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Preface

This thesis is dedicated to the loving memory of my Mother, Sharon, who
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my interest in science, she always told me that I should pursue my passions
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lucky to have enjoyed my experience in graduate school studying exactly what I
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pain and suffering of patients keeps reminding me that life is not only about

enjoyment and that pain is inevitable. Hopefully at the end of my training, I will
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Abstract

Computational Approaches to Macromolecular and Supramolecular Processes

In Biology: From Protein Folding To Chromosome Folding.

by

Karen F. Han

The biological function of macromolecules and their supramolecular

assemblies are intimately related to their structures. It is therefore important to

develop an understanding of the 'rules' by which these structures are formed.

This thesis presents two areas of technical developments in the fields of protein

and chromosome folding that will add to our understanding of the architectural

organization of these structures.

At the level of protein folding, a new approach has been developed to

explore the relationship between amino acid profiles in multiple sequence

alignments and their three-dimensional (3D) structures. The resulting

classification of these variation patterns, revealed sequence rules for new

structural motifs. The global feature of the mapping between protein sequence

and structure showed that 44% of all sequences map to a single structure type,

whereas 28- and 8% of the remaining sequences map to only two and three

distinctive structure types respectively, accounting for approximately 80% of all

sequences. These results have two important implications: 1) tertiary structure

prediction must allow degenerate mapping rather than single-state secondary
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structure predictions, and 2) some of the newly identified structural motifs

represent folding initiation sites which aid in tertiary structure prediction.

At the level of chromosome folding, electron microscope tomography was

used to investigate the assembly of 30 nm chromatin fibers into higher order

structures. Due to limited spatial resolution, it was not possible to precisely and

continuously trace the trajectories of the highly compact chromatin fibers in the

3D reconstructions, and was therefore important to improve our imaging and

restoration techniques. A thorough analysis of the nature of image formation for

thick biological specimens in transmission electron microscopy has led to

corrections of resolution degrading factors. Contrary to common assumptions,

thick biological specimens still exhibit a significant phase contrast component

Furthermore, the amplitude contrast component relates to the specimen mass

density by a logarithmic relationship, whereas the phase contrast component

follows a linear relationship. The optimal strategy to image thick specimens is

using a high primary voltage (>200keV) with zero-loss energy filtering and exit

wavefront reconstruction. The improved contrast and resolution will aid in the

interpretation of the 3D reconstruction.
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Part I: Optimal strategies to image thick biological specimens

in transmission electron microscopy



Summary:

An accurate three-dimensional (3D) tomographic reconstruction requires

the proper interpretation of image intensities as they relate to the projected

specimen mass density. A detailed understanding of the nature of image

formation is required to properly restore images. In thick biological specimens,

the large multiple inelastic scattering component contribute to image distortion,

making image intensities difficult to interpret.

Chapter 1 provides an overview for this section of the thesis. Chapters 2

and 3 address the nature of image formation for thick biological specimens

using both through focus series exit wavefront reconstruction and electron

energy-loss filtering techniques. It was demonstrated that the coherent

(interpretable) component is contributed only by the elastically scattered

electrons. The importance of using higher accelerating primary voltage is

emphasized to maximize the proportion of elastically scattered electrons in thick

biological specimens. Chapter 3 is the first quantitative study of image contrast

improvement using an imaging filter as compared to CCD data collection alone

for thick specimens. The total number of contributing coherently scattered

electrons were tabulated as a comparison.

Since electron tomography also suffers from beam damage, it is

necessary to develop approaches to restore images using as few focus levels

as possible to minimize electron dose. Chapter 4 presents image restoration

approaches for thick specimens using a range of 4 to 8 focus levels, combining

the Schiske filter with the corrected low-resolution component. The restored

images showed enhanced contrast compared to the in-focus and 1 pum

underfocus images. The fractional root-mean-square deviation of the 4-focus



level restored images compared to the 40-focus level images is 5%, compared

to compared to over 25% for the unrestored image.

From these studies, the importance of correcting for image aberrations in

TEM is demonstrated. In particular, the assumption that the image intensity

directly reflect specimen projection mass density is incorrect. This has direct

consequences to in the 3D tomographic reconstructions, where the accuracy of

the 3D model relies on the proper interpretation of the many tilt projection views

of the specimen. It is concluded that a combination of TEM operating high

primary voltages (an a small objective aperture) coupled with an electron

energy-loss imaging filter is necessary for imaging thick biological specimens.

In addition, image restoration is needed to extract the amplitude and phase

components of the image wave giving rise to the absorptive and linear

components which can then be related to the true mass density of the

specimen. It is recommended that restoration be done routinely for 3D EM

tomography.

The appendix A provides a short summary of procedures to determine

the nature of image formation of thick specimens in general, and

recommendations of specific filters to be used in the restorations.



Chapter 1

Overveiw of Image Restoration of Thick Biological Specimens For

Transmission Electron Microscope Tomography

An accurate tomographic reconstruction requires proper transformation of the

recorded image intensities to projected specimen mass densities. For thick

biological specimens, images are not only aberrated due to the objective lens

aberrations, but also due to the large proportion of inelastic multiple scattering.

Using a combination of energy filtering and through focus series restoration,

these aberrations can be removed. The corrected images show enhanced

contrast and resolution.

1. Introduction

Three-dimensional (3D) transmission electron microscope tomography is a

powerful technique to study the higher order structural organization of

supramolecular assemblies and cellular organelles. Tomography involves the

computational 3D reconstruction of an object from many tilt-projection views

(Turner 1981). Recent studies have clearly demonstrated the power of this

technique by elucidating details of large amorphous cell substructures at 5 nm

resolution, not achievable by means of light optical microscopies (Belmont et al.

1987; Fung et al. 1994; Horowitz et al. 1994; Ladinsky et al. 1994; Moritz et al.

1995). In recent years, the advent of digital image acquisition and computer

controlled electron microscopy has made tomography a more practical

technique for routine use (Koster et al. 1993).

The accuracy of a 3D reconstruction relies on the correct interpretation of the

collected image intensities. Because in transmission electron microscopy

(TEM) the depth of focus is large with respect to the achievable lateral

4



resolution, the detected image intensities are typically assumed to be a close

approximation of the projected specimen mass density. In reality, there are two

sources of aberrations that 'distort' the images: electron microscope lens

aberrations and electron-specimen interactions. The former causes aberrations

independent of the nature of the specimen, whereas, the latter is very much

specimen-dependent. Because of the natural dimensions of the typical cellular

organelles studied by tomography, the specimens are necessarily thick (0.5-1

pum), and the primary source of aberration is at the level of electron-specimen

interactions. It is therefore critical to correctly understand the electron specimen

interactions and their importance on the image formation process in order to

properly relate the detected image intensities to specimen mass density.

2. Sources of aberration in TEM micrographs of thick biological specimens

2. 1 Objective lens aberration:

A brief review of simple linear imaging theory in transmission electron

microscope is presented in this section. Spherical aberration and defocus

levels cause a systematic aberration in the images as described by the well

known lens aberration function:

■ täk” - A k”
C:-(cº

where A is the wavelength, Af is the defocus level, Cs is the spherical

exp(ix(Af, K)] = exp■ i — Af)] (1)

aberration, and K is a vector in the reciprocal image plane. The resulting

aberrated wave jº (Af, K) in reciprocal space is simply the unaberrated

scattered wave multiplied by the wave aberration function:

jº (Af, k) = \,...(k)exp■ iz(Af, K)] (2)

The image formed by the aberrated scattered wave is simply its amplitude.

The amplitude and phase components of the unaberrated specimen exit wave



can be restored by solving for the unaberrated wave through a systematic

perturbation of focus levels.

'… (Af, k) = 6(k) + 2 Vamp (k)cos(x(Af, k)]– 2 Wols (K)sin(X(Af, K)]

(3)

To solve for the amplitude and phase components in Equation (3), at least two

images taken at different focus levels are required. The exit wave is then

recovered by combining the amplitude and phase components of the scattered

WaVe.

The most commonly used restoring filter is that derived by Schiske and other

authors (Hawkes 1980; Saxton 1978; Schiske 1968):
N A.

W.(k) = X. I(K, Af,) r(K, Af,)
Afn =l

N

{N- Xexp(2i■ z(Af, k) – X(Af, K)]}
r(K, Afa) = exp■ ix(Afa, K)] Afm =l N

{N*-I X exp(2i■ z(Af, k)]] }
Afm =l

(4)

In A restoration using many (>30) focus levels at constant defocus interval,

Equation (4) reduces to:
N A.

W. = exp(incº); Xi(k, Af,)exp(-in-Akº Af,) (5)Afn =l

where N is the total number of through focus images. In the field of high

resolution electron microscopy, authors have used Equation (5) coupled with a

priori knowledge and maximum likelihood approaches to restore the exit wave

at resolutions close to (0.2 nm)-1 (Coene et al. 1992; van Dyck et al. 1993).
2.2 Aberrations contributed by electron-specimen interactions

Electron-specimen interactions include single elastic and inelastic, and

multiple elastic and inelastic scattering. For thick biological specimens, the
6



multiple inelastic scattering component dominates and results in a blurring of

the images due to the chromatic aberration of the microscope's objective lens.

Using electron energy-loss spectroscopy (EELS) and electron spectroscopic

imaging (ESI), one can separately investigate the contribution of the various

scattering mechanisms to the image formation (Colliex et al. 1989; Han et al.

1995c; Langmore et al. 1992; Reimer et al. 1991). Figure 1 plots examples of

EELS spectra for thick biological specimens, showing that majority of the

imaging electrons are indeed multiply and inelastically scattered.

1.2 l | l l l I —l

1 — –

0.8 —
-

0.6— 0.3 um
-

0.4 – 0.7 um
-

-

0.2 – / 2- **...
-

O I I I I I-1 r=
- 1 0 1 0 30 50 7 O 90 1 1 0 130 150

eV

Figure 1. Electron energy-loss spectra of 0.3, 0.5 and 0.7 um thick specimens at 200 keV
normalized by by peak elastic counts (reprinted (Han et al., 1996a) with permission from J.
Microscopy).

For those specimens where the elastically scattered electrons account for only

a very small proportion of the imaging electrons, it was found that employing

ESI to image only those electrons in a energy-loss window centered on the

most probable energy-loss, results in the best image contrast (or signal to noise

ratio) (Colliex et al. 1989). For tomography, however, more important than

image contrast is the need for a direct relationship between the image

intensities and the projected mass densities.

Studies have shown that the 3D power spectrum of a through focus series

(taken at equal intervals as in the exit wavefront reconstruction) can be used to
7



evaluate the proportion of coherent electrons contributing to imaging (Han et al.

1995). By combining this technique with ESI, it was shown that for thick

biological specimens, only the elastically (zero energy-loss) scattered electrons

exhibit the linear imaging behavior through focus, which is characteristic of the

coherent image component (Han et al. 1996a). Table I shows the relative

contribution of the coherent, incoherent, and background image components

based on the analysis.

Table I. Relative amount of the contributing components to image formation of thick biological
specimens. (reprinted (Han et al., 1996a) with permission from J. Microscopy).

Thickness Energy Elastic Parabola Central Back
filter electrons (coherent) (partially ground
experiment (in) (incoherent

% % coherent) & noise)
% %

0.5 pum Unfiltered 21.4 10.1 33.5 56.6
Zero-loss 13.1 23.3 63.6
Plasmon 3.0 13.7 83.3
30ev- 0.0 16.2 83.8
130ev

The results imply that for thick biological specimens, it is essential to image at

intermediate to high accelerating voltages in order to maximize the signal from

the elastically scattered electrons. In addition, although contrast may be

optimized by imaging at the most probable energy-loss, only the restored zero

loss filtered image can be readily interpreted and related to specimen mass

density.

3. Restoration of thick amorphous specimens

The fundamental assumption in the restorations of equations (3) and (4) is that

the entire scattered wave is effected by the wave aberration function (Eq. 1) in

the same way. This is in generally true for thin specimens where most electrons

are single elastically scattered. As mentioned in section 2.2, for thick



amorphous specimens, where most electrons are (multiply) inelastically

scattered, it is expected that a sizable portion of the scattered wave does not

propagate through focus in the expected manner as described by equation (2)

above. However, because only the single elastically scattered electrons follows

the linear imaging properties of the microscope, it is possible to recover the exit

wave using standard restoration filters. Although equation (4) is the result of an

incomplete description of the images detected for thick specimens, since all

other components such as multiple inelastic scattering add incoherently, the

coherent image component will be enhanced as more through focus images

are used to restore the exit wavefront by a factor of VN, where N is the total
number of images used in the restoration. A better separation between the

parabolic and incoherent components will reduce the width of the parabola in .

(proportional to sinc(Z), Z is the full range of focus levels).

With increasing specimen tilt angle 0 (equivalent to an increasing effective

specimen thickness following 1/cosé), the average image intensity decreases

logarithmically (data not shown). This is in agreement with the logarithmic

decrease of the elastically scattered electrons as a function of specimen

thickness (Han et al. 1995). Both of these observations are consistent with the

absorption model for thick specimens. Therefore, the interpretation of the

restored amplitude component of the exit wave should be interpreted as

logarithmically proportional to the specimen mass density, and the phase

component as linearly proportional. Figure 2 compares an image restored

using equation (7) with the unrestored in-focus image, and demonstrates the

enhancement in resolution. Furthermore, restoration using a through focus

series of zero-loss filtered images shows an additional improvement in

resolution and contrast (Han et al. 1995a).

9



tº
Figure 2. Zero-loss filtered restored (A) and in focus (B), unfiltered restored (C) and in-focus (D)
images of a 0.5 pum specimen. Scale bar: 60 nm. (C,D reprinted (Han et al., 1995b) with
permission from J. Microscopy).

4. Conclusion

Extensive analysis of the image formation for thick biological specimens has

shown that it is valid to restore images using the restoring filters derived from

linear imaging theory. The restored amplitude and phase images show

respectively a logarithmic and linear relationship to the projected specimen

mass density. For best results in the imaging of thick biological specimens, exit

wavefront restoration should be used in combination with zero-loss filtering and

operation at intermediate to high primary voltages. The improved image

contrast and the proper interpretation of the image intensities of the aberration

corrected image will result in an enhanced resolution in 3D tomographic

reconstructions of thick biological specimens.
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Chapter 2

Mechanism of Image Formation for Thick Biological Specimens:

Exit wavefront reconstruction and electron energy-loss

spectroscopic imaging

With increasing frequency, cellular organelles and nuclear structures are being

investigated at high resolution using electron microscopic tomography of thick

sections (0.3-1.0 pum). In order to accurately reconstruct the structures in three

dimensions from the observed image intensities, it is essential to understand

the relationship between the image intensity and the specimen mass density.

The imaging of thick specimens is complicated by the large fraction of multiple

scattering which gives rise to incoherent and partially coherent image

components. Here we investigate the mechanism of image formation for thick

biological specimens at 200 and 300 keV in order to resolve the coherent

scattering component from the incoherent (multiple scattering) components.

Two techniques were used: Electron Energy-Loss Spectroscopic

Imaging (ESI), and exit wavefront reconstruction using a through focus series.

Although it is commonly assumed that image formation of thick specimens is

dominated by amplitude (absorption) contrast, we have found that for

conventionally stained biological specimens phase contrast contributes

significantly, and that at resolutions better than ~10nm, superposed phase

contrast dominates. It is shown that the decrease in coherent scattering with

specimen thickness is directly related to the increase in multiple scattering. It is

further shown that exit wavefront reconstruction can exclude the microscope

aberrations as well as the multiple scattering component from the image

formation. Since most of the inelastic scattering with these thick specimens is
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actually multiple inelastic scattering, it is demonstrated that exit wavefront

reconstruction can act as a partial energy filter. By virtue of excluding the

multiple scattering, the 'restored" images display enhanced contrast and

resolution.

These findings have direct implications for the three dimensional

reconstruction of thick biological specimens, where a simple direct relationship

between image intensity and mass density was assumed, and the aberrations

were left uncorrected.

1. Introduction:

The structures of cellular organelles and nuclear components are most

appropriately studied at high resolutions using transmission electron

microscopy (TEM). For analytical studies and three dimensional

reconstructions, it is essential to properly relate the observed image intensities

to the specimen mass densities. This necessitates an accurate understanding

of the mechanism of image formation for these specimens in the transmission

electron microscope. Images taken by TEM are not always direct

representations of the specimen mass density. In fact, there are two sources of

aberrations that effect the image formation: microscope lens aberrations, and

electron-specimen interactions. Unlike the microscope lens aberrations, the

electron-specimen interactions contribute differently to the image aberrations for

imaging thick and thin specimens.

The practical resolution obtainable for biological samples is typically

limited by a combination of sample preparation limitations and by specimen

damage resulting from beam exposure. For the study of large macromolecular

assemblies such as proteasomes and ribosomes, the typical achievable

resolution is limited to 1.0-1.5 nm (Frank et al. 1992). By contrast, for
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supramolecular structures such as cellular organelles and chromosome the

inability to do signal averaging and non-optimal staining generally limit the

resolution to 4.0-10.0 nm.

Our efforts have focused on the study of organelles and chromosomes. In

order not to limit the achievable resolution, much effort has been put into the

preservation of the three-dimensional structures during sample preparation

(Belmont et al. 1989; Belmont et al. 1987; Dahl et al. 1989; Hohenberg et al.

1994). Because these structures are large, complex and not symmetric, a three

dimensional analysis is often required to obtain useful information. While two

major approaches to three dimensional analysis have been used: serial thin

section reconstruction and tomographic reconstruction (Turner 1981), we have

concentrated on the latter because it provides the unique ability to study internal

structures with nearly isotropic resolution. In tomography, a large set of typically

~120 tilted views with +/- 750 tilt range of the same specimen are collected and

subsequently processed into a three dimensional reconstruction. Examining

larger structures intact necessitates the use of thick specimens (0.3 -1.0 pum)

and generally higher acceleration voltages. Compared with thin specimens,

thick specimens have larger multiple and inelastic scattering components that

cause aberrations in the images which effect the three dimensional

reconstruction.

The mechanism of image formation for thick biological specimens has

been previously investigated by a number of authors (Colliex et al. 1989;

Langmore et al. 1992; Reimer et al. 1991). It is generally assumed that the main

contrast mechanism for these specimens is so called amplitude or absorption

contrast. It is also understood that as a result of the chromatic aberration of the

TEM objective lens, the large fraction of inelastic scattering causes
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considerable image blurring. Therefore, much attention has been focused on

reducing the effects of the chromatic aberration by increasing the accelerating

voltage, and energy filtering (Bazett-Jones 1992; Olins et al. 1989). By allowing

only a small range of electron energies to contribute to the image, blurring can

be significantly reduced. In cases where only a very small percentage of

scattered electrons are zero-loss, it was found that imaging at the most probable

energy-loss provided optimal image contrast and signal-to-noise ratio (Colliex

et al. 1989).

In material science much effort has been devoted to resolution extension.

In recent years, successful phase retrieval of the specimen exit surface

wavefront by holographic approaches has been achieved either by the physical

detection of an interference pattern (Lichte 1986) or by the construction of the

Ewald sphere using a through focus series (Lichte 1986; Taniguchi et al. 1991;

Van Dyck et al. 1990). By reconstructing the exit surface wave immediately after

the specimen, the aberrations from the objective lens are in principle removed.

In practice, these approaches have improved the correction of microscope

aberrations, and have so extracted information to high resolutions (Coene et al.

1992; de Ruijter 1992; Van Dyck et al. 1993).

In this work we use a number of techniques to empirically analyze factors

responsible for image degradation for thick biological specimens, and explore

the possibility of separating these components from the coherent component.

By construction of the Ewald sphere from a through focus series, the degree of

coherent image transfer for thick biological specimens can be analyzed (see

theory). Restoration of the electron exit wave front right after the specimen

using the Ewald sphere construction and subsequent back transformation is

shown to exclude most of the incoherent component from the images.
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Parallel studies using electron energy loss spectroscopy (EELS) and

electron energy-loss spectroscopic imaging (ESI) show a direct proportionality

between the degree of incoherent transfer and the fraction of inelastic

scattering. It is shown that the source of the incoherent component is largely

due to multiple scattering. Since most inelastically scattered electrons are also

multiply scattered in thick specimens, the exit wavefront reconstruction therefore

acts in part as an energy filter. Restoration of the images by extracting the

component on the Ewald sphere and back transformation of the 'filtered'

coherent component can thus lead to enhanced contrast and resolution. More

importantly, the restoration shows that in addition to the low-resolution

amplitude contrast, there is a significant amount of phase contrast for thick

specimens and that phase contrast actually dominates at moderate and high

resolutions. It is proposed that the intensities in the restored amplitude image

are due to absorption (inelastic and multiple scattering) and therefore exhibit a

logarithmic relationship with mass-density. The intensities in the restored

phase image are a direct measure of the projected mass densities. These

results will greatly effect the three-dimensional reconstruction of thick biological

specimens from multiple images.

2. Materials and Methods:

(a) Thick Biological Specimens:

The specimens used in the experiments described below are isolated nuclei

(Hela) or whole-mount tissues (maize and lily anthers) embedded in epon and

stained with uranyl-acetate and lead-citrate (Fung et al. 1994). The regions of

interest in the embedded specimens are the chromosome and synaptonemal

complex structures in the nucleus. Specimens were cut to 0.3, 0.5, 0.7 and 1
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pum thickness. Some of the thickness-dependent experiments were actually

performed by tilting the specimens to increase their effective thickness.

(b) Microscopy:

Aside from the EELS and ESI experiments, all micrographs were digitally

recorded at 300 keV on a Philips EM430 TEM. This microscope, which has

been previously described (Koster et al. 1992a), is equipped with a LaB6

filament, a C400 computer interface to control all lenses, and stage positioning,

and a prototype Gatan large-format slow-scan CCD camera (1024x1024 19pm

pixels) all controlled by a MicroVax Ill processor. The images were taken at a

TEM magnification of 30, 100x, and were subsequently binned twice

corresponding to a final specimen pixel size of 1.34 nm. The focus levels were

calibrated using beam-tilt induced image shifts as described (Koster et al.

1992b). For optimal beam coherence, an effective spot-size of 47 nm was used.

In addition, the optimal beam divergence (intensity setting) was chosen for

imaging to further minimize the effect of the coherence envelope. As evident in

figure 6, the contrast transfer rings of the through focus series are limited by the

pixel resolution (2.68 nmr1).
(c) Through Focus Series:

Through focus series consisting of 30 images were recorded from 17.3 pum

under focus (weaker objective lens current) to 17.3 pm over focus with a focus

step size of 1.152 pm. To minimize specimen alterations and shrinkage

(Braunfeld et al. 1994) during data collection, the specimens were stabilized by

pre-irradiating with approximately 1000 e-/nm2. The individual images were
aligned using a combination of cross-correlation and fudicial gold markers.

Image processing and visualization were done on a DEC VAX-9000 and a
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Silicon Graphics Iris workstation using Priism, the image visualization software

developed in our laboratory (Chen et al. 1994).

(d) Electron Energy-loss Spectroscopy and Imaging:

These experiments were done with a Gatan Imaging Filter (GIF) (Gubbens et al.

1993; Krivanek et al. 1992) mounted on a JEOL 2010, a Philips CM12 and a

Philips CM20 TEM. The images were acquired with the built in slow scan

camera using the DigitalMicrograph software. The energy dispersion window

used for spectroscopy was 0.5 eV per CCD pixel, a 15eV energy window was

used for energy filtered imaging. The images were transferred to the DEC VAX

9000 and the Silicon Graphics Iris workstation for processing and analysis.

3. Theory:

Holography allows the reconstruction of the electron exit wave front

immediately following the specimen surface. The advantage of image

restoration using holographic techniques is that microscope aberrations are

automatically excluded. In addition, it naturally functions as an energy filter and

a coherence filter in that the incoherent component does not interfere

constructively. Thus, theoretically holography is the optimal technique for

imaging as demonstrated by a number of authors (de Ruijter et al. 1993;

Gribelyuk et al. 1993; Joy et al. 1993; Lichte 1993; McCartney et al. 1994). The

draw back of holography through the physical detection of an interference

pattern is the requirement for a reference wave (and so a specimen edge), and

its low detection signal.

D. Van Dyck and coworkers (Coene et al. 1992; Van Dyck et al. 1990;

Van Dyck et al. 1993) showed that the exit wave front can also be restored

using a through focus series. Using the theory of wave propagation, they

demonstrated that the exit wave front is simply the component which falls on the
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Ewald Sphere. Y. Taniguchi and coworkers (Taniguchi et al. 1991) used a

similar approach to align the current center of the microscope, and to

investigate the effect of the microscope lens aberrations on image formation.

Techniques and developments in holography have focused on resolution

extension by eliminating the microscope lens aberrations as described above.

Most specimens investigated have been extremely thin and hence multiple

inelastic scattering was of little concern. In this paper, it is demonstrated that in

addition to minimizing microscope lens aberrations, exit wave reconstruction

techniques can be used to analyze the image formation for thick specimens at

the level of electron-specimen interactions such as multiple scattering.

To understand the specimen exit surface wave restoration (the specimen

holograph) using a through focus series, a brief review of the wave propagation

theory of image formation is presented (adapted from D. van Dyck and M. Op de

Beeck, 1991). The image wave y(r, Af), at Af defocus, is a result of

convoluting the exit wave Ó(r) with the well-known lens aberration function

X(r, Af). The three dimensional Fourier transform of y(r, Af) is given in

equation (1).

v(k,5)=Jø(k)exp(27tlaf (§ – A |k■ /2))akdOAf)
(1)

where k and 5 are the reciprocal space coordinates related to the real space
coordinates x, y and the defocus Af. The image detected in Fourier space is

simply the convolution of the image wave with itself:

I(k,é)= y(-k, -á) & y' (k,á) (2)
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=ICI* 6(k)+C"O(k)6(; – Alklº /2)+Cô'(-k)6(3 + Alklº /2)
+ jø'(k)0(k-k')6(; – AI(k-k') —kºl/2}dk (3)

k+0.k—k 20

where I(k, ) is the three dimensional Fourier transform of the through focus

series, and 6 is the Dirac delta function. The constant C defines the average
illumination intensity.

