differ-

ences in memory access times between levels of the cache and memory hierarchy to gain insight

into the activities of a victim process. These attacks require the attacker to frequently perform a

series of timed memory operations (or cache management operations [75]) to learn if a victim

process has accessed a critical address (e.g., a statement in an encryption library).

These attacks are highly dependent on precise and accurate timing, and defenses can

exploit this dependence. In fact, a variety of defenses have been proposed which undermine these

timing-based attacks by restricting access to highly precise timers [92, 124, 144, 212].

In this chapter, we introduce an alternate mechanism for performing cache attacks, which

does not leverage timing differences (timing side channels) or require timed operations of any

type. Instead, it exploits Intel’s implementation of Hardware Transactional Memory, which is
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called TSX [103]. We demonstrate a novel cache attack based on this mechanism, which we will

call PRIME+ABORT.

The intent of Transactional Memory (and TSX) is to both provide a simplified interface for

synchronization and to enable optimistic concurrency: processes abort only when a conflict exists,

rather than when a potential conflict may occur, as with traditional locks [86, 89]. Transactional

memory operations require transactional data to be buffered, in this case in the cache which has

limited space. Thus, the outcome of a transaction depends on the state of the cache, potentially

revealing information to the thread that initiates the transaction. By exploiting TSX, an attacker

can monitor the cache behavior of another process and receive an abort (call-back) if the victim

process accesses a critical address. This chapter demonstrates how TSX can be used to trivially

detect writes to a shared block in memory; to detect reads and writes by a process co-scheduled

on the same core; and, most critically, to detect reads and writes by a process executing anywhere

on the same processor. This latter attack works across cores, does not assume that the victim uses

or even knows about TSX, and does not require any form of shared memory.

The advantages of this mechanism over conventional cache attacks are twofold. The first

is that PRIME+ABORT does not leverage any kind of timer; as mentioned, several major classes

of countermeasures against cache attacks revolve around either restricting access or adding noise

to timers. PRIME+ABORT effectively bypasses these countermeasures.

The second advantage is in the efficiency of the attack. The TSX hardware allows for a

victim’s action to directly trigger the attacking process to take action. This means the TSX attack

can bypass the detection phase required in conventional attacks. Direct coupling from event to

handler allows PRIME+ABORT to provide over 3× the throughput of comparable state-of-the-art

attacks.

The rest of this chapter is organized as follows. Section 1.1 presents background and

related work; Section 1.2 introduces our novel attack, PRIME+ABORT; Section 1.3 describes
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experimental results, making comparisons with existing methods; in Section 1.4, we discuss

potential countermeasures to our attack; and Section 1.6 concludes the chapter.

1.1 Background and related work

1.1.1 Cache attacks

Cache attacks [75, 82, 104, 114, 136, 169, 170, 174, 233] are a well-known class of

side-channel attacks which seek to gain information about which memory locations are accessed

by some victim program, and at what times. In an excellent survey, Ge et al. [67] group

such attacks into three broad categories: PRIME+PROBE, FLUSH+RELOAD, and EVICT+TIME.

Since EVICT+TIME is only capable of monitoring memory accesses at the program granularity

(whether a given memory location was accessed during execution or not), in this paper we focus

on PRIME+PROBE and FLUSH+RELOAD, which are much higher resolution and have received

more attention in the literature. Cache attacks have been shown to be effective for successfully

recovering AES [114], ElGamal [136], and RSA [233] keys, performing keylogging [76], and

spying on messages encrypted with TLS [106].

Figure 1.1 outlines all of the attacks which we will consider. At a high level, each attack

consists of a pre-attack portion, in which important architecture- or runtime-specific information

is gathered; and then an active portion which uses that information to monitor memory accesses

of a victim process. The active portion of existing state-of-the-art attacks itself consists of three

phases: an initialization phase, a waiting phase, and a measurement phase. The initialization

phase prepares the cache in some way; the waiting phase gives the victim process an opportunity

to access the target address; and then the measurement phase performs a timed operation to

determine whether the cache state has changed in a way that implies an access to the target

address has taken place.
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Figure 1.1: Comparison of the operation of various cache attacks, including our novel attacks.

Specifics of the initialization and measurement phases vary by cache attack (discussed

below). Some cache attack implementations make a tradeoff in the length of the waiting phase

between accuracy and resolution—shorter waiting phases give more precise information about

the timing of victim memory accesses, but may increase the relative overhead of the initialization

and measurement phases, which may make it more likely that a victim access could be missed

by occurring outside of one of the measured intervals. In our testing, not all cache attack

implementations and targets exhibited obvious experimental tradeoffs for the waiting phase

duration. Nonetheless, fundamentally, all of these existing attacks can only gain temporal

information at the waiting-interval granularity.

1.1.1.1 PRIME+PROBE

PRIME+PROBE [104, 114, 136, 170, 174] is the oldest and largest family of cache attacks,

and also the most general. PRIME+PROBE does not rely on shared memory, unlike most other
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cache attacks (including FLUSH+RELOAD and its variants, described below). The original form

of PRIME+PROBE [170, 174] targets the L1 cache, but recent work [104, 114, 136] extends it to

target the L3 cache in Intel processors, enabling PRIME+PROBE to work across cores and without

relying on hyperthreading (Simultaneous Multithreading [205]). Like all L3 cache attacks, L3

PRIME+PROBE can detect accesses to either instructions or data; in addition, L3 PRIME+PROBE

trivially works across VMs.

PRIME+PROBE targets a single cache set, detecting accesses by any other program (or

the operating system) to any address in that cache set. In its active portion’s initialization phase

(called “prime”), the attacker accesses enough cache lines from the cache set so as to completely

fill the cache set with its own data. Later, in the measurement phase (called “probe”), the attacker

reloads the same data it accessed previously, this time carefully observing how much time this

operation took. If the victim did not access data in the targeted cache set, this operation will

proceed quickly, finding its data in the cache. However, if the victim accessed data in the targeted

cache set, the access will evict a portion of the attacker’s primed data, causing the reload to

be slower due to additional cache misses. Thus, a slow measurement phase implies the victim

accessed data in the targeted cache set during the waiting phase. Note that this “probe” phase can

also serve as the “prime” phase for the next repetition, if the monitoring is to continue.

Two different kinds of initial one-time setup are required for the pre-attack portion of

this attack. The first is to establish a timing threshold above which the measurement phase is

considered “slow” (i.e. likely suffering from extra cache misses). The second is to determine a set

of addresses, called an eviction set, which all map to the same (targeted) cache set (and which

reside in distinct cache lines). Finding an eviction set is much easier for an attack targeting the L1

cache than for an attack targeting the L3 cache, due to the interaction between cache addressing

and the virtual memory system, and also due to the “slicing” in Intel L3 caches (discussed further

in Sections 1.1.2.1 and 1.1.2.2).
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1.1.1.2 FLUSH+RELOAD

The other major class of cache attacks is FLUSH+RELOAD [82, 233]. FLUSH+RELOAD

targets a specific address, detecting an access by any other program (or the operating system)

to that exact address (or another address in the same cache line). This makes FLUSH+RELOAD

a much more precise attack than PRIME+PROBE, which targets an entire cache set and is thus

more prone to noise and false positives. FLUSH+RELOAD also naturally works across cores

because of shared, inclusive, L3 caches (as explained in Section 1.1.2.1). Again, like all L3

cache attacks, FLUSH+RELOAD can detect accesses to either instructions or data. Additionally,

FLUSH+RELOAD can work across VMs via the page deduplication exploit [233].

The pre-attack of FLUSH+RELOAD, like that of PRIME+PROBE, involves determining

a timing threshold, but is limited to a single line instead of an entire “prime” phase. However,

FLUSH+RELOAD does not require determining an eviction set. Instead, it requires the attacker to

identify an exact target address; namely, an address in the attacker’s virtual address space which

maps to the physical address the attacker wants to monitor. Yarom and Falkner [233] present two

ways to do this, both of which necessarily involve shared memory; one exploits shared libraries,

and the other exploits page deduplication, which is how FLUSH+RELOAD can work across VMs.

Nonetheless, this step’s reliance on shared memory is a critical weakness in FLUSH+RELOAD,

limiting it to only be able to monitor targets in shared memory.

In FLUSH+RELOAD’s initialization phase, the attacker “flushes” the target address out

of the cache using Intel’s CLFLUSH instruction. Later, in the measurement phase, the attacker

“reloads” the target address (by accessing it), carefully observing the time for the access. If the

access was “fast”, the attacker may conclude that another program accessed the address, causing

it to be reloaded into the cache.

An improved variant of FLUSH+RELOAD, FLUSH+FLUSH [75], exploits timing variation

in the CLFLUSH instruction itself; this enables the attack to combine its measurement and initial-

ization phases, much like PRIME+PROBE. A different variant, EVICT+RELOAD [76], performs
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the initialization phase by evicting the cacheline with PRIME+PROBE’s “prime” phase, allowing

the attack to work without the CLFLUSH instruction at all—e.g., when the instruction has been

disabled, as in Google Chrome’s NaCl [71].

1.1.1.3 Timer-free cache attacks

All of the attacks so far discussed—PRIME+PROBE, FLUSH+RELOAD, and variants—are

still fundamentally timing attacks, exploiting timing differences as their underlying attack vector.

One recent work which, like this work, proposes a cache attack without reference to timers is that

of Guanciale et al. [79]. Instead of timing side channels, Guanciale et al. rely on the undocumented

hardware behavior resulting from disobeying ISA programming guidelines, specifically with

regards to virtual address aliasing and self-modifying code. However, they demonstrate their

attacks only on the ARM architecture, and they themselves suggest that recent Intel x86-64

processors contain mechanisms that would render their attacks ineffective. In contrast, our attack

exploits weaknesses specifically in recent Intel x86-64 processors, so in that respect our attack

can be seen as complementary to Guanciale et al.’s work. We believe that our work, in addition

to utilizing a novel attack vector (Intel’s hardware transactional memory support), is the first

timer-free cache attack to be demonstrated on commodity Intel processors.

1.1.2 Relevant microarchitecture

1.1.2.1 Caches

Basic background

Caches in modern processors store data that is frequently or recently used, in order to

reduce access time for that data on subsequent references. Data is stored in units of cache lines (a

fixed architecture-dependent number of bytes). Caches are often organized hierarchically, with a

small but fast “L1” cache, a medium-sized “L2” cache, and a large but comparatively slower “L3”
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Table 1.1: Relevant cache parameters in the Intel Skylake
architecture

L1-Data L1-Inst L2 L3
Size 32 KB 32 KB 256 KB 2-8 MB1

Assoc 8-way 8-way 4-way 16-way
Sharing Per-core Per-core Per-core Shared
Line size 64 B 64 B 64 B 64 B
1 depending on model. This range covers all Skylake processors

(server, desktop, mobile, embedded) currently available as of
January 2017 [96].

cache. At each level of the hierarchy, there may either be a dedicated cache for each processor

core, or a single cache shared by all processor cores.

Commonly, caches are set-associative, which allows any given cacheline to reside in

only one of N locations in the cache, where N is the associativity of the cache. This group of N

locations is called a cache set. Each cacheline is assigned to a unique cache set by means of its

set index, typically a subset of its address bits. Once a set is full (the common case), any access to

a cacheline with the given set index (but not currently in the cache) will cause one of the existing

N cachelines with the same set index to be removed, or evicted, from the cache.

Intel cache organization

Recent Intel processors contain per-core L1 instruction and data caches, per-core unified

L2 caches, and a large L3 cache which is shared across cores. In this paper we focus on the

Skylake architecture which was introduced in late 2015; important Skylake cache parameters are

provided in Table 1.1.

Inclusive caches

Critical to all cross-core cache attacks, the L3 cache is inclusive, meaning that everything

in all the per-core caches must also be held in the L3. This has two important consequences

which are key to enabling both L3-targeting PRIME+PROBE and FLUSH+RELOAD to work across

cores. First, any data accessed by any core must be brought into not only the core’s private

L1 cache, but also the L3. If an attacker has “primed” a cache set in the L3, this access to a
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different address by another core necessarily evicts one of the attacker’s cachelines, allowing

PRIME+PROBE to detect the access. Second, any cacheline evicted from the L3 (e.g., in a “flush”

step) must also be invalidated from all cores’ private L1 and L2 caches. Any subsequent access to

the cacheline by any core must fetch the data from main memory and bring it to the L3, causing

FLUSH+RELOAD’s subsequent “reload” phase to register a cache hit.

Set index bits

The total number of cache sets in each cache can be calculated as (total number of cache

lines) / (associativity), where the total number of cache lines is (cache size) / (line size). Thus, the

Skylake L1 caches have 64 sets each, the L2 caches have 1024 sets each, and the shared L3 has

from 2K to 8K sets, depending on the processor model.

In a typical cache, the lowest bits of the address (called the line offset) determine the

position within the cache line; the next-lowest bits of the address (called the set index) determine

in which cache set the line belongs, and the remaining higher bits make up the tag. In our setting,

the line offset is always 6 bits, while the set index will vary from 6 bits (L1) to 13 bits (L3)

depending on the number of cache sets in the cache.

Cache slices and selection hash functions

However, in recent Intel architectures (including Skylake), the situation is more compli-

cated than this for the L3. Specifically, the L3 cache is split into several slices which can be

accessed concurrently; the slices are connected on a ring bus such that each slice has a different

latency depending on the core. In order to balance the load on these slices, Intel uses a proprietary

and undocumented hash function, which operates on a physical address (except the line offset) to

select which slice the address “belongs” to. The output of this hash effectively serves as the top N

bits of the set index, where 2N is the number of slices in the system. Therefore, in the case of an

8 MB L3 cache with 8 slices, the set index consists of 10 bits from the physical address and 3 bits

calculated using the hash function. For more details, see [114], [145], [234], [93], or [105].
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This hash function has been reverse-engineered for many different processors in Intel’s

Sandy Bridge [114, 145, 234], Ivy Bridge [93, 105, 145], and Haswell [105, 145] architectures,

but to our knowledge has not been reverse-engineered for Skylake yet. Not knowing the precise

hash function adds additional difficulty to determining eviction sets for PRIME+PROBE—that is,

finding sets of addresses which all map to the same L3 cache set. However, our attack (following

the approach of Liu et al. [136]) does not require knowledge of the specific hash function, making

it more general and more broadly applicable.

1.1.2.2 Virtual memory

In a modern virtual memory system, each process has a set of virtual addresses which

are mapped by the operating system and hardware to physical addresses at the granularity of

pages [53]. The lowest bits of an address (referred to as the page offset) remain constant during

address translation. Pages are typically 4 KB in size, but recently larger pages, for instance of size

2 MB, have become widely available for use at the option of the program [114, 136]. Crucially,

an attacker may choose to use large pages regardless of whether the victim does or not [136].

Skylake caches are physically-indexed, meaning that the physical address of a cache line

(and not its virtual address) determines the cache set which the line is mapped into. Like the

slicing of the L3 cache, physical indexing adds additional difficulty to the problem of determining

eviction sets for PRIME+PROBE, as it is not immediately clear which virtual addresses may have

the same set index bits in their corresponding physical addresses. Pages make this problem more

manageable, as the bottom 12 bits (for standard 4 KB pages) of the address remain constant

during translation. For the L1 caches, these 12 bits contain the entire set index (6 bits of line

offset + 6 bits of set index), so it is easy to choose addresses with the same set index. This

makes the problem of determining eviction sets trivial for L1 attacks. However, L3 attacks must

deal with both physical indexing and cache slicing when determining eviction sets. Using large

pages helps, as the 21-bit large-page offset completely includes the set index bits (meaning they
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Table 1.2: Availability of Intel TSX in recent Intel CPUs, based on data drawn from Intel ARK [96] in
January 2017. Since Broadwell, all server CPUs and a majority of i7/i5 CPUs support TSX.

Series
(Release1) Server2 i7/i5 i3/m/etc3

Kaby Lake
(Jan 2017) 3/3 (100%) 23/32 (72%) 12/24 (50%)

Skylake
(Aug 2015) 23/23 (100%) 27/42 (64%) 4/34 (12%)

Broadwell
(Sep 2014) 77/77 (100%) 11/22 (50%) 2/18 (11%)

Haswell
(Jun 2013) 37/85 (44%) 2/87 (2%) 0/82 (0%)

1 for the earliest available processors in the series
2 Xeon and Pentium-D
3 (i3/m/Pentium/Celeron)

remain constant during translation), leaving only the problem of the hash function. However, the

hash function is not only an unknown function itself, but it also incorporates bits from the entire

physical address, including bits that are still translated even when using large pages.

1.1.3 Transactional memory and TSX

Transactional Memory (TM) has received significant attention from the computer archi-

tecture and systems community over the past two decades [87, 89, 195, 235]. First proposed

by Herlihy and Moss in 1993 as a hardware alternative to locks [89], TM is noteworthy for its

simplification of synchronization primitives and for its ability to provide optimistic concurrency.

Unlike traditional locks which require threads to wait if a conflict is possible, TM allows

multiple threads to proceed in parallel and only abort in the event of a conflict [181]. To detect a

conflict, TM tracks each thread’s read and write sets and signals an abort when a conflict is found.

This tracking can be performed either by special hardware [87, 89, 235] or software [195].

Intel’s TSX instruction set extension for x86 [86, 103] provides an implementation of

hardware TM and is widely available in recent Intel CPUs (see Table 1.2).
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Table 1.3: Causes of transactional aborts in Intel TSX

1. Executing certain instructions, such as CPUID or the explicit XABORT instruction
2. Executing system calls
3. OS interrupts1

4. Nesting transactions too deeply
5. Access violations and page faults
6. Read-Write or Write-Write memory conflicts with other threads or processes (including other cores) at the

cacheline granularity—whether those other processes are using TSX or not
7. A cacheline which has been written during the transaction (i.e., a cacheline in the transaction’s write set) is

evicted from the L1 cache
8. A cacheline which has been read during the transaction (i.e., a cacheline in the transaction’s read set) is

evicted from the L3 cache
1 This means that any transaction may abort, despite the absence of memory conflicts, through no fault of

the programmer. The periodic nature of certain interrupts also sets an effective maximum time limit on any
transaction, which has been measured at about 4 ms [219].

TSX allows any program to identify an arbitrary section of its code as a transaction using

explicit XBEGIN and XEND instructions. Any transaction is guaranteed to either: (1) complete,

in which case all memory changes which happened during the transaction are made visible

atomically to other processes and cores, or (2) abort, in which case all memory changes which

happened during the transaction, as well as all other changes (e.g. to registers), are discarded. In

the event of an abort, control is transferred to a fallback routine specified by the user, and a status

code provides the fallback routine with some information about the cause of the abort.

From a security perspective, the intended uses of hardware transactional memory (easier

synchronization or optimistic concurrency) are unimportant, so we will merely note that we

can place arbitrary code inside both the transaction and the fallback routine, and whenever the

transaction aborts, our fallback routine will immediately be given a callback with a status code.

There are many reasons a TSX transaction may abort; important causes are listed in Table 1.3.

Most of these are drawn from the Intel Software Developer’s Manual [103], but the specifics

of Causes #7 and #8—in particular the asymmetric behavior of TSX with respect to read sets

and write sets—were suggested by Dice et al. [55]. Our experimental results corroborate their

suggestions about these undocumented implementation details.
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While a transaction is in process, an arbitrary amount of data must be buffered (hidden

from the memory system) or tracked until the transaction completes or aborts. In TSX, this is done

in the caches—transactionally written lines are buffered in the L1 data cache, and transactionally

read lines marked in the L1–L3 caches. This has the important ramification that the cache size

and associativity impose a limit on how much data can be buffered or tracked. In particular, if

cache lines being buffered or tracked by TSX must be evicted from the cache, this necessarily

causes a transactional abort. In this way, details about cache activity may be exposed through the

use of transactions.

TSX has been addressed only rarely in a security context; to the best of our knowledge,

there are only two works on the application of TSX to security to date [77, 110]. Guan et

al. use TSX as part of a defense against memory disclosure attacks [77]. In their system,

operations involving the plaintext of sensitive data necessarily occur inside TSX transactions.

This structurally ensures that this plaintext will never be accessed by other processes or written

back to main memory (in either case, a transactional abort will roll back the architectural state

and invalidate the plaintext data).

Jang et al. exploit a timing side channel in TSX itself in order to break kernel address

space layout randomization (KASLR) [110]. Specifically, they focus on Abort Cause #5, access

violations and page faults. They note that such events inside a transaction trigger an abort but

not their normal respective handlers; this means the operating system or kernel are not notified,

so the attack is free to trigger as many access violations and page faults as it wants without

raising suspicions. They then exploit this property and the aforementioned timing side channel to

determine which kernel pages are mapped and unmapped (and also which are executable).

Neither of these works enable new attacks on memory accesses, nor do they eliminate the

need for timers in attacks.

21



1.2 Potential TSX-based attacks

We present three potential attacks, all of which share their main goal with cache attacks—

to monitor which cachelines are accessed by other processes and when. The three attacks we will

present leverage Abort Causes #6, 7, and 8 respectively. Figure 1.1 outlines all three of the attacks

we will present, as the PRIME+ABORT entry in the figure applies to both PRIME+ABORT–L1

and PRIME+ABORT–L3.

All of the TSX-based attacks which we will propose have the same critical structural

benefit in common. This benefit, illustrated in Figure 1.1, is that these attacks have no need for

a “measurement” phase. Rather than having to conduct some (timed) operation to determine

whether the cache state has been modified by the victim, they simply receive a hardware callback

through TSX immediately when a victim access takes place. In addition to the reduced overhead

this represents for the attack procedure, this also means the attacker can be actively waiting almost

indefinitely until the moment a victim access occurs—the attacker does not need to break the

attack into predefined intervals. This results in a higher resolution attack, because instead of only

coarse-grained knowledge of when a victim access occurred (i.e. which predefined interval), the

attacker gains precise estimates of the relative timing of victim accesses.

All of our proposed TSX-based attacks also share a structural weakness when compared

to PRIME+PROBE and FLUSH+RELOAD. Namely, they are unable to monitor multiple targets

(cache sets in the case of PRIME+PROBE, addresses in the case of FLUSH+RELOAD) simultane-

ously while retaining the ability to distinguish accesses to one target from accesses to another.

PRIME+PROBE and FLUSH+RELOAD are able to do this at the cost of increased overhead;

effectively, a process can monitor multiple targets concurrently by performing multiple initializa-

tion stages, having a common waiting stage, and then performing multiple measurement stages,

with each measurement stage revealing the activity for the corresponding target. In contrast,

although our TSX-based attacks could monitor multiple targets at once, they would be unable to
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distinguish events for one target from events for another without additional outside information.

Some applications of PRIME+PROBE and FLUSH+RELOAD rely on this ability (e.g. [169]), and

adapting them to rely on PRIME+ABORT instead would not be trivial. However, others, including

the attack presented in Section 1.3.4, can be straightforwardly adapted to utilize PRIME+ABORT

as a drop-in replacement for PRIME+PROBE or FLUSH+RELOAD.

We begin by discussing the simplest, but also least generalizable, of our TSX-based

attacks, ultimately building to our proposed primary attack, PRIME+ABORT–L3.

1.2.1 Naïve TSX-based attack

Abort Cause #6 enables a potentially powerful, but limited attack.

From Cause #6, we can get a transaction abort (which for our purposes is an immediate,

fast hardware callback) whenever there is a read-write or write-write conflict between our

transaction and another process. This leads to a natural and simple attack implementation, where

we simply open a transaction, access our target address, and wait for an abort (with the proper

abort status code); on abort, we know the address was accessed by another process.

The style of this attack is reminiscent of FLUSH+RELOAD [233] in several ways. It

targets a single, precise cacheline, rather than an entire cache set as in PRIME+PROBE and its

variants. It does not require a (comparatively slow) “prime eviction set” step, providing fast and

low-overhead monitoring of the target cacheline. Also like FLUSH+RELOAD, it requires the

attacker to acquire a specific address to target, for instance exploiting shared libraries or page

deduplication.

Like the other attacks using TSX, it benefits in performance by not needing the “measure-

ment” phase to detect a victim access. In addition to the performance benefit, this attack would

also be harder to detect and defend against. It would execute without any kind of timer, mitigating

several important classes of defenses (see Section 1.4). It would also be resistant to most types

of cache-based defenses; in fact, this attack has so little to do with the cache at all that it could
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hardly be called a cache attack, except that it happens to expose the same information as standard

cache attacks such as FLUSH+RELOAD or PRIME+PROBE do.

However, in addition to only being able to monitor target addresses in shared memory

(the key weakness shared by all variants of FLUSH+RELOAD), this attack has another critical

shortcoming. Namely, it can only detect read-write or write-write conflicts, not read-read conflicts.

This means that one or the other of the processes—either the attacker or the victim—must be

issuing a write command in order for the access to be detected, i.e. cause a transactional abort.

Therefore, the address being monitored must not be in read-only memory. Combining this with

the earlier restriction, we find that this attack, although powerful, can only monitor addresses

in writable shared memory. We find this dependence to render it impractical for most real

applications, and for the rest of the paper we focus on the other two attacks we will present.

1.2.2 PRIME+ABORT–L1

The second attack we will present, called PRIME+ABORT–L1, is based on Abort Cause

#7. Abort Cause #7 provides us with a way to monitor evictions from the L1 cache in a way

that is precise and presents us with, effectively, an immediate hardware callback in the form of a

transactional abort. This allows us to build an attack in the PRIME+PROBE family, as the key

component of PRIME+PROBE involves detecting cacheline evictions. This attack, like all attacks

in the PRIME+PROBE family, does not depend in any way on shared memory; but unlike other

attacks, it will also not depend on timers.

Like other PRIME+PROBE variants, our attack requires a one-time setup phase where

we determine an eviction set for the cache set we wish to target; but like early PRIME+PROBE

attacks [170, 174], we find this task trivial because the entire L1 cache index lies within the page

offset (as explained earlier). Unlike other PRIME+PROBE variants, for PRIME+ABORT this is the

sole component of the setup phase; we do not need to find a timing threshold, as we do not rely

on timing.

24



The main part of PRIME+ABORT–L1 involves the same “prime” phase as a typical

PRIME+PROBE attack, except that it opens a TSX transaction first. Once the “prime” phase

is completed, the attack simply waits for an abort (with the proper abort status code). Upon

receiving an abort, the attacker can conclude that some other program has accessed an address in

the target cache set. This is similar to the information gleaned by ordinary PRIME+PROBE.

The reason this works is that, since we will hold an entire cache set in the write set of our

transaction, any access to a different cache line in that set by another process will necessarily

evict one of our cachelines and cause our transaction to abort due to Cause #7. This gives us an

immediate hardware callback, obviating the need for any “measurement” step as in traditional

cache attacks. This is why we call our method PRIME+ABORT—the abort replaces the “probe”

step of traditional PRIME+PROBE.

1.2.3 PRIME+ABORT–L3

PRIME+ABORT–L1 is fast and powerful, but because it targets the (core-private) L1

cache, it can only spy on threads which share its core; and since it must execute simultaneously

with its victim, this means it and its victim must be in separate hyperthreads on the same core.

In this section we present PRIME+ABORT–L3, an attack which overcomes these restrictions

by targeting the L3 cache. The development of PRIME+ABORT–L3 from PRIME+ABORT–L1

mirrors the development of L3-targeting PRIME+PROBE [104, 114, 136] from L1-targeting

PRIME+PROBE [170, 174], except that we use TSX. PRIME+ABORT–L3 retains all of the TSX-

provided advantages of PRIME+ABORT–L1, while also (like L3 PRIME+PROBE) working across

cores, easily detecting accesses to either instructions or data, and even working across virtual

machines.

PRIME+ABORT–L3 uses Abort Cause #8 to monitor evictions from the L3 cache. The

only meaningful change this entails to the active portion of the attack is performing reads rather

than writes during the “prime” phase, in order to hold the primed cachelines in the read set of the
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transaction rather than the write set. For the pre-attack portion, PRIME+ABORT–L3, like other L3

PRIME+PROBE attacks, requires a much more sophisticated setup phase in which it determines

eviction sets for the L3 cache. This is described in detail in the next section.

1.2.4 Finding eviction sets

The goal of the pre-attack phase for PRIME+ABORT is to determine an eviction set

for a specified target address. For PRIME+ABORT–L1, this is straightforward, as described in

Section 1.1.2.2. However, for PRIME+ABORT–L3, we must deal with both physical indexing and

cache slicing in order to find L3 eviction sets. Like [136] and [104], we use large (2 MB) pages

in this process as a convenience. With large pages, it becomes trivial to choose virtual addresses

that have the same physical set index (i.e. agree in bits 6 to N, for some processor-dependent

N, perhaps 15), again as explained in Section 1.1.2.2. We will refer to addresses which agree in

physical set index (and in line offset, i.e. bits 0 to 5) as set-aligned addresses.

We generate eviction sets dynamically using the algorithm from Mastik [232] (inspired

by that in [136]), which is shown as Algorithm 1. However, for the subroutine where Mastik uses

timing methods to evaluate potential eviction sets (Algorithm 2), we use TSX methods instead

(Algorithm 3).

Algorithm 3, a subroutine of Algorithm 1, demonstrates how Intel TSX is used to de-

termine whether a candidate eviction set can be expected to consistently evict a given target

cacheline. If “priming” the eviction set (accessing all its lines) inside a transaction followed by

accessing the target cacheline consistently results in an immediate abort, we can conclude that a

transaction cannot hold both the eviction set and the target cacheline in its read set at once, which

means that together they contain at least (associativity+1, or 17 in our case) lines which map to

the same cache slice and cache set.

