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Abstract
Mesenchymal stem/stromal cells (MSCs) are extensively studied as cell-therapy 
agents for neurological diseases. Recent studies consider exosomes secreted by 
MSCs as important mediators for MSCs’ neuroprotective functions. Exosomes 
transfer functional molecules including proteins, lipids, metabolites, DNAs, and 
coding and non-coding RNAs from MSCs to their target cells. Emerging evidence 
shows that exosomal microRNAs (miRNAs) play a key role in the neuroprotective 
properties of these exosomes by targeting several genes and regulating various 
biological processes. Multiple exosomal miRNAs have been identified to have 
neuroprotective effects by promoting neurogenesis, neurite remodeling and 
survival, and neuroplasticity. Thus, exosomal miRNAs have significant therapeu-
tic potential for neurological disorders such as stroke, traumatic brain injury, and 
neuroinflammatory or neurodegenerative diseases and disorders. This review 
discusses the neuroprotective effects of selected miRNAs (miR-21, miR-17-92, 
miR-133, miR-138, miR-124, miR-30, miR146a, and miR-29b) and explores their 
mechanisms of action and applications for the treatment of various neurological 
disease and disorders. It also provides an overview of state-of-the-art bioengin-
eering approaches for isolating exosomes, optimizing their yield and manipu-
lating the miRNA content of their cargo to improve their therapeutic potential.
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Core Tip: Mesenchymal stem/stromal cells (MSCs) are multipotent stem cells, which, 
due to their high availability and their reparative abilities, have been developed as 
therapeutic agents for various neurological diseases. MSC-derived exosomes have been 
receiving increased attention for their therapeutic capacity and low adverse effects. 
This review summarizes recent research on the neuroprotective effects of selected 
MSC-derived exosomal microRNAs (miRNAs) and provides an overview of their 
application potential in different neurological disorder disease models. It also discusses 
practical bioengineering approaches for isolating MSC-derived exosomes, manipu-
lating their miRNA cargos, and improving their therapeutic abilities.

Citation: Nasirishargh A, Kumar P, Ramasubramanian L, Clark K, Hao D, Lazar SV, Wang A. 
Exosomal microRNAs from mesenchymal stem/stromal cells: Biology and applications in 
neuroprotection. World J Stem Cells 2021; 13(7): 776-794
URL: https://www.wjgnet.com/1948-0210/full/v13/i7/776.htm
DOI: https://dx.doi.org/10.4252/wjsc.v13.i7.776

INTRODUCTION
Mesenchymal stem/stromal cells (MSCs) are multipotent stem cells with self-renewing 
capacities that can be isolated from a variety of human tissues including adipose, 
peripheral blood, muscle, amniotic fluid, placenta, skin and dental pulp[1-3]. MSCs are 
used as therapeutic agents for a broad range of diseases due to their immunomodu-
latory, angiogenic, and neuroprotective functions[1]. It has been suggested that the in 
vivo therapeutic effects of MSCs are achieved predominantly through a paracrine 
signaling mechanism that includes free proteins (growth factors and cytokines) and 
extracellular vesicles (EVs)[1,2,4-7]. EVs are membrane-bound vesicles secreted by 
cells and can be categorized into three subtypes, exosomes (50-150 nm), microvesicles 
(100-1000 nm), and apoptotic bodies (500-5000 nm) apoptotic bodies are formed during 
the late stages of apoptosis and contain intact organelles and chromatins along with 
small amounts of glycosylated proteins[8]. Exosomes and microvesicles are involved 
in the transfer of biological information and have shown to have potentials in the 
treatment of neurological disorders[9,10]. MSC-derived exosomes include bioactive 
components on their surface such as glycocalyx, membrane-bound signaling receptors 
and proteins. The internal exosomal compartment includes proteins, lipids, 
metabolites, DNA and coding and non-coding RNAs[11-13]. This multi-functional 
quality of MSC-derived exosomes allows them to be used for cell free therapies and 
reduces the risk for potential challenges that are associated with MSC-based therapy, 
such as microvascular occlusion and immune rejection[12]. It has been shown that the 
RNA content of exosomes consists primarily of small RNAs (less than 500 nucleotides) 
rather than mRNAs (around 1000 nucleotides)[14,15]. High-throughput sequencing of 
bone marrow-derived MSCs (BM-MSCs) demonstrated that over half of total non-
coding RNAs in EVs are composed of microRNA (miRNAs)[16]. MSC-derived 
exosomes have been shown to have antiapoptotic, anti-necrotic, and antioxidant 
effects to protect neurons from degeneration[17-19]. Several studies have established 
that exosomal miRNAs played an essential role in the neuroprotective function of 
MSCs[17]. There is still ongoing research to improve stem cell therapeutic efficacy for 
clinical applications using bioengineering approaches. This review summarizes recent 
research on the neuroprotective effect of selected MSC-derived exosomal miRNAs and 
discusses potential approaches to manipulate exosome cargos and methodologies to 
improve EV yield for therapeutic treatment.