The three dimensional Fourier transform of a through focus series,

I(k, 5) contains four terms that can be understood physically. The first term in

equation 3 is the unscattered wave. The second and third terms contain the exit

surface wave Ó(k) which is completely described on the Ewald sphere

parabola 6(§ – Alki /2). The last term in equation 3 represents the
secondary interference of the scattered beam, commonly termed the non-linear

imaging component, and is distributed everywhere in the three dimensional

Fourier space. In this derivation, it is assumed that all the components in the

exit wave propagate with the expected dependence on the wave aberration

function through focus. In general this is the case for thin specimens as has

been previously demonstrated (Coene et al. 1992). Since the aberrations of the

contrast transfer function are implicitly incorporated in the recovery of the exit

wave, the microscope lens aberrations are naturally excluded in these

reconstructions.

Thick specimen imaging is dominated by multiple scattering component

which are not included in the above derivation. If the multiple scattering

component propagates with the same dependence on focus as the coherent

component, then it would be impossible to distinguish between the two. If the

multiple scattering components propagate with a different dependence on focus

than expected for the coherent component, then one would expect it to
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generate a separate component in the three-dimensional power spectrum,

independent from the coherent (paraboloid) component. In reality, the multiple

scattering component is neither completely coherent nor completely incoherent

through focus. Its propagation is also not expected to be completely

independent of the coherent component. Practically, however, one can

separate the large portion of multiple scattering component that propagates

independent from the coherent component and has a different dependence on

the focus variation. Due to finite sampling and limited range of detection of the

through focus series, this technique will not be able to distinguish coherent

inelastic scattering (such as plasmon scattering) from coherent elastic events

(such as single elastic scattering). Therefore, the chromatic aberration coming

from those electrons will not be excluded from the reconstruction. Recognizing

the fact that multiple scattering is difficult to model, we will take the (empirical)

experimental approach to differentiate this component from the coherent

component of imaging by combining the Ewald sphere approach described

above with electron spectroscopic imaging.

From the experimental results in the following section we show that

indeed there is a substantial component in imaging that does not propagate

with the same dependence on focus variation as the coherent component. By

varying the specimen thickness, we demonstrate that the proportion of the non

coherent component is directly related to the amount of inelastic scattering.

Through focus series of electron energy-loss images demonstrates that this

component can be directly attributed to multiple inelastic scattering.

4. Results:

Electron-specimen interactions contribute to coherent and incoherent or

partially coherent imaging components. There are two sources that contribute
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to the coherent imaging component: 1) single elastic scattering and 2) single

inelastic plasmon loss scattering that effectively acts as a secondary beam at a

shifted energy, followed by subsequent single elastic scattering. The

incoherent component includes multiple elastic and inelastic scattering.

Controllable electron microscope imaging parameters such as focus level,

objective aperture size and energy filtering are used to investigate the different

image components.

(a) The Effects of the Objective Aperture on Specimen Contrast:

It is common knowledge that the use of a small objective aperture improves

image contrast. This increase in contrast is generally ascribed to "classical"

amplitude contrast resulting from scattering of electrons outside the aperture.

Here we demonstrate that the scattering or amplitude contrast introduced by the

application of a small objective aperture can be quite specimen dependent. For

highly scattering thin specimens, such as poly-crystalline gold, the application

of the objective aperture results in an additional (classical) amplitude contrast

by contributing to an enhancement of the signal. Figure 1 shows the images of

poly-crystalline gold without and with a 20 pum (~5 mrad) aperture. The image

difference (pixel by pixel intensity subtraction) between the two images shows a

coherent image corresponding to an enhanced signal. Furthermore, as

expected this signal has a cosine dependence with respect to defocus.

This situation is quite different for thick amorphous biological specimens

stained with heavy metals. The effect of inserting a small objective aperture

merely results in a decrease in background intensity, and consequently an

increase in the image contrast. Figure 2 shows images of a 0.3 pm thick heavy

metal stained specimen without and with a 20 pum objective aperture. The

difference image shows no coherent image features, demonstrating that for
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typical thick biological specimens, the additional contrast gained by inserting a

small objective aperture is due to a decrease in background scatter. This

background signal does not depend on defocus, which is quite different from

classical amplitude contrast and derives from the incoherent multiple scattering,

as demonstrated in the following experiments.

(b) More inelastic than Elastic Electrons Scatter Outside the

Objective Aperture:

To investigate the contribution of scattering outside the objective aperture,

electron energy loss spectra were taken for different aperture sizes using the

Gatan Imaging Filter. Figure 3 shows electron energy loss spectra for a 0.7 pum

thick specimen at 200 keV using 10, 30, 40 pum (~ 11, 8, 3 mrad) objective

apertures and no aperture, normalized by the peak number of elastic electrons.

In all cases the spectral maximum is still at the zero-loss (elastic) peak, as

opposed to a 0.5 pm thick specimen at 100 keV, where the maximum is at 100

eV energy-loss (Colliex et al. 1989). From the data one can see that more

inelastically scattered electrons are removed by the objective aperture than are

elastic electrons. This is in agreement with the results of Reimer from angular

resolved EELS on carbon films (Reimer 1989). As a consequence, there is a

relative increase in elastically scattered electrons for smaller aperture sizes,

and therefore an effective increase in contrast. For these samples, differences

between images taken with and without the objective aperture again show a

constant background with no specimen features (Data not shown). This then

implies that all the scattering outside the objective aperture is from multiple

scattering, and is largely inelastic. The second maximum in the spectra is at 25

eV-loss, which corresponds to the plasmon loss scattering of carbon (epon

embedding media). These electrons are single inelastically scattered, which
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effectively gives rise to a secondary source at this energy-loss. Subsequent

single elastic scattering events will be mutually coherent at a slight energy-loss,

resulting in a focus shift compared with the elastic image due to the chromatic

aberration. Because of the small energy loss due to carbon absorption (25 eV),

the additional defocus induced by chromatic aberration is less than 0.1 pm, well

within the accuracy of our focus level determination.

(c) Multiple Inelastic Scattering Contributes Only to Low

Resolution Information:

Spectroscopic imaging was done to explicitly evaluate, for each range of

energy losses, their contribution to the high resolution image. Figures 4A

through 4E are energy filtered images for every 15 eV-loss intervals with 15 eV

energy windows, from zero energy-loss to 75 eV-loss, using a 10 pum objective

aperture. Energy loss images higher than 75 eV-loss show almost no specimen

features (data not shown). High resolution substructures were only present in

the elastic (zero-loss) and plasmon at (25 eV-loss) images. For all other energy

ranges, the images formed contained only very low resolution information and

showed no specimen substructure, resulting from the incoherent transfer of the

multiple inelastic scattering component. We thus conclude from this series of

experiments that multiple inelastic scattering within the objective aperture

contributes largely at low resolutions (< 0.04nm-1).
(d) Inelastic and Elastic Mean-free-paths:

The probability of multiple scattering can be represented by the electron

scattering cross section, which is inversely related to the mean-free-path. EELS

experiments were performed on specimens of different thickness in order to

estimate the mean-free-paths for our specimens. Figure 5 shows EELS spectra

of 0.3, 0.5 and 0.7 pm thick specimens, using a 10 pum objective aperture,
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normalized by the total number of electrons (A) and normalized by the zero-loss

electrons (B). As expected, the fraction of zero-loss electrons decreases with

increasing specimen thickness. From these spectra, for our typical specimen,

the inelastic and elastic mean-free-paths were determined to be 256 nm and

468 nm respectively at 200 keV. When scaled up for 300 keV using equation

6.9 (p.189) by Reimer (Reimer 1984), the inelastic and elastic mean-free-paths

are estimated to be 500 nm and 700 nm. From this, it is estimated that for

specimens thicker than 0.5 pm, more than 60% of the electrons will be multiply

inelastically scattered at 300 keV.

(e) Exit wavefront Reconstruction Shows A Significant Degree of

Coherence for Thick Specimens:

As demonstrated above, the multiple inelastic scattering component provides

little or no high resolution imaging features, and contributes only to the low

resolution deterioration. Therefore, our goal is to exclude these electrons from

the images by means of extracting only the coherent imaging component. The

coherent component of the image can be extracted from a three-dimensional

power spectrum of a through focus series, where it lies on a parabolic surface

described as the Ewald sphere. By contrast, those components which are not

mutually coherent through focus such as inelastic and elastic multiple

scattering, do not fall on the Ewald sphere. Therefore, by analyzing the three

dimensional Fourier transforms of a through focus series, one can quantify the

relative amount of coherent and incoherent scattering. In addition,

reconstructions can be made by selecting only those components which fall on

the Ewald sphere and back transforming.

Through focus series of 30 images (see methods) were taken for this

analysis. A few representative diffractograms of the through focus series are
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shown in Figure 6, demonstrating high quality of resolution transfer. Figure 7

shows a few representative cross-sections of the Ewald sphere from the exit

wavefront of a 0.3 pum specimen (epon embedded, stained with uranyl acetate

and lead citrate). As the schematic diagram shows, the coherent component is

on the outer circle, and the noise or incoherent component is at the center. This

experiment shows that for thick specimens, coherent transfer is still very

significant. If we compare these results to those from thin carbon films, the

prominent incoherent component at the center is markedly larger for the thick

specimens as expected (data not shown). The radial average of the cross

sections through the Ewald sphere were fitted with three Gaussian functions:

the coherent (parabola), incoherent and Poisson noise components. To avoid

artifact at # =0, the fits were done starting at 34.3 nmr1. Figure 8 shows a fitted
curve of the cross-section shown in figure 7B, demonstrating the accuracy of the

fit to be on average 7%. The fits were done for the entire three-dimensional

power spectrum. Figure 9 shows fits for the coherent (A), incoherent (B), and

Poisson noise (C) components. Figure 9A shows that the Ewald sphere is

characterized by finite width with the peaks at the correct radius given the

sampling through focus. The most important factor that contributes to the width

of the parabola is the coarse and finite sampling of the through focus series. A

much thinner parabola is observed for carbon films (data not shown). The

additional width of the parabola for the thick specimen may be caused by the

energy spread of the coherent component. Figure 9B shows that the central

incoherent component is well fitted by a three-dimensional Gaussian. This

component is clearly independent of the coherent component, and has a

different dependence on focus variation. This is distinguished from the Poisson

noise component which is roughly independent of focus as shown in figure 9C.
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This is expected since its contribution is not related to the propagation of the exit

WaVe.

(f) Specimen Thickness Dependence - agreement between the

Exit Wavefront Reconstruction and the EELS Data:

Figure 10 shows two levels of cross-sections through the Ewald Sphere for

different specimen thicknesses, demonstrating that the paraboloid (or coherent)

components decrease as specimen thickness increases, and vice versa for the

central (or incoherent) component. By fitting the radially averaged cross

sections for each of the thicknesses as described above, the coherent

component can be quantified for each specimen thickness with an average fit

error of less than 5%. Table | lists the calculated relative amount of the coherent

component from the Ewald Sphere analysis and the relative amount of the

elastic scattering component from the EELS analysis as a function of specimen

thickness. It is clear that the relative amount of coherent scattering is

proportional to the degree of elastic scattering. They are not identical because,

in addition to the coherently scattered electrons, the zero loss peak in EELS

contains electrons that have not been scattered at all in addition to those that

have been multiply scattered. Figure 11 plots the data from Table I on a

logarithmic scale as a function of thickness, showing a clear correlation

between the proportion of elastic scattering with the amount of coherent

imaging component. This demonstrates that through focus exit wavefront

restoration can act, to some degree, as an energy filter for thick specimens by

way of excluding multiple scattered inelastic electrons.

(g) Restored Exit Wave Shows Significant Phase Contrast for

Thick Specimens:
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Exit wavefront reconstruction was performed by complex inverse 3-dimensional

Fourier Transform of those components lying on the Ewald sphere. This filter

process results in real and imaginary components of the exit wave which

correspond to the classical amplitude and phase components respectively.

Figure 12 and 13 show the real (amplitude) and imaginary (phase) components

of the restored exit wave for 0.3 and 0.7 pum thick specimens, and the

corresponding diffractograms. It is clear that amplitude contrast dominates at

low resolutions and phase contrast at high resolutions. Phase contrast is still

dominant at high resolutions compared with amplitude contrast for a 0.7 pum

thick specimen. As expected, the phase component of the 0.7 pm the specimen

has less resolution extent as that of the 0.3 pm thick specimen.

For most applications such as tomography, it is impractical to restore

images using 30 focus levels on a regular basis. Using the empirically derived

coherent and incoherent contributions to the thick specimen image formation,

these restorations can serve as standards for developing techniques to restore

images using fewer focus levels (manuscript in preparation).

5. Discussion:

High resolution structures of cellular organelles and nuclear structures

are most appropriately studied using transmission electron microscopy. For

quantitative studies and three dimensional reconstructions, it is essential to

properly relate the image intensities with the specimen mass densities. This

relies on the accurate understanding of image formation mechanism of these

specimens in the transmission electron microscope (TEM). The images taken in

TEM are not always direct representations of the specimen mass density. In

fact, there are two sources of aberrations that effect image formation: electron

specimen interactions, and microscope lens aberrations.
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Because of the natural sizes of cellular organelles and nuclear

structures, they are generally prepared as thick specimens for electron

microscope tomography. Compared with thin specimens, thick specimens

have additional multiple and inelastic scattering components that cause image

aberration. Here, we have used a number of different techniques to empirically

analyze the image-degrading components, and have explored the possibility of

separating these components from the coherent component.

It was shown that the application of a small objective aperture increased

image contrast in thick biological specimens by decreasing the amount of

background noise using EELS and EELSI experiments. This noise is largely

due to multiple inelastic scattering. The multiple inelastic component that

scatters within the objective aperture contributes only at resolutions well below

250 angstroms. Approximate multiple inelastic and elastic scattering cross

sections for our specimens at 300 keV were determined to be 500 nm and 700

nm respectively. From this, it is estimated that at 300 keV, biological specimens

>0.5 pum thick will experience more than 60% inelastic scattering.

The degree of coherence for thick specimen imaging was determined

using the Ewald sphere construction. Surprisingly, there is still a significant

amount of coherent scattering for thick specimens. It is demonstrated that the

degree of coherence decreased as specimen thickness increased; vice versa

for the magnitude of the incoherent component. This result directly parallels the

degree of elastic scattering as a function of specimen thickness. The incoherent

component is therefore attributed to multiple inelastic scattering.

In contrast to common assumptions, the restored exit wavefront showed

significant phase contrast for thick specimens. Indeed there is a large

amplitude contrast component dominating at low resolutions, where the
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contribution is mostly from multiple inelastic scattering. Therefore, the image

intensities from amplitude contrast have a log relation to specimen mass density

which is related to the inelastic scattering cross section. The high resolution

phase image has a direct relation with the relative mass thickness of the

specimen, and is therefore linearly related to mass density.

Since the exit wavefront restoration excludes the incoherent (multiple

inelastic scattering) component, it can act in part as an energy filter for thick

specimens. With the combined analysis of through focus series and energy

filtering, it is demonstrated that the enhanced contrast using energy filters for

thick specimen imaging is the elimination of the multiple inelastically scattered

electrons. Thus the optimal restoration for thick specimens would utilize

through focus series taken with only elastic electrons.

While energy filtration may be the most useful filter for thick specimen

imaging, through focus restoration will always be required to eliminate

microscope lens aberrations and to retrieve the phase and amplitude

components of the exit wave. For electron microscope tomographic

reconstructions and other analytical studies, routine restoration using 30 focus

levels is impractical due to excessive beam exposure (specimen damage).

Thus it is useful to develop techniques using fewer focus levels and restore

images that exclude the multiple inelastic scattering component. An empirical

model for multiple scattering derived from the experimental results is proposed

in a separate paper (manuscript in preparation).

These results demonstrate that it is inaccurate to directly relate image

intensities to specimen mass densities for thick specimen imaging, as is

commonly assumed. This will have direct implications for the three-dimensional

reconstructions of thick biological specimens.
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Figure and Table Captions:

Figure 1: Polycrystalline gold taken at 10 um underfocus with (A) and without

(B) a 20 um (5 mrad) objective aperture. The difference image (C) shows

specimen features, demonstrating an increase in signal by the application of the

aperture. Scale bar: 50 nm.

Figure 2: 0.3 um thick specimen of HeLa chromatin taken at 10 um underfocus

with (A) and without (B) a 20 um (5 mrad) objective aperture. The difference

image (C) shows no specimen features, demonstrating a decrease in

background by the application of the aperture. Scale bar: 100nm.

Figure 3: Electron energy loss spectra (EELS) for a 0.7 um specimen at 200

keV using no aperture and 40, 30, and 10 pum apertures. The spectra are

normalized by the peak elastic electron counts demonstrating that more

inelastic electrons scatter outside the objective aperture than do elastic

electrons.

Figure 4: A through E are images taken at zero energy-loss (elastic scattering),

15eV, 30 eV, 45 eV, 60 eV and 75 eV-loss, demonstrating that only the elastic

and plasmon images contain high resolution information. All other inelastic

images contribute at low resolutions and are derived largely from multiple

scattering. The average relative contrast is 8.73E-2, 3.95E-2, 6.00E-2, 4.41E-2,

3.92E-2 and 3.89E-2 respectively. Relative contrast is calculated as: {X | I(i,j) -

mean / mean} / (nx"ny)}, summed over each pixel. Scale bar; 50 nm.

Figure 5: Electron energy-loss spectra of 0.3, 0.5 and 0.7 um thick specimens at

200 keV normalized by total electron counts (A) and normalized by peak elastic

counts (B).
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Figure 6: Selected diffractograms of a through focus series: 17.28, 8.06 and

3.46 um underfocus (A, B, and C) and overfocus (D, E, and F). Resolution limit (

the distance between the center to the edge of the diffractograms): 2.68 nmr1.
Figure 7: Schematic diagram and selected cross sections through the Ewald

sphere of a 0.3 um thick specimen at 300 KeV, demonstrating significant

coherent transfer. B: 17.3 p.m.-1, C: 12.7 pm-1, D: 6.9 p.m.-1. Resolution limit:
2.68 nm -1.

Figure 8: Fitting the coherent, incoherent and Poisson noise components for

the radial average of a cross section through the Ewald sphere.

Figure 9: Resultant fits for the coherent (A), incoherent (B) and the Poisson

noise (C) components for the radial averaged cross sections through the Ewald

sphere. Labels in 9A, 9B, and 9C represents the coherent components of the

cross sections shown in figures 7B, 7C, and 7D.

Figure 10: Two selected cross sections through the Ewald Sphere comparing

specimens of 0.3 (A,B), 0.4 (B,F), 0.5 (C,G) and 0.6 um (D,H) specimen

thicknesses. Resolution limit: 2.68 nmr1.

Table I. For each of the thicknesses, the first column lists the specimen

thickness; the second lists the percent coherent component obtained from the

Ewald Sphere mapping; the third lists the percent elastically scattered electrons

approximated at 300 keV; the forth lists the measured percent of elastically

scattered electrons at 200 keV using the Gatan Imaging Filter.

Figure 11: Log plot of Table I, demonstrating the correlation of the degree of

coherence (open circles) with the amount of elastic scattering (open squares)

as a function of specimen thickness.
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Figure 12: Restored amplitude (A) and phase (C) images of the exit surface

wave for a 0.3 um specimen and the respective diffractograms (B & D). Scale

bar is 50 nm and the resolution limit is 2.68 nmr1.

Figure 13: Restored amplitude (A) and phase (C) images of the exit surface

wave for a 0.7 um specimen and the respective diffractograms (B & D). Scale
bar is 50 nm and the resolution limit is 2.68 nmr1.
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Figure 9b
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Table |

Specimen 9% % Elastic 96 Elastic
thickness Coherent electrons electrons

(um) component at 300 keV* at 200 keV
300 keV

0.3 22.4% 58% 39.7%
0.5 13.0% 40% 18.3%
0.6 9.8% 34%

---

0.7 7.8% 28% 8.3%
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Chapter 3

Optimal strategies for imaging thick biological specimens: exit

wavefront reconstruction and energy-filtered imaging.

In transmission electron microscopy (TEM) of thick biological specimens, the

relationship between the recorded image intensities and the projected

specimen mass density is distorted by incoherent electron-specimen

interactions and aberrations of the objective lens. It is highly desirable to

develop a strategy for maximizing and extracting the coherent image

component, thereby allowing the projected specimen mass density to be

directly related to image intensities. For this purpose, we previously used exit

wavefront reconstruction to understand the nature of image formation for thick

biological specimens in conventional TEM. In this paper, exit wavefront

reconstruction is used in combination with electron-energy filtering to

quantitatively study the imaging properties of the microscope. We found that for

imaging thick biological specimens (> 0.5 pum) at 200 keV, only elastically

scattered electrons contribute to the coherent image component. Surprisingly

little coherent transfer was seen when using energy-filtering at the most

probable energy-loss (in this case at the first plasmon energy-loss peak).

Furthermore, the use of zero-loss filtering in combination with exit wavefront

reconstruction is considerably more effective at removing the effects of multiple

(inelastic) scattering and microscope objective lens aberrations than either

technique by itself. Optimization of the zero-loss signal requires operation at

intermediate to high primary voltages (>200 keV). These results have important

implications for the accurate recording of images of thick biological specimens

as for instance in electron microscope tomography.
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Introduction and background:

High resolution three-dimensional structural analysis of complex

biological samples is best carried out using electron microscope tomography.

This method allows the computational reconstruction of internal specimen

structure in three dimensions using a large number of tilted projections (Turner

1981). Tomography has proven to be a powerful technique to study the

supramolecular assemblies of cellular organelles and nuclear structures

(Belmont et al. 1987; Fung et al. 1994; Horowitz et al. 1994; Ladinsky et al.

1994; Moritz et al. 1995; Olins et al. 1994; Schmekel et al. 1993). The accuracy

of the reconstruction relies on the precise interpretation of the individual

projected views. Due to the large depth of focus in electron microscopes, it is

generally assumed that the recorded image intensities can be directly related to

the projected specimen mass densities. This is only correct if the scattering

were purely coherent and not affected by objective lens aberrations. Images of

thin biological specimens (<0.1 pm) are generally dominated by coherent single

scattering, however, significant aberrations occur for thick specimens (>0.3 pm)

as a result of the large fraction of incoherent multiple elastic and inelastic

scattering. In this paper, we define the coherent component as the component

which follows the expected behaviour of the microscope contrast transfer

function (CTF). The incoherent component not only includes the secondary

interference between scattered waves (quadratic term in Eq. 1), but also the

larger component contributed by multiple scattering where a systematic

behaviour (or CTF) cannot be defined. For accurate quantitative analysis of

specimen structure, the effects from the incoherent multiple scattering and the

objective lens aberrations must be removed. As we demonstrated previously

(Han et al. 1995), specimen exit surface wavefront reconstruction using a
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through focus series removes the effect of the objective lens aberrations and

extracts and quantifies the coherent image component. This exit wavefront

reconstruction method uses a 3-D Fourier Transform of a through focus series:

the coherent imaging component maps onto a paraboloid whereas the

incoherent components dominate other regions, especially the center of the

transform. Adopted from van Dyck et al, the relationship between the 3-D

Fourier Transform and the specimen exit surface wavefront is as follows (van

Dyck et al. 1993):

I(k,4) =ICI* 6(k)+C" ()(k)6(§ – Alki /2)+Cô' (-k)6(4 + Alklº /2)
+ Joº (k)0(k-k')6(g–AI(k-k')’ – k+1/2}dk

k+0,(k—k')+0

where k and Q are reciprocal axes for x, y and z respectively; 6 is the Dirac delta

function; A is the electron wavelength and () is the specimen exit surface

wavefront. By extracting the parabolic component, 6(C + A■ k!?), the unaberrated
exit surface wave (the coherent component) can be recovered and quantified

(Figure 3a, schematic). Note that a chromatic aberration disc contribution to the

additional focus spread is not included in the above equation since the through

focus sampling required to resolve such a spread is impractical (Saxton 1994).

In recent years the advent of commercially available electron

spectroscopic imaging (ESI) filters have made it possible to image specimens at

specific energy-loss ranges and have enabled the analysis of the contribution of

the various energy-loss ranges to the image formation. Currently two classes of

ESI instrumentation can be distinguished: 1) 'in column' filters currently limited

to operation up to 120 keV primary voltage (Zeiss 902, 912(Probst et al. 1993))

and 2) 'post-column' filters which are available for use up to 1250 keV (Gatan

GIF and HV GIF (Gubbens et al. 1995; Gubbens et al. 1993; Krivanek et al.
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1995; Krivanek et al. 1992)). The study described here was done with a post

column filter because, as we will show for thick biological specimens, it is

optimal to image at intermediate to high accelerating voltages, and currently

only the post-column filters can be used at these voltages. To do a true

comparison of filtered versus unfiltered imaging and to verify that the filter does

not effect the normal imaging properties of the microscope, control-experiments

were performed under identical imaging conditions using only a CCD camera

identical to the one used in the filter on the same TEM. We present the first

comparison of this kind and the first quantitative assessment of the quality of

energy filtering for thick biological specimens.

By combining the through focus exit wavefront reconstruction analysis

with energy-filtering, it is possible to assess the contribution of different energy

loss ranges to the high resolution coherent and the low resolution incoherent

image components. These results shown in the following section have

important implications on the use of ESI for electron microscope tomography

and stress the importance of combining ESI with intermediate to high

acceleration voltages.

Methods:

Thick Biological Specimens: The specimens used in the following

experiments are in vitro reconstituted centrosomes from Drosophila embryos

embedded in epon and stained with uranyl-acetate and lead-citrate (Moritz et

al. 1995). The microtubules are 25 nm in diameter. The specimens were cut to

0.5 and 0.7 pm thickness. The preparation of these specimens is described in

detail in Moritz et al., 1995.

Unfiltered and Energy-filtered Imaging: The unfiltered images were

recorded at 200 keV with a Gatan Model 694 slow-scan CCD camera mounted
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on a Philips CM200 SuperTwin TEM. The energy-filtered images were recorded

at 200 keV with a Gatan Imaging Filter, Model GIF100 (Gubbens et al. 1993;

Krivanek et al. 1992) mounted on the same CM200. The slow-scan CCD

camera used on the GIF100 is identical to the Model 694. All images were

recorded at a calibrated magnification of 40,000 times at the CCD. A 30 pum

objective aperture was used for all experiments. The images were binned two

times in the camera hardware resulting in an effective pixel size projected back

to the specimen of 1.20 nm. The energy-window used for energy-filtered

imaging was 10 eV, the energy dispersion used for recording the energy-loss

spectra was 0.5 eV per CCD pixel.

