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ABSTRACT 
We present a study with seven blind participants using three 
different mobile OCR apps to find text posted in various indoor 
environments. The first app considered was Microsoft SeeingAI in 
its Short Text mode, which reads any text in sight with a 
minimalistic interface. The second app was Spot+OCR, a custom 
application that separates the task of text detection from OCR 
proper. Upon detection of text in the image, Spot+OCR generates 
a short vibration; as soon as the user stabilizes the phone, a high-
resolution snapshot is taken and OCR-processed. The third app, 
Guided OCR, was designed to guide the user in taking several 
pictures in a 360º span at the maximum resolution available by the 
camera, with minimum overlap between pictures. Quantitative 
results (in terms of true positive ratios and traversal speed) were 
recorded. Along with the qualitative observation and outcomes 
from an exit survey, these results allow us to identify and assess 
the different strategies used by our participants, as well as the 
challenges of operating these systems without sight. 
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Introduction 
A number of assistive technology application for users with visual 
impairment have recently appeared on the market. Powered by 
technological advances in AI and/or sensing infrastructure (e.g., 
iBeacons), these applications are designed to facilitate tasks such 
as wayfinding and information access without sight. In particular, 

SeeingAI [16], a free iOS app from Microsoft, has been met with 
considerable success by the blind community. SeeingAI comprises 
a suite of functionalities, including optical character recognition 
(OCR), face detection, scene description, money reader, and 
barcode reader. Of interest to this contribution is the ‘Short Text’ 
modality of SeeingAI. Short Text is a simple, powerful, and fast 
OCR application. It has a minimalistic user interface, which adds 
to its allure. Once the app is started, it simply reads aloud any text 
it discovers from the images continuously taken by the phone’s 
camera. Anecdotal evidence shows that blind users of Short Text 
use it for a variety of applications, such as reading the label of a 
bottle, accessing a sign posted at a bus stop, and reading text on a 
computer screen.  

The ability to read text posted in the form of signs, posters, 
flyers, or other (sometimes called scene text [24]) has tremendous 
potential for improving information access by blind individuals. 
An abundance of textual signs are posted for, and routinely used 
by, sighted people. These include wayfinding signs, name tags, 
informational signs, directories, and advertising. Only a tiny 
portion of these signs (typically, name tags at office doors and 
elevator instructions) have raised characters or Braille text – and 
even in this case, blind people need to first locate the signs, in 
order to read them. Enabling blind people to read scene text would 
be one step towards the goal of making information accessible for 
all. 

Automatic detection and reading of scene text on a 
smartphone, however, may give poor results if the user is moving 
around. Two main issues contribute to making this a challenging 
problem. First, images taken by a moving camera can be blurry, 
which complicates the work of OCR. Second, when exploring a 
scene while looking for a sign using a camera with limited field of 
view, it is necessary to take multiple pictures in different 
directions. The system needs to be able to process these images 
very quickly, in order to provide prompt feedback. Yet, the 
designer may need to trade off speed for image resolution, which 
is necessary for distant reading. The Short Text modality of 
SeeingAI, while operating at high resolution, is unable to detect 
text when the camera is moving. This characteristic reduces the 
scope of applicability of this system for scene text detection. In 
practice, Short Text works exceedingly well when someone knows 
where to aim the phone at, but may give less than satisfactory 
results when used to explore the scene with the camera in order to 
discover scene text.  

This paper describes an experimental comparison between 
Short Text and another custom system, dubbed ‘Spot+OCR’, for 
scene text discovery without sight. Spot+OCR, which was 
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developed in our lab, differs from Short Text in two, interrelated 
aspects (see Fig. 1). First, Spot+OCR was designed to be highly 
sensitive, so as to discover the presence of text in an image even 
when taken by a moving camera. The presence of text in sight is 
communicated to the user via a short vibration. Second, 
Spot+OCR requires the user to take action, in the form of 
stabilizing the phone before OCR (which reads the text being 
detected) is activated. This is necessary because, while text can be 
detected even in a blurry image, reading the text requires a stable 
(and thus sharp) image. The interface modality of Spot+OCR 
contrasts with the minimalistic interface of Short Text, which 
gives no feedback to the user besides the text being read. The 
higher sensitivity of Spot+OCR brings on the potential for false 
alarms – text detected when there is none. False alarms may cause 
spurious vibrations, or unsuccessful reading. One goal of our 
experiments was to study how these two different text access 
modalities compare against each other when used to discover and 
read textual signs in realistic scenarios. More specifically, we 
asked whether use of Spot+OCR, with its more sensitive 
detection, may enable a higher rate of detection and reading of 
textual signs than Short Text, and whether users may find the 
more involved user interaction and higher rate of false alarms 
acceptable. 

In addition to Short Text and Spot+OCR, we experimented 
with a third custom system (‘Guided OCR’), that we designed to 
search for textual signs in an open space (such as a large hall in a 
building). Guided OCR is an app that performs OCR on the 
highest image resolution afforded by the smartphone. Doing so 
requires substantial processing time (several seconds), and thus 
this system would not be suitable for exploration by continuous 
phone motion. Instead, the Guided OCR app guides the user in 
taking the minimum number of pictures with small overlapping, as 
necessary to cover a 360° span of the scene. Compared with Short 
Text and Spot+OCR, Guided OCR may afford detection and 
reading of textual signs from a longer distance, thus potentially 
reducing the need to physically explore the open space while 
keeping at close vicinity to its walls.  

We recruited seven blind participants for a number of indoor 
experiments. Our participants walked along four long corridors, 
using Short Text or Spot+OCR to find any posted textual signs. In 
addition, they used all three systems in three large elevator 
lobbies. Quantitative measures, in the form of the rate of signs 
detected and correctly read, as well as the time taken for 
completing the tasks, were taken. Equally important, qualitative 
observations, along with the responses to an exit survey, 
highlighted the advantages and drawbacks of the systems being 
tested. 

