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Abstract

Intelligent and High-Performance Behavior Design of Autonomous Systems via
Learning, Optimization and Control

by
Liting Sun
Doctor of Philosophy in Engineering — Mechanical Engineering
University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

Nowadays, great societal demands have rapidly boosted the development of autonomous
systems that densely interact with humans in many application domains, from manu-
facturing to transportation and from workplaces to daily lives. The shift from isolated
working environments to human-dominated space requires autonomous systems to be
empowered to handle not only environmental uncertainties such as external vibrations
but also interaction uncertainties arising from human behavior which is in nature prob-
abilistic, causal but not strictly rational, internally hierarchical and socially compliant.

This dissertation is concerned with the design of intelligent and high-performance
behavior of such autonomous systems, leveraging the strength from control, optimiza-
tion, learning, and cognitive science. The work consists of two parts. In Part I, the
problem of high-level hybrid human-machine behavior design is addressed. The goal is
to achieve safe, efficient and human-like interaction with people. A framework based
on the theory of mind, utility theories and imitation learning is proposed to efficiently
represent and learn the complicated behavior of humans. Built upon that, machine be-
haviors at three different levels - the perceptual level, the reasoning level, and the action
level - are designed via imitation learning, optimization, and online adaptation, allow-
ing the system to interpret, reason and behave as human, particularly when a variety of
uncertainties exist. Applications to autonomous driving are considered throughout Part
L. Part II is concerned with the design of high-performance low-level individual machine
behavior in the presence of model uncertainties and external disturbances. Advanced
control laws based on adaptation, iterative learning and the internal structures of uncer-
tainties/disturbances are developed to assure that the high-level interactive behaviors
can be reliably executed. Applications on robot manipulators and high-precision motion
systems are discussed in this part.
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Chapter 1

Introduction

1.1 Behavior of Autonomous Systems: An Overview

Humans’ pursuit for automation never stops. In the past decades, automated systems
have permeated and significantly impacted almost every part of our lives through the
way we work, the way we live and the way we explore. For instance, in manufacturing,
robotics have streamlined the factory floor and completely re-shaped the workplace,
releasing human workers from tedious and dangerous tasks so that they can focus on
more creative jobs. As technologies advance, more and more automated systems become
autonomous. They are empowered with high-level intelligence and capabilities to make
decisions without intervention from human. The emergence of autonomous systems
will further boost both the safety and the efficiency of the society. For example, in
manufacturing, robots do not need to sit behind the safety fence with many experts
calibrating and programming them. Instead they can autonomously learn new skills
and collaborate with human workers in an intelligent way. In warehouses, autonomous
forklifts and guided vehicles can tremendously improve the productivity. At home,
service robots can help people do houseworks and take care of children and elders, and
on the road, autonomous vehicles can safely and efficiently transport goods and people
for better social mobility [54].

In this dissertation, we focus on the autonomous systems in physical world, i.e., the
systems with mechanical parts that perceive and act on the surrounding environment.
As shown in Fig. such autonomous systems typically need three key elements to
function: the task definition module, the behavior generation module, and the percep-
tion module. The task definition module describes a set of tasks for the systems to
perform. It can either be as detailed as a sequence of points in space for a machine
tool to follow, or as abstract as a high-level instruction such as “clean the dishes” for
a service robot to perform. The perception module, which is typically comprised of
many sensors, collects information from the surrounding environment for the system.
The behavior generation module, functioning as the “brain” of the system, is designed
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goal g(action|obs, goal) observation
Task Behavior
P
Generatlon B Ferception

Figure 1.1: The three key elements of autonomous systems: the task definition module describes a set
of tasks that the systems are designed to perform. It can either be as detailed as a sequence of points in
space for a machine tool to follow, or as abstract as a high-level instruction such as “clean the dishes” for a
service robot to perform. The perception module collects information from the surrounding environment.
The behavior generation module is designed to automatically interpret the defined task and generate
appropriate behaviors based on collected information in perception module.

to automatically interpret the defined tasks and generate appropriate behaviors utilizing
the collected information from the perception module.

In the past decades, autonomous systems have developed rapidly, extending from me-
chanical automation to intelligence automation, as shown in Fig. At the level of mechan-
ical automation, our goal is to design individual machines that can complement/improve
human skills in highly repetitive and unsafe tasks. Each machine is designed to ful-
fil a certain task in an isolated environment. We define the behavior design of such
machines as individual machine behavior design. The main challenge hence lies in the
boosting of speed, accuracy and reliability in the presence of possible uncertainties from
the system models, the sensors and external vibrations. Under such circumstance, the
interaction between the system and the environment is at hardware level and tends to be
one-directional. Namely, the environment influences the achievable performance of the
systems. As technologies in high-speed computing and artificial intelligence advance,
we are now embracing a new level of automation - the intelligence automation. It is a
level of automation that touches everyone. Intelligent systems are no longer designed
to work isolated with fixed tasks, but to explore more diverse and complex tasks in-
cluding interaction with human and other intelligent agents. They are entering dynamic
environments full of uncertainties caused not only by non-intelligent factors but also by
intelligent agents - the human beings. We define the behavior design of such intelligent
systems as the hybrid human-machine behavior design. The challenge has therefore been
extended from pursuing high performance (i.e., speed, accuracy and reliability) to em-
powering broader intelligence of automated machines: the ability to interpret complex
tasks, the ability to understand human, and the ability to make high-level human-like
decisions.

This dissertation focuses on the design of high-performance and intelligent behavior for
autonomous systems, taking into consideration of the “interaction” between the system and the
environment. We focus on two major application domains: high-precision manufacturing
and autonomous driving. We address the task by answering two sets of “what” and
“how”:
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Task 3 Behavior
- 8 P to
Generation
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Figure 1.2: Autonomous systems with automation extending from mechanical automation to intelligence
automation. With mechanical automation, tasks are defined as reference trajectories, and the system behave
to achieve high performance in the presence of external disturbances and model uncertainties. With
intelligence automation, high-level tasks are given, for instance, safely and efficiently navigating from
location A to location B. The system will behave in a hybrid human-machine environment.

e What characteristics of the environment should be considered for different tasks?
Autonomous systems function through their interactions with the environment.
The environment characteristics and the achievable performance of the systems
mutually influence each other. For instance, external vibrations could directly de-
teriorate the precision of automated machine tools, and simultaneously the high-
speed movements of the machine tools will generate new vibrations into the en-
vironment. Similarly, movements of autonomous vehicles can impact the future
trajectories of other traffic participants, and vice versa. Different tasks will trigger
influences from different environment factors. Precision-machine tools pay less at-
tention to how people move around than autonomous vehicles, but worry more
about the external vibrations from the ground. As behavior designers, we need to
identify the key influential environment characteristics given particular tasks.

* How should the influential environment characteristics be efficiently represented?
Environment characteristics are diverse and uncertain. They can be either deter-
ministic, such as a constant noise signal, or probabilistic, such as future trajectories
of a pedestrian on the road. They can also be single-mode or multi-mode. To
facilitate smooth interaction between the system and the environment, we need
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to find a data-efficient representation of the environment and integrate it into the
behavior design framework. For instance, for external vibrations, in which do-
main should we represent them, frequency domain or time domain? For human
behavior, should we use reward functions or policies?

e What attributes should the behavior of autonomous systems possess in order to
interact with the environments with particular characteristics?
In the presence of a dynamic environment full of uncertainties, should the behavior
of an autonomous system be designed to be robust, or adaptive? At which levels
should such adaptability be designed? At the action level, or knowledge level
or logic level as categorized in [82]? Those questions will be addressed in the
following chapters in this dissertation.

¢ How should the behavioural attributes of autonomous systems be enabled via
inter-disciplinary technologies such as control, optimization and learning?
Attributes of the system behavior demand support from inter-disciplinary tech-
nologies. To enable adaptability, we can use adaptive control or Bayesian inference.
To enable robustness, we should use robust control or stochastic optimization. To
describe the behavior of human, we need to borrow available human models from
other domains such as economics or cognition science. In this dissertation, we will
explore appropriate tools to design intelligent and high-performance behavior for
autonomous systems, spanning from problem formulation to the construction of a
uniform framework.

1.2 Dissertation Approach

There has been a long debate about learning-based control versus model-based con-
trol. In this dissertation, we are combining the strength of the both: we exploit rich
internal models regarding different environment components, and inform and constrain
the learning processes by such prior knowledge. For instance, in human-machine hy-
brid scenarios, to describe human behavior, we utilize the structure of human decision-
making models from economics and cognition science, represent it via reward functions
and learn the key parameters from data. We also formulate the social factors in human-
human interaction based on utility theory and learn the weight associated with them.
For the high-performance individual machine behavior, we utilize internal models of the
external vibrations and joint frictions, and only learn the central frequencies and model
parameters to reconstruct them.

We divide this dissertation into two parts. The first part focuses on high-level intel-
ligent hybrid human-machine behavior design, considering the interaction between human
and autonomy. The second part discusses low-level high-performance individual machine
behavior design, dealing with disturbances and model uncertainties to make sure that
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the high-level intelligent decisions/actions can be executed accurately and reliably. An
overview of the approaches and emphasis of the two parts are given in Fig.

human-like intelligence

< model-based
5
nave imitation learning
\ ... / (BC and IRL)
- astssa\ O 7/ sinin
multi-modality ‘ -
irrationality hierarchy _
online adaptation
and inference
offline learning
(ILC)

social norms"
- —
Y/
ad"l)f'
e A machine behavior <4— | model-based control

semi-observable time-varying -

high-performance

Figure 1.3: An overview of the challenges and approaches in designing both hybrid human-machine be-
havior and individual machine behavior for autonomous systems interacting with environments where
both intelligent agents and non-intelligent disturbances coexist. In Part I, for hybrid human-machine behav-
ior, our goal is to achieve human-like intelligence. We consider five important features of human behavior:
multi-modality, irrationality, hierarchy, sociality, and time-varyingness. Correspondingly, a stochastic, in-
terpretable and adaptive framework is formulated via model-based planning, imitation learning (both
behavior cloning (BC) and inverse reinforcement learning (IRL) are included) and online adaptation. For
individual machine behavior, the goal is to assure accurate execution of the high-level commands in the pres-
ence of unknown and time-varying disturbances and uncertainties. Hence, Part II focuses on disturbance
attenuation, utilizing tools such as model-based control, offline iterative learning and online adaptation.
Through the hierarchical behavior design, the autonomous system can interact with environment safely
and efficiently. Source*: https://mechanical-engg.com/gallery/image/1630-car-internal-parts.jpg.

1.2.1 Hybrid human-machine behavior design

We emphasize three key aspects, safety, efficiency and being human-like for hybrid human-
machine behavior. Towards this goal, we leverage the power from control, optimization,
learning, and cognitive science. The Theory of Mind (TOM) argues that human
has the ability to think about mental states, both our own and those of others. Moreover,
human has the ability to understand that other people’s thoughts and beliefs may be
different from our own and to consider the reasons behind that. We render such ability
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for autonomous systems by representing human behavior via structural reward/cost
functions, assuming that people are maximizing their utilities under some measures,
for instance, expected or non-expected. Such representation is not only data-efficient,
but also intrinsically facilitates the formulation of interaction-aware behavior design, as
discussed in [117]. Moreover, we integrate human-like mechanism into the structure of
the reward/cost functions. Instead of assuming human as perfect rational optimizers,
we exploit the following five important properties of human behavior:

* Human'’s decision-making process is hierarchical, including both discrete decisions
and continuous optimization.

¢ Human behavior is probabilistic with multiple modes. In this dissertation, we refer
multi-modality as multiple preferences for different people.

* Human behavior is influenced by social norms.

* Human behavior is not necessarily rational in the sense of optimizing their ex-
pected utilities. They can be systematically biased, and more appropriate measures
are needed to describe such biases.

* Human behavior is time-varying. People often change mind/policies during inter-
action and such switch can directly influence how they behave.

By integrating the above features into the structure design of reward/cost functions of
human, we have proposed a uniform framework to generate interaction-aware behaviors
of autonomous systems at different levels. At the perception level, the system can infer
from the behavior of other agents to compensate for the limit of its own sensors, just as
humans do. At the prediction level, instead of passively inferring all possible actions of
other agents, the system actively reasons what the other agents would do if I take specific
actions. At the action level, the system learns to consider social norms and imitate how
people behave given observations.

1.2.2 Individual machine behavior design

The hybrid human-machine behavior design empowers high-level intelligent actions.
To assure reliable execution of such actions in the presence of model uncertainties and
other external disturbances, high-performance individual machine behavior design is de-
sired. For instance, for autonomous vehicles, velocity-tracking commands sent to the
actuators should be accurately executed for safe maneuvers; for industrial robots, the
trajectory tracking commands should be strictly followed to achieve high-precision man-
ufacturing and assembly.

Our approach for individual machine behavior design is to enhance model-based feedback con-
trol via offline uncertainty learning and online parameter adaptation. As discussed above, dis-
turbances, particularly external vibrations, are typically time-varying and environment-
dependent. Moreover, since sampling rates are limited, there are external disturbances
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that cannot be directly observable, which makes them more difficult to attenuate. An-
other key feature of individual machines is the high repeatability of their tasks. For
example, a wafer scanner for semiconductor manufacturing will repeat the same scan-
ning profile for millions of times. In assembly lines, a pick-and-place robot manipulator
will execute the same action without stopping. Ultilizing such unique properties, we
design the low-level controller via two-degree-of-freedom (2DOF) controller design. We
develop selective and adaptive iterative learning controls (ILCs) to synthesize offline
the feedforward control signal to handle unknown model uncertainties and invariant
disturbances, combined with model-based adaptive feedback control to attenuate time-
varying and even unobservable disturbances. The design of feedforward and feedback
controllers are interlaced where prior model information and learning are synthesized.

1.3 Contributions

The goal of this dissertation is to design intelligent and high-performance machine behaviors
for autonomous systems interacting with complicated environments including intelligent agents
such as human and non-intelligent influential factors such as external disturbances and model
uncertainties.

Autonomous systems function through their interactions with environment. As the
working environment becomes more and more complicated - from being isolated to
public spaces, and from non-intelligent factors to intelligent agents - their behaviors
should empower more intelligence and adaptation to enable safe and efficient opera-
tions. This dissertation aims to address the challenges towards intelligent hybrid and
high-performance individual machine behavior design by merging the strength from
control, optimization, learning, and cognitive science.

More specifically, inspired by the levels of interaction (whether the influence is mu-
tual or mainly semi-directional), we have divided this dissertation into two parts, hybrid
human-machine behavior design in Part I for high-level intelligence and individual machine
behavior design in Part II for high performance at the execution level. In each part, we
motivate our design by identifying and constructing an efficient and interpretable rep-
resentation of the unique characteristics of the environment at different levels. Part I
models the stochastic (multi-modal), hierarchical, irrational, social, and time-varying
human behaviors via structured reward functions in a game-theoretic setting, and Part
IT describes the unknown and time-varying external disturbances and model uncertain-
ties via their internal models. Built upon that, we establish a set of methodologies in
each part to equip autonomous systems corresponding capabilities to interact with such
environment at both the cognition level and execution level. As shown in Fig. for
intelligent cognition, we have developed frameworks for structured reward design and
learning (i.e., hierarchy, irrationality, and social compliance in reward design), and in-
teractive behavior prediction and planning including social perception scheme, socially-
compliant planning, game policy-aware motion planning and safety-enhanced behavior
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cloning. For high-performance execution, we have designed learning-based feedforward
and adaptive feedback controllers to attenuate influences caused by both external dis-
turbances and model uncertainties.

Contributions of this dissertation are summarized as follows.

1.3.1 Interaction-Aware Planning-based Human Behavior Prediction

Intelligent autonomous systems intensively interact with human. In a two-agent
game-theoretic setting, the robotic system should predict the behavior of the human
within the preview horizon and make decisions based on that. We formulate the prediction
to be interaction-aware [132, 161]. Namely, instead of letting the robotic system predict
what the human will do based on historical observations of both behaviors and the
environments, we let it reason about what the human will do if it took specific actions
under the same circumstance.

The essence of human behavior prediction is to construct an effective human be-
havior model [70, 157, 49]. Many such models have been proposed, spanning from
rule-based ones [8, [106] to data approximation ones based on (deep) learning [104, 30,
77,47]. Rule-based approaches can hardly capture the stochastic property of human be-
havior. On the other hand, the data approximation methods typically represent human
behavior/policies as deep neural networks (NNs), the parameters of which are learned
by directly matching the likelihood of real human demonstrations in a dataset. Such
data approximation approaches can generate excellent performance on given datasets,
but they suffer from poor generalizability to other scenarios and vague interpretability
since it is hard to incorporate prior knowledge into such methods.

We represent the distribution of human behavior with reward/cost functions under different
measures, and translate the prediction problem as an interaction-aware planning problem. Such
representation is human-like since it aligns well with the Theory of Mind, empowering
the ability of robotic systems to treat humans as intelligent agents whose decisions and
actions are generated via similar logics/procedures as the robotic systems: based on
the principle of maximum entropy [166], the probability of a trajectory is approximately
proportional to the exponential of its reward. Moreover, as an abstract representation,
it intrinsically leverages the power of model-based planning and learning. Hence, com-
pared to rule-based methods, it can describe stochastic behaviors. Compared to data
approximation approaches, it is more interpretable and generalizes better to new sce-
narios.

More details regarding this point will be presented in Chapter 2.
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1.3.2 Hierarchical, Irrationality-Aware and Socially-Compliant
Reward Design and Learning

To increase the expressive ability of the reward functions, their structure design
plays an importance role. We propose to design and learn hierarchical, irrationality-aware
and socially-compliant reward functions [132, 136, 135], mimicking the human decision-making
procedure.

First, human behaviors are socially compliant (Chapter 3). For instance, at the action
level, when a human driver wants to change lanes, it is most likely that he/she will leave
a gap between himself/herself and the vehicle on the target lanes instead of cutting in
abruptly. At an intersection, if a driver finds that another pedestrian or driver is waiting
for him to pass first, he/she will probably accelerate more aggressively to show his/her
courtesy to others instead of driving comfortably as he/she wishes. Such social compli-
ance is in general not a directly measurable variable. We formulate and learn it from
human demonstrations. Specifically, based on the game-theoretic two-agent framework
in Chapter 2, we define a courtesy term as the positive difference of human'’s optimal utilities
between what the robot actually does and what the human expects the robot to do [135]. Namely,
the courtesy term quantifies the positive cost increase of the human given the robot’s
specific actions. We integrate such courtesy term as a feature in the reward function and
learn its weighting from real human driving behaviors.

Second, human behaviors are hierarchical (Chapter 4). It includes both discrete de-
cisions and continuous actions. For instance, when human drivers are changing lanes,
they will first decide whether to merge in front of the other vehicle, or merge from the
behind. Under each decision, the reward functions to generate the continuous maneu-
vers for lane-change trajectories can be different. If the driver decides to merge in front,
he/she might care little about comfort but more about courtesy and speed. If the driver
decides to merge from the back, he/she probably cares more about comfort but less
about speed. To describe such hierarchical structure in human behavior, we develop a
hierarchical inverse reinforcement learning (IRL) scheme based on Bayesian hierarchical
modelling. It learns the cost functions for both discrete and continuous layers [132].

Third, human behaviors are not always rational in the sense of optimizing their ex-
pected utilities (Chapter 5). When using cost functions to represent human behaviors,
there is a common assumption that human is noisily rational, as in [118]. Namely, the
probability of human’s behavior is approximately proportional to the exponential ex-
pected utilities of that behavior [166, [14]. There is only one parameter, {3, controlling
the rationality level of such model. However, a variety of evidence from other domains
such as economics has shown that human’s decisions are structurally biased [55], such
as the framing effect, risk-seeking behavior and loss-aversion behavior, as discussed in
[55, 146]]. A single rationality level cannot describe the internal mechanism for these
biases and thus fails to accurately predict human’s behaviors. We propose to design the
reward functions with a non-expected utility theory (NEUT) - the cumulative prospect
theory (CPT) [146] which was developed to describe the irrationality of human behavior.



CHAPTER 1. INTRODUCTION 10

Based on that, a two-step IRL approach is formulated to learn the reward parameters
from human demonstrations.

1.3.3 Socially-Compliant Behavior Generation

With reward functions as an efficient representation of human behavior, the next step
is to generate robotic behaviors in a safe, efficient and human-like manner. We let robots
generate socially-compliant behaviors at both the action level and the perception level.

At the action level, instead of being selfish, we let the robot be courteous (Chapter 3).
It minimizes not only its own cost functions but also the courtesy term, as discussed above, to
encourage the robot to care about the influences of its actions to other road participants.

At the perception level, we let the robot learn how human deal with uncertainties, utilizing
the others” behavior as signals to enhance its beliefs to the environmental states (Chapter 6). For
example, when human drivers are not sure about the speed limit, they typically follow
the trafficc. We consider uncertainties from both limited sensor ranges and physically
unobservable group behaviors such as traffic speed and driving styles in local areas
[134]. We treat multiple agents as a distributed sensor network, and formulate the behavior
planning of robotic systems as a partially observable model predictive control problem. Namely,
from the reward functions and behaviors of other agents, we can infer states of the
environments and generate optimal behavior for the robots based on that.

1.3.4 Policy-Aware Game-Theoretic Planning

In a game-theoretic two-player setting, beyond the reward functions of both agents
(human and the robot system), there is another key component influencing the way how
two agents interact: the interaction policy (or game policy). Each agent, particularly
the human side, can be either fully cooperative or semi-cooperative (two agents being
leader-follower mode), or aggressively competitive, or completely ignoring the other
side. What makes the problem more challenging is that human is time-varying, i.e.,
their interactive policies can change as interactions continue. Wrong interpretation of the
interaction policies for human can directly lead to inaccurate behavior prediction, which
might consequently generate dangerous manuveurs for the autonomous system. For
instance, at an intersection, if the robot car believes that a human driver is cooperative
when he/she is actually ignoring the robot car, collision can occur. On the contrary,
if the robot car believes a human driver as a competitive driver when he/she actually
is cooperative, the robot car might behave too conservatively and the efficiency will
decrease.

We address this challenge by formulating it as a partially observable model predictive control
problem (Chapter 7). We enumerate five different game policies: 1) ignoring, 2) constant,
assuming the other agent maintaining previous actions, 3) Nash policy, 4) Stackelberg
(Leader-Follower) policy, and 5) cooperative policy with a Parato equilibrium. At each
step, based on the reward functions and observed actions of both agents, we update the
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robot’s beliefs over the five different interaction policies, and generate safe interactive
actions accordingly. Furthermore, we also learn the distribution of different interaction
policies over different maps using real human driving data. Such an empirical study and
analysis can generate a prior model/belief for human’s interaction policy, facilitating
reasonable assumptions for game-theoretical studies for human driving behaviors.

1.3.5 Safety-Enhanced Behavior Imitation

With structured reward functions for both the human and the autonomous systems,
the next question is to efficiently generate actions that maximize the reward function of
the robotic systems. Autonomous vehicles typically need to respond to environmental
changes within 0.1 seconds, i.e., the pipeline including perception, prediction and be-
havior and motion planning needs to be updated at a frequency of 10Hz. Hence, it is
critical that the optimal (suboptimal) actions with respect to a given reward function can
be found efficiently.

There are two major approaches to generate behaviors: behavior cloning (BC) and op-
timization solving. While BC, as a learning-based approach, is efficient online, it suffers
from un-guaranteed safety and feasibility. On the other hand, the optimization-based
approach is a formal structure to systematically assure safety and feasibility enforce-
ment, its efficiency, however, can hardly satisfy the real-time requirement, particularly
for nonlinear non-convex optimization formulations.

The approach we propose in this dissertation regarding this challenge is to hierarchically com-
bine a long-term learning policy with an execution layer based on optimization [133] (Chapter
8). The policy layer, represented via a neural network, is trained offline via BC. Taking
a variety of features as inputs, it outputs a long-term trajectory represented by a se-
quence of waypoints. Hierarchically, the execution layer takes the long-term waypoints
as inputs, and yields a refined short-term control action with enhanced safety and fea-
sibility by solving either a short-term nonlinear optimization or a long-term quadratic
programming (QP) problem. Moreover, to make the BC more robust, we develop an
online sampled data augmentation (DAgger) to automatically re-label the test scenarios
with poor performance and augment the training dataset for BC. Performance of the
proposed structure on both synthetic driving data and real human driving data will be
shown in Chapter 8.

1.3.6 Adaptive Attenuation of Disturbances Beyond Nyquist

To assure that the high-level commands generated from hybrid human-machine be-
haviors can be reliably executed with high performance, the low-level controller is re-
quired to be robust in the presence of external disturbances and model uncertainties.
External disturbances can come from either external vibrations, or imperfection of the
internal structures of the mechanical parts. For example, vibrations from the ground
will excite the resonances in machine tools, and minor eccentric errors in motors will
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generate vibrations. Most of such external disturbances have their energy focused on
several particular frequencies which, however, are commonly unknown, time-varying
and environment-dependent. Moreover, since the sampling rates cannot be arbitrarily
high, there are disturbances that cannot be directly recovered via measurement, i.e., the
frequencies of the disturbance are beyond the Nyquist frequencyﬂ Such un-observability
makes the attenuation of external disturbances more difficult.

We develop an adaptive multirate extended-state observer (MESO) to attenuate such high-
frequency disturbances [130] (Chapter 9). Compared to previous related works [12, (164,
131], no exact disturbance model is required. Alternatively, we exploit the structural
information of disturbances and leverage learning to update the exact model. A two-
step procedure is designed: Step I - the disturbance estimation step - estimates the system
states as well as the disturbances via a multirate extended-state observer (MESO) based
on slow-rate measurements and the current updated disturbance model; and Step II -
the model parameter update step - updates the disturbance model parameters via recursive
least-square (RLS). By iteratively repeating the two steps, the unknown beyond-Nyquist
disturbances can be accurately estimated and thus compensated even though their in-
fluences to the output cannot be effectively captured by measurements. Moreover, the
proposed closed-loop system can be reformulated as an add-on multirate-observer based
compensator. It is compatible with any pre-designed feedback controllers such that any
existing closed-loop control properties can be well preserved.

1.3.7 Selective and Adaptive Iterative Learning Control with
Iteration-Varying Disturbances and Uncertainties

Beyond feedback control, feedforward control is also well applied to enable high-
performance individual behaviors of autonomous systems. Iterative learning control
(ILC) [10] is such an effective scheme to automatically learn the feedforward signal for
repetitive tasks, taking into consideration potential repetitive model uncertainties and
disturbances. Applications can be found in many high-precision manufacturing ma-
chines [89, [165] and autonomous vehicles such as navigation in off-road terrain[99],
autonomous parking[101] and modelling of steering dynamics [57].

Even though ILC works well with repetitive tasks, model uncertainties and external
disturbances, it lacks the robustness in terms of iteration-varying signals. Practically, it is
unrealistic to assume that all model uncertainties and external disturbances remain the
same through iterations of tasks. The resonant vibrations excited by external vibrations
might start with different initial conditions at different task trials, and joint friction forces
on robotic manipulators tend to change with mild speed changes at different trials.
To enhance the robustness of ILC, we propose selective and adaptive ILC methodologies
which can adaptively identify the model uncertainties and disturbances and adjust the learning

INyquist frequency, denoted as Fy, is half of the sampling frequency Fs of the samplers, i.e., Fyy =
Fs/2.
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loop of ILC based on that [129, 69] (Chapters 10-11). Flexible adaptation mechanisms are
designed, through either an add-on disturbance observer [129] or an integrated two-
degree-of-freedom control design [69]. Experimental results on a high-precision wafer
scanner system will be provided.

1.4 Dissertation Outline

The remainder of the dissertation is organized as follows. Chapters 2-7 belong to Part
I. Chapter 2 introduces the game-theoretic frameworks, the representation format for
human behaviors as well as some preliminary concepts utilized throughout the disserta-
tion. Chapters 3-5 focus on the reward design and learning to represent different aspects
of human behavior, with Chapter 3 on social compliance, Chapter 4 on hierarchy and
Chapter 5 on the irrationality. With the learned reward functions, Chapters 6-8 address
the problem of efficiently generating human-like behaviors with uncertainties. Chap-
ters 6-7 tackcle the behavior planning with perceptional and policy uncertainties using
Bayesian inference, respectively. Chapter 8 constructs a framework to efficiently gener-
ate behaviors/actions optimizing reward functions in a safer and human-like manner
via hierarchically combined behavior cloning and optimization. In Part II, Chapters 9-11
discuss the individual machine behavior design in the presence of external disturbances
and model uncertainties. Chapter 9 focuses on adaptive attenuation of high-frequency
external vibrations and Chapters 10-11 describes, respectively, selective and adaptive it-
erative learning control for time-varying disturbance and model uncertainties. Some of
the work has been published in [129, (133} 135, (130, (132, (134, [161, 136, |47, [69].

The relationship among different chapters are summarized in Fig.
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Human-Robot Interaction as A Game

In this chapter, we describe the game-theoretic setting for the design of hybrid human-
machine behavior of autonomous systems. Starting with a game-theoretic formulation,
we represent both the human and robots behaviors via their cost/reward functions un-
der appropriate measures. Three measures will be discussed, including the deterministic
measure, the measure based on expected utility, and the measure based on cumulative
prospect theory [146]. In addition, some of the preliminaries utilized throughout the dis-
sertation will be reviewed in this chapter, including the reinforcement learning algorithm

and datasets for human driving behavior.

2.1 Formulation of Human-Robot Interaction

In hybrid human-machine environ-
ment, we would like autonomous systems
to interact with human as other humans
do.  Their behaviors mutually impact
each other not only through the change
of shared environment states, but also
through the change of the other’s belief
towards oneself. For example, in a high-
way driving scenario as shown in Fig.
the lateral maneuvers of the white car will
influence the blue car’s accelerations not
only through where it occupies, but also
through how the blue car interprets these
maneuvers, and vice versa.

Throughout this dissertation, we con-
sider the interactive robot-human system
with two agents: an autonomous system R

surrounding
vehicle

Figure 2.1: A example of two-play interaction game
where the blue robot car interacts with the white hu-
man car. Other surrounding vehicles are treated as
environment states.
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and a human J. If there are multiple au-
tonomous robots that we control, we treat
them all as a single R. If there are multiple humans, we reason about how each of
them affects the robot’s behavior separately, i.e., we consider pairwise interaction. For
instance, for the scenario shown in Fig. when we model the interaction between the
blue robot car and the white human car, we treat the red car as environment states. Sim-
ilarly, when we focus on the interaction between the blue robot car and the red car, we
treat the blue car as environment states. We denote all robot-related terms by subscript
() and all human-related terms by (-)q.

Let x¢ and ag denote, respectively, the robot’s state and control input, and x5 and
ay for the human’s. Then x:(xgz, xg{)T represents the states of the interaction system.
For each agent, we have their dynamics as

X = f (x§, a%), (2.1)

X:t}# = fy (ng/ (15{) 7 (22)
and the overall system dynamics are
X = £ (x, af, al) . (2.3)

Meanwhile, each agent has their individual policies to generate actions based on obser-
vations and their beliefs on the other’s policies. Mathematically, it can be represented

by

alf! =g (x4, 75, (2.4)
ali! = mgc (x4, AL) . (2.5)

where the (%) represents the belief/estimate over the variable. The policies, 7 4, can be
either deterministic or probabilistic.

Such interaction process can be illustrated in Fig.[2.2(a). We can see that the mutual
influence between two agents has generated a loop, and practically it is not realistic to
tind the Nash equilibrium in real time. To make the problem solvable, two different
simplifications have been developed.

Naive simplification

As shown in Fig.[2.2(b), a naive simplification for the two-player game is to ignore the
mutual influence between the future actions. Namely, the policy for each agent depends
only on the states of the environment:

abt =mp (x), (2.6)

alit = g (xY) . (2.7)
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(a) A dynamic two-player game

(b) The naive simplification (c) The interaction-aware simplification

Figure 2.2: Different formulations for a two-player game. (a) is the full game where the future actions for
both agents mutually influence each other. (b) is a naive simplification of (a) by ignoring the interaction
between the actions. (c) is an interaction-aware simplification. The interaction loop in (a) is broken by
allowing the robot agent to move first as a leader.

Many techniques utilize the naive simplification. The policy can either be rule-based
(i.e., assuming constant velocity as in 160]) or learning from data
73]. The main problem with such simplification is that the generated robotic behaviors
might be too conservative in the sense that the robot does not actively take advantage of
its influence over the actions of the human.

Interaction-aware simplification

The interaction-aware simplification tries to break the infinite interaction loop in
Fig.[2.2(a) by introducing some time difference into the two agents’ actions. Figure 2.2{(c)
shows a scenario where we let the robot propose first (the dotted orange color), and then
query for potential responses from the human. Such responses are then integrate into
our planners to find out our optimal behavior/policy proposals. Mathematically, (2.4)
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becomes
t,’ t ot
ag, = my (x4, 105), (2.8)
t+1 t t/
ay =Ty (x , aj{> , (2.9)
which means that a‘gjl = 7tg (x*, 75 (x*,0%) ). The interaction-aware simplification, com-

pared to the naive one, explicitly models the mutual influences at the action level, and
thus can help the robots generate more aggressive behaviors, as mentioned in [118, 117,
135} 113, |78] and [52].

In this dissertation, we select the interaction-aware simplified game as our framework
for hybrid human-machine behavior design.

2.2 Behavior Representation via Cost/Utility

Human Behavior Representation

As discussed above, to design the robotic behavior in interaction games, we need to
know the behavior generation policy of human, i.e., 7.

Many approaches have been proposed to represent/predict human behavior. They
can be as simple as manually designed rules, i.e., assuming the person will maintain
their current actions for a period of time [65, 80, 160], or as complicated as learning a
human’s policy via neural networks [5, 157, 123].

Meanwhile, it is a general idea in cognitive science that humans make decisions or
take actions by maximizing some measure of costs/utilities under uncertainty [39], and
the computation is limited, known as bounded rationality [122]. Hence, we assume hu-
mans as finite-horizon noisily rational planners. We use the framework of model predic-
tive control (MPC) [19] (also known as receding horizon control (RHC)) to approximate
the human behavior generation process.