Conceptually, the algorithm for dynamically generating an eviction set for any given

address has two phases: first, creating a “prototype group”, and second, specializing it to form an
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Algorithm 1: Dynamically generating a prototype evic-
tion set for each cache slice, as implemented in [232]

Input: a set of potentially conflicting cachelines lines, all set-aligned
Output: a set of prototype eviction sets, one eviction set for each cache

slice; that is, a “prototype group”

group← {};
workingSet← {};
while lines is not empty do

repeat forever :
line← random member of lines;
remove line from lines;
if workingSet evicts line then // Algorithm 2 or 3

c← line;
break;

end
add line to workingSet;

end
foreach member in workingSet do

remove member from workingSet;
if workingSet evicts c then // Algorithm 2 or 3

add member back to lines;
else

add member back to workingSet;
end

end
foreach line in lines do

if workingSet evicts line then // Algorithm 2 or 3
remove line from lines;

end
end
add workingSet to group;
workingSet← {};

end
return group;
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Algorithm 2: PRIME+PROBE (timing-based) method for determining whether an
eviction set evicts a given cacheline, as implemented in [232]

Input: a candidate eviction set es and a cacheline line
Output: true if es can be expected to consistently evict line

times← {};
repeat 16 times :

access line;
repeat 20 times :

foreach member in es do
access member;

end
end
timed access to line;
times← times + {elapsed time};

end
if median of times > predetermined threshold then return true;
else return false;

eviction set for the desired target address. The algorithms shown (Algorithms 1, 2, and 3) together

constitute the first phase of this larger algorithm. In this first phase, we use only set-aligned

addresses, noting that all such addresses, after being mapped to an L3 cache slice, necessarily

map to the same cache set inside that slice. This phase creates one eviction set for each cache

slice, targeting the cache set inside that slice with the given set index. We call these “prototype”

eviction sets, and we call the resulting group of one “prototype” eviction set per cache slice a

“prototype group”.

Once we have a prototype group generated by Algorithm 1, we can obtain an eviction set

for any cache set in any cache slice by simply adjusting the set index of each address in one of the

prototype eviction sets. Not knowing the specific cache-slice-selection hash function, it will be

necessary to iterate over all prototype eviction sets (one per slice) in order to find the one which

collides with the target on the same cache slice. If we do not know the (physical) set index of our

target, we can also iterate through all possible set indices (with each prototype eviction set) to

find the appropriate eviction set, again following the procedure from Liu et al. [136].
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Algorithm 3: PRIME+ABORT (TSX-based) method for determining whether an
eviction set evicts a given cacheline

Input: a candidate eviction set es and a cacheline line
Output: true if es can be expected to consistently evict line

aborts← 0;
commits← 0;

while aborts < 16 and commits < 16 do
begin transaction;
foreach member in es do

access member;
end
access line;
end transaction;
if transaction committed then increment commits;
else if transaction aborted with appropriate status code then increment aborts;

end
if aborts >= 16 then return true;
else return false;

1.3 Results

1.3.1 Characteristics of the Intel Skylake architecture

Our test machine has an Intel Skylake i7-6600U processor, which has two physical cores

and four virtual cores. It is widely reported (e.g., in all of [93, 105, 114, 136, 145, 234]) that Intel

processors have one cache slice per physical core, based on experiments conducted on Sandy

Bridge, Ivy Bridge, and Haswell processors. However, our testing on the Skylake dual-core

i7-6600U leads us to believe that it has four cache slices, contrary to previous trends which

would predict it has only two. We validate this claim by using Algorithm 1 to produce four

distinct eviction sets for large-page-aligned addresses. Then we test our four distinct eviction

sets on many additional large-page-aligned addresses not used in Algorithm 1. We find that each

large-page-aligned address conflicts with exactly one of the four eviction sets (by Algorithm 3),

and further, that the conflicts are spread relatively evenly over the four sets. This convinces us

that each of our four eviction sets represents set index 0 on a different cache slice, and thus that

there are indeed four cache slices in the i7-6600U.
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Table 1.4: Runtimes of PRIME+ABORT- and
PRIME+PROBE-based versions of Algorithm 1 to
generate a “prototype group” of eviction sets (data
based on 1000 runs of each version of Algorithm 1)

PRIME+ABORT PRIME+PROBE

Min 4.5 ms 68.3 ms
1Q 10.1 ms 76.6 ms
Median 15.0 ms 79.3 ms
3Q 21.3 ms 82.0 ms
Max 64.7 ms 91.0 ms

Having determined the number of cache slices, we can now calculate the number of

low-order bits in an address that must be fixed to create groups of set-aligned addresses. For our

i7-6600U, this is 16. Henceforth we can use set-aligned addresses instead of large-page-aligned

addresses, which is an efficiency gain.

1.3.2 Dynamically generating eviction sets

In the remainder of the Results section, we compare PRIME+ABORT–L3 to the L3 version

of PRIME+PROBE as implemented in [232]. We begin by comparing the PRIME+ABORT and

PRIME+PROBE versions of Algorithm 1 for dynamically generating prototype eviction sets.

Table 1.4 compares the runtimes of the PRIME+ABORT and PRIME+PROBE versions of

Algorithm 1. The PRIME+ABORT-based method is over 5× faster than the PRIME+PROBE-based

method in the median case, over 15× faster in the best case, and over 40% faster in the worst

case.

Next, we compare the “coverage” of prototype groups (sets of four prototype eviction

sets) derived and tested with the two methods. We derive 10 prototype groups with each version

of Algorithm 1; then, for each prototype group, we use either timing-based or TSX-based

methods to test 1000 additional set-aligned addresses not used for Algorithm 1 (a total of 10,000

additional set-aligned addresses for PRIME+ABORT and 10,000 for PRIME+PROBE). The testing

30



0% 20% 40% 60% 80% 100%

Detection Rate

0%

50%

100%

%
of

lin
es

h
av

in
g

a
se

co
n

d
h

ig
h

es
t

d
et

ec
ti

on
ra

te
at

le
as

t
th

at
h

ig
h

Prime+Abort

Prime+Probe

Figure 1.2: “Double coverage” of prototype groups generated by PRIME+ABORT- and
PRIME+PROBE-based versions of Algorithm 1. With PRIME+PROBE, some tested cachelines
are reliably detected by more than one prototype eviction set. In contrast, with PRIME+ABORT

each tested cacheline is reliably detected by only one prototype eviction set.

procedure is akin to a single iteration of the outer loop in Algorithm 2 or 3 respectively. Using

this procedure, each of the 10,000 set-aligned addresses is tested 10,000 times against each of

the four prototype eviction sets in the prototype group. This produces four “detection rates” for

each set-aligned address (one per prototype eviction set). We assume that the highest of these

four detection rates corresponds to the prototype eviction set from the same cache slice as the

tested address, and we call this detection rate the “max detection rate” for the set-aligned address.

Both PRIME+ABORT and PRIME+PROBE methods result in “max detection rates” which are

consistently indistinguishable from 100%. However, we note that out of the 100 million trials in

total, 13 times we observed the PRIME+PROBE-based method fail to detect the access (resulting

in a “max detection rate” of 99.99% in 13 cases), whereas with the PRIME+ABORT-based method,

all 100 million trials were detected, for perfect max detection rates of 100.0%. This result is due

to the structural nature of transactional conflicts—it is impossible for a transaction with a read set

of size (1+associativity) to ever successfully commit; it must always abort.

Since each address maps to exactly one cache slice, and ideally each eviction set contains

lines from only one cache slice, we expect that any given set-aligned address conflicts with only
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one out of the four prototype eviction sets in a prototype group. That is, we expect that out

of the four detection rates computed for each line (one per prototype eviction set), one will be

very high (the “max detection rate”), and the other three will be very low. Figure 1.2 shows

the “second-highest detection rate” for each line—that is, the maximum of the remaining three

detection rates for that line, which is a measure of false positives. For any given detection

rate on the x-axis, the figure shows what percentage of the 10,000 set-aligned addresses had a

false-positive detection rate at or above that level. Whenever the “second-highest detection rate”

is greater than zero, it indicates that the line appeared to be detected by a prototype eviction set

meant for an entirely different cache slice (i.e. a false positive detection). In Figure 1.2, we see

that with the PRIME+PROBE-based method, around 22% of lines have “second-highest detection

rates” over 5%, around 18% of lines have “second-highest detection rates” over 10%, and around

7.5% of lines even have “second-highest detection rates” of 100%, meaning that more than one of

the “prototype eviction sets” each detected that line in 100% of the 10,000 trials. In contrast, with

the PRIME+ABORT-based method, none of the 10,000 lines tested had “second-highest detection

rates” over 1%. PRIME+ABORT produces very few false positives and cleanly monitors exactly

one cache set in exactly one cache slice.

1.3.3 Detecting memory accesses

Figures 1.3, 1.4, and 1.5 show the success of PRIME+ABORT and two variants of

PRIME+PROBE in detecting the memory accesses of an artificial victim thread running on

a different physical core from the attacker. The victim thread repeatedly accesses a single memory

location for the duration of the experiment—in the “treatment” condition, it accesses the target

(monitored) location, whereas in the “control” condition, it accesses an unrelated location. We

introduce delays (via busy-wait) of varying lengths into the victim’s code in order to vary the

frequency at which it accesses the target location (or unrelated location for control). Figures 1.3,

1.4, and 1.5 plot the number of events observed by the respective attackers, vs. the actual number
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Figure 1.3: Access detection rates for PRIME+ABORT in the “control” and “treatment” condi-
tions. Data were collected over 100 trials, each involving several different victim access speeds.
Shaded regions indicate the range of the middle 75% of the data; lines indicate the medians. The
y = x line is added for reference and indicates perfect performance for the “treatment” condition
(all events detected but no false positives or oversampling).

Figure 1.4: Access detection rates for unmodified PRIME+PROBE in the “control” and “treat-
ment” conditions. Data were collected over 100 trials, each involving several different victim
access speeds. Shaded regions indicate the range of the middle 75% of the data; lines indicate
the medians. The y = x line is added for reference and indicates perfect performance for the
“treatment” condition (all events detected but no false positives or oversampling).
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Figure 1.5: Access detection rates for our modified implementation of PRIME+PROBE which
“collapses” streaks. Data were collected over 100 trials, each involving several different victim
access speeds. Shaded regions indicate the range of the middle 75% of the data; lines indicate
the medians. The y = x line is added for reference and indicates perfect performance for the
“treatment” condition (all events detected but no false positives or oversampling).

of accesses by the victim, in “control” and “treatment” scenarios. Data were collected from 100

trials per attacker, each entailing separate runs of Algorithm 1 and new targets. The y = x line is

shown for reference in all figures; it indicates perfect performance for the “treatment” condition,

with all events detected but no false positives. Perfect performance in the “control” condition,

naturally, is values as low as possible in all cases.

We see in Figure 1.3 that PRIME+ABORT detects a large fraction of the victim’s accesses

at frequencies up to several hundred thousand accesses per second, scaling up smoothly and

topping out at a maximum detection speed (on our test machine) of around one million events

per second. PRIME+ABORT exhibits this performance while also displaying relatively low

false positive rates of around 200 events per second, or one false positive every 5000 µs. The

close correlation between number of detected events and number of victim accesses indicates

PRIME+ABORT’s low overheads—in fact, we measured its transactional abort handler as execut-

ing in 20-40 ns—which allow it to be essentially “always listening” for victim accesses. Also, it

demonstrates PRIME+ABORT’s ability to accurately count the number of victim accesses, despite
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only producing a binary output (access or no access) in each transaction. Its high speed and low

overheads allow it to catch each victim access in a separate transaction.

Figure 1.4 shows the performance of unmodified PRIME+PROBE as implemented in

Mastik [232]1. We see false positive rates which are significantly higher than those observed

for PRIME+ABORT—over 2000 events per second, or one every 500 µs. Like PRIME+ABORT,

this implementation of PRIME+PROBE appears to have a top speed around one million accesses

detected per second under our test conditions. But most interestingly, we observe significant

“oversampling” at low frequencies—PRIME+PROBE reports many more events than actually

occurred. For instance, when the victim thread performs 2600 accesses per second, we expect to

observe 2600 events per second, plus around 2000 false positives per second as before. However,

we actually observe over 18,000 events per second in the median case. Likewise, when the

victim thread provides 26,000 accesses per second, we observe over 200,000 events per second

in the median case. Analysis shows that for this implementation of PRIME+PROBE on our

hardware, single accesses can cause long streaks of consecutive observed events, sometimes as

long as hundreds of observed events. We believe this to be due to the interaction between this

PRIME+PROBE implementation and our hardware’s L3 cache replacement policy. One plausible

explanation for why PRIME+ABORT is not similarly afflicted, is that the replacement policy

may prioritize keeping lines that are part of active transactions, evicting everything else first.

This would be a sensible policy for Intel to implement, as it would minimize the number of

unwanted/unnecessary aborts. In our setting, it benefits PRIME+ABORT by ensuring that a “prime”

step inside a transaction cleanly evicts all other lines.

To combat the oversampling behavior observed in PRIME+PROBE, we investigate a modi-

fied implementation of PRIME+PROBE which “collapses” streaks of observed events, meaning

that a streak of any length is simply counted as a single observed event. Results with this modified

1We make one slight modification suggested by the maintainer of Mastik: every probe step, we actually perform
multiple probes, “counting” only the first one. In our case we perform five probes at a time, still alternating between
forwards and backwards probes. All of the results which we present for the “unmodified” implementation include
this slight modification.
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implementation are shown in Figure 1.5. We see that this strategy is effective in combating

oversampling, and also reduces the number of false positives to around 250 per second or one

every 4000 µs. However, this implementation of PRIME+PROBE performs more poorly at high

frequencies, having a top speed around 300,000 events per second compared to the one million

per second of the other two attacks. This effect can be explained by the fact that as the victim

access frequency increases, streaks of observed events become more and more likely to “hide”

real events (multiple real events occur in the same streak)—in the limit, we expect to observe an

event during every probe, but this approach will observe only a single streak and indicate a single

event occurred.

Observing the two competing implementations of PRIME+PROBE on our hardware reveals

an interesting tradeoff. The original implementation has good high frequency performance, but

suffers from both oversampling and a high number of false positives. In contrast, the modified

implementation has poor high frequency performance, but does not suffer from oversampling

and exhibits fewer false positives. For the remainder of this paper we consider the modified

implementation of PRIME+PROBE only, as we expect that its improved accuracy and fewer false

positives will make it more desirable for most applications. Finally, we note that PRIME+ABORT

combines the desirable characteristics of both PRIME+PROBE implementations, as it exhibits

the fewest false positives, does not suffer from oversampling, and has good high frequency

performance, with a top speed around one million events per second.

1.3.4 Attacks on AES

In this section we evaluate the performance of PRIME+ABORT in an actual attack by

replicating the attack on OpenSSL’s T-table implementation of AES, as conducted by Gruss et al.

[75]. As those authors acknowledge, this implementation is no longer enabled by default due to its

susceptibility to these kinds of attacks. However, as with their work, we use it for the purpose of

comparing the speed and accuracy of competing attacks. Gruss et al. compared PRIME+PROBE,
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FLUSH+RELOAD, and FLUSH+FLUSH [75]; we have chosen to compare PRIME+PROBE and

PRIME+ABORT, as these attacks do not rely on shared memory. Following their methods, rather

than using previously published results directly, we rerun previous attacks alongside ours to

ensure fairness, including the same hardware setup.

Figures 1.6a and 1.6b provide the results of this experiment. In this chosen-plaintext attack,

we listen for accesses to the first cacheline of the first T-Table (Te0) while running encryptions.

We expect that when the first four bits of our plaintext match the first four bits of the key, the

algorithm will access this cacheline one extra time over the course of each encryption compared

to when the bits do not match. This will manifest as causing more events to be detected by

PRIME+ABORT or PRIME+PROBE respectively, allowing the attacker to predict the four key bits.

The attack can then be continued for each byte of plaintext (monitoring a different cacheline of

Te0 in each case) to reveal the top four bits of each key byte.

In our experiments, we used a key whose first four bits were arbitrarily chosen to be

1110, and for each method we performed one million encryptions with each possible 4-bit

plaintext prefix (a total of sixteen million encryptions for PRIME+ABORT and sixteen million

for PRIME+PROBE). As shown in Figures 1.6a and 1.6b, both methods correctly predict the

first four key bits to be 1110, although the signal is arguably cleaner and stronger when using

PRIME+ABORT.

1.4 Potential countermeasures

Many countermeasures against side-channel attacks have already been proposed; Ge et

al. [67] again provide an excellent survey. Examining various proposed defenses in the context

of PRIME+ABORT reveals that some are effective against a wide variety of attacks including

PRIME+ABORT, whereas others are impractical or ineffective against PRIME+ABORT. This leads

us to advocate for the prioritization and further development of certain approaches over others.
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(a) PRIME+ABORT attack against AES. Shown is,
for each condition, the percentage of additional
events that were observed compared to the condi-
tion yielding the fewest events.
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(b) PRIME+PROBE attack against AES. Shown is,
for each condition, the percentage of additional
events that were observed compared to the condi-
tion yielding the fewest events.

Figure 1.6: PRIME+ABORT and PRIME+PROBE attacks against AES

We first examine classes of side-channel countermeasures that are impractical or ineffec-

tive against PRIME+ABORT and then move toward countermeasures which are more effective

and practical.

Timer-based countermeasures

A broad class of countermeasures ineffective against PRIME+ABORT are approaches that

seek to limit the availability of precise timers, either by injecting noise into timers to make them

less precise, or by restricting access to timers in general. There are a wide variety of proposals in

this vein, including [92], [124], [144], [212], and various approaches which Ge et al. classify as

“Virtual Time” or “Black-Box Mitigation”. PRIME+ABORT should be completely immune to all

timing-related countermeasures.

Partitioning time

Another class of countermeasures that seems impractical against PRIME+ABORT is the

class Ge et al. refer to as Partitioning Time. These countermeasures propose some form of

“time-sliced exclusive access” to shared hardware resources. This would technically be effective
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against PRIME+ABORT, because the attack is entirely dependent on running simultaneously with

its victim process; any context switch causes a transactional abort, so the PRIME+ABORT process

must be active in order to glean any information. However, since PRIME+ABORT targets the LLC

and can monitor across cores, implementing this countermeasure against PRIME+ABORT would

require providing each user process time-sliced exclusive access to the LLC. This would mean

that processes from different users could never run simultaneously, even on different cores, which

seems impractical.

Disabling TSX

A countermeasure which would ostensibly target PRIME+ABORT’s workings in particular

would be to disable TSX entirely, similarly to how hyperthreading has been disabled entirely in

cloud environments such as Microsoft Azure [143]. While this is technically feasible—in fact,

due to a hardware bug, Intel already disabled TSX in many Haswell CPUs through a microcode

update [94]—TSX’s growing prevalence (Table 1.2), as well as its adoption by applications such

as glibc (pthreads) and the JVM [110], indicates its importance and usefulness to the community.

System administrators are probably unlikely to take such a drastic step.

Auditing

More practical but still not ideal is the class of countermeasures Ge et al. refer to as

Auditing, which is based on behavioral analysis of running processes. Hardware performance

counters in the target systems can be used to monitor LLC cache misses or miss rates, and thus

detect when a PRIME+PROBE- or FLUSH+RELOAD-style attack is being conducted [40, 75, 241]

(as any attack from those families will introduce a large number of cache misses—at least in the

victim process). As a PRIME+PROBE-style attack, PRIME+ABORT would be just as vulnerable

to these countermeasures as other cache attacks are. However, any behavioral auditing scheme

is necessarily imperfect and subject to misclassification errors in both directions. Furthermore,

any auditing proposal targeting PRIME+ABORT which specifically monitors TSX-related events,

such as transactions opened or transactions aborted, seems less likely to be effective, as many
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benign programs which utilize TSX generate a large number of both transactions and aborts, just

as PRIME+ABORT does. This makes it difficult to distinguish PRIME+ABORT from benign TSX

programs based on these statistics.

Constant-time programming

The class of countermeasures referred to as constant-time programming includes a va-

riety of approaches, some of which are likely to be effective against PRIME+ABORT. These

countermeasures are generally software techniques to ensure important invariants are preserved

in program execution regardless of (secret) input data, with the aim of mitigating side channels

of various types. For our purposes, it is not enough to merely ensure that critical functions in a

program always execute in constant time regardless of secret data. This is insufficient to defend

against PRIME+ABORT, as PRIME+ABORT can track cache accesses without relying on any kind

of timing side-channel. Instead, following the description of constant-time programming in the

Introduction (Section 2), we must ensure that no data access or control-flow decision made by the

program ever depends on any secret data. This approach is effective against PRIME+ABORT, as

monitoring cache accesses (either for instructions or data) would not reveal anything about the

secret data being processed by the program.

Randomizing hardware operations

Another interesting class of defenses proposes to insert noise into hardware operations

so that side-channel measurements are more difficult. Although PRIME+ABORT is immune to

such efforts related to timers, other proposals aim to inject noise into other side-channel vectors,

such as cache accesses. For instance, RPcache [220] proposes to randomize the mapping between

memory address and cache set, which would render PRIME+ABORT and other cache attacks much

more difficult. Other proposals aim to, for instance, randomize the cache replacement policy.

Important limitations of this kind of noise injection (noted by Ge et al.) include that it generally

can only make side-channel attacks more difficult or less efficient (not completely impossible),

and that higher levels of mitigation generally come with higher performance costs. However,
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these kinds of schemes seem to be promising, providing relatively lightweight countermeasures

against a quite general class of side-channel attacks.

Cache set partitioning

Finally, a very promising class of countermeasures proposes to partition cache sets

between processes, or disallow a single process to use all of the ways in any given LLC cache set.

This would be a powerful defense against PRIME+ABORT or any other PRIME+PROBE variant.

Some progress has been made towards implementing these defenses, such as CATalyst [135],

which utilizes Intel’s “Cache Allocation Technology” [95]; or “cache coloring” schemes such as

STEALTHMEM [117] or that proposed by [69]. One undesirable side effect of this approach is

that it would reduce the maximum size of TSX transactions, hindering legitimate users of the

hardware transactional memory functionality. However, the technique is still promising as an

effective defense against a wide variety of cache attacks. For more examples and details of this

and other classes of side-channel countermeasures, we again refer the reader to Ge et al. [67].

Our work with PRIME+ABORT leads us to recommend the further pursuit of those

classes of countermeasures which are effective against all kinds of cache attacks including

PRIME+ABORT, specifically constant-time programming, randomizing cache operations, or

providing mechanisms for partitioning cache sets between processes.

1.5 Disclosure

We disclosed this vulnerability to Intel on January 30, 2017, explaining the basic substance

of the vulnerability and offering more details. We also indicated our intent to submit our research

on the vulnerability to USENIX Security 2017 in order to ensure Intel was alerted before it

became public. We did not receive a response.
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1.6 Conclusion

PRIME+ABORT leverages Intel TSX primitives to yield a high-precision, cross-core

cache attack which does not rely on timers, negating several important classes of defenses.

We have shown that leveraging TSX improves the efficiency of algorithms for dynamically

generating eviction sets; that PRIME+ABORT has higher accuracy and speed on Intel’s Skylake

architecture than previous L3 PRIME+PROBE attacks while producing fewer false positives;

and that PRIME+ABORT can be successfully employed to recover secret keys from a T-table

implementation of AES. Additionally, we presented new evidence useful for all cache attacks

regarding Intel’s Skylake architecture: that it may differ from previous architectures in number of

cache slices, and that it may use different cache replacement policies for lines involved in TSX

transactions.

Acknowledgments

We thank our anonymous reviewers for their helpful advice and comments. We also

especially thank Yuval Yarom for his assistance in improving the quality of this work.

This material is based in part upon work supported by the National Science Foundation.

Any opinions, findings, and conclusions or recommendations expressed in this material are those

of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Chapter 1, in part, is a reprint of the material as it appears in the USENIX Security

Symposium 2017. Disselkoen, Craig; Kohlbrenner, David; Porter, Leo; Tullsen, Dean. USENIX,

2017. The dissertation author was the primary investigator and author of this material.

42



Chapter 2

Finding and Eliminating Timing

Side-Channels in Crypto Code with

Pitchfork

Constant-time programming is the de-facto approach to writing critical code—in particular

cryptographic code—that is robust against timing side-channel attacks, including attacks such as

PRIME+ABORT (Chapter 1). Unfortunately, it is notoriously hard to write constant-time code:

Not only do experts fail to adequately write truly constant-time code [20, 26, 152], but even

the process of fixing these mistakes can lead to further vulnerabilities [4, 199]. Almost yearly,

attackers break cryptosystems using these attacks. For example, recently, timing side-channels

were found in several libraries implementing elliptic curve cryptography, as well as in code

running on smart cards and TPM chips [109, 155].

The only way we can hope to eliminate these kinds of vulnerabilities in software is

with rigorous verification. Formal verification allows us to mathematically prove that code is

constant-time (and give a counterexample when it’s not). To this end, we present a verification
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tool, Pitchfork, which ensures functions are constant-time with respect to secret values such as

encryption keys or message plaintexts.

We designed Pitchfork to easily analyze both cryptographic primitives and protocol-level

cryptographic code. Protocol-level code has been left underanalyzed by much of the previous work

on constant-time verification, which has instead focused on cryptographic primitives. However,

flaws in the implementation of protocol-level code are responsible for high-profile vulnerabilities

such as Lucky 13 [4]. Indeed, as we describe later, Pitchfork has found several constant-time

violations in protocol-level code from real-world codebases.

Pitchfork uses underconstrained symbolic execution augmented with dynamic taint track-

ing to verify that code is constant-time. In particular, it uses a shadow memory to track secrets

even as they are stored to and loaded from memory. Pitchfork also allows the user to specify

function hooks which are executed in lieu of a call to a particular function; this allows Pitchfork

to focus on protocol-level code while ignoring implementation details of cryptographic primitives.

With these techniques, Pitchfork was able to verify protocol-level code in both libsignal [198]

and Mozilla’s NSS cryptographic library [157]. Our verification effort, however, also revealed

several constant-time vulnerabilities in NSS, including a critical vulnerability which was assigned

CVE-2019-11745.

2.1 Motivation

In this section, we give a brief introduction to constant-time programming and show how

Pitchfork verifies constant-time properties.

2.1.1 Constant-time programming

Timing side-channel attacks have repeatedly been used to leak sensitive data, particularly

in cryptographic code [4, 121, 199]. Timing vulnerabilities in cryptographic code arise when
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secret data influences either control flow or the addresses of memory accesses. For example,

the function check_password below is vulnerable to timing attacks, as secret data—namely, the

correct password—influences a branch condition.

int check_password(char* password, char* guess) {

for (int i = 0; i < 32; i++) {

if (password[i] != guess[i]) {

return -1; // fail

}

}

return 0; // success

}

Specifically, this function’s execution time depends on how many of the initial characters of

the guess were correct. If an attacker is allowed to make repeated guesses, they can efficiently

discover the secret password by successively brute-forcing each character, moving to the next

character when the function’s execution time increases.

Writing code that is free from timing vulnerabilities is difficult. In practice, experts use a

collection of constant-time recipes, which can be distilled down to three rules:

1. Secret values must not influence the program’s control flow—otherwise, an attacker could

infer secret values from the program’s execution time.1

2. Secret values must not influence the addresses of memory accesses—otherwise, an attacker

could infer secret values using cache side-channel attacks.

3. Secret values must not influence the inputs to any variable-time machine operation (such as

integer division on many processors).

1In addition, an attacker may be able to infer secret values from a cache side-channel attack, if the control flow
leads to different memory access patterns, even for public data.
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To fix the above function, we need to remove the control flow dependency on the secret password

data:

int check_password(char* password, char* guess) {

int rv = 0;

for (int i = 0; i < 32; i++) {

rv |= (password[i] ^ guess[i]);

}

return rv;

}

Here, we keep track of the final return value rv, updating it using bitwise operations so that its

final value is nonzero if any character mismatched. Crucially, all 32 characters are compared

regardless of whether the initial characters were guessed correctly.

Timing vulnerabilities in cryptographic code can be very difficult to find, often going

unnoticed for years even in major cryptographic libraries. Furthermore, attempts to fix these

vulnerabilities are often incomplete, or even introduce new timing vulnerabilities in the pro-

cess. As an example, the recent fix for a timing side-channel vulnerability in Mozilla’s NSS

cryptographic library [157] failed to fully eliminate all dependency of the control flow on secret

data. Using Pitchfork, we analyzed the “fixed” code and found the remaining vulnerability. That

vulnerability was fixed in a subsequent patch, and the resulting code was verified with Pitchfork

before it was committed. This example demonstrates the need for a tool which can rigorously

verify cryptographic code to be constant-time.

2.1.2 Constant-time verification

Unfortunately, most safety-critical constant-time code has not been formally verified to

be constant-time. Instead, it simply undergoes manual review—a process which has repeatedly

missed timing vulnerabilities in the past [4, 199]. Some work has been done on programming
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languages with formally verifiable constant-time properties [37, 223, 243], but these tools cannot

easily be applied to existing C/C++ code. Furthermore, previous constant-time verification efforts

focus on verifying cryptographic primitives [6, 49]; however, modern cryptographic primitives

such as Salsa20, Poly1305, and Ed25519 are designed to be constant-time by construction.

In contrast, flaws in the implementation of protocol-level code have resulted in high-profile

vulnerabilities such as Lucky 13 [4]. Finally, previous tools for constant-time verification [6]

don’t provide meaningful feedback to aid the development process; they simply report whether a

given program is constant-time or not.

Our experience using these tools identified the need for a tool which can verify not only

cryptographic primitives, but more complex cryptographic protocol code. We also need this tool

to provide detailed feedback to the developer about vulnerabilities, such as the vulnerability’s

location in the source code and the conditions under which it occurs.

2.2 Constant-time verification with Pitchfork

We designed Pitchfork to fulfill these needs: to verify both cryptographic primitives

and protocol-level code, and to provide detailed feedback to developers about vulnerabilities.