Through Focus Series: Through focus series consisting of 41 images were

recorded from 18.1 pm under focus to 18.1 pm over focus with a focus step size

of 0.905 pum. To minimize specimen alterations and shrinkage during data

collection, the specimens were stabilized by pre-irradiating with approximately

1000 e-/nm2 (Braunfeld et al. 1994). The individual images were aligned prior
to the exit surface wavefront reconstruction using fudicial gold markers and

cross-correlation. Image processing and visualization were done on a DEC

VAX-9000 and a Silicon Graphics Iris workstation using Priism, the image

visualization software developed in our laboratory (Chen et al. 1994).

Results:

It has been generally assumed that the mechanism of image formation

for thick biological specimens is dominated by amplitude contrast. However, as

we previously demonstrated (Han et al. 1995), there is still a considerable

coherent image component largely due to phase contrast. Superimposed on

the coherent component are the incoherent components dominated by multiple

elastic and inelastic scattering. We have used exit surface wavefront
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reconstructions from through focus series at different energy-loss ranges, to

evaluate the coherent image component as a function of resolution for 0.5 and

0.7 pm thick biological specimens at 200 keV primary energy.

For the 0.5 pum thick specimen, coherent transfer can be observed

at both the zero-loss and the plasmon energy-loss, whereas for the

0.7 pum thick specimen coherent transfer can only be observed at

the zero-loss.

Figure 1 shows energy-loss spectra recorded for the 0.5 and 0.7 pm thick

specimens used in this study. At 200 keV, the fraction of elastically scattered

electrons is very low for both thicknesses (Table I). For the through focus series

of the 0.5 pum thick specimen, diffraction rings could be observed with and

without zero-loss filtering, and also weakly in the plasmon-loss series (data not

shown), although they could be observed most clearly in the zero-loss filtered

series. For the 0.7 pum thick specimen the diffraction rings observed in the

unfiltered through-focus series were extremely weak (data not shown). By

contrast, the zero-loss filtered through-focus series showed significant phase

transfer (Fig. 2). Quite surprisingly, through-focus series at other energy-loss

ranges all showed a complete absence of diffraction rings. Thus, at 200 keV,

0.7 pm thick biological specimens contain phase contrast information which is

obscured by the large proportion of inelastically and multiply scattered

electrons.

The coherent image component is significantly enhanced by zero

loss filtering for both 0.5 and 0.7 pum thick specimens.

Figures 3 and 4 show selected cross-sections of the 3-D power spectra for the

unfiltered, zero-loss filtered and plasmon-loss filtered though focus series for

the 0.5 and 0.7 pum specimens respectively. The paraboloid (coherent)
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component is narrower and extends to higher resolution in the zero-loss filtered

power spectrum compared to the unfiltered power spectrum. Virtually all of the

coherent component is contributed by the zero-loss electrons as evident by the

fact that the plasmon-loss and other energy-loss ranges (data not shown)

contain very little coherent contribution.

It is important to realize that not all zero-loss electrons contribute to the

coherent component of the images. There is still a significant amount of

incoherent component in the zero-loss filtered images due to multiple elastic

scattering.

For both the 0.5 and 0.7 pum thick specimens the elastically

scattered electrons contribute a similar amount of coherent high

resolution information.

In order to quantitatively analyze the 3-D power spectrum, cross sections of the

spectra were radially averaged and then curve-fitted with three components as

previously described (Han et al. 1995). The three components are the parabola

(coherent), the center (partially (in)coherent), and the background (fully

incoherent and random electron statistical noise) (Fig. 3 schematic and Fig. 5).

Three component curve fits were obtained for all sections and all energy ranges

and the results of the experiments where there was a measurable non-zero

coherent component are summarized in Table I. The percentages listed in

Table I represent the fraction of the total number of electrons (taken as the sum

of all three components). The proportion of coherent electrons of the filtered

images are comparable for both thicknesses: 13% for 0.5 pm and 9% for 0.7

pum. Although energy filtering enhances the coherent component by an overall

decrease in the incoherent contribution, the change in the relative distribution of

the three components are different between the two thicknesses tested. Both
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the parabola and the central components vary as a function of focus (cross

section) levels, whereas the background component stays relatively constant.

As with the central component, this background is also contributed by the

incoherent imaging effects. In the case of the 0.5 pum thick specimen, the slight

gain in the proportion of the coherent component in the zero-loss filtered image

is accompanied by a larger decrease in the central component and a slight

increase in the background component. Whereas for the 0.7 pum specimen, the

more dramatic gain in the coherent component is accompanied by a larger drop

in background and a slight gain in the central component. This may be

explained, if the central and background components are due to different types

of incoherent, or partially coherent scattering each dominating at different

thicknesses. For both thicknesses, the plasmon-loss images show a

proportionally larger background component with very little coherent

component due to the overlapping contribution from the multiple inelastic

scattering (the broadened second plasmon-loss in Figure 1). No coherent

contribution was observed at any of the other energy ranges. It is important to

note again that not all of the elastically scattered electrons contribute to the

coherent component of the images.

Figure 6 shows the number of electrons contributing to the coherent

component as a function of resolution. Although the zero-loss filtered images of

the 0.7 pm thick specimen contain a smaller coherent component overall, the

variation as a function of resolution is the same as for the 0.5 pum thick

specimen. In the case of the 0.5 pm thick specimen, the coherent component is

only slightly reduced in the unfiltered versus zero-loss filtered images through

all resolutions. This again demonstrates that the relative enhancement in the

zero-loss filtered signal is simply due to the reduction of the central and
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background components. In this case, exit wavefront restoration can almost

completely recover the coherent image component.

For the 0.7 pm thick specimen, the striking observation is that in the

unfiltered images, the coherent component is greatly reduced beyond (3.8mm)-1
resolution. Thus in this case, the relative signal enhancement in the filtered

images is due to a combination of the reduction of the incoherent central and

background components, as well as an increase in the coherent high resolution

component. Here, exit wavefront reconstruction by itself can not completely

recover the coherent component through the entire resolution range.

Exit wavefront restored images from a zero-loss filtered through

focus series show much higher resolution. Figures 7 and 8 compare

unfiltered and zero-loss filtered exit surface wavefront restored images and their

respective diffractograms for the 0.5 and 0.7 pm thick specimens. As can be

seen, the unfiltered restorations contain only the very low resolution

components, whereas, the energy-filtered restorations show transfer up to much

higher resolutions. Figure 9 plots the power spectra of scaled contrast images

comparing the unfiltered and zero-loss filtered data and restorations. For each

image, the contrast at each pixel was calculated
a I(x, - Iave

I «»-º-º:
ave

and then subsequently scaled to a constant intensity range for comparison

between the different images. For a 0.5 pum thick specimen, the 0.9 pum

underfocused filtered data has higher contrast than the unfiltered data at the

same focus level at resolutions higher than (10 nm)-1. With this conservative
measure of image contrast, the through focus series restoration shows

dramatically enhanced signal between (14 nm)-1 and (4.5 nm)-1, compared to
the unrestored images. Importantly, the through focus series restoration of the
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zero-loss filtered images shows a further enhancement in contrast (Fig 9A). Not

surprisingly, the restoration of the unfiltered through focus series of the 0.7 pum

thick specimen show little contrast enhancement compared to the data,

indicative of the low coherence in the unfiltered series. While the zero-loss data

does show improvement over the unfiltered data at higher frequencies, dramatic

improvements are seen when energy filtering is combined with through focus

restoration.

Discussion:

Electron spectroscopic imaging has been used previously to study the

mechanism of image formation for thick specimens (Bazett-Jones 1992; Colliex

et al. 1989; Langmore et al. 1992; Reimer et al. 1991). These studies showed

that when there is little elastic scattering, such as when low accelerating

voltages are used, the optimal contrast for thick specimens is obtained by

imaging at the most probable energy-loss. The enhancement in resolution

arises from the reduction of chromatic aberration as a result of the small energy

window. Although these images show an enhanced contrast and resolution,

their image intensities do not properly relate to the projected specimen mass

density, which is important for quantitative imaging such as 3-D electron

tomography.

We demonstrated that for imaging thick biological specimens at 200 keV

there is a significant coherent image component which can be extracted from a

through focus series (Figures 7 and 8). This coherent component can be

directly related to projected specimen mass density for 3-D tomographic

reconstruction. Using ESI, it was shown that this coherent image component is

contributed almost solely by elastically scattered electrons. The plasmon-loss

electrons contribute to the coherent component only at very low resolutions.
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Proper interpretation of the image intensities can therefore only be achieved

using only the elastically scattered electrons. Images collected at energies

other than zero-loss, for instance at the most probable energy-loss (in this case,

the first plasmon), show significant loss in coherent transfer and cannot be

directly interpreted as a projection of the specimen mass density. This

emphasizes the importance of using higher accelerating voltages to increase

the fraction of elastic scattering for even moderate resolution images of

biological specimens.

All the experiments presented in this paper comparing energy-filtered

and unfiltered imaging were performed with and without the post-column ESI

filter attached. This allowed us to directly assess the imaging properties of the

post-column filter. The filter effectively serves as an additional projector lens

and indeed the experiments described here clearly demonstrated that the

image formation properties are not compromised by the post-column filter. The

properties of the TEM equipped with the post-column ESI filter show the same

expected behavior as the TEM alone (Figure 3b). Using zero-loss filtering we

were able to restore images of thick biological specimens at higher resolutions

than possible without filtering.

Thus the most optimal strategy for imaging thick biological specimens, as

for instance in electron microscope tomography, is combining zero-loss filtering

operating at intermediate to high accelerating voltages and specimen exit

surface wavefront reconstruction from a through focus series.

For example, if one is interested in substructures of a 0.5 pum thick

biological specimen using tomography (effective thickness of up to 1.0 pum at

60° tilt), at resolutions lower than 5 nm, conventional intermediate voltage

electron microscopy should suffice. But if higher resolution is required to
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visualize fine substructure, then it is strongly recommended that zero-loss

filtering be combined with through focus series restoration to obtain an accurate

3D reconstruction.
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Figure and Table captions:

Figure 1: Electron energy-loss spectra for the specimens used in these

experiments A: 0.5 pum, B: 0.7 pm thick specimens.

Figure 2: Selected diffractograms of zero-loss filtered through focus series of a

0.7 pum specimen. Resolution limit: (2.4 nm)-1. A,D: +16.29; B,E: +10.86; C,F:

+7.24 pum defocus.

Figure 3a: Schematic diagram of the three-dimensional power spectra of a

through focus series.

Figure 3b; Selected cross-sections of three-dimensional power spectra of

unfiltered and zero-loss filtered through focus series of a 0.5 pum specimen. A:

(18.1 pm)-1; B: (12.67 um)-1;C: (5.43 pm)-1;D: (2.72 pm)-1. Resolution limit:
(2.4 nm)-1.
Figure 4: Selected cross-sections of three-dimensional power spectra of

unfiltered and zero-loss filtered through focus series of a 0.7 pum specimen. A:

(12.67 pm)-1; B: (5.43 pm)-1;C; (2.72 pm)-1;D: (1.81 pm)-1. Resolution limit:
(2.4 nm)-1.
Figure 5: The radially averaged plots and curve-fits of Figure 3(D)

demonstrating the quality of the fits. The coherent, incoherent and background

components are as labeled. Curve fit error is 3.7%.

Figure 6: Plot of the number of parabola electrons in the 3D power spectra as a

function of resolution for zero-loss and unfiltered images.

Figure 7: Exit wavefront restored filtered (A) and unfiltered (C) images and the

respective diffractograms (B, D) of a 0.5 pum specimen. Scale bar is 60 nm,

resolution limit is (2.4 nm)-1.
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Figure 8: Exit wavefront restored filtered (A) and unfiltered (C) images and the

respective diffractograms (B, D) of a 0.7 pum specimen. Scale bar is 60 nm,

resolution limit is (2.4 nm)-1.
Figure 9: Plot of scaled power spectra of the contrast images (see text)

comparing filtered and unfiltered data and restoration for (A)0.5 and (B)0.7 pum

specimens.
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Table I: Summary of the relative proportion of each of the three components as

a function of thickness and energy range.

Thick- Energy filter Elastic Parabola Central Background
neSS experiment elec- (coherent) (partially (incoherent

trons (in)coherent) & noise)
% % % %

0.5 pm Unfiltered 10.1 33.5 56.4
Zero-loss 13.1 23.3 63.6

21.4
Plasmon 3.0 13.7 83.3
30ev-130ev 0.0 16.2 83.8

0.7 p.m. Unfiltered 2.8 10.6 86.6
Zero-loss 8.6 9.3 19.4 71.2
Plasmon 1.4 15.8 82.8
30ev-130ev 0.0 24.9 75.1

Summary of the experiments (column 2) done on 0.5 and 0.7 pm specimens at

200 keV; column 3 lists the percent elastically scattered electrons; columns 4, 5

and 6 list the percent parabola (coherent), central (partially coherent and

incoherent) and background (incoherent and noise) components.
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Fig. 1

Electron energy-loss spectra for
0.5 and 0.7 pm specimens at 200 keV
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Figure 2

+/- 16.29 pum +/- 10.86 pum +/- 7.24 pum

Selected zero-loss filtered diffractograms of a 0.7 pm thick specimen
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Fig. 3a, Schematic diagram of the components in the 3D power spectra of a

through focus series.
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Figure 3b

Unfiltered Zero-loss filtered Plasmon-loss filtered

0.5 pm thick specimen
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Figure 4

Unfiltered Zero-loss filtered Plasmon-loss filtered

0.7 pm thick specimen
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Fig. 5

Fig. 6
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Figure 7
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Figure 8
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Fig. 9A
Radially average power spectra of
scale-normalized contrast images
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Chapter 4

Practical image restoration of thick biological specimens using

multiple focus levels in transmission electron microscopv.

An accurate interpretation of image intensities in transmission electron

micrographs is critical for the three-dimensional reconstruction of thick

biological specimens. In addition to microscope lens aberrations, thick

specimen imaging is complicated by additional distortions resulting from

multiple elastic and inelastic scattering. Extensive analysis of the mechanism of

image formation using electron energy-loss spectroscopy and imaging as well

as exit wavefront reconstruction demonstrated that multiple scattering does not

contribute to the coherent component of the exit wave (Han et al. 1996; Han et

al. 1995). Although exit wavefront restored images showed enhanced contrast

and resolution, that technique, which requires the collection of more than 30

images at different focus levels, is not practical for routine data collection in 3D

electron tomography, where usually over 100 projection views are required for

each reconstruction. Since only the coherent component exhibits the expected

behavior of the transfer function, it can be restored to a good approximation

using a simple restoration filter (Schiske 1968) with only 4 focus levels. We

propose a new interpretation of the restored amplitude and phase components

based on our previous image formation analysis, where the amplitude

component is an approximation of the logarithm of the specimen mass-density,

whereas the phase component is linearly related. The accuracy of limited

reconstructions using 2, 4, 6, and 8 focus levels were assessed by comparing to

the complete exit wave restoration. Although there was expected improvement

with increased number of images used, the fractional root-mean-square
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deviation between the 4-focus level and the 40-focus level restorations was

only 5.1%. This compares with 25.5% deviation for the unrestored infocus

image.

Introduction:

High resolution three-dimensional (3D) analyses of cellular organelles

and nuclear structures is most appropriately studied using transmission electron

microscopic tompgraphy of thick sections (Belmont et al. 1987; Frank et al.

1992; Fung et al. 1994; Horowitz et al. 1994; Ladinsky et al. 1994; Moritz et al.

1995). To accurately compute the three dimensional reconstructions from a set

of tilted images and for quantitative analyses, it is essential to properly relate the

image intensities to the projected specimen mass densities. This relies on an

accurate understanding of the image formation mechanism of these specimens

in the transmission electron microscope (TEM). The images taken in the TEM

are not always a direct representation of the specimen mass density. There are

two sources of aberration that effect image formation: electron-specimen

interactions, and microscope lens aberrations. The difference between imaging

of thick and thin specimens is at the level of electron-specimen interactions. For

thin specimens, image formation is dominated by singly elastically scattered

electrons, whereas for thick specimens, multiple elastic and multiple inelastic

scattering contribute the majority of the electrons. In a detailed analysis of thick

specimen image formation (Han et al. 1995), we demonstrated previously that

exit wavefront reconstruction can exclude most of the multiple scattering and

correct for lens aberrations. As exit wavefront reconstruction requires many

(often over 30) through focus images (Coene et al. 1992; van Dyck et al. 1990),

it is impractical for routine image restoration-- particularly in the application to

tomographic reconstruction, where a complete tilt data set requires over 100

sº *

E.
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projection images. It is therefore important to develop a more practical

restoration approach that uses fewer focus levels yet can still exclude most of

the multiple scattering component and also correct for the lens contrast transfer

function.

In this paper we present a quantitative analysis of the application of the

Schiske formalism to the imaging of thick biological specimens. We use a

complete exit wave reconstruction based on 40 images as a standard for

comparison. In addition, based on our experiments on the mechanism of image

formation for thick sections, we propose a new way to combine the amplitude

and phase contrast components to generate the restored image. This approach

better accounts for the contribution of multiple scattering at low resolution.

Materials and Methods:

Thick Biological Specimens: The specimens used in the experiments

discribed here were the same as were used in the previous paper (Han et al.

1996). They are isolated centrosomes from Drosophila embryos embedded in

epon and stained with uranyl-acetate and lead-citrate (Moritz et al. 1995). The

diameter of the microtubules, which are 22 nm, serve as an internal standard.

Specimens were cut to 0.7 pm thickness.

Microscopy and through focus series: The energy-filtered images were

recorded with a Gatan Imaging Filter, Model GIF100 (Gubbens et al. 1993;

Krivanek et al. 1992) mounted on a Philips CM200. All TEM images were

recorded at a calibrated magnification of 40,000 times at the CCD. The images

were binned twice in the camera hardware resulting in an effective pixel size

projected back to the specimen of 1.20 nm. The energy-window used for

energy loss-filtered imaging was 10 eV, the energy dispersion used for

recording the energy-loss spectra was 0.5 eV per CCD pixel.

82



Through focus series consisting of 41 images were recorded from 18.1

pum under focus to 18.1 pm over focus with a focus step size of 0.905 pum. To

minimize specimen alterations and shrinkage (Braunfeld et al. 1994) during

data collection, the specimens were stabilized by pre-irradiating with

approximately 1000 e-/nm2. The individual images were aligned prior to the exit
surface wave front reconstruction using fiducial gold markers and cross

correlation (Koster et al. 1992). Image processing and visualization were done

on a DEC VAX-9000 and a Silicon Graphics Iris workstation using Priism, the

image visualization software developed in our laboratory (Chen et al. 1994).

Theory:

Many authors have presented approaches for image restoration (Coene

et al. 1992; Hawkes 1980; Kirkland 1982; Saxton 1978; Scherzer 1949;

Schiske 1968; Schiske 1973). Many such restorations are based on the

assumption that the specimen is relatively thin and is a weak phase object.

Typically, others have been interested in recovering very high resolutions ((~.5-

.1 nm)-1 range) where the contrast transfer function (CTF) is highly oscillatory.
In such cases, recovery is particularly important because contrast inversions

cause the image intensities to vary dramatically, making interpretation

extremely difficult. In the study of thick biological specimens, we are interested

in recovering a large range of relatively low resolutions, from (15 nm)-1 to (3

nm)-1. Here it is very difficult to recover the image wave due to the large
fraction of multiple inelastic scattering contributing mostly in this resolution

range. Since the CTF is varying slowly at low resolutions, it is also very difficult

to uniquely restore the exit wave unless large values of underfocus are used.

For thick specimens, only the coherent component (single elastic scattering)

exhibits the expected behavior of wave propagation through focus (Han et al.
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1995). Linear exit wave restoration techniques can be used to extract the

coherent component which will exhibit an enhanced contrast throughout a large

resolution range. Following the restoration, real and imaginary components of

the exit wave must be properly related to the specimen mass density, using the

experimental results that address the nature of image formation for thick

specimens.

In high resolution electron microscopy, van Dyck and coworkers have

shown that the exit wavefront can be restored by extracting the coherent

electrons which map on to a parabola in the three-dimensional Fourier

Transform of a through focus series (>30 images)(Coene et al. 1992; van Dyck

et al. 1990):

i(k, g)=ICP 6(k)+C v(k)6(; – Alki /2)+Cy’ (-k)6(4 + Alki /2)
+ j v *(k) v(k-k')6(4–AI(k-k')? – k+1/2}dk'

k=0,(k—k')#0

(1)

where k and Q are reciprocal axes for x, y and z respectively; 6 is the Dirac delta

function; A is the electron wavelength and Uy is the specimen exit surface

wavefront. By back transforming along the parabola, the exit wavefront can be

recovered as follows:
N A.

W. = exp(inca'k'); Xi(k, Af,)exp(-in-Akº Af,)
Afn =l

(2)

Although equation (2) is essentially the same as the simplified Schiske

restoration filter (Eq. 11, see below) (Saxton 1994; Schiske 1968), the mapping

of electrons in the 3D power spectra is an informative technique to select the

appropriate focus levels to restore the resolution range of interest. For thick
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biological specimens, it was shown that a large central (incoherent) component

can be isolated from the parabolic (coherent) component. The central

component is contributed largely by inelastic multiply scattered electrons (Han

et al. 1996; Han et al. 1995). The derivation by van Dyck et al. (1990)

suggested that a large evenly spaced through focus series (>30 images) is most

optimal for restoration, which is however impractical in routine 3D tomography.

The advantage of restoration using a wide range of focus levels is, in addition to

the reduction of statistical noise by WN (where N is the total number of images

used in the restoration), a better separation between the parabolic and

incoherent components by reducing the width of the parabola in (proportional

to sinc(Z), Z is the full range of focus levels). Although, it is not required to use

an evenly spaced through focus series for restoration using equation (2), it is

more desirable as it facilitates the use of FFTs to speed the calculations.

A brief review of the ideal specimen exit wave recovery is presented

below. The complex specimen exit surface wave function can be approximated

aS.

V, as ■ o + V. (3)

where i■■ o is the unscattered wave and V. is the scattered wave with real and
imaginary components:

V.(r)= W,(r) + iy,(r)=A(r)expið(r)
(4)

The unaberrated image (I.) formed on the exit surface is:

I. =| i■ .” =| Vo■ ’ + Wo' V. + Vo W.' +| V. |2

(5)

The wave aberration introduced by the objective lens effects the scattered wave

with a known systematic dependence on the focus level, Af, and spherical
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aberration, Cs. This wave aberration function causes a well-characterized

phase-shift in Fourier space:
2 2n-2exp(ix(Ark)-expºc, *

2 2

(6)

The detected image wave is a result of the real-space convolution of the

— Af)]

scattered wave with the wave aberration function (or multiplication in reciprocal

space):

jº (Af,k)= j/.(k)exp■ iz(Af,k)] (7)

where i■ º(Af,k) denotes the aberrated wave function in reciprocal space
and i■ /.(k) the unaberrated scattered wave. The image detected is analogous
to the formation of the unaberrated image (Eq. 5) on the exit surface but with

Wº'substituted for V. Assuming | Vo■ ’ is constant, set to unity, and the
|2contribution by i■ ...It is negligible in equation (5) the Fourier transform of the

aberrated image detected at a particular defocus is given by:

i.e.,(Af,k)=6(k)+ i), (k)exp■ iz(Af,k)]+ W. (k)exp(-ix(Af,k))
= 6(k)+(i), (k) + i) (k))exp(ix(Af,k)]
+(i), (k) – i■ (k)) exp■ —ix(Af,k)]
= 6(k)+2 i■■ , (k)cos(x(Af,k)]–2 i■■ _(k)sin[X(Af,k)]

(8)

where 6(k) is the Dirac delta function, and
a - A. k a —k
V, (k) = FTIV,(r)|=* -º

j/.(k) – i■ ... (-k)
i■ (k) = FTIV, (r)|= 2

(9)
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Thus, by solving for ■ º, (k) and W_(k), the unaberrated scattered exit wave is
completely recovered. From equation (8), to solve for the two unknowns, one

must collect at least two images at different defocus levels to recover the exit

wave. Indeed, if many images were collected at different defoci (i.e. a through
focus series), this becomes an over-determined problem, and jº, (k) and
i■ /_(k) can be solved by setting up a simple 'Ax=B' matrix problem. For

example, in the case of only two focus levels:
I(Af)|_|cosz(Af,k) -sin x(Af,k)|W, (k)|. |

-

... I...]:
(10)

The above derivation assumes that the entire scattered wave is effected

by the wave aberration function in the same way. That is, the electrons

contributing to the scattered wave are single elastically scattered.

Unfortunately, for thick biological specimens, majority of the imaging electrons

arise from multiple inelastic scattering (Han et al. 1993). The contribution of this

component varies with specimen, and cannot be systematically characterized

as illustrated above for the coherent component. Empirically, it was shown that

the multiple elastic and inelastic scattering components contribute a central

Gaussian and a large background component in the three-dimensional power

spectrum of a through focus series (Han et al. 1995). This implies that a unique

expression for the multiple scattering component as a function of defocus does

not exist. Although we were able to quantitate the overall contribution of these

components to images of thick specimens, the specific contribution for the

recovery of the exit wave is very specimen-dependent, and thus cannot be

easily generalized or incorporated into equation (8). Thus, the solution to

equation (10) is only approximate since it does not account for all the electrons
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contributing to image formation, except at high resolutions where multiple

scattering does not contribute as significantly.

Using electron energy-loss spectroscopic imaging (ESI), as mentioned

above, we showed that only single elastically scattered electrons contribute to

the behavior of equation (6) (Han et al. 1995). By restoring this component

through the resolution range of interest, the restored exit wave can then be

properly related to projected specimen mass density. Schiske and other

authors have optimized the statistics of the restoration (Hawkes 1980; Saxton

1978; Schiske 1968; Schiske 1973):
N A.

W.(k) = X. I(k, Af,) r(k, Af,)
Afn =1

N

{N-X. exp■ 2i■ z(Af,k)–2(Af,k)]}
r(k, Af.) = exp■ ix(Afa,k)] Afm =l N

{N°– X exp■ 2i■ z(Af,k)]]I*}
Afm =l

(11)

In a through focus series with equal focus level increments as it was done by

van Dyck and co-workers, equation (11) reduces to equation (2). Since our

goal is to restore the exit wavefront using as few as four focus levels equation

(11) is the more appropriate.