Suppose that Cy is some measure of expected cost of the human over a horizon with
length N H

N—1
Cac (X', ax, ase, Xenyi B3¢) = 1 [Z Cy¢ (x”% ar, afe, xény; eg{)] (2.10)

k=0
where ai:(a?, ail,- .-, aiNfl)T are the sequences of control actions of the robot (i=R)
and the human (i=X) over the horizon. x"* and xJé’T]fv with k=0,1,--- ,N—1 are, respec-
tively, the corresponding sequences of human-robot system states and other environ-
ment states. Note that the environment states can include other humans/robots which

In this dissertation, we denote utility as U and cost as C. Typically, we set U = —C with C > 0. Hence,
policies that maximizes utilities are equivalent to policies that minimize costs.
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are not closely interacting with the human-robot system, external disturbances, and so

on. B4 represents the preference of the human. Hence, cs (xt'k, a}}z, a‘éf, xé’lfv; 69{> repre-

sents the objective cost for state-action pairs at each step. The function pu: Rt — R* is
a measure that maps an objective cost term cq into a decision cost which is utilized for
decision/behavior generation. More details regarding the measures will be provided in
Section

Based on the principle of Maximum Entropy [166], at every time step t, the human
generates a sequence of actions with a probability which is approximately proportional
to the exponential negative cost. Namely,

P(ag, O5clx", ag, xby,) o exp PCo (¥ Anascxinuifac). (2.11)

where {3 is a hyper-parameter that controls the rational level of the human. Only the
tirst action will be executed, and the human will re-plan via the same process at the next
time step t + 1.

Hence, the expected cost measure Cy¢ has defined a probability distribution over
the human’s future actions given observations x', x{,, and the potential actions of the
robot ag, which means that represents a probabilistic policy 75 as in (2.8). If a
deterministic policy 7y is preferred, we can change the distribution to a fixed policy
such as a minimizer:

aj; = argmin Cy¢ (X', ag, as(, Xeny; 09¢) - (2.12)
ax

Therefore, given appropriate measures of their expected costs, the human behavior gen-
eration policy 7t3¢ can be represented as

P (39{|th ag, Xeny,s 99{) , probabilistic policy
arg min,, Cg¢ (x', ag, as;, x5, 05¢) ,  deterministic policy.
(2.13)

iac (x4, ag, 2L, O3¢) = {

Robot Behavior Generation Framework

To design human-like behavior for the autonomous systems, based on the Theory
of Mind [147], we let the robot follow the same MPC framework as human. Namely,
at each step t, the robot generates its actions by minimizing some measure of its cost
defined over a finite horizon N, i.e.,

: t t .
a, = arg min Cx (x', ag, asg, Xgny; O)

= arg mln CR (Xt/ aR/ T[f]'f (Xt/ aiR/ xjénv/. 9%), xén\/; eR) (214)

aR

where Cg is defined in a similar way as Cs¢ in (2.10). With only the first action executed,
the process repeats at the next time step for re-planning.
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2.3 Cost/Utility Measures

Different measures of the expected costs/utilities can lead to quite different behavior
policies. In this dissertation, we explore three different measures, i.e., the deterministic
measure, the expected-utility based measure and a non-expected utility based masure,
and their applications in specific scenarios.

2.3.1 The Deterministic Measure

The deterministic measure ignores the uncertainties. It assumes that all the states
and actions are deterministic, and the decision cost equals to the objective cost. Hence,

(2.10) reduces to

Cac (x*, ar, age, Xenys O3¢) = Cf}c( X, ak, af, em,ea) (2.15)

k=0

With the deterministic measure, the decision cost Cq¢ can be fully represented via cy
which can be directly learned from human demonstrations via Inverse Optimal Control
(IOC) [74]. Details can be found in Section Such a measure is applicable when
uncertainties are small. Hence, it will be utilized in this dissertation to describe relatively
deterministic and low-level behaviors of human, for instance, how a human finishes a
turning when his/her intention has been clearly demonstrated.

2.3.2 The Measure based on Expected Utility Theory

In most application scenarios, human make decisions under uncertainties, and a de-
terministic measure cannot represent such behaviors. Hence, we explore another mea-
sure based on the expected utility theory (EUT) [114]. First introduced by Bernoulli in
1738, EUT has become the most widely adopted theory to describe how human make
decisions with uncertainty. Mathematically, the process can be modelled as follows.

Compared to the deterministic measure which assumes that a state sequence x =
xY,x1,- -+, xN"1 is fully determined by the action sequence a, EUT considers the prob-
ability of each state sequence. Define all possible state sequences under the action se-
quence a as a set represented by {x}={x1,---, xm} for j=1,---, m. Note that the set can
contain infinite elements, i.e., m — oo, when the state sequence satisfies a continuous
distribution. Let p; = p(x;) be the probability (or the probability density function for

continuous random variables) of each state sequence x; satisfying } ; p(xj)=1. Define

u(x }“Ll a®) as the objective utility assigned to each pair of state xf“ and action a* at

time k=0,1,--- ,N —1 over the horizon. Note that we have u(x ;<+1 ak) = —c(x¢1, d¥).

Then, under dec1510n a, the possible outcome profile (i.e., the prospect) can ée repre-

sented by P(a)= (u(a), p) where u(a)= u(x!, av), u(x]2, al), - ,u(x{t‘m, aN")T is the util-

]I

0
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ity vector defined on the possible state set {x}, and p=I[p1,p2,---,pml' is the corre-
sponding probability vector (or the probability density function vector) of x;. The ex-

pected utility U of a are defined as

m

N-1 N-1
U(a) = U(P(a)) = Eq, . [Z u(xtt, ak)] =) pi) uldd) (216)
k=0 ji=1 k=0

For the human and robot behavior in the two-player game, we consider uncertainties
from two major sources: 1) the state uncertainties including both the environment states
Xenv and the human-robot system states x, and 2) the uncertainties on the potential
behavior of the other agent, i.e., ag included in the human cost and as in the robot’s
cost. Hence, the measure function on the right-hand side of can be specified as

N—1
tk+1 k k tk+1.
[ [Z CH (X s A, Qg Xeny 7 93—()]

k=0
N—1
_ tk .k .k tk .
- IEx“Px/xenv“Pxenvza:R“PafR Z Cx <X’ ’ aR’ af}(’ Xenw 99{> (217)
k=0

where Py, Px.., and pq, represent, respectively, the distribution of the state sequence
[x¥1,x¥2,... ,x¥N] given action sequence as; and initial state x*¥, the distribution of the
state sequence [xtg%v, XE’T%V,' ., XE’T]L\IV], and the distribution of the estimate for as.

Hence, to learn the behavior of human based on the measure of expected utility, we
need to learn not only the objective cost function as in the deterministic measure, but
also the probability distributions for the states and the human’s estimate/blief of the

robot’s future actions. We will discuss more about this point in Section

2.3.3 The Measure based on Cumulative Prospect Theory

Although EUT has been adopted in many application domains as the dominant
model to describe how individuals make decisions under uncertainties, there have been
substantial evidences showing that human behavior often violates the EUT hypothesis
in a systematic way such as framing effect, loss aversion, risk seeking and nonlinear
preferences [146, 7].

Many non-expected utility theories (NEUT) were developed to explain the above-
mentioned behaviors which deviate from EUT. Among them, the cumulative prospect
theory (CPT), proposed by Kahneman and Tversky [146], is one study that formulates
many such biased or irrational human behaviors in a uniform way. Compared to EUT
in (2.16), CPT introduced two additional concepts in the definition of prospect P: a
value function v defined on the utility and a decision weight function 7t defined on the
cumulative probability. Instead of using the expected utility to evaluate actions, CPT
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evaluate actions via a cumulative function defined as

V(a) = V(P(a))
= Zv (u+(xj,a)) th++v (u*(xj,a)) 711.*, (2.18)
j=1

where the function v : R—®R is a strictly increasing function, and u*(-) and u™(-) rep-
resent, respectively, the gains and losses of u(-) compared to a reference utility uy. The
decision weights are defined as

T = W (plxm)), Tm=w (p(xm)), (2.19)

o= wt (Zp(xk)) —w* ( > p(xk)) : (220)
k=j k=j+1

o= W (Z p(xk)> —w~ ( Z p(xk)) , Vj=1,---,m—1 (2.21)
k=j k=j+1

where w*:[0,1]—(0, 1] are both strictly increasing functions with w*(0)=w~(0)=0, and
wh(1)=w~(1)=1.

Typically, the value function v(u) is convex when u>uy (gains) and concave when
u<uy (losses), and it is steeper for losses than for gains. Figure 2.3(a) shows one example
of the value function when 1y=0 is set as the reference utility. Many experiment studies
have showed that representative functional forms for v and w can be written as

B (u—up)%, if u >y 5
viw) = —A(uo—u)ﬁ, if u<uy (2.22)
whip) = LA (2.23)
(pY + (1 —pMMY’
- P’ (2.24)
(p) = . .
ARSI

respectively, with «, 3,7v,8€(0,1] and A>1. As shown in Fig. b), the decision weight-
ing functions can describe the well-observed human behaviors that humans tend to
over-estimate the occurrence of low-probability events but under-estimate that of the
high-probability ones.

Hence, based on CPT, the cost measure in will be specified as (the variables in
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v(u)l

gains 0 —

w(p)

p
*

0.0 1.0
(a) The value function (b) The weighting function

losses

Figure 2.3: Examples of the value function and weighting function: (a) the value function v maps the
objective utility into a value for decisions, and it is convex for losses and concave for gains. (b) shows
the decision weighting function 7w which maps the objective probability into the decision weight. It shows
that humans tend to over-estimate the occurrence of low-probability events but under-estimate that of the
high-probability ones.

the second line of (2.25) will be emitted due to space limit)

N—-1
[ e (0 o)
k=0
N—-1
= ]ExNPX/xenvaxenv AR~Pag [ V+ (C:H) T[+ (pXI Pxenvs paR) +v (Cj{) us (pX/ Pxenvs paiR)
k=0
(2.25)

Therefore, we can see that beyond the objective cost and uncertain distributions uti-
lized in EUT based measure, using the CPT measure to describe the human behavior
needs to learn two more key elements: the value function and decision weighting func-
tion.

2.3.4 A Summary of the Measures

A summary of the three different measures is listed in Table We can see that
among the deterministic, EUT-based and CPT-based measures, CPT-based measure pro-
vides the most flexibilities to describe more diverse behavior of human. In the mean-
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while, it involves more unknowns in terms of parameters, and needs more powerful
learning framework to learn those unknowns from human demonstrations.

Measures Property Factors to Learn
Deterministic measure | no uncertainties objective cost function
EUT measure with uncertainties 1 Ob]?CtIYe CQSt function s
probability distribution over uncertainties
objective cost function
irrationality- probability distribution over uncertainties

CPT measure compatible value function

decision weight function

Table 2.1: A summary of different measures of cost

To represent human behavior, we explore all three different measures and corre-
sponding learning algorithms. Regarding to the robot behavior generation, we would
like to design a rational robot system. Hence, to generate the robot policies, we only utilize
the first two measures in the formulation of Cy defined in (2.14): the deterministic measure when
uncertainty can be ignored and the EUT-based measure when uncertainty is significant.

Hence, in the following two sections, we will address two related techniques utilized
to specity Cg, i.e., the formulation for predicting future human actions a5 and the
learning of objective cost functions in deterministic measure via inverse reinforcement
learning.

2.4 Interaction-Aware Probabilistic Prediction

When the deterministic measure is used, the robot’s behavior generation policy in
reduces into an interaction-aware planning problem as in [119]. It enables the robot
to leverage its influence to the human by considering the human’s optimal response
when it determines what actions to take.

When the EUT-based measure is utilized, becomes

* : t t t . t .
aj = argmin Cx (x', ag, 9¢(x", ag, Xiny; 09¢), Xerys O%)
N-1
. tk ok ok otk .
= arg I];.].n lEprX/xeTLVNpXenv/u:RNpa:R Z Cj—f (X 7 (lgz, ag_(', Xen\)’ ej—f)
* k=0
N-1
- t t tk ok ok otk .
= argmin By v peen, P (ag, X", ag, x5y, 03¢) Y co (x , A%, ase, X 6}(> :
R
k=0

(2.26)
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Compared to the deterministic measure, the EUT-based measure can describe more re-
alistic interaction between the human and the robot. Instead of considering only the
optimal responses from the human, the robot should consider the distribution over hu-
man’s future actions given the robot’s actions and environment states.

From the prediction perspective of view, P (ag{, xt, ag, xt.,, 65}() in has defined
an interaction-aware probabilistic prediction problem. Compared to other prediction prob-
lems that try to predict future actions of agents based on only historical data (including
both historical system states and environment states) [72} 144, |71, 121} 38] as shown in
(2.27), the interaction-aware probabilistic prediction can directly model the mutual influence
between two agents.

P (ag, Ix', xgny,, O9¢) (2.27)

2.5 Inverse Reinforcement Learning

Initially proposed by Kalman [56], the concept of Inverse Reinforcement Learning
(IRL) is first formulated in [92]. It aims to infer the reward/cost functions of agents
from their observed behavior by assuming that the agents are rational. To deal with
uncertainties and noisy observations, Ziebart et al. [166] extended the algorithm based
on the principle of maximum entropy. It assumes that agents actions/behavior with
lower cost are exponentially more probable, and thus an exponential distribution family
can be established to approximate the distribution of actions/behavior. Building on this,
Levine et al. [74] formulated the continuous IRL algorithm and used it to minic and
predict human driving behavior. In this section, we review the continuous-domain IRL
algorithm developed in [74].

For a system with state x and action a, we assume that cost function is parameterized
as a linear combination of features denoted by vector ¢:

c(xt, at;0) =0T (xt, ab). (2.28)
Then over a trajectory with length N, denoted as
&= [(X’Ol ao)/ (Xll al)/ Tty (XN_ll aN_l)/ XN] = (XO/ a)/

the cumulative cost function becomes

N—1
C(x% a;0) = of Z bt a) =0"Td(x°, a) (2.29)
t=0

The goal of IRL is to find the weights 0 which maximizes the likelihood of the demon-
strations set Up = {&;} with i=1,--- , M:

0" =arg max P(UplO) (2.30)
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where M is the number of demonstrations in the set. Building on the principle of maxi-
mum entropy, we assume that trajectories are exponentially more likely when they have
lower cost:

P(a,0) «x exp (—BC(XO, a;@)) , (2.31)
_exp (—BC(X’, a;0))
P(al0) = Texp (—BC(0, a;0)) da (2.32)
Thus the probability (likelihood) of the demonstration set becomes
P(EP,0) P(a?,6) P(aP,6)
_mM i —_ 1M i —_ 1M i

To tackle the partition term [ P(a,0)da in 1) we approximate C(x°, ag, dg; 0) with
its Laplace approximation as proposed in [73]:

TaC 1 T 92C
0 ~. - 0 .. ~ D ~ D ~ D
C(x",a;0) ~ C(x’,a;;0)+ <a—ai ) _aa|“P + 5 (a—ai ) —aazlaP (u—ai ) )
(2.34)

o0C
With the assumption of locally optimal demonstrations, we have al ,p=0 in (2.34).

This simplifies the partition term [ P(&, 0)da as a Gaussian Integral where a closed-form
solution exists (see [73] for details). Substituting and into yields the
optimal parameter 0* as the maximizer.

We use the IRL algorithm to learn the cost function with deterministic measure in
human-robot interaction. Namely, we try to learn Cyg (xt, ag,as;, xt.,; 95}() defined in
(2.15). In this case, we will collect demonstrations with two agents interacting with each
other, one acting as the robot and the other as the human. We assume that the human
can accurately observe ag while the human generates ay.. Thus, the key equation in

(2.32) is specified as

_exp (—BCoc (x', ax, ase, Xenyi O3c))
J exp (—BCy¢ (xt, ag, ag, xt,; 04¢)) dag

and the following steps in (2.33)) and (2.34) adapt accordingly.

, (2.35)

P(a}dxt/ ag, x;n\)l ej{)

2.6 Datasets for driving behavior

Throughout this dissertation, we have utilized two open datasets for human driv-
ing behavior: the Next Generation SIMulation (NGSIM) dataset [6] dataset and the IN-
TERnational, Adversarial and Cooperative moTION (INTERACTION) dataset [159]. We
briefly introduce the two datasets as follows.
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Figure 2.4: A camera recording trajectories on highways in NGSIM. Image source:
https:/fwww.fhwa.dot.gov/publications/research/operations/its/06135/index.cfm

2.6.1 NGSIM dataset

The NGSIM dataset is a dataset gathered by the Federal Highway Administration
(FHWA) since 1970s. It used digital video cameras mounted on top of buildings to
overlook and record vehicle trajectories on highways and intersections, as shown in
Fig. [6]. It includes vehicle trajectories at three locations: the interstate 80 Freeway
dataset, the Lankershim Boulevard dataset and the US Highway 101 dataset. In each
trajectory, the (x,y) coordinates, speed, and acceleration are provided at each time step
with a sampling frequency of 10Hz. In this dissertation, for the work in Chapter 3| and
Chapter [} we use the interstate 80 Freeway dataset.

2.6.2 INTERACTION dataset

The INTERACTION dataset is a dataset constructed by us in 2019 with drone cam-
eras and fixed cameras. It contains naturalistic motions of various traffic participants in
a variety of highly interactive driving scenarios from four different countries including
the United States, China, Germany and Bulgaria [159]. The driving scenarios include
11 locations with four geometric categories: roundabout, un-signalized intersection, sig-
nalized intersection, merging and lane changing. Different from the NGSIM dataset,
the INTERACTION dataset focuses more on the interactive driving behavior of vehicles
where many near-collision and negotiation scenarios are contained. For each trajectory,
the (x,y) coordinates, speed, acceleration and yaw angle are provided with a sampling
frequency of 10Hz. Besides those, the INTERACTION dataset also provides a high-
definition map for each location, defined in the format of lanelet2 . In each map,
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we include three layers: the physical layer such as the lane markers and curbs, the se-
mantic layer such as the traffic signs, and the planning-rated layer which formulates the
drivable blocks in each lane and the logical relationships among them. Two exemplar
scenarios are shown in Fig. For more details, one can refer [159].

In this dissertation, we use the “USA_Roundabout_FT” scenario for the work in
Chapter [5, Chapter [/]and Chapter

Figure 2.5: Two exemplar scenarios in the INTERACTION dataset: the left one is an intersection, and the
right one is an roundabout. The blue rectangles represent vehicles, the white lines represent the physical
layers on the road, the black lines are the curbs, and the dotted blue lines are the planning-based drivable
lane separators defined via lanelet2.

2.7 Chapter Summary

In this chapter, we presented the game-theoretic framework and the simplified interaction-
aware model utilized in this dissertation to formulate the human-robot interaction. We
represented human behavior via cost functions under the deterministic measure, the
EUT measure and the CPT measure to capture its diversity in terms of causality and ir-
rationality. Moreover, we discussed the formulation of the interaction-aware probabilistic
prediction, and the IRL algorithm to learn the cost functions from human demonstra-
tions. Finally, we briefly introduce the two dataset utilized throughout the dissertation.

Since we have established the cost functions as effective representation for human
behavior, in the next three chapters, i.e., Chapters 3-5, we will focus on the design of
reward functions to describe different aspects of human behavior such as social com-
pliance, hierarchy and irrationality. The corresponding learning algorithm/process for
each of them will also be introduced.
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Chapter 3

Courtesy Behavior Learning and
Generation

To enable autonomous systems to interact with human in a human-like manner, we
should design socially-compliant reward functions for them to optimize. In this chapter,
we will address this problem, using autonomous vehicles as an application example.

3.1 Introduction

As discussed in Chapter 2, we generate the behavior of autonomous systems by op-
timizing designed cost functions in the MPC framework. Traditionally, when designing
the robot’s cost function, we focus on the terms of the robot’s interest. For instance, for
autonomous cars, we care about the safety, efficiency and driving quality if a passenger
is on board. Arguably, such consideration alone is rather selfish.

Selfishness is not a problem for systems that work isolated without interacting with
others. Also, it may not be a problem for autonomous systems that behave conserva-
tively. Such conservative systems let the human move first during the interaction. They
predict all possible human trajectories assuming themselves as not being there, and re-
act to the worst scenario. Hence, such conservativeness makes robots always try to stay
out of the way and let people do first what they want. As we improve the efficiency of
autonomous systems, however, by adopting game theoretic approaches, the autonomous
systems may take advantage of its influence on humans. Under such circumstances, if
the reward function is not carefully designed, a selfish robot will make more aggressive
movements around human, as illustrated in Fig. For instance, a robot car can cut
people off, or inch forward at intersections to go first [118][119].

Hence, as we are getting better at solving the optimization problem by utilizing better
models of the world and of the people in it, there is an increased requirement for the cost
function we optimize to capture what we want. We propose that purely selfish robots
that care about their safety and driving quality are not good enough. They should also
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conservative policies aggressive policies

human car

robot car

Figure 3.1: As we get better at optimizing the efficiency of the robots by actively leveraging their influ-
ence to other human, a selfish reward design might generate too aggressive behavior which makes the
interaction with human not safe and not socially compliant.

be courteous to others. This is of crucial importance since humans are not perfectly
rational, and one of the irrationality is that they view utilities in a relative format with
a reference point instead of an absolute format, and they weigh loss higher than gains
when evaluating actions[146]. Hence, if a robot’s action brings too much loss to the
human’s utilities compared to the alternatives (the reference point) in his/her mind,
human tend to choose more defensive and non-cooperative actions to minimize his/her
loss.

We advocate that a robot should balance minimizing the inconvenience it brings to other
people, and that we can formalize inconvenience as the increase in the other people’s cost due to
the robot’s behavior.

In this chapter, our contributions are as follows:

A formalism for courtesy incorporating irrational human behavior. We formalize cour-
teous planning as a trade off between the robot’s selfish objective and a courtesy term,
and introduce a mathematical definition for this term for irrational human behavior —
we measure the increase of the vehicle’s best cost under the robot’s planned behavior,
compared to the vehicle’s best cost under an alternative "best case scenario”, and define
the cost increase as the courtesy term.

An analysis of the effects of courteous planning. We show the difference between
courteous and selfish robots under different traffic scenarios. The courteous robot leaves
the person more space when it merges, and might even block another agent (not a
person) to ensure that the human can safely proceed.

Showing that courtesy helps explain the social compliance in human driving. We do
an Inverse Reinforcement Learning (IRL)-based analysis to study whether
our courtesy term helps in better predicting how humans drive. On the NGSIM dataset
[6] of real human driver trajectories, we find that courtesy produces trajectories that are
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significantly closer to the ground truth.

3.2 A Two-Player Game

Following the game-theoretic framework in Chapter 2, we formulate the human-robot
interaction as a two-player game in this chapter, with R as the robot and H as a human.
Let x¢ and ug denote, respectively, the robot’s state and control input, and x5 and
ug; for the human’s. x:(xgz, XL)T represents the states of the interaction system. For

each agent, we have

XZCR—H =Tz (Xi%%/ ug%) ’ (31)
XS-_(._l = fgc (XJ&C/ US{) 7 (32)

and the overall system dynamics are
X = (xhud, ul) (3.3)

We assume that both the human driver and the autonomous car are optimal planners,
and they use Model Predictive Control (MPC) with a horizon of length N. Let Cy and
Cq¢ be, respectively, the cost functions of the robot car and the human driver over the

horizon:
N—1

Ci (xY, ug, ug; 0;) = Z ci <xt'k, uk, uk; 91> ,ie{R, FH} (3.4)
k=0
where ui:(u?, uil, e, u]i\lfl)T are sequences of control actions of the robot car (i=R) and
the human driver (i=3(), and x"* with k=0, 1,--- ,N—1 are the corresponding sequence
of system states. 0; represent, respectively, the preferences of the robot car (i=R) and the
human driver (i=7(). At every time step t, the robot car and the human driver generate
their optimal sequences of actions u} and uj; by minimizing Cy and Cy, respectively,
execute the first steps u&o and ué? (i.e., set u’{:ufo in ), and replan for step t+1.
Such an optimization-based state feedback strategy formulates the closed-loop dy-
namics of the robot-human interaction system as a game. To simplify the game, we
assume that the robot car has access to Cy;, and that the human only computes a best
response to the robot’s actions rather than trying to influence them, as in [119]. This
means that the robot car can compute, for any control sequence it considers, how the
human would respond and what cost the human will incur:

wj, = argmin Cy (X', ug, us; 05c) = g(x*, ug; 0s¢) (3.5)
ugc
Cic(ug) = Co¢ (xYug, moc(x', ug; 05¢); 09¢) . (3.6)

Here 7g¢(x!, ug; 04¢) represents the response curve of the human driver towards the au-
tonomous car.
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Armed with this model, the robot can now compute what it should do, such that
when the human responds, the combination is good for the robot’s cost:

uy = arg r{}in Cqp (xt, ug, 7i5¢ (X%, ug; 09¢); Ggg) . (3.7)
R

Hence, the next question is how to design an appropriate cost function such that
courteous robot behavior can be generated via (3.6). Our observation is that a courteous
robot car should care about not only its own interest such as speed and comfort, but
also the potential inconvenience it brings to the human driver’s utilities, and generates
trajectories that are socially predictable and acceptable. In the following sections, we do
so by integrating such inconvenience into the cost function of the robot.

3.3 Courteous Planning

We propose a courteous planning strategy that a courteous robot car should balance
the minimization of its own cost function and the inconvenience (loss) it brings to the
human driver. Therefore, we construct Cg in (3.7) as

Cx (x"ug, uge;02,030Ac) =C (xLug,uz0z) + A CEM™ (x', ug, ug;05¢),  (3.8)

where C?Re” is the cost function for a regular (selfish) robot car which cares about only its
own utilities (safety, efficiency, etc), and Cg{’u” models the courtesy term of the robot car
to the human driver. It is a function of the robot car’s behavior, the human’s behavior, the
human’s cost parameters (04¢) and some alternative costs (see Section A). Ac€10, 00)
captures the trade-off. If we want the robot car to be just as courteous as a human driver,
we could learn A; from human driver demonstration, as we do in Section As robot
designers, we might set this parameter higher than regular human driving to enable
more courteous autonomous cars, particularly when they do not have passengers on
board.

3.3.1 Alternative Costs

With any robot plan ug, the robot car changes the human driver’s environment and
therefore induces a best cost for the human, Cj (ug). Our courtesy term compares
this cost with the alternative, Cg{lt’* — the best case scenario for the person. It is not
immediately clear how to define this best case scenario since it may vary depending
different on driving scenarios. We explore three alternatives.

What the human could have done, had the robot car not been there. We first consider
a world in which the robot car wouldn’t even exist to interfere the person. In such a
world, the person gets to optimize their cost without the robot car:

C;l{lt'* (x%,09¢) = min Cq¢(xY, ugg; 09¢) (3.9)
ug(
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This induces a very generous definition of courtesy: the alternative is for the robot car
to not have been on the road at all. In reality though, the robot car is there, which leads
to our second alternative.

What the human could have done, had the robot car only been there to help the
human. Our second alternative is to assume that the robot car already on the road could
be completely altruistic. The robot car could actually optimize the human driver’s cost,
being a perfect collaborator:

5 (x*, 030) = min Cye(x", ug, ugs; ) (3.10)
Uz, UR
For this alternative, the robot car and the human would perform a joint optimization for
the human’s cost. For example, the robot car can brake to make sure that the human
could change lanes in front of it, or even block another traffic participant to make sure
the human has space.

What the human could have done, had the robot car just kept doing what it was
previously doing. A fully collaborative robot car is still perhaps not the fairest one to
compute inconvenience against. After all, the autonomous car does have a passenger
sometimes, and it is fair to take their needs into account too. Our third alternative
computes how well the human driver could have done, had the robot car kept acting the
same way as it was previously doing;:

Cg{lt’*(xt, 04¢) = min Cqc(xt, u&‘l, uqg; 04¢) (3.11)
ug¢

This means that the person is now responding to a constant robot trajectory u&_l =

(ulh, ., ul ), for instance, maintaining its current velocity.
Our experiments below explore these three different alternative options for the cour-

tesy term.

3.3.2 Courtesy Term

We define the courtesy term based on the difference between what cost the human
has, and what cost they would have had in the alternative, as illustrated in Fig.
Definition 1 (Courtesy of the Robot)

C(g:zou‘rt(xt, ug, usg; 03¢) = max{0, Cy (Xt, Uy, ugg; Og¢) — Cg(ltl* (Xt; 05¢)} (3.12)

Note that we could have also sent the courtesy term to simply be the human cost,
and have the robot trade off between its cost and the human’s. However, that would
have penalized the robot for any cost the human incurs, even if the robot does not bring
any inconvenience to the human. That might cause too conservative behavior. In fact,
if we treat the alternative cost as the reference point in Prospect Theory — a human ir-
rationality model [146], then the theory suggests that human weigh losses more than
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Figure 3.2: An illustration of the courtesy term defined in . The robot car will compare two of the
human’s utilities: the alternative utilities and the responsive utilities caused by responding to the robot’s
actions. If the responsive utility is larger than the alternative utility, the action of the robot is bringing
additional cost to the human and the robot should be aware of that and balance it in its optimization

gains. This means that our courteous robot car should care more about avoiding addi-
tional inconvenience, rather than providing more convenience, i.e., helping to reduce the
human cost lower than the alternative one. Mathematically, this concept is formulated
via Definition 1: the robot does not get any bonus for bringing the human cost lower
than Cg{lt’* (possible with some definitions of Cg{lt’*), it only gets a penalty for making it
higher.

3.3.3 Solution

Thus far, we have constructed a compound cost function Cg(x!, ug, usg; 0, 03¢, Ac) to
enable a courteous robot car, considering three alternative costs. At every step, the robot
needs to solve the optimization problem in to find the best actions to take. We
approximate the solution by alternatively fixing one of ug or ug, and solving for the
other. This problem can also be solved as a nested optimization problem as in [119], and
you can find more details regarding the solutions there.

3.4 Analysis of Courteous Planning

In this section, we analyze the effect of courteous planning on the robot’s behavior in
different simulated driving scenarios. In Section we study how courteous planning
can help better explain real human driving data, enabling robots to be more human-like
and predictable, as well as better able at anticipating human driver actions on the road.
Simulation Environment: We implement the simulation environment using Julia [46]] on a
2.5 GHz Intel Core i7 processor with 16 GB RAM. We set the horizon length to N=10,
and the sampling time to 0.1s. Our simulated environment is 1/10 scale of the real
world: 1/10 road width, car sizes, maximum acceleration (0.5m/s?) and deceleration
(-1.0m/s?), and low speed limit (1.0m/s).
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Regarding the cost functions Cg¢ and Cg in (3.6)-(3.8), except for the courtesy term
formulated above, we penalize safety, car speed, comfort level and goal distances in both
Cq and C;}elf. Details about this can be found later in Section

For all results, we denote a selfish (baseline) autonomous car with gray rectangle, a
courteous one as orange, and the human driver as dark blue.

3.4.1 The Effect of Courtesy

Lane Changing

We first consider a lane changing driving scenario, as shown in Fig. 3.3/ and Fig.
The autonomous car wants to merge into the human driver’s lane from an adjacent
lane. We assume that the goal of the human driver is to maintain speed. Then all
three different alternatives lead to the same alternative optimal behavior and cost of
the human: the human would go in their lane undisturbed by the robot. Hence, with

constant Cg}t’*, we focus on the influence of the trade-of factor A. in the results.

Speed (m/s):
human: 0.78 human: 0.7 human:0.75  human: 0.80 human: 0.85 human: 0.85 human: 0.85 human: 0.85 human: 0.85
robot: 1.0 robot: 1.0  robot: 1.0 robot: 1.0  robot: 1.0 robot: 1.0 robot: 1.0 robot: 1.0  robot: 1.0

(a) selfish robot car: (b) intermediate courteous robot car: (c) most courteous robot car:
human driver’s inconvenience = 0.2063 human driver’s inconvenience = 0.0173 human driver’s inconvenience = 0

Figure 3.3: A lane changing scenario: both the human car and robot car speed at 0.85 m/s initially; (a)
a selfish robot car (grey) merges in front of the human (blue) with a small gap so that the human brakes
to yield; (b) an intermediate courteous robot car (orange) merges with a larger gap, which releases the
human driver from hard brakes; (c) a most courteous robot car (orange) merges with a gap large enough
so that the human can maintain speed.

We present two sets of simulation results in Figs. 3.3 - where the initial human
driver’s speeds are 0.85 m/s and 0.9 m/s respectively. The results show that as A,
increases, i.e., being more courteous, the autonomous car tends to leave a larger gap
when it merges in front of the human, and the human brakes less (Fig. 3.3| from left to
right). When the human driver’s initial speed is high enough, a courteous autonomous
car decides to merge afterwards instead of cutting in, as shown in Fig.
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(a) aselfish  (b) an intermediate (c) a most cour-
robot car courteous robot car teous robot car

Figure 3.4: The overview of the trajectories for the lane changing scenario in Fig. A most courteous
robot car (orange) merges with the largest gap, minimizing possible inconvenience brought to the human.

Speed:
human: 09 human: 0.8 human: 0.7 human:0.9 human:0.9 human: 0.9
robot: 099 robot: 1.0 robot: 1.0 robot: 0.92 robot: 0.85 robot: 0.85
2 0
N | |
L}
0
0 L
(a) selfish robot car: (b) courteous robot car:
human driver’s sacrifice = 0.385 human driver’s sacrifice = 0

Figure 3.5: Another lane changing scenario: both the human car and robot car speed at 0.9 m/s initially;
(a) a selfish robot car (grey) accelerates and merges in front of the human driver (blue) with a small gap,
scaring the human driver to brake; (b) a courteous robot car (orange) decelerates and merges after the
human driver so that the human can maintain speed.

Figure summarizes the relationship between the human driver’s inconvenience
(the magnitude of the courtesy term) and A. for the simulation conditions in Fig.
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One can note that as the courtesy of the autonomous car increases, the human driver’s
inconvenience decreases.

0.20
0.15

0.10

human’s inconvenience

1073 107! 10! 10° 10°
Courtesy weight A,

Figure 3.6: Inconvenience to the human decreases as the robot increases the courtesy weight A, in its cost
function.

Turning Left

In this scenario, an autonomous car wants to take a left turn at an intersection with a
straight-driving human. In this case as well, the alternative behaviors that we consider
when evaluating inconvenience are the same among three different alternatives: the
human driver crosses the intersection maintaining speed.

Simulation results with a courteous and selfish autonomous car are shown in Fig.
where a selfish robot car takes a left turn immediately and forces the human driver to
brake (Fig. B.7(a)); while a courteous robot car waits in the middle of the intersection
and takes the left turn after the human driver passes the intersection so that the human
can maintain its speed (Fig. b)).