English language peer reviewed studies on neuroprotective MSC-derived exosomal 
miRNAs were located through PubMed online search using keywords: Mesenchymal 
stem cells, extracellular vesicles, and miRNA. This review includes papers in the past 
decade that studied neuroprotective potential of MSC-derived exosomal miRNAs and 
did not exclude studies on basis of methodologies. Letters and conference abstracts 
were excluded.

http://creativecommons.org/Licenses/by-nc/4.0/
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MSC-DERIVED EXOSOMAL MIRNAS
MiRNAs are a family of small single-stranded non-coding RNAs, ranging between 20 
and 25 bases in length, that regulate gene expression in target cells to mediate protein 
translation and overall cellular functions[20]. MiRNAs function as a part of the RNA-
induced silencing complex to downregulate translation of mRNAs or result in their 
decay by acting at the mRNA 3′UTR[21,22]. A correlation matrix analysis study 
showed a weak relationship between the RNA content of MSC-derived exosomes and 
the original MSCs, indicating that miRNAs were selectively loaded into the exosomes
[23]. It has been suggested that RNA-binding proteins such as hnRNPA2B1 and 
hnRNPA1 directly bind to miRNAs and regulate their selective loading into exosomes
[22,24]. Endosomal sorting complex required for transport (ESCRT) plays an important 
role in loading protein-miRNA complexes into exosomes. In addition, ESCRT-
independent pathways, such as ceramide–mediated mechanisms, have been shown to 
be involved in cargo sorting into exosomes[25,26]. Further research is needed to 
uncover the specifics of the selective miRNA loading process.

It has been reported that environmental conditions affect miRNA levels in cells. For 
instance, hypoxic conditions have been reported to increase the expression of 
exosomal miR-21 in BM-MSCs[27]. The heterogeneity of miRNA content in exosomes 
have led to the discovery of diverse exosomal miRNAs with different impacts on 
regulating the phenotype and physiological state of their target cells, such as downreg-
ulating neuronal apoptosis and upregulating neurogenesis[28]. In this study the 
clinically relevant miRNAs were selected based on their involvement in neurological 
pathologies and their potential translational applications in neurodegenerative 
pathways.

NEUROPROTECTIVE MIRNAS
miR-21
miR-21 is one of the most widely studied exosomal miRNAs due to its role in 
regulating several physiological conditions, such as immune cell function, 
cardiovascular function, and neuroprotection[29]. High-throughput sequencing of BM-
MSC-derived exosomes has shown that 60% of miRNA content of these vesicles 
consists of 7 unique miRNAs, with miR-21-5p accounting for 22.5% of the content[16]. 
miR-21 is well known for its role in cell survival by stimulating cell proliferation, 
inhibiting apoptosis, and regulating differentiation[30].

Studies have shown that miR-21 acts through multiple pathways for different 
treatments. The neuroprotective function of miR-21 has been related to decreased 
apoptotic rates and downregulates expression of apoptosis-related proteins by MSCs
[31]. To investigate the mechanism of action of miR-21, online databases were screened 
for direct mRNA targets of miR-21 and led to the identification of a conserved binding 
site in the 3′-UTR region of transient receptor potential cation channel subfamily m 
member 7 (TRPM7)[31]. miR-21 in BM-MSC-derived exosomes was implicated in 
significantly down-regulating expression of TRPM7 in rats with intracerebral 
hemorrhage (ICH)[31]. TRPM7 is a member of the transient receptor potential cation 
channel superfamily involved in a neurotoxic mechanism through regenerative 
calcium-dependent cellular reactive oxygen species production[32,33]. Suppression of 
these channels resulted in reduced anoxic neuronal death[33]. MiRNA-21 has also 
been shown to be involved in the Nuclear Factor-κB (NF-κB) pathway which regulates 
inflammatory responses, cellular growth and apoptosis[31,34]. It has been shown that 
the NF-κB pathway is related to neuronal death in brain tissue of patients following 
ICH[35]. Analysis of two downstream proteins of the NF-κB pathway, p65 and p-IκB-α
, in PC12 cells line, cells commonly used as a neuron cell model, rats with ICH showed 
that miR-21 was involved in decreasing phosphorylation of IκB-α and decreasing p65 
transport to the nucleus[31,36]. Thus, miR-21 overexpression can affect neuronal 
apoptosis by reducing activation of the NF-κB pathway.

The effect of miR-21 on decreasing Fas ligand (FasL) protein level has been widely 
studied[17,37,38]. FasL is a member of the tumor necrosis factor family (TNF) and 
functions by binding to Fas, a transmembrane protein of the TNF/neuron growth 
factor receptor family[39,40]. Analysis of binding sites for miR-21-5p in exosomes from 
BM-MSCs using software programs to predict miRNA targets, TargetScan and 
miRBase, shows that this miRNA has complementary binding sites to the 3′ UTR of the 
FasL gene[17]. Studies involving rat models of spinal cord injury (SCI) and middle 
cerebral artery occlusion (MCAO) used a luciferase reporter containing a portion of the 
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FasL 3′-UTR and further confirmed that FasL is the direct target of miR-21-5p. These 
studies showed that exosomal miR-21 decreased FasL gene expression in neurons, 
thus protecting them from apoptosis[17,37].