Once an approximation to the exit wave has been recovered, it is

necessary to properly relate the amplitude and phase components of the

projected specimen mass density. Based on previous experiments aimed at

understanding the mechanism of image formation for thick specimens, we have

shown that the relative contribution of multiple scattering to imaging has a

logarithmic relationship to specimen thickness (or mass density) (Han et al.

1996). In addition, calculating the average image intensities of the same
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specimen area as a function of specimen tilt (hence thickness), showed a

logarithmic relationship between intensity and thickness (data not shown).

Thus, we interpret the restored amplitude component of the exit wave to arise

directly from absorption by the thick specimen. As a consequence, it should

have a logarithmic relationship to mass density. The phase component is

interpreted to be directly related to specimen thickness and thus should follow a

linear relationship. The sum of the phase component, p(r), with the logarithm

of the amplitude component, A(r), is our estimate of the projected mass density

distribution, D(r), of the thick specimen:

D(r) = p(r) — log(A(r)) (12).

Results:

A. Comparison of the restoration using fewer focus levels with the

Ewald sphere reconstruction. Since no absolute mass standard exists for

thick biological specimens, it is difficult to assess whether the restored mass

distribution is 'correct'. Although the exact dimensions and mass distribution of

the microtubules are known, the images are projections of often many

overlaying microtubules, making the absolute assessment of mass density

distribution difficult. Nonetheless, if we assume that the exit wavefront

restoration using 40 focus levels gives the closest representation of the "true"

mass density distribution, we can use it as a standard for comparison with

different restoration techniques. As discussed in the Theory section, the

Schiske filter was used to restore images from a through focus series (Eq.

11)(Schiske 1968). To quantitatively compare the reconstructions while

ignoring trivial differences due to different scales and background levels, the

*
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images were scaled by matching their contrast. The contrast image I", was

calculated for each image as:
I(x, y) — Iroo-º-º:

ave

and subsequently scaled to a common intensity range. Fractional root-mean

square deviation (%D) were used to assess the similarity between the

restorations and the exit wavefront (I.e■ (x, y)):

%D = X. W(1(x,y)-1, (x,y)1

nx nynºny I, f(x,y)
In comparison to the complete reconstruction using 40 images, the restorations

using fewer focus levels have reasonable fractional deviations (Table I). As

expected, the more focus levels included in the restoration, the better the

estimate of the exit wave (see Theory, Table I, trials 1,2,5). The choice of focus

levels strongly affects the restoration quality, and in the case of 4 focus level

restoration, % D can range from 5% to 12% (Table I, trials 9-13). Indeed, any

restoration is better than no restoration as evidenced by the high 9% D's of the

unrestored images. As expected, the further out of focus of a single image

(Table I, trials 12-15), the higher the 9% D due to the highly oscillatory behavior

of the contrast transfer function.

B. Restoration using appropriately chosen four focus levels shows

enhanced contrast. Figure 1 compares the 905nm underfocused image to

the exit wavefront restored image of a 0.7 um thick specimen (see Methods)

using equation (2) (see Theory). This reconstruction is used as a standard to

compare with other restoration approaches using fewer focus levels. Figure 2

plots the power spectrum of the contrast normalized images comparing the in

focus data, 8 and 4 focus-level restorations (Eq. 11) and the 40 focus-level

Ewald sphere reconstruction (Eq. 2). The exit wave using fewer focus levels is

*
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recovered by restoring the coherent component of the optimally chosen through

focus series, requiring at least 2 defoci. Optimal focus levels are chosen such

that the coherent component in the 3D FFT of the through focus series span the

resolution range of interest shown in Figure 3. For restoration using 6 defoci,

the optimal range of focus levels are chosen to evenly span the resolution

range between (15 nm)-1 to (3 nm)-1: + 18.10, £5.43, and + 3.62 mm defoci
(trial 2, Table I). The % D for this restoration is only slightly higher than that

restored using 8 defoci (trial 1, Table I), with a value of 3.99%. The most optimal

set of defoci for the restoration using only four focus levels are: + 18.10 and +

5.43 pum, with an 96 D value of 5.2%. Note that although it is not necessary to

choose matching under- and over- foci for the restorations, doing so results in

better discrimination between the amplitude and phase components (compare

trials 2 and 3, 5 and 6 in Table I). Figure 4 shows the restored images using

four and six focus levels with equations (11) and (12) to obtain an estimate of

the projected specimen mass density. The restoration using 4 focus levels

(Figure 4A) has higher contrast compared to the 905nm data (Figure 1C),

although it clearly has a much higher background (noise) component compared

to the restorations using 6 and 40 focus-levels (Figures 4B and 1A). In addition,

the microtubule boundaries are much more clearly delineated in the resstored

images (Figures 1A, 4 A and B) as compared to the unrestored (Figure 1C).

C. The effect of error in focus level on the restorations. Figure 5

plots the expected error in the contrast transfer function (CTF) for a conserved

estimate of the error in focus levels. Error at each focus level is determined by:

-

(#)ey
-

■ täk” (Bsin x + cos x)ex;
error = CTF T (Bcos X – sin Y) + m

where B is the fraction of amplitude contrast (taken to be 0.15, empirically
determined through curve-fits of diffractograms), ey is the estimated error in

- -

E
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focus level determination (a conservative estimate is taken to be 10 nm), and m

the estimated noise-to-signal ratio. The error in CTF is less than 2% for

resolutions up to (3 nm)-1 except for regions where the CTF crosses zero (Fig 5,

spikes). Since the restoration is an over-determined problem, at resolutions

where the CTF is crossing zero for one of the focus levels, the others are well

determined. Thus, the exit wave function is solvable within 2% for the entire

range of the resolutions of interest.

Discussion:

An accurate three-dimensional tomographic reconstruction relies on the

assumption that the image accurately represent the projected specimen mass

densities. While we have utilized a previously proposed restoration approach

using only a few focus levels (Schiske 1968), it is our interpretation of the

relationship between the exit wave and the specimen mass density that differs

from what has been traditionally assumed. In comparison with the full exit wave

reconstruction, the reduced restoration indicates that this approach recovers a

good approximation to the exit wavefront. We demonstrated that the relative

contrast through all resolutions is increased by removing aberrations from

images of thick biological specimens. This enhanced contrast revealed

substructures in these thick specimens that were otherwise not seen in the

uncorrected images. From these results, we demonstrated the importance of

correcting for aberrations in electron micrographs to achieve an accurate

interpretation of images for 3D reconstruction. The future incorporation of this

modified restoration approach for thick specimens will improve the resolution

extent of the 3D tomographic reconstructions.

Acknowledgments:

92



The authors thank M. Braunfeld and M. Moritz for providing the

centrosome specimens; A. Gubbens for assisting data collection and critical

reading of this manuscript; A. Gubbens, W. Liu, M. Op de Beeck, M. Gustafsson

for helpful discussions. K.F.H. is supported by the Howard Hughes Medical

Institute Predoctoral Fellowship in the Biological Sciences. This work is

supported by grants from the National Institutes of Health (GM 31627 for D.A.A.;

GM25101 for J.W.S.) and by the Howard Hughes Medical Institute.

References:

Belmont, A.S., Sedat, J.W. & Agard, D.A. (1987). A three-dimensional approach

to mitotic chromosome structure: Evidence for a complex hierarchical

organization. Journal of Cell Biology, 105, 77-92.

Chen, H., Clyborne, W., Sedat, J. & Agard, D. (1994). PRIISM: An integrated

system for display and analysis of 3D microscope images. SPIE:Biomedical

Image Processing and 3-Dimensional Microscopy, 1660, 784-90.

Coene, W., Janssen, G., Op de Beeck, M. & Van Dyck, D. (1992). Phase

retrieval through focus variation for ultra-resolution in field-emission

transmission electron microscopy. Physical Review Letters, 69, 3743-3746.

Frank, J. & Radermacher, M. (1992). 3-Dimensional reconstruction of single

particles negatively stained or in vitreous ice. Ultramicroscopy, 46, 241-262.

Fung, J.C., Agard, D.A. & Sedat, J.W. (1994). Three-dimensional reconstruction

of the synaptonemal complex from high-pressure frozen maize meiocytes using

IVEM tomography. Proc. 53rd Ann. Microscopy Society of America, 14-15.

93



Gubbens, A. & Krivanek, O. (1993). Applications of a post-column imaging filter

in biology and material science. Ultramicroscopy, 51, 146-59.

Han, K.F., Gubbens, A.J., Koster, A., Braunfeld, M., Sedat, J.W. & Agard, D.A.

(1993). Analysis of electron-specimen interactions of thick biological specimens

in transmission electron microscopy at 200 keV. 52nd Ann. Microscopy Society
of America. 204-205.

Han, K.F., Gubbens, A.J., Sedat, J.W. & Agard, D.A. (1996). Optimal strategies

for imaging thick biological specimens: exit wavefront reconstruction and

energy filtering. J. Microscopy, submitted.

Han, K.F., Sedat, J.W. & Agard, D.A. (1995). Mechanism of image formation for

thick biological specimens: exit wavefront reconstruction and electron energy

loss spectroscopic imaging. J. Microscopy, 178:2, 107-19.

Hawkes, P.W. (1980). Image processing based on the linear theory of image

formation. Computer Processing of Eletron Microscope Images. Berlin, Pringer

Verlag.

Horowitz, R.A., Agard, D.A., Sedat, J.W. & Woodcock, C.L. (1994). The three

dimensional architecture of chromatin in situ: electron tomography reveals

fibers composed of a continuously variable zig-zag nucleosomal ribbon. J Cell

Biol, 125, 1-10.

94



Kirkland, E.J. (1982). Nonlinear high resolution image processing of

convectional transmission electron micrographs. Ultramicroscopy, 9, 45-64.

Koster, A.J., Chen, H., Sedat, J.W. & Agard, D.A. (1992). Automated microscopy

for electron tomography. Ultramicroscopy, 46, 207-227.

Krivanek, O.L., Gubbens, A.J., Dellby, N. & Meyer, C.E. (1992). Design and 1st

applications of a post-column imaging filter. Microscopy Microanalysis

Microstructures, 3, 187-99.

Ladinsky, M.S., Kremer, J.R., Furcinitti, P.S., McIntosh, J.R. & Howell, K.E.

(1994). HVEM tomography of the trans-Golgi network: structural insights and

identification of a lace-like vesicle coat. J Cell Biol, 127, 29–38.

Moritz, M., Braunfeld, M., Fung, J., Alberts, B., Sedat, J. & Agard, D. (1995).

Three-dimensional structural characterization of centrosomes from early

drosophila embryos. J. Cell Biol., 130, 1149-59.

Saxton, W. (1994). What is the focus variation method-is it new- is it direct.

Ultramicroscopy, 55, 171-81.

Saxton, W.O. (1978). Computer Techniques for Image Processing in Electron

Microscopy. New York, Academic Press.

Scherzer, O. (1949). The Theoretical Resolution Limit of the Electron

Microscope. Journal of Applied Physics, 20, 20-26.

95



Schiske, P. (1968). Zur Frage der Bildrekonstruktion durch Fokusreihen. 4th

European Conference on Electron Microscopy. 145.

Schiske, P. (1973). Image processing using additional statistical information

about the object. Image Processing and Computer-aided Design in Electron

Optics. London, Academic Press.

van Dyck, D. & Op de Beeck, M. (1990). New direct methods for phase and

structure retrieval in HREM. Proc. of 12th Int'l Congress for Electron Microscopy,

26-27.

96



Figure and Table Captions:

Table I: % D difference with respect to the full exit wavefront restoration (see

text) is used to compare the restorations and raw data. The first column lists the

trials referred to in the text; second column, the 96 D's; third column, the focus

levels used in the restoration.

Figure 1: Exit wavefront restoration (A) from 40 through focus images and its

diffractogram (B); 905nm defocused image (C) and its diffractogram (D). Scale

bar:50nm, resolution limit is (2.41 nm)-1.
Figure 2: Contrast and scale normalized power spectra comparing exit

wavefront restored, 8-, 4- focus-level restored and in-focus data, demonstrating

enhanced contrast.

Figure 3: Plot of the coherent component for each reciprocal defocus in the

3DFFT of the through focus series used to restore Figure 1A.

Figure 4: Restorations (A, B) using 4 and 6 focus levels and their diffractograms

(C, D). Scale bar:50nm, resolution limit is (2.41 nm)-1.
Figure 5: Expected error of the contrast transfer function (CTF) as a function of

resolution for focus levels used in the restoration described (Fig. 4) with a 10nm

focus level error.
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Table |

Trial

1) 8 focus levels (A)

2) 6 focus levels (A)

3) 6 focus levels (B)

4) 6 focus levels (C)

5) 4 focus levels (A)

6) 4 focus levels (B)

7) 4 focus levels (C)

8) 4 focus levels (D)

9) 2 focus levels (B)

10) 2 focus levels (A)

11) in focus data

12) 905 nm

underfocused data

13) 3.63 pum

underfocused data

14) 5.43 pum

underfocused data

15) 18.1 pum

%D

3.77%

3.99%

5.09%

8.05%

5.17%

8.01%

9.05%

12.14%

11.22%

15.85%

underfocused data

25.47%

29.66%

31.44%

32.97%

36.11%

Defocus levels used in the restoration

(um)

+ 18.10, it 9.05, it 5.43, it 3.62

+18.10, it 5.43, it 3.62

18.10, 5.43, 3.62, -2.72, -4.53, -9.05

+ 12.11, + 7.03, it 5.43

+ 18.10, it 5.43

18.10, 5.43, -9.05, -3.62

+ 12.11, + 7.03

+ 8.57, it 5.43

5.43, -4.53

18.10, -17.19
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Figure 1
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Figure 2
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Figure 4
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Figure 5.
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Conclusion

Three-dimensional tomographic reconstruction requires an accurate set

of projected specimen mass density. In reconstructing supramolecular

assemblies such as chromosomes and centrosomes, these specimens are too

thick for electron microscopy, where the images are degraded due to multiple

elastic and inelastic scattering. To achieve high enough resolutions (up to (3

nm)−1) for fiber tracing, unless these degrading components are removed, it will
remain difficult to interpret the reconstructions.

Part I of this thesis described an extensive set of experiments

characterizing the nature of the image degrading components, which is termed

'incoherent'. The component that is easily interpretable as projected mass

density is termed 'coherent'. It was demonstrated that computationally, it is

possible to separate a significant portion of the incoherent component from the

coherent component.

It was shown that the optimal strategy is collect data at high primary

voltages (>200 keV) and combine electron energy-loss filtering and through

focus image restoration to recover the coherent component of the images in

transmission electron microscopy of thick biological specimens.

After a series of experiments over sampling and using the energy filter,

have found that the intrinsic (stain) resolution for our typical specimens is just

beyond (3 nm)-1. If other specimens are used where the suspected intrinsic
resolution is higher, over sampling and a larger range of through focus series is

required (Appendix A).

The quantitative analysis was done using similar specimens of different

thicknesses at zero tilt. It is important to consider the focus change
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perpendicular to the tilt axis at high specimen tilts for through focus series

restorations. (I found that in addition to the expected focus change, there is an

additional blurring that may be due to the electron optics disturbed by the tilted

stage, although I haven't convinced myself that it was the case.) Thus

restoration of highly tilted specimen should be verified using the procedures

illustrated in Appendix A.

In future experiments, data should always be collected at high voltages

with an energy filter. The focus series exit wavefront restoration should be done

prior to the three-dimensional tomographic reconstruction. In theory, the

corrected images already represent the projected specimen mass densities.

Therefore, scaling image intensities between specimen tilts should be reduced

only to correct for fluctuations in the beam current during data collection.

The newly interpreted images should result in a more accurate

reconstruction, and hopefully will aid in the modeling of such complex

supramolecular assemblies such as chromosomes.
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Part II: Inverse sequence structure mapping reveals

novel structure motifs in proteins
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Summary:

Structure analysis provides the ultimate understanding of the

mechanisms by which proteins function. New proteins are rapidly determined

and their biochemical roles in cell biology elucidated. But the exact

mechanisms of function await the difficult experimental determination of these

structures by either X-ray crystallography or multidimensional NMR. These high

resolution structures have in many cases aided in our understanding of the

results of mutational and biochemical analyses. In addition, the precise

mechanistic determinations have pharmaceutical applications such as

designing specific agonists or antagonists to these enzymes or signal

transducers. It is thus of interest to understand how proteins fold to predict the

3D structure of proteins based on their primary amino acid sequences.

It is generally assumed that the native fold of a given protein sequence

represents the most stable state with the lowest free-energy. Thus, a given

sequence would have essentially a single unique fold, but which can share a

similar architecture of another unrelated sequence. Due to the limited structural

database, the traditional approach to studying the relationship between

sequence and structure is by first identifying the structural environments (such

as helix, sheet, or turn), and then tabulating the propensities of each of the

amino acid types that were found in these environments (Chou and Fasmann).

An alternative approach to study the relationship between sequence and

structure is to utilize a vast database of multiple sequence alignments where

allowable substitutions in a given structure are explored. Chapter 5 presents

the statistical method of classifying recurrent multiple sequence patterns

(profiles) in proteins. Extensive analysis was done to show that indeed there

are patterns that are common to many different protein families which are

º

.
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functionally unrelated. Chapter 6 shows that many of these patterns are well

correlated with structural properties. These recurring profiles (or allowable

substitution patterns) have similar structural constraints in their local

environments. In addition, using the inverse mapping approach described in

Chapter 5, the ambiguity in mapping can be explicitly addressed. These

analysis explains why there has been an upper-limit to secondary structure

prediction of 70% or less. Indeed, only 44% of all positions in the sequence

database maps to a single structure type. Chapter 7 discusses the three

dimensional context in which these motifs occur, focusing on the newly

identifies structural motifs such as buried helices, N-terminal capping of sheets,

C-terminal capping of sheets and helices, and helix-turn-sheet transition motifs.
The global context including solvent accessibility and packing properties

explains the preferential allowable substitutions.

Some new motifs identified are putative folding initiation sites for protein

folding.
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Chapter 5

Recurring local sequence motifs in proteins

We describe a completely automated approach to identifying local

sequence motifs which transcend protein family boundaries. Cluster analysis is

used to identify recurring patterns of variation at single positions and in short

segments of contiguous positions in multiple sequence alignments for a non

redundant set of protein families. Parallel experiments on simulated data sets

constructed with the overall residue frequencies of proteins but not the inter

residue correlations show that naturally occurring protein sequences are

significantly more clustered than the corresponding random sequences for

window lengths ranging from one to thirteen contiguous positions. The patterns

of variation at single positions are not in general surprising: chemically similar

amino acids tend to be grouped together. More interesting patterns emerge as

the window length increases. The patterns of variation for longer window

lengths are in part recognizable patterns of hydrophobic and hydrophilic

residues, and in part less obvious combinations. A particularly interesting class

of patterns features highly conserved glycine residues. The patterns provide a

means to abstract the information contained in multiple sequence alignments

and may be useful for comparison of distantly related sequences or sequence

families and for protein structure prediction.

Introduction

Are there recurring local patterns in the amino acid sequences which

encode proteins? Global similarity is often used to classify sequences into

families; are there local patterns which transcend family boundaries?
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Given that all viable protein sequences must be such that the proteins

they encode can fold and have at least marginal stability, it is reasonable to

expect that not all 20N amino acid sequences of length N are equally probable.

There are far too few distinct protein families to tabulate meaningful statistics on

the frequencies of occurrence of the different peptides of length N for N greater

than two (Gonnet et al. 1994). An alternative approach is to use cluster analysis

to identify recurring sequence patterns. This requires a suitable measure of

similarity between two sequences.

Global sequence comparisons almost always rely on amino acid

substitution matrices compiled by averaging over large sets of related

sequences. The disadvantages of using a single substitution matrix have been

pointed out on numerous occasions (Johnson et al. 1993; Risler et al. 1988).

The major problem is that at different positions in protein structures, different

sets of amino acid sequences are likely to substitute for one another. In other

words, there is no single and universally applicable set of distances (or

similarities) between the 20 amino acids. Rather, similarity can be quite

context-dependent.

A more natural measure, which does not require the assumption of a

single substitution matrix, is available for comparison of protein families if there

are a number of sequences in each family. For each position in a set of multiply

aligned sequences, one can calculate the frequency of occurrence of each of

the amino acids. The resulting sequence of frequency distributions is often

called a profile (Gribskov et al. 1990). To evaluate the distance between two

aligned profile segments, one can compare the frequency distributions at

corresponding positions.

J

109



Here we use such a distance measure in conjunction with cluster

analysis to identify patterns which occur frequently in multiple sequence

alignments for proteins of known structure. Because only one multiple

sequence alignment is included for each family, the patterns are necessarily

common to many different protein families and are distinct from the family

specific patterns compiled in the Prosite database (Bairoch et al. 1994).

Because the patterns are universal but still fairly detailed, they present a

possible route to overcoming some of the limitations of the global amino acid

substitution matrices used in sequence comparisons and the individual residue

secondary structure and solvent accessibility propensities used in local protein

structure prediction. The work described in this paper is a first step towards

correlating local sequence patterns with local structural motifs.

Results

If there are a finite number of distinct chemical environments in proteins,

there should be a finite number of patterns of variation in sets of multiply aligned

sequences. Here we use cluster analysis to identify recurring patterns of

variation at single positions and in short segments of contiguous positions in

multiple sequence alignments. A non-redundant set of global multiple

sequence alignments for proteins of known structure was extracted from the

HSSP database (Sander and Schneider, 1991) as described in the Methods

section. After excluding positions in which fewer than 20 sequences

contributed to the alignment, the data set contained approximately 20,000

individual columns from 154 protein families.

J
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A. Patterns at single positions

The frequencies of occurrence of the 20 amino acids at each position

were calculated, and the K-means algorithm was used to group similar

frequency distributions using the simple "city block" metric (d.1, see Methods).

The amino acid groupings obtained (Table I) are consistent with

expectation. The mean of the frequency distributions belonging to a given

cluster provides a convenient summary statistic. To save space, the mean

values of each of the 20 amino acids in each cluster are not shown, instead only

the amino acids whose mean frequency of occurrence in a cluster is greater

than 0.1 (upper case) or between 0.07 and 0.1 (lower case) are listed (Table I,

column 3). The degree of conservation of these primary components is

reflected in the variability index (column 4), which gives the number of amino

acid components whose mean frequency of occurrence is greater than .05.

The patterns generally fall into either hydrophobic (clusters 1, 2 and 3) or

polar (clusters 4 through 8) classes (Table I, column 6). However, the different

clusters contain different combinations of hydrophobic and hydrophilic groups.

For example, cluster 1 contains primarily V, l, and L while cluster 2 contains

primarily I, L and M. Cluster 3 contains only aromatic residues while cluster 6

contains only negatively charged residues. Amino acid residues with special

structural properties are prominent in clusters 9 (P) and 10 (G). Although the

RMS deviation of points within a cluster is not dramatically less than that of

points in the entire dataset (see Methods), the products of the variances are

considerably lower in the former than in the latter (Table I, column 6). As

outlined in the Methods, the patterns were independent of the choice of starting

cluster centers implicit in the K-means algorithm. Patterns similar to those in
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Table I were obtained in a Dirichlet mixture decomposition of multiple sequence

alignments (Brown et al. 1993).

The first ten patterns in Table I are the result of a low resolution

subdivision of sequence space (ten classes were allowed). More subtle

patterns are revealed when the number of classes is increased (see Methods).

For example, in cluster 11, primarily L, R and K, the common feature is the long

aliphatic side-chain common to the three residues. Pattern 13 is dominated by

the beta branched residues V, I and T. A cluster with conserved cysteine

residues also emerges when more classes are allowed. Thus, although

hydrophobicity appears to be the major feature distinguishing the largest

clusters, other chemical properties are often important in the smaller clusters.

How clustered are the frequency distributions in sequence space? The

K-means algorithm can always subdivide a set of points into convex subsets

and does not depend on the "clumpiness" of the data. To investigate this

question, random data sets were generated using the individual residue

frequency distributions of the HSSP database but lacking the inter-residue

correlations (see Methods). The HSSP data set and a simulated data set were

subjected to the same clustering procedure and the results are compared in

Figure 1.

As described in Methods, no single statistic adequately captures the

spread of points within a cluster embedded in a high dimensional space. With

two statistics one can do much better. We have used V, the within cluster

variance per dimension, and D, the dimension of the smallest subspace that

contains the cluster. Each cluster is represented as a point in Figure 1.

The most striking aspect that distinguishes the results of application of

the K-means algorithm to the real (Figure 1A, open triangles) and simulated
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(Figure 1A, closed triangles) data sets is the smaller number of dimensions in

the former. There is also significantly greater variation in the number of

dimensions per cluster in the real data set. The clusters in the random set

appear to have roughly similar shapes and volumes, as expected in a relatively

uniform distribution. In contrast, the size and shapes of the clusters obtained for

the real data set vary considerably, presumably because different sequence

patterns in protein families are constrained to different extents.

B. Comparison of weighting schemes and distance measures

Frequency distributions from multiple sequence alignments can be taken

as estimators of the "true" probability distributions for substitution of the 20

amino acids at a given position in a protein, but there are two important caveats.

First, there are a limited number of sequences in each family, so that observed

frequencies may be inaccurate estimates because of small sample size effects.

We have dealt with this problem by excluding poorly represented families and

positions from the analysis. Second, and perhaps more serious, the different

sequences in a family are not independent observations. Rather, they are

highly correlated. Frequency distributions derived from sets of evolutionarily

related sequences may be heavily biased. A particular amino acid may be

highly represented in a particular position simply because it was present in a

common ancestor, and not because of any underlying structural constraint.

A number of different weighting schemes have been proposed for

compensation of the heavily biased sampling in evolutionarily related sequence

sets (Vingron et al. 1993). We experimented with 1) a weighting scheme similar

to that described in (Altschul et al. 1989) and (van Ooyen et al. 1990) in which

weights are derived from a tree constructed from pairwise distances between

the aligned sequences, 2) the self-consistent weighting scheme of Sander and
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Schneider (Sander et al. 1991), and 3) the Monte Carlo approach to estimating

Voronoi volumes described by Sibbald and Argos (Sibbald et al. 1990).