(a) a selfish robot car takes the left turn first (b) a courteous robot car waits until the human
and forces the human driver to brake driver passes the intersection

Figure 3.7: Interaction between a straight-driving human and a left-turning autonomous car: (a) a selfish
(baseline) robot car takes a left turn immediately and forces the human driver to brake (red frames); (b) a
courteous robot car waits in the middle of the intersection and takes the left turn after the human passes
so that the human can maintain speed.
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3.4.2 Influence of Different Alternative Costs for Evaluating
Inconvenience

In the previous examples, the human would have arrived at the same trajectory re-
gardless of which alternative world we are considering to evaluate how much inconve-
nience the autonomous car is causing. Here, we consider a scenario in which that is no
longer the case to highlight the differences generated by the alternative formulations of
courtesy in the robot car’s behavior.

We consider a scenario where the human is turning right, with a straight-driving
robot car coming from their left. In this scenario, the three alternative costs are different,
which leads to different courtesy terms:

* Alternative I-Robot car not being there: the optimal human behavior would be to
take a right turning directly;

* Alternative II-Robot car being collaborative: the robot would take the necessary
yielding maneuver to let the human driver take the right turn first, leading to the
same alternative optimal human behavior of performing the right turn directly;

¢ Alternative III-Robot car maintaining behavior: the robot car would maintain its
speed, and the optimal human behavior would be to slow down.

Figure 3.8 summarizes the results of using these different courtesy terms. In Alter-
native III, a courteous robot car goes first, as shown in Fig. 3.8(a). Intuitively, this is
because Cg}t’* is initially high, and by maintaining its speed (or even accelerating de-
pending on C§¢'f), no further inconvenience is brought to the human by the robot car,
ie., ngo‘”t remains zero. Hence, the robot car goes first (Had the robot try to brake, it
only increases Ci¢'f without changing C5°“t=0, and therefore Cy increases). The other
two alternatives (I and II) are much more generous to the human. Results in Fig. [3.8(b)
show that a courteous robot car finds it too expensive to force the human to go second,
and slows down to let the human go first. The red frames in Fig.3.8(b) indicate the time
instants when the autonomous car brakes.

0 ! D ! T —
(a) a courteous robot car forces the human to go second (b) a courteous robot car yields and let the human go first

Figure 3.8: Interaction between a right-turning human driver and a courteous autonomous car with dif-
ferent alternatives when evaluating the courtesy terms: (a) the robot car goes first when it evaluates the
courtesy term using going forward as an alternative world; (b) the robot car yields and let the human go
first when it evaluates the courtesy term based on a collaborative or not-being-there alternative world.
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3.4.3 Extension to environments with multiple agents

We study a scenario on a two-way road. The robot car and the human are driving
towards opposite directions, but the robot car is blocked and it has to temporarily merge
into the human driver’s lane to get through, as in Fig. We use the collaborative robot
as our alternative formulation of the courtesy term in this scenario.

—_ e

(a) a selfish robot car forces the human brake

(b) a courteous robot car yields

=3 [
T

(c) a courteous robot car helps to block the other car
Pselfish [ courteous [human | other car =<]blocked area

Figure 3.9: A blocking-area overtaking scenario: (a) with a selfish cost function, the robot car overtakes
first and forces the human driver to brake; (b)(c) a courtesy-aware robot car yields to the human driver
and even helps to block other cars depending on its formulation of the human driver’s alternative world

When there are only two agents in the environment, i.e., the autonomous car and
the human driver, the results for a selfish and a courteous autonomous car are shown
in Fig. B.9(a)-(b): A selfish autonomous car directly merges into the human’s lane and
forces the human driver to brake; while a courteous autonomous car decides to wait
until the human driver passes by since the courtesy term becomes too expensive to go
first.

Such courtesy-aware planning becomes much more interesting when there is a third
agent in the environment, as shown in Fig. 3.9(c). We assume that the third agent is a
responsive agent to the autonomous car and the autonomous car is courteous only to the
human driver (and not to both). In this case, for C;}t’*, the human would ideally want
to pass undisturbed by either the robot or the other agent: the courtesy term captures
the difference in cost to the human between the robot’s behavior and the alternative of
a collaborative robot, and this cost to the human depends on how much progress the
human is able to make and how fast. As a result, a very courteous robot has an incentive
to produce behavior that is as close as possible to making that happen.

Then an interesting behavior emerges: the autonomous car first backs up to block
the third agent (the following car) from interrupting the human driver until the human
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driver safely passes them, and then the robot car finishes its task. This displays truly
collaborative behavior, and only happens with high enough weight on the courtesy term.
This may not be practical for real on-road driving, but it enables the design of highly
courteous robots in some particular scenarios where human have higher priority over all
other autonomous agents.

3.5 Courtesy Helps Explain Human Driving

Thus far, we have shown that courtesy is useful for enabling cars to generate actions
that do not cause inconvenience to other drivers. We have also seen that the larger the
weight we put on the courtesy term, the more the car behavior becomes social. A natural
next question is — are humans courteous?

Our hypothesis is that our courtesy term can help explain human driving behavior. If
that is the case, this has two important implications: it means that it can enable robots to
better predict human actions by giving them a more accurate model of how people drive,
and it also means that robot can use courtesy to produce more human-like driving.

We put our hypothesis to the test by learning a cost function from human driver data,
with and without a courtesy feature. We find that using the courtesy feature leads to
a more accurate cost function that is better at reproducing human driver data, lending
support to our hypothesis.

3.5.1 Learning Cost Functions from Human Demonstrations
Human Data Collection

The human data is collected from the Next Generation SIMulation (NGSIM) dataset
[6], which captures the highway driving behaviors/trajectories by digital video cameras
mounted on top of surrounding buildings. We selected 153 left-lane-changing driving
trajectories on Interstate 80 (near Emeryville, California), and separated them into two
sets: a training set of size 100 (denoted by Up, i.e., the human demonstrations), and the
other 53 trajectories as the fest set.

Learning Algorithm

We use Inverse Reinforcement Learning (IRL) [1, 166, 2, |73]] to learn an appropriate
cost function from human data.
We assume that cost function is parameterized as a linear combination of features:

c(xt, ub, ul; 0) = 0Td(xh, ub, uly). (3.13)
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Then over the trajectory length L, the cumulative cost function becomes

-1
C(x", ug, ug;0) = 0" ) b(x",ufy, uf) £ 0TD(x’, u, 3) (3.14)
t=0

where ug and us¢ are, respectively, the actions of the robot car and the human over
the trajectory. Our goal is to find the weights 6 which maximizes the likelihood of the
demonstrations:

0% = arg max P(UplO) (3.15)

Building on the principle of maximum entropy, we assume that trajectories are exponen-
tially more likely when they have lower cost:

P(ug(, 0) x exp (—C(xo,ugg, ug{;9)> . (3.16)
Thus the probability (likelihood) of the demonstration set becomes

P(ujl?(,i/ e) o ]_l,n P(u%’i/ e)

P(UDIO) =TT =5 ) = T T ay, 0) s

(3.17)

where n is the number of trajectories in Up. For more details about the algorithm, one
can refer to Section 2.5/in Chapter 2.

3.5.2 Experiment Design

Hypothesis. Within human interactions, human drivers show courtesy to others, i.e.,
they optimize a compound cost function in the form of C = C%¢!f 4 A CCOWt ag
instead of a selfish one as C*¢!f.
Independent Variable. To test our hypothesis, we run two sets of IRL on the same set
of human data, but with one different feature. For the selfish cost function C3¢¥, four
features are selected as follows:

* speed feature f,: deviation of autonomous car’s speed compared to the speed limit:
fd = (V —Vd)z (318)

¢ comfort features fqcc and fsieer: jerk and steering rate of the autonomous car;
* goal feature fy: distance to the target lane:

dg

fg=em, (3.19)

where dg is the Euclidean distance and w is the lane width.
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* safety feature f: relative positions with respect to surrounding cars;
Ns
fo=) ed, (3.20)
i=1

where ng is the number of surrounding cars and d;, i=0,1, - - - , n¢ is the distance to
each of them.

For the courtesy-aware cost function C = CS¢f 4 A.C°"t, we use the same four
features as above, plus one additional feature that equals to the courtesy term.
Dependent Measures. We measured the similarity between trajectories planned with the
learned cost functions and human driving trajectories on the fest set (another 53 left-lane
changing scenarios that are different from the training set from the NGSIM dataset).

3.5.3 Analysis

Training performance. The training results are shown in Fig. and Table One
can see that with the additional courtesy term, better learning performance (in terms of
training loss) has been achieved. This is a sanity check: having access to one extra DOF
can lead to better training loss regardless, but if it did not that would invalidate our
hypothesis.

5 l —— w/ courtesy term

@ |\ e w/ 0 courtesy term
S 4"
oD
5
g3
&) |
=< |
- |
e |
o \
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0 0.5 1 1.5 2 2.5 3

Training iterations %x10*

Figure 3.10: Training curves for cost functions with and without the courtesy term: with the courtesy term,
the learning loss is much lower, meaning that adding the courtesy term as a feature can better explain the
human demonstrations.

Trajectory similarity. Figure shows one demonstrative example of the trajectories
for a selfish car (grey) and a courteous car (orange), with four surrounding vehicles.
The dark blue rectangle is the human driver in our two-agent robot-human interaction
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‘ ‘ eg ‘ 04 ‘ Oacc ‘ Osteer ‘ 05 ‘ Ac ‘
Cset [ 1.0 | 2.08e+04 | 5.80e+02 | 3.91e+02 | 4.37 -
C |10 19e+02 | 6.7e+04 | 2.36e+02 | 6.53 | 9.89e+04

Table 3.1: The parameters in C learned via IRL

system and all other vehicles (cyan) are treated as moving obstacles. It shows that a
simulated car with C that includes courtesy manages to reduce its influence on the
human driver by choosing a much smoother and less aggressive merging curve, while a
car driven by C*¢ merges in much aggressively.

Simulated human trajectory with a courteous cost function

Simulated human trajectory with a selfish cost function

[ selfish courteous surrounding cars [llhuman driver

Figure 3.11: An example pair of simulated trajectories with courteous (top) and selfish (bottom) cost
functions. Compared to the selfish robot car, a courteous robot car can generate less aggressive manuveurs
for better interaction with human.

Results for all 53 left-lane changing test trajectories are given in Fig. (left). To
describe the similarities among trajectories, we adopted the Mean Euclidean Distance
(MED) [110]. As shown in Fig. (right), the courtesy-aware trajectories are much
similar to the ground truth trajectories, i.e., a courteous robot car behaves more human-
like. We have also calculated the space headways of the following human driver on the
robot car’s target lane for all 53 test scenarios, and the statistical results are given in
Fig. (middle). Compared to a selfish robot car, a courteous robot car can achieve
safer left-lane changing behaviours in terms of following gaps for the human driver
behind.
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Figure 3.12: The courtesy term helps fit test set human driver data significantly better: we can see this
from the actual trajectories (left), the following gaps (middle), and the mean euclidean distances from the
ground truth human data (right).

3.6 Chapter Summary

As one of the key social compliance in human behavior, courtesy influences how
humans interact with each other. In this chapter, we introduced our approaches to
formulate such courtesy term and integrated it as a feature in the cost representation for
human behavior. Utilizing autonomous vehicles as an application example, we designed
a courteous planning strategy which encourages the autonomous vehicle to care not
only its own utilities, but also the additional inconvenience it brings to by others. We
saw that the introduction of the courtesy term not only can helps better capture real
human driving behaviors, but also encourages the generation of more human-like robot
behavior.

Like any research, the work in this chapter is limited in many ways. Human'’s behav-
ior is diverse, and we studied only one aspect of it: the courtesy in interactions. More
aspects such as the hierarchy and irrationality will be covered in later chapters. Another
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limitation is that we focused on two-player interaction where the robot was showing
courtesy to a single human driver (we had other agents, but the robot did not attempt
courtesy toward them). In real life, there will be many people on the road, and it be-
comes difficult to be courteous to all. Further work needs to push courtesy to the limits
of interacting with multiple people in cases where it is difficult to be courteous to all.

Despite these limitations, we are encouraged to see that autonomous vehicles can
generate more human-like behaviors via appropriate reward design learned from hu-
man demonstrations. We believe that the courteous planning strategy proposed in this
chapter can be well applied to other application domains beyond autonomous driving,
including for instance mobile robots in warehouses, home services robots and in general
human-robot interactive scenarios.
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Chapter 4

Hierarchical Reward Design and
Learning

In Chapter (3| we formulated one aspect of the social compliance, i.e., the courtesy,
to capture the human behavior and introduced it as a feature in the reward function
for robots to encourage the generation of more human-like behavior. As mentioned in
Chapter [I} beyond social compliance, human behavior is also naturally hierarchical [84,
109, 1169, [120].

The work in this chapter discusses the problem of capturing the hierarchical structure
in human’s behavior policy and utilizing it in the reward design and learning. Again
we use autonomous vehicles as an application example, but the approach developed can
be well applied to other human-robot interaction systems such as UAVs, service robots,
and mobile manipulators.

4.1 Introduction

Humans make decisions based on what they observe, what they believe, and what
they want to achieve. Intrinsically, this is the human’s behavior generation policy. In-
stead of being end-to-end, extensive evidence has been found, proving that human'’s
decision-making procedure is hierarchical, particularly in complex scenarios [169, 120]. Imag-
ine that you are driving on highways trying to change to the lane on your left where there
is another car driving at a relatively lower speed, as shown in Fig. The first discrete
decision your probably will make is whether to change and enter the lane in front of the
other car, or change from the behind. Once you make a decision, you will think about
the continuous coordination between the lateral maneuvers and the longitudinal acceler-
ations to execute that decision into trajectories. Similar scenarios happen at intersections
where two cars arrive almost simultaneously. Before they drive through the intersection,
they first need to decide whether to pass or yield. Once they decide to go, they will then
pay more attention to how they accelerate.
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initial condition discrete decisions continuous trajectories

Figure 4.1: An illustration example on driving for the human’s hierarchical decision-making procedure. A
person (white) is trying to change to his/her left lane which is occupied by another human driver (blue))
at a relatively lower speed. First, the person should make a discrete decision about the way he/she change
lanes, i.e., from the front or behind. Under each decision, he/she will decide how to maneveur the vehicle
to fulfil the decision.

Actually, in most human-robot interaction systems, the hierarchical decision-making
process exists, and there might be many layers involved. For instance, when a doctor
tries to identify a disease, he might need to go through a decision tree to make a final
judgement. Following our game-theoretic settings in Chapter 2, we focus on the scenar-
ios with only two layers, with the first layer for discrete decisions and the second layer for
continuous trajectories. The discrete decisions are also often interpreted as intentions or
motion patterns in other literature such as pass or yield, merge from the front or be-
hind, and different driving styles for accelerations. The continuous trajectories/maneuvers
are the temporal-spatial movements of the agent. As a hierarchical structure, discrete
decisions from the first layer will influence the priors for the continuous trajectories.
For instance, when a human decides to pass the intersection first while the other driver
is waiting, he/she probably will pay less attention to the comfort. On the contrary, if
he/she decides to pass after, he/she will accelerate more comfortably with smaller jerks.

Our key observation in this chapter is that human’s behavior generation policy is naturally
hierarchical, involving both discrete and continuous interactive decisions. Such hierarchy and
the internal influences should be reflected in the structure of our reward design to facilitate better
description of human behavior.

Contributions of this chapter are the following two.

A formalism of the hierarchical reward design in a general human-robot interaction
system. We formalize the hierarchical reward function design in a general human-robot
interaction system instead of cooperative scenarios as in [62]. By explicitly considering
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the responses of one agent to another, we have translated the hierarchical reward design
into a mixture of interation-aware behavior distribution of the human behavior. Both
the future decisions and trajectories of the human depends not only on historical and
current states, but also on potential plans of the interacting vehicle.

A hierarchical inverse reinforcement learning framework on human driving data. We
explicitly consider the hierarchical planning procedure of human drivers, and formulate
the influences of both discrete and continuous driving decisions. Via hierarchical IRL,
the hierarchical reward for human drivers for highway merging is learned, which can
be utilized for autonomous vehicles to generate either human-like merging actions or
better prediction of human’s merging behaviors.

4.2 Hierarchical Reward Design

In this section, we will autonomous vehicles to explain the design of the hierarchical
reward design. We focus on the high-way merging scenario as shown in Fig. 4.2| where
the white car is trying to merge onto the right-most lane of the highway occupied by the
blue car who is doing lane keeping. Other cars (red) are treated as environment states
and we do not model the interactions between them and our interaction system (white
and blue cars).

§ ¢ 8

surrounding  ramp-  lane-keeping
' vehicle merging car

car

Figure 4.2: A ramp-merging scenario: we focus on the interaction between a ramp-merging car (white)
and a lane-keeping car (blue). Other cars are treated as environment states.

We discuss the behavior for both the blue and white cares. When we design the cost
functions for each of them, the one we are focusing on is defined as a target vehicle
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denoted by (-)am, and the other will serve as a host vehicle, denoted by (). All other
in-scene vehicles are treated as surrounding vehicles, denoted by (-)io with i=1,2,---N
where N is the number of surrounding vehicles. Throughout this chapter, we use &
to represent historical vehicle trajectories, and & for future trajectories. A trajectory is
defined as a sequence of states, i.e., £ = [x{, xg, e ,XE]T where x; is the vehicle state at
i-th time step. L is the trajectory length. Depending on the representation, the vehicle
state can be different. For instance, it can simply be the positions of vehicles, or it can

include velocities, yaw angles, accelerations, etc..

4.2.1 Features for Continuous Trajectories

The continuous trajectories describe the high-order dynamics of how human drive.
The features we selected to parametrize the continuous trajectories can be grouped as
follows:

* Speed - The incentive of the human driver to reach a certain speed limit vy, is

captured by the feature
L

fu(Em) = ) (v —vim)?, (4.1)

t=0

where v; is the speed at time t along trajectory &y and L is the length of the
trajectory.

e Traffic - In dense traffic environment, human drivers tend to follow the traffic.
Hence, we introduce a feature based on the intelligent driver model (IDM) [59]

L
fiom(ém) = Z st—siPM)?, (4.2)
t=0

where sy is the actual spatial headway between the front vehicle and predicted
vehicle at time t along trajectory &y, and siPM is the spatial headway suggested by
IDM.

¢ Control effort and smoothness - Human drivers typically prefer to drive efficiently
and smoothly, avoiding unnecessary accelerations and jerks. To address such pref-
erence, we introduce a set of kinematics-related features:

L L 2
facc(éM) = Z a%/ fjerk(‘%-vM) - Z (atA—(Etl> ’ (4-3)
t=0 t=1

where a; represents the acceleration at time t along the trajectory éM. At is the
sampling time.
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* Clearance to other road participants - Human drivers care about their distances to
other road participants when they drive since distance is crucially related to safety.
Hence, we introduce a distance-related feature

L N+1 (x¢— X 71315)2
fdlst E»M Z Z e 12 we o, (4-4)
t=0 k=1

where (x¢,y¢) and (x¥, yk) represent, respectively, the coordinates of the predicted
vehicle along &)1 and those of the k-th surrounding vehicle. Parameters 1 and w are
the length and width of the predicted vehicle. We use coordinates in Frenet Frame
to deal with curvy roads, i.e., x denotes the travelled distance along the road and
y is the lateral deviation from the lane center.

* Goal - This feature describes the short-term goals of human drivers. Typically, goals
are determined by the discrete driving decisions. For instance, if a lane-changing
vehicle decides to merge in front of a host vehicle on his target lane, he will set his
short-term goals to be ahead of the host vehicle. The goal-related feature is given
by

L
folEm) =D (xeye) — (<, y)II3. 4.5)

t=0

¢ Courtesy - Most of human drivers view driving as a social behavior, meaning that
they not only care about their own cost, but also care about others’ cost, particularly
when they are merging into others’ lanes [135]. Suppose that the cost of the host
vehicle is Cyy(&nm, &, &1y), then to address the influence of courtesy to the interaction,
we introduce the feature

fcourt((%—yl\/l) = maXx {CH (?—vM/ & éH) _Cﬁefault’ 0} . (4.6)

This feature describes the possible extra cost brought by the trajectory &y of the
predicted vehicle to the host vehicle, compared to the default host vehicle’s cost
CﬂEfault. We can learn about Cy(-) also from demonstrations. Details about this
will be covered in the case study. For more details regarding the courtesy term,
one can refer Chapter

For vehicles in different driving scenarios, or under different discrete driving deci-
sions, the features we used to parametrize their costs are different subsets of the above
listed ones. For instance, drivers decided to merge behind or front would set different
goals, and drivers with right of way would most likely care less about courtesy than
those without.

Remark I: Note that all variables vy, ay, 6+, xt and Yt in can be expressed as
functions of trajectory £m. For instance, if we define EM = [xo,yo, -, x1,y1)" where x
and y are the coordinates in Frenet Frame, then we can obtain all Varlables via numerical
differentiation. Details are omitted.



CHAPTER 4. HIERARCHICAL REWARD DESIGN AND LEARNING 52

4.2.2 Features for Discrete Decisions

Different from the continuous driving decisions that influence the higher-order dy-
namics of the trajectories, the discrete decisions determine the homotopy of the trajec-
tories. To capture this, we selected the following two features to parametrize the cost
function that induces the discrete decisions:

* Rotation angle - To describe the interactive driving behavior such as overtaking
from left or right sides, merging in from front or back, we compute the rotation
angle from (x¢, yt) to (x¢H, Y1) along trajectory éMEEdM. Define the angle as wy,
and then the rotation angle feature is given by

L

f(dv) = Y w (4.7)

=0
where dy, is a discrete decision and L is the length of the trajectory &p,.

* Minimum cost - It is also possible that human drivers make discrete decisions by
evaluating the cost of trajectories under each decision, and select the one leading
to the minimum-cost trajectory. To address this factor, we consider the feature

fCOSt(dM) = nélln GEM fdM (éM/ é/ éH) (48)
M
where 04,, and fg,,, respectively, represent the learned parameters and selected
features for the continuous trajectory distribution under discrete decision dy.

4.3 Interaction-Aware Hierarchical Reward Learning

4.3.1 Hierarchical Rwards as a Mixture of Distributions

Since we present behavior generation policies via reward functions, different reward
functions lead to different distributions of trajectories, as discussed in Chapter 2} Follow-
ing this thread, in this section, we translate the learning of hierarchical reward function
into a probabilistic prediction problem with a hierarchical structure.

Figure {4.3|illustrates such probabilistic and hierarchical trajectory—generation process
for a lane-changing driving scenario. The predicted vehicle (blue) is trying to merge into
the lane occupied by the host vehicle (red). Given all observed historical trajectories
E,:{E}):N, &n, Em) and his belief about the host vehicle’s future trajectory &1, he first de-
cides whether to merge behind the host vehicle (d,lvl) or merge front (dlz\/l)' Such discrete
driving decisions are outcomes of the first-layer probability distribution P(dmlé, &), and
partition the space of all possible trajectories into two distinct homotopy classesﬂ each of

2Two trajectories belong to a same homotopy class if they can be continuously transformed to each
other without collisions [62].
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them can be described via a second-layer probability distribution p(&mldm, & &1). Note
that among different homotopy classes, the distributions of the continuous trajectories
can be significantly different since the driving preference under different discrete deci-
sions may be different. For example, a vehicle decided to merge behind might care more
about comfort and less about speed, while a vehicle merging front might care about
completely the opposite.

5 = {énggHa &W}

P(dul€, Emr)

p(éM|€7 éH)

p(éarldls, & Em) p(Ene|d3s, € Emr)

N Jl\
i

7/ S 7
o = e T -
_

Observed demonstrations = = {51"{4}

Figure 4.3: The probabilistic and hierarchical trajectory generation process for a lane changing scenario.
The predicted vehicle (blue) is trying to merge into the lane of the host vehicle (red). Given all observed
historical trajectories &z{&ldN,EH,EM} and his belief about the host vehicle’s future trajectory &1, the
trajectory distribution of the predicted vehicle over all the trajectory space is partitioned first by the discrete
decisions: merge behind (d}vl) and merge front (d%vl). Under different discrete decisions, the distributions
of continuous trajectories can be significantly different, and each of them is represented via a probability
distribution model. The observed demonstrations are samples satisfying the distributions.

Hence, the conditional distribution p(éMli, £11) is formulated as a mixture of distri-
butions, which explicitly captures the influences of both discrete and continuous driving
decisions of human drivers:

pEMIE &) = ) plEmldin, & En)P(diIE, En) (4.9)

d}\AGQM
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where Dy, represents the set of all possible discrete decisions for the predicted vehicle.
Again based on the principle of maximum entropy, we have the probability in each of
the distribution on the right-hand side of satisfying:

P(Emldiy & E;0qy,) o e ClEmAbfay) (4.10)
P(dilE, Erifa) o e Ittt (4.11)

where 04,, is the weight vector characterizing the cost function C (Enm, &, éH;OdM) for
the continuous trajectory, while f,) is the weight vector for the discrete cost function

C(d}\/[/ E»/ éH/ fd)

4.3.2 Learning of the Hierarchical Rewards

Suppose that the demonstration set = is partitioned into |D| subsets by the discrete
decisions d}v[eD. |D| is the dimension of D. Each subset = a, contains trajectories that
belong to the same homotopy class. We represent each demonstration in =Z; by a tuple
(Em, d}vl, £, &) where Ez[&%N, &n, Em] represents all historical information.

Continuous-Space IRL

Since the trajectory space is continuous and demonstrations are noisily local-optimal,
we use Continuous Inverse Optimal Control with Locally Optimal Examples[74]. Un-
der discrete decision dy, we assume that the cost of each trajectory can be linearly
parametrized by a group of selected features {f4,, }, i.e., C(84,,, EM,E &) = egM fay, (Em,
£,&1). Based on , the log likelihood of the given demonstration subset {Z4,,} is
given by

e_C(edM /éM/E;/éH )

log P(Zay,0ap )= D _ (4.12)

log —.
EMGEdM J“ e*C(edMﬂiM,E,EH) A&
Our goal is to find the optimal 04,, such that the given demonstration set is most likely
to happen:

03,, = argmaxP(Zg,,104,,)- (4.13)

84y,

Using the Laplace approximation proposed in [74], we end up solving an optimization
problem given by

min > gl (8ay)H;! (Bay)9;,, (Bay) —logIH;,, (Bay, )l (4.14)

04
M 2 —
EMEZay,

Regarding more details, one can refer Section in Chapter 2| or [74] as references.
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Discrete-Space IRL

Similarly, we assume that the decisions with lower cost are exponentially more prob-
able. We also assume that the cost function is linearly parametrized by 1y and feature
vector 4 = [f/, feost] |, 1.€., C4(dpm, ) =P 4 (dm). Again, our goal is to find the optimal
VP * such that the likelihood of the demonstration set = is maximized:

e_II’de (dM )

mll?x P(Zhp) = mllz;\x H (4.15)

By taking the log probability and gradient-descent approach, the parameter 1 is updated
via

bep1=ths—a (% ;fd(dM)—ZaMP(aMlxps)fd(aM)> : (4.16)

e_wzfd(al\/l)
Z& e e—WIfd(dm)’
M

where « is the step size and N is the number of demonstrated trajectories in set =Z. To
estimate the probability P(dahbs), we use sampling-based method. Detailed implemen-
tation will be covered later in the case study.

P(dmhbs) = (4.17)

Reverse Learning Process

As shown in Section we utilize the reward function when acquiring the features
for the discrete decisions. Hence, the reward learning process is performed in a reverse
order: we first learn the continuous reward functions, utilize it to calculate the features
for the discrete decisions, and then learn the cost function for the discrete decision layer.

4.4 A Case Study

In this section, we apply the proposed hierarchical IRL approach to model the inter-
active human driving behavior in a ramp-merging scenario.

4.4.1 Data Collection

We collect human driving data from the Next Generation SIMulation (NGSIM) dataset
[6]. It captures the highway driving behaviors/trajectories by cameras mounted on top of
surrounding buildings. The sampling time of the trajectories is At=0.01s. We choose 134
ramp-merging trajectories on Interstate 80 (near Emeryville, California), and separated
them into two sets: a training set of size 80 (denoted by Z, i.e., the human demonstra-
tions), and the other 54 trajectories as the test set.
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Figure shows the road map (See [6] for detailed geometry information) and an
example group of trajectories. There are four cars in scene, one merging vehicle (red),
one lane-keeping vehicle (blue) and two surrounding vehicles (black), with one ahead
of the blue car and the other behind. Our interest focuses on the interactive driving
behavior of both the merging vehicle and the lane-keeping vehicle.

-] cqm ] ]

Figure 4.4: The merging map on Interstate 80 near Emeryville, California. Red: merging vehicle; Blue:
lane-keeping vehicle; Black: other surrounding vehicles

4.4.2 Driving Decisions and Feature Selection

We use the same hierarchical IRL approach to model the conditional probability dis-
tributions for both the merging vehicle and the lane-keeping vehicle.

Driving Decisions

In the ramp-merging scenario, the driving decisions are listed as in Table As
mentioned above, x=[x1,---,x.]" and y=[y,--- ,yt]' are, respectively, the coordinate
vectors in Frenet Frame along the longitudinal and lateral directions. L is set to be 50,
i.e., in each demonstration, a trajectory with a length of 5s is collected.

| \ Discrete Decisions | Continuous Decisions |
merging-in D = trajectory
vehicle {merge front, merge back} | &=[x1,y,- - x,yrl’
lane-keeping D= trajectory
vehicle {yield, pass} E=Ix1,y1, - ,xL,yL]T

Table 4.1: Driving decisions for the interactive vehicles

Feature Selection

Since the right of way for the merging vehicle and the lane-keeping vehicles are
different, we define different features for them.

For the lane-keeping vehicle, the feature vectors related to the continuous driving
decisions are as follows:

* Yield: fyie1q=I[fv, face, fierks Tdists fg]T. We exclude the feature fipy; because once the
lane-keeping driver decides to yield to the merging vehicle, it is very likely that
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he cares more about the relative positions to the merging vehicle instead of the
heading space to the front vehicle when he plans his continuous trajectories. The
goal position in fq is set to be [Xcurrent lane centers Yt,merging vehicle—S0l, i-e., sop behind
the merging vehicle along longitudinal direction.

* Pass: fpass=[fv, fiom, face, fierk, faists fg]T. In this case, the goal position in fg is set to
be ahead of the merging vehicle along longitudinal direction, i.e., [Xcyrrent lane center
Yt,merging vehicleT50]. Also, if the driver decides to pass, it is more probable that the
heading space to the front vehicle will influence the distribution of his continuous
trajectories.

For the merging vehicle, the feature vectors for the continuous driving models are:

* Merge back: fy,=Ify, facc, fierk, Tdists fg]T. The goal position is set to be [xtarget lane centers

Yt,on-lane vehicle — 30] .

* Merge front: fgone=[fy, fioM, faces Tjerks fdists feourt, gl - Once the merging driver de-
cides to merge in front of the lane-keeping vehicle, his heading space to the front
lane-keeping vehicle is crucial to the distribution of his possible trajectories. Hence,
we include feature fipy;. Moreover, to respect the right of way of the lane-keeping
vehicle, merging drivers might care about the extra cost they bring to the lane-
keeping vehicle and prefer trajectories that induce less extra cost. To capture such
effect, we add feourt.- Given demonstrated trajectory group £=[&mergings Esurroudings:

& Jane-keepingl, feourt is computed via , ie.,
f (a ) ) —C ) (e ) E,) . Cdefault 4.18
court{ &merging) — “lane-keeping \Vyield, lane-keeping ( : )

The cost function Clane—keeping(eyield):e;ieldfyield is learned with the features se-

lected above. Regarding to C{¢fault, we assume that the lane-keeping vehicle is by
default following IDM.

4.4.3 Implementation Details and Training Performance

We use Tensorflow to implement the hierarchical IRL algorithm. Figure 4.5 gives the
training curves regarding to both the continuous and discrete driving decisions. Due
to the hierarchical structure, we first learn all four continuous distribution models for
both the merging vehicle and the lane-keeping vehicle under different discrete decisions.
We randomly sample subsets of trajectories from the training set and perform multiple
trains. As seen from Fig. the parameters in each continuous model converge quite
consistently with small variance.

With the converged parameter vectors By;cld, Opass, Ofront and Bp,ck, the discrete feature

vectors fds are then calculated and thus the optimal parameter vectors s are learned via
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discrete IRL. To efficiently sample continuous trajectories under different discrete deci-
sions, we first obtain the most-likely trajectories by optimizing the learned cost functions
under each decision and then randomize them with additive Gaussian noise. The train-

ing curves (blue) are also shown in Fig.
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Figure 4.5: The training curves of both the lane-keeping vehicle and the merging vehicle under different
discrete driving decisions

4.5 Test Results

Once 9yield/ epass; 6fron’u eback and 1-l)mering/ 1I’lane—keel:)ing are valﬁred/ we can obtain
the conditional PDF defined in via . With this PDF, probabilistic and interactive
prediction of human drivers” behavior can be obtained.

We perform two different tests on our test set to evaluate the accuracy of the learned
probabilistic model.

4.5.1 Accuracy of the probabilistic prediction of discrete decisions

To measure the accuracy of the probabilistic prediction of discrete decisions, we ex-
tract N=2000 short trajectories in the test set with a horizon length of 10 from the 54
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long trajectories. For each short trajectory, starting from the same initial condition, we
sample M=4 trajectories with different motion patterns (discrete decisions) in the spa-
tiotemporal domain. One of them is set to be the same as ground truth.

Metric: We adopt a fatality-aware Brier metric [21] and the fatality-aware metric in
[161] to evaluate the prediction accuracy. Brier score calculates the difference between
ground-truth probabilities and the predicted ones via

1 N M )
B = Z Z (Pi; — Oij) (4.19)
i

where P;; and O;; represent the predicted probability and ground-truth probability for
sampled trajectory (i,j), respectively. The fatality-aware metric in [161] refines the Brier
score by three different aspects: ground-truth accuracy (§) measuring the prediction
error of the ground-truth motion patterns, conservatism accuracy (€C) measuring the false
alarm of aggressive motion patterns, and non-defensiveness accuracy (D) measuring the
miss detection of dangerous motion patterns. One can refer to [161] for more details.

Comparison: We compare the prediction among three different approaches: the pro-
posed hierarchical IRL method, a neural-network (NN) based method [16] and a hidden
markov models (HMM) [111] based method.