Related Work 
The field of OCR has received renewed interest recently thanks to 
the development of convolutional neural network architectures, 
which enable accurate and robust detection and reading 
[21,15,19,20,25]. This technology has found its way to powerful 
smartphone apps such as Microsoft SeeingAI [16] or libraries such 
as Google Mobile Vision API [10].  

It is interesting to note that the first OCR system ever 
demonstrated was intended for use by blind individuals [18,8]. 
Blind people have used OCR technology on flatbed scanners for 
decades. In 2005, with the release of kNFB Reader Classic, OCR 
was made available on smartphones [2]. Blind people quickly 
started using the kNFB Reader (and other mobile OCR apps) for 
applications other than document reading. By enabling 
discovering and reading of scene text [23] anywhere, mobile OCR 
apps have great potential for information access by blind people. 
The work described in this paper focuses on the strategies and 
challenges in using these systems without sight.  

Prior work has addressed the issue of using a camera by blind 
users, with some feedback from the system to ensure that the user 
can frame a picture correctly [7,22,4,17]. Related work has 
considered access of visual information from displays appliance 
[11,9]. Acquiring panoramic images by blind users was considered 
in [26,12]. A system for guiding blind people to take OCR-
readable pictures of a document with a smartphone camera was 
presented in [5]. Feedback from a wearable camera was used for 
blind walkers guidance in [6]. 

Method 

Participants 
Seven volunteers (three women, four men) participated in the 
experiment. Their age ranged between 23 and 70 (µ = 54, σ=16). 
All of the participants were expert independent ambulators. Two 
of them used a dog guide, while the remaining ones used a long 
cane. When walking through the corridors, one of the dog users 
(P1) held her dog by its harness, while the other one (P7) released 
the harness and held her dog by the leash. According to her, this 
prompted the dog to heel, rather than lead, as required for the 
experiment. All of the participants were blind, with at most some 
remaining light perception left. All of them were iPhone users. All 
but for P6 already had SeeingAI installed in their phone.  
Although a novice to SeeingAI, P6 had good experience with 
other OCR apps such as KNFB Reader. 

Apparatus 
MS SeeingAI 
We used the Short Text modality of SeeingAI on an iPhone SE. 
As mentioned earlier, Short Text simply reads aloud any text it 
recognizes from the images continuously taken by the camera, 
which is kept vertically (portrait mode). We noticed that the 
system also works when the camera is kept horizontally 
(landscape mode), however, the detection rate is much poorer in 
this case. If text is detected in an image, and the camera is held 
still, looking at the same scene, the app repeats reading the text. 
We noticed that in this case, Short Text often interrupts a sentence 
to start reading again, possibly multiple times, making it difficult 
at times to hear the whole sentence. If, however, one moves the 
camera such that the text is no longer in view, the system finishes 
reading the sentence without interruption. 

 



Spot+OCR 
Our Spot+OCR app runs on an Android phone (we used a Google 
Pixel model for our experiment.) Spot+OCR requires the phone to 
be held horizontally (landscape mode). We found that the wider 
horizontal field of view (65°) increases the chance that text is 
detected while moving (since the same sign may be seen multiple 
times as one walks by or scans the scene with the camera). 

Spot+OCR separates the two basic functions of detection and 
reading. Text detection (or spotting [15]) is performed using a 
fully convolutional neural network (FCN) architecture similar to 
TextSegNet [19] (itself based on the FCN-8 architecture of [21]). 
The network was trained on images from the ICDAR 2013 [13] 
and the ICDAR 2015 [14] data sets. It produces a binary 
segmentation of the image, where ‘on’ pixels are classified as 
belonging to a text area. If one or more connected components 
with more than 100 ‘on’ pixels each are found, it is assumed that 
text is visible in the image.  Samples of images and associated 
binary segmentations are shown in Fig. 2. We would like to 
emphasize that, while the text spotting algorithm is identical to 
[19], the user interface mechanism that relies on this module is a 
novel contribution of this paper. 

Input images are first resized so that their longer side has 500 
pixels. Although the network could certainly be implemented on a 
smartphone, achieving the desired speed (more than 1 frame per 
second) at the required resolution would need an engineering 
effort above our capacity. Instead, for the sake of the planned 
experiments, we opted for remote processing of the images 
acquired by the smartphone. Images are sent over Wi-Fi to a 
server workstation (3.3Ghz 6-score CPU, 32G RAM, GTX Titan 
X GPU and Ubuntu 14.04) using raw TCP sockets with a custom 
set of protocols. Once an image is captured by the Android 
camera, it is downsampled to 950 x 713 pixels and packaged in 
base64 encoding. The image is then sent to the server, unpacked, 
and run though the text detection network, which processes the 
image in about 100 ms. Depending on whether text is found, a 
‘true’ or ‘false’ value is sent back to the smartphone (which does 
not transmit a new image to the server until a reply is received). 
The end-to-end delay (from the time an image is sent to the time a 
reply is received from the server) is of about 400 ms on average. 
The system is able to process about 2 images per second. Note that 
this remote processing strategy is liable to connection drop. In our 
experiments, this only occurred a couple of times, and required 
restarting the app. One time, the server crashed in the middle of 
the trial, and needed to be rebooted (causing the trial to be paused 
and later resumed).  

Every time the smartphone system receives a ‘true’ value from 
the server, it is made to vibrate for 200 ms. This means that, if the 
camera points at a portion of text, the user feels a continuous 
sequence of vibrations (about two vibrations per second). If the 
phone is kept stable for a few seconds, a higher resolution picture 
(1500 x 1125 pixels) is taken for OCR processing. This event is 
triggered by thresholding the variance, computed over a sliding 
window of 5 seconds, of the magnitude of “linear” acceleration 
(i.e., acceleration with gravity removed) as produced by the 

Android SensorEvent API. The user is not notified of the high-
resolution image capture. 