Frequency distributions were recalculated for each of the weighting schemes

and subjected along with corresponding simulated data sets to the K-means

clustering procedure.

Space limitations prohibit the display of scatter plots for each of the

weighting schemes. However, the essence of these plots can be roughly

captured by the mean and variance of D, the cluster dimensionality (Figure 1).

The results obtained with frequency distributions weighted using scheme (1)

were very similar to those obtained with the unweighted distributions (Figure 1,

compare circles to triangles).

The average cluster dimensionality was very similar for all the weighted

data sets (Fig. 1C, column 3), indicating that the interrelationships among the

frequency distributions are not substantially changed by the different weighting

schemes. Furthermore, the resulting sequence patterns were not greatly

altered by any of the weighting schemes (Fig. 1C, column 2). Since both the

relative weight on a particular sequence and the probability of misalignment

increase with sequence divergence, attempts at correcting the biased sampling

through unequal sequence weighting may increase noise from misalignment

errors. Because of the lack of dependence of the results on the weighting

scheme, unit weights were used for simplicity in the experiments described in

the following sections.

A similar approach was used to evaluate alternative distance measures.

The Euclidean distance metric gave results very similar to that of the city block

metric d 1 (data not shown). Because differences between amino acid

frequencies of 0.8 and 0.6 are likely to be less significant than differences
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between frequencies of 0.2 and 0.0, we experimented with the somewhat ad

hoc distance measure d2 which effectively down-weights differences of the

former type. Again, the clusters obtained with distance measures d2 had

similar overall properties to those obtained with di (Figure 1B). We also

experimented with a PAM(250) matrix based distance measure and with the

use of the overall covariance matrix as well as individual cluster covariance

matrices to adjust for the different frequencies of the different amino acids and to

relax the assumption of spherical clusters implicit in the K-means algorithm (see

Methods for details).

As summarized in Figure 1C, the different distance measures gave

qualitatively similar results, with the real data set consistently more clustered

than the random data set (Fig. 1C, columns 2 and 4). The simplicity of the city

block metric and the Euclidean metric makes them preferable over the other

distance measures. Because of complications associated with the use of the

Euclidean metric for clustering frequency distributions (see Methods), the city

block metric was chosen for the studies described in Tables I and Ill. The lack of

sensitivity to the details of the weighting scheme and distance measure argue

that the groupings shown in Table I are inherent in the data and not simply

imposed by the clustering algorithm, a conclusion supported by the degree to

which the patterns agree with intuition.

C. Results of contiguous position classification

The clustering procedure can be readily generalized to treat segments of

contiguous positions as described in the Methods. To investigate the types of

patterns occurring on different length scales, the clustering procedure was

repeated for segment lengths ranging from 3 to 15 residues using a fixed

number (200) of clusters. Table II lists the average cluster dimensionality per
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position for both the real and simulated data sets. As the window length

increased, the variation in the average number of dimensions increased (Table

II, column 4). In contrast, the variation for the simulated data set was relatively

constant (Table II, column 6). Thus, the clusters adopt a wider range of shapes

at larger window lengths.

Space limitations preclude the description of the patterns for each

segment length. Instead, the following analysis is focused on the results for

segment length nine. A detailed description of all patterns for window lengths

two to fifteen can be obtained from the authors.

D. Patterns for nine consecutive positions

The distribution of clusters obtained for segment length nine is shown in

Figure 2 for both the real (open triangles) and simulated (closed triangles) data

sets. As in Figure 1, the clusters in the real data set are consistently lower in

dimensionality than those in the random data set. The former also have a

greater variety of dimensions and shapes.

Several of the patterns for window length nine are described in detail in

Table Illa along with relevant statistics. Space limitations preclude the

description of even a modest number of clusters in this detail, instead we have

adopted a more compact representation (Table IIIb) to show a number of

common patterns found in three separate classifications using different random

starting cluster means. Because the distance calculation assumes a one to

one correspondence between the positions of the segments being compared,

frame shifted patterns are frequently observed in which for example positions 1

to (N-1) of pattern 1 are very similar to positions 2 to N of pattern 2. To save

space such frame shifted patterns are shown only once. Clusters containing

less than 25 members are omitted.
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As expected, many substitution patterns at individual positions are similar

to those observed in the single position clustering (compare the single position

substitution patterns in brackets of Table Illb to Table I). However, because the

averaging is also constrained by neighboring sequence patterns, there appear

to be more subtle patterns in the contiguous sequence clusters (e.g. compare

positions 1 and 3 in cluster 40).

The patterns fall roughly into three broad categories which are illustrated

by the examples in Table Illa. The first and largest category consists of patterns

with pronounced amphipathicity. The first cluster in Table Illa belongs to this

category; a number of additional patterns are shown in more condensed form in

Table IIIb (section G). In some positions--those in which the average

hydrophobicity is either very high or very low, but the variability index is high--a

simple H/P reduced code is clearly sufficient. For example, most positions in

cluster 3 in Table Illa are strongly hydrophobic but eight amino acid residues

occur more than average. In contrast, the relative hydrophobicity index in some

positions is at one extreme or the other, but only particular residues are

allowed. For example, position 4 in cluster 44 tolerates only aromatic residues,

while position 1 in the same cluster prefers V and I. In some cases, side chain

size appears to be important, perhaps because of packing effects. Patterns 19,

22, and 23 contain positions in which small (A), medium (L) and large (F)

hydrophobic side chains are conserved. The hydrophobicity patterns

neighboring these conserved positions are in many cases quite distinctive.

The second category consists of patterns with highly conserved residues

(Table Illb, sections A-E). Interestingly, only a subset of the amino acids are

absolutely conserved in any of the patterns. Clusters with conserved glycine

residues are particularly common (20% of all clusters). Because of the
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conformational flexibility of glycine residues, these patterns may be

advantageous in local structures with unusual backbone torsion angles.

Several clusters have more than one conserved glycine. For example, pattern

2 (Table Illa) contains two consecutive conserved glycines, and pattern 1 has a

GXXG motif. In pattern 6, there is a proline four positions prior to a conserved

glycine, with preferences for hydrophobic residues in the two positions following

the proline. In pattern 3 the aromatic residues Y and F are favored five residues

prior to a conserved glycine. Other clusters containing conserved glycines and

highly constrained neighboring substitution or hydrophobicity patterns are listed
in Table |||b section A.

Prolines also have unique structural characteristics. Again, there are a

number of patterns with conserved prolines (Table IIIb section B) and these

have additional positions with distinctive substitution and hydrophobicity

profiles.

Conserved charged amino acids may be involved in metal chelation, salt

bridges, or catalysis. Interestingly, patterns with conserved charged residues

often have strong preferences at additional positions. For example, patterns 14

and 18 contain conserved aspartic acids with strongly hydrophobic substitution

patterns at different relative positions. In pattern 13, a position rich in V, l, and L

occurs three residues prior to a conserved asparagine.

The third category consists of patterns which have similar substitution

patterns at all positions. For example, in Table Illa pattern 3 has preference for

l, L, and F, pattern 4 is glycine rich and pattern 5 is dominated by T and S.

Fairly strong structural constraints such as the requirement for flexibility may

give rise to these repetitive patterns.
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It is instructive to compare the patterns described in Table III to the

patterns in the Prosite database. There are a number of key differences. First,

patterns listed in Table Ill are common to multiple protein families: the proteins

around which the different multiple sequence alignments in the starting dataset

are based have less than 25% sequence identity. Families with particularly

divergent sequences are represented several times (there are four globin

chains and three immunoglobulin chains in the set), but since most of the

clusters have on the order of fifty members, a particular pattern would have to

occur in more than ten different places within a single protein for a single family

to contain the majority of instances of the pattern. In contrast, Prosite patterns

most often characterize single protein families. Second, the patterns in Table III

contain no gaps (perhaps the major shortcoming of the current approach), while

Prosite patterns can extend for substantially longer stretches. Third, the

patterns are obtained in quite a different way. The patterns in Table III are

generated completely automatically without any information other than the

amino acid sequence, while the patterns of Prosite depend on the prior

classification of sequences into functional or structural groups.

Primarily because of the first factor, there is not a large overlap between

the patterns contained in the two sets. This reflects a more fundamental

difference: the conserved patterns in Prosite reflect either functional constraints

or quite specific structural constraints, while the patterns of Table III probably

arise from more general structural constraints or properties common to many

different classes of proteins.

E. Variation patterns and substitution matrices

It is interesting to compare the association of amino acids in clusters with

conventional substitution matrices which estimate the cost of substituting one
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residue type for another. One of the most powerful current substitution matrices

is the BLOSUM62 matrix which was generated from the Blocks database of

multiple sequence alignments (Henikoff et al. 1992). The relationship between

the BLOSUM substitution matrix and the clusters of Table I is simple: the value

of a particular cross term in the substitution matrix is a function of the (weighted)

average probability that two residues will be in the same cluster. It should be

pointed out that our analysis relies on the alignments contained within the

HSSP database, which were generated using a conventional substitution

matrix (McLachlan 1971).

There are instructive differences in the performance of the PAM(250)

(Gonnet et al. 1992) based distance measure d3 (see Methods) for single

positions versus strings of contiguous positions. As shown in Figure 1C, use of

the PAM matrix in clustering of single positions gives results quite similar to

those of the simple distance measure (1). However, for segment length nine,

many of the patterns which contain highly conserved residues were not present

when the PAM matrix was used and there were many fewer patterns overall

(data not shown). The averaging involved in the use of a substitution matrix,

although not detrimental for the patterns in Table I, which in any event are

averages over large numbers of different local contexts, results in considerable

loss of sensitivity for comparisons between segments of contiguous positions.

It is clear from Table Ill that substitution patterns are position-dependent.

There have been numerous proposals for grouping the 20 amino acids into

smaller numbers of sets in order to make the analysis of sequence to structure

mapping more manageable. One approach groups amino acids according to

their similarity based on standard substitution matrices. For example, the sub

groupings 1) I,L,M.V; 2) F.Y; 3) H,K, R; 4) A,P,S,T; and 5) D,E,N,Q were derived
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from analysis of the Dayhoff substitution matrix (Risler et al. 1988). Mixed codes

based on chemical properties of the amino acids have also been proposed

(French et al. 1983), the suggested groupings were 1) L,M,I,V,E; 2) R,K,E,D; 3)

Q,N,T,S. The wide variety of groupings shown in Table Ill suggests that any

reduced code will have limited generality.

Discussion

We have described a completely automated approach to identifying

recurring sequence motifs in protein families. The patterns identified here (see

Tables I and III) probably include most of the local motifs which transcend

protein family boundaries for proteins of known structure. Because of the

numerous factors which enter into the determination of protein structures, the

data set is probably somewhat biased and there may well be additional patterns

in the large number of protein families for which structures are not available.

The clustering procedure used here, although simple, appears to be

quite adequate for modeling the data-- the local covariances of residue

occurrences found in multiple sequence alignments. First, the independence of

the results from the choice of starting cluster centers required for the K-means

algorithm attests to the numerical stability of the procedure. Second, the results

are surprisingly robust to changes in the distance metric and sequence

weighting schemes (Table and Figure 2). Third, most of the patterns obtained

for individual positions (Table I) and many of the patterns obtained for

segments of contiguous positions (Table lll) are consistent with expectation (the

division between hydrophobic and polar patterns in Table I is perhaps the

simplest example).

Our results permit limited but significant generalizations about the

distribution of protein amino acid sequences in sequence space. The
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robustness of the results suggests that the majority of the patterns are

reasonably well separated from one another. Furthermore, the distribution of

sequences in protein families appears to be considerably more "clumpy" than

random distributions. The clusters obtained for the real protein sequence data

are consistently lower in dimensionality than those identified in applications of

the same clustering procedure to random datasets (Figures 1,2, Tables I-III).

The classification of positions into different clusters provides a simple yet

potentially powerful means to abstract the information contained in multiple

sequence alignments into a higher level representation. A multiple sequence

alignment can be replaced by a sequence of cluster numbers with relatively

little loss of information. The resulting higher level sequences can be subjected

to much the same types of analysis as normal amino acid sequences in efforts

to correlate sequence with structure(Rost et al. 1993).

Our results may have useful applications for sequence comparisons, in

particular for the identification of distant homologues for newly determined

sequences. It is well established that searches with profiles constructed from

sets of aligned sequences are considerably more sensitive to distant

homologues than searches with single sequences. The reason for this is

simple: a sequence profile contains at each position family specific information

about the likelihood of different amino acids to substitute at that position, while a

search with a single sequence typically uses the same global substitution matrix

at each position. As mentioned in the introduction, the use of a single

substitution matrix may average out weak but important similarities, whereas

our clusters are in fact strings of distinct substitution matrices. One can imagine

using the clusters as "generalization rules" whereby the substitution matrices
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generated from the closest cluster or clusters to each segment of a query

sequence are used for scoring sequence alignments.

A similar strategy may facilitate extrapolating from a small number of

aligned sequences. The idea is that given a small sample of the variation

possible at a given position, the closest clusters can be identified to predict the

variation likely to be observed in new members of the same family.

Generalization in this fashion may permit the power of profile-based searching

to be employed with only a few examples from the sequence family (or perhaps

from only one example).

One way to implement the strategy described in the previous paragraph

would be to use the variation patterns of Table Ill to generate a rough profile or

sets of profiles for new sequences which have no close relatives: for each

segment of nine residues in the sequence, select the closest pattern (or a

weighted average of nearby patterns) and build a profile by splicing together

the variation patterns for the different segments. Next, search the database with

this inferred profile. This procedure potentially circumvents the limitations

associated with using the same substitution matrix at each position of a

sequence. The method may also be useful for generalizing from a small

number of aligned sequences, but once there are more than 5-10, the

substitution patterns are probably better inferred directly from the aligned

sequence set.

There are also potential applications to protein structure prediction.

There is a significant correlation between the local structures adopted by

members of a given cluster, although the extent of correlation varies from cluster

to cluster. For example, more than 80% of the occurrences of the first two

patterns in Table Illa in known protein structures are in alpha helices.

º

-
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Intriguingly, the conserved charged residues in patterns 13, 15 and 16 in Table

Illb are buried in more than 70% of the occurrences of the patterns. Pattern 7

in Table Illa is very similar to the Schellman helix C-terminal capping motif

(Aurora et al. 1994) and as expected occurs frequently in helix caps. A more

extensive analysis of the structural correlates of the sequence patterns will be

presented elsewhere. The tracing of the structural correlates of sequence

patterns is essentially the complement of the more standard (and very powerful)

procedure of tabulating the frequencies of occurrence of the 20 amino acids in

different structural environments (Bowie et al. 1991; Chou et al. 1978).

Finally, we should note that the results described here are highly

dependent on the quality of the starting multiple sequence alignments. As the

amount of sequence data increases and multiple sequence alignment

algorithms are improved, approaches similar to the one described here should

become increasingly powerful.

Methods

A. The Data: Multiple sequence alignments for proteins of known structure

were taken from a non-redundant subset (PDB select 25; (Rost et al. 1993) of

the HSSP database (Sander et al. 1991). No two multiple sequence

alignments in this subset have parent sequences with greater than 25% identity.

Because of the wide degree of sequence variation in families such as the

globins and the immunoglobulins, the PDB select 25 list does include more

than one chain per family in several cases (there are four globin chains and

three immunoglobulin chains, for example). To reduce the problems associated

with small sample size, families with fewer than 20 members were excluded

from the analysis. Insertions common to less than 20 members of larger

families were also excluded (the HSSP database consists of global sequence
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alignments). The final data set included 154 protein families with an average of

98 sequences per family.

B. Distance Measure: Cluster analysis requires a metric on the space to be

clustered. An advantage of using multiple sequence alignments is that there is

a natural choice of metrics: the difference in the frequency distributions. A

particularly simple choice is the "city block" metric:

20

d1(i,j) = 2Fºo-F0.9 (1)

where d1(i,j) is the distance between frequency distributions i and j and F(i,k)
20

is the frequency of occurrence of the kth amino acid at position i, X. F(i,k) = 1.
k=1

A distance measure for comparing single positions can be readily generalized

to treat strings of contiguous positions. The distance between one segment of

a multiple sequence alignment and a second segment of the same length is

conveniently defined to be the sum of the distances between each of the

corresponding positions:

N–1

dºº-ººrººn) (2)71=

where N is the length of the window, i and j are the starting positions of the first

and second segments, and d(i+n,■ --n) is for example distance measure d1

above.

C. Cluster Analysis. The data set consists of roughly 20,000 frequency

distributions. Most clustering algorithms become extremely time consuming

with data sets of over 1000 members. The K-means algorithm is one of the few

that can be used with extremely large data sets. In brief, a set of K initial cluster

centers are chosen at random and each data point is assigned to the closest
125



center. New cluster centers are then determined by taking the mean of all of the

data points in each cluster, and each data point is reassigned to the closest

center in another pass through the data set (Everitt 1993). This simple iterative

scheme of recalculating cluster means and reassigning data points to clusters is

repeated until no data points are moved from cluster to cluster.

For technical reasons, the city block metric is somewhat preferable to the

Euclidean metric for clustering frequency distributions using the K-means

algorithm. Viewed as vectors in a 20N dimensional space, the frequency

distributions vary widely in absolute magnitude (for window length one, a

position in which only one amino acid occurs is represented by a vector of

length one, while a position in which all twenty amino acids occur with equal

probabilities is represented by a vector with length (20 x (1/20)2] 1/2 = 0.22).
The Euclidean distance between a position in which ten of the amino acids

occur with equal frequencies and a position in which the other ten amino acids

occur with equal frequencies is .45, while the distance between two positions in

which different residues are absolutely conserved is 1.4. The city block

distance between the two sets of positions is the same (1.0) in both cases, a

more satisfactory results since no residues are in common in either pair. To

avoid the problems associated with the use of the Euclidean metric with

variable magnitude frequency vectors, the frequency vectors can be normalized

to unit magnitude. However, the updating procedure basic to the K-means

algorithm also changes the absolute magnitude of the cluster centers. The

latter can be kept fixed, but this requires a somewhat awkward renormalization

step after each reassignment of vectors to clusters in the K-means procedure.

D. Error measures. How is the extent of clustering best evaluated? An

explicit example illustrates the difficulties with evaluating different clustering

126



strategies in high dimensional spaces, and in particular with data of the type

involved here. Consider a position which can tolerate either of two amino acids,

for example valine and isoleucine. With a small and possibly biased sample,

the frequency of occurrences of the two residues may range from 0.0 to 1.0; the

constraint being that the variation is contained within a two dimensional

subspace of the entire 20 dimensional space (only valine and isoleucine are

allowed). The maximum distance between two points in this subspace is the

same as the maximum distance between two points in the entire 20

dimensional space (2 in both cases). The mean distance of the members of a

cluster from the cluster mean is clearly a poor measure of the dimensionality of

the cluster.

Two statistics which have proved useful for capturing the distribution of

points within a given cluster are D, the number of dimensions for which the

cluster mean exceeds 0.02 (chosen empirically), and V, the average variance in

these dimensions. D clearly indicates the dimensionality of the subspace in

which the cluster lies, and V, the average spread within this subspace.

To assess the extent of clustering of the sequence data, parallel

experiments were carried out on simulated data sets. To construct these sets,

the frequency distributions for each of the 20 amino acids were evaluated and

then used to generate randomized versions of the HSSP database. The

statistics of the simulated data sets are essentially those of the HSSP database

with all covariances between substitutions at particular positions or between

nearby positions set to zero. For each weighting scheme, a separate simulated

dataset was generated based on the amino acid frequency distributions of the

corresponding weighted dataset. We note that the more standard procedure of
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randomization by shuffling does not apply here since we are not seeking family

specific patterns.

A single composite statistic--the product of the variances of the individual

residue frequencies--is also given in several of the tables to facilitate

comparison between different positions within the same cluster. This crude

volume measure is normalized by division by the corresponding quantity for the

whole data set:

20 1 Mi
- -TI- XI F. (j,k)– 3 F(j,k) >

■ M, j=l
Volume(l) = 20 1 J

II:XIF(j,k)– 3 F(j,k) >
■ : S →

where FI(j,k) is the frequency of the kth amino acid in the jth distribution in

cluster I, FI(j,k) > is the center of the Ith cluster, and <F(j,k) > is the center of

the entire data set. MI is the number of vectors (or distributions) in cluster 1,

and S, the number in the whole dataset. To reduce the effects of small sample

size artifacts, .001 is added to the terms in the product in the numerator (again,

the value of .001 was determined empirically).

E. Numerical stability, alternative distance measures and the K

means algorithm. A disadvantage of the K-means algorithm is that both the

number of clusters and the starting cluster centers must be specified in

advance. In practice, use of more than the natural number of groupings results

in the subdivision of several of the larger clusters. This is easily recognized,

and each pattern is shown only once in Tables I-IV. The numerical stability of

the algorithm and the dependence of the results on the starting cluster centers

were assessed by carrying out multiple independent calculations using different

sets of starting centers. Only the recurrent clusters are reported in the tables.
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A potential disadvantage of distance measure d1 (eq.1) is that a

difference in frequency of .1 is treated similarly regardless of whether the

difference is between 0.7 and 0.6 or between 0.1 and 0.0. Because of lineage

effects, the former is likely to be less informative than the latter. A simple

exponential scaling was used to emphasize differences of the latter type:

20

d2(i,j) = geº-Fºol-ep-roo (3)

The K-means algorithm implicitly assumes the clusters to be spherical. If

several variables are highly correlated or have significantly different variances,

clusters may resemble prolate ellipsoids more closely than spheres. Non

spherical clusters can be accommodated by calculating the within-cluster

covariance matrix and using the generalized Mahalonobus distance given by

equation (4) when assigning data points to clusters (Everitt 1993):

d3(i,j)=[[F-FMF-FM) (4)

where F = F(i,k) and M is the inverse of a covariance matrix.
If the number of dimensions is of the same order as the number of data

points in individual clusters, the matrix inversion required is not possible. In this

case the inverse of the covariance matrix can be approximated by inverting the

diagonal elements (the variances) and setting off-diagonal elements to zero.

The modified K-means method in this case leads to minimization of the effective

volume of the clusters rather than the average within-cluster distances.

Distance measure d3, with M equal to an amino acid substitution matrix

such as a PAM matrix weights differences according to the likelihood of

substitution of one residue type for another (Dayhoff et al. 1972). This is a

simple generalization of the similarity measure used in comparing single

f
sT
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sequences that are distantly related. This measure, essentially a return to the

single substitution matrix approach mentioned in the introduction, is clearly only

useful in the limit of small numbers of sequences per family.
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Cluster# # of Domi- Variabil- Hydro- Relative
members nant ity Index phobicity Cluster

Substitu- Volume
tions

1 2449 V,I, 3 .832 2.3e-4
2 1971 L,i,m 5 .853 5.4e-4
3 1521 Y,F,w 4 .818 1.6e-3
4 1166 N,H,d 4 . 151 7.4e-4
5 2263 R.K.,d 4 . 163 5.8e-3
6 2396 D,E 4 .148 2.5e-3
7 1401 T,s 3 .237 2.4e-4 *

8 1412 S,a,t 3 .199 3.3e-4
9 2214 P.A 3 .538 1.2e-3 -:
10 1349 G 2 .166 4.3e-4 I
11 84 L,R,R 4 .450 2.8e-3 sº

12 150 G,N,k 4 .101 2.4e–6 -
13 114 V.I.T 4 .687 1.1e–5 a

-

Table I: Recurrent patterns at individual positions. The amino acids which occur –
with frequencies greater than 0.1 are shown in upper case, those which occur at -

frequencies between 0.07 and 0.1, in lower case (column 3). The number of
amino acids which occur at frequencies greater than 0.05 is given in column 4.
The average summed frequency of occurrence of the amino acids A, V, I, L, M,
F, W, C is listed in column 5.
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Table II: Results for clustering segments of contiguous positions into 200 -
classes. Note that as the window length increases, the total number of º

frequency vectors decreases slightly as N-1 positions are lost from each end of S
each sequence, where N is the segment length.

-
s

~

Window Number Real Data Cluster Simulated Data º A

Length of Dimensionality Cluster cº
Vectors Mean Variance Dimensionality --

Mean Variance

3 21 146 12.07 .57 14.79 .16
-

5 20812 13.51 .66 15.76 .15 *ms

7 20483 14.22 .85 16.36 .12 *
9 20157 14.50 1.42 16.48 .11 * {

11 19833 13.75 2.35 16.72 .18 I
-

13 19517 14.79 2.61 16.80 .15 sº
15 19204 14.69 3.39 16.95 .17 * - I

2. L
C.

-

* 1.

(`)

CO

º

*- 1.
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Table Illa
Cluster Size V
Number

134

210

148

.94

.95

.39

D

15.3

14.4

Promi
nent AA

VIL

Varia
bility
Index

Hydro
phobi
city

.73

.19

.26

.20

.15

.72

.30

.30

.68

.21

.28

.77

.32

.22

.55

.83

.24

.25

11.7

TSC
parkDE
AskDE
QDE
AVIL
AKCIE
AqrkE
aVil

aKDE
AkDE
aVIL
ArKE
AKDE
AL
VIL■

aqRKE
ArKCE

aVILFt
AILFW
GAiLFts
GAVILF
GAVILFts
GAVILFts
gAvll_F
av|LF
gAiLF

.70

.74

.64

.73

.66

.70

.76

.79

.68

Rela
tive
Cluster
Volume

3. 8 E -1 2
.1 E-10

2.7E-13
1.1 E-10
2.4E-10
2.9E-13
2.0E-10
1.1 E-10
2.2E-1 1
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133

107

74

1.02

.67

.67

15.6

16.1

16.1

GAVts
GAS
GAVs
GAVs
GAVs
GAls
GAls
GpAs
GAVls

TS
aVTS
gaTSD
gpatSnD
gtSq
pa■ snq
aTSn
Pa■ sn
gptSnd

Gpavlk
VIf
i■ Tr

.41

.40

.44

.41

.41

.41

.41

.39

.40

.25

.41

.25

.23

.33

.30

.30

.25

.24

.39

.58

.45

.20

.66

.67

.45

.06

.39

67 .88 15.3

P
VILe
ailyFe
aVltSn
G
GalfSk

AkDE
AIL■ k
AL
ARKe
gaKE
alyf
G
aVIL
tskDe

.30

.55

.59

.27

.29

.56

.04

.62

.28

-
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Table IIIb

A. Conserved glycine
[GAV) [G] . . [G] ... [gaV]
. [G] [G] ... t. It
[Yf . It . . [G]. [LSD].
It . . It [G]. [sDe][IYF] It
... [VIL] . . [G][gAS].
... [P][VIL) () . [G].
. [AvL][ArK. It [ALy][G]. It IVIL)
[ARK]. [AVI][AL] it it. [G][AVI]

B. Conserved proline
9. [VIL][P]... It It..

10. It (b. IVIL)|[P] . . . .
11. . () . . [Ats][P]... [aVI]
12. [PLF] . [GAV) () [P] it...

C. Conserved polar residues
13. IVILJ. . [N] ... It . .
14. . . [D]... [iln][TSh] It
15. . . [VIL] [D].. it it it
16. . [AVt] ... [D]... It
17. . [T] it... (AvT). . .
18. PP ■ qDe][LYF][VLF, XX [D] X

D. Conserved nonpolar residues
19. [il F). It [A] () It It. It
20. . . It . [iLm). . [A][Vill]
21. . [AtS][A] (). [ALY][AVF][LnQ] It
22. [AvL] It It [L]. It . [vll j .
23. It It [F] it it. It It.