Results: The scores for all three methods are shown in Table We can see that the
proposed method can yield better prediction performance than HMM based method,
and similar accuracy with the NN based method.

| | HMM | NN | Hierarchical IRL |

B 0.1043 | 0.1099 0.1821
S 0.0701 | 0.0563 0.1117
¢ 0.0476 | 0.0493 0.0178
D 0.1356 | 0.1303 0.0698
Bc=9+C+D | 0.2551 | 0.2361 0.2053

Table 4.2: Scores of different probabilistic prediction approaches

4.5.2 Accuracy of the probabilistic prediction of continuous
trajectories

In this test, we generate the most probable trajectories under different discrete driving
decisions by solving a finite horizon Model Predictive Control (MPC) problem using the
above learned continuous cost functions. We show three illustrative examples in Fig.
The red dotted lines and blue solid lines represent, respectively, the predicted most-
likely trajectories and the ground truth trajectories. The thick black dash-dot lines are
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trajectories of other vehicles. We can see that the predicted trajectories are very close to
the ground truth ones.

To quantitatively evaluate the accuracy of the prediction, we calculate the trajectory
similarities between the predicted one and the ground truth in terms of Mean Euclidean
Distance (MED) [110].

Figure 4.6: Three illustrative examples of the re-generated most probable trajectories (red dotted line)
compared with the ground truth trajectories (blue solid line). Thick black dash-dot lines represent the
trajectories of other vehicles except for the predicted one.

Metric: We adopt Mean Euclidean Distance (MED) for trajectories. Given the ground
truth trajectory &ground=IXg,1,Yg,1,*Xg L, Yg1l" and predicted trajectory Eprediction =
[Xp,1,Yp1, » Xp,L, Yp,]T of same length L and same sampling time AT, the trajectory
similarity is calculated as follows:

L
1
SMED = I E | [Xp,iryp,i]T - [Xg,i/yg,i}-r 2 (4.20)
o1

Results: We test on 20 long trajectories in the test set, and results are summarized in
Table the proposed hierarchical IRL method can achieve trajectory prediction with a
mean MED of 0.6172m with standard deviation of 0.2473m.

| | Mean (m) | Max (m) | Min (m) | Std (m) |
[MED | 06172 | 10146 | 0644 | 0.2473 |

Table 4.3: Trajectory similarities in terms of MED
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4.6 Chapter Summary

In this chapter, we discussed the hierarchical reward design and learning to better
describe the human behavior. Motivated by the naturally hierarchical mechanism in
human’s decision-making process, we have formulated a two-layer hierarchical reward
structure. With the principle of maximum entropy, such hierarchy in reward functions
translates into a mixture of distributions. Hence, the learning of the hierarchical re-
wards was cast into an interaction-aware probabilistic prediction problem. We applied
the proposed method on a ramp-merging driving scenario with data collected from the
NGSIM dataset. The quantitative results verified the effectiveness of the proposed ap-
proach in terms of accurate representation and re-generation to both discrete decisions
and continuous trajectories.

As always, the work in this chapter also has many limitations. For instance, we
only focused on two-layer hierarchical decision making process of human. In practice,
however, there might be many more layers and the mutual influence among layers can
be more complicated. Another limitation lies in the design of feature sets in both the
discrete and continuous spaces. The performance of the proposed method depends on
appropriate selection of the features. Some systematic feature construction framework
is desired to facilitate this process.

Despite of these limitations, combined with Chapter {3, the work in this chapter has
brought another aspect into the reward design to represent human behavior: the hier-
archy. We are excited to see that such structure indeed facilitate better description of
human behavior. Moreover, compared to end-to-end learning, the hierarchy provides
much more interpretability of the human’s policy, which is easier to use in optimization-
based robotic behavior generation. It will help increase the transparency of our robotic
behavior in human-robot interaction which is of significant importance for the wide
adoption of intelligent autonomous systems.
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Chapter 5

Irrationality-Compatible Reward Design
and Learning

In this chapter, we will address another aspect of the human behavior: the irra-
tionality. The motivation for this chapter comes from one remaining challenge for the
utility-driven human models. That is most of existing them utility-driven human models
assume rationality (or at least noisy rationality) of human with respect to the expected
utility theory (EUT). However, there have been substantial evidences in various domains
contradicting such assumption. Human behavior is often found to be systematically
deviating from the optimal (or rational) behavior predicted by EUT.

Hence, in this chapter, we propose an interpretable human behavior model in in-
teractive scenarios based on the cumulative prospect theory (CPT). As a non-expected
utility theory, CPT can well explain some systematically biased or “irrational” behav-
ior/decisions of human that cannot be explained by the expected utility theory. We
present our design on autonomous vehicles, but again the proposed framework can be
applied to other human-robot interaction systems.

5.1 Introduction

In the past decade, a great amount of effort has been devoted to behavior modelling of
human, e.g., [3, 149, 112]. Most of the proposed methodologies can be categorized into
three groups: 1) predefined models, 2) learning models, and 3) utility-driven models.
Predefined models generate driving behavior based on IF-THEN rules [87], or selected
key indices such as time-to-collision (TTC) and time-to-intersection (TTI) [61], or some
analytical functions dedicated to describe the behavior in specific scenarios. Examples
include the intelligent driver model (IDM) [145] for car following and the minimiz-
ing overall braking model for lane changing (MOBIL) [60]. Such predefined models are
highly interpretable, i.e., explicit physical meanings can be found for all the model struc-
tures, variables and parameters. However, these models typically require lots of manual
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work in designing structures and tuning parameters, which can be overwhelming tasks
when the amount of data is large.

Learning models generate driving behavior based on trained machine-learning mod-
els. They can be either discriminative models such as support vector machines (SVM) [9]
and mixture density network (MDN) [49], or generative models such as hidden Markov
models (HMM) [75], generative adversarial networks (GAN) [76, 42] and variational
auto-encoder (VAE) [48, |85, 50]. Compared to the predefined models, such learning
models can better approximate the complicated distributions of human behavior in mas-
sive driving data without manual tuning of model parameters. However, they also suffer
from several fundamental problems. First, most of the learning models, particularly the
deep networks, are data-hungry. With a relatively small amount of data, they can hardly
achieve satisfactory performance. Even with sufficient amount of data supplied, they still
suffer from a second problem: the lack of causality and interpretability of the learned
behavior model. Consequently, it is hard to efficiently generalize them to new scenarios
such as those with a varying number of agents or new driving maps.

Utility-driven models come from the theory of mind (TOM) [108]. A key feature of
these models is that they leverage the fact that human drivers are not random agents,
but agents who optimize some utility functions. Hence, they assume that human drivers
try to make decisions or plan trajectories that maximize their utilities (or minimize the
costs). Such assumption is often known as the Boltzmann noisily rational model [14].
Stemming from TOM, utility-driven models provide causality inherently, and are more
interpretable since all the utilities and constraints are associated with explicit physical
meanings, as mentioned in [31]. In order to infer the various utility functions of hu-
man from actual driving data, inverse optimal control (or inverse reinforcement learning
(IRL)) [1, 166 [73] has been well adopted. For instance, [135] use IRL to model the cour-
teous behavior. [132] and [47] use it for probabilistic reaction prediction under social
interactions. Benefiting from causal and interpretable structure design, the utility-driven
models are more data-efficient, i.e., a satisfactory model can be learned with a relatively
small amount of data. Hence, they provide a promising balance between interpretability,
model flexibility, and data-efficiency.

One remaining challenge for the utility-driven models is that, as mentioned above,
most of them assume the rationality (or at least noisy rationality) of human drivers
with respect to the expected utility theory (EUT). However, there have been substantial
evidences in various domains contradicting such assumption. Human behavior is often
found to be systematically deviating from the optimal (or rational) behavior predicted
by EUT. Examples can be found as framing effect, risk-seeking behavior, loss-aversion
behavior, and so on [55, 146]. In this chapter, we define such systematically biased
behavior from EUT as “irrational behavior.” In driving scenarios, such irrational behavior
can be well observed, particularly when the drivers are interacting with each other.
Under such circumstances, the traditional EUT-based utility-driven models can no longer
correctly predict the human behaviors, which might cause collisions for the autonomous
vehicles.
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We aim to extend the utility-based behavior generation model to capture both the rational and
irrational behavior of human drivers.

Towards this goal, we reformulate the utility-based models in the framework of
the cumulative prospect theory (CPT) [146] - a well-known non-expected utility theory
(NEUT) that can explain many of the irrational behaviors mentioned above. Afterwards,
a hierarchical learning algorithm is proposed to learn the utility function, the value func-
tion, and the decision weighting function in the developed CPT model. A case study for
roundabout merging is presented with real data from the INTERACTION dataset [158,
159]. Prediction performances of three different models are compared: a predefined
model based on TTC, a learning-based model based on a neural network, and the pro-
posed CPT-based model. The results show that the proposed model outperforms the
TTC model, and achieves similar performance as the learning-based method with much
less training data and better interpretability.

5.2 Modelling the Decision-Making Process via CPT

5.2.1 Extension from EUT to CPT

As discussed in Section and Section in Chapter 2| CPT is proposed to
explain the irrational behaviors of human beyond the scope of EUT. We briefly review
the decision networks for both EUT and CPT. For more details, one can refer Section
and Section in Chapter

Let a denote a decision, and x denote a state or an event. Given the action a, the
probability for the occurrence of x is represented by p(x|a). The utility of the action-state
pairis u(a, x). Then as shown in Fig.|5.1} the expected utility is given by } , p(x|a)u(a,x).
A rational agent under this measure will try to find the action a* which maximizes the
expected utility, i.e.,, a* = argmax ) , p(x|la)u(a,x).

a (decision)
\ u (utility)
X (state) / H mgx‘Zp(ﬂa)u[a, x}’

h 4

p(xla)

‘ (probability) Expected utility

Figure 5.1: The decision network with EUT as a measure: a rational agent tries to find the action a* which
maximizes the expected utility, i.e.,, a* = argmax ) , p(xla)u(a,x).
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Figure describes the decision network under the CPT measure. Different from
the EUT, optimal agents under this measure does not choose decisions that maximize
the expected utilities, but rather they prefer the decisions that maximize the cumulative
prospect. As shown in Fig. a cumulative prospect is defined as

V(a) = Z " (Wi (p(xla)) v (ula, x]) + 71 (Weum (p(xl@))) v (ula,x]) . (5.1)

where the definitions of 7%, wX,, and v* are given in (). Compared to EUT in Fig.

cum
CPT has more flexibilities by incorporating three more elements:

the value function
W)

. . gains
a (decision)

~N W
/v u (utility) _’{ (value function) ’

x (state)

reference point

_'_* losses
p(xla) 7= (p)
(probability) (decision weight)
7y 1.0

max | 7 (wh,(p(x| @) v* (ula, x)

¢ w(p)
1~ (Wam(P(x| @) v~ (ula, x])

p

0.0 L0
the decision weighting function

Cumulative prospect

Figure 5.2: The decision network with CPT as a measure: optimal agents does not choose decisions that
maximize the expected utilities, but rather they prefer the decisions that maximize the cumulative prospect

defined in .

* Reference point: a reference point defines a reference utility in the decision net-
work. When human make decisions, instead of evaluating the absolute utilities,
human compare the utilities to the reference point and evaluate the utilities of
actions as gains and loss which are denoted by (-)™ and (-)~, respectively.

¢ Value function: for both gains and loss, human further evaluate the utilities via
another set of value functions v*. The value functions are typically concave for
gains and convex for loss, as shown in Fig.
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* Decision weighting function: instead of weighting the influence of different util-
ities by their probabilities as in EUT, CPT uses another set of functions, the cu-

mulative decision weighting functions 7= (w{i}cum>. As shown in Fig. the

decision weighting function is of S-shape. It can help explain human’s irrationality
in terms of their underestimation of high-probability events and overestimation of
low-probability ones.

Many experiment studies have showed that representative functional forms for v and
w can be written as

o) = (u—up)%, if u> 1y 52)
B —Aup—w)P, if u < ug '
wilp) = v 5.3
(pY + (1—pM™Y
_ p°
w(p) = (5.4)

(P +(1—p)»"

where «, 3,v,8€(0,1] and A>1. If there are m possible events/states, the cumulative
functions 7™ for each event are defined as

T = W (plxm)), 7Tm=w" (p(xm)), (5.5)

mo= wh Y plad | —wT Y plad | (5.6)
k=j k=j+1

o= wo ZP(Xk) —W Z rixd) |, V=1,---m—1 (5.7)
k=j k=j+1

5.2.2 Behavior Modeling via CPT

We consider the driving scenarios with two interacting drivers. Each driver has two
discrete decisions/actions: yield and pass. Such scenario can be found in many urban
driving circumstances such as intersections, roundabouts and ramp merging.

Throughout the chapter, we refer the predicted vehicle as the target vehicle (denoted
with subscript (-)1), and the other one as the interacting vehicle (with (-);). Denote the
action set with pass and yield as {a}={ay, ay}. At time t, given the historical trajectories
of both vehicles, {&}, }}, we aim to obtain an interpretable decision-making model to
predict the decision of the target vehicle. Note that in interactive driving scenarios,
the responses from the interacting vehicle are probabilistic in nature, which will bring
uncertainties to the decision-making process of the target vehicles. Under the decision
ap, the target vehicle has to consider the possibility of the interacting vehicle not yielding,
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which might force the target vehicle to brake and fail to pass. For the decision ay,
however, we can assume that it will always succeed. Hence, the prospects for actions a,
and ay are, respectively,

Pap = { (u(él,y/ éT,p),PI,y) ’ (u(él,ny/ éT,p)/ 1_P1,y) } ’ (5.8)
Pay = { (u(él,ny/ éT,y ), 1-0) } . (5.9)

where p1y represents the probability of the interacting vehicle yielding to the target
one, and &1 and &1, are, respectively, the yielding and non-yielding trajectories of the
interacting vehicle. Similarly, &1, and &r,, are, respectively, the passing and yielding
trajectories of the target vehicle. u(£yy, &1p) is the utility for the interacting vehicle if it
takes a yielding trajectory &, and the target vehicle takes a passing trajectory &7, Simi-
larly, u( él,ny/ éT,p) is the utility of the interacting vehicle if it takes non-yielding trajectory
&1y but the target vehicle takes a passing trajectory &1, The last term (& ny, &1,) de-
fines the case when the interacting vehicle takes a non-yielding trajectory &; ., and the
target vehicle yields with &7 .

Set up=0. Recalling the CPT model defined in -, we can write the CPT values
of the target vehicle under different decisions as:

Viap) = v(ur(&ry érp)) WH(L.0)—wT (pry))
v (U (Erny, E1p)) W (P1y)

v

s s p
= (ul&ry, 5T,1v))0c 1- 5 1)y
<p}iy + (1 _pI,y)y>
Pl
~ ~ Iod
+ (u(EvI,le/ EvT,p)) A 1/Y’ (510)
(P}//y + (1 —PLy )Y>
Viay) = v (W (Einy &ry)) w1.0)= (ul(Einy, &ry))”
(5.11)
Note that in (5.10)-(5.11), uo=0 simplifies u(-) to u*(-).
The decision of the target vehicle is then written as
a* =arg max {V(ap), V(ay)} (5.12)

ac{ap,ay}

5.3 Hierarchical Learning of CPT-based Reward

In the CPT-based decision-making model given in (5.10)-(5.11), we have many un-
knowns that need to be learned from data: the parameters « and v, the utility function
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u(-), and the probability p, given {&f, &}}. We propose to learn them hierarchically
based on the following two assumptions:

Assumption 1: The parametrization of the utility function of the target vehicle u:(&;, &7)
— R does not change with decisions. For instance, if we assume that u is a linear
combination of a set of features defined on trajectories, the weights of the features will
not change.

Assumption 2: When the target vehicle is evaluating the CPT value under each decision,
the best achievable utilities corresponding to different responses of the interacting vehi-
cle will be adopted. Namely, in (5.10)-(5.11), we assume u(?_,l,y, ET,p)zu(éLy, ‘i‘*r,p( éLy)),

u(él,ny/ éT,p) ~ u(él,ny/ ‘E'*F,p (él,ny )), and u(él,ny/ éT,y) ~ u(él,nyz ‘t-ﬁk’,y (él,ny ).

5.3.1 Learning the utility function

We start with learning the utility function u for the target vehicle. With Assumption
1, we learn u from a set of decision-free trajectories of the target vehicle, so that influ-
ences of decisions on the demonstrated trajectories can be avoided. This transforms the
learning of the utility function into a typical IRL problem. We assume that u is a linear
combination of a set of selected features ¢ = [Pp1, P2, - -, O] defined over (E%’N, E%‘N)
with a horizon length of N:

N
u(EfN, eNe) = 07y g(ek £b). (5.13)
k=1

The goal is to find the weights 8 which maximizes the likelihood of the demonstration
set uD _{(Evl i ) 1':1/ Tt |uD|}

0" =arg max P(Up|0). (5.14)

With the principle of maximum entropy [166], trajectories with higher utilities are expo-
nentially more likely:

PR, 0E1)) ox exp (w(ed, £120)). (5.15)
Thus (6.13) becomes
P(ET ,9|€ M)
" (Up| T
0* = argmﬂaxP(uDIG) argmaxﬂl? P0)
|UD‘ ( T1/e|‘£ )
= argmaxII; 5.16
BTG TR(EN, ol N df (516

To solve (6.15), we use the continuous-domain IRL algorithm proposed in [73]]. One can
refer Section [2.5]in Chapter 2| or [73] for details.
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5.3.2 Evaluating the Utilities and Probabilities

Once the utility function u is obtained, we can generate the best achievable utilities
under different decisions. Based on Assumption 2, utilities under different decisions are
generated as follows:

o u(éLy, éT,p) describes the utility when the target vehicle passes, and the interact-
ing vehicle yields. It can be approximated by u(éLy, E?p(élly)) with é-*rlp(élly) =
argmaxg, U (€14, &7p)- Intuitively, this utility is equivalent to the best achievable
utility as if the interacting vehicle was not there since it would yield to the target
vehicle.

o u(&ny, &1p), on the other hand, describes the utility when the target vehicle passes
but with a non-yielding interacting vehicle. Under this situation, the target vehicle
might have to brake and terminate the action of passing. Therefore, we set éLmJ as
if the interacting vehicle was maintaining its initial speed. &7 (él,ny) is calculated

as & (&1ny) = [&7 1k°(£1,y) E,T bmke] where the first part E* Lk O(F,Iy) is the first ko
P

steps of an optimal passing trajectory, while the second part ‘iT brake 1S @ braking
trajectory in order to avoid collision with the interacting vehicle. The maximum
value of kg is found via boundaries on deceleration. Hence, the corresponding

utility in this situation is given by u <£1 nys [5* ko (51,y ) &?%Take])

. u(éllmj, ?,T,y) is the utility if the target vehicle chooses to yield. For this scenario, it
does not matter whether the interacting vehicle yields or not. We can directly solve
for the optimal trajectory for the target vehicle with additional constraints on its
trajectories. For instance, we can set an upper bound for the achievable zones of its
trajectories to force it to yield |'| Hence, u(él,ny/ éT,y) = ming, u(éLmj, ETy (él,ny))
with constraints in the form of g(&7,) <O0.

Apart from the utilities, we also need to find an objective probability variable that
can quantify approximately how the interacting vehicle will respond if the target vehicle
was to take the pass action, i.e., approximating p1, in (5.10) given historical observations
(&}, &L). Inspired by the predefined models, we use the TTC to approximate it. Define
the TTC gap between the two interacting vehicles as Atyc=TTC7t—TTC;. We assume
that py, is higher if Atrc is lower:

1
Py = T exp (TTCr — TTCy)

The settings of the upper bound differ depending on scenarios. For interactions and roundabouts,
the upper bound comes from the traffic-rule maps such as the locations of stop bars. For ramp merging,
the upper bound can be draw from the trajectory of the interacting vehicle. We will explain more details
about this in the case study.

(5.17)
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5.3.3 Value Function and Decision Weighting Function Learning

With the acquired utilities and probabilities, the next step is to formulate a learning
problem to find the unknown parameter o« in the value function as well as vy in the
decision weighting function in (5.10)-(5.11). To achieve this goal, we again adopt the
principle of maximum entropy to convert the decision selection process in as a
soft-max problem:

1
Priap) = 1+exp (V(ay)—V(ap))’ (5.18)
Pr(ay) = ! (5.19)

1+exp (V(iap)—Viay))

where Pr(a,) and Pr(ay) represent the probabilities of choosing action a,, and ay, re-
spectively. Given a set of K interactive trajectories with labelled decisions for the target
vehicle, denoted by S = {( iI, Eir, a?r), i=1,---, K}, we can formulate the learning of o and
Y as a nonlinear logistic regression problem with the loss function as:

K
L(e,y) = Z{—l(a}:ap)loan(ap) (5.20)

i

~1(aj=ay) log (1-Pri(ay))}

where 1(x)=1 if x = 1 and 1(x)=0 otherwise. Pri(ay) and Pri(ap) are the evaluated
probabilities as in (5.18] -(5.19) on the i-th pair of interactive trajectories (£}, £, al) based

on (5.10)-(5.11) and (5.17).

The optimal « and y can be found via

(¢, v*) =argminL(e,v). (5.21)
592%

With the three steps described above, all the unknowns in the CPT model in (5.10)-
(5.17)) can be obtained.

5.4 A Case Study

5.4.1 A driving scenario: roundabout

To evaluate the performance of the proposed approach, we select a roundabout merg-
ing scenario from the INTERACTION dataset [158, [159]. As shown in Fig. [5.3(a), the
roundabout has 6 branches and each branch has two directions (both in and out). We
selected the interactive motions of two cars at the left-most branch (Fig. b)) because
there is no enforced stop signs at this branch before merging into the roundabout. This
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makes the interaction more intensive, and consequently creating more challenging prob-
lems.

We define the merging-in vehicle (the blue one in Fig.[5.3(b)) as the target vehicle, and
the one already in the roundabout as the interacting vehicle (the red one in Fig. [5.3(b)).
Based on a period of historical data on both vehicles, different driving behavior models
try to predict whether the red target vehicle will decide to merge in front of the interact-
ing vehicle in blue (i.e, the target vehicle passes), or wait to merge in until the blue car

passes (i.e., the target vehicle yields).

— ©

50
(a) The map of the roundabout (b) One example of the interactive trajectories

Figure 5.3: The map of the roundabout and one example pair of interactive trajectories. Red stars: the
target vehicle; Blue circles: the interacting vehicle.

We use the Frenet frame [149] to represent the trajectory coordinates of each vehicle.
Reference paths of the map are shown in Fig.[5.4(a). To capture the relationships between
the two cars on the longitudinal direction, we set the crossing point of the reference paths
of the two interactive cars as their shared reference point. Before the crossing point, the
longitudinal coordinates of both cars are negative. Once passed the crossing point, both
longitudinal coordinates become positive. One example of the interactive trajectories in
the defined Frenet frame can be found in Fig. [5.4(b).

5.4.2 Comparison models

We compared the decision prediction performance among three different models: 1)
a predefined TTC rule-based model, 2) a learning-based neural network model, and 3)
the proposed CPT model. A brief introduction of each model is given below.

The TTC rule-based model

The TTC rule-based model uses the TTC as an indicator to predict which car will go
first between the two interactive cars. Given the trajectories of each car in Frenet frame
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Figure 5.4: The reference paths (a) and trajectories in Frenet frame (b). The crossing points on the pair of
reference paths define the common reference zero points for two interactive cars.

as shown in Fig.[5.4(b), the TTC can be easily calculated via
TTCit =si7/vit (5.22)

where s} ; represents the longitudinal length from the current location of the cars at time

t to the collision point along the reference paths. v}/T is the current speed of the cars.
We calculate the soft-max probability of the target car passing via

1
~ 14exp (TTCL—TTCY)’

Prt(ap) (5.23)

The learning-based neural network model

The learning-based model we used is based on neural networks (NNs). The input
is a period of historical trajectories of the two interacting vehicles in Frenet frame. The
tirst layer is a long short-term memory (LSTM) cell with 16 neurons, followed by two
fully connected layers, and each with 8 neurons. Afterwards, a tanh nonlinear activation
layer is applied, with a the softmax layer as the final layer to output the classification
results. In order to avoid over-fitting, we applied the drop-out technique to the fully
connected layers with a dropout rate of 0.5 and added a L2 regularization term to the
original cross-entropy loss function.
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The proposed CPT model

In the proposed CPT model, we have selected four features in the utility function.
They are defined as:

o Speed feature Gp1=exp (—(v' — Virarric)?);
* Acceleration feature ¢pp=exp (—(acct)z);

o Jerk feature p3=exp (—(jerk?)?);

o Safety feature pa=exp ((st —st)?).

Note that all the variables v!, acct and jerk' can be written as linear functions of the
trajectories of the target vehicle based on backward differentiation.

As for the calculation of key utilities in (5.10)-(5.11), examples of the corresponding
trajectories for the utility evaluation are shown in Fig. The ground truth interactive
trajectories are shown in Fig. [5.5(a) with red for the target vehicle and blue for the inter-
acting vehicle. Figure [5.5(b) shows the optimal yielding trajectory of the target vehicle
(cyan) and the ground truth trajectory of the interacting vehicle (blue). Figure [5.5(c)
and Fig. 5.5(d), respectively, show the trajectories of the target vehicle (cyan) under a
passing decision with a non-yielding and yielding interacting vehicles. If the interacting
is not-yielding, we assume that it will maintain its initial speed, as shown in green in
Fig.[5.5(c). In this case, the target vehicle is forced to brake. On the other hand, with a
yielding interacting vehicle, the optimal passing trajectory of the target vehicle is shown

in Fig.[5.5(d).

5.4.3 Experiment results and discussion

We discuss the experimental results in two aspects: prediction performance compar-
ison among the three models, and the interpretability of these models.

Comparison of the prediction performance

We trained and tested all three models on a dataset containing 67 pairs of interacting
trajectories with a sampling frequency of 10Hz. To learn more generalized results, we
slice the trajectories into frames with a fixed length using moving windows. Each frame
contains the trajectories in 1s. Thus, all 67 pairs of interacting trajectories generate 2680
frames. To achieve better performance for the learning-based model, we have conducted
two sets of experiments for the training of the neural network:

¢ Experiment 1: randomly shuffle all the trajectory pairs and select 80% of them for
training and the other 20% for testing. The success rate E| is 65% for testing.

2Success rate is defined as the percentage of correct predictions among all test examples.
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(a) Ground truth trajectorles (b) Optimal trajectory witha
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Figure 5.5: An example of the trajectories used for utility calculation under different decisions and dif-
ferent responses of the interacting vehicle: (a) the ground truth trajectories (red: the target car; blue: the
interacting car); (b) the optimal trajectory of the target car (cyan) under the decision of yielding (a},), and
the ground truth of the interacting car (blue); (c) the forced braking trajectory of the target car (cyan)
under a passing decision but with a non-yielding interacting car (green). The virtual trajectory of the
interacting car is assumed to maintain its initial speed; (d) the optimal trajectory of the target car (cyan)
under a passing decision with a yielding interacting car.

e Experiment 2: directly shuffle all frames for the neural network and randomly
select 80% for training and 20% for testing. The success rate is 97% for testing.

The large discrepancy between the testing accuracies of the two experiments with the
NN model is mainly due to the over-fitting problem cause by the data insufficiency. In
experiment 1, it showed that the NN model learned on 80% of the trajectory pairs cannot
be well generalized to other interaction pairs.

We list the success rates for prediction from all three models in Table It shows that
the proposed CPT model outperformed the TTC model and the NN model in experiment
1, and it achieved similar performance as the NN model in experiment 2. Moreover,
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both the TTC model and the proposed CPT model are more data-efficient for similar
achievable performance.

Table 5.1: Comparison of the success rates in three models

TTC NN CPT
Success rates | 81.82% 97% 95.45%

Interpretability of the CPT model

In the CPT model, the parameters we have learned via the nonlinear logistic regres-
sion are
o =0.9827,v* = 0.6742. (5.24)

With the optimal vy, the learned decision weighting function is shown in Fig. We
can see that the CPT model indeed captured the human choice patterns that events with
low probabilities will tend to be overestimated, while high-probability events are often
underestimated. Such results are consistent with many studies about human behavior
in other domains such as economics, investment and waiting paradox problems.

1
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Figure 5.6: The learned decision weighting function (red curve) shows a S shape which is consistent with
the results obtained in other domains for human behavior such as economics, investment and waiting
paradox problems.
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5.5 Chapter Summary

In this chapter, we addressed the problem of irrationality-compatible reward design
and learning, using autonomous vehicles as an application example. We proposed an
interpretable and irrationality-aware human behavior model based on the cumulative
prospect theory (CPT). To learn the model parameters from human demonstrations, a
hierarchical learning algorithm was developed, in which inverse reinforcement learning
and nonlinear logistic regression were combined. We also have conducted comparison
studies among three different behavior modelling approaches: a predefined TTC model,
a neural network (NN) based learning model, and the proposed CPT model. The results
showed that the proposed CPT model outperformed the TTC model in terms of predic-
tion accuracy. Similar performance was achieved by the CPT model as the NN model,
but with much less amount of data. Moreover, the learned parameters of the CPT model
have explicit and interpretable physical meanings, which matched the observations of
the human behavior in many domains.

The work in this chapter of course cannot explain all irrational behaviors of hu-
man. Reasons for irrational behaviors of human can be many. For instance, they can be
caused by different perception views or incomplete perceptions, different beliefs about
the behavior models of others or inaccurate/unreliable execution of the decisions. In
this chapter, we try to cover the irrationality caused by a different measure during their
optimizations. The work can be further extended in many directions, for instance, the
inclusion of online inference for dynamic reference points. However, we are encour-
aged to see that by enforcing the structure of the reward design, more interpretable
and irrationality-compatible behavior model can be obtained with similar performance
compared to deep learning models.

Chapters ]3| - [5| have addressed three different aspects of human bebavior, i.e., the so-
cial compliance, hierarchy and irrationality, and introduced them in the reward design
and learning process. Applications on autonomous vehicles have been demonstrated.
The results show that via appropriate structure design and parameter learning, reward
functions can well represent a variety of human behavior with an interpretable model.
Moreover, the learned reward functions can be directly utilized in the robot’s behavior
generation policies via optimization, which can help generate more human-like behav-
iors or improve the prediction performance of the robots.
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Chapter 6

Behavior Planning Under Perception
Uncertainties

Through Chapters 3| - 5, reward functions to present human behaviors have been de-
signed and learned via human demonstrations. To enable safe, efficient and human-like
interactive behaviors of the autonomous systems, the next question is how to generate
interaction-aware behaviors in an efficient and reliable manner in the presence of uncer-
tainties.

Uncertainties are everywhere for autonomous systems. Starting from localization,
every module of the system can generate or suffer from uncertainties. For instance,
we have localization uncertainties, perception uncertainties, behavior modelling uncer-
tainties, behavior policy uncertainties, and hardware-level model uncertainties at the
execution phase.

In the following two chapters, we will address the behavior planning of autonomous
system in the presence of perception uncertainties and interactive policy uncertainties,
using autonomous driving as an application example. In Part II, we will discuss about
hardware-level model uncertainties and external disturbances with exemplar application
domains in precision motion systems.

6.1 Introduction

The driving environment of autonomous vehicles (AVs) are dynamic and can be full
of uncertainties. First, the future behaviors and trajectories of other traffic participants,
such as pedestrians or vehicles with human drivers, are probabilistic in nature. It is
difficult to predict them precisely, particularly in highly interactive driving scenarios.
Beyond that, the implicit social behavior on local driving preferences and styles is also
hard to describe exactly when the AVs are adapting themselves to a new environment.
Moreover, the detection and tracking modules can produce lots of physical state un-
certainties due to the algorithmic limitation in terms of unsatisfactory performance, as
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well as the physical limitation such as sensor field-of-view occlusions and limited sensor
range.

To generate safe and efficient maneuvers of autonomous vehicles, the decision-making
and planning modules of AVs should be able to properly tackle all the uncertainties in
the preceding modules such as perception and prediction. Research efforts were devoted
recently to designing decision-making and planning algorithms under behavioral uncer-
tainties from prediction. For example, an interactive belief-state planner proposed in [51]
used Partially Observable Markov Decision Process (POMDP) to deal with the behavior
uncertainties of other vehicles. A decision-making framework was also constructed in
[93] to deal with uncertain behavior of other vehicles at intersections considering poten-
tial violations.

While focusing on the behavior uncertainties, there is a common assumption in the
aforementioned work, that is, the physical states of other traffic participants are deter-
ministic and accurate. The perception module is assumed to provide perfect results on
whether an object exist or not, or what the current positions, velocities and orientations
of different objects are. However, such an assumption can hardly hold in practice. Even
if the sensors, such as cameras and LiDARs, can well capture the objects, it is impossible
for the most state-of-the-art algorithms to achieve perfect perception, as evidenced by
the 3D detection results for the "easy" cases on KITTI benchmark [140].

In addition to the algorithmic limitations, the physical limitations can also lead to
uncertainties of the physical states of objects. Physical limitations in perception mainly
include occlusion and limited sensor range [97]. Occlusion, an inevitable encounter
of autonomous vehicles, causes great challenges for tracking, prediction and risk as-
sessment [37] [77][155], and therefore poses significant impacts on the performance of
decision-making and planning. To deal with occlusions, a safe driving strategy was pro-
posed in [44] at blind intersections. Focusing also on blind intersections, [90] directly
designed a planning method based on inverse reinforcement learning (IRL). In [20], a
decision-making approach under occlusions was proposed in the framework of POMDP.

Most of the works, however, treats all other traffic participants such as pedestrians or
human-driven vehicles only as objects/obstacles to avoid. In fact, they are all intelligent
agents whose behaviors can be quite informative. Hence, our key observation is that hu-
man participants should be treated not only as dynamic obstacles, but also as distributed sensors
that provide via their behaviors additional information about the environment beyond the scope
of physical sensors. We call this concept social perception. The decision-making and plan-
ning modules of autonomous cars should explicitly exploit the enhancement offered by the social
perception.