The high-resolution image thus acquired is passed on to the 
Google Text Recognition API [10], which runs on the phone and 
produces in output any detected textual content, as well as the 
coordinates of axis-aligned rectangles containing the detected text 
areas (text boxes). This OCR is very accurate and fast, taking less 
than 400 ms to process an image. However, we observed that, 
similarly to Short Text, it does not have enough sensitivity to 
discover text when the camera is moving. This is the reason for the 
text spotting / user notification strategy described above. 

If OCR detects text in the image, this text is read aloud using 
the Android TextToSpeech API. More specifically, text boxes are 
ordered in lexicographic order based on the position of their top 
left corner; then, the text within each box is read aloud one box at 
a time, with a 1 second delay between consecutive boxes. The text 
being read is prefaced by an indication of the azimuthal angle 
(with respect to the camera’s optical axis) of the center point of 

the text box, expressed in the form of clock position (e.g.: ‘At 10 
o’clock: Laboratory’). If no text is found, the system utters ‘No 
text found’. Note that providing feedback when no text is found is 
important. Lacking this feedback, the user may end up holding the 
phone still for a long time after feeling a vibration, wondering 
whether a high-resolution was actually captured for OCR reading. 
Situations in which text is not found may occur when the text 
spotting system generates a false alarm, or when OCR is unable to 
read text (e.g. because too far). A new high-resolution image is not 
sent again to OCR until the system finishes reading aloud any text 
from the previous image, and in any case not before a 3 second 
interval from the previous readout.  

In practice, users of Spot+OCR can explore a scene while 
holding the phone horizontally. If the phone vibrates, it means that 
there is text in sight. The user is then in charge of moving and/or 
orienting the phone to a position where he or she believes a good 

 

Figure 1. Schematic comparison of the Short Text and 
Spot+OCR modalities for text discovery and reading. User 

interface tasks are marked by a thick frame. 
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snapshot can be taken for OCR reading, then holding the phone 
still for a few seconds until text is read aloud or a ‘No text found’ 
notice is produced (see Fig. 1). Note that, due to the delay (400 
ms) associated with remote processing, it may happen that the 
phone vibrates when the user has already passed the sign by. In 
our experiments, this often occurred when participants were 
walking along a corridor, the smartphone aimed at the wall. Upon 
feeling an isolated vibration, a participant can find the detected 
text by moving back a little, or rotating the phone in the opposite 
direction of walk, until the phone starts vibrating again. 

A user interface provision was implemented to help users keep 
the phone straight. This is important because, as we observed in 
numerous occasions, the Google OCR API appears to produce 
unsatisfactory results when text is not aligned horizontally in the 
image. Specifically, the system utters ‘Tilt the device up/down’ if 
the angle between the camera’s optical axis and the horizon was 
found to be larger than 7.5°. Similarly, the phone utters ‘Rotate the 
device left/right’ if the phone was oriented around the optical axis 
by an amount exceeding the same threshold.  

All images received by the server were stored (together with 
the network response), and all text produced by OCR was logged 
in the phone for later analysis. Unfortunately, due to a technical 
issue, the OCR results from the first two participants were not 
stored in the phone. For these trials, we used the recorded videos 
to carry out quantitative measurements, as discussed later. 

Guided OCR 
The Guided OCR app uses the Google Text Recognition API with 
images at the maximum resolution produced by the camera (3840 
x 2160), without a prior text detection module. It was designed to 
facilitate text discovery in a 360° sweep, which is the situation 
considered in Experiment 2. OCR processing on such high-
resolution images may take up to a few seconds (depending on the 
content of the scene), and therefore it is important to carefully plan 
snapshot acquisition, lest too many overlapping images end up 
being processed (thus increasing the overall exploration time), or 
gaps be left between images (thus potentially missing textual 
content). Guided OCR directs the user, through a speech interface, 
to take a set of images at appropriate azimuth angles, where the 
optical axis of the camera at snapshot time forms an angle of 

approximately 30° with its direction in the previous image (as 
determined by the Android SensorEvent API).  

At the beginning of a trial, once the phone is held level and 
stable in landscape mode, the user is prompted by the phone (via 
speech) to start the scan by pressing the volume button. A 
snapshot is taken and passed on to OCR, which then reads aloud 
any text found. If processing takes more than two seconds, the 
sentence ‘System processing’ is uttered and repeated every two 
seconds. After the text has been read aloud, the system prompts 
the user with the sentence ‘Please move slowly to the right’. (Note 
that the word ‘move’ here really signifies ‘rotate around a vertical 
axis’; however, as mentioned earlier, we already use ‘rotate’ to 
mean a rotation around the camera’s optical axis. In practice, only 
one participant got confused between the two verbs, and that was 
when she was asked to ‘Rotate the phone’ to adjust its orientation 
in an Experiment 2 trial.) The user is then expected to rotate the 
phone (or his/her body while holding the phone) until the correct 
orientation is reached, at which point the system utters ‘Stop for 
snapshot’. As soon as the phone is stabilized, a new picture is 
automatically taken and the process is repeated. If the user hasn’t 
reached the new position within two seconds, the phone utters 
‘Please move right’ every other second. If the user overshoots the 
position, the system utters ‘Please move left’. Users are expected 
to hold the phone level during the process, in order to ensure that 
the space around them is explored correctly. Once the whole 360° 
span has been covered, the system notifies the user that the trial 
has terminated. 

Pairs of pictures taken using this strategy have overlap of 
approximately 30°. While a smaller overlap could be used, we 
wanted to mitigate the risk of a textual sign split between two 
images. In case a text box is detected in each of two consecutive 
images within their overlapping area, and the two text boxes 
overlap by a large amount (as determined by homographic 
warping of one image into the other), only the content of the text 
box in the first image is read aloud. 

An alternative to independent OCR processing of each 
acquired image could be to form and process a single panoramic 
image, obtained by registering and stitching all consecutive 
frames. This would remove any redundancy, and would also 
reduce the risk of text content being split between two images. 
However, experiments showed that the warping inherent to 
panoramic image stitching creates some small artifacts that 
sometimes hamper correct OCR reading. For this reason, we 
resorted to independent OCR processing of individual images, as 
discussed above. 