Pitchfork uses underconstrained symbolic execution augmented with dynamic taint tracking to

directly verify the three simple properties given in Section 2.1.1. In this section, we describe how

Pitchfork analyzes cryptographic code to verify these properties.

2.2.1 Taint propagation

Consider the mbed-crypto [13] AES decryption function in Figure 2.1. Pitchfork is

designed to find code locations where secrets could leak via timing channels. Hence, to start,

the developer must indicate an initial set of variables, function arguments, or struct fields which

contain secret data. Here, we want to ensure that the AES keys are not leaked. Accordingly, we

47



1 int mbedtls_internal_aes_decrypt(
2 mbedtls_aes_context *ctx,
3 const unsigned char input[16],
4 unsigned char output[16]
5 ) {
6 // ...
7 RK = ctx->rk; // secret AES round keys
8

9 X0 = ( (uint32_t) input[0] ) \
10 | ( (uint32_t) input[1] << 8 ) \
11 | ( (uint32_t) input[2] << 16 ) \
12 | ( (uint32_t) input[3] << 24 ); \
13 X0 ^= *RK++;
14 // {repeat to define X1, X2, X3,
15 // using input[4] through input[15]}
16

17 for ( i = ( ctx->nr >> 1 ) - 1; i > 0; i-- ) {
18 Y0 = *RK++ ^ RT0[ ( X0 ) & 0xFF ] ^ \
19 RT1[ ( X3 >> 8 ) & 0xFF ] ^ \
20 RT2[ ( X2 >> 16 ) & 0xFF ] ^ \
21 RT3[ ( X1 >> 24 ) & 0xFF ];
22 // loop body continues ...
23 }
24

25 // function continues ...
26 }

Figure 2.1: Excerpt from the function mbedtls_internal_aes_decrypt(), with macros
expanded and inlined, and some formatting adjusted to fit the page.
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need to mark the AES keys secret, and other inputs (including the ciphertext) as public. To do

this, we note that these keys are stored in the rk field of the struct mbedtls_aes_context:

typedef struct mbedtls_aes_context {

int nr; /* The number of rounds. */

uint32_t *rk; /* AES round keys. */

// {more fields ...}

} mbedtls_aes_context;

In this struct, we mark the nr field as public, and the rk field—which holds the AES keys—as a

(public) pointer to an array of secret data. We do this by creating a Rust object describing the

struct:

_struct("mbedtls_aes_context", vec![

default(), // nr

pub_pointer_to(array_of(sec_i32(), 64)), // rk

// ... more fields ...

])

and then passing this object to Pitchfork using its API.

Pitchfork then propagates the tainted-secret values as it symbolically executes the function,

marking the result of each operation secret if any of its inputs were secret. Furthermore, to track

secret values even as they are stored to and loaded from memory, Pitchfork uses a shadow

memory: While the primary memory stores symbolic values (as in standard symbolic execution),

the shadow memory stores for each address a flag indicating whether that address’s current

contents are tainted or not. Thus on line 13 when the pointer *RK is dereferenced, Pitchfork looks

up the corresponding address in the shadow memory and finds that the value currently stored

there is secret—it stems from the rk struct field which was previously marked secret. Therefore,

Pitchfork also marks the resulting value X0 as secret.
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1 if (context->doPad) {
2 if (context->padDataLength != 0) {
3 rv = (*context->update)(context->cipherInfo, pLastPart, &outlen, maxout,
4 context->padBuf, context->blockSize);
5 if (rv != SECSuccess) {
6 // ...
7 } else {
8 unsigned int padSize = (unsigned int) pLastPart[context->blockSize - 1];
9 if ((padSize > context->blockSize) || (padSize == 0)) {

10 crv = CKR_ENCRYPTED_DATA_INVALID;
11 } else {
12 // ...
13 }
14 }
15 }
16 }

Figure 2.2: Excerpt from the function NSC_DecryptFinal() in the NSS cryptographic library,
version 3.46. Some comments not relevant to the current discussion have been omitted, and
some formatting has been adjusted to fit the page.

Finally, Pitchfork reports a constant-time violation when secret-tainted data is used in a

branch condition or memory address. In this example, Pitchfork reports a violation on line 18, as

the array index (the expression X0 & 0xFF) uses X0, which has been marked secret.

2.2.2 Analyzing protocol-level code

In this section, we show how Pitchfork finds a real constant-time violation in the protocol-

level function NSC_DecryptFinal (Figure 2.2) from Mozilla’s Network Security Services (NSS)

cryptographic library [157]. NSS is used by many applications, most notably Firefox.

When analyzing protocol-level code, we don’t want to get bogged down analyzing

complicated but uninteresting functions. Thus, Pitchfork allows the user to specify function hooks

which are executed in lieu of a call to a particular function. For example, on line 3, the call to the

function pointer context->update invokes a block cipher decryption primitive. Since we wish to

analyze the protocol and not the primitives, we allow the user to choose to supply a function hook

which is executed instead of the decryption primitive itself. The function hook writes data marked
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secret into the output buffer pLastPart, and writes an appropriately constrained length value to

the output-length parameter &outlen. Then, Pitchfork can analyze the critical protocol-level code

abstract from the implementation details of the block cipher primitive, which can be verified

separately.

After context->update writes (secret) decrypted data into the buffer pLastPart, the

following code strips padding from the block cipher output. On line 8, the code determines the

size of this padding by reading the last byte of the decrypted data. Since the buffer contents were

marked secret, Pitchfork also marks the resulting value padSize as secret. Then, on line 9, the

code uses padSize as part of a branch condition. This is dangerous, as the conditional branch

may leak information about the padding through a timing side-channel: Specifically, it could lead

to a padding-oracle attack, allowing an attacker to recover the plaintext. Pitchfork identifies this

leak and correctly reports a constant-time violation.

We use function hooks for several purposes. In the example above, we used a function

hook to ignore the implementation details of a block cipher primitive, which could be analyzed

separately. Similarly, function hooks allow Pitchfork to avoid analyzing the implementation of

random number generation functions, concurrency primitives, or logging frameworks, instead

treating these functions as black boxes. This allows Pitchfork’s analysis to focus on the code

which is most likely to contain vulnerabilities.

2.3 Implementation of Pitchfork

Haybale

At the core of Pitchfork is Haybale, a new symbolic execution engine which we imple-

mented for this work. Haybale implements underconstrained symbolic execution: it can analyze

single functions rather than entire programs, as in UC-KLEE [182] or Sys [25]. For instance,

Haybale can analyze each function in a library individually, using symbolic reasoning to consider

51



all possible values of the function arguments, rather than having to analyze an entire executable

which contains calls to the library. Haybale, like other existing symbolic execution engines,

explores all paths through a function (sequences of control flow decisions). Moreover, Haybale

allows the user to perform various analyses on these paths—e.g., find values of the function

inputs which exercise that path, ask whether the path could result in a particular return value, or

determine whether a particular pointer value encountered along the path could ever be NULL.

Incremental solving

Haybale leverages the incremental solving mode of modern SMT solvers to perform

efficient backtracking while exploring related paths. With incremental solving, SMT solvers

can partially revert their state, removing recent constraints but retaining important solving work

already completed. When Haybale completes its analysis of a path, it uses incremental solving to

revert to the program state where the completed path diverges from the next path to analyze. This

allows the SMT solver to reuse its analysis of the entire common prefix of the two paths.

Symbolic memory

The symbolic representation of memory contents is considered a crucial design consid-

eration in symbolic execution engines [25, 29, 38, 60]. For Haybale, we chose a simple flat

memory model inspired by Sys [25], in which the memory is represented by a single symbolic

array which maps from indices to 8-bit values. Our experience, surprisingly, showed us that

this simple model outperformed a more complex model based on 64-bit memory “cells”, which

was designed to optimize for the common case of 64-bit or 32-bit memory operations. We

hypothesize that modern SMT solvers are optimized to handle array operations well—Haybale

uses Boolector [164], an SMT solver specializing in bitvector theory which has done well at

recent SMT competitions—and a flat memory model is the simplest way to express Haybale’s

intent to the SMT solver.

Pitchfork
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Pitchfork extends Haybale with dynamic taint tracking in order to determine which values

in registers and/or memory are influenced by secrets and which are not. Pitchfork expects the

user to annotate some function arguments or struct fields as secret—e.g., secret keys or message

plaintext—and then it propagates these annotations through the program as it executes, marking

the result of an operation secret if any of its inputs were secret. Whenever it encounters conditional

branches or memory accesses, Pitchfork reports a constant-time violation if the branch condition

or memory address is marked secret.

LLVM

Pitchfork and Haybale operate at the level of LLVM IR. This allows them to analyze

code written in C/C++, Rust, Swift, Go, or any other language which can compile to LLVM IR.

Compared to some other symbolic execution tools which analyze executable binaries [38, 197],

operating on LLVM IR allows Pitchfork to remain closer to the source level, allowing it to, e.g.,

report the source line number and filename for any constant-time violations it finds. It also allows

Pitchfork to leverage the type-level information in the LLVM bitcode; Pitchfork uses this to

greatly accelerate and simplify the process of providing public/secret annotations for function

arguments and even complicated data structures.

Rust

Both Pitchfork and Haybale are implemented in the Rust language. This is a departure

from previous notable symbolic execution engines, which have been implemented in C++ [29],

Python [197], or Haskell [25]. Compared to Python, using Rust avoids the performance overheads

of garbage collection or a global interpreter. It also provides strong static typing, which avoids

the problem of having a long-running analysis halted by a simple type error in results-reporting

code. In contrast, compared with C++, we found Rust’s strong memory safety guarantees helped

us avoid many tricky bugs such as segmentation faults or use-after-frees, although we did still

experience a few of these bugs at the interface between Haybale and Boolector [164], which is

written in C. (Our experience in this respect aligns with that reported by the Sys developers in
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1 if (context->doPad && context->multi) {
2 // ...
3 crv = NSC_DecryptUpdate(hSession, pEncryptedData, ulEncryptedDataLen, pData,

&updateLen);↪→

4 if (crv == CKR_OK) {
5 maxoutlen -= updateLen;
6 pData += updateLen;
7 }
8 finalLen = maxoutlen;
9 crv2 = NSC_DecryptFinal(hSession, pData, &finalLen);

10 if (crv == CKR_OK && crv2 == CKR_OK) {
11 *pulDataLen = updateLen + finalLen;
12 }
13 return crv == CKR_OK ? crv2 : crv;
14 }

Figure 2.3: Excerpt from the function NSC_Decrypt() in the NSS cryptographic library, version
3.46.

[25].) Although Rust demands some extra work to satisfy its strict rules (e.g., its borrow checker),

this paid off when dealing with tricky memory safety bugs, and gave us confidence to write and

refactor our code freely.

2.4 Evaluation

We used Pitchfork to verify several functions from Mozilla’s NSS cryptographic li-

brary [157]—widely used by many applications including Firefox—and from the libsignal

cryptographic library [198]. Table 2.1 shows the results of Pitchfork’s analysis on libsignal

commit 71954c5 and on NSS commit ee786a6d6; most of these functions were verified by Pitch-

fork to be constant-time, up to its assumptions.2 For some functions, Pitchfork’s analysis timed

out; in these cases, more aggressive assumptions—e.g., more constraints on input variables, or

more function hooks to assume correct the implementations of more helper functions—may allow

Pitchfork to verify the functions more quickly.

2Like UC-KLEE [182], Pitchfork makes a number of assumptions which simplify the solver’s burden: e.g., it
bounds the number of iterations allowed for loops, bounds the sizes of some operations like memcpy, and chooses an
arbitrary layout of objects in memory rather than considering all possibilities.
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Table 2.1: Functions verified by Pitchfork, up to its assumptions. NSS functions are taken
from NSS commit ee786a6d6; a † indicates that Pitchfork found a constant-time violation in
that function in NSS version 3.46, which was fixed before commit ee786a6d6. libsignal
functions are taken from commit 71954c5. Verified* means that Pitchfork verified the function,
but due to its assumptions and/or constraints on the function inputs, its analysis did not reach
100% code coverage. Timed out means that Pitchfork’s analysis did not complete due to timing
out (or reaching other resource limits), but Pitchfork did not find any vulnerabilities in the
allotted time.

Library Function Result

NSS

sftk_SSLMACVerify Verified †
stfk_SSLMACSign Verified
NSC_EncryptUpdate Timed out †
NSC_EncryptFinal Timed out
NSC_Encrypt Timed out
NSC_DecryptUpdate Verified*
NSC_DecryptFinal Verified †
NSC_Decrypt Timed out †
ssl3_AESGCM Verified
ssl3_ChaCha20Poly1305 Verified
ssl3_SignHashesWithPrivKey Timed out
ssl3_MACEncryptRecord Timed out
ssl3_ConsumeHandshake Timed out
ssl_ConstructServerHello Timed out

libsignal

sender_chain_key_create Verified*
sender_chain_key_get_iteration Verified
sender_chain_key_create_message_key Verified*
sender_chain_key_create_next Verified*
sender_chain_key_get_seed Verified
ratchet_chain_key_create Verified*
ratchet_chain_key_get_key Verified
ratchet_chain_key_get_index Verified
ratchet_chain_key_get_message_keys Verified*
ratchet_chain_key_create_next Verified*
ratchet_root_key_create Verified*
ratchet_root_key_create_chain Verified*
ratchet_root_key_get_key Verified
ratchet_root_key_compare Verified
group_cipher_encrypt Verified*
group_cipher_decrypt Verified*
session_cipher_create Verified
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Pitchfork found several constant-time violations in NSS version 3.46, in the functions

marked with † in Table 2.1. (As shown in Table 2.1, Pitchfork’s analysis of NSS commit

ee786a6d6 confirms that these violations have been fixed.) We discussed one of those vulnerabili-

ties in Section 2.2.2. In the remainder of this section, we discuss two other vulnerabilities in NSS

3.46 which were found by Pitchfork, including CVE-2019-11745.

NSC_Decrypt

Figure 2.3 shows a constant-time violation in NSS version 3.46, which was found by Pitch-

fork. In this code, NSC_Decrypt() first calls NSC_DecryptUpdate() and then NSC_DecryptFinal()

before returning. We can see the efforts taken by the programmers to have this protocol-level

code remain constant-time; for instance, even if the call to NSC_DecryptUpdate() returns an error

value, NSC_Decrypt() still calls NSC_DecryptFinal(), discarding the result, so as not to expose

the return value of NSC_DecryptUpdate via a timing channel. However, Pitchfork’s analysis of

the called function NSC_DecryptFinal() shows that its return value, stored in crv2 on line 9,

could be influenced by secrets—in particular, whether the padding was valid in the decrypted

plaintext. This dependence of the return value on the padding validity persists even after the

vulnerability in NSC_DecryptFinal() shown in Figure 2.2 (Section 2.2.2) is fixed: although the

fixed NSC_DecryptFinal() no longer leaks that value through the timing channel, the return value

is still dependent on the padding validity, due to the program logic. Unfortunately, the code

shown here immediately leaks the NSC_DecryptFinal() return value through a timing channel

again, as crv2 is used to influence a branch condition on line 10. Pitchfork correctly flags this as

a violation; the correct fix is to use constant-time techniques to update *pulDataLen without a

timing dependency on crv2.

Unlike in the previous examples, here we see how Pitchfork found a violation through

its ability to enter a call rather than use a function hook to ignore the implementation. It was

only because of Pitchfork’s analysis of the called function NSC_DecryptFinal() that Pitchfork

found the value crv2 to be tainted, thus discovering the constant-time violation. Both function
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1 if (context->doPad) {
2 /* deal with previous buffered data */
3 if (context->padDataLength != 0) {
4 /* fill in the padded to a full block size */
5 for (i = context->padDataLength; (ulPartLen != 0) && i < context->blockSize; i++)

{↪→

6 context->padBuf[i] = *pPart++;
7 ulPartLen--;
8 context->padDataLength++;
9 }

10 /* not enough data to encrypt yet? then return */
11 if (context->padDataLength != context->blockSize) {
12 // ...
13 }
14 /* encrypt the current padded data */
15 rv = (*context->update)(context->cipherInfo, pEncryptedPart, &padoutlen,
16 context->blockSize, context->padBuf, context->blockSize);
17 if (rv != SECSuccess) {
18 // ...
19 }
20 pEncryptedPart += padoutlen;
21 maxout -= padoutlen;
22 }
23 // ...
24 }
25 rv = (*context->update)(context->cipherInfo, pEncryptedPart, &outlen, maxout,
26 pPart, ulPartLen);
27 // ...

Figure 2.4: Excerpt from the function NSC_EncryptUpdate() in the NSS cryptographic library,
version 3.46. Some formatting has been adjusted to fit the page.

hooks and full interprocedural analysis are important tools; Pitchfork supports both, giving the

user maximum freedom to make the tradeoffs appropriate for each analysis.

CVE-2019-11745

Figure 2.4 shows an excerpt from the function NSC_EncryptUpdate() in NSS 3.46, con-

taining the critical-severity bug CVE-2019-11745 which was found by Pitchfork.

Specifically, in the call to context->update on line 15, the fourth parameter indicates the

maximum length which can be written to the output buffer pEncryptedPart. The code sets this

parameter to context->blockSize, even though only maxout bytes remain in the output buffer,

and nowhere does NSC_EncryptUpdate() confirm that maxout >= context->blockSize. This
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may result in a small out-of-bounds write; the call to context->update on line 15 can write up to

about context->blockSize bytes off of the end of the output buffer.

However, that’s not the most serious consequence of the error here, nor was it the

problem discovered by Pitchfork. After writing to the output buffer, context->update writes

to the variable padoutlen indicating the number of bytes written. Supposing context->update

does write the allowed maximum of context->blockSize bytes to the buffer, we will have

padoutlen == context->blockSize. Then, on line 21, the code updates maxout, which formerly

contained the true number of bytes remaining in the output buffer, by subtracting padoutlen,

which is greater than maxout in this case. Unfortunately, since maxout is declared with an

unsigned type, the subtraction will wrap around and give a very large positive value for maxout.

Subsequently, on line 25, the next call to context->update may write up to maxout many bytes—

i.e., effectively arbitrarily many bytes—to the output buffer, far out of bounds of the buffer’s

allocation.

This arbitrarily large out-of-bounds write easily results in a constant-time violation for

Pitchfork to detect. In particular, Pitchfork reported the possibility for the out-of-bounds write to

overwrite a later pointer with a secret value, so that dereferencing that pointer is a constant-time

violation.

2.5 Future and related work

There has been a lot of work related to constant-time programming, including both

constant-time verification and constant-time language design.

Constant-time verification

Both ct-verif [6] and Binsec/Rel [49] verify constant-time properties for existing code.

ct-verif, like Pitchfork, focuses on existing code in languages such as C/C++; while Bin-
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sec/Rel verifies compiled binaries instead. Both of these efforts focus on verifying cryptographic

primitives, whereas Pitchfork is designed to verify protocol-level code.

Constant-time language design

Other work on constant-time verification proposes rewriting existing cryptographic code

in new languages designed for formal verification. For example, FaCT [37] is a C-like language

with formal constant-time guarantees; Jasmin [5] more closely resembles an assembly language;

and HACL* [243] provides a formally-verified cryptographic library written in the F* language.

Similarly, CT-Wasm [223] extends the WebAssembly portable bytecode language with support

for annotating secret data and providing constant-time semantics. In contrast, Raccoon [183]

transforms existing LLVM IR to make it constant-time.

Spectre

Even if we eliminate all side-channels due to constant-time violations, we still have to

worry about Spectre attacks [123] and their variants (e.g., [91, 119, 125]). Spectre attacks have

received significant attention recently due to the extensive powers they provide to attackers.

However, Spectre vulnerabilities are notoriously difficult to exploit. Indeed, for this reason,

traditional constant-time violations are even more dangerous than Spectre vulnerabilities, as they

are far easier for attackers to exploit. In this chapter, following most recent work on constant-time

programming (e.g., [6, 37, 223]), we consider only sequential execution and leave speculative

execution for future work. In the next chapter, we will extend Pitchfork to defend against Spectre

vulnerabilities as well — building a program analysis tool which captures both traditional timing

side-channel vulnerabilities and Spectre vulnerabilities.

2.6 Conclusion

Pitchfork uses underconstrained symbolic execution to identify violations of the constant-

time programming principles in real cryptographic libraries, including a critical vulnerability
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in NSS which was assigned CVE-2019-11745. Pitchfork can analyze both cryptographic prim-

itives and protocol-level code, making it a valuable tool for defending today’s cryptographic

implementations from side-channel vulnerabilities.

Availability

Both Pitchfork (our constant-time verifier) and Haybale (the general symbolic execution

engine on which Pitchfork is built) are available open-source. Pitchfork can be found on GitHub

at https://github.com/PLSysSec/haybale-pitchfork, or on Rust’s package manager at https://crates.

io/crates/haybale-pitchfork. Likewise, Haybale can be found on GitHub at https://github.com/

PLSysSec/haybale or on Rust’s package manager at https://crates.io/crates/haybale.
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Chapter 3

Finding Spectre Vulnerabilities in Crypto

Code with Pitchfork

Protecting secrets in software is hard. Security and cryptography engineers must write

programs that protect secrets, both at the source level and when they execute on real hardware.

Unfortunately, as we have seen already in the previous chapters, hardware too easily divulges

information about a program’s execution via cache side-channels — e.g., an attacker can learn

secrets by simply observing (via timing or methods such as PRIME+ABORT) the effects of a

program on the CPU cache [67].

The most robust way to deal with cache side-channels is via constant-time programming —

the paradigm used to implement almost all modern cryptography [14, 43, 52, 176, 177]. Constant-

time programs can neither branch on secrets nor access memory based on secret data.1 These

restrictions ensure that programs do not leak secrets via timing side-channels — at least, given

some simplifying assumptions about the microarchitectural features of the hardware.

Unfortunately, these guarantees are moot for most modern hardware: Spectre [123], Melt-

down [133], ZombieLoad [189], RIDL [209], and Fallout [30] are all dramatic examples of attacks

1More generally, constant-time programs cannot use secret data as input to any variable-time operation — e.g.,
floating-point multiplication.
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that exploit microarchitectural features. These attacks reveal that code that is deemed constant-

time in the usual sense may, in fact, leak information on processors with microarchitectural

features. The decade-old constant-time recipes are no longer enough.2

In this chapter, we explore constant-time in the presence of microarchitectural features

that have been exploited in recent attacks: out-of-order and speculative execution. We focus on

constant-time for two key reasons. First, impact: constant-time programming is largely used

in real-world crypto libraries and high-assurance code, where developers already go to great

lengths to eliminate leaks via side-channels. Second, foundations: constant-time programming is

already rooted in foundations, with well-defined semantics [16, 37]. These semantics consider

very powerful attackers — e.g., attackers in [16] have control over the cache and the scheduler.

An advantage of considering powerful attackers is that the semantics can overlook many hard-

ware details — e.g., since the cache is adversarially controlled, there is no point in modeling it

precisely — making constant-time amenable to automated verification and enforcement.

Contributions

In this chapter, we first define speculative constant-time, an extension of constant-time

for machines with out-of-order and speculative execution. This definition allows us to discover

microarchitectural side channels in a principled way — all four classes of Spectre attacks as

classified by Canella et al. [32], for example, manifest as violations of speculative constant-time.

Then, we present an extension of Pitchfork which detects violations of our speculative

constant-time property. Although in Chapter 2 Pitchfork was built on Haybale, this speculative

extension of Pitchfork is built on top of the angr symbolic execution engine [197]. Like other

symbolic analysis tools, Pitchfork suffers from path explosion, which limits the depth of specula-

tion we can analyze. Nevertheless, we are able to use Pitchfork to detect leaks in the well-known

Kocher test cases [122] for Spectre v1, as well as our more extensive test suite which includes

Spectre v1.1 variants. Furthermore, subsequent work in [36] (but not part of this dissertation) uses
2OpenSSL found this situation so hopeless that they recently updated their security model to explicitly exclude

“physical system side channels” [168].
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Pitchfork to analyze, and find leaks in, real cryptographic code from the libsodium, OpenSSL,

and curve25519-donna libraries.

Open source

Pitchfork and our test suites are open source and available at https://pitchfork.

programming.systems.

3.1 Motivating example

In this section, we show why classical constant-time programming is insufficient when

attackers can exploit microarchitectural features. The example below is a variant of the well-

known Spectre v1 attack [123].

1 int A[4]; // non-secret data

2 int B[4]; // non-secret data

3 int Key[8]; // secret key

4 void vulnerable(int idx) {

5 if (idx < 4) {

6 int y = A[idx];

7 int z = B[y];

8 }

9 }

If the bounds check on line 5 passes, the program uses idx to index into a public array A, saves

the value into y, and uses y to index into another public array B. On the other hand, if the bounds

check fails, the program skips the array operations. In a sequential execution, this program neither

loads nor branches on secret values; it thus trivially satisfies the constant-time discipline.

However, modern processors do not execute sequentially. Instead, they continue fetching

instructions before prior instructions are complete. In particular, a processor may continue
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fetching instructions beyond a conditional branch, before evaluating the branch condition. In

that case, the processor guesses which branch will be taken — for example, the processor may

erroneously guess that the branch condition in line 5 evaluates to true, even though idx is 9. It

will therefore continue down the “true” branch speculatively. In hardware, such guesses are made

by a branch predictor, which may have been mistrained by an adversary.

In this chapter, we conservatively assume that the adversary has total control of the branch

predictor, and thus can cause the processor to mispredict any branch the adversary wishes. If

the attacker causes the processor to mispredict the bounds check on line 5 — for instance, to

predict true when idx is 9— then the processor will speculatively execute the array operations

anyway. At line 6, the processor will read A[9], an out-of-bounds value which in this case may

be equivalent to Key[0]— part of the secret key. Then, at line 7, the processor uses this transient

secret value to index into B. Accessing this address affects the CPU cache state, so an attacker

armed with a cache side-channel attack could subsequently determine which address in B was

accessed, and thus recover the secret value. Though this secret leakage cannot happen under

sequential execution (the code obeys constant-time programming), this example highlights how

constant-time programming is insufficient when attackers can exploit microarchitectural features.

3.2 Speculative constant-time

Clearly, we need a new notion of what it means for a program to be secure from side-

channel attacks. We propose an extension of constant-time security which we call speculative

constant-time.

Like classical constant-time, our notion of speculative constant-time does not directly

model caches, nor any of the microarchitectural predictors which could be exploited by an attacker.

Rather, our notion of speculative constant-time is based on externally visible effects, i.e., memory

accesses and control flow. We can thus reason about any possible cache implementation — instead
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of trying to define exactly which cache accesses may leak to the attacker under a specific cache

eviction policy, we conservatively assume that the attacker has perfect knowledge of the memory

addresses of all cache accesses. Likewise, following classical constant-time, we prohibit control

flow from depending on secret data; this makes it unnecessary for us to track various other side

channels. Indeed, while channels such as port contention or register renaming produce distinct

measurable effects [123], they only serve to leak the path taken through the code — and thus

modeling these observations separately would be redundant. Most importantly, our speculative

constant-time diverges from classical constant-time by allowing the attacker total control over

branch prediction. The attacker can supply arbitrary predictions for conditional branches, indirect

branches, return addresses, and other microarchitectural predictors.

This approach has two important consequences. First, it allows our semantics to remain

tractable and amenable to verification. For instance, we do not need to model the behavior of the

cache or any branch predictor. Second, our notion of speculative constant-time is robust, i.e., it

holds for all possible branch predictors and replacement policies — assuming that they do not

leak secrets directly, a condition that is achieved by all practical hardware implementations.

3.3 Detecting violations

We develop a tool Pitchfork which detects violations of this speculative constant-time

property (SCT). Attackers in this framework have broad powers over many different microar-

chitectural predictors and even out-of-order scheduling; to make the analysis more tractable,

Pitchfork does not detect SCT violations based on alias prediction, indirect jumps, or return stack

buffers. Nevertheless, Pitchfork still exposes attacks based on Spectre variants 1, 1.1, and 4.

Conceptually, Pitchfork first generates a set of schedules representing various worst-case

attackers. Each schedule represents one combination of predictions and scheduling decisions

which is legal for the attacker to make for the program. Pitchfork’s set of worst-case schedules
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is far smaller than the set of all possible schedules for the program, but is nonetheless sound: if

there is an SCT violation in any possible schedule, then there will be an SCT violation in one of

the worst-case schedules. Pitchfork then checks for secret leakage by symbolically executing the

program under each schedule.

3.3.1 Schedule generation

Given a program, Pitchfork generates a set of schedules representing various worst-case

attackers. Pitchfork’s schedule generation is parametrized by a speculation bound, which limits

the size of the reorder buffer, and thus the depth of speculation.

In general, Pitchfork constructs worst-case schedules to maximize speculation. These

schedules eagerly fetch instructions until the reorder buffer is full, i.e., the size of the reorder

buffer equals the speculation bound. Once the reorder buffer is full, the schedules only retire

instructions as necessary to fetch new ones.

When conditional branches are to be fetched, Pitchfork constructs schedules containing

both possible outcomes: one where the branch is guessed true and one where the branch is

guessed false. For the mispredicted outcome, Pitchfork’s schedules execute the branch as late as

possible (i.e., it is the oldest instruction in the reorder buffer and the reorder buffer is full), which

delays the rollback of mispredicted paths.

To account for load-store forwarding hazards and potential mispredictions, Pitchfork

constructs schedules containing all possible forwarding outcomes. For every load instruction l in

the program, Pitchfork finds all prior stores si within the speculation bound that would resolve to

the same address. Then, for each such store, Pitchfork constructs a schedule that would cause

that store to forward its data to l. Additionally, Pitchfork constructs a schedule where none of the

prior stores si have resolved addresses, forcing the load instruction to read from memory.

