UCLA

Posters

Title

Automatic Feedback Control In Support of Sensor Networks to Monitor Nitrate in Palmdale and in Merced Backyard (CON 2)

Permalink https://escholarship.org/uc/item/50p1p17v

Authors Yeonjeong Park Jose Saez Thomas Harmon

Publication Date

2006

Center for Embedded Networked Sensing

Automatic Feedback Control In Support of Sensor Networks to Monitor Nitrate in Palmdale and in Merced Backyard

Yeonjeong Park¹, Jose Saez², and Thomas C. Harmon³

¹UCLA Civil & Environmental Engineering, ²Loyola Marymount University Civil & Environmental Engineering, ³UC Merced School of Engineering

Introduction: Prevention from Nitrate Pollution in Groundwater

Reclaimed Water is Reused for Agricultural Irrigation in Palmdale, CA

Problem Description: Determine the Best Management Strategy for Pollution Prevention

Palmdale Deployment

• A *control algorithm* is required to maximize the reclaimed water input subject to groundwater protection.

111 111 111

- Real-time *parameter estimation* of the simulation models is needed using on-line data from sensors
- Novel *multi-level sensing stations (pylons)* are deployed at varying spatial densities over a portion of a 30 acre test plot.

- **Merced Backyard**
- A *test bed* for Palmdale irrigation control is set up

(cm3/cm3)

0.23

vater

/olumetric

0.25

0.24

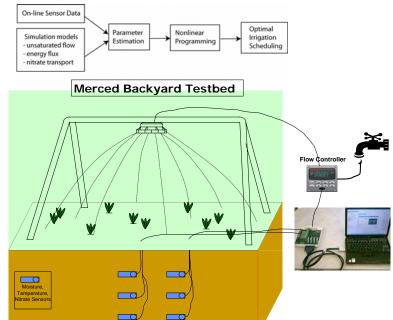
0.2

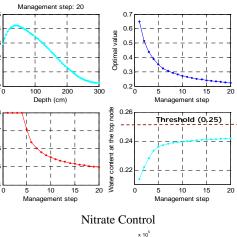
0.21

0.2

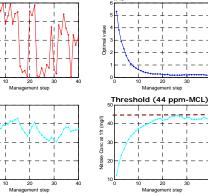
ate

pplication


0.2


- Automatic feedback controller system is used to provide backyard with accurate flow rate obtained from optimization algorithm
- *Multi-level sensing stations* (soil moisture, temperature, nitrate sensors) are deployed to monitor conditions in 1-D

Proposed Solution: Automatic Feedback Control using Sensor Networks


Irrigation Control in Palmdale and Merced Backyard

- The objective of irrigation control is *to determine the application rate* such that wastewater usage is maximized and the nitrate regulatory level is not violated.
- The control scheme is executed by using *on-line data feedback* from the pylons and providing control to the watering pivot.

Soil Moisture Control

UCLA – UCR – Caltech – USC – CSU – JPL – UC Merced