1

E. Conserved arginine/lysine
24. ... [Rk][LFw]... [IF]
25. (ASD]. [AVT] it. [RK). Ivll).
26. [ThP]. [RK) [LFK) [VIL][VIL][Avl][AY].
27. . it [RK) [gPA] it [Hole] [AVI] . [Avl)

F. Threonine and serine

Size

146
100

69

37
228

74

161

167

147

101

152

54

61

54

138

149

90
76

136

126

69

228

93

74
63
35

0.87
0.86

0.72

0.91
0.85

0.85

0.89

0.95

0.76

0.72

0.81

0.75

0.81

0.76

0.91

0.84

0.76
0.81

0.89

0.73

0.76

0.92

0.84

0.81
0.81
0.79

15.2
14.8

13.8

15.4
15.7
14.3

14.6

15.0

15.2

14.3

16.1

12.1

14.0

14.4

15.7

15.4

14.9
13.8

14.6

14.3

14.6

15.9

14.4

12.7
12.2

13.1

138



28

29
. . [ai■ ] [PTS] it it. It . [iLm)
. [TSd] it it [QDE] (). It (AVL)

30. It [TSQ]. [a■ s] . [GLN]. () [Vlw]
. . [ITS] [TS] it it it [a■ s] [ATS] it31

32

33

G. Alternating hydrophobic-polar
34. [VIL] [TSd] it it [QDE][AVIL] it it ()
35

36.

37

38

39.

40

41

H.
42.
43.
44.

45.

46.

Table |||.

statistics for several selected clusters.

selected patterns. Positions with variability indices less than six are described

by amino acids in brackets (upper and lower cases are as in Table I). The

remaining positions are represented by '@' (average hydrophobicity greater than

0.65), 'T' (average hydrophobicity less than 0.35) or '.' (average hydrophobicity

. . [gAS] It (ATS) () (iL][gAT].

. [vwT] . [tSq] It . . [VIL][Re] It

... [akD] it [aVI] It It. [VIL] It ■ t

. . [Vil_j It [vil]. It . [VIL].

... [GND]. It [VIL]. [VIL] . . It
. It t t it [VIL]. [VIL].

... [VIT] it [VIL][Vil]. It it it it

. . . [VIt] . [aVI][VIT] . [Pa) It

Miscellaneous

() [GAs). () . . . . [gaS)

[VI] it. [YFW) . . [WTR) it.

() (b. () () () () [avi] ()

between 0.35 and 0.65).

It (b. [VIL][aVT][VIL][PAS] . [VIL)

[PVL][VIL][ViL][gA][AVY]. [PNH]..

It 0. IGYs][NHR][PYF) ■ iLF). IgAR]

59

145

26

65

95

54

134

210

69

63

99

122

111

70

29
58

43

33

148

0.70

0.91

0.62

0.76

0.76

0.93

0.94

0.95

0.65

0.78

0.87

0.84

0.86

0.81

0.76
0.70
O.77

0.89

0.39

14.1

14.6

13.0

14.0

15.2

13.8

15.3

14.4

12.2

15.0

15.2

15.0

14.4

14.3

14.2
12.2

14.5

11.2

11.7

Recurring patterns for nine consecutive positions.

B. Condensed representation of

A. Detailed

139



Figure Legends

Figure 1: Comparison of different weighting schemes and distance measures

for both the real and random data sets. Each symbol represents a single

cluster; the x axis is the number of non-zero dimensions, the y axis, the average

variance. A. Comparison between unweighted (triangles) and weighted

(scheme 2, circles) data sets. B. Comparison between the city block metric

(triangles) and distance measure d2 (circles). Open symbols, clusters

generated from the real data set; closed symbols, clusters generated from a

simulated data set. The clusters for the real set are numbered as in Table I.

Note that the weighting scheme changes the residue frequency distributions

such that the within-cluster variance is higher for both real and simulated data

sets. C. Summary of statistics for the different weighting schemes and distance

measures. Column 1 describes the trial, column 2 lists the fraction of patterns

that were found in the unweighted data set clustered using the city block metric

(trial 1), columns 3 and 4 list the mean and variance of the cluster

dimensionality for the real data set; columns 5 and 6, the same quantities for the

simulated data set. The city block metric was used for the comparison of

weighting schemes (trials 1-4), and the unweighted data set was used for the

comparison of distance measures (trials 5-8). The weighting scheme trials are:

1. no weights, 2. tree-based weights, 3. self consistent weights, 4. Voronoi

weights (see text for more description). The distance measure trial 5 utilized d2

and trials 6-8 utilized d3 with the matrix M the PAM(250) substitution matrix, the

overall covariance matrix, and within cluster covariance matrices respectively

(see Methods). For trial 8, covariance matrices were calculated for each of the

clusters generated using the standard procedure (trial 1) and used for a second

round of clustering as described in the Methods.

i
3.
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Figure 2: Scatter plots of the number of non-zero dimensions (D) and average

variance (V) for each cluster obtained in the nine-consecutive position

classification. A. Real data set, B. Simulated data set.

141



Figure 1a

1.05 | | | | |

1 | * O O

0.95 —

O O

0.9 – 86 X, •
> 0.85 — A9 8 :

0.8– A 6

A 4 A A 5 A 3
0.75 — 1 A2 #

0.7 — A A
-

A 10 A A
0.65 | I | I T

8 1 O 12 1 4 16 18 20
D

Figure 1b

0.9 | | | | |

* A 7

0.85 —
Ö 9 O

0.8– A 6

> 34 A5 A 3
0.75 — A 1 O

é2 $
0.7 — # t AA10 &

0.65 I | | | |

1 O 12 1 4 16 18 20

142



Figure 1c. Summary statistics

Pattern Real Data Cluster Simulated Data
Conserva- Dimensionality Cluster Dimensionality
tion mean variance mean variance

Weighting
Scheme
1. 1.0 11.8 .54 16.3 .17
2. .9 11.8 .54 16.5 .15
3. .9 12.1 .47 16.5 .18
4. .7 12.6 .46 16.5 .20

Distance
Measure
5. .8 11.8 .45 17.5 .06
6. .9 11.8 .51 16.7 .08
7. .7 11.1 .84 14.9 .25
8. 1.0 11.3 .39 13.5 .02
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Figure 2a
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Chapter 6

Global properties of the mapping between local amino acid

sequence and local structure in proteins.

Local protein structure prediction efforts have consistently failed to

exceed -70% accuracy. We characterize the degeneracy of the mapping from

local sequence to local structure responsible for this failure by investigating the

extent to which similar sequence segments found in different proteins adopt

similar three dimensional structures. Sequence segments 3-15 residues in

length from 154 different protein families are partitioned into neighborhoods

containing segments with similar sequences using cluster analysis in

conjunction with a measure of sequence similarity. The consistency of the

sequence-to-structure mapping is assessed by comparing the local structures

adopted by sequence segments in the same neighborhood in proteins of known

structure. 45% and 28% of the positions in our protein database occur in

neighborhoods in which one and two local structures predominate, respectively.

The sequence patterns which characterize the neighborhoods in the first class

probably include virtually all of the short sequence motifs in proteins that

consistently occur in a particular local structure. These patterns, many of which

occur in transitions between secondary structural elements, are an interesting

combination of previously studied and novel motifs. The identification of

sequence patterns which consistently occur in one or a small number of local

structures in proteins should contribute to the prediction of protein structure from

sequence.

Introduction
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Most studies of local sequence-structure relationships have involved the

tabulation of statistics on sequences which occur in structural motifs of interest

((1, 2, 3, 4), Figure 1A). Our approach (Figure 1B) is essentially the inverse.

Instead of investigating the sequence patterns found in predefined local

structural environments, we first identify recurring sequence patterns and then

investigate their structural correlates.

It is well established that the local sequence-to-structure mapping is not

one to one over all of sequence space: identical pentapeptide sequences exist

in completely different tertiary structures in proteins (5). Furthermore, local

structure prediction efforts consistently fail to exceed -70% accuracy (6),

suggesting that the mapping from local sequence to structure is likely to be

degenerate for a significant fraction of sequence space. In this paper we

characterize the degeneracy of the mapping by determining the number of

sequence segments in neighborhoods (regions of sequence space) in which

the sequence-to-structure mapping is one to one, one to two, and one to three

(Figure 1B).

The definition of local sequence neighborhoods requires a measure of

distance between short sequence segments. Most sequence comparison

methods rely on a single global substitution matrix compiled by averaging over

all positions in a large set of aligned protein sequences (7). However, at

different positions in proteins, different amino acid residues are likely to

substitute for each other, and thus the use of a global substitution matrix is

potentially problematic. These problems can be circumvented if the two

segments being compared are both derived from protein families with multiple

members: sequence profiles (8) constructed from sets of aligned sequences

contain position-specific information on amino acid substitution patterns.

:
3
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In previous work (9), we utilized a measure of the distance between

sequence profiles generated from multiple sequence alignments to identify

sequence patterns that transcend protein family boundaries. A similar distance

measure is used in this paper, and the term "segment" below refers to a

segment of a profile generated from a multiple sequence alignment. The earlier

work focused on the identification and characterization of recurring sequence

patterns; the focus of the current paper is on the structural correlates of these

patterns.

Methods

The clustering procedures have been described in detail (9). In brief,

29921 segments of profiles derived from a non-redundant set (PDB-select 25

(10)) of the HSSP database (11) of multiple sequence alignments were

subdivided into 1200 neighborhoods containing sets of related segments using

the K means algorithm (12) and the city block metric
N 20

d(i,j)= x x. (F,{k,n)-F,(k,n)
n = 1k = 1 J

where Fi(k,n) (a profile segment) is the frequency of the kth amino acid in the

nth position of segment i and N is the segment length. Because the PDB-select

25 subset contains very few pairs of alignments from even distantly related

families, segments in a given neighborhood are necessarily derived from quite

different protein families. To capture patterns of different lengths, the procedure

was repeated for segment lengths ranging from three to fifteen residues.

Frequently, segments of length nine to fifteen which belonged to neighborhoods

with strong sequence to structure correlations contained shorter segments

which also belonged to such neighborhoods. To avoid over counting, the

statistics in the tables for a given segment length exclude positions already

included in the statistics for a longer segment length.
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Secondary structure and solvent accessibility data for each of the

segments in each of the neighborhoods were extracted from the HSSP

database using previously described simplifications (6). The average

consistency of secondary structure within a neighborhood was evaluated using

the simple formula:
N

X. max(p, heli, 5 Pistrand 2 Piturn )
i–1

N

where the p, are the frequencies of occurrence of the indicated secondary

structure among the segments in the neighborhood at position i and N is the

segment length. For N greater than seven, the lowest scoring position was

excluded from the average to allow for ambiguities in secondary structure

assignments in transition elements.

To test the statistical significance of the results with the HSSP data set,

simulated sequences were generated with the average occurrences and

variances of each of the amino acid residues in the HSSP data set, but not the

inter residue correlation's (9). To preserve the non-random sequential

correlation's in secondary structure elements, the secondary structure

assignments were not shuffled in the simulated set.

The secondary structure consistency within the neighborhoods

generated from the HSSP data set frequently exceeded 80%, but almost never

reached 80% in the simulated data set. A consistency threshold of 80% is used

throughout the paper: for example, the sequence-to-structure mapping was

considered to be one to one if the agreement in secondary structure among the

segments within a neighborhood averaged 80% or greater over the length of

the segments.

148



Tables III and IV include only a subset of the patterns; unabridged

versions are available from the authors by electronic mail.

Results

Sequence segments ranging from three to fifteen residues in length from

a non-redundant subset of the HSSP database of multiple sequence

alignments were partitioned into neighborhoods using the K-means algorithm.

Since the HSSP database includes at least one sequence of known three

dimensional structure per multiple sequence alignment, the structure adopted

by each of the segments in each neighborhood is known with reasonable

certainty (12).

Approximately 44% of the positions in the input set of multiple sequence

alignments fell into a neighborhood in which a single local structure

predominated (Table I). For segment lengths thirteen and fifteen, these

predominant local structures are primarily helix caps; for segment lengths seven

to eleven, helices; and for segment lengths three and five, turns and loops.

Although considerably less frequent than the patterns found in helices and

turns, a number of patterns were found in turn to sheet transitions for segment

lengths seven and nine, and in beta strands for segment lengths three and five.

To determine the number of distinct structural elements in the

neighborhoods in which the sequence-to-structure mapping was not one to

one, the K-means algorithm was used to subculture the segments in each

neighborhood into different structural classes (Table II legend). A substantial

fraction of the neighborhoods contained two different types of local structures

(Table II, row 2). To assess the statistical significance of the results, parallel

experiments were carried out on a simulated data set in which the sequence

structure relationships of the individual segments were randomized.
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Importantly, sequence segments in the same neighborhood are restricted to

One, two, or three local structures far more often in the HSSP database than in

the simulated database (Table ll). Thus, the sequence-structure relationships

we observe are distinctly non-random.

The sequence patterns strongly associated with particular local

structures are an interesting combination of previously studied and new motifs

(Table III). Familiar motifs include amphipathic patterns with hydrophobic

residues separated by two or three positions almost exclusively found in o.

helices (Table Ill, patterns 1 and 2), or with hydrophobic residues separated by

one position very frequently occurring in surface 3 strands (Table Ill, patterns 3

and 4). A less strongly amphipathic pattern (pattern 5) was found in somewhat

buried helices. A number of short patterns with conserved glycine and proline

residues occur predominantly in turns as expected (Table III, patterns 6-9; (13)).

Pattern 10 is a serine-rich turn. Pattern 11 is similar to a classic N-terminal

helix cap motif (3) and indeed is found predominantly in helix N caps. Pattern

12 is close to the Schellman helix C-cap (2, 14) and is found predominantly at

the C termini of O. helices.

Several patterns extend and/or refine previously characterized motifs.

Pattern 13 is an extension of the Schellman motif, following the characteristic

helix--turn transition is a hydrophobic stretch that is almost always part of a 3

sheet. Pattern 14 is very similar to a previously described motif (the O-L motif,

(2)), but surprisingly it appears primarily in strand C-caps rather than in the helix

C-caps where it was originally described.

A number of the patterns which correlate very strongly with local structure

have not been explicitly singled out in the literature. A strongly hydrophobic

stretch in pattern 15 is almost always found in buried 3 strands (note low
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average solvent accessibility in column 'SA'). Patterns 16 and 17 are found in

transitions from amphipathic helices through an exposed loop to a buried 3

strand. Pattern 18 is a helix C-cap with a conserved glycine, but otherwise

different than the Schellman motif. Pattern 19 is a helix C-cap with turn

favoring residues (S,N,K) instead of a conserved glycine. Patterns 20 and 21

are found in transitions from turns to strands, and 22, in transitions from strands

to turns. The two latter classes of patterns link well-studied short reverse turns

with specific types of 3 strands. Analysis of the three dimensional contexts in

which these patterns occur is currently under way and should yield insights into

the specific interactions responsible for the prevalence of particular local

StructureS.

Because non-local interactions play an important role in protein three

dimensional structures, local sequence--structure relationships are not

absolute. It should be noted that with the 80% consistency threshold used here,

up to 20% of the sequence segments in the neighborhoods described in Tables

I and Il may adopt local structures different from that of the majority of sequence

segments in the neighborhood. Furthermore, the -20% of positions in the

HSSP data set not accounted for in Table II belong to neighborhoods in which

the consistency of the local sequence-to-structure mapping is not significantly

greater than that observed in the simulated data set.

Discussion

Our approach uses the vast amount of available sequence data as a

guide to identify natural structural groupings which otherwise may be hidden by

the complexity of protein three dimensional structures. The two major results

are the description of the overall features of the local sequence-to-structure

mapping (Tables I and II) and the identification of most of the sequence patterns
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in proteins that consistently occur in a particular type of local structure (Table Ill).

The identification of sequence patterns which correlate strongly with structure

has proceeded in a rather piecemeal fashion in the past (most studies have

focused on a particular type of local structure and sought to determine whether

the sequences found in the structural element in proteins have any

distinguishing features); our automated approach has in one pass probably

identified virtually all of such patterns.

An important issue for approaches to protein structure prediction is the

extent to which a local "stereochemical code" operates between sequence and

structure(2). Our results have both positive and negative implications for the

success of such a code. First, we do find a number of patterns which correlate

with local structure, and have not been heretofore described (the O-turn-B motif

in Table Ill, for example). Since the patterns were generated using

unsupervised learning methods, they are probably not optimal for the

classification problem (12), but refinement of neighborhood boundaries using

structural information could yield some improvement in local structure

prediction. However, Table III shows that currently well-studied motifs dominate

the set of patterns that correlate strongly with structure, suggesting that recent

success with helix capping motifs (2, 3) may not generalize to a large fraction of

other local structure elements. Secondary structure prediction efforts have

traditionally had more difficulty with 3 strands, presumably because of their

greater dependence on non-local interactions and indeed, 3 strands are

conspicuously underrepresented in the set of patterns which correlate strongly

with structure (Table I). With regard to the question of the contribution of

hydrophobicity patterns alone to sequence--structure relationships, we found

that considerable resolution was lost, particularly in the case of structural

:
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transitions, when sequences were represented using a two letter hydrophobic

polar code (data not shown).

The explicit treatment of the ambiguity of the local sequence--structure

mapping could have useful application to the prediction of tertiary structure from

primary sequence. Examples of sequence patterns which are found in two

distinct local structures are shown in Table IV. Most work on local structure

prediction has sought to specify uniquely the local structure of a protein

segment given the sequence. The demonstration that sequence patterns may

correlate with two specific local structures out of a larger set of possible

structures has immediate relevance to the global protein structure prediction

problem since it suggests a means to greatly reduce the size of conformational

space. Such a reduction in the size of the space could readily be incorporated

into a search procedure in which only a limited number of local conformations

are allowed as a global energy function involving non-local interactions is

minimized.

The use of sequence patterns to identify structural motifs opens a new

paradigm for studies of protein structure. The amount of available sequence

data is vast and growing rapidly, and one dimensional sequences are much

more amenable to pattern recognition approaches than are three dimensional

protein structures. The striking correlation we observe between a number of

sequence patterns and local protein structure is probably only the first indication

of the power of such "inverse" approaches.
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Figure 1.

A: Determination of amino acid propensities
for predefined local structures

Sequence Space Structure Space

B: Determination of structural correlates
of sequence patterns

Sequence Space Structure Space
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Table legends

Table I. Overall distribution of sequence patterns for which a single local

structure predominates. The total number of positions in neighborhoods in

which the consistency of the sequence-to-structure mapping was greater than

80% (column 2) and their distribution among different local structures (H, S, T:

helix, sheet or turn throughout the segment; HT, TH, TS: helix-turn, turn-helix,

and sheet-turn transitions) is given for different segment lengths (column 1).

The choice of local structure groupings is primarily for convenience of

presentation; other choices would include the 3-D building blocks of Sussman

and coworkers (15). No ST dominated neighborhoods were found.

Table II. Distribution of sequence segments among neighborhoods in which

the sequence structure mapping is one-to-one, one-to-two and one-to-three.

To identify neighborhoods which contained two or three different local

structures, the segments within a neighborhood were subdivided into two or

three groups using the K-means algorithm (12) and the distance measure
d(i,j) = X. XIS(n,i,k)-S(n, j,k)

n=1, N k=helix, strand, turn

where S(n,i,k) is the frequency of occurrence of secondary structure type k at

position n in segment i, and N is the window length. Column 2 lists the

percentage of positions in neighborhoods in which the overall secondary

structure consistency within 1 (row 1), 2 (row 2), or 3 (row 3) subgroups was

greater than 80% . Comparison with the simulated data set showed that for

segment lengths of less than nine, the one to three mapping had little statistical

significance, and thus only positions in segments of at least nine residues are

included in the 1-3 mapping statistics. Statistics on positions in neighborhoods

with one to two and one to three sequence to structure mappings exclude

positions falling into neighborhoods with one to one and one to two mappings,

:
:
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respectively. Rows 5-8 give the results of applying the same procedures to a

simulated data set.

Table Ill. Selected sequence patterns which occur predominantly in a single

type of local structure. For each neighborhood, the first row gives the identifier

and the number of segments in the neighborhood; the subsequent rows contain

summary statistics on each position. Letters within brackets indicate the

prominent amino acids at the corresponding position in the neighborhood:

capitals indicate frequencies greater than 0.1, lower case letters, frequencies

between 0.07 and 0.1. For example, the third position in the nine residue

pattern characterizing neighborhood 1 is rich in alanine, arginine, and lysine.

Positions at which more than 7 different amino acids occurred with frequencies

greater than 0.05 are represented by 'It', ')', and for average

hydrophobicities of less than 0.35, greater than 0.65 and between 0.35 and

0.65, respectively. 'Hô' is the sum of the frequencies of occurrence of A, V, l, L,

M, P, F and W. Solvent accessible surface areas (SA) were taken directly from

the HSSP files, and then normalized by the exposed area of amino acids in A

X-A tripeptides. Residues with less than 16% of their surface exposed were

considered buried. Columns 'H', 'S' and 'T' are the number of segments in the

neighborhood that are in helix, strand or turn/loop configurations. Patterns 13,

14, 16, and 22 have consistency scores slightly below the 80% threshold.

Table IV. Selected sequence patterns with two prominent local structures.

Abbreviations are as in Tables I and Ill.