For all instructions other than conditional branches and memory operations, Pitchfork only

constructs schedules where these instructions are executed eagerly and in order. Reordering of
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these instructions is uninteresting: either the instructions naturally commute, or data dependencies

prevent the reordering (i.e., the reordered schedule is invalid for the program). This intuition

matches with the property that any out-of-order execution of a given program has the same final

result regardless of its schedule.

3.3.2 Implementation and evaluation

We implement Pitchfork on top of the angr binary-analysis tool [197]. Pitchfork uses

angr to symbolically execute a given program according to each of its worst-case schedules,

flagging any resulting secret leakage.

To sanity check Pitchfork, we create and analyze a set of Spectre v1 and v1.1 test cases,

and ensure we flag their SCT violations. Our test cases are based off the well-known Kocher

Spectre v1 examples [122]. Since many of the Kocher examples exhibit violations even during

sequential execution, we create a new set of Spectre v1 test cases which only exhibit violations

when executed speculatively. We also develop a similar set of test cases for Spectre v1.1 data

attacks.

Pitchfork necessarily inherits the limitations of angr’s symbolic execution. For instance,

angr concretizes addresses for memory operations instead of keeping them symbolic. Further-

more, exploring every speculative branch and potential store-forward within a given speculation

bound leads to an explosion in state space. In our tests, we were able to support speculation

bounds of up to 20 instructions. We were able to increase this bound to 250 instructions when

we disabled checking for store-forwarding hazards. Though these bounds do not capture the

speculation depth of some modern processors, Pitchfork still correctly finds SCT violations in all

our test cases. We consider the design and implementation of a more scalable tool future work.
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Author’s note

Although not part of this dissertation, the published version of this chapter ([36]) contains

much additional material on the theoretical foundations for SCT. It also describes how Pitchfork

was used to find SCT violations in real cryptographic libraries.
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Chapter 4

SoK: Practical Foundations for Software

Spectre Defenses

Spectre attacks have upended the foundations of computer security [123]. With Spectre,

attackers can steal secrets across security boundaries — both hardware boundaries provided by

the process abstraction [229], and software boundaries provided by memory safe languages

and software-based fault isolation (SFI) techniques [216]. In response, the security community

has been working on program analysis tools to both find Spectre vulnerabilities and to guide

mitigations (e.g., compiler passes) that can be used to secure programs in the presence of this

class of attacks. But Spectre attacks — and speculative execution in general — violate our typical

assumptions and abstractions and have proven particularly challenging to reason about and defend

against.

Many existing defense mechanisms against Spectre are either incomplete (and thus miss

possible attacks) or overly conservative (and thus slow). For example, the MSVC compiler’s

/Qspectre pass — one of the first compiler-based defenses against Spectre [171] — inserts

mitigations by finding Spectre gadgets (or patterns). Since these patterns are not based on

any rigorous analysis, the compiler misses similarly vulnerable code patterns [167]. As another
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example, Google Chrome adopted process isolation as its core defense mechanism against Spectre

attacks [184]. This is also unsound: Canella et al. [32], for example, show that Spectre attacks

can be performed across the process boundary. On the other side of the spectrum, inserting fences

at every load or control flow point is sound but prohibitively slow [162].

Language-based security can help us achieve — or at least understand the trade-offs

of giving up on — performance and provable security guarantees. Historically, the security

community has turned to language-based security to solidify intricate defense techniques — from

SFI enforcement on x86 [156], to information flow control enforcement [186], to eliminating side-

channel attacks with constant-time programming [16]. At the core of language-based security are

program semantics — rigorous models of program behavior which serve as the basis for formal

security policies or foundations. These policies help us carefully and explicitly spell out our

assumptions about the attacker’s strength and ensure that our tools are sound with respect to this

class of attackers — e.g., that Spectre vulnerability-detection or -mitigation tools find and mitigate

the vulnerabilities they claim to find and mitigate.

Formal foundations are key to performance too. Without formalizations, Spectre defenses

are usually either overly conservative (which leads to unnecessary and slow mitigations) or crude

(and thus vulnerable). For example, speculative load hardening [34] is safe — it safely eliminates

Spectre-PHT attacks — but is overly conservative and slow: It assumes that all array indexing

operations must be hardened. In practice, this is not the case [101, 211]. Crude techniques like

oo7 [218] are both inefficient and unsafe — they impose unnecessary restrictions yet also miss

vulnerable code patterns. Foundations allow us to craft defenses that are minimal (e.g., they target

the precise array indexes that need hardening [81, 211]) and provably secure.

Alas, not all foundations are equally practical. Since speculative execution breaks common

assumptions about program semantics — the cornerstone of language-based methods — existing

Spectre foundations explore different design choices, many of which have important ramifications

on defense tools and the software produced or analyzed by these tools (Table 4.1). For instance,
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one key choice is the leakage model of the semantics, which determines what the attacker is

allowed to observe. Another choice is the execution model, which simultaneously captures the

attacker’s strength and which Spectre variants the resulting analysis (or mitigation) tool can

reason about. These choices in turn determine which security policies can be verified or enforced

by these tools.

While formal design decisions fundamentally impact the soundness and precision of

Spectre analysis and mitigation tools, they have not been systematically explored by the security

community. For example, while there are many choices for a leakage model, the constant-

time [16] and sandbox isolation [81] models are the most pragmatic; leakage models that only

consider the data cache trade off security for no clear benefits (e.g., scalability or precision). As

another example, the most practical execution models borrow (again) from work on constant-time:

They are detailed enough to capture practical attacks, but abstract across different hardware —

and are thus useful for both software-based verification and mitigation techniques. Models

which capture microarchitectural details like cache structures make the analysis unnecessarily

complicated: They do not fundamentally capture additional attacks and give up on portability.

Contributions

In this chapter, we systematize the community’s knowledge on Spectre foundations and

identify the different design choices made by existing work and their tradeoffs. This complements

existing, excellent surveys [31, 32, 230] on the low-level details of Spectre attacks and defenses

which do not consider foundations or, for example, high-level security policies. Throughout,

we discuss the limitations of existing formal frameworks, the defense tools built on top of these

foundations, and future directions for research. In summary, we make the following contributions:

• Study existing foundations for Spectre analysis in the form of semantics, discuss the

different design choices which can be made in a semantics, and describe the tradeoffs of

each choice.
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• Compare many proposed Spectre defenses — both with and without formal foundations —

using a unifying framework, which allows us to understand differences in the security

guarantees they offer.

• Identify open research problems, both for foundations and for Spectre software defenses in

general.

• Provide recommendations both for developers and for the research community that could

result in tools with stronger security guarantees.

Scope

In this systematization, we focus on software-only defenses against Spectre attacks.

We focus on Spectre because most other transient attacks (e.g., Meltdown [133], LVI [207],

MDS [100], or Foreshadow [206]) can efficiently be addressed in the hardware, through microcode

updates or new hardware designs. (This is also the reason existing software-based tools against

transient execution attacks focus solely on Spectre, as we discuss in Section 4.3.4.) We focus

on defenses because prior work, notably Canella et al. [32], already give an excellent overview

of the types of Spectre vulnerabilities and the powerful capabilities they give attackers. And

we focus on software-only defenses — although proposals for hardware defenses are extremely

valuable, hardware design cycles (and hardware upgrade cycles) are very long. Moreover, software

foundations are useful for understanding hardware and hardware-software co-designs (e.g., they

directly affect execution and leakage models). Having secure software foundations allows us to

defend against today’s attacks on today’s hardware, and tomorrow’s as well.

4.1 Preliminaries

In this section, we first discuss Spectre attacks and how they violate security in two

particular application domains: high-assurance cryptography and isolation of untrusted code.
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Then, we provide an introduction to formal semantics for security and its relevance to secure

speculation in these application domains.

4.1.1 Spectre vulnerabilities

Spectre [8, 15, 91, 119, 123, 125, 140, 240] is a recently discovered family of vulnerabil-

ities stemming from speculative execution on modern processors. Spectre allows attackers to

learn sensitive information by causing the processor to mispredict the targets of control flow (e.g.,

conditional jumps or indirect calls) or data flow (e.g., aliasing or value forwarding). When the pro-

cessor realizes it has mispredicted, it rolls back execution, erasing the programmer-visible effects

of the speculation. However, microarchitectural state — such as the state of the data cache — is

still modified during speculative execution; these changes can be leaked during speculation and

can persist even after rollback. As a result, the attacker can recover sensitive information from

the microarchitectural state, even if the sensitive information was only speculatively accessed.

Figure 4.1 gives an example of a vulnerable function: An attacker can exploit branch

misprediction to leak arbitrary memory via the data cache. The attacker first primes the branch

to predict that the condition i < arrALen is true by causing the code to repeatedly run with

appropriate (small) values of i. Then, the attacker provides an out-of-bounds value for i. The

processor (mis)predicts that the condition is still true and speculatively loads out-of-bounds

(potentially secret) data into x; subsequently, it uses the value x as part of the address of a memory

read operation. This encodes the value of x into the data cache state — depending on the value of x,

different cache lines will be accessed and cached. Once the processor resolves the misprediction,

it rolls back execution, but the data cache state persists. The attacker can later interpret the data

cache state in order to infer the value of x.

4.1.2 Breaking cryptography with Spectre
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if (i < arrALen) { // mispredicted
int x = arrA[i]; // x is oob value
int y = arrB[x]; // leaked via address!
// ...

Figure 4.1: Code snippet which an attacker can exploit using Spectre. If an attacker can control
i and cause the processor to transiently enter the branch, the attacker can load an arbitrary value
from memory into x, which is then leaked via the following memory access.

High-assurance cryptography has long relied on constant-time programming [16] in order

to create software which is secure from timing side-channel attacks. Constant-time programming

ensures that program execution does not depend on secrets. It does this via three rules of

thumb [16, 19]: control flow (e.g., conditional branches) should not depend on secrets, memory

access patterns (e.g., offsets into arrays) should not be influenced by secrets, and secrets should

not be used as operands to variable-latency instructions (e.g., floating-point instructions or integer

division on many processors). These rules ensure that secrets remain safe from an attacker

powerful enough to perform cache attacks, exfiltrate data via branch predictor state, or snoop data

via port contention [22].

In the face of Spectre, constant-time programming is not sufficient. The snippet in

Figure 4.1 is indeed constant-time if arrA contains only public data (and i and arrALen are also

public). Yet, a Spectre attack can still abuse this code to leak secrets from anywhere in memory.

Cache-based leaks are not the only way for an attacker to learn cryptographic secrets: In

the following example, an attacker can again (speculatively) leak out-of-bounds data, but this

time the leak is via control flow.

if (i < arrALen) {

int x = arrA[i];

switch(x) { // leak via branching!

case 'A': /* ... */
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case 'B': /* ... */

// ...

This code uses x as part of a branch condition (in a switch statement). Just as before, the attacker

can speculatively read arbitrary memory into x. They can then leak the value of x in several

ways, including: (1) Based on the different execution times of the various cases; (2) through

the data cache, based on differing (benign) memory accesses performed in the various cases;

(3) through the instruction cache or micro-op cache [185], based on which instructions were

(speculatively) accessed; or (4) through port contention [22], branch predictor state [107], or

other microarchitectural resources that differ among the branches.

4.1.3 Breaking software isolation with Spectre

Spectre attacks also break important guarantees in the domain of software isolation. In

this domain, a host application executes untrusted code and wants to ensure that the untrusted code

cannot access any of the host’s data. Common examples of software isolation include JavaScript

or WebAssembly runtimes, or even the Linux kernel, through eBPF [63]. Spectre attacks can

break the memory safety and isolation mechanisms commonly used in these settings [111, 141,

162, 196].

We demonstrate with a small example:

int guest_func() {

get_host_val(1);

get_host_val(1);

// ... repeat ...

char c = get_host_val(99999);

// ... leak c

}
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char get_host_val(int idx) {

if (idx < 100) { // check if within bounds

return host_arr[idx];

} else {

return 0;

} }

Here, an attacker-supplied guest function guest_func calls the host function get_host_val to get

values from an array. Although get_host_val() implements a bounds check, the attacker can

still speculatively access out-of-bounds data by mistraining the branch predictor — breaking any

isolation guarantees. Once the attacker (speculatively) obtains an out-of-bounds value of their

choosing, they can leak the value (e.g., via data cache, etc.) and recover it after the speculative

rollback. In this setting, we need to ensure that, even speculatively, untrusted code cannot break

isolation.

4.1.4 Security properties and execution semantics

Formally, we will define safety from Spectre attacks as a security property of a formal

(operational) semantics. The semantics abstractly captures how a processor executes a program

as a series of state transitions. The states, which we will write as σ , include any information the

developer will need to track for their analysis, such as the current instruction or command and

the contents of memory and registers. The developer then defines an execution model — a set of

transition rules that specify how state changes during execution. For example, in a semantics for

a low-level assembly, a rule for a store instruction will update the resulting state’s memory with

a new value.

The rules in the execution model determine how and when speculative effects happen.

For example, in a sequential semantics, a conditional branch will evaluate its condition then step

to the appropriate branch. A semantics that models branch prediction will instead predict the
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condition result and step to the predicted branch. We adapt notation from Guarnieri et al. [81],

writing J ·Kseq to represent the execution model for standard sequential execution. We notate other

execution models similarly; for example, J ·Kpht models prediction for Spectre-PHT attacks — i.e.,

conditional branch prediction. Other execution models are listed in Table 4.2.

Next, to precisely specify the attacker model, the developer must define which leakage

observations — information produced during an execution step — are visible to an attacker. For

example, they may decide that rules with memory accesses leak the addresses being accessed.

The set of leakage observations in a semantics’ rules is its leakage model. We again borrow

notation from Guarnieri et al. [81], which defines the leakage models J ·Kct and J ·Karch. The

J ·Kct model exposes leakage observations relevant to constant-time security: The sequence of

control flow (the execution trace) and the sequence of addresses accessed in memory (the memory

trace).1 The J ·Karch model, on the other hand, exposes all values loaded from memory in addition

to the addresses themselves (or equivalently, it exposes the trace of register values) [81]. Under

this model, an attacker is allowed to observe all architectural computation; for a value to remain

unobserved, it cannot be accessed at all over the course of execution, adversarial or otherwise.

Since the leakage observations in J ·Karch are a strict superset of those in J ·Kct, we say that J ·Karch

is stronger than J ·Kct (i.e., it models a more powerful attacker). These properties make J ·Karch

most useful for software isolation, as any out-of-bounds accesses will immediately show up in an

J ·Karch leakage trace.

Surprisingly, the J ·Kct and J ·Karch leakage models generalize well to speculative execu-

tion — for example, if we want to construct a semantics for Spectre-PHT attacks, we need only

modify a sequential constant-time semantics to account for branch misprediction. Indeed, the

execution model and leakage model of a semantics are orthogonal; we call the combination of

the two the contract provided by the semantics — a sequential constant-time semantics has the

contract J ·Kseq
ct , while our hypothetical Spectre-PHT semantics would provide the contract J ·Kpht

ct .

1Like Guarnieri et al. [81], we omit variable-latency instructions from our formal model for simplicity.
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Formally, the contract governs the attacker-visible information produced when executing a pro-

gram: Given a program p, a semantics with contract J ·Kα
` , and an initial state σ , we write JpKα

` (σ)

for the sequence (or trace) of leakage observations the semantics produces when executing p.

After determining a proper contract, the developer must finally define the policy that

their security property enforces: Precisely which data can and cannot be leaked to the attacker.

Formally, a policy π is defined in terms of an equivalence relation'π over states, where σ1 'π σ2

iff σ1 and σ2 agree on all values that are public (but may differ on sensitive values).

Armed with these definitions, we can state security as a non-interference property: A

program satisfies non-interference if, for any two π-equivalent initial states for a program p, an

attacker cannot distinguish the two resulting leakage traces when executing p. A developer has

several choices when crafting a suitable semantics and security policy; these choices greatly

influence how easy or difficult it is to detect or mitigate Spectre vulnerabilities. We cover these

choices in detail in Section 4.2: Sections 4.2.1 and 4.2.2 discuss choices in leakage models J ·K`
and security policies π . Sections 4.2.3 and 4.2.4 discuss tradeoffs for different execution models

J ·Kα and the transition rules in a semantics. In Section 4.2.5, we discuss how the input language

of the semantics affects analysis; and finally, in Section 4.2.6, we discuss which microarchitectural

features to include in formal models.

4.2 Choices in semantics

The foundation of a well-designed Spectre analysis tool is a carefully constructed formal

semantics. Developers face a wide variety of choices when designing their semantics — choices

which heavily depend on the attacker model (and thus the intended application area) as well as

specifics about the tool they want to develop. Cryptographic code requires different security

properties, and therefore different semantics and tools, than in-process isolation. Many of these

choices also look different for detection tools, focused only on finding Spectre vulnerabilities,
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vs. mitigation tools, which transform programs to be secure. In this section, we describe the

important choices about semantics that developers face, and explain those choices’ consequences

for Spectre analysis tools and for their associated security guarantees. We also point out a number

of open problems to guide future work in this area.

What makes a practical semantics?

A practical semantics should make an appropriate tradeoff between detail and abstraction:

It should be detailed enough to capture the microarchitectural behaviors which we’re interested

in, but it should also be abstract enough that it applies to all (reasonable) hardware. For example,

we do not want the security of our code to be dependent on a specific cache replacement policy or

branch predictor implementation.

In the non-speculative world, formalisms for constant-time have been successful: The

principles of constant-time programming (no secrets for branches, no secrets for addresses) create

secure code without introducing processor-specific abstractions. Speculative semantics should

follow this trend, producing portable tools which can defend against powerful attackers on today’s

(and tomorrow’s) microarchitectures.

4.2.1 Leakage models

Any semantics intended to model side-channel attacks needs to precisely define its attacker

model. An important part of the attacker model for a semantics is the leakage model — that is,

what information does the attacker get to observe? Leakage models intended to support sound

mitigation schemes should be strong — modeling a powerful attacker — and hardware-agnostic,

so that security guarantees are portable. That said, the best choice for a leakage model depends in

large part on the intended application domain.

Leakage models for cryptography

As we saw in Section 4.1.2, high-assurance cryptography implementations have long

relied on the constant-time programming model; thus, semantics intended for cryptographic
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programs naturally choose the J ·Kct leakage model. Like the constant-time programming model

in the non-speculative world, the J ·Kct leakage model is strong and hardware-agnostic, making it

a solid foundation for security guarantees. The J ·Kct leakage model is a popular choice among

existing formalizations: As we highlight in Table 4.1, over half of the formal semantics for

Spectre use the J ·Kct leakage model (or an equivalent) [18, 36, 48, 78, 80, 173, 211]. Guarnieri et

al. [81] leave the leakage model abstract, allowing the semantics to be used with several different

leakage models, including J ·Kct.

Leakage models for isolation

Sections 4.1.3 and 4.1.4 describe the J ·Karch leakage model, which is a better fit for

modeling speculative isolation, e.g., for a WebAssembly runtime executing untrusted code [162]

or a kernel defending against memory region probing [70]. Under J ·Karch, all values in the

program are observable — this is what lets it easily model properties for software isolation: If we

define a policy π where all values and memory regions outside the isolation boundary are secret,

then software isolation security (or speculative memory safety) is simply non-interference with

respect to J ·Karch (and this π).

The J ·Karch leakage model appears less frequently than J ·Kct in formal models: Only

two of the semantics in Table 4.1 ([39, 81]) use the J ·Karch leakage model. On the other hand,

Spectre sandbox isolation frameworks such as Swivel [162], Venkman [196], and ELFbac [111]

implicitly use the J ·Karch model, as do the detection tools SpecFuzz [167], ASTCVW [120],

SpecTaint [180], and the “weak” and “v1.1” modes of oo7 [218]. The three isolation frameworks

all explicitly prevent memory reads or writes to any locations outside of the isolation boundary —

i.e., enforcing non-interference under J ·Karch. The detection tools, meanwhile, look for gadgets

that can speculatively access arbitrary (or attacker-controlled) memory locations — i.e., breaking

speculative memory safety. Unfortunately, these tools are not formalized, so their leakage models

are not made explicit (nor clear).

Weaker leakage models
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The remaining semantics and tools in Table 4.1 consider only the memory trace of a

program, but not its execution trace. The J ·Kmem leakage model, like J ·Kct, allows an attacker

to observe the sequence of memory accesses during the execution of the program; the J ·Kcache

leakage model instead only tracks (an abstraction of) cache state. The attacker in this model can

only observe cached addresses at the granularity of cache lines. A few tools have even weaker

leakage models — for instance, oo7 only emits leakages that can be influenced by malicious input

(see Section 4.2.3) and KLEESpectre (with cache modeling enabled) only allows the attacker to

observe the final state of the cache upon termination.

All of these models, including J ·Kmem and J ·Kcache, are weaker than J ·Kct — they model

less powerful attackers who cannot observe control flow. As a result, they miss attacks which leak

via the instruction cache or which otherwise exploit timing differences in the execution of the

program. They even miss some attacks that exploit the data cache: If a sensitive value influences

a branch, an attacker could infer the sensitive value through the data cache based on differing

(benign) memory access patterns on the two sides of the branch, even if no sensitive value directly

influences a memory address. For instance, in the following code, even though cond is not used

to calculate the memory address, an attacker can infer the value of cond based on whether arr[a]

gets cached or not:

if (cond)

b = arr[a];

else

b = 0;

Because the J ·Kmem and J ·Kcache leakage models miss these attacks, they cannot provide the

strong guarantees necessary for secure cryptography or software isolation. Tools which want to

provide sound verification or mitigation should instead choose a strong leakage model appropriate

for their application domain, such as J ·Kct or J ·Karch.
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That said, weaker leakage models are still useful in certain settings: Tools which are

interested in only certain vulnerability classes can use these weaker models to reduce the number

of false positives in their analysis or reduce the complexity of their mitigation. Even though these

models may miss some Spectre attacks, detection tools can still use the J ·Kcache or J ·Kmem models

to find Spectre vulnerabilities in real codebases. Using a leakage model which ignores control

flow leakage may help the detection tool scale to larger codebases.

Some tools [83, 217] also provide the ability to reason about what attacks are possible with

particular cache configurations — e.g., with a particular associativity, cache size, or line size. This

is a valuable capability for a detection tool: It helps an attacker zero in on vulnerabilities which

are more easily exploitable on a particular target machine. However, security guarantees based

on this kind of analysis are not portable, as executing a program on a different machine with a

different cache model invalidates the security analysis. Tools that instead want to make guarantees

for all possible architectures, such as verifiers or compilers, will need more conservative leakage

models — models that assume the entire memory trace (and execution trace) is always leaked.

Open problems: Leakage models for weak-memory-style semantics

We have described leakage models only in terms of observations of execution traces;

this is a natural way to define leakage for operational semantics, where execution is modeled

simply as a set of program traces. However, the weak-memory-style speculative semantics

proposed by Colvin and Winter [42], Disselkoen et al. [56], and Ponce de León and Kinder [175]

have a more structured view of program execution (for instance, using dependency analysis

or pomsets [68]). These semantics define leakage equivalent to the J ·Kmem leakage model; it

remains an open problem to explore how to define J ·Kct or J ·Karch leakage in this more structured

execution model — in particular, what it means for such a semantics to allow an attacker to

observe control-flow.

Open problems: Leakage models for language-based isolation
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As with most work on Spectre foundations, we focus on cryptography and software-based

isolation. Spectre, though, can be used to break most other software abstractions as well — from

module systems [84] and object capabilities [139] to language-based isolation techniques like

information flow control [186]. How do we adopt these abstractions in the presence of speculative

execution? What formal security property should we prove? And what leakage model should be

used?

4.2.2 Non-interference and policies

After the leakage model, we must determine what secrecy policy we consider for our

attacker model — i.e., which values can and cannot be leaked. Domains such as cryptography

and isolation already have defined policies for sequential security properties: For cryptography,

memory that contains secret data (e.g., encryption keys) is considered sensitive; isolation simply

declares that all memory outside the program’s assigned sandbox region should not be leaked.

The straightforward extension of sequential non-interference to speculative execution is to

enforce the same leakage model (e.g., J ·Kct) with the same security policy — no secrets should be

leaked whether in normal or speculative execution. We refer to this simple extension as a direct

non-interference property, or direct NI.

Definition 1 (Direct non-interference). Program p satisfies direct non-interference with respect to

a given contract J ·K and policy π if, for all pairs of π-equivalent initial states σ and σ ′, executing

p with each initial state produces the same trace. That is, p ` NI(π,J ·K) is defined as

∀σ ,σ ′ : σ 'π σ
′⇒ JpK(σ) = JpK(σ ′).

We elide writing π for brevity — e.g., NI(J ·Kpht
ct ) expresses constant-time security under Spectre-

PHT semantics.
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Alternatively, we may instead want to assert that the speculative trace of a program has no

new sensitive leaks as compared to its sequential trace. This is a useful property for compilers

and mitigation tools that may not know the secrecy policy of an input program, but want to

ensure the resulting program does not leak any additional information. We term this a relative

non-interference property, or relative NI; a program that satisfies relative NI is no less secure than

its sequential execution.

Definition 2 (Relative non-interference). Program p satisfies relative non-interference from

contract J ·Kseq
a to J ·Kβ

b and with policy π if: For all pairs of π-equivalent initial states σ and σ ′,

if executing p under J ·Kseq
a produces equal traces, then executing p under J ·Kβ

b produces equal

traces. That is, p ` NI(π,J ·Kseq
a ⇒ J ·Kβ

b ) is defined as

∀σ ,σ ′ : σ 'π σ
′∧ JpKseq

a (σ) = JpKseq
a (σ ′)

=⇒ JpKβ

b (σ) = JpKβ

b (σ
′).

For non-terminating programs, we can compare finite prefixes of JpKβ against their sequential

projections to JpKseq — since speculative execution must preserve sequential semantics, there will

always be a valid sequential projection. As before, we may elide π for brevity.

Interestingly, any relative non-interference property NI(π,J ·Kseq
a ⇒ J ·Kβ

b ) for a program p

can be expressed equivalently as a direct property NI(π ′,J ·Kβ

b ), where π ′= π \canLeak(p,J ·Kseq
a ).

That is, we treat anything that could possibly leak under contract J ·Kseq
a as public. Relative NI is

thus a (semantically) weaker property than direct NI, as it implicitly declassifies anything that

might leak during sequential execution.

However, relative NI is still a stronger property than a conventional implication. For

example, the property NI(J ·Kseq
ct )⇒ NI(J ·Kpht

ct ) makes no guarantees at all about a program

that is not sequentially constant-time. Conversely, the relative NI property NI(J ·Kseq
ct ⇒ J ·Kpht

ct )

guarantees that even if a program is not sequentially constant-time, the sensitive information an
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attacker can learn during the program’s speculative execution is limited to what it already might

leak sequentially.

In Table 4.2, we classify security properties of different works by which direct or relative

NI properties they verify or enforce. We find that tools focused on verifying cryptography or

memory isolation verify direct NI properties, whereas frameworks concerned with compilation or

inserting Spectre mitigations for general programs tend towards relative NI.

Verifying programs

Direct NI unconditionally guarantees that sensitive data is not leaked, whether executing

sequentially or speculatively. This makes it ideal for domains that already have clear policies about

what data is sensitive, such as cryptography (e.g., secret keys) or software isolation (e.g., memory

outside the sandbox). Indeed, tools that target cryptographic applications ([18, 36, 48, 211]) all

verify that programs satisfy the direct speculative constant-time (SCT) property.

Additionally, we find that current tools that verify relative NI [39, 80] are indeed capable

of verifying direct NI, but intentionally add constraints to their respective checkers to “remove”

sequential leaks from their speculative traces. Although this is just as precise, it is an open

problem whether tools can verify relative NI for programs without relying on a direct NI analysis.

Verifying compilers

On the other hand, compilers and mitigation tools are better suited to verify or enforce

relative NI properties: The compiler guarantees that its output program contains no new leakages

as compared to its input program. This way, developers can reason about their programs assuming

a sequential model, and the compiler will mitigate any speculative effects. For instance, if

a program p is already sequentially constant-time NI(J ·Kseq
ct ), then a compiler that enforces

NI(J ·Kseq
ct ⇒ J ·Kpht

ct ) will compile p to a program that is speculatively constant-time NI(J ·Kpht
ct ).

Similarly, if a program is properly sandboxed under sequential execution NI(J ·Kseq
arch) and is

compiled with a compiler that introduces no new arch leakage, the resulting program will remain

sandboxed even under speculative execution [81].
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Similarly, Patrignani and Guarnieri [173] explore whether compilers preserve robust

non-interference properties. A security property is robust if a program remains secure even when

linked against adversarial code (i.e., if the program is called with arbitrary or adversarial inputs).

A compiler preserves a non-interference property if, after compilation from a source to a target

language, the property still holds. In Patrignani and Guarnieri’s framework, the source language

describes sequential execution while the target language has speculative semantics, making their

notion of compiler preservation very similar to enforcing relative NI.

4.2.3 Execution models

To reason about Spectre attacks, a semantics must be able to reason about the leakage

of sensitive data in a speculative execution model. A speculative execution model is what

differentiates a speculative semantics from standard sequential analysis, and determines what

speculation the abstract processor can perform. For developers, choosing a proper execution

model is a tradeoff: On the one hand, the choice of behaviors their model allows — i.e., which

microarchitectural predictors they include — determines which Spectre variants their tools can

capture. On the other hand, considering additional kinds of mispredictions inevitably makes their

analysis more complex.