Phosphatase and tensin homolog (PTEN) is a tumor suppressor phosphatase and 
inhibits the protein kinase B (Akt) pathway, which is a major pathway for cell survival
[41]. Several studies have analyzed the regulatory effect of miR-21-5p as on the 
PTEN/Akt pathway in many disorders[42]. A study on rats with subarachnoid 
hemorrhage suggested that exosomal miR-21-5p from BM-MSCs regulated PTEN/Akt 
pathway by significantly inhibiting PTEN expression[16]. Another study using an in 
vitro model of traumatic brain injury showed that transfection of cortical neurons with 
miR-21 mimics (agomir) could enhance the PTEN-Akt signaling pathway[43]. Overex-
pression of miR-21 increased p-Akt levels while suppression of miR-21 decreased p-
Akt levels. Western blot analysis of injured neurons after transfection with miR-21 
agomir showed a significant increase in Bcl-2 and a slight decrease in Bcl-2-associated 
X protein (Bax), both downstream proteins of the Akt pathway, indicating the 
neuroprotective function of miR-21 in regulating the Akt pathway[43]. The neuropro-
tective pathways regulated by exosomal miR-21 are depicted in Figure 1A.

miR-17-92
miR-17-92 is a 800-base pair long polycistronic miRNA which can be processed into 6 
individual miRNAs (miR-17, miR-18a, miR-19a, miR-19b, miR-20a, and miR-92a)[44,
45]. Administration of miR-17–92 enriched exosomes derived from BM-MSCs to rats 
with transient MCAO resulted in a significant improvement of neurological function 
and oligodendrogenesis. These miR-17-92 enriched exosomes also improved 
neurogenesis and neuronal dendrite plasticity of the rats, confirming the neuropro-
tective effect of this cluster of miRNAs[45].

Chondroitin sulfate proteoglycans (CSPGs), a type of extracellular matrix protein, 
have an inhibitory effect on axonal growth after brain injury[46]. In comparison to 
native MSC-derived exosomes, the BM-MSC derived exosomes enriched with miR-17-
92 reversed the inhibitory effect of CSPG and significantly enhanced axonal growth as 
well as the speed of axonal elongation under CSPGs condition[47].

Similar to miR-21, miR-17-92 has been shown to target the PTEN/Akt pathway. 
Protein expression from rat brain tissues has shown that treatment with BM-MSC-
derived exosomes enriched in miR-17-92 significantly decreased PTEN expression. 
This led to increased phosphorylation of Akt and its downstream proteins, 
mechanistic target of rapamycin and glycogen synthase kinase 3β, which play an 
essential role in axon regeneration[45,47]. miR-19a, another important miRNA in the 
miR-17-92 cluster, has shown to have anti-apoptotic effect by suppressing the 
PTEN/Akt pathway[48]. Attenuation of endogenous miR-19a has been linked to 
significant reduction of axonal outgrowth due to an increase in axonal PTEN levels
[49]. Although the neuroprotective effect of MSC-derived exosomal miR-19a has not 
yet been studied, it may play a key role in miR-17–92 cluster’s anti-apoptotic function 
by targeting PTEN/Akt pathways. The neurprotective pathways regulated by 
exosomal miR-17–92 are summarized in Figure 1B.

miR-133
miR-133 has been shown to induce functional recovery in several neurological 
disorders such as Parkinson's disease, spinal cord injury, and cerebral ischemia[7,50-
52]. It is enriched in the midbrain and promotes neuronal density and attenuates 
neuronal apoptosis. In a murine model of Parkinson’s disease, it was demonstrated 
that miR-133 regulates maturation and function of dopaminergic neurons in the 
midbrain[51]. It targets Pitx3, a transcription factor restrictively expressed in the 
midbrain after birth and is involved in development of dopaminergic neurons and 
regulation of dopamine transporters production[53-55].

Similar to miR-17-92, miR-133 has been shown to reverse the inhibitory effect of 
CSPGs on axonal growth[56]. miR-133 also downregulates connective tissue growth 
factor (CTGF), a protein that inhibits axonal growth at injury sites in the CNS[52,57,
58]. Immunohistochemical analysis of ischemic boundary zone in rats with MCAO 
showed that miR-133b present in MSCs regulates CTGF expression in astrocytes. 
Treatment with miR-133b enriched MSCs significantly decreased CTGF expression in 
MCAO rats, whereas administration of MSCs with down regulated miR-133 exhibited 
significantly elevated CTGF in MCAO rat brain tissues[57]. Treatment of the ischemic 
tissue of rats with MSC-derived exosomes showed a significant increase in the miR-
133b level in the brain tissue, especially in astrocytes and neuronal cells[55]. Astrocytes 
and other glial cells in the CNS release exosomes that promote neuroplasticity, have 
neuroprotective function, and increase neuronal density[59]. Exosomes enriched in 
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Figure 1 Neuroprotective pathways regulated by mesenchymal stem/stromal cell-derived exosomes. A: Mesenchymal stem/stromal cell-derived 
exosomal miR-21; B: Mesenchymal stem/stromal cell-derived exosomal miR-17-92; C: Mesenchymal stem/stromal cell-derived exosomal miR-133.

miR-133 significantly increased the secretion of these neuroprotective CNS-derived 
exosomes in MCAO rats compared to native MSCs and PBS treated controls. In 
contrast, incubation of astrocytes with miR-133-knockout exosomes significantly 
decreased exosome release from astrocytes[60].

Investigation of miR-133’s effect on neurite outgrowth showed Ras homolog family 
member A (RhoA), a small GTP-binding protein, is a target and mediator of miR-133b 
and negatively regulates the initiation of neuronal polarization and axonal outgrowth
[52,56,61]. Inhibition of RhoA has been associated with increase in phosphorylation of 
extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt and activation of ERK1/2 
and the phosphoinositide-3 kinase/Akt pathways, which are known to improve cell 
survival and neurite outgrowth[56,62]. It has been shown that MSC-derived exosomes 
containing miR-133 significantly increased the phosphorylation of ERK1/2 in the 
injured neurons[63]. In addition, administration of miR-133 enriched MSC-derived 
exosomes increased phosphorylation and enhanced activity of signal transducer and 
activator of transcription 3 and cAMP response element-binding protein (CREB), both 
transcription factors essential for neuronal growth and regeneration of axons after 
injury[50,63]. CREB is a part of the ERK1/2-CREB pathway, which is regulated by 
RhoA[50]. Transfection of neuronal cells with miR-133b inhibitors prior to exosome 
treatment reversed this effect and led to a significant decrease in neurite branch 
number and total neurite length, and it significantly increased expression of RhoA
[52]. Treatment of rats with CNS injuries with MSC-derived miR-133b enriched 
exosomes significantly promoted neurite branch number and total neurite length 
while decreasing RhoA[57,60,63].