Experiments 
Each participant underwent a sequence of two experiments. In 
both experiments, participants used a smartphone to read posted 
textual signs while walking in an indoor environment. A textual 
sign could be a name or number tag posted near an office door, a 
flyer or a poster attached to a wall, or any other visible text, such 
as the writing ‘FIRE’ on an alarm pull switch. The two 
experiments differed in the geometry of the environments visited 

 

Figure 2. Examples of binary masks produced by the text 
detector from images taken by our participants in Experiment 1. 



(see Tab. 1). All trials were video recorded. The time to complete 
both experiments ranged between two and three hours. 

Experiment 1: Corridors 
Participants walked along two different types of corridors in our 
building. The first corridor type (‘Narrow’ or ‘N’) has width of 
1.67 meters, with offices on one side and laboratories on the 
opposite side. The second corridor type (‘Wide’ or ‘W’), 2.16 
meters wide, has laboratory doors on both sides. Trials were 
conducted in two N corridors and in two W corridors on different 
floors.  

Before the beginning of the trials, each participant was handed 
the Pixel phone with the Spot+OCR app, and was instructed in the 
correct use of the system. Participants were given ample time to 
experiment with detecting and reading two office tags, and 
encouraged to try to approach these tags from multiple angles, in 
order to gain practice with the system. Participants were also 
shown the correct use of the Short Text modality of SeeingAI. 
Once a participant felt comfortable with use of both systems, 
Experiment 1 started. 

Each participant underwent two trials with the Short Text 
modality in two different corridors in the same floor (one of type 
N and one of type W), and two trials with the Spot+OCR modality 
in the N and the W corridors of the other floor. The order of the 
modalities (Short Text, Spot+OCR) was balanced across 
participants, as was the order of the floors and of the corridors in a 
floor to be explored.  

During a trial, participants walked from one end of the corridor 
to the opposite end, while exploring the wall on one side (of their 
choice) using the smartphone. Upon arriving at the end of the 
corridor, participants were asked to turn around and explore the 
other side of the corridor. The trial ended when the participant 
arrived back to the starting point. Participants were not asked to do 
anything more than discover the signs and have the phone read 
them aloud correctly. They were not asked to repeat or even make 
sense of the text uttered by the phone, nor to indicate the location 
of the signs or touch them. No reward was offered for discovering 
more signs. Participants were advised to walk in the middle of the 
corridor, and to experiment with different distances to the wall.  

Experiment 2: Open Spaces  
Participants explored an elevator lobby with size of 5.8 x 5.8 
meters. Three identical lobbies (but with different textual signs) in 
different floors of our building were used for this experiment. 
Each space was explored with a different modality (Short Text, 
Spot+OCR, and Guided OCR). The order of the floors and of the 
text reading modalities was balanced across participants, with the 
exception that, for the sake of simplicity, Guided OCR was always 
tested last. Note that Experiment 2 was conducted after 
Experiment 1, and by that time the participants were well 
acquainted with both the Short Text and the Spot+OCR 
modalities. Before beginning the third trial, participants were 
described the use of the Guided OCR app, but did not rehearse it. 
This was intentional, as we wanted to evaluate whether this 
interface modality is simple enough that it could be used “right off 
the box”. 

A trial started with the participant standing in the middle of the 
lobby, facing the wall opposite the elevator. Participants were 
tasked with finding all textual signs in the lobby, within a 360° 
span. They were told that they could just stand where they were 
and scan the environment with the smartphone, or walk around the 
lobby, if they so preferred. The trial ended when the participant 
declared that, in his or her opinion, the full span of the area had 
been explored.  

 

Exit Interview 
After completion of Experiment 2, participants were asked to take 
part in an interview about their experience. The interview was 
structured in three parts. In the first part, participants answered a 
questionnaire (Questionnaire 1) about their perception of the 
quality of the information produced by the system. In this 
questionnaire, participants were asked to not discriminate between 
the three different systems tested, but to comment on the general 
quality of the output. The goal was to probe the participants’ 

 N2 W2 N3 W3 OS3 OS4 OS5 
Tot. length (m) 85 67 85 79 – – – 
# textual tokens 79 68 104 50 22 20 23 

Table 1. Total walking length in the considered corridors (N 
or W type, 2nd or 3rd floor), and number of marked textual 

signs in the corridors and in the three open spaces (OS in 3rd, 
4th and 5th floor). 

     

    

       

Figure 3. The different ways our participants held the 
smartphone in the Spot+OCR trials (Experiment 1) 



feelings about the general utility of OCR systems for scene text. 
Responses to individual statements were expressed in a Likert 
scale (1=don’t agree, 5=fully agree). The statements and replies to 
Questionnaire 1 are shown in Tab. 4. Inspired by the principles 
underlying the System Usability Scale (SUS [1,3]), the first eight 
statements alternate between “positive” and “negative”, and the 
statements were formulated trying to elicit strong statements of 
agreement or disagreement. The ninth statement is the only one 
directly comparing the quality of text produced by Spot+OCR and 
by the other systems.  

Questionnaire 2 was repeated individually for each one of the 
three systems tested. It is composed by a subset (six) of the ten 
statements of the standard SUS. We decided not to use all of the 
SUS statements, both to reduce the load for our participants (who 
were asked to address 27 statements overall), and because some of 
the statements of SUS did not apply well to our systems (e.g. SUS 
statement 5, “I found the various functions in this system were 
well integrated”). We selected SUS statements 2, 3, 7, 8, 9, and 
10. These statements alternate between “positive” and “negative”, 
which enables us to summarize the results using a SUS score 
properly normalized between 0 and 100.  

The last part of the exit interview was made by a set of open-
ended questions, and precisely: 

Q1. In what situations do you think a system like this, that can 
read text in the scene, would be most useful? 

Q2. Please comment on the quality of the text that was produced 
by the system. 