Spectre variants and predictors

Most semantics and tools in Table 4.1 only consider the conditional branch predictor,

and thus only Spectre-PHT attacks. (Mis)predictions from the conditional branch predictor

are constrained — there are only two possible choices for every decision — so the analysis

remains fairly tractable. Jasmin [18], Binsec/Haunted [48], Pitchfork [36], and Kaibyo [175]

all additionally model store-to-load (STL) predictions, where a processor forwards data to a

memory load from a prior store to the same address. If there are multiple pending stores to that

address, the processor may choose the wrong store to forward the data — this is the root of a

Spectre-STL attack. STL predictions are less constrained than predictions from the conditional
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branch predictor: In the absence of additional constraints, they allow for a load to draw data from

any prior store to the same address.

Other control-flow mechanisms are significantly more complex: Return instructions and

indirect jumps can be speculatively hijacked to send execution to arbitrary (attacker-controlled)

points in the program.2 An attacker can trivially hijack a victim program if they can control

(mis)prediction of the RSB (for returns) [125, 140] or BTB (for indirect jumps) [123]. Even

without this ability, an attacker can hijack control-flow if they speculatively overwrite the target

address of a return or jump (e.g., by exploiting a prior PHT misprediction) [119, 142, 200].

Formally, these attacks still fit within our non-interference framework — if a program can be

arbitrarily hijacked, then it will be unable to satisfy any non-interference property. However, to

formally verify that this is the case, a semantics must model these behaviors.

Although capturing all speculative behaviors in a semantics is possible, the resulting

analysis is neither practical nor useful; in practice, developers need to make tradeoffs. For example,

the semantics proposed by Cauligi et al. [36] can simulate all of the aforementioned speculative

attacks, but their analysis tool Pitchfork only detects PHT- and STL-based vulnerabilities. On

the other hand, tools like oo7 (with the “v1.1” pattern) [218] and SpecTaint [180] conservatively

assume that writes to transient addresses can overwrite anything, and thus immediately flag this

behavior as vulnerable.

The InSpectre semantics [78] proceeds in the opposite direction — it allows the processor

to predict arbitrary values, even the values of constants. InSpectre also allows more out-of-order

behavior than most other semantics (see Section 4.2.6) — in particular, it allows the processor to

commit writes to memory out-of-order. As a result, InSpectre is very expressive: It is capable

of describing a wide variety of Spectre variants both known and unrealized. But, as a result,

InSpectre cannot feasibly be used to verify programs; instead, the authors pose InSpectre as a

framework for reasoning about and analyzing microarchitectural features themselves.

2Including, on x86-family processors, into the middle of an instruction [21].
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Speculation windows

Several semantics and tools in Table 4.1 limit speculative execution by way of a spec-

ulation window. This models how hardware has finite resources for speculation, and can only

speculate through a certain number of instructions or branches at a time.

Explicitly modeling a speculation window serves two purposes for detection tools. One,

it reduces false positives: a mispredicted branch will not lead to a speculative leak thousands of

instructions later. Two, it bounds the complexity of the semantics and thus the analysis. Since the

abstract processor can only speculate up to a certain depth, an analysis tool need only consider the

latest window of instructions under speculative execution. Some semantics refine this idea even

further: Binsec/Haunted [48], for example, uses different speculation windows for load-store

forwarding than it uses for branch speculation.

Speculation windows are also valuable for mitigation tools: although tools like Blade [211]

and Jasmin [18] are able to prove security without reasoning about speculation windows, modeling

a speculation window reduces the number of fences (or other mitigations) these tools need to

insert, improving the performance of the compiled code.

Eliminating variants

Instead of modeling all speculative behaviors, compilers and mitigation tools can use

clever techniques to sidestep particularly problematic Spectre variants. For example, even though

Jasmin [18] does not model the RSB, Jasmin programs do not suffer from Spectre-RSB attacks:

The Jasmin compiler inlines all functions, so there are no returns to mispredict. Mitigation tools

can also disable certain classes of speculation with hardware flags [99]. After eliminating complex

or otherwise troublesome speculative behavior, a tool need only consider those that remain.

Cross-address-space attacks

Previous systematizations of Spectre attacks [32] differentiate between same-address-

space and cross-address-space attacks. Same-address-space attacks rely on repeatedly causing

the victim code to execute in order to train a microarchitectural predictor. Cross-address-space
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attacks are more powerful, as they allow an attacker to perform the training step on a branch

within the attacker’s own code.

Most of the semantics and tools in Table 4.1 make no distinction between same-address-

space and cross-address-space attacks, as they ignore the mechanics of training and consider

all predictions to be potentially malicious. A notable exception is oo7 [218], which explicitly

tracks attacker influence. Specifically, oo7 only considers mispredictions for conditional branches

which can be influenced by attacker input. Thus, oo7 effectively models only same-address-space

attacks. Unfortunately, as a result, oo7 misses Spectre vulnerabilities in real code, as demonstrated

by Wang et al. [217].

4.2.4 Nondeterminism

Speculative execution is inherently nondeterministic: Any given branch in a program may

proceed either correctly or incorrectly, regardless of the actual condition value. More generally,

speculative hijack attacks can send execution to entirely indeterminate locations. All of the

semantics in Table 4.1 allow these nondeterministic choices to be actively adversarial — for

instance, given by attacker-specified directives [36, 211] or by consulting an abstract oracle [39,

80, 81, 147]. These semantics all (conservatively) assume that the attacker has full control of

microarchitectural prediction and scheduling; we explore the different techniques they use to

verify or enforce security in the face of adversarial nondeterminism.

Exploring nondeterminism

Several Spectre analysis tools are built on some form of abstract execution: They simulate

speculative execution of the program by tracking ranges or properties of different values. By

checking these properties throughout the program, these tools determine if sensitive data can

be leaked. Standard tools for (non-speculative) abstract execution are designed only to consider

concrete execution paths; they must be adapted to handle the many possible nondeterministic

execution paths from speculation. SpecuSym [83], KLEESpectre [217], and AISE [228] han-
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dle this nondeterminism by following an always-mispredict strategy. When they encounter a

conditional branch, they first explore the execution path which mispredicts this branch, up to a

given speculation depth. Then, when they exhaust this path, they return to the correct branch.

This technique, though, only handles the conditional branch predictor; i.e., Spectre-PHT attacks.

Pitchfork [36] and Binsec/Haunted [48] adapt the always-mispredict strategy to account for

out-of-order execution and Spectre-STL. Although it may not be immediately clear that always-

mispredict strategies are sufficient to prove security — especially when the attacker can make any

number of antagonistic choices — these strategies do indeed form a sound analysis [36, 48, 80].

Unfortunately, simulating execution only works for semantics where nondeterminism

is relatively constrained: Conditional branches are a simple boolean choice, and store-to-load

predictions are limited by the speculation window. If we pursue other Spectre variants, we

will quickly become overwhelmed — again, an unconstrained hijack gadget can redirect control

to almost anywhere in a program. The always-mispredict strategy here is nonsensical at best;

abstract execution is thus necessarily limited in what it can soundly explore.

Abstracting out nondeterminism

Mitigation tools have more flexibility dealing with nondeterminism: Tools like Blade [211]

and oo7 [218] apply dataflow analysis to determine which values may be leaked along any path,

instead of reasoning about each path individually. Then, these tools insert speculation barriers to

preemptively block potential leaks of sensitive data. This style of analysis comes at the cost of

some precision: Blade, for example, conservatively treats all memory accesses as if they may

speculatively load sensitive values, as its analysis cannot reason about the contents of memory.

Similarly, oo7’s “v1.1” pattern detection conservatively flags all (attacker-controlled) transient

stores, as they may lead to speculative hijack. However, Blade and oo7 — and mitigation tools

in general — can afford to be less precise than verification or detection tools; these, conversely,

must maintain higher precision to avoid floods of false positives.

Restricting nondeterminism
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Compilers such as Swivel [162], Venkman [196], and ELFbac [111] restructure programs

entirely, imposing their own restricted set of speculative behavior at the software layer. ELFbac

allocates sensitive data in separate memory regions and uses page permission bits to disallow

untrusted code from accessing these regions — regardless of how a program may misspeculate,

it will not be able to read (and thus cannot leak) sensitive data. Swivel and Venkman compile

code into carefully aligned blocks so that control flow always land at the tops of protected code

blocks, even speculatively; Swivel accomplishes this by clearing the BTB state after untrusted

execution, while Venkman recompiles all programs on the system to mask addresses before

jumping. Both systems also enforce speculative control-flow integrity (CFI) checks to prevent

speculative hijacking, whether by relying on hardware features [103] or by implementing custom

CFI checks with branchless assembly instructions. Developers that use these compilers can then

reason about their programs much more simply, as the set of speculative behaviors is restricted

enough to make the analysis tractable. Of the techniques discussed in this section, this line of

work seems the most promising: It produces mitigation tools with strong security guarantees,

without relying on an abundance of speculation barriers (as often results from dataflow analysis)

or resorting to heavyweight simulation (e.g., symbolic execution).

Open problems: Rigorous performance comparison

To the best of our knowledge, no work has rigorously compared the performance of all the

tools in Table 4.1. Perhaps the most complete comparison is by Daniel et al. [48], who compare

the detection tools KLEESpectre, Pitchfork, and Binsec/Haunted in terms of the analysis time

required to detect known violations in a few chosen targets. A general and objective performance

comparison is difficult, if not impossible: The tools in Table 4.1 operate on different types of

programs (general-purpose, cryptographic, sandboxing) and different languages (x86, LLVM,

WebAssembly). They also provide different security guarantees, as we discuss above. An

intermediate step towards an expanded performance comparison, which would be a valuable

contribution on its own, would be to develop a larger corpus of known attacks on realistic (medium-
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to-large-size) programs. This corpus would help evaluate both the security and performance of

existing or newly-proposed tools.

4.2.5 Higher-level abstractions

Spectre attacks — and speculative execution — fundamentally break our intuitive assump-

tions about how programs should execute. Higher-level guarantees about programs no longer

apply: Type systems or module systems are meaningless when even basic control flow can go

awry. In order to rebuild higher-level security guarantees, we first need to repair our model of

how programs execute, starting from low-level semantics. Once these foundations are firmly in

place, only then can we rebuild higher-level abstractions.

Semantics for assembly or IRs

The majority of formal semantics in Table 4.1 operate on abstract assembly-like languages,

with commands that map to simple architectural instructions. Semantics at this level implement

control flow directly in terms of jumps to program points — usually indices into memory or an

array of program instructions — and treat memory as largely unstructured. Since these low-level

semantics closely correspond to the behavior of real hardware, they capture speculative behav-

iors in a straightforward manner, and provide a foundational model for higher-level reasoning.

Similarly, many concrete analysis tools for constant-time or Spectre operate directly on binaries

or compiler intermediate representations (IRs) [36, 48, 49, 80, 217]. These tools operate at this

lowest level so that their analysis will be valid for the program unaltered — compiler optimizations

for higher-level languages can end up transforming programs in insecure ways [19, 48, 49]. As

a result however, these tools necessarily lose access to higher-level information such as control

flow structure or how variables are mapped in memory.

Semantics for structured languages

The semantics proposed by Jasmin [18], Patrignani and Guarnieri [173], and Blade [211]

build on top of these lower-level ideas to describe what we term “medium-level” languages —
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those with structured control flow and memory, e.g., explicit loops and arrays. For these medium-

level semantics, it is less straightforward to express speculative behavior: For instance, instead

of modeling speculation directly, Vassena et al. [211] first translate programs in their source

language to lower-level commands, then apply speculative execution at that lower level.

In exchange, the structure in a medium-level semantics lends itself well to program

analysis. For example, Vassena et al. are able to use a simple type system to prove security

properties about a program. Barthe et al. [18] also take advantage of structured semantics:

They prove that if a sequentially constant-time program is speculatively (memory) safe — i.e.,

all memory operations are in-bounds array accesses — then the program is also speculatively

constant-time. Since their source semantics only accesses memory through array operations, they

can statically verify whether a program is speculatively safe — and thus speculatively secure.

An interesting question for future work is whether their concept of speculative (memory) safety

combines with other sequential security properties to give corresponding guarantees, such as for

sandboxing, information flow, or rich type systems.

Weak-memory-style semantics

Weak-memory-style semantics present a fundamentally different approach, lifting the

concept of speculative execution directly to a higher level. As these models are abstracted away

from microarchitectural details, they are well-suited for analyzing Spectre variants in terms of

data flow: Indeed, both Colvin and Winter [42] and Disselkoen et al. [56] treat Spectre-PHT as

a constrained form of instruction reordering, while Ponce de León and Kinder [175] analyze

dependency relations between instructions.

However, it remains challenging to translate a flexible semantics of this style into a

concrete analysis tool: Of the three works discussed here, only Ponce de León and Kinder present

a tool which can automatically perform a security analysis of a target program,3 though even

they admit that it is slower than comparable tools based on operational semantics. That said, this

3Colvin and Winter do present a tool, but it is only used to mechanically explore manually translated programs.
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high-level approach to speculative semantics is certainly underexplored compared to the larger

body of work on operational semantics, and is worthy of further investigation.

Compiler mitigations

With adequate foundations in place, one avenue to regaining higher-level abstractions is to

modify compilers of higher-level languages to produce speculatively secure low-level programs.

Many compilers already include options to conservatively insert speculation barriers or hardening

into programs, which (when done properly) provides strong security guarantees. Although

some such hardening passes have been verified [173], they are overly conservative and incur a

significant performance cost. Other compiler mitigations been shown unsound [167] — or worse,

even introduce new Spectre vulnerabilities [48] — further reinforcing that these techniques must

be grounded in a formal semantics.

Open problems: Formalization of new compilation techniques

Swivel [162], Venkman [196], and ELFbac [111] show how the structure of code itself

can provide security guarantees at a reduced performance cost. For instance, both Venkman

and Swivel demonstrate that organizing instructions into bundles or linear blocks (respectively)

can mitigate speculative hijacks, making these transient attacks tractable to analyze and prevent.

However, none of these compiler-based approaches are yet grounded in a formal semantics.

Formalizing these systems would increase our confidence in the strong guarantees they claim to

provide.

Open problems: New languages

Another promising approach is to design new languages which are inherently safe from

Spectre attacks. Prior work has produced secure languages like FaCT [37], which is (sequentially)

constant-time by construction. An extension of FaCT, or a new language built on its ideas, could

prevent Spectre attacks as well. Vassena et al. [211] have already taken a first step in this direction:

They construct a simple while-language which is guaranteed safe from Spectre-PHT attacks when

compiled with their fence insertion algorithm. It would be valuable to extend this further, both to
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more realistic (higher-level) languages, and to more Spectre variants. The key question is whether

dedicated language support can provide a path to secure code that outperforms the de-facto

approach — that is, compiling standard C code and inserting Spectre mitigations.

4.2.6 Expressivity and microarchitectural features

One theme of this chapter is that a good (practical) semantics needs to have an appropriate

amount of expressivity: On one hand, we want a semantics which is expressive — able to model

a wide range of possible behaviors (e.g., Spectre variants). This allows us to model powerful

attackers. On the other hand, a semantics which allows too many possible behaviors makes many

analyses intractable. Indeed, a fundamental purpose of semantics is to provide a reasonable

abstraction or simplification of hardware to ease analysis; a semantics which is too expressive

simply punts this problem to the analysis writer. Thus, choosing how much expressivity to include

in a semantics represents an interesting tradeoff.

By far the most important choice for the expressivity of a semantics is which misprediction

behaviors to allow — i.e., which Spectre variants to reason about (discussed in Section 4.2.3). But

beyond speculative execution itself, there are many other microarchitectural features which are

relevant for a security analysis, and which have been — or could be — modeled in a speculative

semantics. These features also affect the expressivity of the semantics, which means that choosing

whether to include them results in similar tradeoffs.

Out-of-order execution

Many speculative semantics simulate a processor feature called out-of-order execution:

They allow instructions to be executed in any order, as long as those instructions’ dependencies

(operands) are ready. Out-of-order execution is mostly orthogonal to speculative execution; in

fact, out-of-order execution is not required to model Spectre-PHT, -BTB, or -RSB — speculative

execution alone is sufficient. However, out-of-order execution is included in most modern

98



processors, and for that reason,4 many speculative semantics also model it. Modeling out-of-

order execution may provide an easier or more elegant way to express a variety of Spectre

attacks, as opposed to modeling speculative execution alone. Furthermore, Disselkoen et al. [56]

and Guanciale et al. [78] demonstrate how to abuse out-of-order execution to conduct (at least

theoretical) novel side-channel attacks.5

Although modeling out-of-order execution might make a semantics simpler, the additional

expressivity makes the resulting analysis more complex. Fully modeling out-of-order execution

leads to an explosion in the number of possible executions of a program; naively incorporating

out-of-order execution into a detection or mitigation tool results in an intractable analysis. Indeed,

while Guarnieri et al. [81] and Colvin and Winter [42] present analysis tools based on their

respective out-of-order semantics, they only analyze very simple Spectre gadgets and not code

used in real programs. Instead, for analysis tools based on out-of-order semantics to scale to real

programs, developers need to use lemmas to reduce the number of possibilities the analysis needs

to consider. As one example, Pitchfork [36] operates on a set of “worst-case schedules” which

represent a small subset of all possible out-of-order schedules — the developers formally show

that this reduction does not affect the soundness of Pitchfork’s analysis.

Caches and TLBs

Some speculative semantics and tools [83, 147, 217, 228] include abstract models of

caches, tracking which addresses may be in the cache at a given time. One could imagine also

including detailed models of TLBs. As discussed in Section 4.2.1, modeling caches or TLBs

is probably not helpful, at least for mitigation or verification tools — not only does it make the

semantics more complicated, but it potentially leads to non-portable guarantees. In particular,

including a model of the cache usually leads to the J ·Kcache leakage model, rather than the J ·Kct

or J ·Karch leakage models which provide stronger defensive guarantees. Following in the tradition

4Or perhaps, because out-of-order execution is often discussed alongside (or even confused with) speculative
execution.

5Disselkoen et al. [56] propose to abuse compile-time instruction reordering, which is different from microarchi-
tectural out-of-order execution, but related.
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of constant-time programming in the non-speculative world, it seems wiser for our analyses and

mitigations to be based on microarchitecture-agnostic principles as much as possible, and not

depend on details of the cache or TLB structure.

Other leakage channels

There are a variety of specific microarchitectural mechanisms which can result in leakages

beyond the ones we directly focus on in this chapter. For instance, in the presence of multithread-

ing, port contention in the processor’s execution units can reveal sensitive information [22]; and

many processor instructions, e.g., floating-point or SIMD instructions, can reveal information

about their operands through timing side channels [9]. Most existing semantics do not model these

specific effects. However, the commonly-used J ·Kct and J ·Karch leakage models are already strong

enough to capture leakages from most of these sources: For instance, port contention can only

reveal sensitive data if the sensitive data influenced which instructions are being executed — and

the J ·Kct leakage model already considers the sensitive data to be leaked once it influences control

flow. For variable-time instructions, most definitions of J ·Kct do not capture this leakage — but

extending those definitions is straightforward [6]. In both of these examples, the J ·Karch leakage

model captures all leaks, as it (even more conservatively) already considers the sensitive data as

leaked once it reaches a register — long before the data can influence control-flow or be used in

an instruction. Although modeling any of these effects more precisely can increase the precision

with which an analysis detects potential vulnerabilities, the tradeoff in analysis complexity is

probably not worth it, and for mitigation and verification tools, the J ·Kct and J ·Karch leakage

models provide stronger and more generalizable guarantees.

In a similar vein, most semantics and tools do not explicitly model parallelism or concur-

rency: They reason only about single-threaded programs and processors. Instead, they abstract

away these details by giving attackers broad powers in their models — e.g., complete power over

all microarchitectural predictions, and the capability to observe the full cache state after every

execution step. The notable exceptions are the weak-memory-style semantics [42, 56, 175] —
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multiple threads are an inherent feature for this style, making them a promising vehicle for further

exploring the interaction between speculation and concurrency.

Open problems: Process isolation

In practice, a common response to Spectre attacks has been to move all secret data into

a separate process — e.g., Chrome isolates different sites in separate processes [184]. This

shifts the burden from application and runtime system engineers to OS engineers. Developing

Spectre foundations to model the process abstraction will elucidate the security guarantees of

such systems. This is especially useful, as the process boundary does not keep an attacker from

performing out-of-place training of the conditional branch predictor, nor from leaking secrets via

the cache state [32].

4.3 Related work

Both in industry and in academia, there has been a lot of interest in Spectre and other

transient execution attacks. We discuss other systematization papers that address Spectre attacks

and defenses, and we briefly survey related work which otherwise falls outside the scope of this

chapter.

4.3.1 Systematization of Spectre attacks and defenses

Canella et al. [32] present a comprehensive systematization and analysis of Spectre and

Meltdown attacks and defenses. They first classify transient execution attacks by whether they

are a result of misprediction (Spectre) or an execution fault (Meltdown); and further classify the

attacks by their root microarchitectural cause, yielding the nomenclature we use in this chapter

(e.g., Spectre-PHT is named for the Pattern History Table). They then categorize previously

known Spectre attacks, revealing several new variants and exploitation techniques. Canella et

al. also propose a sequence of “phases” for a successful Spectre or Meltdown attack, and group
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published defenses by the phase they target. A followup survey by Canella et al. [31] expands on

the idea of attack phases, categorizing both hardware and software Spectre defenses according to

which attack phase they prevent: Preparation, misspeculation, data access, data encoding, leakage,

or decoding. Separately, Xiong et al. [230] also survey transient execution attacks, with a specific

focus on the mechanics of exploits for these attacks. In contrast, our systematization focuses on

the formal semantics behind Spectre analysis and mitigation tools rather than the specifics of

attack variants or types of defenses.

4.3.2 Hardware-based Spectre defenses

In this chapter, we focus only on software-based techniques for existing hardware. The

research community has also proposed several hardware-based Spectre defenses based on cache

partitioning [118], cleaning up the cache state after misprediction [187], or making the cache

invisible to speculation by incorporating some separate internal state [2, 116, 231]. Unfortunately,

attackers can still use side channels other than the cache to exploit speculative execution [22,

190]. NDA [227], DOLMA [137], and Speculative Taint Tracking (STT) [237] block additional

speculative covert channels by analyzing and classifying instructions that can leak information.

Fadiheh et al. [62] define a property for hardware execution that they term UPEC: A

hardware that satisfies UPEC will not leak speculatively anything more than it would leak

sequentially. In other words, UPEC is equivalent to the relative non-interference property

NI(π,J ·Kseq
arch⇒ J ·Kpht

arch).

The insights and recommendations from our work can guide future hardware mitigations;

properties like J ·Kct or J ·Karch can serve as contracts of what software expects from hardware [81].
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4.3.3 Software-hardware co-design

Although hardware-only approaches are promising for future designs, they require sig-

nificant modifications and introduce non-negligible performance overhead for all workloads.

Several works instead propose a software-hardware co-design approach. Taram et al. [202]

propose context-sensitive fencing, making various speculative barriers available to software. Li

et al. [131] propose memory instructions with a conditional speculation flag. Context [188] and

SpectreGuard [65] allow software to mark secrets in memory. This information is propagated

through the microarchitecture to block speculative access to the marked regions. SpecCFI [126]

suggests a hardware extension similar to Intel CET [103] that provides target label instructions

with speculative guarantees. Finally, several recent proposals allow partitioning branch predictors

based on context provided by the software [214, 242]. As these approaches require both software

and hardware changes, we should develop a formal semantics to apply them correctly.

4.3.4 Other transient execution attacks

We focus exclusively on Spectre, as other transient execution attacks are better addressed

in hardware. For completeness, we briefly discuss these other attacks.

Meltdown variants

The Meltdown attack [133] bypasses implicit memory permission checks within the CPU

during transient execution. Unlike Spectre, Meltdown does not rely on executing instructions

in the victim domain, so it cannot be mitigated purely by changes to the victim’s code. Fore-

shadow [206] and microarchitectural data sampling (MDS) [30, 100] demonstrate that transient

faults and microcode assists can still leak data from other security domains, even on CPUs that

are resistant to Meltdown. Researchers have extensively evaluated these Meltdown-style attacks

leading to new vulnerabilities [153, 154, 189], but most recent Intel CPUs have hardware-level
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mitigations for all these vulnerabilities in the form of microcode patches or proprietary hardware

fixes [102].

Load value injection

Load value injection (LVI) [207] exploits the same root cause as Meltdown, Foreshadow,

and MDS, but reverses these attacks: The attacker induces the transient fault into the victim

domain instead of crafting arbitrary gadgets in their own code space. This inverse effect is

subject to an exploitation technique similar to Spectre-BTB for transiently hijacking control

flow. Although there are software-based mitigations proposed against LVI [101, 207], Intel

only suggests applying them to legacy enclave software. Like Meltdown, LVI does not need

software-based mitigation on recent Intel CPUs.

4.4 Conclusion

Spectre attacks break the abstractions afforded to us by conventional execution models,

fundamentally changing how we must reason about security. We systematize the community’s

work towards rebuilding foundations for formal analysis atop the loose earth of speculative

execution, evaluating current efforts in a shared formal framework and pointing out open areas

for future work in this field.

We find that, as with previous work in the sequential domain, solid foundations for

speculative analyses require proper choices for semantics and attacker models. Most importantly,

developers must consider leakage models no weaker than J ·Karch or J ·Kct. Weaker models—

those that only capture leaks via memory or the data cache—lead to weaker security guarantees

with no clear benefit. Next, though many frameworks focus on Spectre-PHT, sound tools must

consider all Spectre variants. Although this increases the complexity of analysis, developers can

combine analyses with structured compilation techniques to restrict or remove entire categories

of Spectre attacks by construction. Finally, we recommend against modeling unnecessary
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(micro)architectural details in favor of the simpler J ·Karch and J ·Kct models; details like cache

structures or port contention introduce complexity and reduce portability.

When properly rooted in formal guarantees, software Spectre defenses provide a firm

foundation on which to rebuild secure systems. We intend this systematization to serve as a

reference and guide for those seeking to build or employ formal frameworks and to develop sound

Spectre defenses with strong, precise security guarantees.
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Chapter 5

Automatically Eliminating Speculative

Leaks from Cryptographic Code with Blade

Implementing secure cryptographic algorithms is hard. The code must not only be

functionally correct, memory safe, and efficient, it must also avoid divulging secrets indirectly

through side channels like control-flow, memory-access patterns, or execution time. Consequently,

much recent work focuses on how to ensure implementations do not leak secrets, e.g., via type

systems [37, 223], verification [6, 179], and program transformations [17].

Unfortunately, these efforts can be foiled by speculative execution. Even if secrets are

closely controlled via guards and access checks, the processor can simply ignore these checks

when executing speculatively. This, in turn, can be exploited by an attacker to leak protected

secrets.

In principle, memory fences block speculation, and hence, offer a way to recover the

original security guarantees. In practice, however, fences pose a dilemma. Programmers can

restore security by conservatively inserting fences after every load (e.g., using Microsoft’s Visual

Studio compiler pass [171]), but at huge performance costs. Alternatively, they can rely on

heuristic approaches for inserting fences [218], but forgo guarantees about the absence of side-
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channels. Since missing even one fence can allow an attacker to leak any secret from the address

space, secure runtime systems — in particular, browsers like Chrome and Firefox — take yet

another approach and isolate secrets from untrusted code in different processes to avoid the risk

altogether [24, 159]. Unfortunately, the engineering effort of such a multi-process redesign is

huge — e.g., Chrome’s redesign took five years and roughly 450K lines of code changes [184].

In this chapter, we introduce BLADE, a new, fully automatic approach to provably and

efficiently eliminate speculation-based leakage from constant-time cryptographic code. BLADE is

based on the key insight that to prevent leaking data via speculative execution, it is not necessary

to stop all speculation. Instead, it suffices to cut the data flow from expressions (sources) that

could speculatively introduce secrets to those that leak them through the cache (sinks). We

develop this insight into an automatic enforcement algorithm via four contributions.

1. A new primitive protect

We propose an abstract primitive called protect that embodies several hardware mecha-

nisms proposed in recent work [202, 237]. Crucially, and in contrast to a regular fence which stops

all speculation, protect only stops speculation for a given variable. For example x :=protect(e)

ensures that the value of e is assigned to x only after e has been assigned its stable, non-speculative

value. Though we encourage hardware vendors to implement protect in future processors, for

backwards compatibility, we implement and evaluate two versions of protect on existing hard-

ware — one using fences, another using speculative load hardening (SLH) [35].

2. A type system for speculation

Our second contribution is an approach to conservatively approximating the dynamic

semantics of speculation via a static type sytem that types each expression as either transient (T),

i.e., expressions that may contain speculative secrets, or stable (S), i.e., those that cannot. Our

system prohibits speculative leaks by requiring that all sink expressions that can influence intrinsic

attacker visible behavior (e.g., cache addresses) are typed as stable. The type system does not

rely on user-provided security annotations to identify sensitive sources and public sinks. Instead,
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we conservatively reject programs that exhibit any flow of information from transient sources

to stable sinks. This, in turn, allows us to automatically identify speculative vulnerabilities in

existing cryptographic code (where secrets are not explicitly annotated).

3. Automatic protection

Existing programs that are free of protect statements are likely insecure under speculation

(see Section 5.3 and [36]) and will be rejected by our type system. Thus, our third contribution

is an algorithm that finds potential speculative leaks and automatically synthesizes a minimal

number of protect statements to ensure that the program is speculatively constant-time (§ 5.1.3).

To this end, we extend the type checker to construct a def-use graph that captures the data-flow

between program expressions. The presence of a path from transient sources to stable sinks in

the graph indicates a potential speculative leak in the program. To repair the program, we only

need to identify a cut-set, a set of variables whose removal eliminates all the leaky paths in the

graph. We show that inserting a protect statement for each variable in a cut-set suffices to yield a

program that is well-typed, and hence, secure with respect to speculation. Finding such cuts is an

instance of the classic Max-Flow/Min-Cut problem, so existing polynomial time algorithms let

us efficiently synthesize protect statements that resolve the dilemma of enforcing security with

minimal number of protections.