BM-MSC-derived exosomes enriched in miR-133 enhanced neurite remodeling and 
neuroplasticity, hence leading to functional recovery after stroke and SCI[57,60,63]. 
Hematoxylin and eosin staining of injured neurons of rats with a SCI treated with 
miR-133b exosomes showed a significant decrease in the lesion area cavity at day 4 
following injury, and showed an increase in mature neuron numbers when compared 
to the control group[63]. Neurofilament (NF) is a major structural element of the 
neuronal cytoskeleton, and its phosphorylation is essential for its function[64]. 
Administration of BM-MSC-derived exosomes enriched in miR-133b increased the p-
NF level in the injured rat CNS tissue and promoted neuronal growth[57,63]. The 
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neuroprotective pathways regulated by exosomal miR-133 are summarized in 
Figure 1C.

miR-138
Endogenous miR-138 is essential in neuronal development and primarily expressed in 
synaptic sites in the neocortex[65]. miR-138 was found to robustly regulate the growth 
of dendritic spines and mediate their morphology by downregulating Acyl protein 
thioesterase 1, an enzyme responsible for depalmitoylation of several signaling 
proteins[66,67]. This results in actomyosin contraction and spine shrinkage through 
Rho-dependent pathways[67]. The structural and functional plasticity of dendritic 
spines correlates with long-lasting changes in synaptic function related to higher 
cognitive functions, and any abnormalities may lead to neurological diseases, such as 
memory dysfunctions and learning disabilities[65].

miR-138 has also been reported to be responsible for oligodendrocyte differentiation 
and maturation[68]. By inhibiting SRY-box transcription factor 4, a transcription factor 
that represses oligodendrocyte maturation, miR-138 can prolong the ability of 
terminally differentiating oligodendrocytes to myelinated axons[68,69]. In addition, 
ectopic overexpression of miR-138 was found to enhance migration of hypothalamic 
neuronal and glial cells in vitro by targeting expression of the extracellular matrix 
glycoprotein Reelin[65]. It also regulated axonal regeneration, neuronal development 
and axonal survival by regulating NF-κB activity via targeting sirtuins1 in human 
immunodeficiency virus transgenic rats[70].

Despite miR-138’s wide range of neuroprotective functions, limited studies have 
been conducted on the therapeutic use of MSC-derived exosomal miR-138s. A study 
on neurological changes in a mouse model of MCAO has addressed this gap in 
knowledge by using BM-MSC derived exosomes[71]. Lipocalin 2 (LCN2), a protein 
involved in neuronal death and inflammation and a known target for miR-138, was 
markedly upregulated in injured CNS tissues and was highly expressed in mice with 
ischemic stroke[71,72]. The exosomal miR-138-5p negatively regulated the expression 
of LCN2 in oxygen-glucose deprived (OGD) astrocytes in context of ischemic stroke. 
Through this mechanism, MSC-derived exosomal miR-138 alleviated neuronal injury 
in mice with ischemic stroke and promoted proliferation of astrocytes by repressing 
inflammatory and pro-apoptotic factors, such as TNF-α, IL-6, IL-1B, Bax, and caspase-
3. It also functions by increasing anti-apoptotic and cell cycle markers, including CDK-
4, Bcl-2, cyclin E, and cyclin D1, in astrocytes (Figure 2)[71].

miR-124
miR-124 is one of the highly expressed miRNAs in the CNS and is involved in a wide 
range of neurological functions[73-76]. In conjunction with other miRNAs, miR-124 
promotes neural induction and growth by regulating the differentiation of MSCs into 
mature neurons[73,75-78]. To study the neuroprotective effect of exosomal miR-124, 
exosomes from BM-MSCs were incubated with human neural progenitor cells 
transfected with Sox9 3’-UTR-luciferase plasmid. Sox9 is a transcription factor 
important for differentiation and maintenance of multipotent neural stem cells[79]. 
miR-124 decreased the expression of Sox9, which suggests that it has a crucial role in 
the maintenance and differentiation of stem cells[79,80]. To further support the 
potential role of MSC-derived miR-124 in regulating differentiation of neuronal 
progenitor cells, mice with focal cortical ischemia were treated with BM-MSC-derived 
exosomes enriched inmiR-124, and analysis of brain tissues demonstrated a notable 
reduction of Nestin and Sox2, markers for neuronal progenitors[81]. Also, adminis-
tration of the exosomes enriched in miR-124 to the infarct site doubled the expression 
of doublecortin, an immature neuronal marker. These changes in the expression of the 
markers indicate that exosomal miR-124 functions in cortical neurogenesis by 
promoting neural progenitors to differentiate into neuronal lineages[81].