Q3. Please comment on the ease of use of the system. 
Q4. Any advice on how to improve the system? 
Q5. Any further comments? 

Participants were encouraged to specifically address individual 
systems in their answers to the open-ended questions. 

Metrics 
The main metric considered for quantitative evaluation of each 
systems was the proportion of existing text that was correctly read. 
Using pattern matching parlance, we call this the True Positive 
Ratio (TPR). More precisely, the TPR is equal to the proportion of 
textual tokens in a “ground truth” (GT) set that were read correctly 
by the system (to within a certain error). We describe the creation 
of the GT set and the error criterion used next. The second metric 
was the time taken to discovered the textual signs, measured in 
terms of average speed in the corridors of Experiment 1, or overall 
time for the open spaces of Experiment 2. False alarm rates (‘No 
text found’ events produced by Spot+OCR) were also measured.  

Ground Truth (GT) Set 
Text appears in a variety of forms in typical indoor places. The 
environment in which our experiments took place contained text 
posted as name and number tags, emergency information, floor 
plans, flyers and posters. Some of these signs contained a minimal 
amount of text (e.g. a number), while others had very long textual 
content (e.g. an ACM advertisement poster with a dozen of line 
items and more). In selecting the GT set, we decided to only keep 
the larger titles of posters and flyers, and to neglect smaller font 

content within the same sign. This decision was driven by the 
observation that smaller font text in these situations can only be 
read after the larger titles have been found, and we were more 
interested in the process of discovery of textual signs than in the 
accurate reading of all content in the poster or flyer. Note that 
situations with abundant textual content were relatively rare in the 
environments considered: the vast majority of textual signs only 
had one or a few lines of text. 

The second decision we faced in the creation of the GT set was 
the determination of “tokens” of text, where correct discovery and 
reading of a token represents a successful event. Using individual 
words as tokens would not be very meaningful: if, say, half of the 
words in a sign are correctly read, the sign is probably still 
unintelligible. On the other hand, requiring that the whole content 
of the sign be read may be unnecessarily demanding. For example, 
consider a typical case of a sign containing a number in the first 
line, and a name in the second line. If only one of the two lines is 
read correctly, this already represents a (partial) success. 
Accordingly, we decided to use individual lines of text as tokens. 
This compromise is acceptable, in our opinion, considering that, as 
mentioned earlier, most signs in our building only contained one 
or a few lines of text. 

For each environment considered, we created a catalog of text 
tokens, where each token was assigned an ID number. The tokens 
were ordered according to the prescribed traversal of the corridor 
from one end to the other, and back. For the open space 
environments, tokens were ordered according to a left-to-right 
sweep of the camera. In addition, tokens were clustered into 
groups of nearby items, such that a group of tokens could be seen 
from an individual picture from the camera. The reason for this 
clustering will be clear in the next section. We should note that 
one of the open space environments had one wall covered by 
about twenty posters with almost identical content, while another 
one had a wall with a large poster containing a collage of pictures 
and words in different languages. We decided to exclude the 
textual content of these walls from the GT set (even though some 
of these were read by the systems), as it would complicate analysis 
of the results. The total number of textual tokens in the 
environments considered is reported in Tab. 1. 

Error Criterion 
The OCR apps considered generate text in the form of spoken 
sentences. Additionally, Spot+OCR and Guided OCR logged 
individual text lines (tokens). In order to decide whether one 
computed token matches a token in the GT set, it is necessary to 
determine an appropriate distance between tokens. For this 
purpose, we adopted the normalized Levenshtein metric [24], 
which is of standard use in similar situation. More precisely, two 
tokens are considered to be matching if their normalized 
Levenshtein distance is smaller than 0.2. While there is no 
universally agreed upon “intelligibility” threshold, a threshold of 
0.2 seems appropriate for the purpose of ensuring that a token is 
recognizable while forgiving small editing distances. For example, 
the detected token ‘ybrid Systems Lal’ has distance of 0.11 to 
‘Hybrid Systems Lab’ and thus is considered to be a match. 
However, ‘ybrid Syaaem Lal’, with a distance of 0.26, would be 



rejected. In practice, most words produced by the systems were 
either intelligible or garbled; the threshold was not found to be 
critical. 

Another important issue is the determination of the best 
association between tokens read by the system (stored in a list) 
and tokens in the GT set. A simple solution would be to find the 
assignment the maximizes the total similarity (1 - normalized 
distance) of the matches, which amounts to computing a 
maximum weighted bipartite graph. This, however, would be 
inappropriate, for the following reason. There were many textual 
tokens repeating in different locations of the environments 
considered (e.g. the token ‘FIRE’). A successful trial would 
discover each one of these tokens. However, it is possible that, 
upon discovery of one instance of the ‘FIRE’ token, if the 
participant holds the camera in position, the token may be re-read 
multiple times. These occurrences may end up being incorrectly 
matched with different GT tokens (in other locations), biasing the 
result. Even an ordered match, where two tokens in the recorded 
list must have the same pairwise order as their matches in the GT 
set, may fail when multiple tokens are seen in the same image and 
read in an incorrect order. We thus resorted to the following 
hybrid ordered matching strategy. The list of detected tokens is 
first separated into sublists, where each sublist is assigned to a 
cluster of GT tokens, a defined in the previous section. The order 
of the sublists reflects the order of the groups of tokens in the GT 
set. Then, (unordered) maximum similarity matching is performed 
between tokens in a sublist and tokens in the associated GT group. 
After the token-level association is completed, the number of 
tokens in the detected list that pass the distance threshold is 
computed and divided by the number of tokens in the GT set to 
produce the TPR for that trial.  