Figure 6.1| demonstrates several exemplar scenarios where other road users can serve
as sensors to overcome occlusions or limited sensor range. In Fig. [6.1a), the host vehicle
VO cannot detect the pedestrian due to the occlusion caused by V1 and V2. However,
it can be inferred that the most probable reason for V1 to decelerate is a pedestrian
crossing the street. Therefore, the behavior of V1 can be exploited as a sensor to enable
social perception for potential pedestrians. In Fig.[6.I(b), the host vehicle V0 is making a
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Figure 6.1: Exemplar scenarios where other road users can serve as distributed social sensors for the host
vehicle (red): (a) although the host vehicle VO cannot detect the pedestrian due to the occlusion caused by
V1 and V2, it can infer from the behavior of V1. (b) The right-turning vehicle VO can infer the existence of
occluded vehicle V3 from the behaviors of the left-turning vehicle V1. Similarly, in (c), the right-turning
vehicle at a signalized intersection can infer about the availability of the intersection by observing the
actions of the left-turn-only vehicles V1 and V2.
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right turn at a one-way-stop T-intersection. It should yield to a potential vehicle V3, but
the view is occluded by street-parked vehicles. However, V1 and V2 on the left-turn-only
lane keep moving and making left turn, which indicates that there should be no vehicle
in the occluded area or a vehicle if any might be relatively far away, and VO may proceed
to turn. Figure c) shows a signalized intersection. The host vehicle VO (turning right)
can only detect the signal (red light) in front of it controlling its direction. It should yield
to V3 and V4 which are still with relatively high speeds. However, V1 and V2 on the
left-turn-only lane accelerate, which indicates that there is a protected left turn for them,
and V0 can proceed to turn right. Therefore, the social perception is needed when the
motion attributes of others are out of the limited sensor range.

Inferring the physical states from the behavior of others as described in the examples
is one aspect of social perception. For example, [4] infers the map occupancy from
behaviors of human drivers based on manually designed rules. A more important aspect
for social perception is that it can go beyond the perception of physical states and extend
to the perception of social information existed within a group of social agents. Courtesy
[135] is one of the representative social information to be extracted. Socially cohesive
behavior was analyzed and designed in [67] by assuming that the behaviors of others (for
instance, human drivers) were often correct and similar behaviors should be generated
by autonomous vehicles.

Integrating the social perception into the decision-making and planning modules
of autonomous vehicles is extremely important to enable safer and more efficient ma-
neuvers in the presence of corresponding uncertainties. Collisions could be potentially
avoided (Fig. a)) and the behavior of the autonomous vehicle can be more efficient,
less conservative (Fig. [6.I(b) and (c)), and more socially compatible so that both the
passengers and the other human drivers will not be surprised or annoyed. In this chap-
ter, we explicitly incorporate the social perception into a probabilistic planner based on
Model Predictive Control (MPC), and propose a unified planning framework to handle
the above mentioned uncertainties.

6.2 Problem Statement

In this chapter, we consider the behavior planning of an autonomous car in a multi-
agent environment with perception uncertainties. Except for the autonomous car, de-
noted as R, we assume all other agents to be human, represented by J. Hence, we do
not explicitly model the interactions among human, but focus on the interaction between
the robot car and an individual human. As for the perception uncertainties, we consider
two types of uncertainties as defined above: the physical state uncertainties such as oc-
clusions and limited sensor range, and the social behavioral uncertainties such as local
driving preferences.

Throughout the chapter, we let x¢ and ug denote, respectively, the robot car’s states
and control inputs, and xg¢; and us; for those of human i. In a traffic scene with M
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human participants, the states of all agents become XA:(X£, xg{ 1 ,xfTH M)T, and the

environment states can be represented by XZ(XI\,X—II:_—nV)T where xgn, is the non-agent

related states such as traffic lights. We use J to represent the social information set. For
each agent, we have

XEQ—H = fg (ng uig%) ’ (61)
X;é_,} = fﬂ{ri (Xg'f,il ug{,‘i,) s l:1/ Tty M/ (62)

where f and fy(; describe, respectively, the dynamics of the autonomous car and human
i. The closed-loop dynamics of the whole multi-agent system becomes

K1 — f(xt,uﬁz,u‘}}fll, e ,u}}C’M), (6.3)

We assume that all agents in the scene are noisily optimal planners. Namely, at

time t, each agent behaves to minimize its own cost function based on its estimates of

the environment states (%!) and the social information (Jt) inferred from observations,

denoted by o'. Let C¢ and Cy; be, respectively, the cost functions of the robot car and
human 1 at time t over a horizon of N:

C) <5\Ct/ j\t/ Ug, Ux i, e]> = Cj <72t/ j\t/ u](]<21 u];-(,i/. e]) s J E{IR/ (g{/ l)}
0

~
Il

where uj:(uo, ul, ... ,u)Nfl)

P T is the sequence of control actions of the agent within the
horizon (j=2X for the robot car and j=(J, i) for human ). 0; with j&{R, (3(, 1)} represent,
respectively, the preferences of the robot car and human i. At every time step t, all agents

generate their optimal sequences of actions uj 4; by minimizing their corresponding
cost functions Cg /51, execute the first steps u&o/%i (ie., set uf /%,i:uaﬁzo/%,i in and
and re-plan at the next time step at t+1.

As shown in (6.4), robot cars generate behaviors based on their estimates of the envi-
ronment states and the social information set. If the estimates significantly deviate from
the ground truth, unexpected or even dangerous behaviors might be generated. For en-
vironment states, current practice is to set the estimates as the de-noised observations of
the robot car from physical sensors, i.e., fctzo’;{. However, due to occlusions and limited
sensor ranges, the states observation ogz of the robot car might be a subset or even dif-
ferent from the actual states x!, which makes fct%oa not an effective solution. As for the
social information J%, it is a set of variables that cannot be directly perceived by physical
sensors. Hence, to enable better autonomous driving strategies under such perception
uncertainties, more advanced perception/inference scheme is desired to update %t and
3t from observations.
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6.3 Social Perception

Our key observation is that human traffic participants should be treated not only as
dynamic obstacles that the robot cars need to be aware of, but also as distributed sensors
the behaviors of which can provide additional information beyond the scope of physical
sensors equipped with the autonomous vehicles.

6.3.1 Distributed Agents as Distributed Sensors

Again consider the multi-agent system consisting of one robot car and M humans.
With physical sensors subjected to occlusions and limit range, each agent can observe
only a subset of the environment states, denoted by o).t with je{R, (H,1)}. Based on
the corresponding observation o!, each agent extracts their estimates, 1t and ¢, on the
environment states and the social information, respectively. The estimates of different
agents will then influence their next-step actions/trajectories which can be perceived by
other agents. Note that due to their distributed locations, observations and the associated
estimates of different agents can significantly differ, but be complementary to each other.
Hence, the distributed agents can be viewed as distributed sensors which emit behavioral

signals. By observing such behavioral signals, the robot car can infer estimates fc} and

j} from human to reduce its perception uncertainties coming from either algorithmic
limitations, or physical limitations, or both.

6.3.2 Inference Algorithm
Modeling the behavior generation function of human

As discussed in Section we assume that each human is a noisily optimal planner,
and consider the interaction between the robot car and humans when modeling the hu-
mans’ behaviors. Thus, at each time period (N steps) starting at t, the behavior sequence
u}}c:[u;‘}c, u:t}‘{l, . -,u&‘{N_I]T minimizes the human’s cost function as given in based
on his/her estimates. Namely, the behavior generation function of the human can be
expressed as

w = arg I{llicn Cq <§<§{, g5, ub, ugg; 99{) 2 gy (725{, gt uk; 6}() , (6.4)

and the optimal cost is given by
Cit(ub) = Cy (ng 3. uly, eg{> . 6.5)
Note that in - (6.5), we model the human behavior generator gg as his/her optimal

response function to the robot car’s input uj to explicitly address the influences from
the robot car, as in [118]. Hence, if the robot car can access the humans’ cost function
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parameters 053¢ and their estimates, it can calculate the best behavioral responses u%
from them.

Updating beliefs on estimates via inference

To use humans as sensors of the environment, we need to construct observation
models for the robot car to update its beliefs on estimates. For environment states and
social information, different observation models are designed.

Updating beliefs on state estimates. At every step t, the robot can update its beliefs on the
state estimates %' from behaviors of human i via:

b (Ruhe ;) oc br(&Y)P(uh 18, (6.6)

P(ug;;|%") is the probability/likelihood of human i taking action wj; if the human’s
estimates were indeed %'. To get P(ug{ i|72t), we assume that actions with higher cost are
exponentially less likely based on maximum entropy principle as in [166]. This means
that P(uj ;[%") can be approximated by:

_O*(st At gt ot g
Plube R oc e @ Mt 0001) (6.7)

where Q*(%%,7t, u,, ul, .; 0x) represents the optimal cost to go by taking action 1!, ,, given

by

N-1
Q* (&, I}, ulf, uf i 09¢:) = min Z Cq¢ (x It uk, ul; 45 04 1) . (6.8)
wi

Updating beliefs on social information. As defined in Section social information refers
to the group behaviors of human in the traffic scene. Therefore, to update the beliefs
on estimates of social information 7, the robot car need to collect the common behaviors
from multiple human. Therefore, the belief update process becomes:

by (THul,) o< by (Tt HP (ubg 179, (6.9)

where P(u},.|7") is the probability/likelihood of human i taking action us¢; if the hu-
man’s estimates on social information is indeed Jt. It can be evaluated in a similar way

as and via:

Pue ;171 oc e Q et ulei0aca), (6.10)
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6.3.3 Learning cost functions of human

As discussed above, for the robot car to update its beliefs by collecting behavioral
information from of human, the robot car needs to have access to the cost functions of
human, so that it can evaluate P(u! [%!) and P(ulJ!). One can obtain such cost functions
via inverse reinforcement learning (IRL) [1, 166, 73, 132]. Note that during the learning
process, we assume that the demonstrations are sub-optimal and there is no perception
uncertainties, i.e., *'=x'. A brief review of the IRL algorithm is given below.

The single-step cost is assumed to be parametrized as a linear combination of features
(the social information J is assumed to be invariant within one horizon):

c(xt, g,ub, ul; 0) = 8T d(xt, 7, ub, ul,). (6.11)

Over a horizon of N, the cumulative cost function is
N—1
C(XOI ij/ ug, uj‘f/e) - eT Z (b(xt/ Jr u;{l Ug-() (612)
t=0

Our goal is to find the weights 0 which maximizes the likelihood of the demonstration
set Up:
0" =arg max P(Up|0) (6.13)

Building on the principle of maximum entropy, we assume that trajectories are exponen-
tially more likely when they have lower cost:

P(ug, 0) o exp (—C(XO,J, ug, use e)) : (6.14)

Thus the probability (likelihood) of the demonstration set becomes

P(uj]:-)fli_/ 0) _m P(ugD{,i/ 0)
P(O) [ P(ag, 0)dii

P(UplB) =TT, (6.15)

where n is the number of trajectories in Up. For more details, one can refer [74] or
Section [2.5|in Chapter [2| as references.

6.4 Human-Like Behavior Planning with Social
Perception

In this section, we will discuss how to integrate the social perception into the decision-
making and planning module to enable a more human-like driving strategy in terms of
defensiveness, non-conservativeness, and social compatibility.
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6.4.1 The behavior planner under uncertainties

Due to the probabilistic nature of beliefs in and (6.9), we utilize a probabilistic
framework based on Model Predictive Control (MPC) as in [157] as the planner for the
autonomous cars. The cost function of the robot car is defined as an expected cost over
the beliefs:

N—
Cr = Byee) ey C (5,9 1 02) Bysa sy D e (753514504
k=0

[uny

where Cq <>2t, Tt ug; 93) is a cumulative cost over a horizon of N, as defined in (6.4).

Note that with a long horizon N, discrete representation of &' and b(&!) is practically
not feasible. In this case, we will use representative motion patterns to represent X' as in
[161].

Cost function design. We consider safety, efficiency, comfort, and fuel consumption in the
cost. Thus, we penalize the following terms and the weight of each term can be learned
via IRL as addressed in Section III-C.

* tracking error: ng,m:d(xgék) where d(xgik) is the distance from the position of the
robot car at k time step to the desirable traffic-free reference path.

* safety term: we use the relative distances from surrounding participants to evalu-
tk
ate the safety term. Define cqg sqfe= le\il e f}fi), where M is the number of

surrounding cars and d; is the distance of the robot car to the i-th one. Note that

xg’{]} can be obtained via the behavior generator in 1} and the dynamics equation

in based on current beliefs b(x!), b(Jt).

tk
—di(xg"x

¢ efficiency: we penalize the difference between the speed of the robot car vpexy
and the traffic limit vi;q¢fic, given by C:R,Speed:(\/;ik—\}traffic)2.

e acceleration: ng,acczagék where agékeu;ik is the acceleration input at k time step of

the robot car.

. tk  tk—1
* jerk: cjerk=0ag —ag .

Note that viqfsic in the cost function belongs to the set of social information. We use

Viraffic instead of vy, to allow the robot car to infer current traffic speed and follow it.

To assure that the robot car does not break the traffic rules, we expose the maximum

allowable speed limit as a constraint below.

Constraints. To guarantee the feasibility of the planned trajectories, we introduce the
following constraints:

* kinematics constraints: we use Bicycle model [113] to describe the kinematics
model of the robot cars.
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* dynamics constraints: we constrain curvatures and accelerations of the vehicle as
follows:

|K;ik < Kmax, |a§ék < Qmax, k=0,1,---, N-T1. (6.16)
where k'* is the curvature of the planned trajectory at k-th step, and kmax is the
boundary of feasible curvatures. Both kmax and amax can be calculated via the

“G-G” diagram as in [113].

* safety constraints: safety constraints come from both static road structures as well
as dynamic obstacles such as human drivers and pedestrians. For static structures,
we use polygons to represent them, and check the robot car’s distance to the poly-
gons. For dynamic obstacles, we use several circles to cover them, and calculate
distances between the robot car and the circles as in [167].

Note that in the probabilistic planner, constraints over all the beliefs should all be con-
sidered. To deal with the tailing effect, we set a threshold e in practice [157]. This means
that if the belief of a certain state or a certain social variable is lower than e, we will set
the probability to zero in the expected cost function, and ignore the related constraints.

6.4.2 The planning framework with social perception

With the probabilistic planner in Section implementation of the behavior plan-
ning framework with social perception is summarized below in Algorithm 1.

6.5 Simulation Results

In this section, we give an exemplar scenario with sensor occlusions to verify the
effectiveness of the proposed planning framework with social perception.

Despite progresses in advanced perception and tracking algorithms, sensor occlu-
sions are inevitable for autonomous vehicles. Consider the scenario described in Fig.
where the autonomous car (red) and a human-driven car (yellow) are driving side-by-
side, and a pedestrian is about to cross the street. Due to the relative positions between
the robot car and the human car, the view of the robot car is blocked by the human-
driven car so that it cannot detect the pedestrian.

In such a scenario, a conservative autonomous car will assume that there might be
potential out-of-view pedestrians crossing the street. Hence, it slows down to prepare for
stops or to leave a larger gap with the human driver to get better view. Both strategies
will sacrifice the efficiency of the autonomous car. On the other hand, an aggressive
autonomous car might directly ignore the possibility of pedestrian crossing the street
and plan to drive through the intersection directly, which might lead to a collision. We
note that in either case, the autonomous car perceives the environment states only via its
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Input: uncertain state vector Ko 2 {fctol, o AtOL} (L is the number of p0551b1e states),

observation o%, prior belief b(X %) and b(J%), human behaviors uiH i
Output: %!, ¢, and uf, for t> tg
Initialisation: X" = &;2 = oo,
1: for t = tg, to+1,tg+2,--- do

2. if update posterior beliefs on uncertain states x,, then
3: 1) select human i based on locations,

& 2)b(RE b ) oc b(RE DP(ud IRE ), 1=1, - L

5: 3) normalize b(%y, ;).

6: 4) fuse new estimates of %!, via updated beliefs with other states to get k'
7. end if

8:  if update posterior beliefs on social information Jt then
9: 1) b(IF ;) oc b(FY) [T Plut ;[T
10: 2) normalize bg(J!) and update its estimate.
11:  end if
12:  behavior generation via MPC:

substitute %t, J* and the behavior generators for human in (6.4) into the
probabilistic MPC planner in Section and solve for the optimal actions u}.
13:  execute the first action in uf, as us,.
14:  update prior beliefs: b(% Hl) = b(AtHIqu) and b(Jtt1) = b(j”llut}(,i).
15: end for
Algorithm 1: Behavior Planning with Social Perception

own physical sensors, but completely ignores the information emitted via the behaviors
of the human driver.

As shown in Fig. the view of the human driver in this scenario is not occluded
about pedestrians crossing the street, and he/she is closer to the pedestrians if there was
any. Hence, from the behavior of the human driver, the robot car can actually infer and
become more confident about the probability of a pedestrian crossing.

We simulated this traffic scenario with a conservative planner, an aggressive planner
and our proposed planner with social perception. The sampling period for each time
step is 0.1s. Both cases with and without crossing pedestrians are considered, and the
results are shown in Figs. [6.3] through

6.5.1 With crossing pedestrians in the occluded area

Figures and show the comparison results with an aggressive planner and
the proposed planner when there is a crossing pedestrian in the occluded area. We
can see that in Fig. with the proposed planner, when the human driver slowed
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Figure 6.2: An example scenario of the robot car with sensor occlusions: the red robot car cannot see the
pedestrian due to the occlusion caused by the yellow human car.

down, the robot car’s belief on the existence of pedestrians increased quickly (Fig.[6.4(c)).
Compared to the aggressive planner in Fig. the updated belief enables the robot car
to prepare for stops before occlusions are clear, while the aggressive planner failed to
yield to the pedestrian even if it braked hard when it saw the pedestrian, as in Fig.

6.5.2 With non-crossing pedestrians in the occluded area

We also compared the proposed planner with a conservative planner which assumes
the existence of crossing pedestrians in default. Results are given in Figures |6.5{and
We can see that the proposed planner (Fig. is much more efficient than the conserva-
tive planner (Fig.[6.5). The autonomous car with the conservative planner slowed down
even if the human driver did not. On the other hand, with the proposed planner, the
belief on the existence of crossing pedestrians remained low by observing the behavior
of the human driver, as shown in Fig. c), which enables the robot car to maintain
relatively high speed and improves its efficiency.



CHAPTER 6. BEHAVIOR PLANNING UNDER PERCEPTION UNCERTAINTIES 89

Speeds of the Human and Robot Car
T T T T T

Q) ' / \/_
S
5 (b)
g 5f 1
o Speed of Human Car
2 Speed of Robot Car

o | | | | | | | | |

0 10 20 30 40 50 60 70 80 90 100

Time Steps
Probabilities of a crossing pedestrian in occludedarea .

O perceived probability
(€) * Inferred probability

R HHR RN TR RHAERRRHR R RRRHE TR KRR R HRERRHE TR RHR R TKR: ! ! L L
0 10 20 30 40 50 60 70 80 90 100
Time Steps

Probability of pedestrians
o
()]

Figure 6.3: Simulation results with an aggressive planner with a crossing pedestrian in occluded area: (a)
yellow box - human driver; red box - robot car; green dot - pedestrian; (b) speeds of the robot and human
cars; (c) the perceived and inferred probabilities of pedestrians (no inference in this case)

6.6 Experiment Results

6.6.1 Experiment setup

We also have evaluated the performance on a TurtleBot3 in a similar experiment
setting as the simulation. TurtleBot3 is a ROS standard platform robot developed by
ROBOTIS. The MPC controller is running in MATLAB on a separate laptop with an
2.8GHz Intel Core i7-7700HQ.

As shown in Fig. in the experiment, we let the TurtleBot3 serve as a robot car
driving straight, and introduce two virtual objects in rViz: one as a pedestrian (the small
green box) trying to cross the street, and the other as a large vehicle (the large green box)
which is driving on the adjacent lane of the robot car and blocking part of its view.
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Figure 6.4: Simulation results with the proposed framework with a crossing pedestrian in occluded area:
(a) yellow box - human driver; red box - robot car; green dot - pedestrian; (b) speeds of the robot and
human cars; (c) the perceived and inferred probabilities of pedestrians

6.6.2 Experiment results

We switched on and off the social perception module on the TurtleBot3 to evaluate
the performance of the proposed algorithm. The results are shown in Fig. Through
the sequence of screenshots, we can see that with the social perception module, the
TurtleBot3 can infer in advance the existence of the virtual pedestrian and brake earlier,
although its view is blocked by the large vehicle. On the contrary, without the social
perception module, the TurtleBot3 did not stop until it saw the pedestrian, which might
shock the pedestrian and lose trust from the pedestrian.

6.7 Chapter Summary

In this chapter, we proposed a unified probabilistic planning framework with social
perception to deal with uncertainties from physical states, prediction of others, and un-
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Figure 6.5: Simulation results with a conservative planner with non-crossing pedestrians in the occluded
area: (a) yellow box - human driver; red box - robot car; green dot - pedestrian; (b) speeds of the robot
and human cars; (c) the perceived and inferred probabilities of pedestrians (no inference in this case)

known social information. We treated all road participants as sensors in a distributed
sensor network. By observing their individual behaviors as well as group behaviors,
uncertainties of different types can be reduced via a uniform belief update process. We
also explicitly incorporated the social perception scheme with a probabilistic planner
based on MPC, which can thus generate behaviors which are defensive but not overly
conservative, and socially compatible for autonomous vehicles. Simulation and exper-
iment results on a turtleBot in a traffic scene with sensor occlusions were given, with
comparison to a conservative planner and an aggressive planner. The results showed
that the proposed framework can enable more efficient and yet defensive behaviors in
the presence of perception uncertainties.
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Figure 6.6: Simulation results with the proposed framework with non-crossing pedestrians in the occluded
area: (a) yellow box - human driver; red box - robot car; green dot - pedestrian; (b) speeds of the robot
and human cars; (c) the perceived and inferred probabilities of pedestrians

the robot car
=

a virtual
pedestrian

a virtual large vehicle

Figure 6.7: The experiment setup: the TurtleBot3 serves as a robot car, the small green box as a pedestrian
trying to cross the street, and the large green box as a large vehicle which is blocking part of the view for
the robot car.
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Large green box: a large vehicle; Small green box: a pedestrian.
The view of the turtlebot is blocked by the large vehicle
so that it cannot see the pedestrian.

(a) t=0s

With social perception, the turtlebot on the right
slows down earlier to get prepared.

(b) t=10s

With social perception, the turtlebot on the right
slows down earlier to get prepared.

(c) t=14s, the TurtleBot3 with social perception stopped earlier than the one without

With social perception, the turtlebot on the right
slows down earlier to get prepared.

(d) t=18s

Figure 6.8: The experiment results with the TurtleBot3 and virtual pedestrian and vehicles: left - without
social perception, right - with social perception.
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Chapter 7

Behavior Planning Under Policy
Uncertainties

Imagine that you are driving towards a narrow bridge with another car from the
opposite direction. A bridge is narrow enough such that only one car can pass at a time.
The two cars are driving at similar speeds and are away from the entrances from each
side at similar distances. Suppose that you know exactly what the other driver’s care
about, can you accurately predict the his/her behavior? Unfortunately, the answer is
no. There are multiple reasons behind. A major one lies in the interaction between you
and the other driver. While you are predicting his/her behaviors, he/she is predicting
yours. Even though we can utilize the multiple methods discussed in earlier chapters
to learn as well as possible the reward functions, we have assumed that the other driver
has full access to what you want to do in the future and explicitly utilized it as a priori
knowledge during the learning and online inference process. Such assumption, however,
is too strong to satisfy in practice.

As a matter of fact, the other driver might not pay attention to you, or he/she may
interpret your behavior via a simple rule-based model such as maintaining current ac-
tions, or he/she is assuming that you are cooperative or aggressively non-cooperative.
Moreover, their models are not fixed, but rather time-varying as the interaction goes on.
An inattentive human driver might become attentive as you are getting closer, and a
driver who believes you as an aggressive driver might change his/her mind as he/she
observes your behaviors.

In this chapter, we aim to tackle the above-mentioned uncertainties regarding in-
teractive policies and design a reliable behavior generation policy for the autonomous
systems.
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7.1 Introduction

We model the two-agent interaction problem based on two-player games. Many
researches have utilized the game-theoretic setting to model the interaction between
human and robots. For instance, Li et al. have conducted a series of work on game-
theoretic decision making for autonomous vehicle control, assuming a Stackelberg policy
is adopted in the interaction process. In [78] and [141], they built simulation scenarios
with additional user inputs representing human drivers to find out the levels of hu-
man model in games, i.e., at what levels human perform games with other agents. He
found that in most scenarios, human drivers are level-I game participants, namely, they
consider the responses of others when they evaluate specific actions. Fisac et al.[34] also
adopts the Stackelberg Game to model the dynamic game theoretic interactions. To make
the problem solvable in real time, they partitioned the planning task into the long-term
strategic planning problem with simplified dynamics and full information structure and
short-term tactical planning problem with full dynamics and a simplified information
structure. A highway scenario demonstration is shown. Besides, in [154, 153], the au-
thors also adopted Stackelberg game theory to a driver behavior model in a merging
situation. In [138], with V2V communication, the authors presented a lane-changing
model based on the two-person non-zero-sum non-cooperative game under complete
and incomplete information. In[148], the authors proposed a nonlinear receding horizon
game theoretic planner using Nash equilibria and tested the algorithm using racing cars
in simulations.

Most of the studies, however, are conducted in simulation with synthetic data. There
is yet no answer to an important question: what policies do most human take during
interaction? What a priori distributions should we assume when we adopt game-theoretic
settings?

Our key insight in this chapter is that human are flexible and uncertainty in terms of the
game policy they adopt. Wrong assumptions on the policy can lead to interactive robotic actions
that not only confuse human, but also are dangerous.

Motivated by this, in this chapter, we propose to use online Bayesian inference to
estimate the most probable game policy of human based on real human driving data.
Moreover, based on the estimates, we design a robust policy for the robots to be com-
patible with uncertainties of the human’s game policy.

7.2 Problem Statement

In this section, we consider the interactive behavior between two vehicles: the ego
vehicle (denoted by (-)ego) and the other E| vehicle (denoted by (:)other) -

!While extension of our formulation and solution to N players is well defined (and relatively straight-
forward) in theory, in practice the computation grows exponentially with the number of interacting vehi-
cles. It is a fundamental open challenge. We thus limit the scope of this work to pairwise interactions.



CHAPTER 7. BEHAVIOR PLANNING UNDER POLICY UNCERTAINTIES 96

For a given vehicle, we use s to represent the state variable, ¥ for the predicted
action, ygt for the ground truth action and ¥ for all the possible actions. The dynamics
of the joint state x' € XX C R™ of the vehicles in the world, which we assume to be fully
observable [34] , are

‘Yt+1 = f(‘yt/ Szgo/ Sgther) (71)

where V!, st denote, respectively, the action and state of the vehicle at time t.
Similarly, we assume that both agents generate their behaviors using the MPC frame-
work. Namely, assuming that the individual finite-horizon cost functions are given as

N-1

~tk
Cego('\/égo) = Z C(St/ Yé’;;o/ ‘Yf),ther; eego)/ (7.2)
k=0

at time step t, both agents find the optimal sequence of actions that minimize the cost,
execute the first action and repeat the process at the next time step t +1. Note that in
, Oego characterizes the preference of the ego vehicle. We select N = 5 with a time
interval At = 0.2s.

In practice, v!, s* are all continuous. However, to facilitate computation of the games,
we discrete them. For the action space, i.e., the acceleration space, into a list with choices
asa=[-2,—-1,0,1].

7.3 Monte Carlo Tree Search with Different Game
Policies

7.3.1 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTYS) is a heuristic-based search algorithm. It has been
widely used solve many game-theoretic problems such as the Go game in [125].

Based on the receding horizon algorithm, if the horizon is n steps, we need to build
a tree with depth of 2n + 1. Specifically, the root node represents the initial state of the
two vehicles, with the odd levels for the decisions of the ego car and even levels for that
of the other car. At each pair level, the two vehicles make decisions simultaneously, as
you can see in Fig. [7.1]
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X(Initial)

=0s

Initial State

X@ L x( T~

Driver 1 Choice
I=1s

|
|
| Y(0)|X(1)
|

Y(1)|X(2)

Driver 2 Choice

Figure 7.1: A illustration of the search trees to solve a finite-horizon optimization problem: the yellow root
node represents the initial state of the two vehicles, and blue nodes are the actions by driver 1 and green
nodes are for driver 2. Each paired layer in the red dotted box is assumed to happen simultaneously.

Given the cost function in (7.2), we can design the cost function for the tree search as

follows:
Crers(v) = CY) +0- [y (73)

where the original cost function is augmented by a heuristic. Note that in (7.3), n denotes
the visit times of a certain children node, and N denotes that of its parent node. ©
is a weighting factor balancing between the exploration and exploitation. The MCTS
algorithm we utilized is shown in Algorithm 2.

7.3.2 Five Interactive Policies

In this work, we consider five different interactive policies that the human might
follow. The first three are theoretic policies whose equilibrium types are, respectively,
Nash (non-cooperative), Stackelberg (non-cooperative) and Pareto (cooperative). The re-
maining two are incomplete-information approaches including a naive rule-based model
and a ignoring policy which depicts the situation when the target human does not pay
attention to the other agent.

To be more specific, Nash and Stackelberg are for non-cooperative games. Recent
work finds that Stackelberg model can have a better representation of the decisions mak-
ing process while driving. Pareto, on the other hand, is for cooperative games. It is
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Input: (s79°, s9the): Joint state of two vehicles at time t

N: number of iteration
m: number of time-step within consideration
Output: ygpﬁmal : Optimal motion in the next time step
1: Initialize the root node ng using the (s{9°, sPther)
2: Initialize the number of search k =0
3: while k < N do
4:  Set the current node n using the root node ng
Initialize the search depth i =1
while i <2m+ 1 and all children nodes of n expanded do
Select the children node ncpijg using
N < Nchild
i=1+1
10:  end while
11:  if i <2m+1 and not all children of n expanded then

12: Explore the randomly selected children node ncniiq
13: N < Nchild

14: i=1+1

15:  end if

16: whilei<2m+1 do

17: Randomly Select n¢hitg

18: N < Nchild

19: i=1+1

20:  end while
21:  Backpropagate and update the visit times and the accumulated cost along the
search route till the root node
22: k=k+1
23: end while
24: Output the child node of the root node with the largest visiting time as the optimal
MOtON Vi e
Algorithm 2: A General Monte Carlo Tree Search Algorithm
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widely adopted in centralized control such as V2X-enabled autonomous driving scenar-
ios. The rule-based model can be as simple as assuming the other agent maintaining the
current actions. For instance, for autonomous vehicles, it is commonly used to assume
that a driver will maintain his/her speed or acceleration during the preview horizon.
We simplify the notations for those five policies as: Nash, Stackelberg, Pareto, Constant,
Ignore.

Nash Equilibrium

In game theory, the Nash equilibrium is a solution for a non-cooperative game where
no player can gain more utilities by changing only their own strategy [98]. Hence, we
need to find out the action sequences for both the ego and the other agent which, re-
spectively, minimize their cost functions. The solutions should satisfy

N—1
t/>’< j— 1 t t,k t/* .
Yego - arg I‘I‘Pn Z C(S /Yego/ Yother’ eego) (74)
Yego k=0
N-1
t,x _ : t oot Ltk
Yother — 9I8 1’1:[111’1 Z C(S /Yegor Y other” eo‘cher) (7-5)
Yother k=0

The search process with MCTS is described in Fig.|7.2|and detailed algorithm is given
in Algorithm 2.

X(Initial)

Initial State

Y@
@ Driver 1 Choice

X)|Y(=2)

X()|¥(2)

Driver2 Choice

XY@

Figure 7.2: The MCTS process for a Nash equilibrium in a two-player game: the light-blue root node
represents the initial state of the two vehicles, and green nodes are the actions by driver 1 (ego) and blue
nodes are for driver 2 (the other).

Stackelberg competition

The Stackelberg leadership model is a strategic game in which one of the players
is a leader which moves first, and the other player is a follower which takes actions
once he/she observes the actions from the leader [126]. In this work, we denote the ego
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vehicle as the leader, and the other car as the follower. With Stackelberg model, the two
players make decisions sequentially: leader first and then the follower.

More specifically, in order to choose the optimal action for the leader X at time step 1,
we need to find the expected response of the follower Y under a certain choice of vy (X¢),
where k denotes all the possible actions of X. Namely,

N—1
Yopt(Yipahy(Xi)) = arg, v ymin Y cotower (vi(Xi), ¥(Yi11)) (7.6)
t=0

Then, based on the best response of Y for each possible action of X, we can find the
best decision of X as follows:

N—-1
Yopt(Xi) = arg,(x ymin Y cleader(v(Xt), Yopt(Yij1hyi(Xt)) (7.7)
t=0

Based on this idea, we summarize the MCTS algorithm in Algorithm 3 and Fig.

2. Find the ZL:OS

best decision
Sfor driver 1

t=0.5s X

Initial State

AwarX(3)
List

Hyard Driver 1 Choice
List 3. Choose the

corresponding
action for
driver 2
Driver 2 Choice

Y(W|X@)

t=1s

1. Choose the
best response
for driver 2

YIX@)

t=1.5s

Driver 1 Choice

Driver 2 Choice

Figure 7.3: The MCTS process for a Stackelberg equilibrium in a two-player game: the yellow-square root
node represents the initial state of the two vehicles, and blue nodes are the actions by the leader and green
nodes are for the follower.

Pareto Optimality

Pareto efficiency or Pareto optimality is a state of allocation of resources from which
it is impossible to reallocate so as to make any one individual or preference criterion
better off without making at least one individual or preference criterion worse off. In
our case, we view two players equally important, which means the target cost function

should be:

N—-1 N—-1
(‘Yopt(X)/‘Yopt(Y)) = argy(x)/y(y)min[z Cego (v(X),v(Y)) + Z Cother (Y(X), ¥(Y))] (7.8)
t=0 t=0
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Input: (s79°,s0the): Joint state of two vehicles at time t

N: number of iteration
m: number of time-step within consideration
Output: Vépﬁmal : Optimal motion in the next time step
1: Initialize the root node ng using the (s{9°, sother)
2: Initialize the number of search k =0
3: while k < N do
4:  Set the current node n using the root node ng

5. Initialize the search depth i =1
6: while i <2m+1 and all children nodes of n expanded do
7: if odd(i) then
8: Find the optimal responses of the follower under all the possible actions of
the leader using
9: Choose the optimal decision ncni1q for the leader using
10: else
11: Choose the corresponding optimal response nchiiq for the follower in (7.6)
12: end if
13: N < Nchild
14: i=1+1

15:  end while
16: if i <2m+ 1 and not all children of n expanded then

17: Explore the randomly selected children node ncniiq
18: N < Mchild

19: for Every children node npjjqof n do

20: Randomly select the children node till the end
21: Back propagate the visiting time and cost

22: end for

23: i=1+1

24:  end if

25:  whilei<2m+1 do

26: Randomly Select nchitg

27: N < Nchild

28: i=1+1

29:  end while
30:  Backpropagate and update the visit times and the accumulated cost along the
search route till the root node
3. k=k+1
32: end while
33: Output the child node of the root node with the largest visiting time as the optimal
MOtioN Yopimal
Algorithm 3: Search Strategy for Stackelberg Policy
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Hence, the depth of the tree will reduce to half, but the number of nodes within a
single layer will double in a two-player game. The MCTS process for Pareto solution is

shown in Fig.