Culturing human neuronal progenitor cells and astrocytes with MSCs that were 
transfected with miR-124 mimics increased the expression of the glutamate 
transporters excitatory amino-acid transporter 1 (EAAT1) and EAAT2[79]. Glutamate 
is the main excitatory neurotransmitter in the CNS and the upregulation of its 
transporters has been associated with neuroprotection[82,83]. Exosomal miR-124 had a 
neuroprotective effect in a rat model of spinal cord ischemia-reperfusion injury 
(SCIRI). Treating the rats with exosomal miR-124 derived from BM-MSCs led to higher 
motor function and fewer low-degree injuries. This treatment also resulted in a 
significant increase in the blood-spinal cord barrier integrity compared to that of the 
control rats[84]. In addition, administration of BM-MSC-derived exosomal miR-124 to 
rats with SCIRI has been shown to have anti-inflammatory effects by mediating 
polarization of neuroprotective and anti-inflammatory macrophages (M2) by 
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Figure 2 Mesenchymal stem/stromal cell-derived exosomes overexpressing miR-138 repressed inflammatory and pro-apoptotic factors, 
and increased anti-apoptotic and cell cycle markers.

downregulating the expression of endoplasmic reticulum to nucleus signaling 1, a 
signaling protein that negatively impacts polarization of M2[84].

To find a treatment for glioblastoma, BM-MSC exosomes were engineered to 
express an upregulated level of miR-124[85]. Glioma stem cells (GSCs) are subpopu-
lations of cells in the glioblastoma that are involved in the radioresistance and chemore
-sistance of these tumors[86]. Treatment of GSCs with the engineered exosomes 
significantly suppressed clonogenicity of GSCs compared to the cells treated with 
control exosomes[85]. Also, in vivo administration of engineered exosomes increased 
survival of mice with frontal lobe implantation of GSCs[85]. The same study showed 
that miR-124 administration was linked to toxic level of lipid accumulation by GSCs. 
miR-124 reduced GSCs viability, at least partially, through downregulation of 
forkhead box protein A2 (FOXA2), a transcription factor involved in tissue 
development, lipid metabolism, and cancer. FOXA2 downregulation has been 
associated with increased lipid accumulation and apoptosis in GSCs[85]. The 
neuroprotective pathways regulated by exosomal miR-124 are summarized in 
Figure 3A.

miR-30
miR-30 is known to regulate neuronal development and recovery from injuries and 
participates in fine-tuning brain-derived neurotrophic factor expression levels[87]. 
miR-30 has a neuroprotective effect in the CNS of rats with ischemic injury by 
inhibiting autophagy via suppression of Beclin-1, Atg-5, and LC3B, all of which are 
regulators of autophagy[88-90]. Suppression of autophagy has been shown to decrease 
inflammatory response to CNS injuries[88,90].

A study showed that miR-30 enriched exosomes from adipose-derived MSCs 
suppress microglia polarization to M1 macrophages in ischemia-induced nerve injury
[88]. M1 macrophages are pro-inflammatory and are involved in propagating inflam-
matory signals[91]. The same study used an in vivo approach in murine models of 
MCAO and showed that miR-30 enriched exosomes promote polarization of microglia 
into M2, reduce inflammatory cytokines, and reverse ischemia-induced neuronal 
apoptosis (Figure 4)[88]. Thus, MSC-derived exosomal miR-30 has significant potential 
for promoting tissue healing and treating neurological disorders such as stroke.

miR-146a
miR-146a is commonly found in astrocytes, and its expression increases in response to 
neuronal cell loss and astrocyte-mediated inflammatory response[92,93]. Treating 
brain tissue of rats with ICH with miR-146a-enriched BM-MSC derived exosomes 
showed more significant decrease in neuronal degeneration and neuronal apoptosis 
than in the tissues treated with the BM-MSC derived exosomes[94]. BM-MSC derived 
exosomal miR-146a suppressed oxidative stress imbalance, pro-inflammatory factors, 
and M1 microglia polarization in brain tissue of rats with ICH[94]. The anti-inflam-
matory effect of BM-MSC derived miR-146a is likely due to targeting and reducing 
expression of interleukin-1 receptor associated kinase 1 (IRAK1), a mediator of inflam-
mation, and nuclear factors of activated T-cells 5, a pro-inflammatory transcription 
factor which induces polymerization of M1 macrophages[94-96]. Also, an increase in 
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Figure 3 Neuroprotective pathways regulated by exosomal microRNAs. A: Exosomal miR-124; B: Exosomal miR-146a; C: Exosomal miR-29.

Figure 4 Exosomal miR-30 regulated autophagy-mediated brain injury by promoting anti-inflammatory (M2) macrophage polarization and 
suppressing pro-inflammatory macrophages (M1) polarization.

endogenous expression of miR-146a in BM-MSCs exerted anti-inflammatory effects on 
astrocytes in diabetic rats by suppressing IRAK1 expression which leads to subsequent 
reduction in NF-κB and TNF-α expression[95]. Similar to miR-124, BM-MSC -derived 
exosomal miR-146 has therapeutic potential for treating gliomas[97]. It has been shown 
that glioma cells express lower levels of miR-146 compared to normal astrocytes and in 
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vitro transfection of human glioblastoma cells with miR-146 mimics decreased glioma 
invasiveness and migration[98]. MSC-derived exosomal miR-146 also suppressed 
epidermal growth factor receptor (EGFR) activity[97]. EGFR belongs to a family of 
tyrosine kinase superfamily receptors, and its expression has been shown to positively 
correlate with invasiveness of glioma[98]. In vitro administration of exosomal miR-146 
significantly reduced growth, motility, and invasiveness of the glioma cells[97]. The 
same study showed that in vivo intra-tumor injection of miR-146 enriched MSC-
derived exosomes significantly reduced tumor volume compared to tumors treated 
with miR-67, which had no known mRNA binding site in rats, or with PBS vehicle
[97]. These findings suggested that MSC exosomal miR-146 is a promising treatment 
for oncological and inflammatory neurological diseases, especially astrocyte-mediated 
disorders. The neuroprotective pathways regulated by exosomal miR-146 are 
summarized in Figure 3B.