For the trials with Short Text, and for those trials using the 
other modalities in which data was not logged due to technical 
issues, the determination of TPR was based on the recorded audio 
of the text uttered by the system. Unfortunately, it was not 
possible to perfectly transcribe the text in the audio, since many of 
the utterances did not form proper English words (due to OCR 
errors producing garbled text), and letter-by-letter transcription 
would be exceedingly challenging in these cases. The analysis was 
performed as follows. First, the audio track was divided into 
segments, corresponding to the groups of GT tokens. Then, for 
each GT token in a group, the analyzer listened to the audio 
segment to detect a token that was perceptually similar to the GT 
token. If this was found, the GT token was marked as detected and 
removed along with the matching token. The analysis then started 
again with the next GT item in the group. In general, we found 
that detected items were either very similar or very dissimilar to 
corresponding GT items, and thus the risk of subjective bias in this 
analysis is small. 

Results 

General Observations 
The participants quickly learnt to use all three modalities, 
including Spot+OCR and Guided OCR, which require user action 

in response to system feedback. The individual characters of the 
participants were clearly reflected in their interaction with the 
system. Some explored the area very methodically; upon 
discovery of some textual content, they would maintain or slowly 
vary the position of the phone, listening to the output produced, 
until they were satisfied that all text was correctly read. Others had 
a more laissez-faire attitude, and moved on after a textual sign was 
read just once, even if the text produced was not understandable.  

In the Experiment 2 trials, most participants scanned the 
environment by turning around while staying in place, except for 

P1 and P4 who walked around the space in their first trial (both 
with the Short Text app), and P6 for both initial trials (with Short 
Text and Spot+OCR). Due to a technical issue, the Guided OCR 
app did not work for the trial with participant P4. 

Holding the Phone 
Each participant developed his or her own strategy for holding the 
phone while exploring the environment (see Fig. 3). Holding the 
phone horizontally, which requires a pronated position of the 
hand, proved to be challenging for some participants. In particular, 
P5 needed to often stop and rest or stretch. P3 observed that, when 
held vertically, the phone is supported on three sides, while in a 
horizontal position it is supported by only two sides, which makes 
it less stable.  In general, several participants were unable to keep 
the phone level, which probably contributed to less than optimal 
OCR reading. Remarkably, P6 found a rather efficient way to hold 
the phone horizontal, by resting its shorter size on his stomach. In 
this way, his arm wouldn’t tire, and he was able to precisely 
control the phone’s orientation. 

Tactile Searching 
Three participants (P4, P6 and P7) explored the wall with their 
hand when using the Short Text app, in order to discover the 
location of name tags, posters and fliers, to then aim the camera at 

Modality Short Text Spot+OCR 
Corridor type N W N W 

P1 TPR (%) 0 0 28 35 
Speed (m/min) 36.3 21.4 5.7 13.6 

P2 TPR (%) 1 0 32 42 
Speed (m/min) 20.9 15.6 9.9 4.8 

P3 TPR (%) 18 18 38 64 
Speed (m/min) 6.5 8.9 4.5 3.2 

P4 TPR (%) 63 66 35 16 
Speed (m/min) 18.3 5.3 3.7 4.7 

P5 TPR (%) 12 4 23 26 
Speed (m/min) 18.2 15.5 6.2 9.9 

P6 TPR (%) 69 82 46 29 
Speed (m/min) 3.7 5.1 3.6 6.6 

P7 TPR (%) 11 38 31 48 
Speed (m/min) 2.9 4.2 3.5 2.2 

Table 2: Experiment 1 quantitative results. 



that location. Note that P4 started the trials with the Short Text 
app; he then would occasionally use tactile exploration even with 
the Spot+OCR app. P6 and P7 started with the Spot+OCR app; 
only in the second set of trials (with Short Text) did they decide to 
search for items with their hand. Note that Spot+OCR is more 
sensitive than Short Text, and provides vibrational feedback even 
when Short Text is unable to read the text. This may explain why 
P6 and P7 felt the need to explore the wall with their hands only 
when using Short Text.  

Quantitative Results 
Tabs. 2 and 3 show quantitative results in terms of TPR as well as 
average speed (for Experiment 1) or total time (for Experiment 2) 
for each trial. Speed is a more meaningful measure for Experiment 
1, where participants were to walk along corridors, but would not 
be appropriate for the open space experiments. The average speed 
(in meters/minutes) was computed by dividing the total length 
traversed in each trial by the time taken for traversal.  

Experiment 1 
The Experiment 1 data is best understood by considering that P4, 
P6 and P7, as mentioned earlier, explored the scene with their 
hand when using Short Text. By doing so, P4 and P6 achieved 
better TPR using Short Text than using Spot OCR. For all other 
participants, poorer results were obtained with Short Text. P1 was 
not able to find a single text token with Short Text, while P2 only 
found one. Better TPR values were obtained by P3 and P4, but 
still inferior than with Spot+OCR. It seems clear that the TPR 
results are dominated by whether or not the participants decided to 
explore the walls with their hands. Statistical analysis of this 
clearly bimodal data would require stratification, and thus a larger 
sample than used in this study to achieve adequate power. On 
average, the TPR rate was 27% for Short Text and 35% for 
Spot+OCR. 

In the trials with the Spot+OCR app, ‘No text found’ 
notifications were produced 0.56 times as often as correctly read 
tokens. The ratio of garbled text (i.e., with normalized Levenshtein 
distance to its closest GT token in the same block larger than 0.2) 
to correct text tokens was 3.7. We didn’t attempt to compute this 
for the Short Text trials, as extracting individual garbled text 
tokens from the recorded audio would be exceedingly difficult. 

The average velocity varied within a wide range, from 35.3 
m/min for P1 with Short Text, to 2.2 m/min for P7 using 
Spot+OCR. On average, velocity was higher when using Short 
Text than when using Spot+OCR (one-tailed paired t-test, 
p=0.01). This may be justified by considering that Spot+OCR 
provided more feedback opportunities, which had to be attended 
to. No significant effect of corridor type was discovered on either 
TPR or average velocity. 