X(Initial)
Driver 1
Initial State

{X(1),Y(1)}

Driver 1,2 Choices

Driver 1,2 Choices

Figure 7.4: The MCTS process for Pareto equilibrium: starting from the initial condition represented by
the light-blue root node, the two players are equally treated. At each layer, the action space is augmented
by the actions from both agents.

Constant-Action Policy

Using autonomous vehicles as an application example, the constant action we assume
is that the vehicles will maintain its current speed, i.e., the acceleration is zero. Hence,
with such assumption, our decision space only contains the ego vehicle. The depth of the
search tree will reduce by half and the number of nodes in each layer remain the same
with the action space for a single agent. The MCTS algorithm is described in Fig.

1=0s

Initial State
Driver 1 Choice
Driver 1 Choice

XWXw

Driver 1 Choice

t—=4s

Driver 1 Choice

Figure 7.5: The MCTS process for constant-speed and ignoring policies: starting from the initial condition
represented by the yellow-square root node, only the action space of the ego vehicle is explored in each
layer.
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Ignore

The ignoring policy is introduced in this section to represent the scenarios when a
human driver is not paying attention to other agents that he/she is supposed to interact
with. We assume that under this policy the information of the other driver is blocked,
which means that the ego vehicle can’t receive the state information of the other vehicle.
Thus the cost function for the ego vehicle should only include terms defined on his own
actions, as shown in (7.9). The MCTS algorithm is the same as in the “constant-action”

policy shown in Fig.

z

-1

Cego (Yégo) = C(St/ Yé’go; 9ego) (7.9)
0

=~
I

7.4 Motion Planning with Online Bayesian Inference for
Game Policies

To find out which policies a human are more likely to adopt during interaction,
we adopt Bayesian inference to update the probability of each policy based on new
observations at each step. mi(i = 1,2,3,4,5) denotes each of the five policies that the
agent would adopt. Here we assume that the initial probability of each policy is the
same, namely P(m;) = %(i =1,2,3,4,5). At each time step, the probability for the i-th
policy P(7;) is updated as follows:

PYmila) o« P (m) - Plylm) (7.10)
where y; denotes the action that a human would adopt at time step t. Based on the
principle of Maximum Entropy, the posterior probability P(yi|m) is given by

—Q*(vt,5t)
e

S, e Qi (7.11)

Pt(Yt|7Ti) =

where ¥; denotes all the possible actions the driver would adopt at time step t, This
is a typical Q-value inference where Q* denotes the cost to go given a specific action
and the current state. To find Q* under each different game policies, we run the MCTS
algorithms discussed in Section

Here we modify the original MSCT algorithm based on the posterior information
and show how to conduct the Bayesian Inference based on game theoretic approaches in
Algorithm 4.

Once the policy beliefs are obtained, we integrate such information into the motion
planning algorithm for the robot systems so that an expected utility under the game
policy uncertainties can be maximized, as shown in (7.12).

5 N-1

Yopt(X) = arg, ymin Y Y P(m) - c(v(X),vi(Y)) (7.12)
i=1 t=0
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Input: $°9°, s°theT:Joint state of two vehicles
Output: P(m;|a;): The probability of adopting each policy
1: Covert the X —Y coordinate to 1l — s coordinate.
2: Compute the collision point and transfrom the origin of the 1 —s coordinate to that
point.
Extract s¢9°, s within the interaction period
Initialize time t = 1.
while 1{9° > 0 and 1?™"¢" > 0 do
formi(i=1,..,5) do
Compute posterior probability P*(a|m;) using the cost value of children nodes
using (s{%%, s9theT) in Algorithm
end for
9:  Update the prior probability P*(m;|at) in
10: t=t+1.
11: end while

other

*

Algorithm 4: The Bayesian Inference Algorithm

With such policy uncertainty-aware motion planning strategy, we can design safer
autonomous systems. Moreover, if the human switch policies, the robot can efficiently
identify that and adapt its behaviors accordingly.

7.5 A Case Study

7.5.1 The roundabout Scenario

We demonstrate the effectiveness of the proposed policy-aware motion planning al-
gorithm on a case study in autonomous driving. The interactive scenario we consider is a
roundabout merging from the INTERACTION dataset [159, [158], as shown in Fig. [7.6{a).
We focus on the interactive agents where one player is trying to merge into the round-
about, and the other player is already in the roundabout, passing by the entrance where
the first player comes from. Hence, they have potential conflict or merging points on
their future paths. We collected 253 pairs of such interaction trajectories where each tra-
jectory contains a sequence of the vehicle’s states and actions including x —y coordinates,
speeds, yaw angles and accelerations (one example is shown in Fig. [7.6(b)). Similar to
what we have done in Section 5.4{in Chapter [5| we converted the trajectories from x —y
coordinates to coordinates in Frenet frame (s — d) based on the identified reference paths
in Fig. Furthermore, for each interaction pairs, we set the conflict or merging point
as the common origin point along the longitudinal direction (s). Before they arrive at the
conflict or merging point, their longitudinal coordinates are positive. Once the point is
passed, their longitudinal coordinates become negative.
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the vehicle
about to merge in

(a) The roundabout map and interactive vehicles (b) An example of the extracted trajectories for in-
teractive vehicles

Figure 7.6: The roundabout scenario in INTERACTION dataset we focused in this chapter and an exem-
plar pair of the interactive trajectories: (a) we care about the two interactive vehicles in the orange and blue
circles where one is in the roundabout and other other is about to merge in. They have at least one conflict
point or merging point on their future paths; (b) shows an exemplar pair of such interactive trajectories.

Utilizing the map and collected human driving data, we conducted two studies. First,
we try to answer our motivation question - what policies do most human take during
interaction? To find out the answers, we run the Bayesian policy inference algorithm
in presented in Section [/.4 for each vehicle in the pairs and record how the game poli-
cies involve. The second study is the verification of the proposed policy-aware motion
planning strategy. We run simulations on the roundabout map and test the performance.

7.5.2 Statistics of the Game Policies for Human
The Cost Functions for Drivers

To run the algorithms in Section we need to have access to human’s cost func-
tions, which is practically not possible. One might argue that we can use inverse re-
inforcement learning or inverse optimal control to learn the cost functions. However,
given the unknown policies, inverse reinforcement learning or inverse optimal control
will not work since they need such information as prior knowledge. If we make as-
sumption on the policies and conduct inverse reinforcement learning or inverse optimal
control, the learned cost functions will be biased and cannot be used to infer the correct
policies. Hence, to avoid significant biases in the cost functions, we only consider the
must-have features for driving in the assumed cost functions which are the speed feature
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and collision-avoidance feature. At each time step, the cost c(v¢) is defined as

c(v") =wi - V() = vaes| + w2 - @ (x(1) @ (y(t) A (x(t), y(t)) (7.13)

where [v(t) — v4es| quantifies the speed deviation from the desired speed v4es, and
@ (x(t)) @ (y(t)) A (x(t),y(t)) measures the collision penalty (safety-related) of two ve-
hicles. w; and w; are, respectively, the weights for the speed and the safety terms. In
this work, we set w; = 0.05 and w, = 50. x(t) and y(t) represent the states for the two
interacting vehicles. All the states are defined in the Frenet frame. The definition of ¢(x)
and A(x,y) are given in (7.14) and (7.15):

X, if 0<x<K,
P(x) = { 0 else (7.14)
Alx,y) = [K—Px—yll (7.15)

The hyper parameter K is a safety distance term. It can be chosen based on our degree
of emphasis on safety. In our experiment, we recommend K € [5,10]. The desired
speed vqes is calculated based on the speed limit, the geometry of the path and human’s
acceptance range for lateral accelerations:

. 14
Vdes = clip( mIO, Vlimit) (7.16)

where k denotes the curvatures of the reference curve, and viinit is the speed limit. In
this environment, we set it as 25mph as posted in the real map.

Statistic Results

Based on the cost functions defined in (7.13), we infer the game polices for each of
the agent in the collected interaction trajectory pairs based on Algorithm 4. Figure
shows one exemplar results where we can see that the target human driver first tends to
be cooperative, pursuing a Pareto equilibrium in the interaction. As interaction goes by,
the driver becomes more aggressive and switches towards a Nash equilibrium.
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Figure 7.7: An exemplar evolution of the game policy on a human driving trajectory: the target human
driver first tends to be cooperative, pursuing a Pareto equilibrium in the interaction. As interaction goes
by, the driver becomes more aggressive and switches towards a Nash equilibrium.

For all the collected interaction pairs, we record such evolution of their game policies.
We calculate two measures: dominance of policy and policy switching frequency.

* Dominance of policy: this measure quantifies how long each policy is serving
as a dominant policy. As shown in Fig. there are two dominant policies -
the Pareto and Nash. We also considering the duration period for each policy
in this measure, i.e., the dominating policies will be weighted by their dominant
periods. Essentially, we record the dominating time period for each policy in each
interaction trajectories.

* policy switching frequency: this measure counts how many times a human switches
the policies during one interaction. Such a measure can give us hints on how fre-
quency human drivers switch policies in interactive driving. For instance, in the
result shown in Fig. the target human switched two dominating policies.

Results on the “dominance of policy” are shown in Fig. We can see that in most
cases, human drivers are not interacting intensively, i.e., they are running the “ignoring”
policy. When they are interacting, they tends to be more cooperative than competitive
since the “Pareto” policy dominates more than “Nash”, “Stackelberg” and “Constant”
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policies. Such results match our observations with courteous driving in human drivers:
human tends to be cooperative and courteous to each other during interaction, in most
scenarios.

The summary of dominant policies{Consider all the timesteps)

1500

:

Fregusncy

Nash Slackelberg Parelo Constamnt Ignore
Dominani policies

Figure 7.8: Results on the “dominance of policy”: in most cases, human drivers are not interacting in-
tensively, i.e., they are running the “ignoring” policy. When they are interacting, they tends to be more
cooperative than competitive since the “Pareto” policy dominates more.

Figure [7.9)shows the results on “policy switching frequency”. Among the 253 sets of
data, in most cases, human switched only once or twice for the game policies. There is a
significant drop between three times and more. Such results can serve as important prior
knowledge when we design robots” behavior. We should not let the robot switch policies
too frequently, for instance, more than 3 times during one interaction. Moreover, to
model the human behaviors, we can also assume that human will not frequently change
their policies given the observed results in Fig.
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The summary of the number of dominant policies

il T T

Frequency

The number of dominant policies

Figure 7.9: Counts on the number of dominating policies during one interaction over the collected dataset:
in most scenarios, human will not switch for more than 3 policies.

7.5.3 Motion Planning with Policy Uncertainties

Based on the inference possibilities, we run the policy-aware motion planning strat-
egy in simulation on the roundabout map. We let the robot be the vehicle trying to
merging into the roundabout with exactly the same initial conditions as the real data,
and keep the other vehicle’s trajectory untouched. To quantify how human-like our
proposed motion planning strategy is, we again utilize two measures.

e Discrete interaction results: for the discrete interaction results, we use the order
of the two vehicles passing their conflict or merging point. If the passing order
using our motion planning algorithm is the same with ground truth, we claim the
algorithm can generate human-like behavior in the sense that it does not change the
distribution of the discrete interaction results. The results are shown in Fig. It
matches the ground truth distribution quite well.

e Continuous interaction results: for the discrete interaction results, we use mean
square error along the longitudinal direction which is defined as follows:

1 n
MSE = — ;(st — )2 (7.17)
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where n is the number of test trajectories, and s and 3; are, respectively, the ground
truth longitudinal coordinate at time t and the re-generated one using our pro-
posed motion planning algorithm. The results are shown in Fig. We can
see that in most scenarios, the MSE between our re-generated trajectories and the
ground truth trajectories are small, which means that our proposed policy-aware
motion planning algorithm can generate human-like behaviors.

I Original Passing Order
B Generated Motion Passing Order

Car-Out(Ego Vehicle) Pass First Car-In{Other Vehicle) Pass First

Figure 7.10: The distribution of passing orders over the dataset for two interacting vehicles: blue represents
the ground truth passing order and red is the result with the generated motions.
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Figure 7.11: The histogram of the mean square error along the longitudinal direction between the gener-
ated trajectories of the robot vehicle and the ground-truth trajectories
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7.6 Chapter Summary

Motivated by finding appropriate assumptions for the game policies in game-theoretic
bebavior design, in this chapter, we designed a scheme to infer the game policies of
agents during interactions based on Bayesian inference. Built upon that, we developed a
policy-aware motion planning strategy which can help generate safe actions in the pres-
ence of policy uncertainties in interactions. To evaluate the effectiveness, we performed
two studies: one on the human’s game policy in human driving and the other on the
human-likeness of the proposed motion planning algorithm. Through the first study;,
we found that human tends to be cooperative in most scenarios, and they do not switch
policies too often. Moreover, the motion planning results showed that the policy-aware
motion planning algorithm can well preserve the distributions of the interactive results
in the collected dataset.

The work in this chapter is step towards more human-like behavior design for au-
tonomous systems. Beyond the perception uncertainties in Chapter [}, we address the
problem of uncertain game policies in interaction. The work can be further extended
in many directions. For instance, more substantial statistical results on more driving
scenarios can be obtained to provide more prior knowledge for the research community
focusing on autonomous driving. We can also explore strategies to integrate the infer-
ence of game policies with reward learning to eliminate the influence from biased cost
function designs.
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Chapter 8

Safety-Enhanced Imitation Learning

In this chapter, we will discuss the problem of efficiently generate behaviors for au-
tonomous system using advanced technologies such as learning and model-based op-
timization. Safety and efficiency are two key elements for planning and control in au-
tonomous systems. Theoretically, model-based optimization methods, such as Model
Predictive Control (MPC), can provide such optimal policies. Their computational com-
plexity, however, grows exponentially with horizon length and number of surrounding
agents. This makes them impractical for real-time implementation, particularly when
nonlinear models and variety of uncertainties are considered, as addressed in Chapter 6|
and Chapter[7] To enable a fast and approximately optimal behavior policy, we propose a
safe imitation framework, which contains two hierarchical layers. The first layer, defined
as the policy layer, is represented by a neural network that imitates a long-term expert
policy via imitation learning. The second layer, called the execution layer, is a simplified
model-based optimal controller that tracks and further fine-tunes the reference trajecto-
ries proposed by the policy layer to avoid collisions. Moreover, to reduce the distribution
mismatch between the training set and the real world, Dataset Aggregation is utilized
so that the performance of the policy layer can be improved from iteration to iteration.

We address the problem using autonomous driving as an application example, but
the proposed framework can be adapted to other human-robot interaction systems.

8.1 Introduction

In recent years, autonomous driving has attracted a great amount of research ef-
forts in both academia and industry for its potential benefits on safety, accessibility, and
efficiency. Typically, autonomous driving systems are partitioned into hierarchical struc-
tures including perception, decision-making, motion planning and vehicle control (see
[23, 24]). Among them, planning and control are two core challenging problems that are
responsible for safety and efficiency. They should

1. comprehensively consider all possible constraints regarding safety and feasibility
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as much as possible based on the perceived environment information and reason-
able prediction of other road participants” behaviors;

2. generate optimal/near-optimal maneuvers that provide good driving qualities such
as smoothness, passengers’ comfort and time-efficiency;

3. solve the problem within limited runtime to timely respond to rapid changes in
surrounding environment.

Simultaneously satisfying the above requirements can be difficult and many plan-
ning and control approaches have been proposed [40]. They can be categorized into five
groups: i) graph-search-based, such as A*(see [33]), ii) sampling-based (e.g., RRT, RRT*,
see [65, 58]), iii) interpolating-curve-based [15, |80], iv) optimization-based [86, 79], and
v) learning-based approaches [107, (17, 64]. Groups i) and ii) are space-discrete in the
sense that they discretize the state space into grids/lattices or sampled nodes and search
for solutions that build feasible connections among them. Consequently, the resulting
paths/trajectories are not continuous but jerky, and a subsequent smoother is necessary
for realistic implementation. Approaches in iii) can mostly generate smooth paths, but
it is hard to guarantee its optimality, not even locally. Besides, without temporal consid-
eration, dealing with moving obstacles can be time-consuming using such approaches.
Optimization-based approaches, on the other hand, formulate all possible cost functions
and constraints in a uniform manner as constrained optimization problems with con-
tinuous state and action spaces. A popular example utilizes Model Predictive Control
(MPC). At each time step, the optimal control actions are generated by solving a con-
strained optimization problem (in general highly nonlinear and non-convex). A practical
issue is that the computational load grows exponentially with the horizon length and the
number of obstacles, which makes it hard to be implemented in real time, particularly
when a long horizon is preferred for persistent feasibility and safety. In order to guar-
antee the realtimeness, several methods have been proposed. For instance, in [168]], the
sequential optimization is terminated at pre-determined maximum runtime. In [167,
160] the unified optimization problem is decomposed into two or more sub-problems
with linearized vehicle models and constraints. Both methods sacrifice optimality for
computational efficiency.

On the other hand, “End-to-End” learning approaches in group v) are increasingly
attracting attentions in recent years due to their powerful representations of the envi-
ronment and fast forward computation in test phases. Typically, such learning-based
approaches take raw images as inputs, and directly output the driving actions or a driv-
ing policy net by training a deep neural network via supervised learning [17] or deep
reinforcement learning [150, 41]. As pointed by [25], however, the outputs of such “End-
to-End” networks are hard to yield any guarantees for feasibility, safety and smoothness.
Also, such “End-to-End” structure is hard to incorporate a priori knowledge on vehicle
models, which makes their training not only data-hungry, but also time-consuming, i.e.,
hours/days of training time on multiple GPUs. This makes the “End-to-End” learning
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system hard to adapt to new situations. This can be dangerous in practice since real-time
deviations from the training set/simulation environment can lead to unpredictable error
propagation and cause severe consequences if the training set/simulation environment
cannot be augmented by realistic test results.

In this chapter, we propose a hierarchical structure that combines the advantages
of both learning- and optimization-based methods via safe imitation mechanism. The
framework consists of two layers. The first layer, defined as the policy layer, is repre-
sented by a neural network trained via imitation learning. The inputs of the network is a
set of highly representative features that describe the environment information, and the
output is an instructive trajectory imitating a long-term expert driving policy. The sec-
ond layer, called the execution layer, is an approximated constrained optimal controller
that aims to generate safe and feasible actions efficiently by fine-tuning the instructive
trajectories from the policy layer. We explore two approximation schemes: formulating
it as a short-horizon optimal controller or as a long-term approximated optimal con-
troller. Our key point is to replace a time-consuming long-horizon online optimizations with
offline training and efficient online generation and adjustment. In such sense, not only the
long-term optimality is preserved, but also a priori knowledge on vehicle models can be
tully utilized for better tracking and control performance. Moreover, Data Aggregation
(DAgger) process is utilized to consistently improve the performance of the policy layer.

8.2 The Hierarchical Structure

Figure 8.1 shows the overview of the proposed planning and control framework for
autonomous driving. It consists of three hierarchical modules: perception, decision-
making, and planning and control. At each time step, the perception module detects
the surrounding environment via on-board sensors (e.g., GPS, LiDAR), and yields mea-
surements/estimates of all necessary states of the ego vehicle such as in-map location,
orientation, velocity and its relative positions and velocities to all other visible road par-
ticipates (static or moving). Based on the perception results and pre-defined driving
tasks, the decision-making module will set the reference lane to instruct the next-level
planning and control.

We focus on the planning and control module. To satisfy all the three requirements
discussed above, the planning and control module consists of two layers in test phas
the policy layer and the execution layer. First, based on the driving decisions (e.g., target
lane) and the perception results, a set of highly representative features are extracted as
inputs of the policy layer that is trained to yield trajectories imitating that of a long-
term expert driving policy (for instance, such a policy can be directly obtained via long-
term MPC or sampling approaches such as RRT*). Then, with the imitated reference
trajectory, the execution layer computes the optimal control actions (steering angles and

ZNote that in the training phase, no execution layer is need and the training of the policy layer is a
typical behavior cloning process.
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Figure 8.1: The overall hierarchical structure

accelerations) that considers model constraints, feasibility and obstacle avoidance so that
the ego vehicle can be safely driven. To assure that the planning and control module is
environmentally responsive, we adopt the re-planning scheme, i.e., at each time step,
only the first control actions from the execution layer are sent to the actuators to drive
the ego vehicle.

8.3 The Design of the Execution Layer

To efficiently generate safe and feasible control actions, we explore two approxima-
tion schemes in the execution layer layer: 1) formulating it as a short-term constrained
trajectory tracking problem and 2) formulating it as an approximated long-term con-
strained trajectory tracking problem, and more specifically, a quadratic programming
problem. Both are using the framework of MPC with two goals: 1) track as much as pos-
sible the trajectories generated by the policy layer and 2) make safe adjustments when
necessary to guarantee collision avoidance.

8.3.1 Approximation Scheme I: A short-Term Optimal Controller with
Constraints

In this subsection, we introduce the first approximation scheme: formulating it as
a short-term trajectory tracking problem with constraints. Take the driving scenario in
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Figure 8.2: An example driving scenario for short-term MPC

Fig. as an example. Assume that at each time instant t, states of the ego-vehicle
are represented by zi=[xt, yt, Oy, VT, where (xt,yt) is current car position, 0 is the
yaw angle and V; is the speed. Similarly, states of all surrounding cars are denoted by
(xglt,y})/t,vf)xlt,v})y’t) (i=1,2,---,n). Control actions of the ego vehicle include the lon-
gitudinal acceleration and steering angle, i.e., ui=[ay, 8¢ T. Define the horizon length in
execution layer as N, and at time t, the within-horizon predicted ego-vehicle’s states and
control variables are respectively zf/k +1:[xf,k 17 yf,k 17 Bflk 17 VE 5 +1]T and uf,k:[aflk, SEk]T
with k=0, 1,2, - -, Ne—1, and the within-horizon surrounding cars’ states are denoted by
(Xgi,kﬂlygikﬂfVg%l,t,kﬂfvgg,t,kﬂ) for i=1,2---,n.

Remark 1: In this chapter, we assume that the prediction of future states of surround-
ing vehicles is available. Typically, they can be predicted using simple rule-based behav-
ior models (e.g., zero-input or constant velocity assumptions) or advanced prediction

algorithms as discussed in Chapters
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Objective Function

Suppose that the first N, trajectory points given by the policy layer are [(x{;,y},),
(X{ 2, Yta),, (X{ N, Ui N, )], then a quadratic cost function is defined as

N e e T e
Xtk Xtk
Jg - Z [ ] We [ ¢

e - utT,kWUut,k + Au*tT,kVchAth,k (8.1)
k=1 yt,k ytlk

where [x{,,y§,] £

[xf,k — x{,k,yflk —yi,J represents the tracking error and Ay =
[at x—ai k-1, 0t x—Otx—1] is the derivatives of the control inputs. W,.eR>*2, W, eR?>*2
and W, €R?*? are all positive definite matrices that tune the weights of tracking error,

control effort and comfort level of the passengers.

Constraints

The short-term tracking problem comprehensively considers all constraints from the
system kinematics feasibility (nonlinear equality constraints), dynamics feasibility and
collision-free safety (inequality constraints).

* Kinematics feasibility: Bicycle model [113] is adopted in this work to express the
kinematic model of the ego vehicle, i.e., for k=0,1,---, N.—1 within the preview

horizon:
xf’k = xf’k—l—VE K cos(eflk+ tan! —Lr talrj 63]‘ )dt (8.2)
Utel = Yot Vexsin(0], + tan~! ﬂ )dt (8.3)
0 1 = egww cos(tan ! I—rtafnéf’k)d’c (8.4)
VEkJrl = V‘Ek—i_af,kdt (8.5)

and x? ;=x¢, y} y=ut, 07 ;=0¢, VI ;=Vi. L=L.+L; is the total car length as shown in
Fig.[8.2and dt is the discrete time interval.

* Dynamics feasibility: The dynamics feasibility is guaranteed via constraints from the
G-G diagram, as shown in Fig. where a}f, < anqqy represent, respectively, the
maximum acceleration input and deceleration input. Therefore, the feasible region
(shadow part in Fig. can be expressed in terms of decision variables as:

2 2
PP p PP p
(Xt,k+2 2Xt,k+1+xt,k> N (Ut,k+2 2Ut,k+1+yt,k>

dt? dt?
< (amax)? (8.6)

P 4 P +
at,k - alon,t,k < Amax (87)
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* Safety constraints: Safety is assured by constraining the ego-vehicle’s configura-
tions (position and orientation) and its distances to surrounding cars. As shown
in Fig. we decompose each of the vehicle into m circles of radius r,.n, which
are laid out equidistantly along its longitudinal axis as explained in [168]. To as-
sert collision free, we require that the distances from the ego vehicle’s circles to
all surrounding vehicles’ circles to be larger than ryen ego + Tveh surr + € Where € is
a pre-determined safety buffer distance between two cars. Mathematically, for n
surrounding vehicles, this brings in N.nm? safety constraints

d > T

t,k = "veh,ego + veh,surr +e€, (8-8)
i=1,2,---,n,j=1,2,--- ,m%,k=0,1,--- ,No— 1.

Moreover, other safety constraints to ensure that the ego vehicles does not hit the
curb are also considered. By limiting the corner points (A, B, C,D in Fig{8.2) of
the ego vehicle within the road boundaries, another 2N, nonlinear inequalities are
generated. Hence, the total number of safety constraints is Nenm? + 2Ne.

alon‘r

feasible region
/\ CL+
max

Figure 8.3: Acceleration boundaries from G-G diagram

In summary, the short-term time-varying optimal control problem in the execution
layer at each time instant t is given by:

Py = min J (8.9)
(Zf,o""/zg,Ne/uf,of”/upN e—1)
S.t Z‘Ek e Z,szo,l,"',Ne

ul, € U, ¥k=0,1,---,Ne—1
constraints Eqns. (8.2)-(8.8))

where Z and U are the bounded set of the ego vehicle’s states and control variables.
By solving this optimization problem online, we can get the optimal action sequence
uf/o, e u’ﬁeil at time t, execute the first action uf/o and re-plan at time t + 1 in a manner
of receding horizon control.
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Efficient Proximate Learning

When the execution layer is formulated as a short-term trajectory tracking problem
subjected to constraints, we use an efficient proximate learning scheme in the imitation
layer. Recall that in receding horizon control, at each time step t, although a sequence
of trajectories/control actions are generated, only the first one will be applied to drive
the system. Similar concept will be adopted in the imitation process. Suppose that the
length of the long-term trajectory given by an expert policy is N, it makes more practical
sense if the short-term optimal controller in the execution layer can track the first several
reference points than the later ones. In fact, if the execution layer can track the first
several reference points precisely, the influence of the remaining ones are ignorable.
Hence, instead of imitating all N-length reference trajectories given by an expert policy,
we introduce the concept of “proximate learning” in the policy layer when the execution
layer is formulated as a short-term trajectory tracking problem. Namely, as shown in
Fig. the training loss is defined as a weighted sum of Euclidean distances between
the network outputs and the reference expert trajectory only within the proximate area:

proximate area ’ ”
L= Y Wa(dre—aen) e w (spetose) (8.10)
[sEet’d‘l]’{Let}

where (sI¢f, d7¢") represents the expert trajectory in the Frenet Frame and (s['¢t, dl'¢!)
is the output of the network in the policy layer, which is later converted into (x¢, yt)
coordinate for the execution layer to safely track. Wy and W; are, respectively, the
imitation weights along the lateral and longitudinal directions. In this case study, we set
the proximate areas to contain 10 sequential points, i.e., equal to the horizon length N,
in the execution layer.

Such configuration helps reduce the number of output nodes in the output layer of
the network and consequently the network size, so that training time can be significantly
reduced, which allows fast adaptation of the system via online DAgger, as discussed in
Section C. Moreover, it also reduces the horizon length for the following execution
layer, i.e., reducing the overall computational load of the proposed framework.

long-term trajectory given by expert MPC

~ ——e-o-o--9
proximate area _o-0- -0 o
(@]

0-0-C

Figure 8.4: Illustration of the proximate learning concept
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8.3.2 Approximation Scheme II: An Approximated Quadratic
Programming Problem

The first approximation scheme in Section can only assure short-term safety
and collision avoidance. Hence, it may suffer from hard brakes in order to avoid col-
lisions. Typically, we also would like a long horizon in the execution layer in order
to generate more smoother maneuvers. Hence, in this subsection, we explore another
approximation scheme in the execution layer: approximating the original long-term non-
convex constrained optimization problem as a quadratic programming (QP) problem to
improve the computation efficiency with the help of the long-term reference given by
the policy layer.

The original long-term constrained optimization problem is the same as the one de-
fined in except that the horizon length will be much longer. To make the problem
solvable in real time, we propose to approximate it via a QP problem utilizing the refer-
ence trajectory given by the policy layer. As shown in (8.9), in the optimization problem,
there are constraints coming from the kinematic and dynamic models of the car and
safety. For the kinematics and dynamics constraints, we linearize the kinematic and dy-
namic models at the given waypoint at each time step. For the safety constraints, we
approximate the non-convex feasible set as convex hulls. Details are explained below.

Figure shows an exemplar scenario for the robot car (the red car). The black
lines represent the road curbs and the orange line is the lane separator. The green line
and green dots represent the spatial-temporal reference waypoints given by the policy
layer. The black dotted lines are perpendicular to the tangents of the reference trajectory
at these waypoints. In Fig. [8.5(a), the white car is treated as a longitudinal obstacle.
The lateral obstacles come from the lane boundaries. The semi-transparent white cars
represent the future positions of the white car. In (b), the blue car is treated as a lateral
obstacle.

* Longitudinal obstacles: with the given reference trajectory via the policy layer,
we can directly detect whether the reference trajectory collides with longitudinal
obstacles. For instance, as shown in Fig. [8.5(a), the green line is overlapping with
future positions of the white car at the fifth time step. Hence, we can directly
constrain the longitudinal position of the robot car at the fifth time step to be
within the boundary represented by the purple line, i.e., the rear of the white car
at the fifth time step. The same approach can be used in a similar way to handle
cars behind the robot car.

* Lateral obstacles: for lateral obstacles, we linearize the boundaries of them by
utilizing the reference trajectory. As shown in Fig. at each time step, we can
find the tangents of the reference trajectory and the feet of the perpendiculars on
the boundaries (represented by the red dots in Fig. [8.5(a)). Through those feet of
the perpendiculars, we can linearize the boundaries by lines that are parallel to the
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tangents of the reference trajectory (the red and blue lines in Fig.[8.5). Considering
the constraints from each step, the non-convex feasible set is approximated via a
combination of half spaces, i.e., a convex hull, as shown Fig. [8.5(b).

(a) boundary constraints and

longitudinal obstacles (b) lateral obstacles

Figure 8.5: Illustration of the approximation for safety constraints: the red car is the robot/ego car, the
blue car is an lateral obstacle, and the white car is a longitudinal obstacle. The green line and green dots
represent the spatial-temporal reference waypoints given by the policy layer. The black dotted lines are
perpendicular to the tangents of the reference trajectory at the waypoints. In (a), the red dots are the feet
of the perpendiculars on the lane boundaries. The red and blue lines in both (a) and (b) are, respectively,
parallel to the tangents of the reference trajectory at the first and second waypoints, and go through the
feet of the perpendiculars on the lane boundaries and the other car’s outline.

8.4 Design of the Policy Layer

As discussed above, as the preview horizon and the number of surrounding obstacles
increase, the computational loads of direct optimization-based planning approaches in-
crease exponentially, which makes them impractical in real-time online applications. In
fact, even solving the safe tracking problem in Eqn. with a quadratic cost function is
not easy in realtime when N, is fairly large, not to mention an optimization-based plan-
ning problem with more complicated cost function that considers all necessary driving
qualities. To address such time efficiency challenge while maintaining its optimality (to
some extent), we proposed to design a policy layer to imitate an expert long-term driving
policy as a fast online reference trajectory generator, and let the execution layer safely
track the reference trajectory. Note that such an expert policy can be obtained via either
offline optimization or other approaches (e.g., rapidly-exploring random tree (RRT) and
RRT¥) or from human driving data. In this section, details with respect to the imitation
learning process will be discussed.



CHAPTER 8. SAFETY-ENHANCED IMITATION LEARNING 122

As for the input features, we explore two formats: numerical features and visual
features. With numerical features, the input layer of the network is a vector, while for
visual features, the input layer takes images as inputs.

8.4.1 Numerical Feature Extraction

For an efficient and compact network in the policy layer, feature selection is of key
importance. The numerical features we selected can be divided into three groups at each
time instant t:

* on-map motion features: ego-vehicle’s current location and speed within the abstract
map settings;

* goal features: ego-vehicle’s lateral distance to the target lane set by the decision-
making module at current time instant;

* safety features: ego-vehicle’s current relative positions, orientations and velocities
with respect to surrounding obstacles/cars.

On-Map Motion Features

To effectively describe the on-map motion features on curvy roads, we re-express all the
coordinates of vehicles in the Frenet Frame, as shown in Fig. The position (xt, yt)
at time t is translated to (s¢, di) where s is the longitudinal travelled distance along the
road and d; is the lateral deviation from the lane center.

First the lateral distance of the ego-vehicle to curbs are given, namely, f;" ap’léd:t curb

. map,2A 13—
dt and ft —dt dt, curb”

Furthermore, we spatially discretize the proximate reference
lane center, the coordinates of which are represented by 1nit =S X{, Y5, %5, 45, -+ -, xjc, yjc, e,
x5, Y. Then the current deviations of the ego-vehicle from the reference lane center
can be represented by d} = [dli”l, d%”z,- ., d%”j, -++,d}"™], where each element can be cal-

culated by
dY” = FF(ye + (% —x¢) tan 6y —yf),¥j = 1,2,- -, m. (8.11)

where FF(-) represents the function to convert from x —y coordinate to Frenet Frame
coordinate. . .

In this work, m=10 is set, i.e., ten on-map-motion-related features ;" apjt2 & d{,’J for
j=1,2,---,10 are generated.