miR29b
miR-29b has been shown to induce neuronal maturation and inhibit apoptosis in 
neuronal cells by targeting multiple members of the Bcl-2 family proteins[99]. miR-29b 
was reported to contribute to MCAO-induced brain injury in neuralcells and primary 
cortical neurons, and it was depleted at the infarct site after stroke[100,101]. Adminis-
tration of miR-29b mimics resulted in significant protection against arachidonic acid-
induced neuronal apoptosis and prevented loss of the cells’ mitochondrial membrane 
potential in a mouse model of stroke[101]. In addition, an in vivo murine model of 
MCAO also found that BM-MSC-derived exosomal miR-29b mimic significantly 
improved stroke outcomes[100]. These studies collectively suggest that the exosomal 
miR-29b-3p might have a potential for the treatment of stroke-related injuries.

BM-MSC-derived exosomal miR-29 has been studied in the context of SCI[102]. In 
rats that were injured at the T10 vertebrae in the spinal cord, exosomal miR-29b 
increased levels of neurofilament protein 200 and growth-associated protein-43[102]. 
These proteins are significantly involved in neuronal regeneration and their upregu-
lation accelerates the repair of SCI[102]. In addition, injection of miRNA-29b exosomes 
alleviated histopathological damage in spinal cord tissues of SCI rats, and improved 
their hind-limb motor dysfunctions[102]. Thus, miR-29b possesses an important 
clinical potential for treating SCIs and other CNS injuries.

Exosomes from BM-MSCs were also used in an attempt to investigate the anti-
apoptotic effect of miR-29b[100]. Decreased levels of miR-29b-3p in the brain of MCAO 
rats, and in rats with OGD cortical neurons and injured brain microvascular 
endothelial cells, was found to be accompanied by decreased angiogenesis[100]. 
Exosomes released from MSCs overexpressing miR-29b-3p were able to suppress 
neuronal apoptosis and induce expression of angiogenesis-stimulating factors such as 
vascular endothelial growth factor (VEGF) A, VEGF receptor 2, and CD31[100]. Also, 
exosomal miR-29b-3p inhibited neuronal apoptosis by regulating the PTEN/Akt 
pathway and elevating Akt phosphorylation in a rat model of stroke, thus highlighting 
the functional ability of MSC-derived exosomal miR-29b to modulate hypoxia-
ischemia CNS injuries[100]. The neuroprotective pathways regulated by exosomal 
miR-29 summarized in Figure 3C.

IMPROVING EXOSOME FUNCTIONS BY REGULATING MIRNAS VIA 
BIOENGINEERING APPROACHES
MSC-derived exosomes are receiving increased attention for their therapeutic potential 
and lower adverse effects[28,103,104]. The nano size and the surface lipid and protein 
composition of exosomes allow them to cross the blood-brain barrier, thus overcoming 
the limitations of MSC cell therapy such as obstruction of microvasculature and rapid 
clearance by the mononuclear phagocyte system[7,88,105]. Autologous exosomes are 
non-immunogenic and are personalized sources of MSC-derived neuroprotective 
miRNA delivery[106]. These exosomes provide advantages over synthetic delivery 
vehicles, such as liposomes, in avoiding host immune response, endosomal-lysosomal 
degradation and inflammation[81,107]. Manipulating exosomes to transfer desired 
cargos to CNS could be therapeutically significant in improving their potentials for 
treating neurological disorders.

To accelerate the efficacy of miRNA therapeutic applications and to optimize their 
therapeutic properties, it is essential to purify and isolate the exosomes and 
manipulate their cargo[108]. Size exclusion chromatography, ultrafiltration, and 
immunoaffinity are examples of purification and isolation techniques that have been 
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commonly used[108,109]. It has been shown that the composition of exosomes is 
closely associated with the health, the growth environment, and the origin of their 
“mother” MSCs[108,110]. For instance, exposing MSC culture to brain tissue extract of 
rats subjected to MCAO elevated the expression of miR-133b in the MSCs and their 
exosomes[52]. Also, exosomes from TNFα-primed MSCs showed significantly 
increased neuroprotective effect on retinal ganglion cells compared with exosomes 
from unprimed MSCs[111].

Multiple studies have implemented techniques to manipulate environmental 
factors, such as 2D and 3D scaffolds/scaffold-free culture, to induce proliferation of 
MSCs and to promote their differentiation in a more physiologically relevant 
environment[108,109]. 3D culture can mimic native extracellular matrix structure and 
functions and provides a three-dimensional environment for enhanced cell growth 
and exosome production[109]. In comparison with the exosomes secreted by cells 
grown in common 2D cultures, the exosomes derived from MSCs grown in 3D culture 
conditions contained a greater amount of protein and had better outcomes in 
promoting functional recovery in rats with traumatic brain injury[108]. In addition, the 
composition of the 3D scaffolds can be engineered to regulate the content of exosomes. 
For instance, the exosomal concentration of vascular endothelial growth factor and 
exosomal miR-126 Levels were higher when the placenta-derived mesenchymal stem 
cells (PMSCs) were exposed to a nitric oxide-releasing chitosan scaffold[112].