Table I.
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Length # positions H S T HT TH_TS

15 300 O O O 0 300 O

13 2847 691 0 0 1393 763 0

11 3399 1973 0 O 840 586 0

9 2609 1376 0 0 433 411 359

7 1711 819 O 559 0 71 262

5 1327 208 231 888 O O O

3 958 0 103 855 0 O 0

Total 13151 5067 334 2302 2666 2131 621

Table II.

positions (% total) H S_T HT TH ST TS HTS_TST

HSSP 1-1 43.9 17.0 1.1 7.7 8.9 7.1 0.0 2.1 0.0 0.0

HSSP 1-2 27.7 11.0 1.1 10.0 1.9 1.3 0.7 0.9 0.8 0.0

HSSP 1-3 8.3 5.0 0.0 2.0 0.2 0.7 0.0 0.0 0.0 0.4

Total 79.9 33.0 2.2 9.7 11.0 9.1 0.7 3.0 0.8 0.4

SIM 1-1 0.0 0.0 0.0 00 0.0 0.0 0.0 0.0 0.0 0.0

SIM 1-2 2.0 0.4 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0

SIM 1-3 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Total 2.5 0.9 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0
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Table III.
Pattems Hº SA H S I

Amphipathic helices

#1 25
[GPa j . 41 - 24 23 0 2
[Alr J .38 . 76 24 0 1
[Ark ] .38 . 72 23 0 2
[aVI ) . 83 . 12 24 0 1
[Av ) .. 81 .28 25 0 0

TI . 19 . 84 25 0 0
-

. 35 .56 24 0 1
[v], Y ) . 88 . 24 25 0 0

. 44 . 72 21 0 4

#2 23
- . 39 . 65. 19 0 4
[Anq j . 19 .96 22 0 1

T . 26 . 70 22 0 1
[gAv ) . 75 . 09 21 O 2
[RKd ) . 24 . 74 22 0 1

T . 24 .91 22 0 1
[ViD ) . 86 . 26 22 0 1
[Ay ) . 75 . 13 2 1 0 2
[gAq j . 19 . 91 20 0 3

Amphipathic strands
# 3 58
T . 22 . 82 6 9 43
[G ] .05 - 75 4 5 49

TL . 12 . 79 3 10 45
T . 16 . T 0 4 33 21
[Vil j . 66 . 15 4 4.6 8

T . 35 - 50 3 50 5
[VIL ] . 74 - 10 5 50 3

# 4 39
T . 19 . 64 0 28 11
[VI ) . 65 . 15 O 3 4 5
[TsKE] .11 . 66 0 38 1
[Vi ) . 71 . 10 1 36 2

TL . 24 . 69 2 23 14

Less amphipathic helix
#5 28

-
. 52 .50 23 1 4

[gAs ) . 74 - 18 23 1 4
[v]_F ] . 89 . 18 24 1 3
-

. 54 .46 24 1 3
[Avl'T ] . 59 .29 25 1 2
[AS ] . 76 . 21 24 1 3
[aVIL ] . 70 .36 25 1 2
[Alsk] .53 . 57 22 O 6
[gavL ] . 61 .43 16 0 12

Pattems Hº SA H S I

Turns/coils with conserved
glycines and prolines
#6 24
[P } . 07 . 61 4 6
[AVTR ] . 33 .48 4 4

T . 17 . T 7 4 3
TI . 24 .80 2 2
[G J .02 . 64 2 0

#7 33
[G ] .04 . 48 2 4
-

. 38 . 73 2 3
T . 22 .58 1 2
-

.55 . 42 3 2
[P ] .06 . 49 7 2

#8 27
[P } . 05 . 70 0 2

. 42 . 81 0 0
T . 35 . 67 0 2
[P J . 10 . 78 3 2

. 31 . 63 6 3

#9 24

-
. 37 - 54 0 2

[Pf J .23 .50 0 2
[GAVf j . 46 . 63 0 1
[P ] ... 10 .58 2 2

TI . 32 . 92 3 2
- . 45 - 75 4 2
[Pal,T ] . 28 . 83 2 1
[VTS ] . 48 . 63 2 1
[PLSD] .29 . 75 2 1

T . 17 . 67 2 1
[Gpv I) .47 .67 3 3
[PYFE] .58 - 54 3 4

Other turn/coil
# 1 0 32
[PAtS ] . 14 .. 75 7 1
[GASd] .11 .. 78 6. 0
[AS ] . 17 . 84 4 0
[S ] . 08 . 81 2 0
[t Snd ) . 11 . 71 2 3

21
23
24
27
29

27
28
30
28
24

25
27
25
22
18

22
22
23
20
19
18
21
21
21
21
18
17

24
26
28
30
27
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Pattems Hºp SA H S T

Helix N-cap
# 11 61
[GkdE] . 16 . 75 9 7 45

T . 16 . 80 6 8 47
-

. 41 .41 4 9 48
[TSND) . 0.6 . 83 4 7 50

T . 27 . T 7 44 1 16
[AkDE] . 16 .95 51 1 9
[qDE ) . 08 . 78 54 3 4
[aVIL ] . 64 . 13 56 2 3

T . 28 - 63 53 2 6
T . 19 . 91 5.1 2 8
[AVLM) . 52 . 26 50 1 10
[ILImf ) . 49 .42 47 0 14

TI . 16 . 88 43 0 18

Schellman Helix C-cap
#12 68
T . 25 . T O 53 2 13
[a IL.f.) . 59 . 16 58 1 9
[AVL ] . 47 .35 58 1 9
[r KDE) . 12 . T9 60 1 7

TI . 28 - 58 59 1 8
[L } . 69 - 16 57 0 11
[ARKE] .22 . 82 52 1 15

T . 16 . 89 48 2 18
[ALRk] .32 . 69 27 2 39
[G } . 0.6 . T 0 1 1 3 54
[avi L ] . 49 .44 13 8 47

Schellman Helix-Turn-Sheet
#13 67
[Arkd]

iAL
[AiLn)
[Aq KCl)

. 33

. 52

. 82

. 41

. 27

. 47

. 07

. 68

. 17

. 62

. 72

. 60
. TO

. 75

. 40

. 16

. 75

. 88

. 72

. T 9

. 33

. 74

. 37

. 31

. 36

. 30

53
56
58
56
49
17

:
7

[G J
[AVI }
[arkD)
[VIL ]
[VIL ]
[GVIL ]

Ö

43
48
49
45

48
65
61
39
17
12
12
16

Patte H A H

o:L,Strand C-cap
#14 48
T . 25 - 58 2 21
- . 40 .54 1 33
[VIl j . 88 . 15 1. 41
[pAVi) . 63 .25 1 40
[VIl j . 78 . 19 2 41
[VIF ] . 66 .29 2 3 4
[GA ) .30 - 19 3 23
- . 43 - 38 3 15
[G j . 05 .52 2 9

TI . 33 . 62 6 6
[GPVn } .34 .58 6 7

Buried strand
#15 37
[AVIl j . 82 . 16 5 29
[Vilm] .. 75 . 13 4 32
[IL ] . 88 . 08 4 32
[VIL.f.) .81 - 16 3 30
[G ] .06 . 21 2 23

Other Helix-Turn-Sheet
#16 3.4

- . 54 .44 26 2
[aVIL ] . 65 .32 25 4
- . 40 . 73 24 4
[ALs K] .44 . 74 25 4
[aViD ) . 69 .47 22 3
- . 42 . 76 21 1

TI . 34 .85 16 1
T . 26 .94 12 1
TI . 30 . T 3 4 2
[PaVi ) .50 . 4.1 5 3
[a DE J . 14 .. 77 5 6
[aVIL ] . 72 . 18 5 22
[VIL ] . 85 . 15 5 25
[AVIL ] . 71 . 17 5 27

. 60 . 26 5 26

25
14

12
22
30
37
36
35

.
:
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Patterns HO SA H S T Pattems Hºb SA H S T

Sheet N-cap
# 17 41 #20 44
[ASRK) .22 .87 34 1 6 T . 17 . 86 3 6 3.5

T . 27 . 90 30 0 11 [G. J . 09 . 84 1 3 40
[AiLy] .. 61 - 46 17 0 24 T . 16 . T 2 0 6 38
[G ] . 03 - 85 3 0 38 [VTrK] . 19 . 81 2 30 12
[gåV ) . 72 . 29 3 5 33 [VI ) . 71 . 20 2 35 7

T . 20 - 75 4 20 17 [AViT ] . 37 . 47 2 37 5
[VIL ] . 77 . 36 4 29 8 [VILw] .. 74 - 11 3 39 2

[ViFT ] . 47 - 31 3 36 5
Other helix C-cap [GAiS ] . 33 .43 3 28 13
#18 56

[VIL.f.) . 64 . 07 49 3 4 #21 41
T . 25 .44 5.1 2 3 [Gk ) . 0.6 . T8 5 3 33
[AKDE] .11 . 87 52 2 2 [As ) . 72 . 29 5 5 31
- . 43 .23 53 2 1 [avkD] .25 - 68 5 17 19
[ILM ) . 59 . 10 49 2 5 [aVir] . 57 .29 4 3 2 5
[at RK) . 13 . T8 46 2 8 [VI ) . 84 .26 4 34 3

TI . 15 . 87 36 1 19 [VILs ) . 74 .29 4 35 2
[alf ) .44 . 62 20 1 35 [VIL ] . 81 .. 17 4 33 4
[G ] . 04 . 83 5 O 51
- . 37 . 58 6. 2 48 Sheet C-cap
[s]NKD) . 09 . 76 9 7 40 # 22 38

[ViLy] .. 74 . 15 3 30 5
#19 41 [AVi ) . 73 - 18 3 31 4
- . 41 .. 56 34 0 7 [VI ) . 88 . 15 3 31 4

TI . 24 . 68 35 1 5 [VILF ] . 80 . 13 4 27 7
[ald ) . 72 . 22 38 1 2 [G J . 05 . 15 3 11 24
[VILy] . 82 - 17 37 1 3 [Gasq} .23 . 26 3 6 29
[Aqr KJ .28 . 81 38 2 1 [Gvs ) .30 - 50 7 7 24
[ld Rk) . 26 . 68 36 2 3
[IL ] . 81 .22 3 4 1 6
[LRK ) . 4.0 . 66 30 1 10

T . 19 . 85 24 1 16
[SNKD] .22 .T. 6 15 0 26

TI . 24 . T 1 9 2 30
. 37 . 81 1 0 4 27
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Table IV.

Pattern

1

2

3

11

12

13

14

15

[GaqE] () [ILT] [VILF) (AV) (AVI] [almt. [AV) ■ t

. It . [GD] [All] [ALmE] [AVLE) ■ il] [YhRKE]

[LSR) it ■ il) [ATs. It . . It ■ t

. [N] It . [GVsR) () . It ■ t

[As] [dhPKE] . [pVIL] [aviLF] It [ploe] [aRK]

It ■ t [LF] . It [AskDE] [v$nkDe] it it it

. [pav) [L■ ) [IL■ ] [GAS] [GAs] [VLh] [G] [G]

[aVi) . [VIL] . . [VIL] it it [G]

[gAT] it [GlkdE] It ■ t [[L] [VILk] [aRkE] ■ avik)

IgAs] [GSDE] [IWRk] [VILe] [VIL) [GAs) () [nD] .

it [yF] [TND] [PA] it (AVsR] . [PAV) ■ t

It [AVL] . [lyFw] [NrD] P it [ALSQ]

It . [ytnDe] it [PsnD] [G] . [VIY] it

[ASK] [G] [SNK] [yFT] it it (AVL) [vlL] [ViL]

. It [G] [nD] [al-Q] . [GAS] [ALs] [almF)

H S

19 18

15

15

11

18

11

10

7

16

14

T HT TH ST. TS

10

11

17

14

10

14

10

8

19

11 11

19 13

20 25

11 11

10 13
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Chapter 7

Inverse squence mapping approach reveals novel structure motifs

in proteins

We have used unsupervised learning methods to identify sequence

patterns which transcend protein family boundaries. A subset of these patterns

occur predominantly in a single type of local structure. Here we characterize

the three dimensional structures and contexts in which selected patterns in the

latter class occur, with particular attention to the interactions responsible for

their striking structural selectivity. The results form the basis for a set of rules

linking specific sequences with specific local structures.

Introduction

The traditional approach to characterizing the mapping between amino

acid sequence and local structural properties is to decide first on the important

structural properties and then investigate their associated amino acid

probability distributions. The classic example of this approach is the prediction

of protein secondary structure. A striking feature evident after determination of

the first few protein structures was the prevalence of simple secondary structure

elements: helices, sheets, and turns. Workers such as Chou and Fasman

(Chou et al. 1978) tabulated the probabilities of occurrence of each of the amino

acids in each of the secondary structure types, and used these probabilities to

try to predict the secondary structure adopted by new sequences. This basic

procedure has been refined with the application of neural networks and other

more sophisticated methods (Presnell et al. 1992; Rost et al. 1993; Sasagawa

et al. 1993).
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A second example of this approach began from the realization that

hydrophobicity patterns can be important in specifying structure. Mutational

analysis has shown in many cases that the hydrophobicity of a residue is the

best indicator of whether it would be tolerated in a particular position. Both

theoretical and experimental approaches have explored the degree to which

the pattern of hydrophobic residues specifies particular folds (Dill 1990;

Kamtekar et al. 1993). The most simple way to reduce a three dimensional

structure to a less complex representation in this regard is to consider each

position to be either buried or exposed, and then to score hydrophobicity

patterns (Bowie et al. 1990). A more refined approach is to define more specific

environments based on secondary structure, local polarity and solvent

accessibility. The probabilities of occurrence of different amino acids in each of

the environments can then be determined from the database of known

structures as in the case of secondary structure prediction (Bowie et al. 1991).

The underlying approach in the above examples is to learn the rules

connecting sequence with predefined structural properties using the database

of sequences whose structures are known, and then to use the rules to predict

the structural characteristics of new sequences. This is supervised learning

where correlations between two variables are sought from a large set of

examples. An alternative approach is unsupervised learning where patterns

are sought in a data set without reference to correlations with other variables.

Such an approach is less useful for prediction since groupings are not chosen

to optimize the prediction of the second variable from the first. However,

unsupervised learning has the advantage that the important properties need not

be specified in advance and thus new patterns and groupings can be more

readily identified.
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We have used unsupervised learning methods to identify recurring

amino acid sequence patterns. By examining the secondary structures adopted

in different instances of the same sequence pattern, we characterized the

degeneracy of the local sequence to secondary structure mapping responsible

for the limited success of protein secondary structure prediction. In the course

of this study, sequence motifs which occur predominantly in a single type of

secondary structural element were identified. However, this connection of

sequence motifs with secondary structure patterns does not fully capitalize on

the power of our unsupervised learning approach noted in the previous

paragraph: the potential to identify new structural properties and groupings.

Towards this end, in this paper we investigate the three dimensional

structures adopted by a particularly interesting subset of the sequence motifs.

We find that many of the motifs not only occur in well defined three dimensional

structures, but also in well defined protein contexts. Interactions between

conserved residues that likely give rise to the pronounced structural selectivity

of the patterns are identified. The results form the basis for a set of rules linking

specific sequences with specific local structures.

Results

Eleven of the motifs identified in our previous study were selected for

more detailed analysis. The sequence patterns and their associated secondary

structure propensities are listed in Table I (extracted from Table Ill of reference

3).

Why would a particular set of sequences all adopt the same structure in a

protein? The possibilities would include 1) distinctive amphipathicity patterns

matching a particular type of secondary structure context (i.e. buried helix), 2)
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particular conserved atomic interactions and 3) conformational constraints

consistent with a particular structure (i.e. glycine, proline).

To illustrate the approach, we begin with motif I, the well studied N

terminal helix cap. Table I lists the locations 67 occurrences of this motif in the

sequences of proteins in the pdb-select 25 dataset. To examine the 3D

structures adopted by these segments, 30 randomly chosen segments were

superimposed (Figure 1a). The density of protein atoms surrounding the

segments is depicted in Figure 1b. Figure 1c shows a specific example of a

typical segment in this sequence class, high-lighting the reciprocal backbone

backbone interactions between capping threonine and the glutamate in the first

turn of the helix. Because this motif has been well characterized by others,

these results are not particularly novel; rather, they serve to illustrate that our

purely sequence based approach identifies previously characterized structural

motifs.

The 29 instances of Motif II (Table II) occur predominantly in buried

helices. Figure 1a shows an overlay of the Co. backbones of these segments

and their global context down the axis of the buried helices. There is an

intriguing pattern of small residues on one side of the helix and large residues

on the other. Indeed, side chain size rather than amphipathicity appears to be

the distinguishing feature in this motif. The identification of this motif is

interesting in the light of the results of Benner et. al. (7) who showed that buried

helices are particularly difficult to distinguish from surface ones.

The 41 instances of motif ill occur predominantly in helix C-terminal caps.

The motif is distinct from previously described capping motifs (8,9). This motif is

an amphipathic helix terminated by a strongly polar segment. Positions 4 and 7

have conserved non-polar sidechains. Instead of a non-polar residue at

167



position 10 or 11, continuing the amphipathic pattern, positions 9 through 11

are strongly polar, or have non-polar sidechains which are out-of-register with

the preceding turn of the helix, or contain a proline. In each case, formation of

an additional turn of helix would not be favorable. However, there are no

conserved interactions within the polar segment 9 - 15, which takes a wide

variety of forms. Figure 3a shows a superposition of the Co. atoms of twenty of

the instances. There is considerably more variation in the turn than in the helix.

The polar residues in this motif are often involved in salt bridges, although the

positions of interaction are not conserved (data not shown). The motif has a

pronounced tendency to occur at protein surfaces (Figure 3b).

Most strands in proteins are buried forming a part of a sheet making

surface strands very special (7). Table IVa shows the consensus sequence for

surface sheets and lists the segments in this sequence class (Fig. 4a). As

evident from the consensus sequence pattern, the amphipathicity pattern is

typical of sheets, but the specific preference for only valine and isoleucine

distinguishes this motif from buried ones. These strands are straighter and less

twisted than usual. The backbone () and Uy angles of the 3-branched

hydrophobic residues are restricted by steric interactions between backbone

and gamma-carbons, when the sidechain is in its predominant rotamer

conformation (X=-60 degrees). Given this limitation, a narrow hydrophobic

contact between alternate isoleucine or valine Y-carbons occurs only when their

X1 bonds are nearly parallel. A twist in the chain at the intervening position

would break this contact, which is conserved in 80% of the cases. Exceptions

occur when proline intervenes or when O-helix periodicity is present (i.e. a

hydrophobic at position 5).
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Motif IVb is a short segment of amphipathic strand which is similar to

structural motif IVa, except that these are found to be buried (Fig. 4d). The B

branched non-polar sidechains at positions 3 and 5 restrict the backbone

dihedral angles and provide one conserved non-polar contact. The degree to

which the great majority (90%) of the segments superimpose is remarkable

(RMSD is 0.9 Å for all backbone atoms, Fig. 4c). Spatial neighbors of the
superimposed segments superimpose well enough to easily see the position of

the pairing 3-strands. To fall into this sequence cluster, the segment must not

have fallen into any highly predictive clusters of greater length. This may mean

that it lacks strong structural determinants on either side. But when alternating

[V]] and polar residues occur in longer motifs (V, VI, VIII and IX discussed below)

they also take on a 3-strand conformation, providing more evidence for the

surprising self-sufficiency of the short motif.

Strand capping motifs are relatively poorly defined. Some classes of

strands contain specific turn motifs that have specific interactions which

distinguishes them from other strand endings. Table V lists the consensus

sequence for a Glycine-conserved N-terminal capping of strands. As evident in

backbone overlay (Figure 5a), register of the turn to strand motif is not very

precise, although the overall shape of a 'cane' is clear. Ninety-six percent of the

segments are in 3-strands at positions 6 - 11; 72% are N-terminated at position

5, a conserved glycine. Of these, all but one case (94%) are accounted for by

one or both of the structural consequences of having a glycine at position 5: the

absence of a sidechain breaks the chain of non-polar contacts that characterize

beta strands (54%), and promotes tight-turn or L-shaped bend formation (69%).

Glycine may appear in any of the four positions in a beta-turn, but in this motif it

is most often found in the fourth position The conserved glycine leaves a hole
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which is often filled by sidechains of the preceding N-terminal polar segment.

The N-terminal segment is always found on the surface (Figure 5b), but beyond
that lacks conserved structural features.

Motif Vl is a 3-strand C-terminated at or near a glycine, followed by a

polar segment (Fig. 6a). The N-terminal seven residue segment is B-strand

(90%) except when glycine intervenes, and is usually buried (85%). As in the

previous motif, the absence of a non-polar sidechain at the glycine position

removes a possible favorable contact with the conserved non-polar two

positions before it, and gives the chain the flexibility to assume a variety of

forms. The C-terminal segment generally does not fold back on the strand,

again probably due to the lack of non-polar residues to make favorable

contacts. Curiously, this motif (Table VI) resembles the sequence motif for the

previously described alternative Glycine-conserved C-capping of helices, the

O.L motif (Aurora et al. 1994). See discussion for further comments.

Motif Vll is a 3-strand (80%) C-capped by a four-residue segment

containing a conserved glycine, which unlike the previous motif, usually forms a

beta-turn or similar structures (66%) (Table VII, Fig. 7a). Other strand C-caps

include a conserved proline (75%) motif (Table VIII, Fig. 8a). The strong

periodicity of hydrophobics in the first six positions favors b-strand (90%). A

conserved polar at position 7 breaks the pattern. A tight turn often forms (60%)

with the conserved proline in the second position. L-shaped turns also form at

that position. Specific conserved interactions (75%) are between the polar

residues two position C-terminal to the proline with the polar positions two or

one position N-terminal (Fig. 8c). Solvent accessibility show that the strands in

this motif tended to be on the surfaces of proteins. Often, the turn diverges

rather than forming a beta hairpin. This is due to an interaction between the
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polar sidechain one position after the glycine and the residue two positions

before it (Fig. 8c).

A number of examples of helix--strand transitions are shown to be

specific (Table IX, Fig. 9a). Over 80% of this structural motif were found where

the a helices are at the surface of the protein, and the strands following the turn

motif form part of a buried b sheet (Fig. 9b). In -17% of the cases, coils where

found in place of strands and are relatively buried. This sequence motif strongly

resembles the known Schellman a helix C-terminal capping motif. There are at

least five specific conserved contacts surrounding the conserved glycine at

position 7. Backbone nitrogens at positions 7 and 8 make hydrogen-bonds with

the backbone oxygen of position 3. The conserved non-polar sidechain at

position 8 interacts with the conserved non-polar sidechain at position 3 and

sometimes with the sidechain at position 6. The conserved non-polar sidechain

at position 10 interacts with the non-polar sidechains of positions 3 and 4,

creating a small hydrophobic cluster around position 3. Glycine at position 7

allows the backbone to adopt a left-handed curve at the end of the helix () >

0)(84%). This happens a significant percentage of the time even when position

7 is not a glycine (38%). This is perhaps the tightest possible turn which places

a non-polar sidechain of a 3-strand (position 10) between two non-polar

sidechains of a preceding O-helix (positions 3 and 4). Only five residues

intervene, one of which prefers a glycine with a positive () angle. In fact, when

the backbone () angle at position 7 is negative, the non-polar trio (sidechains

3,4,10) is not found. Figure 9C shows examples of conserved specific

interactions between the hydrophobic residues in the sheet, and those in the

helix.
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A smaller, but significant number of examples (34 patterns from 23

protein families) fall into a different sequence class containing a similar

structural motif of turns connecting a helices and 3 strands. Table X lists the

proteins and position where this consensus sequence pattern were found in the

multiple sequence alignments. Instead of a conserved glycine, this motif has a

preference for proline-containing turns. Structurally, the turns linking the

surface helices (positions 1 - 6) and buried strands (positions 11 - 15) are more

open comparing to the previous, showing a slight cavity (Figure 10a). Sixty-five

percent of the cases the strand folds back to interact with O-helix. Position 2, 5,

12 and 14 prefer non-polar sidechains, while positions in the turn region (7 - 9)

prefer polar groups. The turn is longer than that of motif |X, with about 6

residues between the last non-polar sidechain of the O.-helix (position 5) and

the first non-polar sidechain of the 3-strand (position 12). Figures 10a and 10b

show structural overlay and the global context in which this sequence pattern

was found. The helix is terminated by no specific interaction but by the absence

of a non-polar group at position 9 to pair with position 5 and/or by the presence

of a proline at position 10 (Figure 10c). The proline-containing turns constrains

the trajectory of the 3 strand more stringently than the previous class, resulting

in a fewer number of examples where coil were found in place of the strand.

These O-turn-3 motifs are found largely in the o/3 protein class. The

topology is generally right-handed, as expected from the turn motif. Specific

hydrophobic packing between the residues on the helix and those in the strand

are often found, particularly in the second sequence class (Fig. 10c). A fewer

number of examples show specific salt-bridge or hydrogen-bonding interactions

between polar residues in the helix and the strand. These interactions are

considered long-range in that it involves interactions between secondary
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structure elements that are spaced more than 6 residues apart. This is a first

description of an intermediate-range structural motif that is highly predictive

(>80%).

Methods

The clustering procedures have been described in detail(Han et al.

1995a; Han et al. 1995b). In brief, 29921 segments of profiles derived from a

non-redundant set (PDB-select 25 (Hobohm et al. 1994)) of the HSSP database

(Sander et al. 1991) of multiple sequence alignments were subdivided into

1200 neighborhoods containing sets of related segments using the K means

algorithm (Duda et al. 1970) and the city block metric
N 20

d(i,j)= x x. (F,G,n)-F,(k,n)
n = 1k = 1 J

where Fi(k,n) (a profile segment) is the frequency of the kth amino acid in the

nth position of segment i and N is the segment length. Because the PDB-select

25 subset contains very few pairs of alignments from even distantly related

families, segments in a given neighborhood are necessarily derived from quite

different protein families.

The Co. overlay were calculated using the standard RMSD, with a

threshold of 1.8 Å. The global contexts are displayed by overlaying the CB's of

the rest of the proteins not including those within the segments selected. Thus,

the dense areas are those in which the segments are buried. The structures

were visualized using Insight II*.
Discussion

We have previously identified recurring sequence patterns in multiple

sequence alignments by dividing sequence space into mutually exclusive

"neighborhoods" (1). Because there is at least one high-resolution structure for

173



each family of alignment, the structural correlates in each sequence

"neighborhood" can be readily investigated. As previously reported, the

general features of sequence to structure mapping include one to one, one to

two and one to three categories (2). In this paper, we investigate 11 motifs in

detail and their rules linking sequence to structure are identified.

Transitions such as turn elements have shown to be particularly difficult

in secondary structure prediction. Turns are important in defining the boundary

and the resulting trajectory of a secondary structure element, which

subsequently effect the prediction of the tertiary fold. One of the sources of

failure in secondary structure prediction is the ability to determine where the

transition elements occur (10). Helix capping motifs are examples of transition

elements that help determine the termination of helices. Our technique was

able to extract sequence rules of well-known motifs (helix N-caps), and

identified new ones in which the structures were almost always found in

transition at either N- or C-termini of helices or strands or specific turns linking
helices and strands.

To stress the advantage and importance of the use of multiple sequence

alignments, we showed that 'rules' derived from single sequences are subject

to many exceptions. For example, Motif VI contains a set of sequence segments

that resembles the rules for the O.L helix C-cap motif described by Aurora et al

(Aurora et al. 1994). But, there were far more examples of these sequences that

adopt C-terminal capping of strands rather than helices. Indeed, the protein

segments that fell into this sequence class is not the same set as those that

were listed in Aurora et al. In fact, most segments listed in Aurora et al were

found in different sequences classes other than an those listed in Table VI. For

example, helix 280–296 in 3tln fell into a sequence class which was only 62%
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predictable for helix C-cap, and its consensus profile sequence only loosely

resemble the O.L motif which does not contain a conserved glycine. In fact, the

strongest motif for that segment is the relatively conserved leucine at position

295. Similarly, helix 12-29 in 3rnt, and helix 234-245 in 3tln fell into the same

sequence class, with the strongest motif-determining factor being also the

conserved leucine in positions 26 and 243 respectively. In these cases, the

consensus sequence in this low predictable class (63%) resembled more

closely to the O.L criteria (again without conservation for glycine), and is different

from the motif shown in Table VI. Interestingly, helix 251-264 in 19q1 fell into

the sequence class that was a very good predictor of helix C-caps (79%), but

with a much different profile of consensus sequence compared to the O.L motif.

In fact, the parent sequence does not at all resemble the consensus profile:

It . [VIL]. It . [VLYF] It It [al] () it it it it

parent sequence:

K AAA E GE

where the K260 and E264 of the parent sequence are aligned with the

hydrophobic positions 7 and 11 of the consensus motif, and G265 falls in a

position of variable polar, not conserved glycine as proposed by Aurora et al.

These results reflects the advantage of using profiles from multiple sequence

alignments rather than single sequences for classification to obtain rules for

structural motifs.

Although good predictors, there are exceptions to the structures which

fall into the sequence classes illustrated (i.e. the rules are not 100%

predictable). The nature of the degeneracy in sequence--structure mapping for

these motifs are shown in Table XI. Alternative folds that exist for these motifs

almost always are due to the more favorable stabilization from long-range
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interactions. In these cases, the only method to distinguish which conformation

is more stabilizing clearly depends on the tertiary fold of the protein.

The novel motifs described here were a natural result of our inverse

sequence--structure mapping approach. Other recurring patterns in the

database from different protein families have less obvious structural correlates

(such as secondary structure elements). In those cases, specific tertiary

structure environment are likely to have been the constraint for the particular

sequence motif. These newly defined environments can be readily used in

protein structure prediction algorithms either as a score for whether the model

structure was a likely candidate for the sequence, or, as a part of an energy

function which is minimized in the three-dimensional folding procedures.
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Table and Figure Legends

Table I: Helix N-cap (SXXE) motif (67 segments in 40 protein families)

Table II: Buried helices (575) (29 segments from 25 protein families)

Table lll: Helix C-terminal capping favoring polar residues S,N,K,D.