Experiment 2 
The average TPR recorded were 9% (Short Text), 22% 
(Spot+OCR), and 45% (Guided OCR). Spot+OCR was shown by 
paired t-test to be associated with a TPR significantly higher on 
average than with Short Text (p=0.017). Guided OCR enabled 
higher TPR than Short Text (p=0.0016) and Spot+OCR (p=0.02). 
(These last two tests excluded P4, as Guided OCR did not function 
in his case.) The reason for the better performance of Guided OCR 
may be that it processes images at very high resolution, and thus 
can detect text from a longer distance than the other systems. No 

P1 P2 P3 P4 P5 P6 P7 μ σ 
S1: I thought that the text read by the system was very valuable 

4 4 4 5 2 4 4 3.9 0.9 
S2: I found that there was too much useless information produced 
by the system 

2 3 2 1 1 3 3 2.1 0.9 
S3: I think that hearing the direction towards the text was useful 

5 3 5 3 4 5 5 4.3 0.9 
S4: I care only about the text content, not its precise location 

3 4 1 2 2 4 3 2.7 1.1 
S5: I think that I would only use this system to find a certain 
desired text, rather than hearing all text in view 

4 5 1 3 2 3 2 2.9 1.3 
S6: I think that is necessary to discover any text in the scene, 
even if not all of it is understandable 

3 1 4 1 1 3 4 2.4 1.4 
S7: I think that being able to read text visible in a scene using this 
system would be very important in my daily life 

4 3 5 3 3 5 2 3.6 1.1 
S8: I would only use this system if it worked much better than it 
does now 

2 2 2 1 3 4 4 2.6 1.1 
S9: I felt that the text produced by the SeeingAI product was of 
better quality than the other systems 

1 1 1 4 2 3 4 2.3 1.4 

Table 4. Questionnaire 1 outcomes. 

Modality Short Text Spot+OCR Guided OCR 
P1 TPR (%) 15 14 61 

Time (s) 295 325 281 

P2 TPR (%) 4 23 50 
Time (s) 233 594 443 

P3 TPR (%) 9 20 65 

Time (s) 150 182 286 

P4 TPR (%) 10 17 – 
Time (s) 228 182 – 

P5 TPR (%) 0 0 11 
Time (s) 84 90 240 

P6 TPR (%) 27 61 55 
Time (s) 376 1106 248 

P7 TPR (%) 0 17 27 
Time (s) 192 191 332 

Table 3. Experiment 2 quantitative results. 



significant difference was found between the average trial time for 
the different modalities.  

Exit Survey Outcome 
Tabs. 4 and 5 summarize the outcomes of Questionnaire 1 and 2, 
respectively. While there was general consensus on some of the 
statements in Questionnaire 1 (e.g., S1, S2, S3), others generated 
disagreement (in particular, S5, S6, S9). Paired t-test shows that 
the average score of Questionnaire 2 for Guided OCR is 
significantly higher than the average score for Short Text 
(p=0.007), showing that our participants found Guided OCR easier 
to use than Short Text.  

The answers to the open-ended questions brought to light a 
number of interesting issues. In response to Q1, participants listed 
multiple situations in which scene text reading would be useful, 
including: shopping centers, room numbers, restaurant menus, 
bathrooms (men/women), names on office doors, hospital room 
numbers, bulletin boards, signs at bus stops, train stations and 
airports, places with signage (e.g. laundromats), vending 
machines, street signs, exit signs, signs on grocery store aisles, fire 
instructions, hotel rooms.  

Replies to Q2 were mixed, with some preferring the quality of 
text produced by Short Text, especially in terms of capturing the 
text layout (P4), and others complaining that Short Text often 
repeats reading a sentence before finishing it.  

In replies to Q3, all except for P4 clearly stated their 
appreciation for the vibrational feedback provided by the 
Spot+OCR app. P7 observed that she didn’t mind spending time 
exploring a certain area if she knew that there is some text in 
there. This sentiment was echoed by P3, who observed that the 
vibrational feedback gave him the opportunity to focus on a 
certain direction, even if sometimes the system was unable to read 
the text. Interestingly, two participants mistakenly thought that the 
vibration rate was correlated with distance (P1) or with text 
centering (P5). Several participants appreciated the Guided OCR 
modality. In particular, P3 was enthusiastic about it, claiming that, 
while it may take longer to get adjusted to it (i.e. to correctly 
follow its directions), it may allow him to detect more text than by 
walking around. However, P6 complained about its relatively long 
processing time. 

Q4 elicited several interesting suggestions, including 
providing more feedback for better centering of the text; the 
ability to take and store a snapshot when text is visible (as 
indicated by the vibrational feedback); providing an indication of 
“confidence” that text is actually there; and reducing the amount 
of false alarms with the Spot+OCR system. P3 wondered whether 
it would be possible to process the various “snippets” of text 
produced when trying to correctly frame the sign with the camera, 
to generate one coherent text sentence.  

Discussion  
This study has brought to light a number of interesting aspects of 
scene text access without sight. It is clear that, even with the best 
available technology, finding and reading posted textual signs is 
challenging for blind people. The best average TPR value obtained 

in Experiment 1 was just 35%; a slightly higher value (45%) was 
achieved in Experiment 2. This means that, on average, the 
participants missed, or were unable to read correctly, more than 
half of the textual sign tokens that were present in the 
environment.  

In order to read a sign, it is necessary to find it first. 
Spot+OCR was clearly better at this than Short Text, and the 
participants almost universally commented very positively about 
the vibrational interface it offered. While the difference in 
detection rate could be in part attributed to the fact that the phone 
was held horizontally in the Spot+OCR trials and vertically for 
Short Text, we believe that the main reason is the increased 
sensitivity of the text spotting module. As mentioned earlier, Short 
Text simply does not read text if the camera is not kept still. Text 
can be also found by tactile exploration, which is how some of our 
participants dealt with the poor detection rate experienced with 
Short Text while moving the phone. P7 (who trailed the wall with 
her hand when using Short Text) observed, however, that tactile 
exploration is not always appropriate, convenient, or desirable.  