Different expansion techniques have been shown to increase the exosome yield 
without significantly sacrificing therapeutic properties[109]. For example, the hollow-
fiber bioreactor, which is based on culturing the cells in a hollow and semi-permeable 
cartridge scaffold, is a time efficient method and can increase yield up to 19.4-fold and 
more concentrated exosomes (15.5-fold) than exosomes from MSCs cultured in 2D 
scaffold[113]. Endolysosomal pathways could also be targeted to increase yield and 
efficiency of the exosomes. Activating P2X7 receptors and SNARES, which are 
receptors involved in exosomes' secretion and neuronal internalization respectively, 
have been suggested as potentials for this approach[47,109].

The content of MSC-derived exosomes can be directly engineered to upregulate 
levels of neuroprotective miRNAs by preconditioning MSCs (Table 1). Transducing 
MSCs with lentivirus is an approach used to upregulate miRNAs in exosomes[57,85,
100,102]. For example, transducing MSCs with lentivirus containing the precursor of 
miR-124a upregulated the loading of this miRNA into exosomes[85]. Another study 
showed that transfecting BM-MSCs with a miR-17-92 cluster plasmid was effective in 
increasing the level of miR-17-92 in the exosomes derived from the cells, as compared 
to BM-MSCs treated with empty vectors[47].

Electroporation has been shown to be effective in gene transfection and introduction 
of exogenous RNAs into exosomes and MSCs[45,47,81,97]. In electroporation, electrical 
pulses in microsecond to millisecond durations are applied to cells to cause a 
temporary loss of membrane stability and increase membrane permeability. This 
technique is commonly used to increase cell uptake of drugs, molecular probes, and 
genetic materials[26]. For instance, electroporation was used to load miR-17-92 in 
MSCs to improve neuroprotective functions[45]. One of the major limitations of direct 
loading of exosomes using electroporation is the aggregation and fusion of exosomes
[114]. Adding trehalose to the exosome solution has shown to improve the exosome 
colloidal stability and reduce aggregation[114].

Sonication is another method that can be used to load small RNAs in exosomes. In 
sonication, low-frequency ultrasound is applied to disrupt exosome membrane 
integrity and form small pores in their membrane to allow RNAs to transfer into the 
exosomes[115]. It has been shown that sonication increases miRNA loading in 
exosomes by 267% compared to passive loading of miRNA into exosomes without 
sonication[116]. Sonication and electroporation both have high loading efficiency and 
prevent exosomes from breaking down[117]. To load exosomes with siRNAs, 
sonication has been observed to have less siRNA aggregates compared to electro-
poration[116]. Also, siRNA delivery to cells was higher when the cells were treated 
with exosomes loaded by sonication compared to when cells were exposed to 
exosomes loaded by electroporation[116]. However, the overall amount of siRNA 
delivered to the cells via exosomes was still low when using sonication[26,116]. 
Sonication is also considered the most damaging technique for exosomal membranes 
and may cause exosome rupture[114]. Proper experimental design and effective 
duration of sonication have to be used to prevent disruption of membrane integrity 
using this technique[114,116]. In addition, sonication has mostly been studied in the 
context of siRNA exosomal loading[26,116]. More research must be done on the effect-
iveness of this technique for sorting miRNAs in MSC-derived exosomes.
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Table 1 Summary of the techniques used to manipulate the content of mesenchymal stem/stromal cells and their exosomes

Technique Description Direct/indirect 
exosomal loading

Transfection A lentiviral vector or a plasmid is encoded with the desired miRNA and introduced to the MSCs
[57,85,100,102]

Indirect

Electroporation Electrical pulses in microseconds to milliseconds durations are applied to cause a temporary loss 
of the stability of the membranes of both MSCs and exosomes, which allows cargo to pass into the 
cell or exosomes[45,47,81,97]

Direct and indirect

Sonication Low-frequency ultrasound is applied to disrupt the membrane integrity of the exosomes and form 
small pores in their membrane to allow  small RNAs into the exosomes[114,116]

Direct

Modified calcium chloride 
transfection

Phosphate-buffered saline is slowly mixed with a CaCl2 solution containing the desired small 
RNA which leads to formation of RNA-calcium phosphate precipitates on the cell/exosomes . A 
heat shock is added to the solution to change the fluidity of the exosomes' plasma membranes for 
introducing[118]

Direct

Co-incubation of exosome 
with hydrophobically 
modified RNA

Conjugating the small RNA with a cholesterol moiety enhances hydrophobicity of the RNA and 
allows for diffusing the exosomal membrane during simple incubation[119]

Direct

miRNA: MicroRNA; MSCs: Mesenchymal stem/stromal cells.

Direct transfection of exosomes with a modified calcium chloride transfection 
method has been suggested to be more convenient and easier to use than electro-
poration[118]. It includes slow mixing of phosphate-buffered saline with a CaCl2 

solution containing the desired small RNA. This leads to formation of RNA-calcium 
phosphate precipitates on the cell/exosomes surface. By adding a heat shock step to 
the conventional calcium chloride transfection method, it is possible to change the 
fluidity of the exosomes' plasma membrane and directly load miRNA mimics or 
inhibitors in isolated exosomes for delivery to target cells[118].