4. BLADE tool

Our final contribution is an automatic push-button tool, BLADE, which eliminates potential

speculative leaks using this min-cut algorithm. BLADE extends the Cranelift compiler [27], which

compiles WebAssembly (Wasm) to x86 machine code; thus, BLADE operates on programs

expressed in Wasm. However, operating on Wasm is not fundamental to our approach — we

believe that BLADE’s techniques can be applied to other programming languages and bytecodes.

We evaluate BLADE by repairing verified yet vulnerable (to transient execution at-

tacks) constant-time cryptographic primitives from Constant-time Wasm (CT-Wasm) [223] and

HACL* [243] (§ 5.3). Compared to existing fully automatic speculative mitigation approaches (as
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notably implemented in Clang), BLADE inserts an order of magnitude fewer protections (fences

or SLH masks). BLADE’s fence-based implementation imposes modest performance overheads:

(geometric mean) 5.0% performance overhead on our benchmarks to defend from Spectre v1, or

15.3% overhead to also defend from Spectre v1.1. Both results are significant gains over current

solutions. Our fence-free implementation, which automatically inserts SLH masks, is faster in

the Spectre v1 case — geometric mean 1.7% overhead — but slower when including Spectre v1.1

protections, imposing 26.6% overhead.

5.1 Overview

This section gives a brief overview of the kinds of speculative leaks that BLADE identifies

and how it repairs such programs by careful placement of protect statements. We then describe

how BLADE (1) automatically repairs existing programs using our minimal protect inference

algorithm and (2) proves that the repairs are correct using our transient-flow type system.

5.1.1 Two kinds of speculative leaks

Figure 5.1 shows a code fragment of the SHA2_update_last function, a core piece of

the SHA2 cryptographic hash function implementation, adapted (to simplify exposition) from the

HACL* library. This function takes as input a pointer input_len, validates the input (line 3),

loads from memory the public length of the hash (line 4, ignore protect for now), calculates a

target address dst3 (line 6), and pads the buffer pointed to by dst3 (line 8). Later, it uses len to

determine the number of initialization rounds in the condition of the for-loop on line 10.

A. Leaking through a memory write

During normal, sequential execution this code is not a problem: the function validates the

input to prevent classic buffer-overflow vulnerabilities. However, during speculation, an attacker

can exploit this function to leak sensitive data. To do this, the attacker first has to mistrain the
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1 void SHA2_update_last(int *input_len, ...)
2 {
3 if (! valid(input_len)) { return; } // Input validation
4 int len = protect(*input_len); // Can speculatively read secret data
5 ...
6 int *dst3 = len + base; // Secret-tainted address
7 ...
8 *dst3 = pad; // Secret-dependent memory access
9 ...

10 for ( i = 0; i < len + ...) // Secret-dependent branch
11 dst2[i] = 0;
12 ...
13 }

Figure 5.1: Code fragment adapted from the HACL* SHA2 implementation, containing two
potential speculative execution vulnerabilities: one through the data cache by writing memory at
a secret-tainted address, and one through the instruction cache via a secret-tainted control-flow
dependency. The patch computed by BLADE is the single protect inserted on line 4.

branch predictor to predict the next input to be valid. Since input_len is a function parameter,

the attacker can do this by, e.g., calling the function repeatedly with legitimate addresses. After

mistraining the branch predictor this way, the attacker manipulates input_len to point to an

address containing secret data and calls the function again, this time with an invalid pointer. As a

result of the mistraining, the branch predictor causes the processor to skip validation and load

the secret into len, which in turn is used to calculate pointer dst3. The location pointed to by

dst3 is then written on line 8, leaking the secret data. Even though pointer dst3 is invalid and

the subsequent write will not be visible at the program level (the processor disregards it), the

side-effects of the memory access persist in the cache and therefore become visible to the attacker.

In particular, the attacker can extract the target address — and thereby the secret — using cache

timing measurements [67].

B. Leaking through a control-flow dependency

The code in Figure 5.1 contains a second potential speculative vulnerability, which

leaks secrets through a control-flow dependency instead of a memory access. To exploit this

vulnerability, the attacker can similarly manipulate the pointer input_len to point to a secret
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after mistraining the branch predictor to skip validation. But instead of leaking the secret

directly through the data cache, the attacker can leak the value indirectly through a control-flow

dependency: in this case, the secret determines how often the initialization loop (line 10) is

executed during speculation. The attacker can then infer the value of the secret from a timing

attack on the instruction cache or (much more easily) on iteration-dependent lines of the data

cache.

5.1.2 Eliminating speculative leaks

Preventing the leak using memory fences

Since these leaks exploit the fact that input validation is speculatively skipped, we can

prevent them by making sure that dangerous operations such as the write on line 8 or the loop

condition check on line 10 are not executed until the input has been validated. Intel [97],

AMD [7], and others [57, 171] recommend doing this by inserting a speculation barrier after

critical validation check-points. This would place a memory fence after line 3, but anywhere

between lines 3 and 8 would work. This fence would stop speculation over the fence: statements

after the fence will not be executed until all statements up to the fence (including input validation)

executed. While fences can prevent leaks, using fences as such is more restrictive than necessary —

they stop speculative execution of all following instructions, not only of the instructions that

leak — and thus incur a high performance cost [202, 203].

Preventing the leak efficiently

We do not need to stop all speculation to prevent leaks. Instead, we only need to ensure

that potentially secret data, when read speculatively, cannot be leaked. To this end, we propose an

alternative way to stop speculation from reaching the operations on line 8 and line 10, through a

new primitive called protect. Rather than eliminate all speculation, protect only stops speculation

along a particular data-path. We use protect to patch the program on line 4. Instead of assigning

the value len directly from the result of the load, the memory load is guarded by a protect
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statement. This ensures that the value assigned to len is always guaranteed to use the input_len

pointer’s final, nonspeculative value. This single protect statement on line 4 is sufficient to fix

both of the speculative leaks described in Section 5.1.1 — it prevents any speculative, secret data

from reaching lines 8 or 10 where it could be leaked to the attacker.

Implementation of protect

Our protect primitive provides an abstract interface for fine grained control of speculation.

This allows us to eliminate speculation-based leaks precisely and only when needed. However,

whether protect can eliminate leaks with tolerable runtime overhead depends on its concrete

implementation. We consider and formalize two implementations: an ideal implementation and

one we can implement on today’s hardware.

To have fine grain control of speculation, protect must be implemented in hardware and

exposed as part of the ISA. Though existing processors provide only coarse grained control over

speculation through memory fence instructions, this might change in the future. For example,

recently proposed microprocessor designs [202, 237] provide new hardware mechanisms to

control speculation, in particular to restrict targeted types of speculation while allowing other

speculation to proceed: this suggests that protect could be implemented efficiently in hardware

in the future.

Even if future processors implement protect, we still need to address Spectre attacks on

existing hardware. Hence, we formalize and implement protect in software, building on recent

Spectre attack mitigations [188]. Specifically, we propose a self-contained approach inspired by

Clang’s Speculative Load Hardening (SLH) [35]. At a high level, Clang’s SLH stalls speculative

load instructions in a conditional block by inserting artificial data-dependencies between loaded

addresses and the value of the condition. This ensures that the load is not executed before the

branch condition is resolved. Unfortunately, this approach unnecessarily stalls all non-constant

conditional load instructions, regardless of whether they can influence a subsequent load and thus

can actually cause speculative data leaks. Furthermore, this approach is unsound — it can also
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EXAMPLE

x :=a[i1]
y :=a[i2]
z := x+ y
w :=b[z]

SUBOPTIMAL PATCH

x :=protect(a[i1])
y :=protect(a[i2])
z := x+ y
w :=b[z]

OPTIMAL PATCH

x :=a[i1]
y :=a[i2]
z :=protect(x+ y)
w :=b[z]

Figure 5.2: Running example. Program EXAMPLE is shown on the left, along with two different
possible patches. The first patch is sub-optimal because it requires more protect statements than
the optimal patch.

miss some speculative leaks, e.g., if a load instruction is not in the same conditional block that

validates its address (like the code in Figure 5.1). In contrast to Clang, our approach applies SLH

selectively, only to individual load instructions whose result flows to an instruction which might

leak, and precisely, by using accurate bounds-check conditions to ensure that only data from valid

addresses can be loaded.

5.1.3 Automatically and efficiently repairing speculative leaks

BLADE automatically finds potential speculative leaks and synthesizes a minimal number

of protect statements to eliminate the leaks. We illustrate this process using the simple program

EXAMPLE in Figure 5.2 as a running example. The program reads two values from an array

(x :=a[i1] and y :=a[i2]), adds them (z :=x+y), and indexes another array with the result (w :=b[z]).

For simplicity, we omit bounds checks from the code shown, but assume that appropriate bounds

checks are present at some point, perhaps before the code shown.

Like the SHA2 example from Figure 5.1, EXAMPLE contains a speculative execution

vulnerability: the speculative array reads could bypass their bounds checks and so x and y can

contain transient secrets (i.e., secrets introduced by misprediction). This secret data then flows to

z, and finally leaks through the data cache when reading b[z].

Def-use graph

To secure the program, we need to cut the dataflow between the array reads which could

introduce transient secret values into the program, and the index in the array read where they
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Figure 5.3: Subset of the def-use graph of EXAMPLE. The dashed lines identify two valid
choices of cut-sets. The left cut requires removing two nodes and thus inserting two protect
statements. The right cut shows a minimal solution, which only requires removing a single node.

are leaked through the cache. For this, we first build a def-use graph whose nodes and directed

edges capture the data dependencies between the expressions and variables of a program. For

example, consider (a subset of) the def-use graph of program EXAMPLE in Figure 5.3. In the

graph, the edge x→ x+ y indicates that x is used to compute x+ y. To track how transient values

propagate in the def-use graph, we extend the graph with the special node T, which represents

the source of transient values of the program. Since reading memory creates transient values,

we connect the T node to all nodes containing expressions that explicitly read memory, e.g.,

T→ a[i1]. Following the data dependencies along the edges of the def-use graph, we can see that

node T is transitively connected to node z, which indicates that z can contain transient data at

run-time. To detect insecure uses of transient values, we then extend the graph with the special

node S, which represents the sink of stable (i.e., non-transient) values of a program. Intuitively,

this node draws all the values of a program that must be stable to avoid transient execution attacks.

Therefore, we connect all expression used as array indices in the program to the S node, e.g.,

z→ S. The fact that the graph in Figure 5.3 contains a path from T to S indicates that transient

data flows through data dependencies into (what should be) a stable index expression and thus the

program may be leaky.

Cutting the dataflow

In order to make the program safe, we need to cut the data-flow between T and S by

introducing protect statements. This problem can be equivalently restated as follows: find a

cut-set, i.e., a set of variables, such that removing the variables from the graph eliminates all

paths from T to S. Each choice of cut-set defines a way to repair the program: simply add
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a protect statement for each variable in the set. Figure 5.3 contains two choices of cut-sets,

shown as dashed lines. The cut-set on the left requires two protect statements, for variables

x and y respectively, corresponding to the suboptimal patch in Figure 5.2. The cut-set on the

right is minimal, it requires only a single protect, for variable z, and corresponds to the optimal

patch in Figure 5.2. Intuitively, minimal cut-sets result in patches that introduce as few protects

as needed and therefore allow more speculation. Luckily, the problem of finding a minimal

cut-set is an instance of the classic Min-Cut/Max-Flow problem, which can be solved using

efficient, polynomial-time algorithms [64]. For simplicity, BLADE adopts a uniform cost model

and therefore synthesizes patches that contain a minimal number of protect statements, regardless

of their position in the code and how many times they can be executed. Though our evaluation

shows that even this simple model imposes modest overheads (§5.3), our implementation can be

easily optimized by considering additional criteria when searching for a minimal cut set, with

further performance gain likely. For example, we could assign weights proportional to execution

frequency, or introduce penalties for placing protect inside loops.

(Lack of) secrecy annotations

Importantly, we do not rely on user annotations to identify secret sources and public

sinks, but instead conservatively reject programs that exhibit any source-to-sink data flows.

Intuitively, these security annotations would be unreliable anyway when programs are executed

speculatively. In particular, public variables may still contain transient secrets and secret variables

may still flow speculatively into public sinks. Hence, our def-use graph simply ignores security

annotations. Notice that BLADE does not address the problem of enforcing a sequential constant-

time discipline, which is the goal of existing type systems [223] and secure interfaces [243].

BLADE simply assumes that its input programs are already sequentially constant-time.
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5.1.4 Attacker model

We delineate the extents of our security guarantees by discussing the attacker model

considered in this work. We assume an attacker model where the attacker runs cryptographic code,

written in Wasm, on a speculative out-of-order processor; the attacker can influence how programs

are speculatively executed using the branch predictor1 and choose the instruction execution order

in the processor pipeline. The attacker can observe the effects of these actions on the cache,

even if these effects are otherwise invisible at the ISA level. In particular, while programs run,

the attacker can take precise timing measurements of the data- and instruction-cache with a

cache-line granularity, and thus infer the value of secret data. These features allow the attacker to

mount Spectre-PHT attacks [119, 123] and exfiltrate data through FLUSH+RELOAD [233] and

PRIME+PROBE [204] cache side-channel attacks. We do not consider speculative attacks that

rely on the Return Stack Buffer (e.g., Spectre-RSB [125, 140]), Branch Target Buffer (Spectre-

BTB [123]), or Store-to-Load forwarding misprediction (Spectre-STL [91], recently reclassified

as a Meltdown attack [154]). We similarly do not consider Meltdown attacks [133] or attacks that

do not use the cache to exfiltrate data, e.g., port contention (SMoTherSpectre [22]).

5.2 Implementation

We implement BLADE as a compilation pass in the Cranelift [27] Wasm code-generator,

which is used by the Lucet compiler and runtime [148]. BLADE first identifies all sources and

sinks. Then, it finds the cut points using the Max-Flow/Min-Cut algorithm (§5.1.3), and either

inserts fences at the cut points, or applies SLH to all of the loads which feed the cut point in the

graph. This difference is why SLH sometimes requires code insertions in more locations.

1In particular, the attacker can make predictions based on control-flow history and memory-access patterns similar
to real, adaptive predictors. Notice that these predictions can depend on secret information in general, but they are
guaranteed to be secret-independent in the constant-time programs repaired by BLADE. Adversarial predictors that
intentionally and deliberately leak secret data (e.g., reading secrets from memory) are out of scope.
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Our SLH prototype implementation does not track the length of arrays, and instead uses

a static constant for all array lengths when applying masking. Once compilers like Clang add

support for conveying array length information to Wasm (e.g., via Wasm’s custom section), our

compilation pass would be able to take this information into account. This simplification in our

experiments does not affect the sequence of instructions emitted for the SLH masks and thus

BLADE’s performance overhead is accurately measured.

Our Cranelift BLADE pass runs after the control-flow graph has been finalized and right

before register allocation.2 Placing BLADE before register allocation allows our implementation

to remain oblivious of low-level details such as register pressure and stack spills and fills. Ignoring

the memory operations incurred by spills and fills simplifies BLADE’s analysis and reduces the

required number of protect statements. This, importantly, does not compromise the security of its

mitigations: In Cranelift, spills and fills are always to constant addresses which are inaccessible to

ordinary Wasm loads and stores, even speculatively. (Cranelift uses guard pages — not conditional

bounds checks — to ensure that Wasm memory accesses cannot access anything outside the linear

memory, such as the stack used for spills and fills.) As a result, we can treat stack spill slots like

registers. Indeed, since BLADE runs before register allocation, it already traces def-use chains

across operations that will become spills and fills. Even if a particular spill-fill sequence would

handle potentially sensitive transient data, BLADE would insert a protect between the original

transient source and the final transient sink (and thus mitigate the attack).

Our implementation implements a single optimization: we do not mark constant-address

loads as transient sources. We assume that the program contains no loads from out-of-bounds

constant addresses, and therefore that loads from constant (Wasm linear memory) addresses

can never speculatively produce invalid data. As we describe below, however, we omit this

optimization when considering Spectre v1.1.

2More precisely: The Cranelift register allocation pass modifies the control-flow graph as an initial step; we insert
our pass after this initial step but before register allocation proper.
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At its core, our repair algorithm addresses Spectre v1 attacks based on PHT mispredictions.

To also protect against Spectre variant 1.1 attacks, which exploit store forwarding in the presence

of PHT mispredictions,3 we perform two additional mitigations. First, we mark constant-address

loads as transient sources (and thus omit the above optimization). Under Spectre v1.1, a load from

a constant address may speculatively produce transient data, if a previous speculative store wrote

transient data to that constant address — and, thus, BLADE must account for this. Second, our

SLH implementation marks all stored values as sinks, essentially preventing any transient data

from being stored to memory. This is necessary when considering Spectre v1.1 because otherwise,

ensuring that a load is in-bounds using SLH is insufficient to guarantee that the produced data

is not transient — again, a previous speculative store may have written transient data to that

in-bounds address.

5.3 Evaluation

We evaluate BLADE by answering two questions: (Q1) How many protects does BLADE

insert when repairing existing programs? (Q2) What is the runtime performance overhead of

eliminating speculative leaks with BLADE on existing hardware?

Benchmarks

We evaluate BLADE on existing cryptographic code taken from two sources. First, we

consider two cryptographic primitives from CT-Wasm [223]:

I The Salsa20 stream cipher, with a workload of 64 bytes.

I The SHA-256 hash function, with workloads of 64 bytes (one block) or 8192 bytes (128

blocks).

Second, we consider automatically generated cryptographic primitives and protocols from the

HACL* [243] library. We compile the automatically generated C code to Wasm using Clang’s

3Spectre v1 and Spectre v1.1 attacks are both classified as Spectre-PHT attacks [32].
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Table 5.1: Ref: Reference implementation with no Spectre mitigations; Baseline-F: Baseline
mitigation inserting fences; BLADE-F: BLADE using fences as protect; Baseline-S: Baseline
mitigation using SLH; BLADE-S: BLADE using SLH; Overhead: Runtime overhead compared
to Ref; Defs: number of fences inserted (Baseline-F and BLADE-F), or number of loads protected
with SLH (Baseline-S and BLADE-S)

Without v1.1 protections With v1.1 protections
Benchmark Defense Time Overhead Defs Time Overhead Defs

Salsa20 (CT-Wasm), 64 bytes

Ref 4.3 us - - 4.3 us - -
Baseline-F 4.6 us 7.2% 3 8.6 us 101.7% 99
BLADE-F 4.4 us 1.9% 0 4.3 us 1.7% 0
Baseline-S 4.4 us 2.7% 3 5.3 us 24.3% 99
BLADE-S 4.3 us 0.5% 0 5.4 us 26.4% 99

SHA-256 (CT-Wasm), 64 bytes

Ref 13.7 us - - 13.7 us - -
Baseline-F 19.8 us 43.8% 23 20.3 us 48.0% 54
BLADE-F 13.8 us 0.2% 0 14.5 us 5.4% 3
Baseline-S 15.0 us 9.1% 23 15.1 us 10.0% 54
BLADE-S 13.9 us 0.8% 0 15.2 us 10.9% 54

SHA-256 (CT-Wasm), 8192 bytes

Ref 114.6 us - - 114.6 us - -
Baseline-F 516.6 us 350.6% 23 632.6 us 451.8% 54
BLADE-F 113.7 us -0.8% 0 193.3 us 68.6% 3
Baseline-S 187.4 us 63.4% 23 208.0 us 81.5% 54
BLADE-S 115.2 us 0.5% 0 216.5 us 88.9% 54

ChaCha20 (HACL*), 8192 bytes

Ref 43.7 us - - 43.7 us - -
Baseline-F 85.2 us 94.8% 136 85.4 us 95.3% 142
BLADE-F 44.4 us 1.5% 3 45.4 us 3.8% 7
Baseline-S 52.8 us 20.8% 136 53.3 us 21.9% 142
BLADE-S 43.6 us -0.3% 3 53.8 us 22.9% 142

Poly1305 (HACL*), 1024 bytes

Ref 5.5 us - - 5.5 us - -
Baseline-F 6.3 us 15.9% 133 6.4 us 17.2% 139
BLADE-F 5.5 us 1.4% 3 5.6 us 2.2% 9
Baseline-S 5.6 us 1.8% 133 5.7 us 4.4% 139
BLADE-S 5.5 us 1.0% 3 5.6 us 2.5% 139

Poly1305 (HACL*), 8192 bytes

Ref 15.1 us - - 15.1 us - -
Baseline-F 21.3 us 41.1% 133 21.4 us 41.2% 139
BLADE-F 15.1 us -0.0% 3 15.2 us 0.8% 9
Baseline-S 16.2 us 7.2% 133 16.3 us 7.6% 139
BLADE-S 15.2 us 0.7% 3 16.2 us 7.1% 139

ECDH Curve25519 (HACL*)

Ref 354.3 us - - 354.3 us - -
Baseline-F 989.8 us 179.3% 1862 1006.4 us 184.0% 1887
BLADE-F 479.9 us 35.4% 235 497.8 us 40.5% 256
Baseline-S 507.0 us 43.1% 1862 520.4 us 46.9% 1887
BLADE-S 386.1 us 9.0% 1419 516.8 us 45.9% 1887

Geometric means

Ref - -
Baseline-F 80.2% 104.8%
BLADE-F 5.0% 15.3%
Baseline-S 19.4% 25.8%
BLADE-S 1.7% 26.6%
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Wasm backend. (We do not use HACL*’s Wasm backend since it relies on a JavaScript embedding

environment and is not well suited for Lucet.) Specifically, from HACL* we consider:

I The ChaCha20 stream cipher, with a workload of 8192 bytes.

I The Poly1305 message authentication code, with workloads of 1024 or 8192 bytes.

I ECDH key agreement using Curve25519.

We selected these primitives to cover different kinds of modern crypto workloads (including

hash functions, MACs, encryption ciphers, and public key exchange algorithms). We omitted

primitives that had inline assembly or SIMD since Lucet does not yet support either; we also

omitted the AES from HACL* and TEA from CT-Wasm — modern processors implement AES in

hardware (largely because efficient software implementations of AES are generally not constant-

time [170]), while TEA is not used in practice. All the primitives we consider have been verified

to be constant-time — free of cache and timing side-channels. However, the proofs assume a

sequential execution model and do not account for speculative leaks as addressed in this work.

Experimental setup

We conduct our experiments on an Intel Xeon Platinum 8160 (Skylake) with 1TB of

RAM. The machine runs Arch Linux with kernel 5.8.14, and we use the Lucet runtime version

0.7.0-dev (Cranelift version 0.62.0 with our modifications) compiled with rustc version

1.46.0. We collect benchmarks using the Rust criterion crate version 0.3.3 [88] and report

the point estimate for the mean runtime of each benchmark.

Reference and baseline comparisons

We compare BLADE to a reference (unsafe) implementation and a baseline (safe) imple-

mentation which simply protects every Wasm memory load instruction. We consider two baseline

variants: The baseline solution with Spectre v1.1 mitigation protects every Wasm load instruction,

while the baseline solution with only Spectre v1 mitigation protects only Wasm load instructions

with non-constant addresses. The latter is similar to Clang’s Spectre mitigation pass, which

applies SLH to each non-constant array read [35]. We evaluate both BLADE and the baseline
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implementation with Spectre v1 protection and with both v1 and v1.1 protections combined. We

consider both fence-based and SLH-based implementations of the protect primitive. In the rest

of this section, we use Baseline-F and BLADE-F to refer to fence-based implementations of their

respective mitigations and Baseline-S and BLADE-S to refer to the SLH-based implementations.

Results

Table 5.1 summarizes our results. With Spectre v1 protections, both BLADE-F and

BLADE-S insert very few protects and have negligible performance overhead on most of our

benchmarks — the geometric mean overheads imposed by BLADE-F and BLADE-S are 5.0% and

1.7%, respectively. In contrast, the baseline passes insert between 3 and 1862 protections and

incur significantly higher overheads than BLADE — the geometric mean overheads imposed by

Baseline-F and Baseline-S are 80.2% and 19.4%, respectively.

With both v1 and v1.1 protections, BLADE-F inserts an order of magnitude fewer protec-

tions than Baseline-F, and has correspondingly low performance overhead — the geometric mean

overhead of BLADE-F is 15.3%, whereas Baseline-F’s is 104.8%. The geomean overhead of

both BLADE-S and Baseline-S, on the other hand, is roughly 26%. Unlike BLADE-F, BLADE-S

must mark all stored values as sinks in order to eliminate Spectre v1.1 attacks; for these bench-

marks, this countermeasure requires BLADE-S to apply protections to every Wasm load, just

like Baseline-S. Indeed, we see in the table that Baseline-S and BLADE-S make the exact same

number of additions to the code.

We make two observations from our measurements. First, and somewhat surprisingly,

BLADE does not insert any protects for Spectre v1 on any of the CT-Wasm benchmarks. We

attribute this to the style of code: the CT-Wasm primitives are hand-written and, moreover,

statically allocate variables and arrays in the Wasm linear memory — which, in turn, results in

many constant-address loads. This is unlike the HACL* primitives which are written in F*,

compiled to C and then Wasm — and thus require between 3 and 235 protects.
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Second, we observe for the Spectre v1 version that SLH gives overall better performance

than fences, as expected. This is true even in the case of Curve25519, where implementing protect

using SLH (BLADE-S) results in a significant increase in the number of protections versus the

fence-based implementation (BLADE-F). Even in this case, the more targeted restriction of

speculation, and the less heavyweight impact on the pipeline, allows SLH to still prevail over the

fewer fences. However, that advantage is lost when considering both v1 and v1.1 mitigation. In

this case, the sharp increase in the number of protects required for this solution end up making

the fenced version more performant overall.

In reality, though, both versions are inadequate software emulations of what the protect

primitive should be. Fences take a heavy toll on the pipeline and are far too restrictive of

speculation, while SLH pays a heavy instruction overhead for each instance, and can only be

applied directly to loads, not to arbitrary cut points. A hardware implementation of the protect

primitive could combine the best of BLADE-F and BLADE-S: targeted restriction of speculation,

minimal instruction overhead, and only as many defenses as BLADE-F, without the inflation in

insertion count required by BLADE-S.

However, even without any hardware assistance, both versions of the BLADE tool provide

significant performance gains over the current state of the art in mitigating Spectre v1, and over

existing fence-based solutions when targeting v1 or both v1 and v1.1.

Additional analysis of performance overheads

Table 5.1 showed that the performance overhead for some benchmarks depends heavily

on the workload size. We explore this relationship in more detail in Figure 5.4. Specifically, we

see that for low workload sizes, the runtime is dominated by fixed costs for sandbox setup and

teardown; the execution of the Wasm code contributes little to the performance. As the workload

size increases, the overall performance overhead asymptotically approaches the overhead of

the Wasm execution itself. This is shown even more clearly in Figure 5.5, where we see that

the asymptotic overhead for SHA-256 with v1.1 protections is approximately 78% and 99%
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Figure 5.4: Runtime of SHA256 (CT-Wasm) as the workload size varies
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Figure 5.5: Runtime of SHA256 (CT-Wasm) as the workload size varies, presented on a per-byte
basis
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respectively for BLADE-F and BLADE-S, while the asymptotic overheads without v1.1 protections

are unsurprisingly approximately zero for BLADE-F and BLADE-S, as they insert no defenses.

5.4 Related work

Detection and repair

Wu and Wang [228] detect cache side channels via abstract interpretation by augmenting

the program control-flow to accommodate for speculation. SPECTECTOR [80] and PITCH-

FORK [36] use symbolic execution on x86 binaries to detect speculative vulnerabilities. Cheang

et al. [39] and Bloem et al. [23] apply bounded model checking to detect potential speculative

vulnerabilities respectively via 4-ways self-composition and taint-tracking. These efforts assume

a fixed speculation bound, and they focus on vulnerability detection rather than proposing tech-

niques to repair vulnerable programs. Furthermore, many of these works consider only in-order

execution. In contrast, our type system enforces speculative constant-time when program instruc-

tions are executed out-of-order with unbounded speculation — and our tool BLADE automatically

synthesizes repairs. Separately, OO7 [218] statically analyzes a binary from a set of untrusted

input sources, detecting vulnerable patterns and inserting fences in turn. Our tool, BLADE, not

only repairs vulnerable programs without user annotation, but ensures that program patches

contain a minimum number of fences. Furthermore, BLADE formally guarantees that repaired

programs are free from speculation-based attacks.

Concurrent to our work, Intel proposed a mitigation for a new class of LVI attacks [101,

207]. Like BLADE, they implement a compiler pass that analyzes the program to determine an

optimal placement of fences to cut source-to-sink data flows. While we consider an abstract, ideal

protect primitive, they focus on the optimal placement of fences in particular. This means that

they optimize the fence placement by taking into account the coarse-grained effects of fences —
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e.g., one fence providing a speculation barrier for multiple independent data-dependency chains.4

This also means, however, their approach does not easily transfer to using SLH for cases where

SLH would be faster.

Hardware-based mitigations

To eliminate speculative attacks, several secure hardware designs have been proposed.

Taram et al. [202] propose context-sensitive fencing, a hardware-based mitigation that dynamically

inserts fences in the instruction stream when dangerous conditions arise. INVISISPEC [231] fea-

tures a special speculative buffer to prevent speculative loads from polluting the cache. STT [237]

tracks speculative taints dynamically inside the processor micro-architecture and stalls instruc-

tions to prevent speculative leaks. Schwarz et al. [188] propose CONTEXT, a whole architecture

change (applications, compilers, operating systems, and hardware) to eliminate all Spectre attacks.