Discovering text with a camera requires good awareness of the 
distance of the camera to where text is expected to lie. In the 
Experiment 1 trials, participant walked along a corridor, while 
aiming the camera at one of the walls. The “camera footprint”, 
defined as the area of the wall covered by the camera’s viewing 
frustum, is a direct function of the distance to the wall. Keeping 
far from the wall results in a large camera footprint, and thus a 
higher chance to detect text while moving. This is because in this 
case multiple consecutive pictures have overlapping footprint, and 
therefore the same textual sign may be seen in multiple images, 
thus increasing the chance that it will be detected, at least by the 
Spot+OCR system. This was indeed the case, and we noticed that 
those participants who coasted the wall opposite the one being 
explored seemed to achieve more detections. However, when seen 
from a large distance, text is acquired with low resolution, 
resulting in OCR reading that was often garbled, or unsuccessful. 
At least one participant (P3) understood this delicate trade-off and 
explored the wall at different distances. While this allowed him to 
achieve high TPR, it came at the cost of very long exploration 
time.  

Even when text is found (by the system or by touching it), 
framing it correctly with the camera may be difficult. Good OCR 
reading is achieved when text is seen head-on (fronto-parallel), at 
an appropriate distance. When viewed from an angle, text appears 
slanted (due to perspective), which complicates the job of OCR. 
The textual sign must be seen from a long enough distance that the 
whole text is within the camera’s field of view, yet close enough 
that it can be correctly resolved in the image. The text area must 

P1 P2 P3 P4 P5 P6 P7 μ σ 
SeeingAI 

71 71 50 100 92 25 21 62.1 30.7 
Spot+OCR 

67 83 67 67 67 50 71 67.3 9.8 
Guided OCR 

92 83 71 – 87 63 96 82 12.8 

Table 5. Questionnaire 2 outcomes. 



be well centered in the image, especially when it covers most of 
the field of view, lest part of it get cut off.  

For a sighted person, who receives visual feedback from the 
phone’s screen, correct camera aiming is very natural. Blind users, 
though, may find this operation challenging. Our participants 
received feedback from the system, in the form of text processed 
by OCR and read aloud, and, for Spot+OCR, from the output of 
text detection (via vibration). If the output of OCR was 
unsatisfactory (garbled or incomplete text), participants needed to 
re-position or re-orient the phone to obtain a better view of it. This 
operation turned out to be quite difficult for most participants. 
Simply listening to a garbled or incomplete text sentence may not 
give one enough information to ascertain what the problem that 
caused incorrect reading may be. Is the text area seen from too 
large a distance? Is it seen from a bad orientation? Or was the text 
partially cut off from the field of view? Lacking this information, 
it is difficult for a user to figure out exactly where to move the 
camera. Some participants (in particular, P6 and P7) said that they 
made use of the directional information provided by Spot+OCR in 
the form of clock position, and rotated or moved the phone so that 
the text was seen at 12 o’clock. Note, however, that this solves 
only part of the phone orientation problem. Centering the text in 
the field of view does not mean that slant is removed. If one’s 
position is not level with the sign attached to the wall, one may 
need to move forward, while rotating the phone to keep the sign in 
sight, until the text is seen approximately fronto-parallel (i.e., the 
optical axis of the camera forms an orthogonal angle with the 
planar support of the text). This type of geometric reasoning 
requires clear awareness of one’s position and orientation with 
respect to the wall, as well as of the direction to the text, 
something that for a blind person may be difficult to achieve.  

For those participants who used their hands to find textual 
signs, camera aiming was facilitated by knowing the exact 
location of text. Even in this case, though, we noticed that 
guessing the correct distance was challenging. For example, P4 
kept too close to the signs discovered by tactile exploration, and 
for this reason sometimes only a part of a sign was read.  

The problem of determining the correct location and 
orientation (the pose) of the camera for correct text framing is not 
unique to this application. A very similar situation occurs when 
taking pictures of a document laying on a desktop for OCR 
reading. Several systems (including the ‘Document’ mode of 
SeeingAI) provide feedback to the user, indicating whether the 
whole document is seen, or if part of it is cut off. Cutter and 
Manduchi [5] demonstrated a system that gives directions to the 
user about where to move the camera to obtain a compliant 
snapshot. The results of the study presented here suggest that a 
similar feedback mechanism may be beneficial also in the context 
of scene text reading. 

Our final comment regards the Guided OCR modality. This 
was designed to enable accurate exploration of an open space in 
relatively short time. Moving around in an open space without 
sight is challenging, especially in an unfamiliar environment. 
Indeed, only three of our participants chose to explore the 
perimeter of the open space considered, and two of them only for 
one trial. Guided OCR provides the opportunity to detect text even 

when relatively far away (several meters of distance) while 
keeping in position. To do so, one must follow a fairly regimented 
procedure, carefully complying with guidance from the system. To 
our surprise, our participants did not seem to mind it, and in fact 
gave it the best scores in terms of usability (Questionnaire 2). 
Quantitatively, use of Guided OCR led to the highest TPR scores. 
As noted by P2, though, its use may not be desirable in public 
settings. In fact, the same observation may apply to the other 
modalities as well: other participants commented that they would 
be more likely to use these systems when there is no one around, 
lest they might attract undesired attention. 

Conclusion 
We have described a study with seven blind participants who 
explored different environments (corridors, open spaces) using 
three different smartphone OCR apps, in search of posted textual 
signs. Besides the popular SeeingAI app in its Short Text mode, 
the participants used two custom applications: Spot+OCR, which 
provides vibrational feedback when text is in sight, and then reads 
the text as soon as the user stabilizes the phone; and Guided OCR, 
which allows one to perform a 360º scan of an open place, guiding 
the user to correctly orient the camera, and automatically taking 
high resolution snapshot at the right orientations. The quantitative 
results, survey outcomes, and observations taken of the 
experiments bring to light the different strategies that blind users 
of these systems may adopt when searching for textual signs, and 
help identify the main challenges associated with use of these 
OCR systems without visual feedback. 
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