Hydrophobic compounds can passively enter exosomes through direct incubation
[117]. Simple co-incubation of exosomes with their cargo allows for loading of the 
exosomes without any damage to the exosome's membrane integrity[117]. RNAs are 
hydrophilic compounds and are not able to passively diffuse across the hydrophobic 
exosome lipid bilayer membrane during incubation[117]. Modifying siRNAs to be 
more hydrophobic by conjugating them with cholesterol moiety and stabilizing them 
with a fully phosphorothioate tail has shown to be effective in silencing Huntington 
mRNA in a mouse model[119]. Co-incubation of the hydrophobically modified 
siRNAs with exosomes allows efficient and stable loading of exosomes and successful 
delivery to neuronal cells[119]. Given the therapeutic potential of this method for 
treating neurological disorders, more research needs to be done to evaluate effect-
iveness of this technique for modifying the miRNA content of MSC-derived exosomes.

CONCLUSION
MSCs are multipotent stem cells with neuroprotective functions[45,120]. Due to their 
high availability and their reparative potential, MSCs derived from various tissue 
sources have been widely studied over the past three decades as therapeutic agents
[121-126]. Exosomes derived from these cells have shown to be ideal candidates for 
transferring proteins and RNA cargos to specific target cells. The advantages of 
exosomes over cell-therapies have led to an increasing interest in the therapeutic 
potential of this class of EVs[104,127]. Recent studies suggest that miRNAs play a 
major role in mediating the neuroprotective effect of exosomes by regulating signaling 
pathways and gene expression in the target cells[17,28,81].

The content and yield of exosomes vary depending on the cell that they are derived 
forms. For instance, exosomes from amniotic fluid stem cells had 1.3 times more 
particles/mL compared to BM-MSCs[128]. For example, a study compared the effect 
of MSC-derived exosomes harvested from bone marrow, umbilical cord, chorionic, 
and menstrual fluid on neurite outgrowth. It was shown that exosomes derived from 
menstrual-MSCs and BM-MSCs increased the rate of neurite growth while umbilical 
cord and chorionic stem cell-derived exosomes did not promote neurite growth[129]. 
Although it is clear that the exosomal content vary depending on the origin of the 
MSCs, the relationship between the sources of MSCs and their exosomal miRNA 



Nasirishargh A et al. Neuroprotective exosomal microRNAs from MSCs

WJSC https://www.wjgnet.com 787 July 26, 2021 Volume 13 Issue 7

Figure 5 Neuroprotective effects and therapeutic potential of mesenchymal stem/stromal cell-derived exosomal miRNAs for neurological 
disorder disease models.

content needs to be investigated in the future studies. Also, exosomes derived from 
BM-MSCs are most widely studied for MSC treatments, and the majority of studies 
about neuroprotective miRNAs have used bone marrow as the source of MSCs[130]. 
However, limited research has been done on the therapeutic potential of neuropro-
tective miRNAs that are abundant in MSCs derived from other types of tissues, such 
as the placenta and peripheral blood[28,131,132]. The age of the MSCs has also been 
shown to influence the content of EVs and their neuroprotective potentials[133,134]. 
Fetal MSCs have been reported to have higher growth kinetics and differentiation 
potential than adult MSCs[132]. Embryonic stem cell derived MSCs have been shown 
to have higher neuroprotective potential than fetal MSCs[132]. Such studies suggest 
that to optimally take advantage of neuroprotective exosomal miRNAs, different 
tissues must be investigated in the future studies.

In this review article, we discussed the neuroprotective effect of selected miRNAs 
that are abundant in MSCs and provided an overview of their application in 
modulating different neurological disorders (Figure 5). Further research is warranted 
to explore the therapeutic effect of MSCs-derived exosomal miRNAs in treating these 
disorders. In addition, some neuroprotective miRNAs that are abundant in MSCs have 
received limited attention for their functions as exosomal miRNAs. For instance, miR-
128 has a significant neuroprotective function in CNS, and is present in human 
adipose-derived MSCs, PMSCs, and BM-MSCs[28,135-137]. However, there is a gap in 
knowledge about its neuroprotective effect as an exosomal miRNA. More research can 
be done about the neuroprotective function of miR-128 and many other MSC-derived 
miRNAs when they are delivered to the target cells via exosomes.

For MSC-derived exosomal treatments to be effective, it is important to properly 
purify and isolate the exosomes. Different methods, including ultracentrifugation, 
ultrafiltration, and immunoaffinity, have shown to be effective to serve these purposes
[109]. To enhance the function of exosomes, the expression of exosomal miRNAs can 
be manipulated by transfecting MSCs with miRNA mimics or inhibitors[16,52,72,84]. 
Studies have used this approach to investigate the mechanisms of action of different 
miRNAs. However, such procedures may also have the potential to help customize the 
exosomes for therapeutic use. For instance, injecting miR-206-knockdown exosomes 
that were obtained from human umbilical cord-derived MSCs into rats with 
subarachnoid hemorrhage has been shown to promote neuronal survival and improve 
neurological deficits[138].

Despite their significant neuroprotective properties, limited research has been done 
on the potential of MSC-derived miRNAs in developing exosome-based therapies. 
There is a gap in knowledge for the clinical implications of exosomal miRNA 
treatments. A clinical trial that used BM-MSC-derived exosomes enriched in miR-124 
in five patients with acute ischemic stroke has been reported by Clinicaltrials.gov
[139]. While no result for this trial has been published so far, the primary outcome of 
this study is safety at 12 mo following therapy and the secondary outcome is 
measurement of disability at 12 mo after treatment[139,140]. With the increasing focus 
on the neuroprotective effect of MSC-derived exosomal miRNAs and advancements in 
bioengineering and technology, the clinical implications of exosomal miRNAs in 
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treating neurological disorders warrants further investigation.
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