Though BLADE can benefit from a hardware implementation of protect, this work also shows

that Spectre-PHT on existing hardware can be automatically eliminated in pure software with

modest performance overheads.

5.5 Limitations and future work

BLADE only addresses Spectre-PHT attacks and does so at the Wasm layer. Extending

BLADE to tackle other Spectre variants and the limitations of operating on Wasm is future work.

Other Spectre variants

The Spectre-BTB variant [123] mistrains the Branch Target Buffer (BTB), which is

used to predict indirect jump targets, to hijack the (speculative) control-flow of the program.

Although Wasm does not provide an unrestricted indirect jump instruction, the indirect function

call instruction — which is used to call functions registered in a function table — can be abused

4Unlike our approach, their resulting optimization problem is NP-hard — and only sub-optimal solutions may be
found through heuristics.
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by an attacker. To address (in-process) Spectre-BTB, we could extend our type system to restrict

the values used as indices into the function table to be typed as stable.

The other Spectre variant, Spectre-RSB [125, 140], abuses the return stack buffer. To

mitigate these attacks, we could analyze Wasm code to identify potential RSB over/underflows and

insert fences in response, or use mitigation strategies like RSB stuffing [98]. A more promising

approach, however, is to use Intel’s recent shadow stack, which ensures that returns cannot be

speculatively hijacked [194].

Detecting Spectre gadgets at the binary level

BLADE operates on Wasm code — or more precisely, on the Cranelift compiler’s IR — and

can thus miss leaks inserted by the compiler passes that run after BLADE — namely, register

allocation and instruction selection. Though these passes are unlikely to introduce such leaks, we

leave the validation of the generated binary code to future work.

Spectre resistant compilation

An alternative to repairing existing programs is to ensure they are compiled securely from

the start. Recent works have developed verified constant-time-preserving optimizing compilers

for generating correct, efficient, and secure cryptographic code [5, 17]. Doing this for speculative

constant-time, and understanding which optimizations break the SCT notion, is an interesting

direction for future work.

Bounds information

BLADE-S relies on array bounds information to implement the speculative load hardening.

For a memory-safe language, this information can be made available to BLADE when compiling

to Wasm (e.g., as a custom section). When compiling languages like C, where array bounds

information is not explicit, this is harder — and we would need to use program analysis to track

array lengths statically [213]. Although such an analysis may be feasible for cryptographic code,

it is likely to fall short for other application domains (e.g., due to dynamic memory allocation and

pointer chasing). In these cases, we could track array lengths at runtime (e.g., by instrumenting
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programs [161]) or, more simply, fall back to fences (especially since the overhead of tracking

bounds information at runtime is typically high).

5.6 Conclusion

We presented BLADE, a fully automatic approach to provably and efficiently eliminate

speculation-based leakage in unannotated cryptographic code. BLADE statically detects data

flows from transient sources to stable sinks and synthesizes a minimal number of fence-based or

SLH-based protect calls to eliminate potential leaks. Our evaluation shows that BLADE inserts an

order of magnitude fewer protections than would be added by today’s compilers, and that existing

crypto primitives repaired with BLADE impose modest overheads when using both fences and

SLH for protect.
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Chapter 6

Progressive Memory Safety for

WebAssembly

WebAssembly (Wasm) is a platform-independent bytecode designed to run C/C++ and

similar languages at near native speed in the browser. Wasm’s linear memory model — i.e., loads

and stores to an untyped array of bytes, is the key feature that makes it possible for C/C++

compilers like Clang to easily and efficiently target Wasm. Unfortunately, this is also the reason

memory safety vulnerabilities, like buffer overflows and use-after-frees (UAFs), remain a problem

when C/C++ programs are compiled to Wasm [146, 151].

Wasm is designed to allow browsers to run code in a sandbox, isolating the impact of

vulnerabilities in Wasm code from the rest of the browser.1 But keeping the browser safe from

Wasm code is not the same as keeping Wasm code safe from itself — isolation doesn’t prevent

attackers from exploiting memory-safety bugs to compromise the Wasm code and any data it

handles.

This is worrisome. Wasm is supported by all major browser vendors, and already im-

plemented in over 80% of all browsers on the web [54]. Wasm is also starting to find uses

1For example, Wasm is type-safe, separates code and data, and enforces coarse-grained control flow integrity
(CFI) [226]. All these design choices simplify isolation.
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beyond the browser — from server-side runtimes [165, 221], to IoT platforms [85], and edge

computing [90, 210]. As Wasm proliferates, we risk creating yet another ecosystem where

memory-safety vulnerabilities are rampant.

Unfortunately, we can’t simply modify Wasm to enforce strong memory safety by default,

like past bytecodes for high-level languages (e.g., the Java bytecode or .NET common interface

language). Requiring strong memory safety would be an anathema to the simplicity and perfor-

mance that have fueled Wasm’s broad adoption. Instead, we argue for a progressive approach

to strong memory safety that neither mandates high performance overheads that could hinder

widespread adoption, nor gives up on the goal of memory safety in the name of performance.

This progressive approach is both necessary and timely. As hardware acceleration makes

memory safety increasingly cheap, the boundary between safety and high performance will narrow.

For example, Sparc’s application data integrity (ADI) [193] and ARM’s upcoming memory

tagging extension (MTE) [72] can probabilistically detect and prevent many buffer overflow

and UAF bugs at near zero overhead — orders of magnitude faster than what’s possible without

dedicated hardware [193]. Similarly, ARM’s recent pointer authentication feature can efficiently

mitigate pointer corruption [132]. Looking further out, it seems likely that ARM will adopt

some version of CHERI [74, 222] to efficiently enforce full spatial safety and eliminate buffer

overflow bugs altogether. Unfortunately, Wasm can’t leverage these hardware features — too

much high-level information is lost when compiling from C/C++ to Wasm’s existing abstractions.

To bridge this gap, we propose Memory Safe WebAssembly (MSWasm), a backwards-

compatible extension to Wasm that makes memory safety explicit at the language level. MSWasm

extends Wasm’s memory model with a new segment memory made up of segments — temporally

safe extents of memory — and ensures that all accesses to the segment memory are via handles.

Handles are strongly-typed first-class values that encapsulate bounds-checked, memory-safe

pointers to the segment memory. With handles and segments, a C/C++ compiler can can encode

all the semantics necessary to enforce memory safety [51] — in particular, spatial safety, temporal
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safety, and pointer integrity. By allowing handles to be sliced, MSWasm even captures fine-

grained intra-object safety, e.g., to prevent a buffer in one field of a struct from overflowing into

the next.

These richer semantics provide MSWasm backends — compilers and JITs — with every-

thing they need to use different hardware and software approaches to ensure safety. It’s then up to

the backend to determine what policy to enforce based on the available hardware and needs of the

user.

Some users might value detecting critical memory safety bugs in production but are

unwilling to tolerate much overhead for enforcement — an MSWasm backend for ARM could

use memory tagging (when available) to achieve this efficiently. On the other hand, a developer

deploying a critical service, such as an authentication server, might value security more than

performance, and thus request that the MSWasm backend enforce the full set of MSWasm safety

properties, regardless of hardware support. A third user, e.g., a game developer unconcerned with

security, might simply want to eschew any overheads and get performance equivalent to what

normal Wasm would offer.

Our hope is that by ensuring memory safety overheads never exceed what is acceptable

to the user, compiling with the semantics necessary for full memory safety will become the

default. This can help incentivize the development of new hardware features: with MSWasm,

if a vendor develops a new feature and changes a single JIT (e.g., V8 in Chrome) they can

almost immediately expose its value to billions of users. At the same time, as better hardware

becomes widely available, MSWasm backends can seamlessly enable its use, providing a path to

progressively better memory safety on the web, and other places where Wasm is used.

Organization

Next, we offer a brief overview of Wasm and its limited form of memory safety, then

survey potential hardware features that could help (§ 6.1). We present MSWasm in § 6.3, and

explore how it can improve memory safety for low-level languages like C/C++. In § 6.4 we discuss
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different hardware and software mechanisms MSWasm backends could leverage to enforce safety.

Finally we discuss extensions to MSWasm and alternative design choices in § 6.6.

6.1 Motivation

Our goal with MSWasm is to enhance Wasm for greater expressiveness, so that it can

encode the semantics necessary to support different approaches to accelerating memory safety —

more specifically, by adding a model of pointers and memory allocation so that this information

isn’t lost when lowering to Wasm.

To see why this is necessary, we will start by discussing the cause of memory safety

vulnerabilities (§ 6.1.1); then sketch Wasm’s basic structure, and why lowering to Wasm preserves

these vulnerabilities (§ 6.1.2); and finally survey some of the current and future hardware support

which MSWasm backends could use to prevent or mitigate memory-safety vulnerabilities (§ 6.1.3).

6.1.1 Memory safety

In loose terms, memory-safety bugs in C/C++ result from how compilers interpret unde-

fined behavior. For example, one valid interpretation of writing beyond the end of an array in the

C standard is to crash the program — an easily understandable semantic. However, array bounds

checking can induce unwanted performance overheads, so compilers adopt the more dangerous

interpretation: write to whatever other object happens to be in that memory location, and continue

running.

This interpretation violates programmers’ assumptions about separation between different

data objects [51]; and when this interpretation meets malicious inputs, they become memory-

safety vulnerabilities, as the programmer has inadvertently given a potentially malicious input

control over unintended parts of program data and control flow.
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To prevent these attacks, the compiler could take a more conservative interpretation, and

halt on undefined behaviors that violate separation — i.e., enforce memory safety. In practice, this

amounts to ensuring three properties:

I spatial safety, which prevents out-of-bounds reads and writes;

I temporal safety, which prevents exploitation of use-after-free;

I pointer integrity, which prevents pointers from being manufactured from non-pointer

values (e.g., casting an integer to a pointer), and also makes it impossible to corrupt a pointer

in memory to create a different valid pointer.

Together, these three properties ensure that every pointer dereference in a program returns data

from the corresponding, valid object.

Enforcing these properties efficiently requires some amount of dynamic checking — such

as tracking if a pointer’s referent has been de-allocated to prevent use-after-free bugs. Often the

overhead of implementing these checks in pure software is prohibitive; even optimized JIT-based

approaches can incur over 2× performance slowdowns for enforcing full memory safety [163].

Thus, the status quo for C/C++ has been to rely on system-level mitigations such as

ASLR and W⊕X rather than enforce memory safety outright. Fortunately, hardware vendors are

increasingly adding features to bring down the overhead of memory safety.

6.1.2 WebAssembly (Wasm)

Wasm is a portable bytecode language, designed to be an efficient target for low-level

languages [84]. On the Web, developers use Wasm to embed existing C/C++ libraries such as

the libsodium crypto library, video decoding libraries, and game engines into webpages. But

Wasm’s reach extends far beyond the browser. Server-side, Node.js application developers, for

example, use Wasm to safely embed fast native code alongside JavaScript. Even serverless
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platforms (e.g., Fastly and Cloudflare) are making large bets on Wasm as the future of efficient,

edge computing [90, 210].

Structurally, Wasm is a stack machine language that has well-typed stack (using simple

primitive types: i32, i64, f32, and f64) and a linear model of memory, i.e., load and store to

an “untyped array of bytes” [226] similar to native platforms. Consider, for example, a Wasm

function that increments (by 3) a value in memory at a given address:

(func $add3 (param $addr i32)

(i32.load (get_local $addr))

(i32.add (i32.const 3))

(i32.store (get_local $addr)))

This example shows how Wasm’s values and stack operations are typed, but also how memory

addresses simply have type i32; thus, loads and stores are free to arbitrarily read and write in

Wasm’s linear memory.

Because Wasm is designed to be an embedded in existing applications, Wasm code runs in

an isolated sandbox. For example, even though Wasm code can access arbitrary indices in its own

memory, there is no way for a Wasm instruction to access memory outside of its sandboxed area.

The Wasm backend similarly protects return addresses with a separate stack and ensures that all

indirect function calls go through well-typed entry points. Together, these protect Wasm code

from stack-smashing attacks and make traditional return-oriented programming (ROP) attacks

impractical.

Unfortunately, Wasm’s safety is often misunderstood. For example, Wasm is sometimes

called a “memory-safe language” [224]. This is not true: memory-safe languages provide spatial

safety, temporal safety, and pointer integrity (§ 6.1.1); Wasm provides none of these.

Wasm, like native platforms, allows load and store instructions to operate on an untyped

address space using arbitrary integer addresses. While attackers cannot carry out stack-smashing

or ROP attacks, they can still exploit familiar memory-safety vulnerabilities in the Wasm linear
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memory to read and write data, just as they have in C/C++ applications on native platforms

for decades. These attacks neither enable nor require escaping the Wasm sandbox. Indeed,

compromising the Wasm application itself is often enough — plenty of sensitive data (e.g.,

cryptographic keys in the case of libsodium) is located within the sandbox.

6.1.3 Hardware support for memory safety

Hardware tagged memory

Tagged memory associates additional metadata, a tag, with each region of memory.

Research hardware-capability systems such as CHERI [222] and lowRISC [138] use tagged

memory to ensure that capabilities cannot be forged or modified [113]. Other tagged memory

systems such as Sparc ADI [193] associate, e.g., a 4-bit tag with each 64-byte aligned region of

memory. In these systems, each pointer also contains a tag which is compared with the tag of the

target memory on each load and store; if the tags don’t match, the operation fails. The efficiency

of this check makes memory tagging useful for enforcing a variety of protection policies [46]. For

instance, memory tagging can be used for probabilistically detecting many spatial and temporal

safety bugs.

ARM recently added a memory tagging extension (MTE) to the ARM 8.5-A ISA [72]

which employs a 16-byte granule size but is otherwise nearly identical to ADI. This makes it

likely that hardware tagged memory will be widely available in the near future.

Pointer authentication

ARM pointer authentication (PAC) is a feature which stores a cryptographic MAC in the

unused upper bits of each pointer. PAC is supported by recent ARM processors, and already used

in today’s iPhones [178]. With PAC, memory operations can be made to fail if the pointer being

dereferenced does not have a MAC from the appropriate private key (e.g., for kernel pointers,

the kernel’s private key) and context (an additional input to the MAC that can be used to provide
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compartmentalization). PAC instructions can be used to protect the integrity of data pointers,

function pointers, and even stack pointers for CFI.

Bounds registers

Intel attempted to support memory safety with MPX bounds registers and bounds tables.

With MPX, upper and lower bounds can be loaded into the bounds registers which are checked

during loads and stores. Unfortunately, MPX failed to offer better performance than software-only

solutions [166], leading to low adoption in practice, and even to GCC dropping support for

MPX [66].

Hardware capabilities

The CHERI architecture [222] supports capabilities as an alternative to pointers. Capabili-

ties are unforgeable references that contain both bounds data and access privileges, making them

ideal for memory safety. While to date the CHERI architecture remains a research prototype,

ARM recently announced plans to incorporate some of CHERI’s ideas into future designs [74].

This represents a promising path forward for hardware memory safety.

6.2 Design goals

We propose to extend Wasm to provide the capability to efficiently enforce full memory-

safety guarantees, even inside the Wasm sandbox. The design of our extension, MSWasm, has

four major goals:

Strong safety guarantees

MSWasm seeks to provide abstractions that can be used to enforce memory safety, i.e.,

spatial and temporal safety, and pointer integrity. At the same time, these abstractions should

also be sufficient to support weaker piecemeal mitigation and detection mechanisms.

Backwards compatibility
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MSWasm must be a minimally invasive extension to Wasm. This includes making

MSWasm backwards compatible with existing Wasm toolchains, and making all of its features

opt-in. Thus, existing Wasm binaries should remain valid, with the same semantics as before.

Likewise, existing source-to-Wasm compilers should continue to be valid.

Leveraging hardware

MSWasm backends should be able to leverage whatever memory-safety hardware features

are available on a given hardware platform. Thus, the design of MSWasm should be general

enough to accommodate different detection and enforcement mechanisms, and not be specific to

any particular hardware mechanism, e.g., memory tagging or MPX.

Progressive enforcement

Enforcing full memory safety is the ideal, but doing this without sufficient hardware

support is prohibitive in many use cases—and requiring it would discourage users from building

and deploying their applications with MSWasm.

Instead, MSWasm should accommodate different design points that trade off security

and performance, and leave it to backends to choose the best combination of software and

hardware mechanisms to implement the desired guarantees. For this reason, MSWasm separates

the memory-safety abstraction—the Wasm-level semantics needed to allow C/C++ compilers

to encode sufficient information to efficiently enforce memory-safety guarantees—from the

enforcement policy, i.e., how the backend actually implements whatever checks are necessary in

order to meet the desired security and performance goals.

Different applications demand different points in the security-performance tradeoff space.

For example, many applications would opt for mitigations over enforcement to stay within a

reasonable performance budget (e.g., 5-10% CPU overhead). Security-critical applications, on the

other hand, could demand full memory-safety guarantees, no matter the cost. Other applications

might even request no enforcement at all—e.g., because performance is critical or, perhaps,
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because memory safety is enforced statically or dynamically, with inline checks. Such a policy

could ideally be implemented with no overhead, equivalent to existing Wasm without any checks.

As hardware support improves and the cost of memory safety decreases, MSWasm back-

ends will be able to provide progressively stronger guarantees at lower overheads, transparently

increasing safety without violating users’ performance requirements.

6.3 Design

At the heart of MSWasm is a new segment memory that lives alongside the Wasm linear

memory. Unlike the linear memory, the segment memory is well-structured; it consists of

segments — linearly addressable, bounded regions of memory whose lifetimes are manually

managed. Segments can only be accessed through handles, and not via Wasm’s usual load and

store instructions. This way, by placing certain restrictions on how handles are used, MSWasm

can make strong guarantees about the memory safety of these segments.

In the rest of this section we describe MSWasm by showing how languages like C and

C++ can be compiled to MSWasm, and how enforcing certain restrictions on MSWasm primitives

can provide strong memory-safety guarantees.

6.3.1 Handles and segments

Handles are used to model pointers — specifically, pointers bounded to particular live

allocations of memory. Abstractly, handles are described by the 4-tuple (base, offset, bound,

isCorrupted). The base of the handle represents the address of the start of the segment (in

segment memory) being pointed to. The offset is the offset within the segment, i.e., within the

bound, that the handle points to. If we think of the handle as a pointer, the location it points to in

the segment memory is the base+offset.
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As handles are used to model pointers, we introduce new Wasm instructions for pointer

arithmetic, including addition, subtraction, and comparisons on handles; and we also define a

NULL handle. For example, the handle.add and handle.sub instructions modify the handle offset

without changing the base or bound. Pointer arithmetic can give rise to out-of-bounds handles (i.e.,

when the offset is negative or larger than the bound). We don’t prevent code from creating such

handles; instead, memory-safe MSWasm backends will trap when out-of-bounds handles are used,

i.e., when the pointer is dereferenced. Delaying this check until dereference is important both for

performance — it eliminates unnecessary checks during pointer arithmetic — and compatibility —

as pointers that temporarily point out of bounds are common [61] and benign behavior in C

programs [149, 150].

MSWasm treats handles as opaque values and does not specify a byte-level representation

for them. This means that individual backends can represent them in a way most suitable to each

platform, which may include storing some of this data separately and not as part of the handle

itself. Moreover, as discussed below, backends which do not provide certain guarantees need not

keep track of some of this data at all.

Segments are linearly addressable, fixed sized, extents of memory. (In § 6.3.3 we detail

how segments are created and released.) Wasm code can load and store values to the segment

memory via handles:2

i32.segment_load(src: handle) -> i32

i64.segment_load(src: handle) -> i64

i32.segment_store(dst: handle, val: i32)

i64.segment_store(dst: handle, val: i64)

To enforce spatial safety, an MSWasm backend must ensure the following property:3

2On notation: When practical, we adopt the Wasm convention of prefixing instruction names with
their return type — for example, i32.add. When additional clarity is necessary, we adopt the notation
new_segment(size: i32) -> handle which shows the arguments and return type explicitly.

3To fully prevent all out-of-bounds access to the segment memory, MSWasm backends must also provide the
handle integrity property defined later, which prevents out-of-bounds handles from being forged by an attacker.
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Spatial safety for existing handles: For each segment load and store, the handle being

dereferenced is in-bounds, i.e., the handle is not the NULL handle, and its offset is nonnegative

and less than its bound.

On the other hand, if these bounds checks are omitted by the backend, bounds information for

handles need not even be tracked, and the performance of the segment load and store instructions

should be similar to Wasm’s existing load and store.

6.3.2 Slicing handles

With the checks above, handles provide inter-object spatial safety, i.e., they restrict a

pointer to accessing only the segment the handle points to. We also use handles to provide

intra-object spatial safety through slicing. Wasm code can slice handles with:

segment_slice(parent: handle, base: i32, bound: i32) -> handle

This copies the parent handle and then grows the base, shrinks the bound, or both, to yield a

smaller window into the segment. To illustrate this, consider the following code snippet.

struct A {char foo[4]; char bar[4];}

struct A * my_str = malloc(sizeof(struct A));

char * subfield = my_str->foo;

When we create a pointer to foo on the third line, the compiler can generate a new slice that

includes only foo. Thus, if our code later tries to overflow foo, it will be contained to this slice by

the spatial safety checks, and it will not be able to corrupt bar.

6.3.3 Segment allocation and deallocation

MSWasm code creates new segments and releases them with the new instructions:
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new_segment(size: i32) -> handle

free_segment(h: handle)

The new_segment instruction returns a handle to a newly-allocated segment. New segments are

initialized to all zeroes, much how Wasm zero-initializes its linear memory [215]. These segments

are guaranteed to be live until released with free_segment.

MSWasm backends enforcing memory safety should ensure temporal safety. We consid-

ered two different semantics for this. A simple approach would require memory-safe implementa-

tions to trap immediately when a segment is accessed after it has been freed. However, this is

often inefficient to implement — it adds overhead to the critical path of free_segment and forces

synchronization between the allocator and embedding application thread. Instead, we propose to

adopt the relaxed model of Kedia et al. [115]:

(Relaxed) temporal safety: The backend guarantees a trap on any access to a segment after

it has been deallocated. That is, the segment may remain accessible (and completely valid)

for an unspecified amount of time after free_segment has been called, until the allocator

reclaims the memory.

This definition allows backends to defer deallocation until the last possible moment, while still

preserving temporal safety. Moreover, it allows us to efficiently support several different safe

manual memory management systems [47, 115, 134] as further discussed later (§ 6.4.3).

6.3.4 Handle integrity

Since we model pointers with handles, code must be able to load and store handles from

memory. Unlike C and C++, however, we do not provide a way to cast handles to integers (and

back). This also means we cannot allow handles to be stored in the legacy Wasm linear memory
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(we simply do not provide instructions to do so). Instead, MSWasm provides instructions for

explicitly loading and storing handles from segment memory:

handle.segment_load(src: handle) -> handle

handle.segment_store(dst: handle, val: handle)

To ensure that a Wasm program cannot forge pointers (e.g., with the i64.segment_store and

handle.segment_load instructions), MSWasm backends should enforce handle integrity:

Handle integrity: The backend conceptually associates either the type data or the type handle

to each handle-aligned location in the segment memory. (New segments are initialized to be

entirely type data.) On each segment_load and segment_store instruction, it then preserves

these types:

I Storing data (handle) to a particular location updates the containing segment element’s

type to data (handle).

I Loading a handle from a location of type data produces a corrupted handle, i.e., a

handle with isCorrupted=True. Like the NULL handle, corrupted handles are invalid —

loads and stores on corrupted handles are disallowed; the backend should (conceptually)

check the isCorrupted bit on every segment load and store. However, corrupted handles

can themselves be written to segments with segment_store; when storing such a handle,

the value of the loaded element is preserved, as is the type — data. This allows us to

efficiently support memcpy-like operations (see § 6.6.1).

I Loading data from a location of type handle is also allowed, but results in an

implementation-defined data value. Importantly, the restrictions above ensure that

such a data value can never be used as (or turned back into) a valid handle.

An MSWasm backend that does not enforce handle integrity need not keep track of data/handle

types in the segment memory, and likewise need not distinguish corrupted handles from valid
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handles (need not keep track of isCorrupted); this should provide performance equivalent to

existing Wasm. On the other hand, by enforcing handle integrity with the semantics described

above, an MSWasm backend can ensure that valid handles can only be created during memory

allocation or from existing valid handles with segment_slice, and furthermore that handles

cannot be overwritten (even partially) in memory without becoming invalid.

6.4 Implementation strategies

MSWasm enables backend compilers and runtimes to enforce memory safety using a

variety of hardware and software mechanisms. We review some of the promising current and

future approaches.

6.4.1 Spatial safety

To ensure memory safety, MSWasm backends must ensure that all dereferenced handles

are in-bounds (§ 6.3.1).

In software

Enforcing full spatial safety in software often imposes relatively high overheads. For

instance, Baggy Bounds [3] reported average runtime overheads around 60% (highly varying by

workload) and memory overheads around 15%. ManagedC [73] reports full spatial safety with

runtime overheads around 15% on average, but is highly workload dependent and relies on an

optimized just-in-time compiler (JIT), resulting in additional memory overheads.

Lower overheads can be achieved by relaxing certain safety properties. Delta Point-

ers [127] achieves around 35% average runtime overhead and negligible memory overhead, partly

by ignoring buffer underflow errors and only detecting buffer overflow. Going further, Duck et

al. [59] report overheads similar to Baggy Bounds for full spatial safety, but by omitting certain
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checks (e.g., only checking writes), runtime overhead can be reduced below 10% [58]. However,

even the fastest software schemes cannot match the efficiency possible with hardware support.

In hardware

The most promising and well-researched approach to strong spatial safety in hardware

today is the Capability EnHanced RIsc (CHERI) system [222], which encodes spatial safety

information in capability pointers — a fat pointer encoding that includes bounds information plus

additional protection metadata. Current work suggests that overheads often in the low single digits

are possible [50], and it seems likely that a production-quality processor could achieve even more

impressive results. ARM recently announced plans to incorporate some of CHERI’s ideas into

future processors, and we feel optimistic about its prospects as the future of hardware-accelerated

enforcement of full spatial safety.

Hardware tagged memory systems such as ARM MTE (§ 6.1.3) provide a weaker approach

to spatial safety in the near term, but are very efficient. Using MTE, a MSWasm backend can

ensure that the memory allocator assigns each allocation a different “color” (tag value) and ensure

that adjacent allocations never share the same color. This is an incomplete solution, as many

buffer overflows allow an attacker to address beyond adjacent objects. However, it does provide

an efficient means of (probabilistically) detecting both spatial and temporal bugs. With 4-bit tags

(as provided by ARM MTE), by randomly assigning a color to each allocation we can expect to

detect both spatial and temporal bugs with a relatively high probability.

As MTE is only a mitigation, its security guarantees are not absolute, and it is unclear

how much protection it provides against a determined attacker. For instance, an attacker may

be able to brute-force the protection provided by randomly coloring allocations. In the end, the

security benefits are highly dependent on details such as the particular type of vulnerability and

how tags are assigned.

Finally, as discussed in § 6.1.3, Intel’s MPX is already widely available, but is slower than

comparable software solutions [166].
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6.4.2 Handle integrity

As specified in § 6.3.4, full memory safety requires MSWasm backends to track the

type of memory in segments, either handle or data. This can also be done in either software or

hardware.

In software

Efficiently implementing handle integrity in software is challenging: the overheads of

software tagged memory systems such as ASan [192] suggest that both memory and CPU

overheads can easily be prohibitive. With enough type information, it seems possible to do

better — e.g., ManagedC [73] achieves surprisingly modest overheads for full memory safety with

the help of full C type information. Extending MSWasm with additional semantics to support a

scheme like this might be worth exploring in future work.

In hardware

Hardware tagged memory is the most direct and efficient way to support handle integrity.

CHERI uses tags to distinguish between pointers and data, as does lowRISC [138].

Unfortunately, hardware tagged memory implementations such as Sparc’s ADI and ARM’s

MTE cannot easily be used to provide handle integrity because they provide tags for 16-byte

(MTE) or 64-byte (ADI) regions of memory only. This means that each region of this size must

have a single tag at any given point in time. Even if it were practical to ensure that every 16-byte

or 64-byte region of memory contained either only handles or only data at all times — which

is far from clear — this would require coordination between Wasm compilers and backends to,

e.g., provide proper padding for structs in C (as a Wasm backend could not easily redo this

padding on its own). Moreover, MSWasm would have to choose a granularity for this padding

independent of backend, which would either exclude certain platforms (if it were too small) or

incur unnecessary space overheads (if it were too large). For tagged-memory systems to be useful

for pointer integrity, they must provide tags (of at least one bit) at the granularity of pointer-size

or smaller. At present, no commercial hardware tagged memory implementation does this.
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ARM PAC (see § 6.1.3) seems like a natural fit for providing handle integrity. Unfor-

tunately, it has some limitations. First, the overhead of using PAC to protect all pointers (as

MSWasm proposes) is around 20% [132], much worse than what memory tagging can provide.

Further, storing a MAC in the upper bits of each pointer makes these bits unavailable for use in the

fat pointer encodings required for many spatial safety approaches (see § 6.4.1). Thus, although

PAC may be a promising mitigation for protecting function or vtable pointers, it is not well-suited

for providing handle integrity.

6.4.3 Temporal safety

Temporal safety can be enforced in pure software, with the aid of virtual memory hard-

ware, or using custom hardware designed for the purpose. MSWasm accommodates many

recently proposed techniques by providing a separate segment memory and allocation interface

(new_segment and free_segment) to support platform-specific allocators, and by slightly relaxing

its temporal safety semantics (§ 6.3.3) to align with the guarantees these systems provide.

In pure software

Garbage collection is a traditional software-based solution for providing temporal safety.