As for the speed-related feature, it should indicate the current ego-vehicle’s speed
V; as well as its margin to the pre-defined speed limit. Hence, we define f**P1° £
VI =Vi—Vmax-

Remark 2: Tynit is not necessarily evenly sampled in distance. Actually, noting the fact
that closer proximity matters more, r,nit can be sampled spatially with increasing inter-
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Figure 8.6: Definitions for feature selection

vals. Such configuration allows it to cover a longer distance, which helps improve the
features’ sensitivity to small yaw angle changes.

Goal Features

Given the current goal position dfoal, as shown in Fig. the goal feature is defined
as
1 l
o0 £ 90, (8.12)

Safety Features

Considering the states of all surrounding vehicles, the following features are ex-
tracted, for i=1,2,--- ,m,

T
safety i i i i
ft,i = |St—So,ts dt_do,t/ Vi,5Vos,tr Vt,d Vod t (8.13)

where v s and v; 4 are, respectively, the longitudinal velocity and the lateral velocity,
and similarly, vgs/t and v} 4t are the velocities for the i-th surrounding vehicle. For m
surrounding vehicles, 4m features are generated.

All above defined features f]*®, f9°% and ;%" generate a set of highly represen-
tative features fi=[(f}" ap)T,ffoal, (fiafety)T]T and will be used as inputs of the neural
network in the policy layer.

8.4.2 Visual Feature Extraction

The numerical features mainly work in relatively simple scenarios. For more compli-
cated scenarios, it is hard to extract the numerical features. For instance, in real driving
scenarios, the number of vehicles in the scene can change, and it is hard to adapt that
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with a fixed network structure using numerical features. Hence, in this subsection, we
extend the feature set in the policy layer from vector-based features to visual features to
make the policy layer more expressive. Four groups of features are included: the routing
feature, the road mask feature, the dynamic obstacle feature and the velocity feature. All
the features are converted as bird-view images with a size of 100 x 100, overlooking a
space of 80m x 80m in the map centered at the ego vehicle’s current position. A sequence
of feature sets will be generated along each trajectory with a down-sampling rate of five,
i.e., 0.5s per frame. More details regarding each feature are given as follows.

The routing features

The routing features serve for similar purposes as the goal features in the simulation
part. It encourages the ego vehicle to drive along the assigned routing. As shown in
Fig.[8.7(a), the white pixels represent the ground-truth routing of the ego vehicle.

The road mask features

An example of the road mask feature is shown in Fig.[8.7(b). We represent all drivable
areas via the white pixels and all other areas as black ones. The road mask feature can
encourage the ego vehicle to drive within road boundaries.

The dynamic obstacle features

Similarly, all the dynamic objects such as other vehicles in the scene (within the
80m x 80m region) are represented as white rectangles in the feature images, as shown
in Fig.[8.7(c). It encodes information regarding the relative positions among other agents
and the ego vehicle.

The velocity features

To represent the relative velocities between other agents and the ego vehicle as feature
images, we adopt the Gaussian velocity field as in [53} [163]. As shown in Fig.[8.7(d), a
Gaussian velocity field describes a joint Gaussian distribution of the relative velocities of
all the agents with respect to the ego vehicle in the target region (within the 80m x 80m
region). Both velocity fields along the x direction and y direction will be generated as
two channels in the input layer.

8.4.3 Loss

The output of the policy layer is a sequence of future waypoints with respect to
the ego vehicle’s current position, i.e., (X, Ut),t =1,2,---,N where N is the length of
the prediction horizon. In this experiment, we set N = 6, i.e.,, we predict the future
trajectory within 6 x 0.5s = 3s. Note that the (x,y) coordinates are defined in Frenet
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Figure 8.7: The features in the policy layer to imitate human driving behavior: (a) the feature for the
routing information, (b) the feature for the drivable area, (c) the feature for the dynamic obstacles, and (d)
the feature for the Gaussian velocity field.

frame, with y as the travelled distance along the longitudinal direction and x as the
lateral deviation from the reference path (i.e., the routing information). In the training
process, we augment the imitation loss with other routing-related loss and collision-
related loss to penalize wrong routings and collisions. Details regarding the losses are
given as follows.

Imitation loss

The imitation loss quantifies how much the predicted future positions deviate from
the ground truth. Let (x¢,yt) be the ground truth coordinates, and (X, ) be the pre-
dicted ones, then the imitation 1oss Limitation iS:

N

1 . .
Limitation = D_ | (xt—%)2+ (ye =907, (8.14)
t=1

where N is the length of the prediction horizon.

Yaw angle correction loss

The yaw angle correction loss penalizes infeasible yaw angles. We bounds reasonable
yaw angles within [—7t/4, 71/4]. Therefore, the yaw angle correction loss is:

yaw - Z ReLU (— — 1) (8.15)

Routing correction loss

The routing correction loss is defined to encourage the ego vehicle to drive along the
ground-truth reference path. Suppose that there are R waypoints representing the refer-
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ence path, i.e., [(x1,Y1), (x2,U2), -+, (xg,yr)]. For any predicted point with coordinates
(%,7), we quantify its loss via a sum of distances to the reference path defined as

2 N 2
X—X —Y;
Lrouting = 27102§ sign(i exP{ ( 1) _<ycyl> } (8.16)

Curb collision loss

The curb collision loss is to penalize predicted future trajectories that collide with
curbs. We also represent the curbs via a sequence of waypoints, i.e., [(x1,Y1), (X2, Y2),-- -,
(xg,yr)] where R is the number of the waypoints for each segment of the curb. Then the
curb collision loss is given by

R . .
B sign(i)
Feurb = ; V-E=x)2/0?— ([§ —yi)% /o2 + e &17

Dynamic obstacle collision loss

The dynamic obstacle collision loss is to penalize predicted future trajectories that
collide with other dynamic agents in the scene. Suppose there are M agents, and we
represent each of them via its current position i.e., [(x1,Y1), (x2,Y2),- -, (xm, ym)]. Sim-
ilar to the curb collision loss, the dynamic obstacle collision is given by

M

sign(i)
Lobs’facle = Z o v 2/.2 g_ AN N2 /2 . (818)
i=1 (R —xi) /O—X;L (0 —yi) /Gy,i te

Final loss

The final loss can be a combination of all the losses defined above, i.e.,
Linal = W1Limitation + wZLyaw + w3Lrouting + walcurb + WsLopstacle- (8.19)

Figure 8.8 shows one example of the generated loss map where the black lines in (a)
give the boundaries of the road, and the red line showing the reference path. (b) is the
corresponding 3D loss map, and (c) is the projected 2D loss map. The redder the color,
the higher the loss.

8.4.4 Learning via Sampled-DAgger Process

It is well known that, behaviour cloning itself is often not enough since it is never
practical to generate a training set that satisfies the same states distribution as the real-
world test data. Such distribution mismatch may make the learned policy biased and
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Figure 8.8: An example of the loss map: (a) gives the map (black lines as boundaries) and the reference
(the red line), (b) is the corresponding 3D loss map, and (c) is the projected 2D loss map. The redder the
color, the higher the loss.

cause severe problems during execution, see, e.g. [115]. Once the encountered states
slightly deviate from the training set (i.e., unfamilar features), the learned policy might
yield wrong output, and such error will propogate and eventually fails the system.

One effective way to solve this is to use DAgger [115]. As an iterative algorithm,
it adds all on-policy data into the training set so that, over iterations, the training set
can cover most scenarios that the learned policy might encounter based on previous
experience.

Motivated by this, a customized DAgger, defined as Sampled-DAgger, is proposed
to improve the performance of the policy layer. As shown in Fig. the process of the
Sampled-DAgger are given as follows:

1. Gather an initial training set Dy by running a long-term expert planning algorithm
Tlexpert fOr randomly generated scenarios in simulation and train the network to
yield an initial policy 7.

2. Run the autonomous driving architecture shown in Fig.|8.1| with the learned policy
1 in policy layer. Meanwhile, run 7texpert in parallel at a slow rate to periodically
label the features with expert outputs. As shown in Fig. Tlexpert 1S running
every M time steps, i.e., TS Ter' =Mdt, which is set to be long enough to find the
solution given by Texpert-

3. Compare the proximate loss (i.e., Eqn. (8.10)) of current policy 7o(f,_, rexpert ) wrt

interval

the expert policy 7texpert. If the normalized loss is larger than the pre-defined
safety criterion, label the features f,_, ;expert with corresponding expert outputs

interval

and push them into a new training set D’. Once the size of D’ reaches a pre-defined
threshold, go to step 4).
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4. Aggregate previous training set with D/, i.e., D = D U D’ and re-train the network
to yield a new policy 7thew and set o="tnewn.

5. Repeat 2) to 4) until the performance of the learned policy 7y achieves similar
performance as expert.

( Environment ) 2 = [, ye, 01, Vi
v k=0,1,2,...

< perception module >
t'=kMdt

( long-term Wempert>

@ownsample)—><comparisorb

& —={ policy layer (7o)

T short-term

3 trajectory |[(7.y[") = mo(f:)

: . . .

& execution layer proximate trajectory
T control R short-term
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Figure 8.9: The Sampled-DAgger procedure

8.5 A Case Study for Highway Driving in Simulation

In this section, the proposed efficient planning and control framework is applied on
a simple high-way driving scenario for verification. We consider two typical high-way
driving behaviors with two surrounding vehicles ( m = 2 with one front car and another
adjacent-lane car): 1) overtaking and 2) car following.

Simulation Settings

The simulation environment is established based on a 1/10 scale ratio controlled (RC)
car with a sampling period of dt=0.1s. The speed limit is set as 1 m/s for the RC car. In
this scenario, we utilize the numerical features as discussed in Section with a fully
connected neural network in the policy layer. Detailed configuration of the network
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is given in Section For the safe execution layer, we utilize the first approximation
scheme, i.e., formulating it as a short-term trajectory tracking problem with constraints.
A horizon length of N.=10 is selected for solving the constrained optimization problem
in (8.9). More detailed parameters for the simulation environment can be found in
Section [8.5

All simulations are performed using Julia on a Macbook Pro (2.5 GHz Intel Core i7)
using the standard Ipopt solver.

Table 8.1: Parameters in the simulation environment

layers number of nodes | activation function
Input layer 22 sigmoid
hidden layer 1 50 sigmoid
hidden layer 2 50 sigmoid
output layer 2 20 none

Table 8.2: Parameters in the simulation environment

WL Lr I_f w €
0.38 (m) | 0.19 (m) | 0.21 (m) | 0.19 (m) 0.02 (m)
N Ne Vmax a?_nax a;mx

30 10 1.0 (m/s) | 0.5 (m/s?) | -1.0 (m/s?)

Training Dataset

We adopt a long-term MPC-based planning strategy to collect the training data with
a preview horizon of N=30. Initially, the size of the training dataset Dy is 20k. For
each iteration in the DAgger process, we run the trained policy with randomized vehicle
states settings for 100 roll-outs/trajectories, where each rollout/trajectory period is 10s
(i.e., 1000 points for dt=0.1s).

8.5.1 Performance for Overtaking Maneuver

Figure and Fig. show the results of an overtaking maneuver with the pro-
posed hierarchical structure and a short-term MPC only. In this scenario, the ego vehicle
(red) should bypass the slowly moving front car (blue) when the left lane is clear (left-
lane car is also represented by blue rectangles). It can be seen that, in Fig. the policy
layer effectively imitated the expert long-term planning which enables the ego vehicle to
accelerate and turn left at an early stage for a smoother and safe overtaking trajectory.
When the yaw angle of the ego vehicle is relatively large, the policy layer brakes a bit
to avoid possible collision with curbs. On the contrary, without the policy layer, the
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short-term MPC in Fig. behaves “blindly” due to a too-short planning horizon: ac-
celeration without long-prepared turning, sharp brakes and large steering angles when
it is too close to the front car and finally repeated curb hitting and stopping.

8.5.2 Performance for Car Following

In car-following scenarios, no overtaking is allowed (this is set by the decision-making
module considering environment settings, for instance, not enough safe margin for over-
taking or adjacent lanes are blocked). To utilize the same policy layer as in overtaking
maneuveur, a virtual adjacent-lane car is introduced in the feature extraction part.

The results are shown in Fig. where the red, blue and yellow rectangles represent
the ego-vehicle, the front car and the virtual car on adjacent lane, respectively. The blue
bars are the rear positions of the front car. The corresponding velocity profiles show
that with the proposed hierarchical structure, the ego vehicle can decelerate in-time and
perform car-following maneuver with the end speed equal to that of the front car. On
the other hand, with a short-term MPC, the ego vehicle collides with the front car due
to its short preview horizon, even a sharp brake is attempted in the end.

Path in overtaking maneuver
T T T T T T T

1
g 03 T -nn-n--l T
> 0 _ L TR S S B IS I O R |
05| \ \ \ \ \ \ \ \ \

0 2 4 6 8 10 12 14 16 18
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2 e e e ) )
g, 05 ego-vehicle speed |
g — — speed limit
R \ \ \ \ \ \ \ I I

0 2 4 6 8 10 12 14 16 18

x-direction distance (m)

Figure 8.10: Overtaking maneuver using the proposed planning and control framework

Path in overtaking maneuver with short-horizon MPC
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Figure 8.11: Overtaking maneuver using only a short-horizon MPC without the learned policy
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Figure 8.12: Car following Performance with the proposed framework

8.5.3 Imitation Performance Improvement with DAgger

In this section, the imitation learning performance with DAgger is presented. As
mentioned above, the initial size of the training dataset is 20k, and in each iteration
10k on-policy data is generated. To evaluate the imitation performance, we adopt two
emergent metrics: the collision rate (the fraction of trajectories where the ego vehicle
intersects with another road participate) and the hard brake rate (the frequency at which
the ego vehicle brakes harder than 0.9a;,,,). Results are shown in Fig. where it can
seen that both collision and hard brake rates significantly reduce as the DAgger iteration
increases. An example of performance improvement via DAgger is also presented in
Fig. where part (a) represents the on-policy running results with the initial policy
7 on training set Dy. Due to the data distribution mismatch between the training set
and test environment, with 7, the policy layer cannot yield correct on-policy reference
trajectory. As a result, the ego vehicle fails to perform a smooth lane-keeping maneuver.
On the other hand, part (b) shows the results after the DAgger process converges. It
can be seen that with more on-policy running data aggregated into the training set D,
the performance of the policy layer is effectively improved so that the ego vehicle can
smoothly go straight as fast as possible when it is safe.



CHAPTER 8. SAFETY-ENHANCED IMITATION LEARNING 132

©
~

—&— Collision Rate
—»— Hard Brake Rate

o o
\V] w
T T
| |

Collision and hard brake rate
©

6 "
v v

= 2
<

6
DAgger lterations

o

8

o
N
E

10 12

Figure 8.13: Improvement of Collision and Hard Brake Rate

] Path w/o DAgger
(a)
—~ 05F -
= 0 R = <
0 i 5 1 1 1 1 1 1 1
0 1 2 3 4 5 6
Path with DAgger

(b)

-0.5 I I I I I I I

Figure 8.14: Learned policy improvement with customized DAgger

8.5.4 Comparison in terms of Realtimeness and Optimality

We also compare the online running time for both the proposed hierarchical structure
and the baseline expert MPC-based long-term planning policy. With 10 rollouts (i.e.,
10k planning events), the worst-case runtime for the expert MPC takes 2.5487s, while
the policy layer and the safe execution layer takes 6.42x10~%s and 0.0766s, respectively.
This means that the proposed hierarchical structure allows us to do planning with a
frequency of 10Hz. Even if we try to optimize the problem formulation in the expert
MPC policy by constraints approximation, as addressed in [168], a maximum of 2Hz
planning is allowed. Therefore, in term of efficiency, the proposed hierarchical structure
significantly reduced the runtime so that real-time requirement can be satisfied.

Moreover, we have also compared the performance of the proposed framework with
that of the long-term expert MPC policy for trajectories in different homotopy. As shown
in Fig. [8.15| and [8.16, five example trajectories are given: lane change, successful and
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Figure 8.15: Performance comparison of the proposed fast planning framework with long-term expert
MPC planner on test trajectories with different homotopy

unsuccessful overtake, car following and emergency brake (note that the vehicles are not
shown in this plot to make the trajectories clear). We can see that the policy layer and the
safe execution layer can achieve similar performance as the long-term MPC policy (the
Euclidean distance between the two sets of trajectories are small as shown in Fig. [8.16).
The proposed framework, however, is much more efficient for online planning since the
the forward computation of policy layer is very fast, and the formulated optimization
problem in the execution layer is small due to a short preview horizon.

8.6 A Case Study for Real Human Driving

8.6.1 The roundabout scenario

We also applied the hierarchical structure to imitate real human driving data on a
roundabout scenario. As shown Fig. we collect the human driving data and the
high-definition map from the “USA_Roundabout_FT” scenario in the INTERACTION
dataset [159]. Since the real world driving scenario is much more complicated than
the simulated highway driving scenario, we adopted visual features as discussed in
Section in the policy layer and an approximated long-term quadratic programming
formulation in the execution layer, as addressed in Section [8.3.1}
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Figure 8.17: The roundabout scenario used in imitation learning

8.6.2 Results
The performance of the policy layer

Figure shows two examples of the imitation performance of the policy layer. The
white rectangle is the ego vehicle and the red ones are the surrounding vehicles. The
blue area represents the predicted future trajectory and the green area is the ground
truth. We can see that the policy layer can imitate human drivers” behavior quite well.
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Figure 8.18: Two examples of the imitation results of the policy layer: the white rectangle is the ego vehicle
and the red ones are the surrounding vehicles. The blue area represents the predicted future trajectory
and the green area is the ground truth.

The performance of the hierarchical structure

In Fig. and Fig. we show how the proposed hierarchical structure can help
enhance the safety and feasibility of the imitation learning performance. In both Fig.
and Fig. the columns with the gray background is with the policy layer only, and
the columns with the orange background is with the proposed hierarchical structure.
We can see that in Fig. at t = 2.5s5,4.55,5.0s, the hierarchical structure can help
avoid collisions with other agents compared to the results using only the policy layer. In
Fig. the hierarchical structure help to recover the feasibility of the actions generated
by the policy layer, particularly for the action from t = 1.5s to t = 2.0s.

8.7 Chapter Summary

In this chapter, a fast integrated planning and control framework for autonomous
driving was proposed based on a combination of imitation learning and optimization.
Using a hierarchical structure, the framework can efficiently generate a long-term plan-
ning trajectory via imitation, and execute safe and feasible control actions. Moreover,
a sampled-DAgger procedure was also introduced to consistently improve the imita-
tion performance. In the policy layer, we explored both numerical features and vi-
sual features, and in the execution layers, the performance of two different approxima-
tion approaches (a short-term constrained optimization and a long-term approximated
quadratic programming) were studied. For verification, a highway driving scenario in
simulation and one roundabout scenario with real human driving data were studied
with the proposed framework. The results showed that the proposed framework can
effectively generate safe, efficient and feasible control actions for real-time applications.
Moreover, it showed that with DAgger process, the performance can be consistently
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=3.0s

Figure 8.19: Performance comparison between the policy layer and the hierarchical structure on collision
avoidance
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t=3.0s

Figure 8.20: Performance comparison between the policy layer and the hierarchical structure on feasibility
of actions
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improved over iterations.

The work in this chapter is a step towards solving complex optimization problems by
combining optimization and imitation learning. As autonomous systems are required to
handle more and more complicated tasks, we envision such a framework as an effective
methodology to address the real-time requirement of the systems.
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Part 11

High-Performance Individual Machine
Behavior Design
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Chapter 9

Multirate Adaptive Disturbance
Suppression Beyond Nyquist Frequency

The high-level behaviors designed in Part I need to be executed with high perfor-
mance to assure safe and efficient interaction between human and autonomous systems.
For instance, the maneuver and acceleration commands for autonomous vehicles should
be accurately executed via the electronic control unit (ECU). For mobile manipulators,
the high-level interactive behaviors will generate low-level commands for the motion
motors, unsatisfactory performance of which can directly deteriorate the intelligent be-
havior and might lead to task failures and even collisions with human. Hence, reliable
low-level machine behavior is of equal importance as the high-level intelligent behavior.
It is a fundamental support for the high-level hybrid human-machine behavior. In Part
II, we will address the problem of high-performance individual machine behavior de-
sign in the presence of model uncertainties and external disturbances. Throughout Part
I, we are leveraging strength from learning, optimization, and adaptive control to tackle
uncertainties and disturbances with different characteristics.

In precision motion systems, suppression of high-frequency unknown disturbances
is always critical and challenging. This becomes even more difficult when the system
output is only available at limited sampling rates, which is common in digital control,
but the frequencies of the disturbances may be beyond the Nyquist frequency of the
output samplers. Under such scenarios, the un-availability of the inter-sample outputs
may make most of traditional disturbance attenuation techniques useless. To address
this problem, a new adaptive disturbance suppression algorithm is proposed in this
chapter. Via iterative multirate extended-state estimation and parameter adaptation, the
unknown beyond-Nyquist disturbances can be correctly estimated and compensated.
Moreover, a special internal model structure is introduced for signals with aliasing fre-
quencies so that the dynamics of the beyond-Nyquist disturbances can be identified more
efficiently. We evaluated the performance of the algorithm in simulations on a typical
motion systems - hard disk drives, but the general framework can be well applied to
other motion systems such as joint motors for manipulators and electronic control units
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for autonomous vehicles.

9.1 Introduction

As shown in Fig. [9.1(a), to attenuate disturbances, typically a digital feedback con-
troller C is designed to regulate the output of the physical system via a holder J{ and
a sampler 8 with limited sampling rates. Based on the frequency properties of distur-
bances, the controller C needs to generate high gains over the frequency ranges of inter-
est via advanced control techniques such as loop shaping [91], disturbance observers[96],
internal model principle (IMP) [35], Youla-parameterization [66], and adaptive controls
[26, 124, 128]. Most of these approaches, however, fail if the frequency of the distur-
bances goes near and even beyond the Nyquist frequency of the sampler. Under these
scenarios, the beyond-Nyquist disturbances will excite high-frequency vibrations in the
system output that cannot be fully captured by the sampler (as shown in Fig. [9.1(b)),
neither for effective feedback regulation nor for unknown parameter identification.

‘H : updating frequency Fs=1/Ts disturbances roal outout 3(t)
S : sampling frequency Fs Ed(t) -
5 sampled
. . ! . Tq
o a Dot L [L L e | e
T- Holder H y Sampler S

(@) A typical sampled-data feedback control structure

--- real output

e sampled output

— recovered output

(b) unobservable inter-sample behaviors by samplers in outputs

Figure 9.1: A Rate-limited sampled-data feedback control system and unobservable inter-sample behav-
iors

To further extend the control effort beyond the Nyquist frequency, extensive algo-
rithms have been proposed along the direction of multirate control. The central idea
of multirate control is to update the control signal (i.e., the holder frequency) N times
faster than the output sampling frequency so that the inter-sample vibrations can be
suppressed or beyond-Nyquist dynamics can be identified, see, for example, multirate
repetitive controllers [36, 142], multirate recursive least-square (RLS) parameter identi-
tication [100], and multirate reference tracking [151]. Particularly for beyond-Nyquist
disturbance attenuation, Atsumi [12] achieved direct beyond-Nyquist loop shaping via
multirate resonant filters and frequency analysis of sampled-data systems. This concept
is further extended via an add-on forward disturbance-observer structure, for which
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Chen et al. [27] introduced a model-based multirate predictor and Yan et al. [152] cast
the multirate loop shaping objective into a convex optimization problem. Zheng et al.
[164] and Sun et al. [131] proposed to use multirate extended-state observers and lifted-
He approach to achieve simultaneous inter-sample output prediction and disturbance
compensation in the presence of system uncertainties. These approaches, however, all
assume that the beyond-Nyquist disturbance model is exactly known a priori, and ex-
plicitly utilize such information for effective disturbance estimation and compensation.
Such an assumption, however, does not commonly hold in practice.

In this chapter, a new multirate control algorithm is proposed to address the remaining
challenge with regard to unknown beyond-Nyquist disturbances. We focus on periodic but
unknown disturbance signals whose energy mainly concentrates on several particular
frequencies beyond the Nyquist frequency. Compared to previous works, no exact dis-
turbance model is required. Alternatively, a two-step procedure is designed which can
automatically update the parameters in the disturbance model so that good estimation
can be achieved. Step I: the disturbance estimation step, estimates the system states as well
as the disturbances via a multirate extended-state observer (MESQO) based on slow-rate
output samples and the current updated disturbance model. The generated disturbance
estimate in Step I is then utilized in Step II, the model parameter update step, to further
update the disturbance model parameters via recursive least-square (RLS). By iteratively
repeating the two steps, the unknown beyond-Nyquist disturbances can be accurately
estimated and thus compensated even though their influences to the output cannot be
effectively captured by the slow-rate samples. Moreover, the proposed closed-loop sys-
tem can be reformulated as an add-on multirate observer based compensator that is
compatible with any pre-designed feedback controllers so that any existing closed-loop
control properties can be well preserved.

9.2 Problem formulation

9.2.1 Fundamental Limitation for Single-Rate Control

Proposition 1. Consider the sampled-data framework in Fig[9.1(a) with a zero-order hold (ZOH)
H and a sampler §, both working at a frequency of Fs. If the disturbance signal d(t) contains
frequency components e®at beyond the Nyquist frequency of the sampler 8, i.e., ws > wq >
Ss=nF, there is no such a single-rate digital controller C(z) with z = e/®Ts that can effectively
suppress the influence of d(t).

Proof. Suppose that the dynamics of the system can be represented by P(s) and its Ts-
ZOH discrete-time equivalent (pulse transfer function) is P4(z), z = e/Ts. Then with
any stabilizing single-rate feedback controller C(z), the relationship between d(t) and
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the closed-loop system output y(t) can be expressed as (see [131] for details):

+00
y(t)=[Pc(jwg)—T(wg, 0] 4= 3 T(wg, )elivatiostt (9.1)
1=—00,1£0

_ 1 Pa(UT)C(IT) I (jwHws UPe (jwHwsl)
where T(w, )=+ 1P (0T )CleiwTs)

Hjwqg)<H([jwg—jws)~Ts, which makes the tailing term with 1=—1 in innegligible.
Moreover, the first term P.(jwq)—T(wq,0) can be simplified as

. w
. Noting that when w4>—", we have

1 Pg(e®aTs)Ce®aTs ) H(jwq)
Ts  1+P4(elwals)C(eiwals)

PC(jwd)/

the gain of which at w4 decreases as |C(e/®d"s)| increases. The tailing term with 1=—1,
however, becomes

1 Pd(ejwde)C(ejwdTS)}C(jwd_jws)Pc(jwd_jws)

T 14+Pg(efwals)C(elwals)

Pa(e/“dTs)Ce®aTs)Pe (jwg—jws)
1+Pd(ejwde)C(ejwde) !

{.T((Ud, —1) =

9.2)

the gain of which increases as |C (e/®aTs)| increases. This means that with a single-rate
C(z), it is impossible to simultaneously reduce the gains of the first term and the tailing
term in (9.1). Hence, the disturbance d(t) will generate aliasing phenomenon in y(t) that
cannot be eliminated by a single-rate C(z). O

9.2.2 Multirate Observer based Compensation

Given the fundamental limitation from Proposition (I} a multirate Youla-parameterized
control structure, as shown in Fig. has been proposed to compensate for the beyond-
Nyquist disturbances in our previous work [131]]. In Fig. the output is available at
a samping period of T;=NT;, N>2. On top of an existing slow-rate controller C(znr,),
an add-on multirate extended-state observer (MESO) is introduced to generate a fast
compensation signal c¢(kT¢). As shown in Fig. c(kTs) is nothing but the estimate of
the disturbance. Hnr, and Hr,, respectively, represent the discrete-time ZOH and D/A
ZOH working at sampling periods of NT; and T;.

Assume that the continuous-time beyond-Nyquist disturbance signal d(t) can be well
represented by the output of a fast discrete system Gp(z)(z=e*Tr) driven by white
noises. Particularly for periodic disturbance signals, if d(t) contains a frequency peak at
wgq satisfying 5= <wg<ws, then the disturbance dynamics Gp can be approximated by a
narrow-band bandpass filter. Hence, the frequency-domain and controllable state-space
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representations of Gp can, respectively, be expressed as

1—2cos(wgT)z 14272

Golz) = Iy gy € [098,0.999)
21—« cos(wqyTe)z 1+ (o2—1)z 2 93)
N 1—2xcos(wqTf)z 14+a2z72 '
. xa(k+1) = Agxa(k)+Ban(k),
oo { afk) = Caxalk), O

where « is a hyper-parameter tuning the width of the passband of Gp and n(k) is the
white noise driving the disturbance model.
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oo 2old > Multirate P
dkT) Extended State /¢ =—
_______ Li--1 Observer [ [P,Gp]

Figure 9.2: The multirate observer based compensation

Similarly, a T-sampled ZOH equivalent of the system dynamics Pc(s) can be obtained
as

p. {xp(k—H) = Apxp(k)+Bpu(k)+Byd(k), (9.5)

y(k) = Cpxp(k)+v(k)

Note that v(k) is the measurement noise and assumed to be white and uncorrelated with
n(k) in (9.4). Defining new system states as x.(k)=[x,(k);x4(k)] and substituting (9.4)
into (9.5), we can obtain an augmented system P(z):

_ [Ap  iByCa By e | Onx1
Xe(k+1) = [ On o, A, }xe(k)%— [ On r1 u(k)+ de n(k),
. Ae B‘u,e Bne
y(k) = [ Cpi0ixn, | xe(k)+v(k), (9.6)
Cye
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Based on this augmented system and the fact that only y(k) at k=iN,i=0, 1, - - - are avail-
able, a multirate Kalman Filter[127] can be designed which predicts at the fast rate (T¢)
and corrects at the slow rate (T,;=NTy), as given in (9.7) and (9.8). Note that in and

. B,C A .

(9.8), A= [ Ap ‘ E’Cd and Cge= [ 01xny, ‘ Cq } represent the augmented sys-
Ondxnp ‘ Ad

Ad B4

Ca 0
in disturbance dynamics Gp will not influence B3 due to the controllable state-space
realization we choose in (9.4)).

tem matrices with the assumed disturbance model Gp= [ } (the uncertainties

Re(k+1[k) = exe(kH‘Bueu(k)
Prediction: g(k) = yexe(k) d(k) = Cgekel(k), 9.7)
M(k+1) = A Z(k)A] + Br.WB],

Re(k+1k+1) = Re(k+1k)+F(k+1)
X (y(k)—Cyeﬁe(k—H)),k:iN
Re(k+1k+1) = Re(k+1]k), k #iN
Correction : F(k+1) = M(k+1)CJ, (9.8)
(CyeM(kH )T+ V)™
Z(k+1) = (I-F(k+1)Cy )M(k+1)k iN
Z(k+1) = M(k+1),k7éiN

Remark 1: In this work, our emphasis is on uncertainties of the beyond-Nyquist distur-
bance model and assume that the system model is precisely known, particularly over
the frequency ranges where the beyond-Nyquist disturbance occurs. Such precise sys-
tem models are necessary as explained in Proposition [2| below and can be obtained via
multirate adaptive identification methods, e.g., [100].

Proposition 2. With the multirate Kalman filtering defined in and (9.8), if Pe(z) in
is stable, and (A, Bne) and (Ae, Cye) are, respectively, controllable and observable, then:

1. the control structure given in Fig.|9.2|is a Youla-parameterized multirate stabilizing feed-
back controller for any pre-existing stabilizing slow-rate controller C. Moreover, optimal
disturbance estimation (in the sense of L) and effective compensation can be guaranteed if
the disturbance model is exactly known a priori, i.e., Gp=Gp.

and (9.8) will be biased. Moreover, d(kT;) contains aliased frequency components of d(t
As a consequence, direct cancellation of d(t) by d(kT;) will fail and may cause closed- loop
instability.

2. IfGD i Gp, the disturbance estimate d(kT) via the MESO structure in Fig. nand (.)

Proof. Part 1: This can be directly concluded from previous work [131] and thus is
omitted. One can refer [131] for details.
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Part 2: First, the biased estimation of disturbance is straightforward in this case.
When Gp(z) # Gp(z), the forward dynamics used in the observer in ( . from n(k) to

y(k) can be reformulated as y(k) = P(q~!)Gp(q~)n(k) = P(q~)Gp(q™) [%n(k)]

(q~! is the one-step delay operator defined by x(k) = q~!x(k+ 1)). This indicates that

: . Gp(q )
the equivalent process noise [ =

coloured. Therefore, the disturbance estimate will be biased.