(41 segments from 25 protein families)

Table IVa: Surface sheets (22 segments in 19 protein families)

Table IVb: Buried sheet cluster (37 segments from 27 protein families)

Table V: Gly conserved N-capping of sheets (698) (31 segments in 23

protein families)

Table VI: O.L sequence motif are found more frequently in C-capping of

sheets (48 segments from 39 protein families).

Table VII: Glycine-conserved sheet C-cap (33 segments from 27

protein families)

Table VIII: Proline rich C-terminal capping of sheets (23 segments in

21 protein families)

Table IX: Helix to strand with a glycine-conserved turn (HTS-Gly) (67

segments in 39 protein families).

Table X: Helix to strand with a proline-conserved turn (HTS-Pro) (34

segments in 23 protein families).

Table XI: Alternative structure subclasses for HTS-gly, HTS-pro

Figures 1a through 10a are Co. overlay with RMSD of 1.8 Å threshold. Figures
1b through 10b are C3 overlay (+) of all the positions different from those

positions in the motif. This is to explore the global packing density and solvent

accessibility properties of these motifs. Buried areas are where C3 is more

dense, and sparse regions represents solvent accessible positions. The solid

filled model is a representative member in the cluster. Residues colored in red
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are those that are conserved. Figure 1c through 10c are selected examples of

specific conserved interactions in the motif.

Figure 1a,b&c: Helix N-cap of proteins listed in Table I.

Figure 2a&b: Buried helix of Table II.

Figure 3a&b: Helix C-cap of Table Ill.

Figure 4a&b: Surface strand of Table IVa.

Figure 4c3d: Buried strand of Table IVb.

Figure 5a&b: Glycine conserved strand N-cap of Table V.

Figure 6agb: Glycine conserved (OL) strand C-cap of Table VI.

Figure 7a3b; Strand C-Cap of Table VII.

Figure 8a,b&c. Proline-conserved strand C-cap of Table VIII.

Figure 9a,b,&c: Helix to strand with a glycine conserved turn of Table IX.

Figure 10a,b&c: Helix to strand with a proline conserved turn of Table X.
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Table I

It . IpVIL] [TSD] . [ADE] [no DE] [AVIL) . [Aqkd] [AVIL) . It . [AviL]

Protein Chaintype Pos Protei hain Protein Chai P
1avh A 115. 1pii

-
139. 1wsy B 3.25.

1avh A 165. 1pii
-

191. 2acq
-

65.
1baa

-
4. 1pii

-
216. 2acq

-
262.

1bmd A 312. 1ppn
-

46. 2Ctc – 212.
1cpc B 17. 1scm B 33. 2hmz A 37.
1Crl

-
351. 1scm B 49. 2ihl

-
1.

1ctd A 19. 1scm B 82. 2ihl
-

21.
1glC G 193. 1scm B 102. 2mge

-
79.

1gp1 A 48. 1scm B 118. 2tpr A 173.
1hdd C 6. 1sCm C 26. 2tpr A 247.
1hdd C 24. 1scm C 42. 2tpr A 374.
1hdx A 3.48. 1scm C 79. 2tpr A 460.
1hle A 69. 1scm C 99. 3chy

-
109.

1hle A 265. 1scIn C 115. 4gpb
-

357.
1hle A 3.19. 1spa

-
136. 4gpb

-
511 .

1ipd
-

51. 1spa _ 198. 4gpb — 711.
1ipd

-
155. 1tbp A 216. 4ts1 A 271.

1mct A 161. 1tmd A 55. 5p21
-

123.
1ndC

-
45. 1tnd A 235. 5p21

-
145.

1nip A 257. 1tpl A 190. 8at C A 13.
1pfk A 194. 1tre A 178. 8Cat A 242.
1pfk A 289. 1trk A 83. 8tln E 296.
1pii

-
93.

Notations for the concensus sequence in Tables I - XI, where positions with specific substitutions
are shown within brackets: lower-case letter represent amino acid occurence frequencies
between .07 and 0.1; upper-case letters are those over 0.1. Positions which are underlined is

the constraining motif or predominant interactions, '.' is variable, 'it' is variable polar, and '@' is
variable hydrophobic.
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Table ||

IgAS] . [AVIL) . IgAS] [AVIL) .

Protein Chaintype Po Protein Chain P Protein in P
1bmd A 248. 1pfk A 18. 1 trk A 510.
1cpc B 128. 1pii

-
323. 1trk A 638.

1eaa
-

473. 1ppn
-

29. 1wsy B 120.
1eco

-
71. 1pro M 211. 2ccy A 34.

1glc G 379. 1pro M 219. 2ccy A 44.
1hd■ A 274. 1pro M 267. 2Ctc _ 292.
1ipd _ 289. 1rnd

-
52. 4gpb – 219.

1 len A 113. 1s01 _ 175. 8tln E 287.
1lga A 135. 1tnd A 79. 9 rint

-
18.

1onc
-

42. 1tpl A 363.

Table ||

. It [ald] [VILy] [Aqrk] [IqPk] [IL) [LRK. It [SNKD] It . . It .

Protein Chaintype P Protein Chaintype Pos Protein Chaintype Pos
1aak

-
10. 1hle A 131. 1ty's

-
5.

1aak — 127. 1hle A 269. 1ty's
-

57.
1ak3 A 70. 1hmy — 312. 1tys – 113.
1apm E 126. 1mct A 100. 1wht A 200.
1apm E 266. 1mct A 103. 1wsy B 29.
1apm E 270. 1pii

-
13. 2bop A 339.

1apm E 285. 1ppn
-

69. 2plv 3 97.
1Cau B 403. 1s01

-
5. 2tpr A 342.

1cau B 407. 1s01 _ 228. 3chy
-

66.
1Crl

-
272. 1s01

-
231. 3Cla

-
122.

1Crl
-

410. 1scm C 69. 4gpb
-

584.
1hdd C 14. 1spa

-
54. 5p21

-
17.

1hle A 35. 1spa
-

313. 5p21
-

94.
1hle A 97. 1trk A 42.

Table IVa

It [V]] it [VI] . . It

Protein Chaintype Pos in Chai PO Protein
-

P
1atr

-
102. 1hdx A 25. 1tre A 60.

1bmd A 3. 1hpl A 419. 1vil
-

28.
1cau A 163. 1mct A 82. 2aza A 19.
1cgm E 93. 1Onc

-
85. 2mip A 63.

1cgt
-

547. 1pkp
-

T1 . 2tpr A 133.
1cgt

-
561. 1rnd

-
105. 2tpr A 387.

1gd1 O 54. 1spa _ 320. 4gcr
-

34.
1gd1 O 70.
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Table IVb

. It [VI] [a■ s] [V]

Protein Chaintype Pos Protein Chaintype Pos Protein Chaintype Pos
1ahc – 221. 1cob A 3. 1pfk A 242.
1alk A 95. 1fkb – 20. 1rla 2 106.
1atr – 101. 1gd1 O 23. 1s01 – 26.
1bbt 2 105. 1gd1 O 235. 1slt A 85.
1bbt 2 156. 1hdx A 288. 1trk A 611.

1bbt 2 179. 1hle A 214. 2bpa 1 408.
1bet _ 34. 1ipd _ 207. 2bpa 2 138.
1bmd A 4. 1 len A 114. 2cas

-
80.

1bmd A 121. 1ms2 A 16. 2dnj A 87.
1bmd A 123. 1ms2 A 60. 2hmz A 48.
1cgt _ 560. 1pdg A 68. 2tpr A 211.
1cgt _ 637. 1pdg A 85. 2tpr A 386.

4gpb _ 563.

Table V

It [LCTn] [gaTE] it [G] [TsKI IgVIY] . [VILF] [TSd] .

Protei hain PO Protein Chaintype Pos Protein Chaintype Pos
1aaj

-
82. 1eaa

-
549. 1tnr R 54.

1ab2
-

27. 1fkb
-

29. 1tnr R 119.
1ab2

-
39. 1 fri A 8. 1ty's

-
19.

1ab2
-

62. 1hdx A 122. 2Cas
-

53.
1alk A 312. 1hmy

-
94. 2cas _ 260.

1atr
-

199. 1php
-

230. 2cas
-

527.
1.cgm E 131. 1pmy

-
68. 2Cpl.

-
105.

1.cgt
-

522. 1ppl
-

20. 2Ctc
-

163.
1cob A 12. 1ppl

-
239. 3aah A 514.

1cob A 87. 1tnr R 32. 5nn.9
-

231.
1ctm 184.
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Table VI

It . [VII] [pAVi) [VII] [VIF] [GA] . [G] it [GPVn]

Protein Chaintype Pos Protein Chaintype Pos Protein Chaintype Pos
1ak3 A. 7. 1mct A 204. 1wsy B 226.
1alk A 415. 1mct A 210. 1wsy B 251.
1atr _ 193. 1nip A 31. 1wsy B 370.
1bmd A 2. 1nip A 145. 2acq

-
10.

1cau B 3.43. 1 of V — 81. 2dnj A 64.
1cgt — 512. 1pfk A 215. 2ech

-
17.

1cgt _ 550. 1php
-

53. 2Snv — 225.
1crl – 116. 1pmy

-
29. 2tpr A 4.

lead _ 586. 1ppn _ 159. 2tpr A 132.
1f)Kb

-
2. 1r1a 2 28. 2tpr A 188.

1gpr _ 140. 1rnd _ 104. 4 frn _ 80.
1hdx A 71. 1s01 _ 194. 4gpb _ 196.
1hdx A 193. 1tpl A 279. 5nn.9 – 112.
1.hpl A 244. 1trk A 555. 5p21

-
4.

1hsb A 10. 1wht B 388. 6 fab L 93.
1mct A 134. 1wsy B 105. 8atc A 122.

Table VII

... [GK] [Vitk] . [VIL) () . [G] . [GaiK] [acsk]

Protein Chain P Protei hain Protein Chain P
1alk A 43. 1pkp

-
33. 1trk A 149.

1bbt 2 28. 1pkp
-

42. 1wht A 170.
1caj

-
144. 1pmy

-
3. 1wsy B 128.

1Cau B 304. 1ppl
-

161. 1wsy B 371.
1Crl _ 329. 1slt A 28. 2btf A 39.
1 fas

-
31. 1Smr A 161. 2btf A 41.

1hdx A 286. 1tbp A 118. 3aah A 159.
1hpl A 243. 1tbp A 155. 5nn.9 — 422.
1ipd

-
1. 1tbp A 209. 5p21

-
3.

1nbt A 34. 1tgx A 30. 5p21
-

108.
1pfk A 216. 1tre A 123. 8tln E 116.
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Table VIII

[all F] . [VIL] it [VIL] . It [Pn] it [GPAv] [GtSk]

Erot, Chain Pos. Erot, Chain Eos, Erot. Chain
1aak — 36. 1cob A 93. Pos.
1ahc — 211. 1crl — 98. 1slt A 94.
1avh A 80. 1crl — 360. 1spa – 126.
1baa 157. 1fxi A 3. 2acq 204.
1Caj — 45. 1hle A 282. 2Ctc — 47.
1cdh 114. 1mct A 158. 3aah A 139.
1cdh 126. 1ppl — 153. 4blm A 245.
1CGt — 548. 1pro M 89. 8atc. A 100.

Table IX

[ArKq] . [AL] [AiLn] [AqKd] . [G], [AVI] [arkD) [VIL] [VIL] [GVIL)

Protein Chaintype POS Protein Chaintype P Protei i
1aaj

-
11. 1of V

-
107. 1wsy B 243.

1alk A 134. 1pfk A 25. 1xya A 123.
1alk A. 227. 1pfk A 87. 2acq

-
146.

1bmd A 165. 1pfk A 179. 2acq _ 168.
1cgt

-
123. 1php

-
45. 2bop A 366.

1.cgt _ 271. 1php — 251. 2mip A 21.
1Cob A 85. 1php _ 355. 2tpr A 20.
1ctm

-
183. 1pii

-
74. 2tpr A 21.

1eaa
-

455. 1pii
-

124. 2tpr A 239.
1 fold

-
22. 1pii — 151. 2tpr A 379.

1 fixi A 26. 1pii — 171. 2tpr A 441.
1gd1 O 82. 1pii _ 414. 3chy

-
96.

1gd1 O 106. 1pkp
-

113. 3pgm
-

99.
1hle A 40. 1ppn

-
73. 3pgm

-
165.

1hle A 301. 1pro M 133. 4 frn
-

21.
1hmy

-
26. 1s01 – 112. 4 frn – 101.

1ipd _ 119. 1slt A 47. 4gpb _ 698.
1ipd — 171. 1tpl A 202. 5nn.9 _ 291.
1ndc

-
30. 1 trk A 205. 5p21

-
132.

1ndC
-

85. 1trk A 454. 8atc A 61.
1nip A 24. 1wsy A 116. 8atc A 200.
1nip A 59. 1wsy B 147. 8Cat A 234.
1nip A 198.
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Table X

... [aVIL] . [ALsK] [avil] . It It It [Pavil [adE] [aVIL] [VIL] [AVIL) .

Protein Chain PO rotein Chain P Protein Chain O

1ak3 A 97. 1hmy – 104. 1s01 — 138.
1ak3 A. 190. 1ipd

-
198. 1spa

-
56.

1atr
-

322. 1nip A 108. 1spa
-

239.
1cpc B 55. 1 of v

-
38. 1tre A 29.

1cpc B 157. 1pfk A 271. 1trk A 546.
1crl

-
373. 1pii

-
39. 2acq

-
19.

1gd1 O 16. 1pii
-

72. 2acq
-

235.
1gd1 O 80. 1pii _ 364. 2Ctc

-
21.

1gd1 O 133. 1ppl – 245. 2tpr A 268.
1gd1 O 296. 1ppn — 120. 3chy

-
42.

1gpr
-

116. 1s01 – 110. 8atc A 90.
1hmy

-
63.

Table XI

Pattern HTS HT
Gly-HTS 55 12
Pro-HTS 28 6
'HTS' represents helix - turn - strand structure class, and "HT" represents helix to turn structure
Class.
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Figures 1a &1b

Figure 1c
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Figure 4a & 4b

Figure 4c & 4d
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Figure 5a & 5b
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Figure 6a & 6b

Figure 7a & 7b
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Figure 8a & 8b

Figure 8c
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Figure 9a & 9b

Figure 9C
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Figure 10a & 10b

Figure 10c
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Conclusion

Using the unique approach to analyze the relationship between protein

primary sequence to tertiary structure revealed several interesting points.

Firstly, based on classification of patterns in multiple sequence alignments, it

was demonstrated that there are many recurring patterns which cross protein

family boundaries. The significance of these patterns were explored in the

context of structural similarity, although other properties (i.e. functional) still

await to be investigated. Preliminary results show that these recurring patterns

performed better than other substitution matrices (i.e. PAM, BLOSUM, etc...)

used to classify newly discovered sequences into known protein families (Baker

and Robinson). This is not surprising since it is shown that different substitution

patterns are prominent in different context as demonstrated in chapter 5.

On a global investigation, the problem of an 'upper-limit' secondary

structure prediction was addressed (chapter 6). It was shown that there were

only a selected number of patterns that correlate well with a single structural

state. Whereas, the majority of the sequence patterns map ambiguously to two

or three structural classes. Including this concept into tertiary folding algorithms,

preliminary studies were able to fold all helical proteins up to the size of

myoglobin, de novo, with an RMSD of less than 4 A (Baker and Simon).
The caveat remains with the prediction of sheet proteins. It is clear from

the sequence analysis that there were not many patterns which contain good

correlation with sheets. In fact, from the global tabulation of structures, it is not

very well represented at all. The reason is that sheet segments often contain

sequence patterns stronger for other secondary structure types, and end up as

the ill-predicted portion of the neighborhood. For example, a cluster may be
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predominantly in helical structures that is 85% predictable, but the other 15%

may easily have been in strands, and that 15% is then lost in the noise.

Most strand patterns are non-specific. Indeed, the strongest strand

patterns have been associated with a specific turn or bend. In those cases, it

seems that the specific turn (usually tight turns) favor the strand (extended)

conformation rather than helical conformation. Another explanation is that

strands tend be stabilized in the core of the protein structure (thus buried

majority of the time) via long-range interactions. Therefore, the classification of

local sequence patterns will not be able to capture the long-range motifs. All

the possible insertions and deletions of surface loops make the register of

strand stabilizing long-range interactions in the core difficult to characterize

based on sequence alone. There are only few examples where more local

constraints result in a strand conformation. A demonstration of that are the two

helix to strand transition motifs (Chapter 7), showing specific stabilizing long

range conserved interactions between the strand and the helix N-terminal to it.

Incorporating the 'hydrophobic zipper' concept of Dill, Fiebig and Chan,

the folding initiation motifs can serve as anchors for such an approach. The

tertiary protein folding using either a genetic or Monte Carlo algorithm, will be

first to identify the anchoring sights, followed by the segments in which one-to

one mapping is prominent. And for all other segments, the structures will be

changed based on the degree of mapping ambiguity. For each cycle, energy is

minimized.

The difficulty is once again the long range potential with which energy is

minimized. The same type of analysis that's been done here can also be

applied to refining an empirical long range potential. One can use contact

maps to determine favored interactions, much the same way it has been done
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traditionally, but with the added substitution profile of the multiple sequence

alignment. It is expected that there will be discrete ambiguity from

conformational constraints, analogous to what's been found at the sequence
level.

Future directions thus include the conclusion of applying the sequence

motifs for pattern searches as well as for tertiary de novo protein structure

prediction. Before pursuing the tertiary folding project, a better refined empirical

long-range interaction potential using the multiple sequence alignments should

be explored. In conjunction with the motifs found using the sequence

classification approach, the conformational search space for protein folding will

have been greatly reduced to a more solvable problem.
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Appendix A:

Summary of the approach to chapters 3 and 4

Thick specimen imaging is necessary to investigate the intact objects with

relatively large (>0.5 pum) natural dimensions such as cellular organelles. For

amorphous specimens, tomographic techniques are required to achieve

moderate resolutions ((3-5 nm)−1). In any quantitative analysis such as
tomography, it is necessary to correctly relate the detected image intensities to

the projected specimen mass density. As a result of the objective lens

aberrations and the electron specimen interactions, this relation is distorted.

Correcting for this requires an accurate understanding of the process of image

formation. For thick specimens, the distortion is largely due to (multiple)

inelastic scattering and can be very specimen-dependent. Although the

general properties of image formation in thick amorphous specimens have

been thoroughly investigated (Han et al. 1995; Han et al. 1996), it is

recommended that a reduced but similar analysis be done on your typical

specimen to properly interpret your images.

Equipment

Transmission electron microscope (TEM) operating at intermediate to high

primary voltages (>200 keV). Preferably, use a TEM equipped with a slow-scan

CCD camera to ensure optimum image quality and the convenience of direct

digital data which facilitates the image manipulation.

Instrumentation for electron spectroscopic imaging (ESI), either in column or

post-column. If available, operating at the selected primary voltage on the TEM.

It is strongly recommended that energy filtering is used, but it is not essential for

specimens less than 0.5 pum thick.
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Specimen

If available, add fudicial markers such as gold beads to your specimen.

Methods

The goal is to evaluate the fraction (if any) of coherently scattered electrons for

your specimen . Steps 6 and 7 below are not necessary if your specimen is a

typical biological specimen embedded in epon and stained with lead and

unranyl. The extensive analysis for these types of specimen have already been

done and could be referred to in (Han et al. 1995).

1. Standard alignment of the TEM as recommended by the manufacturer. If

ESI capability is available, be sure that voltage center is aligned and do the

following procedures using zero-loss filtering. Note that for thicker specimens a

correct alignment on the objective lens' voltage center is more important than

on the current center. Misalignment on the voltage center will cause streaking in

the image proportional to the range of energy-losses allowed to contribute to

the image. If on-line diffractogram calculation is available, check the stigmation

by making sure that the diffractogram rings of the collected high underfocused

(~10 um) image is symmetrical.

2. Choose an optimal condenser (intensity) setting such that the illumination

angle does not degrade your resolution. This typically means to image at a

high defocus conditions while not compromising signal to noise ratio. Again, if

on-line diffractogram calculation is available, then adjust the condenser setting

such that the diffractogram rings of the underfocused image covering the

resolution range of interest are most visible.

3. Select and align the smallest objective aperture that 1) is not limiting your

resolution of interest, and 2) that does not drift during the collection of the

through focus series.
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4. At the appropriate magnification, collect a large through-focus series above

and below Gaussian focus at equal intervals. Depending on the resolution of

interest, the range and step size could vary (van Dyck et al. 1987):
k

es—:
Tg

where 8 is the defocus interval, k is the wave-vector and gis the resolution.

For example, at 300 keV, k= 1/.0197A = 50.8A-1 and resolutions up to 30 A-1,
g= 1/30A = 0.033A-1, the defocus interval has to be at least 1.454 p.m.
Practically, we over-sample at 1.0 pum interval from 20 pm under- to over- focus.

5. Align the through focus series using cross-correlation or fudicial marker

alignment schemes (Koster et al. 1993). Be sure to correct for the change in

magnification with defocus (Typke 1992).

6. Take the three-dimensional power spectrum (amplitudes from 3DFFT) of the

aligned through focus series. In each section, you will see a ring of intensity

representing the coherent (interpretable) imaging component, and a sizable

central (incoherent or partially coherent) component. For example, the

following Figure 1 shows selected cross-sections of the 3D power spectrum

from a 0.5 pm thick specimen, unfiltered (Han et al. 1995):
|

- -º

From left to right, they correspond to 18.1, 12.67, 5.43 and 2.72 pm focus levels

(resolution limit: 24 A-1).
7. Calculate the proportion of the coherent component by applying curve fit to

the radially averaged image of each section in the 3D power spectrum. As

shown in Figure 2, the three components to fit are a Gaussian at the center

(incoherent component), an offset Gaussian (coherent component) and a
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background component (exponential). The resulting proportion of the coherent

component gives the amount of electrons that can be recovered using restoring

filters derived from linear imaging theory. This is the limit to which one would be

able to recover computationally.

Fig. 2:
Three-component fit of a

radially averaged cross-section of the
3D power spectrum

120 l l l
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# 80–
-
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# 40-
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8. Use the following formula to restore the amplitude and phase components of

the exit wavefront from this large through focus series (van Dyck et al. 1990):
N a

i■ , - exp(in C.A.’ x'); Xi(k, Af,)exp(-in-Akº Af,)
Afn =l

where i■■ , and i are the exit wavefront and detected images in reciprocal space

respectively, A is wavelength, Afis the defocus level, and N is the total

number of images in the through focus series.

9. To relate the image intensity to specimen mass density, measure the relative

drop in intensity as a function of specimen thickness. This can be achieved by

cutting the specimen into the appropriate thicknesses, or preferably, by tilting

the specimen stage to vary the effective thicknesses. If the fitted curve best

matches a logarithmic function, then an absorption model should be applied

when interpreting the amplitude image (i.e. the logarithm of the amplitude

component is added to the phase component). If the fitted curve depends
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linearly on thickness, then the amplitude image is directly related to specimen

mass density.

10. If ESI capability is available, repeat the same analysis (steps 4-8) at the

most probable energy-loss (the maximum of the energy-loss spectrum), with the

widest energy-selecting slit where the chromatic aberration is not limiting the

desired resolution. Determine the contribution of the most probable loss

electrons to the coherent imaging component by using the exit wavefront

reconstruction. If the contribution is only at low resolutions (i.e. below 200 A-1),
then restoration of the unfiltered through focus series will contain only the

elastically scattered component which is readily interpretable. If the most

probable loss electrons contribute significantly to the higher resolutions, then

this contribution cannot be eliminated through linear restoration. In this case,

the restored exit wave of the unfiltered through focus series must be more

carefully examined using simulations of electron-specimen interactions.

11. Once it is determined that linear restoration is valid for your specimen, to

routinely reconstruct using fewer focus levels, it is recommended to use a more

commonly used restoring filter derived by Schiske (Schiske 1973):
N A

i■ , (K)= X. I(K, Af,) r(K, Af,)
Afn =l

N

{N– Xexp(2i■ z(Af, k) – X(Af, K)]}
r(K, Af, ) = exp■ ix(Afa, K)] Afm =l N

{N*— X exp(2i■ z(Af, k)]]!”)
Afm =l

2 2 --2

7t/lk (c.” K
2 2

The focus levels can be chosen by the curve from step 7, selecting the focus

where exp■ ix(Af, K)] = exp■ i – Af)]

levels which the coherent component will cover the appropriate range of
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resolution. The interpretation of the restored amplitude and phase images is a

result of the analysis done in step 9.

This appendix is an approved reprint of the material as it appears in K.F. Han,

Procedures in Electron Microscopy, Chapter 17 Module 5.

References

Han, K.F., Sedat, J.W. & Agard, D.A. (1995). Mechanism of image formation for

thick biological specimens: exit wavefront reconstruction and electron energy

loss spectroscopic imaging. J. Microscopy, 178:2, 107-19.

Han, K.F., Gubbens, A.J., Sedat, J.W. & Agard, D.A. (1996). Optimal strategies

for imaging thick biological specimens: exit wavefront reconstruction and

energy filtering. J. Microscopy, submitted.

Koster, A., Braunfeld, M., Fung, J., Abbey, C., Han, K., Liu, W., Chen, H., Sedat,

J. & Agard, D. (1993). Towards Automated Three-Dimensional Imaging of Large

Biological Structures Using Intermediate Voltage Electron Microscopy. MSA

Bulletin, 23, 176-88.

Schiske, P. (1973). Image processing using additional statistical information

about the object. Image Processing and Computer-aided Design in Electron

Optics. London, Academic Press.

Typke, D.H., R; Kleinz, J (1992). Image restoration for biological objects using

external TEM control and electronic image recording. Ultramicroscopy, 46, 157

173.

203



van Dyck, D. & Coene, W. (1987). A new procedure for wave function

restoration in high resolution electron microscopy. Optik, 77, 125-28.

van Dyck, D. & Op de Beeck, M. (1990). New direct methods for phase and

structure retrieval in HREM. Proc. of 12th Int'l Congress for Electron Microscopy,

26–27.

204



Figure 3: General schematic approach to quantitate the coherent component
in thick specimen imaging
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