While an MSWasm implementation could employ garbage collection, recent systems provide

substantially lower overheads while retaining manual memory management.

One approach, explored by DangSan [208] and other systems [129, 236], provides tempo-

ral safety by tracking all pointer aliases. When a pointer is freed, they rewrite its aliases to NULL.

These systems still impose non-trivial overheads, e.g., DangSan incurs averages of 12%-41%

runtime overhead, and 56%-140% memory overhead, on various single- and multi-threaded

workloads (with results highly varying by workload, from 0% to over 700%). pSweeper [134]

uses concurrent thread(s) to detect dangling pointers and avoids maintaining a precise points-to

map; this results in lower runtime overheads than DangSan (12%-17% on average) with similar
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memory overheads. More efficient approaches are possible with help from the virtual memory

system.

Using the virtual memory system

Both OSCAR [47] and Project Snowflake from MSR [115, 172] leverage the virtual

memory system to efficiently provide temporally safe manual memory management. Project

Snowflake tracks when most of the objects on a page have been freed, then unmaps the page (so

that future dereferences of dangling pointers will trap) while copying the remaining live objects

to a new page and lazily patching references to them. This is conceptually similar to a copying

GC, but compared to GC, they reduced peak working set size by 3×, and runtime overhead by

2×. OSCAR maps a unique virtual page for each allocation and unmaps on each deallocation.

So long as no virtual addresses are re-used, accesses to freed objects will hit an unmapped page.

This provides strong temporal safety with very low runtime overhead. pSweeper, OSCAR, and

Project Snowflake all leverage the delayed-free semantics of MSWasm.

In pure hardware

Watchdog [160] shows that dedicated hardware support can provide both temporal and

spatial safety efficiently. It incurs a runtime overhead of 18%, and memory overheads averaging

32%-56% (again highly workload-variant), while providing full spatial and temporal safety.

ARM MTE style tagging can also be used to enforce temporal safety. Specifically, each

memory allocation can be assigned a random tag when allocated, and re-tagged with a new

random tag when freed. This has the potential to detect use-after-free bugs efficiently enough

to be used in production workloads. Unfortunately, this protection is probabilistic; an attacker

could potentially easily brute-force this protection with, say, a 1/16 chance of success each time.

Nonetheless, this presents an intriguing option in the security-performance tradeoff space which

may be suitable for some applications.
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6.5 Compiling to MSWasm

MSWasm, like Wasm, is intended to be a compilation target from higher level languages.

We implement a compiler from C to MSWasm by extending the CHERI fork of Clang and

LLVM [44]. CHERI modified LLVM to support fat pointers, which share many characteristics

with MSWasm handles, and is thus a good starting point for MSWasm.

CHERI represents fat pointers at the LLVM IR level as pointers in a special, distin-

guished “address space”; pointers in this address space are lowered to CHERI capabilities in

the appropriate LLVM backends. CHERI today only targets MIPS and RISC-V (with CHERI

hardware extensions) backends; other backends, including the Wasm backend, are incompatible

with CHERI’s fat pointers. We modified the Wasm backend to emit MSWasm bytecode, lowering

fat-pointer abstractions to MSWasm abstractions.

Global and Static Data

Our C-to-MSWasm compiler only emits handle-based load and store operations, resulting

in MSWasm programs which do not use the linear memory at all. This provides additional safety

guarantees (and implementation expediency) at the expense of some flexibility (e.g., we do not

support integer-to-pointer casts, except for a few special cases like constant 0). One consequence

of this is that even global variables and static data need to be accessed via handles, and thus

placed in the segment memory.4 Our compiler emits instructions to allocate a segment for each

LLVM global variable and store the corresponding handle in a Wasm global variable. When

the target program needs a pointer to the global array, it simply retrieves the handle from the

appropriate Wasm global variable.

Some global variables in C are themselves pointers, initialized via initialization expres-

sions, and need to be pointing to valid, initialized memory at the beginning of the program.

4More precisely, global variables which the program never takes the address of, do not need this treatment, as we
can compile them into Wasm globals; but global variables which the program does take the address of, such as global
arrays, are accessed via pointers and thus must be located in the segment memory.
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Our compiler generates the necessary information in the output .wasm file to instruct MSWasm

compilers and runtimes to initialize certain segments at module initialization time.

C Stack

We compile part of the C stack to the segment memory. Specifically, stack variables

whose address-of are taken and stack-allocated arrays cannot be placed on the (simple and safe)

Wasm stack. Compilers from C to ordinary Wasm place these variables in the linear memory; our

compiler places them in the segment memory.5 We allocate a single large segment to represent

stack memory for all of the variables which must be allocated in the segment memory; this

means we have a single stack pointer, which we store in a dedicated Wasm global variable of

type handle. Compared to using a separate segment for each stack allocation, our single-segment

implementation is simpler (and faster) but trades-off some safety, e.g., we cannot prevent a stack

buffer overflow from corrupting another stack-allocated buffer.

Standard library

Wasm programs which depend on libc need a Wasm-compatible implementation of

libc. We modified WASI [158] to be compatible with MSWasm to the extent necessary for

our benchmarks. Most importantly, we fully recompiled the WASI libc using our MSWasm

compiler, in order to generate libc bytecode compatible with MSWasm. In our MSWasm version

of the WASI libc, the implementations of malloc and free are completely replaced by trivial

implementations consisting of the segalloc and segfree MSWasm instructions.

Implementation Effort

Our CHERI LLVM additions (in particular to its Wasm backend) and the WASI libc,

amounted to approximately 1600 lines of code. While our compiler can target any MSWasm

5Stack variables which the program never takes the address of can be compiled to Wasm local variables, and data
such as return addresses are never placed in the linear memory at all; Wasm implementations place them on a safe
stack which is inaccessible to Wasm load and store instructions. The only stack variables which need to be placed in
the linear memory, or for us the segment memory, are those we need pointers to.
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backend, compiling general, real-world applications would likely require additional changes to

WASI libc. We leave this to future work.

6.6 Discussion

In this section, we discuss some of the challenges with compiling MSWasm, how

MSWasm can be used to further harden legacy code, alternative approaches to implementing

memory safety for Wasm, and how future hardware mechanisms should shift to more efficiently

support MSWasm and memory safety in general.

6.6.1 Compiling MSWasm

Handle sizing

We need to specify the size of handles at the Wasm level (independent of backends) so that

compilers can target MSWasm. Handles are perhaps most naturally implemented as fat pointers,

where bounds information is encoded directly in the pointer. We believe that 64-bit handles

represent the optimal tradeoff: they are small enough to be efficient on modern architectures,

while large enough to represent a handle (i.e., base, bound, offset) for Wasm’s 32-bit address

space when efficiently encoded [59, 127, 128]. Additionally, 64-bit handles are large enough to

support most of the other schemes described above (for all safety properties).

Pointer semantics

The relationship between pointers and integer types in C is an important question

for MSWasm which may impact compatibility with real-world C. The ISO C standard [108]

(§6.2.3.2) is relatively strict as it defines casting integers to and from pointers as implementation-

defined behavior or undefined behavior, with exception of NULL pointers (which MSWasm supports

with the NULL handle). However, real-world C programs may rely on behavior beyond what is

specified in the ISO standard.
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With MSWasm the compiler can support some more liberal behaviors by modeling

pointers with corrupted handles (see § 6.3.4) across casts in many situations, while MSWasm’s

strict rules on segment loads and stores ensure handle integrity is nevertheless always maintained.

We believe our semantics maintains both broad compatibility with C programs and (for backends

implementing the handle integrity checks) strong safety guarantees. An alternate semantics could

allow more permissive casting between integers and handles while tracking provenance across

integer types; however, this requires more invasive changes to Wasm’s core semantics (e.g., to

track data/handle types on the Wasm stack). Our concrete compiler discussed in Section 6.5

does not yet support most integer-to-pointer casts other than for NULL pointers.

Another challenge is supporting functions like memcpy() and memmove() that can copy

both data and pointers (e.g., by casting pointers to integers). But, since our handle.segment_load

and handle.segment_store preserve the data loaded even when operating on a non-handle, they

can be used to implement memcpy() and preserve all data and type information when copying

segments.

6.6.2 Beyond heap memory safety

Protecting the stack

MSWasm can be straightforwardly used to provide memory safety for heap allocations.

However, the stack needs additional protection as well. C/C++-to-Wasm compilers like Em-

scripten [238, 239] currently unsafely store stack-allocated aggregate values like struct and

array in linear memory, as Wasm stack and local variables can only hold scalars. To fully

protect these values, we propose to store them in the segment memory. Much like Emscripten’s

current practice, the compiler could make a one-time large allocation for the entire stack. Then,

when pointers to stack-allocated aggregate values are needed, the compiler can generate slices

corresponding to those specific aggregates. These slices would not be temporally safe — they

would remain valid after their target stack frame is popped — but would still be bounds checked
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and provide pointer integrity. Previous studies suggest that this tradeoff is reasonable, as they

have failed to find exploitable use-after-free vulnerabilities on the stack [28, 129]. Our concrete

compiler discussed in Section 6.5 uses a single large allocation for the stack without slicing,

providing weaker guarantees but still ensuring that stack pointers cannot be used to access the

heap and vice versa.

Protecting Wasm function pointers

The Wasm spec makes it clear that Wasm has no function pointers. Instead, functions are

accessed through a table, ensuring that one can only branch to a function entry point. However,

the indexes to this table still live in memory, and are thus vulnerable to control flow bending

attacks [33].

Extending MSWasm to protect function pointers is a relatively simple change. We could

add a function_index type that is in other ways like a normal i32 function index, but leverages

segments for integrity protection similar to handles. Like for handles, MSWasm backends could

trap on any attempt to use a function_index that has been overwritten by a non-function_index

value.

PAC is an ideal fit for this task, as prior work puts its overhead for protecting both code

pointers and return addresses at (< 0.5%) on average [132].

6.6.3 Alternative paths to memory safety

Memory-safe languages

One way to ensure Wasm programs are memory-safe would be to write them in a memory-

safe language like Rust, or safe variants of C (e.g., [61, 112]). This, unfortunately, is not realistic —

developers want to deploy legacy C/C++ code to Wasm — and even memory-safe languages can

benefit from the hardware-accelerated memory safety provided by MSWasm.

Leaving enforcement to compilers
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Another option is to put the onus for enforcing memory safety solely on compilers

or language runtimes, and leave Wasm agnostic to these concerns. This again is unrealistic:

many state-of-the-art techniques for efficient memory safety rely on architecture- or OS-specific

features, from temporal safety techniques that leverage page level protections [47, 115], to

hardware features like ARM PAC and MTE. For Wasm backends to efficiently leverage these

features, we need abstractions to express memory-safety properties directly in Wasm.

Object-based memory models

One way to encode memory-safety properties in Wasm would be to extend Wasm with a

strongly typed, object-based memory model that relies on garbage collection, like those in the

JVM and CLR. These kinds of memory models offer both strong spatial and temporal safety

(through garbage collection). Such a model has been proposed as an extension to Wasm to

support higher level GC’d languages [225]. However, mapping C/C++ to this model seems to be

fundamentally inefficient. Garbage collection brings additional space and compute overheads

that are unnecessary in languages with manual memory management [172]. Moreover, the type

systems of these languages are also too restrictive to model real C/C++ code [73].

6.6.4 Future directions for hardware

Web platforms have a long history of waiting until security problems are out of control

before starting to address them. Memory safety vulnerabilities are the most common and

dangerous vulnerabilities of our time. It is absurd to assume these issues will not impact Wasm.

Now is the time to start addressing this challenge.

In the future, Wasm standards bodies could benefit from engaging with the architecture

community on how to best surface future memory safety capabilities in Wasm, and ensure the

Wasm road map takes these features into account. Conversely, future hardware designs could

benefit from considering how to add value through surfacing memory features in the Wasm

ecosystem. Providing a standard IR for memory safety, such as MSWasm, provides a target for
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hardware designers to work against and can play a critical role for enabling cooperation between

these two communities.
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Chapter 7

DMS: Deterministic Spatial Memory Safety

with ARM MTE

As we have repeatedly seen in this dissertation, memory safety vulnerabilities are a

serious problem for today’s software. One obvious solution to this problem is to rewrite all of our

security-critical code in memory-safe languages, such as Rust or Go. However, today’s software

systems are enormous, and rewriting them in a new language is an onerous proposition. For

instance, Chromium alone contains over 14 million lines of C and C++ [201]; rewriting it would

be prohibitively expensive and time-consuming.

A much more attractive solution is to automatically enforce memory safety directly for

unmodified C and C++ code. Proposals such as CCured [163] and SoftBound [161] provide

deterministic memory safety for C code using fully automated program transformations. By

enforcing memory safety automatically and invisibly to the programmer, we reap the security

benefits without incurring the tremendous cost of rewriting in a safe language.

But automatically enforcing memory safety for C and C++ incurs a large performance

overhead — these languages weren’t originally designed for memory safety enforcement. For
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instance, SoftBound reports an average runtime overhead of 67% on selected SPEC2000 bench-

marks written in C [161].

One way to improve the performance of these solutions is with dedicated hardware support.

Hardware manufacturers have recently introduced or proposed many new features intended to

help in the battle against memory safety vulnerabilities. The ARMv8.5-A specification includes

a Memory Tagging Extension (MTE) [72], and ARM is also working on a prototype product

called Morello which incorporates concepts from the CHERI capability architecture [11]. Similar

to ARM MTE is Oracle’s Application Data Integrity (ADI) feature introduced with the SPARC

M7 [1]. Intel recently experimented with Memory Protection Extensions (MPX) [166] (now

deprecated), has introduced Memory Protection Keys (MPK) [103], and even more recently

proposed Cryptographic Capability Computing (C3) [130]. All of these features aim to facilitate

low-overhead enforcement of (some aspect of) memory safety without requiring changes to

application code.

Unfortunately, MTE, ADI, and C3 provide only incomplete protection from memory safety

vulnerabilities — their security guarantees are only probabilistic. We propose DMS, a compiler-

based defense which builds on top of MTE in order to achieve fully deterministic spatial memory

safety enforcement. DMS identifies which memory accesses are provably (deterministically)

safe, and which accesses may “slip through the cracks” of MTE’s probabilistic enforcement.

Then, DMS inserts software checks at each insecure memory access. Together, MTE’s hardware

enforcement and DMS’s software checks provide fully deterministic spatial safety for legacy

applications.

7.1 Background

We give a brief primer on memory safety concepts, on the new ARM MTE hardware

extension, and on the natural way to use MTE to achieve (probabilistic) memory safety.
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7.1.1 Memory safety

As we saw in Chapter 6, memory safety can be viewed as having three components:

spatial safety, temporal safety, and pointer integrity. Spatial safety refers to the absence of out-of-

bounds or buffer-overflow vulnerabilities; temporal safety refers to the absence of use-after-free

or double-free vulnerabilities; and pointer integrity refers to the inability for attackers to forge

valid pointers (e.g., by casting from integers).

Although all three components of memory safety are necessary for secure programs, in

this work we follow many other previous efforts (e.g., [3, 127]) by focusing on mechanisms for

providing spatial safety.

7.1.2 Probabilistic enforcement with ARM MTE

To help combat memory safety problems, ARM introduced its Memory Tagging Extension

(MTE) [12]. MTE adds a 4-bit hardware tag to each 16-byte (aligned) granule of memory. As

4 bits provides 16 possible tag values, we refer to these tag values as colors; each granule of

memory has one of the 16 possible colors. MTE also repurposes 4 otherwise-unused bits in the

top byte of the pointer representation (virtual address) as a tag value representing the color of

the pointer. Pointer arithmetic preserves the pointer’s color — i.e., adding 4 to a pointer with tag

value 0100 results in a pointer that also has the tag value 0100. On every pointer dereference (load

or store), the hardware compares the pointer’s tag value (color) to the tag value (color) of the

memory being accessed, and if they do not match, a fault is generated.

MTE hardware naturally lends itself to providing low-overhead memory-safety enforce-

ment, as described in ARM’s own whitepaper [12]. In the natural scheme, an MTE-aware memory

allocator chooses a color (perhaps randomly) for each new memory allocation. The allocator

colors all the bytes of the memory allocation with that color, and returns a pointer which also has

that color. This alone is already sufficient to provide probabilistic spatial and temporal safety:
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For instance, suppose a pointer with color C is incremented to point out-of-bounds of its intended

memory allocation. With high probability, the out-of-bounds memory will have a color other than

C, so when the pointer is dereferenced, the colors will mismatch, causing a fault. Or suppose a

memory region with color C is freed and reallocated. If an old (dangling) pointer with color C

attempts to access the now-reallocated memory, with high probability the memory now has a

color other than C, so the colors will mismatch, causing a fault.

Unfortunately, the protection provided by this natural scheme is only probabilistic — it

doesn’t guarantee that it catches all memory safety violations. For instance, in both of the above

examples, there remains a chance that the colors will still match, even for accesses that should be

rejected. This is even more concerning in the presence of active adversaries, who may be able to

engineer these color collisions, either by repeated attempts (brute force) or by carefully exploiting

gleaned information about the colors of other (targeted) memory allocations.

With some small but careful adjustments to the allocator, we can catch some classes of

memory safety problems deterministically:1

I Reserved free color

We can reserve one of MTE’s 16 colors to mean “unallocated or freed”; during the free

operation, the allocator can re-color the freed memory to this reserved color. This way, we

deterministically catch any access to freed (but not-yet-reallocated) memory.

I Coloring adjacent allocations

We can also add checks in the memory allocator to ensure that it always chooses a color for

new allocations that is different from the colors of allocations immediately adjacent on both

sides. This way, we deterministically catch all “small overflows” which are out-of-bounds

merely into the immediately adjacent allocation.

I Coloring reallocations
1The MTE whitepaper alludes to at least one of these: “With careful software design, sequential safety violations

where memory is accessed immediately before or after the true bounds can always be detected. ‘Wild’ violations to
arbitrary locations in the address space can be detected probabilistically.”
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By keeping some additional state in the memory allocator, we can ensure that each new

allocation is always assigned a color which is different from the color that allocation was

assigned immediately previously, i.e., before the most recent time it was freed. This way, we

deterministically catch use-after-frees where the memory has been reallocated only once,

i.e., use-after-frees where the dangling pointer is only one generation stale.

In all of these cases, although we deterministically catch some classes of memory safety problems,

protection in the general case remains only probabilistic. These measures do not increase our

protection against arbitrary out-of-bounds errors (e.g., completely attacker-controlled offsets into

an array) or arbitrary use-after-frees (e.g., when the memory may be freed and reallocated many

times). And this is important: according to Microsoft, 60% of today’s spatial safety exploits

involve out-of-bounds reads/writes to nonadjacent memory [151]. The goal of DMS is to provide

deterministic spatial safety in all cases, not just cases representing low-hanging fruit.

7.2 Deterministic spatial safety with DMS

We present DMS, a system which builds on top of ARM MTE to provide fully determin-

istic spatial safety. DMS rests on the observation that in the presence of MTE, many pointer

dereferences can be statically proved to be spatially safe. For this purpose, spatially safe includes

both (1) pointers that are statically guaranteed to be in-bounds, but also (2) pointers for which

we know MTE will deterministically catch the violation if they are out-of-bounds. As a simple

example of the second category, consider a pointer known to be at most 16 bytes out-of-bounds.

Assuming the carefully-coded allocator described in Section 7.1.2, MTE will deterministically

catch out-of-bounds dereferences of this pointer: The pointer must be either still in-bounds, or

point to the immediately adjacent allocation, which must be a different color.

DMS supplements the checks already performed by MTE with additional safety checks,

implemented in software, for the cases where it cannot prove that a dereference is spatially safe —

158



i.e., the cases where MTE’s protection is only probabilistic. The result is fully deterministic

spatial safety through a combination of software and hardware checks. Compared to the natural

use of MTE, this trades performance for deterministic security guarantees; but compared to

previous spatial memory safety systems implemented purely in software, this greatly reduces the

number of software checks required (thanks to DMS’s partial reliance on MTE).

7.2.1 Pointer classifications

More precisely, DMS conceptually classifies all pointers into three categories (noting that

the same pointer may have different classifications at different program points):

I Clean

These pointers are statically guaranteed to be in-bounds of the intended allocation. Clean

pointers include, e.g., pointers which have not been modified since they were returned from

malloc or similar; pointers to stack allocations or global variables which are known to be

in-bounds; or pointers which have not been modified since they were last dereferenced.

(Inductively, since DMS will deterministically cause a fault when an out-of-bounds pointer is

dereferenced, if the program has continued executing after any dereference, we can assume

the pointer is clean at all program points after the dereference.) Clean pointers may be safely

dereferenced without any additional DMS safety checks.

I Blemished

These pointers are statically guaranteed to be modified by at most 16 bytes since they were

last known to be clean. Blemished pointers arise when pointer arithmetic is done on clean

pointers — specifically, when the program adds or subtracts small compile-time constants to

clean pointers. Blemished pointers may be safely dereferenced without any additional DMS

safety checks: If a blemished pointer is truly out-of-bounds, MTE will deterministically

catch the violation.
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I Dirty

This category includes all pointers that can’t be statically proved to be clean or blemished.

Dirty pointers arise in a number of ways, such as pointer arithmetic with non-compile-

time constants (e.g., dynamic array indices); pointers loaded from memory, in certain

circumstances; or other cases where static analysis is insufficient to prove the pointer is clean

or blemished.

Classifying pointers to struct elements

Accessing struct fields is one common purpose of pointer arithmetic, and often the constant

offset from the struct base to the field is larger than DMS’s threshold for blemished. However,

given a valid (and clean) pointer to a struct, if DMS is allowed to assume that the pointed-to

allocation is indeed at least the size of that struct, then all accesses to struct fields must be

inbounds — i.e., pointers to fields of that struct can also be considered clean. The only way

this could be potentially unsafe in practice, is if a program casts a pointer to a small allocation,

into a pointer type implying it points to a struct larger than that allocation. DMS includes a

configuration option, trust_llvm_struct_types, which determines whether DMS’s analysis is

allowed to assume that, given a clean pointer to a struct, pointers to that struct’s fields are also

clean.

Classifying pointers loaded from memory

One significant challenge with DMS’s pointer classification is how to classify pointers

which are loaded from memory. Conservatively, we could consider all such pointers to be dirty;

unfortunately, this would be detrimental to DMS’s performance, which relies on safely eliminating

as many safety checks as possible (via classifying pointers clean or blemished). Instead, DMS

uses a modified pointer representation for pointers residing in memory. DMS reserves two bits

in the upper part of the pointer representation (virtual address) to represent whether the pointer

value residing in memory was clean, blemished, or dirty at the time when it was stored to memory.

Whenever a pointer is stored to memory, DMS sets those bits to indicate its status; and whenever

160



a pointer is loaded from memory, DMS checks those bits to learn its status. (DMS then obtains

the correct pointer value by clearing these bits, since user-mode virtual addresses should contain

all zeroes in the upper pointer bits.) This means that many pointers cannot be statically classified

clean, blemished, or dirty, but instead have a dynamic classification. However, checking the

dynamic classification of a pointer is much cheaper than performing the full SW safety check for

the pointer: Merely checking the classification does not require an additional memory access,

while the full safety check often requires an additional memory access, particularly for these

pointers, as we’ll discuss later. By checking the dynamic classification first, DMS saves significant

time for dynamically clean or blemished pointers by avoiding the full SW bounds check.

Classifying pointers used as function arguments or return values

Another challenge is how to classify pointers which are used as function arguments or

return values. A purely intraprocedural analysis cannot fully classify these pointers at compile

time. One option is to conservatively classify all of these pointers as dirty, but this comes at a

performance cost, as fewer safety checks could be eliminated. Another option is to use the same

encoding as for pointers loaded from memory (discussed above). A third option would be to

use link-time optimization (LTO) and interprocedural analysis to determine much more precise

pointer classifications statically; but, the implementation would need to make careful tradeoffs to

ensure the compile-time analysis still scales to large programs.

As of this writing, our DMS implementation is not yet complete in this respect.

Classifying pointers or array accesses inside loops

A naive application of the above pointer-classification rules would often lead to repetitive

bounds checks inside loops, harming performance. Consider this simple example:

int sum;

for (int i = 0; i < 256; i++) {

sum += arr[i];

}
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Suppose the array arr is classified clean upon entry to the loop. The loop accesses arr[i], which

in C is a syntactic sugar for arr + i*sizeof(int). Unfortunately, by the above rules this pointer

value would be classified dirty, because it involves pointer arithmetic with non-compile-time

constants, namely the index i.

However, DMS can prove via induction that none of the accesses in this loop need

additional safety checks. The access in the first iteration, to arr[0], is easily determined

to be safe: Since arr is known to be clean upon entry to the loop, so must be the pointer

arr + 0*sizeof(int), which is the same as arr. In subsequent iterations, we know that the

previous iteration dereferenced arr[i-1], which means that arr[i-1] is clean according to the

above rules. But arr[i] is only sizeof(int) bytes greater than arr[i-1]— so DMS can safely

conclude that arr[i] is blemished and does not need an additional safety check. Thanks to this

proof by induction, DMS can avoid adding any additional safety checks to the body of this loop.

DMS’s induction reasoning is currently fairly unsophisticated, and only catches some

simple (but important) cases. Our current implementation can reason about loops where a pointer

is incremented by the same constant every iteration, and loops where an array index is incremented

by the same constant every iteration. Importantly, we cannot apply this induction optimization

unless we know that the pointer or array index in question must be dereferenced during every

loop iteration; our current implementation again handles common cases of this check and when

in doubt conservatively marks the pointer dirty.

7.2.2 Safety checks for dirty pointers

When dirty pointers are dereferenced, MTE provides only probabilistic spatial safety

guarantees. Thus, DMS supplements MTE by inserting bounds checks in software to achieve full

deterministic protection. This part of DMS’s design is heavily inspired by SoftBound [161]. The

main design question is how DMS obtains bounds information for each dirty pointer in order to

perform standard software bounds checks.
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Pointer creation and arithmetic

C pointers are created in two main ways: either via malloc(), or by taking the address

of a stack or global variable. In both cases, DMS can trivially determine the pointer’s bounds

upon creation: For malloc(), the bounds of the resulting pointer correspond to the start and

end of the allocation, while for stack and global variables, the size is known at compile time.

Then, like SoftBound, DMS propagates the bounds information associated with a pointer during

pointer assignment or pointer arithmetic. Pointer arithmetic does not change the bounds of the

pointer, and also does not require any bounds checks; like many previous systems including

SoftBound, DMS allows out-of-bounds pointers to exist (crucial for compatibility with some C

idioms) and performs checks only when the pointer is dereferenced. In all of these cases, the

bounds information is available statically, so the bounds checks are cheap; the limits can be

checked with simple comparisons and no additional memory accesses.

Storing and loading pointers from memory

The more interesting design question is how to propagate bounds information for pointers

which are stored and loaded from memory. Here, like SoftBound, DMS uses a (dynamic) global

table which maps the memory location where a pointer is stored, to the bounds information for

the pointer stored there. For each store operation that stores a pointer, DMS inserts instructions

to store that pointer’s bounds information to the global table; and if a bounds check is required

for a pointer that was loaded from memory (or derived from a pointer loaded from memory),

DMS likewise inserts instructions to load its bounds information from the global table. DMS only

needs to store bounds information to this table for pointers which are actually stored to memory;

for pointers which remain in registers, bounds information can be propagated statically without

dynamic lookups.2

2In fact, DMS can also propagate bounds information statically for pointers which are merely spilled and unspilled
from memory at the register allocation stage, due to register contention. At the LLVM IR level where DMS operates,
these spills are invisible. Only non-spill memory operations with pointers require DMS to use the dynamic global
table.
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Pointers used as function arguments or return values

Similar to pointer classification, we again face a challenge with how to propagate bounds

information for pointers used as function arguments or return values. As of this writing, our

DMS implementation is not yet complete in this respect. However, we plan to follow SoftBound,

keeping our analysis intraprocedural and adjusting function signatures to dynamically propagate

this information at runtime via the C stack. This should be more efficient than reusing the dynamic

global bounds table for this bounds information, which would require a table access both in the

caller (to store the information) and in the callee (to retrieve the information).

7.3 Conclusion

Our implementation of DMS demonstrates how new hardware primitives such as ARM

MTE can be fruitfully combined with software checks to provide strong security guarantees for

legacy applications, without incurring the same performance overhead as previous purely-software

proposals. As hardware memory tagging becomes available on more platforms and from more

vendors, DMS represents a promising path to achieving deterministic memory safety for today’s

applications.
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Conclusion

Memory safety vulnerabilities are an ongoing and serious problem for today’s systems,

and we can’t simply wait around for new hardware or new programming languages to solve

the problem for us. Instead, we need solutions that provide security for today’s applications on

today’s hardware.

In this dissertation we first looked at memory safety vulnerabilities made possible by

hardware features, namely Intel TSX (Chapter 1) and microarchitectural side-channels (Chapter 2

and Chapter 3). We demonstrated both the seriousness of these vulnerabilities, and the prevalence

of these vulnerabilities in widely-used software. We presented tools capable of automatically

finding vulnerabilities of several important kinds.

Then, we turned our attention from finding memory-safety vulnerabilities in existing code,

to automatically preventing them in today’s languages and on today’s architectures. We presented

a novel systematization of software defenses aginst Spectre attacks (Chapter 4), and went on to

propose our own defense in this category (Chapter 5), incorporating many of the lessons learned

from this systematization. Then, we proposed software solutions for providing greater memory

safety for Wasm programs (Chapter 6), and for C/C++ programs with the help of new hardware

features such as ARM MTE (Chapter 7). Our work demonstrates a promising path towards

increased memory safety for today’s applications on today’s (and tomorrow’s) architectures.
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