Second, to show that the disturbance estimate d(kT;) contains aliased frequency com-
ponents of d(t), we first consider the estimator, i.e., setting c(kT¢)=0 in Fig. In steady
state, the multirate Kalman filtering process in (9.7) and yields a 1-input-N-output
slow-rate (T;) time-invariant relationship from y(kN) to d(i)=[d(iNT¢), d((iN+1)T),

LA(ENHN-DTT, e, d(i) = [G1(q ™), Galq ™), -+, Gnlq ™)) y(iN) (See [131]
for details). Hence, the spectrum of d(kT;) can be expressed as

n(k)] in the Kalman Filter model is not white but

00 oo N—-1
DEN) = ¥ de N =Y Y d(iN4mle N 9.9)

k=0 i=0 m=1
oo N1 NwTs . —jmaT. —i(iN)wTs

:Z GmeJNSeJNSy(lN)e N
i=0 m=1
N-1 _

= Y GuleT)e KT Y y(iNje T
m=1 i=0
N-1

where Y( 5“’TS) is the spectrum of the slow-sampled sequence y(iNT¢) and satisfies
Y(eI@Ts)= Zl__ (j(w+lws)) where Yi(jw) represents the spectrum of y(t). Recall
the fact from that with a slow-rate feedback controller C, the system y(t) contains
both the real and aliased frequency components at wg and ws—wq if d(t) = elwat,
Moreover, note that all Gy, (e/®"s), m=1,2,--- are periodic with a period of ws, ie,

G (99T$) =G, (e/(WFws)Ts) 1 € N. Therefore, the magnitude of [Zﬁ;ll(;m(eiwl)ejm&]

is also periodic, and thus the spectrum of d(kT) periodically contains frequency compo-
nents at the true and the aliased frequencies wq, ws—wgy, Wa+ws, 2ws—wy, - - -, Wsl+wy,
ws(l+1)_wd,"'. D

Remark 2: Note that the above analysis holds for every frequency w, in the disturbance
signal. If the disturbance contains multiple frequency components, e.g., wq,, Wq,, - , W4,
then the estimate signal d(kT¢) contains multiple periodic signals with frequencies at
Wq,, Ws—Wgq,, Wq,+Ws, 2Ws—wq,, -+, Wsl+wg,, ws(l4+1)—wgq,,--- withi=1,2,--- ,n
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9.3 Adaptive Multirate Extended-State Observer

To accurately estimate the unknown beyond-Nyquist disturbance, an adaptive mul-
tirate observer is proposed, as shown in Fig. Compared to previous work in Fig.
a parameter adaptation step based on RLS is introduced in addition to the MESO so

that the disturbance model Gp used in and (9.8) can be further updated to achieve
optimal disturbance estimation and effective compensation.

disturbances real output ¥(?)
() g
samples
_ref . Controller | ’_LL O n F-'-L ><Y}+* System o YT =i
- | Clenty) Hnr, /:;:‘ | Ho, Fe(s) Sampler Sy,
S ‘
e ! |
T 1 ulkTy) ) )
! Multirate ]
: 5 Extended State :
'L____l_(fg_T_f_)__ Observer @
emme- = RLSPAA |---- ’

Figure 9.3: The proposed adaptive multirate Observer Based Compensation

9.3.1 Disturbance Model Update via Parameter Adaptation

As discussed in Section 2, if d(t) is a periodic signal which contains n beyond-Nyquist
frequency peaks at wq,,i = 1,2,---,n and the assumed model Gp # Gp, the steady-
state disturbance estimate d(kT¢) will generate periodic frequency peaks at wsl+wg, and
ws(1+1)—wq,,1=0,1,---. Recall that for sequences b(kT¢) = kel w < T—”f, k=0,1,---,
(1—2cos(wTf)q~ + g 2)b(kT¢) = 0 holds with q~'b((k+1)T¢)=b(kT¢). Therefore, for
signal d(kT¢), with even N, we have

[“’Sl+wdi)<%

H H [1—2cos((wsl-l—wdi)Tf)q_l—i-q_z} X

i=12,n  1=0,1,
[1-2 cos((w,(L4+1)~wa ) T)q~+q 2] A(KTy) = 0.
(9.10)
Note that with T;=T,/N, we have 1=0,1,-- -, %_1' Let cos(wg, Tr) 2 0; and sin(wg, Ty) 2

1—9%, then all % pairs of cos((wsl+wg,)Tf) and cos((ws(1+1)—wgq,)Tf) can be re-
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organized and expressed as

27l . 2ml
cos((wsl4wg, ) Tf) = COS(W)ei— sm(Wh /1— 62,

cos((ws(V+1)—wa ) Te)lreny2—1-1 = cos((ws(N/2—1)—wq, ) T¢)
= cos(m—(wsl+wgq, ) Tr)

= —cos((wsl+wg, ) Ty).
As shown in Fig. for N=2,4, we have
* N=2: 1=0 = cos(wq, Tf) = 0, cos(m—wgq, Tr) = —0;, and the disturbance model in

1) becomes (1—20;q~ !+ q2)(1+20;q '+q2) = [1 + (2—4612)q*2 + q*ﬂ =0.

* N=4: 1=0 = cos(wgq, Tr)=0; and cos(m—wyq, Tf)=—04;
1=1 = cos((wgq, + ws)Ty) = cos(wgq, T+ 7/4) = 1/1— 62,
cos(m—(wgq, +ws) T)=— \/@, which simplifies the disturbance model in (9.10) as
[1+(2—402)q 2 +q ] x [1—(2—46%)q2+q 4] = [1+(2—(2—4062)?)q *+q 8] .

V N=2
8 N=4 (wag +we)Tpi ™ — (wg +ws)Ty
¥ ~
V162 v1-6?
—fQ-—r —wqTl} waly -0
7T 0

Figure 9.4: Distribution of zeros with different N for base frequency at wqy

Moreover, as shown in Fig. for larger N, as long as the symmetry holds, i.e.,
N=2P,peN,, can always be simplified in a “squared” format given by
where the unknown parameter 0;=cos(wg, Tr) only influence the second term, denoted
by f(6;). For instance, as shown above, for N = 2 and N = 4, we have f(0;)=2 — 493 and
f(0;)=2—(2— 49%)2, respectively.

1 {1 —f(ei)q_NJrq_ZN] d(kT;) =0 (9.11)

i=1,2,--n
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Further expanding (9.11)), we get

[T [1-fe0a™N+q™

i=1,2,--n
A 1—|—W1q_N—|—W2q_2N 4. +qu—nN+ . +W1q—2(n—1)N+q—2nN
n—1
= 1+q 4 ) wilq ™ g BN g, 9.12)
m=1

where w,, m = 1,2,---,n are functions of f(6;),i = 1,2,---,n (f(0;) is defined in
Eq.[9.11). Hence, we have

d(kTe) + d((k—2nN)T;) = —w' @ (k), (9.13)

where w=[w1, W», - -- ,wy]" is the unknown parameter vector and @ (k) £ [q _N+q_2(“_1]N,

,qMINLq=(FIN g=NITG(kT;). Based on , the recursive least-square (RLS)
parameter adaptation algorithm (PAA) can be utilized to estimate w. Then W can be
solved for f(0;)s and 6;s to give update for Gp via the relationship in and . De-
fine d(kT¢) + d((k—2nN)T¢)2b(k), and the parameter estimate w(k) in PAA is updated
as follows:

0
W (1) = W (k1) + k1)@ (k) <DT(k€)F((kk)—1)®(k) (9.14)
e9(k) = b(k) —b(k) = b(k) — W' (k—1)D (k) (9.15)
1 F(k—1)®(k)®T(k)F(k—1)
F(k)_Mk—l) {F(k_l)_x(k—an (k)F(k—1)® (k) } (9.16)

An exponential forgetting factor A(k)=Aeng— [Aena—A(k—1)]Ag is used to improve the
convergence speed [83].

9.3.2 Iterative Multirate Estimation and Adaptation

As shown in Fig. to accurately estimate the beyond-Nyquist periodic distur-
bances, the multirate estimation step given in (9.7) and and the parameter adap-
tation step in (9.14) and (9.16) are iteratively processed. The algorithm is summarized
below:

1. Initialization: Initial guess of G and configuration of all initial parameters in the
multirate Kalman Filter and PAA;

2. Estimation Step: For j-th iteration, with disturbance model G’gl, system measure-
ments y(kT¢)|x=in and 1@ mi obtain a sequence of dJ (kTy);

3. Parameter Update Step: With dJ (kT¢), run PAA in 1 ) to update GL;
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4. Repeat step 2-3 until the adaptation process converges, i.e., Iw]di—w);i_il|<e with a

pre-defined threshold € foralli=1,2,--- ,n.

Remark 3: For each iteration, multiple steps of estimation can be run before parameter
update step and vice versa. Moreover, for scenarios where the frequency characteris-
tics of the beyond-Nyquist disturbances do not change, the algorithm can be simplified
into three sequential steps instead of being iterative, namely: 1) a priori disturbance es-
timation for d(kT¢); 2) identification of wy4 via d(kT¢); and 3) a posteriori disturbance
estimation d(kT;) with Wy,

9.3.3 Convergence of the Iterative Process

As discussed in Proposition [2| the disturbance estimate d(kT;) contains frequency
components that satisfy the internal model in as long as the MESO is stable and
the assumed disturbance model mismatches the true disturbance model. Therefore, in
the iterative process, the parameter update step is assured to converge to wgs. Once
it converges, using Part 1 of Proposition 2, it is guaranteed that unbiased disturbance
estimate can be obtained for effective compensation.

9.4 Case Study

9.4.1 The Hard Disk Drive System

A single-stage HDD system in track-following mode is utilized for simulations in
this section. In such HDD systems, the read/write arm is actuated by a voice coil mo-
tor (VCM) and our goal is to regulate the arm to follow the tracks in the presence of
various disturbances. As a sampled-data control system, the position error signal (PES)
is available only at a limited sampling rate (Ts) for feedback regulation. With a typical
configuration of T;=3.7879x10°s, a slow-rate stabilizing controller C can be designed
for a closed-loop bandwidth of around 800Hz.

Figure 9.5/ shows the frequency responses of a benchmark HDD model [43], including
both the continuous-time model and two ZOH-based discrete-time approximations with
Ts and T¢=Ts/N, N=4, respectively. It is clear that beyond the Nyquist frequency of the
system Fn=Fs/2=1/(2T;), there is a resonance in the continuous-time HDD dynamics. In
the following simulations, we assume that the disturbance entering the HDD system has
a frequency peak around the beyond-Nyquist resonance (f3=16.6kHz) so that the reso-
nance will be excited to generate unobservable high-frequency vibrations in the system
output.
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Figure 9.5: Frequency Responses of the HDD model

9.4.2 Simulation Results
Biased disturbance estimate with model mismatches

Figure and Fig. present the estimates of the system output y(kT¢) and dis-
turbance d(kT¢) with accurate (Gp=Gp) and inaccurate (Gp#Gp) disturbance models,
respectively. Clearly, one can see that with accurate beyond-Nyquist disturbance model,
the multirate extended-state observer based estimation given in and can accu-
rately recover the unobservable inter-sample behaviours in y(t) and yield unbiased dis-
turbance estimate, as addressed in part 1 of Proposition 2 On the contrary, if Gp#Gp,
then as shown in Fig. neither the inter-sample behaviors in y(t) nor the disturbance
estimate match the real ones. Moreover, Figure 9.8 provides the spectra of d(kT;) with
accurate and inaccurate Gp. It is shown that when Gp#Gp, d(kT¢) will contain both the
true frequency components fq as well as its aliasing counterpart Fs—F3=9.8kHz and at
higher frequencies with a frequency period of F;=1/T;=26400Hz.

Performance improvement via two-step estimation and PAA

Figure shows the results of the proposed two-step procedure. Initially, with an
inaccurate guess of Gp, the estimation of both y(t) and d(t) is poor. The performance,
however, is significantly improved via the parameter identification process given in (9.14)
and (9.16). Both the system output and the unknown beyond-Nyquist disturbances are
correctly estimated. Such results can also be verified by the parameter convergence
profile given in Fig. where one can clearly see that the parameters as well as the
disturbance dynamics model converge to the real ones.
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Closed-loop compensation performance

Once the parameter converges, the disturbance estimate with the identified Gp can
then be used to close the internal loop in Fig.[9.3|as a compensation signal, i.e., c(kT¢) =

d(kT¢). Figure shows the closed-loop compensation performance in time domain, in
which the influences of the beyond-Nyquist disturbance has been effectively suppressed.

9.5 Chapter Summary

In this chapter, a beyond-Nyquist disturbance suppression control scheme was pro-
posed based on a combined process with multirate extended-state estimation and pa-
rameter adaptation. Compared to previous works that require accurate prior knowledge
about the disturbance dynamics, the proposed approach can directly identify the un-
known disturbance dynamics and utilize the identified model for unbiased output and
disturbance estimation. Simulation results on a HDD benchmark track-following prob-
lem were provided, with a periodic beyond-Nyquist disturbance. It was shown that the
identified disturbance model converges to the real one, and both the inter-sample behav-
iors in the system output and the high-frequency disturbance are accurately estimated.
Moreover, the closed-loop simulation results showed the proposed control structure,
as a Youla-parameterized multirate controller, can effectively compensate the beyond-
Nyquist disturbance.
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Figure 9.8: Spectra of d(kT;) with accurate and inaccurate models
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Chapter 10

Selective Iterative Learning Control

In Chapter|10jand Chapter|11} we will discuss the utilization of selective and adaptive
learning control to enable high-performance low-level machine behavior in the presence
of model uncertainties and external disturbances. Autonomous systems need to interact
with a dynamic environment, and the high-level behavior might generate a variety of
commands for the low-level controllers. Traditional controller designs cannot predict
every possible scenario and tune the controllers” parameters in advance. Moreover, due
to limited bandwidth, the achievable performance of feedback controllers is limited. We
would like to explore more flexibility in the controller design, leveraging the power of
learning from experience and data. Iterative learning control (ILC) is such a controller.
Unlike traditional feedback control, it utilizes the repeatability of tasks and learns un-
known models from training information over time. A feedforward signal is synthesized
offline to improve the control performance.

It has been widely verified that ILC works well to handle repetitive uncertainties and
disturbances in repetitive tasks [137, 18, [10, 22]. However, in practice, particularly for
autonomous systems, the uncertainties and disturbances are not necessarily repetitive.
Under such circumstances, traditional ILC might fail to achieve the required perfor-
mance.

Our key insight for these two chapters is that when both repetitive and non-repetitive un-
certainties and disturbances exist, the learning loop in ILC should be re-designed to assure that
performance does not degrade. We enhance it via selective learning and adaptation.

Chapter |10 will focus on selective learning and adaptation will be discussed in Chap-

ter 111

10.1 Introduction

A great deal of efforts have been made to attain robust ILC performance in the pres-
ence of non-repetitive disturbances. One approach is to prefilter the input error signal
and decompose it into a repetitive part and a non-repetitive part. Only the repetitive
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component is allowed to enter the learning loop of ILC. For example, Lee et. al [6]
and Phan and Longman [103] used Kalman filters to remove the iteration-independent
components for more effective learning, while Merry et. al [88] employed a wavelet fil-
ter to filter out the non-repetitive disturbances. Other approaches focus on adjusting
the ILC scheme itself. Examples of this class include high-order ILC, segmented ILC,
and ILC with a time-varying robustness filter (Q filter). More specifically, assuming that
the patterns of the non-repetitiveness are known, Chen and Moore [28] constructed an
iteration-domain disturbance observer (a special high-order ILC) for non-repetitive dis-
turbance rejection. Sandipan et. al [89] used a time-domain segmented ILC strategy for
the precision motion control of a wafer scanner, where the learning process is turned
on and off based on the magnitudes of the repetitive and non-repetitive disturbances
in each iteration. A further generalization is to equip ILC with a time-varying Q fil-
ter whose cut-off frequency is iteratively tuned online according to the time-frequency
analysis of the positioning errors. When repetitive disturbances are located mainly at
low frequencies, the Q-filter bandwidth is decreased to reduce the influence of the non-
repetitive disturbances. Otherwise the bandwidth is increased for maximum learning
ability and better performance. Zhang et. al [162] and Rotariu et. al [116] both con-
structed such ILC schemes; [162] used a wavelet transform for time-frequency analysis
and [116] adopted the Wigner distribution algorithm. The aforementioned ILC algo-
rithms with enhanced robustness can effectively avoid undesired error amplifications
caused by the non-repetitive disturbances, yet little attention has been paid to the non-
repetitive disturbance rejection performance.

We propose new ILC scheme combining a disturbance observer (DOB) and a time-varying
Q filter is proposed for performance improvement in the presence of non-repetitive disturbances,
especially when their frequencies overlap with the repetitive disturbances.

10.2 Experiment Setup

A wafer scanner is a machine that performs the essential photolithography steps in
the manufacture of integrated circuits. It consists of a light source, a reticle stage, several
projection lenses and a wafer stage, as shown in Fig. The wafer stage and the
reticle stage are both high precision motion systems that carry a silicon wafer and a
mask with designed circuits patterns. The tolerable positioning errors of the two stages
are in the order of nano-meters so that the patterns can be accurately printed on the
wafer. A laboratory testbed wafer scanner is shown in Fig. The stages here are both
driven by three-phase linear motors and positions of the stages are measured by a laser
interferometry system at a sampling frequency of 2.5kHz. We consider the reference
tracking problem for the wafer stage. An example of the scanning trajectory is shown in
Fig. [10.3]

Figure shows the measured and the identified closed-loop frequency response
from the reference input yq4(k) to the output y(k) of the wafer scanner (plant P(z71)
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Figure 10.1: Schematic of the photo-lithography process
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Figure 10.2: The experimental hardware of the testbed wafer scanner
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Figure 10.3: Reference trajectory of the wafer stage in one scan

with a baseline PID feedback controller C(z~!) (See Fig. [10.5). The identified nominal

model P, (z71) of the plant Pz is:

14+0.8z71
1y —7.-2
Pn(z7") =3.4766 x 107z 12714 ,2

where z~! denotes the one-step delay operator.

158
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10.3 Problem Formulation with Standard ILC

10.3.1 Standard ILC

Figure shows a serial ILC structure added to the feedback control loop. yq(k),
15(k), yj(k), ej(k), u;(k) and dj(k) represent, respectively, the reference signal, the feed-
forward signal from ILC, the output position signal, the position error signal, the input
control signal and the disturbance signal in the j-th iteration.

P(21>T

Figure 10.5: A serial ILC added to the feedback loop

Decompose the disturbance d;(k) in Fig. to a repetitive disturbance d,(k) and a
non-repetitive one dn, (k). The system output can then be written as:

P(zH)C(z )
1+Pz1)C(z
P(z 1)
1+Pz1HC(z )

Yz ™) [Ya(z™!) +Rj(z )]

+ [Dr(z7") 4 Dn, (2] (10.2)

where the sensitivity function and complementary sensitivity function of the feedback
loop are So(z™!) = 1/[1 +P(z)C(z 1] and To(z™') = P(z7H)C(z7 )/l + Pz H)C(z1)];
capitalized symbols Y;j, Yg, Rj, Dy and Dn). are used for expressing the signals in the z
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domain. Then the feedforward command rj(k) generated in a standard first-order ILC
is:

15(k) = Q(q)[rj—1(k) +L(q)ej_1(k+m)] (10.3)

where k is the time index within each iteration, m is the relative degree of To(z™1), and
q represents the forward time-shift operator, i.e., qx(k) = x(k+1). Q(q) and L(q) are
the robustness filter and the learning filter in ILC, respectively. Substituting into
yields the closed-loop iteration-domain dynamics:

R]'-i-l = Q(l —ZmLT())Rj +ZmQL[(1 —TQ)Yd—PSQ(DT—i—Dan)]
E]'+1 = Q(l—ZmLTo)E]'+(1—Q)[(1—T0)Yd+PSODr]
+PSo(Dr;,; — QDr;) (10.4)

Thus, a sufficient condition for stability of the iteration process in 1) is that Q(1 —
z™LT,) satisfies:

1Q(1—z"LTo)lleo <1 (10.5)
where || o || = 0r<nai< |o|,_.jw. With (10.5) satisfied, performance of the standard ILC is
SWKT
evaluated by the asymptotic errors which can be expressed as:
1-Q
E 1—Top)Yq+PSoD
1

+t— Qi —z"LTy) PSo(Dn;,; — QDnx,) (10.6)
Equation reveals that an optimal choice for the learning filter L is the inverse of the
closed-loop complementary sensitivity function, namely, L =z ™T;!. Here z ™ guaran-
tees that L is realizable. More details about this will be given in Section Equation
also indicates that for perfect error rejection, namely, for eliminating the repetitive
errors in one iteration, Q should be equal to one at all frequencies. However, due to the
model mismatches at high frequencies, the Q filter is normally set as a lowpass filter
whose bandwidth is determined by uncertainties of the system model. For example, if
the actual system is:

Pz 1) =Palz N1+ A(z) (10.7)

where P, (z71) is the identified nominal model in 1) and A(z71) is the multiplicative
uncertainty term, then Ty can be expressed as:

To(z™) = Ton(z ) (1 4+ Ar(z 1) (10.8)

where Ton(z7!) = Pu(z 1) C(z 1) /(1 + Pu(z71)C(z71)) and At(z7}) is the equivalent un-
certainty in the complementary sensitivity function. The learning filter then becomes
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L= z_mTO_nl. Recall 1) and we will get the following condition for stability robust-
ness: ,
jw
1Q(&7)] < A7 (09))] (e).w))’,Vw (10.9)
Suppose the cut-off frequency of the Q filter is w(Q), then only repetitive errors at
frequencies lower than w.(Q) will be learned and attenuated by ILC, while for those
at higher frequencies, learning is essentially cut off. However, in practice, repetitive
errors may be distributed over a wide frequency range (for example, the case for the
position errors of the wafer scanner in the acceleration phase). Also, non-repetitive errors
contain components at frequencies lower than w:(Q)(such as position errors caused
by the force ripple in the wafer scanner). Therefore, standard ILC may fail to learn
some repetitive errors and in the meantime mistakenly learn some non-repetitive ones,
resulting in error amplifications. Consider, for instance, a pure sinusoidal non-repetitive
periodic disturbance with fixed frequency wy that is smaller than w.(Q) but with a
random initial phase in each iteration, i.e., dy, (k) = sin(wok + ¢;). Then Q(e%0) is
approximately 1 and the error dynamics are:

ej+1(k) = [1—q™L(q)To(q)lej(k) + P(q)So(q)ldn,., (k) — dn; (k)]
where

dn, ., (k) — dy, (k) = 2 cos(wok + %) sin(

i1 — b;

)

Thus, in the worst case, amplification of disturbance by a factor of two may be caused in
the learning process.

10.3.2 Experimental Results with Standard ILC

Figure and Fig. show the experiment results of performing a standard ILC
on the wafer scanner. The system has a non-repetitive disturbance at about 18.32Hz
caused by the force ripple of the linear motor. The L and Q filters are designed accord-
ing (10.5) and (10.9), L(z™!) = 2z ™T; ! (z7") = z™[1 + Pp(z 1) C(z 1)]/[Pu(z 1) C(z 1.
In this system, Ton(z 1) is minimum phase, so L(z™!) can be directly derived, otherwise
L(z™1) should be designed using stable inversion method such as the ZPET algorithm
[143]. The Q filter is a lowpass filter with cut-off frequency w, = 300ntrad/s. It can be
seen in Fig. that from the first to the second iteration, the positioning performance
is significantly improved. However, no improvement is apparent in the following itera-
tions. Figure shows the frequency spectrum of the position errors in iterations 2 to 5.
The figure shows that the non-repetitive disturbance at about 18.32Hz is greatly ampli-
tied, which has limited the performance improvement of ILC, as confirmed in Fig.




CHAPTER 10. SELECTIVE ITERATIVE LEARNING CONTROL 162

-4

5 x 10 ‘ ‘ ‘ ,
| —— iteration 1 ‘
e ML U
w
=§ 0
L
_2 1 1 1 1
0 0.5 1 1.5 2 25
x107°
—— iteration 2
5t - - -iteration 3
B
@
o
L

T T T —— teration 4
_ 9 - - -jteration 5
£
g OFsN 1"“\ WV /o " roan pe
]
_5t 1
0.5 1 Time(s) 1.5 2 25

Figure 10.6: Positioning error signals in different iterations

10.4 Selective ILC with Non-Repetitive Disturbances

10.4.1 Structure of Selective ILC

To enhance the performance robustness of ILC in the presence of non-repetitive dis-
turbances, a new ILC scheme is proposed in this section, as shown in Fig. It
contains two features: the selective iterative learning process (the dashed box) and a
DOB for non-repetitive disturbance rejection (the dotted box). Q1 and Qp represent the
Q filters in ILC and in DOB, respectively. P! is a stable and realizable inverse of the
nominal model P,,(z7!) such that P,.! (z7!) = z7™P 1 (z71).

The first benefit of this ILC scheme is enhanced attenuation of both repetitive dis-
turbance and non-repetitive disturbance, even if their frequencies overlap with each
other. On one hand, non-repetitive disturbances at frequencies within the bandwidth
of the DOB is greatly rejected, generating a more "clear signal" in time domain. On the
other hand, the time-varying Q filter further controls the remaining non-repetitive errors
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from entering the learning loop of ILC in iteration domain and maximally increases the
repetitive-disturbance-attenuation bandwidth in different phases of the trajectory. More-
over, the proposed ILC sheme provides more design flexibility to the design of Q; and
Qp as discussed in the following section.
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10.4.2 Closed-loop Dynamics and Design of Q; and Qp
As shown in Fig. the closed-loop positioning error in the first iteration is:

erk) = yalk)—yi(k)
__1-Qo(g™—PP,)
= 1pCQolgm_ppy it
_ (1—q"™Qp)P
1+PC—Qp(q~™—PPy)

[dr(k) + d, (k)] (10.10)

where we have the new sensitivity function S(z~!) and complementary sensitivity func-
tion T(z 1) as:

_—m
s — 174 "Qpb - (10.11)
15 PC— Qolq—™— PPy
—1
_ PC+ QpPP;. 1012

1+PC—Qp(g™—PPy')
Based on (10.10) and recalling (10.2) - (10.6), we can then derive the new closed-loop

iteration-domain ILC dynamics:
Riy1 = Qi(1—z™LT)Rj+ Q1z™L[(1—T)Yq — PS(D; + Dx,)]
Eii1 = Qi(1—z"LTE + (1—-Qpl(1—-T)Yyq+PSD,]
+PS(Dn;,; — QiDn;) (10.13)

The goal of ILC is to cancel all repetitive disturbances by learning. Recalling (10.5),
by choosing L = z ™T; !, we can design a lowpass filter Q1 with cut-off frequency w.

. 1
that satisfies |Qq(e/)|

————,VYw. Noting 1—Q(*) ~ 0 at low f '
< Ay (09 w. Noting Q1(e) at low frequencies
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(w < we) in (10.13), the low-frequency repetitive disturbances can be almost canceled
in one iteration. In the meantime, the non-repetitive component of the error in (10.13)
caused by the non-repetitive disturbances is

1 . m
en,., (k) =P g _QD ——n;(k) (10.14)
1+ PC—Qpla ™ —PPy)
where ny = dn, (k) — Qrdn;(k).
As discussed in Section for the case where the non-repetitive disturbances
dn; (k) are concentrated at particular frequencies with iteration-dependent amplitudes

and phases, undesired amplification will occur with Q1(eé/?) ~ 1 at those frequencies.
Thus, more consideration is required for the design of Q; and will be given in Section

10.42
Non-repetitive Disturbances at Frequencies Within the Bandwidth of Qp

In this case, the non-repetitive disturbance n;(k) at frequencies within the bandwidth
of Qp will be rejected by DOB if Qp is designed to satisfy the following constraints:

. 1
)<~y
IQp (&) A (@0 " (10.15)
1-2"Qpl_jon, €1 @y < wc(Q)

where At(e/®) is the multiplicative uncertainty term of the complementary sensitivity
function in (10.8). The first constraint guarantees the closed-loop stability with DOB
[KempfAIM1996] and makes Qp a low-pass filter because At(e!?) is normally large at
high frequencies. The second constraint comes from and gives us an additional
guideline for designing Qp properly. Here, to be able to compensate disturbances in
discrete-time systems with time delays (e.g., the wafer scanner system), Qp should be
designed carefully to estimate the amplitude of the disturbance as well as to compen-
sate for the phase delay. For example, if n; is concentrated at low frequencies, then a
proper choice for Q(q 1) isset1—q ™Qp(q) = Hp(q) to be of high-pass characteristics.
Assume that
Blq)

1-9"™Qnl(q) =Hp(q) Zml(q) (10.16)

which is equivalent to the Diophantine equation, A(q) = B(q)J(q) + q ™Bq,(q), if we

let Qp(q) share the same denominator with Hp(q), namely, Qp(q) = Bg,(q)/A(q).

Solving this Diophantine Equation gives us a minimum-order Qp(q) satisfying (10.16).
As an example, let

Ho )_O.9481—1.896q_1+0.9481q_2
DY) = T T 894q 1 1 0.899q 2
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This filter has a cut-off frequency at 30Hz and the resultant Diophantine Equation yields

0.1118 — 0.1064q !
1—1.894q~1 +0.899q2

Qp(q) =

with J(q) = 1.055 4 0.1122q~'. The frequency response of Qp(z~!) and Hp(z 1) are
shown in Fig. (10.10
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Figure 10.10: The designed Qp (z~1) and the resultant Hp (z71)

Non-repetitive Disturbances at Frequencies Above the Bandwidth of Qp

Non-repetitive disturbances at frequencies above the bandwidth of Qp cannot be
rejected by DOB, and a proper Qg is required which can selectively prevent the non-
repetitive disturbances from entering the ILC learning scheme and maximally preserve
its ability to reject repetitive disturbances.

Suppose that there is a sinusoidal non-repetitive periodic disturbance component
dn (k) at frequency wg which is much higher than the bandwidth of Qp, i.e., Qp(wg) < 1
in (10.14). Then the tracking error in the (j + 1)-th iteration will become

en, (k) = PS[dy, , (k) — Qrdn, (k)] (10.17)

Therefore, to prevent the disturbance in the j-th iteration from entering the (j + 1)-th
iteration, Qp(e/“?) ~ 0 should be satisfied. Namely, Q; should contain a notch filter as
follows:

1—2cos(2mwg)q ! +q~2
1 —2xcos(2mwg)q~! + oa2q—2

Q1(q) = Qg (q)

where Qp,(q) is a baseline Q filter in the standard ILC.
As we discussed in Section ??, the position error of a precision system has different
characteristics in different phases of the trajectory. In the acceleration phase, the error

(10.18)
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mainly comes from tracking of the trajectory and contain rich frequency components.
Thus, the higher the bandwidth of Q; (w.), the better the learning performance. How-
ever, in the constant-speed phase, the error components caused by the non-repetitive dis-
turbances (for example, force ripple) dominate and the ILC should selectively filter them
out to avoid undesired amplification; namely, Q; in this phase should contain notches
at those frequencies where the non-repetitive disturbances appear. Consequently, Qg
becomes a time-varying filter which has a wider bandwidth in the acceleration phase
(for better trajectory following) and multiple notches in the constant-speed phase. To
guarantee the performance during the switching process, a smooth switching algorithm
may be used; for example,

QIO/ t< tae
Qr=1¢ (I1—o(t))Qro+ x(t)Qri, tae <t <tae+ At (10.19)
QIlI t 2 tae + At

where Qq is the Qg filter in the acceleration phase and Qg in the constant-speed phase
designed based on (10.18). tqe is the time instant when the acceleration phase ends and
At is the switching period. «x(t) gradually varies from 0 to 1 as «(t) = (t —tge)/ At

10.5 Simulation Results

Simulations have been performed to verify the proposed algorithm. The reference
trajectory is as shown in Fig. Both repetitive and non-repetitive disturbances are in-
troduced. Repetitive disturbances are distributed over a wide frequency range [0, 100Hz]
and non-repetitive periodic disturbances appear only at specific frequencies (18.32Hz
and 50Hz) with initial phases varying from iteration to iteration.

Figure shows the error signal and its frequency spectrum with the baseline PID
controller.

10.5.1 Using Standard ILC Algorithm

The simulation result using a standard ILC algorithm is shown in Fig.[10.12] The Q
filter and learning filter are configured as described in Section Figure [10.12(a)
shows that ILC can effectively reduce the position error. After the second iteration,
however, no consistent improvement can be seen. For example, from the second iter-
ation to the third iteration, the position error norm is significantly amplified by ILC.
Figure [10.12|(b) shows the frequency spectrum of the error signals in the first three iter-
ations of ILC. It can be seen that the repetitive disturbances are effectively eliminated,
but the error becomes significant at the non-repetitive disturbance frequencies (at about
18.32Hz and 50Hz).

The same phenomena are observed in experiments. As shown in Fig. to Fig.
in Section the non-repetitive disturbance at 18.32Hz is also amplified and the ILC
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performance is degraded. Additionally, in experiments, we are subjected to more con-
straints in designing Q; without DOB. The robust stability condition in (10.5) requires
Q1 ~ 0 at high frequencies, which will further degrade the ILC performance. As shown



CHAPTER 10. SELECTIVE ITERATIVE LEARNING CONTROL 169

in Fig. disturbances with frequencies higher than 150Hz (w.(Qg)) cannot be atten-
uated by learning.

10.5.2 Using only DOB without ILC

Figure shows the simulation results with and without DOB in one iteration;
no ILC is used. We observe that in the constant-speed phase, DOB works well and
significantly reduces the position errors by suppressing the disturbances at frequencies
lower than the cut-off frequency of Qp (w.(Qp) = 60mtrad/s). The transient performance
in the acceleration and deceleration phases, however, is minimally improved. Note that
in these phases, the position error caused by the tracking of the reference trajectory
dominates and DOB has little effect to reduce the error. Additionally, the non-repetitive
disturbance at 50Hz (larger than w.(Qp)) remains unchanged.
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Figure 10.13: Position errors with and without DOB in simulation

10.5.3 Using the proposed ILC structure

Figure|10.14|and Fig.[10.15/show a comparison of the simulation results using differ-
ent algorithms. The Qp and Qg in the proposed ILC scheme are designed, respectively,
as a lowpass filter with cut-off frequency w, = 60mtrad/s and as a time-varying filter in
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(10.19), where At = 100T; = 0.04s, and Qp(z~ 1), Qio(z™!) and Q1 (z7 1) are given by

Also, in the

0.1118 —0.1064z 1
1—1.894z1 +0.899z2
0.02792 + 0.05583z! + 0.02792z 2
1—1.475z21 + 0.5866z 2

- 1. 1.0372(1 — 2 cos (27T, # 18.32)z~1 + 272
Quiz™) = Qul=) 74 cos(27T, % 18.32)2—1 + 0.9801 % 22
) 0.9963(1 — 2 cos(2nT, % 50)z 1 +z72)

1—1.98 cos(27T, * 50)z~1 + 0.9801z2

Qp(z 1)

Qu(zh) =

simulation, Q1(z~!) in the standard ILC is set to be Qio(z~!) in each iteration.
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Figure 10.14: The position errors using different ILC algorithms in simulation

It can be seen that the proposed ILC attains the best performance with effective
disturbance rejection and enhanced robustness to non-repetitive periodic disturbances.
Consistent with the experimental result shown in Fig. the position error obtained by
standard ILC varies greatly in different iterations due to unexpected amplifications of the
non-repetitive errors. The algorithm in [156] can significantly reduce the position error.
The performance robustness to non-repetitive periodic disturbances, however, is still not
good. This is because the DOB can only reduce the non-repetitive error components with

frequencies

lower than w:(Qp) (e.g.,the error component at 18.32Hz in the simulation),

but has little effect on those higher than w.(Qp) (the one at 50Hz in the simulation)
and undesired amplifications of those signals cannot be avoided. By introducing a time-
varying Qp, the proposed ILC scheme not only effectively suppresses disturbances with
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Figure 10.15: Spectra of the position errors in the 5-th iteration using different ILC algorithms in simulation

frequencies lower than w.(Qp), but also flexibly controls the remaining non-repetitive
errors from entering the learning loop of ILC. Thus, undesired amplifications of the non-
repetitive disturbances have been effectively avoided. Compared to standard ILC and
the algorithm in [156]], it can be seen clearly in Fig. that no amplification of the
non-repetitive disturbance at 50Hz occurs by using the proposed ILC algorithm.

10.6 Experiment Results

We also have conducted experiments on the testbed wafer scanner system introduced
in Section 2. Similar conditions are utilized as in the simulation: the reference is as
shown in Fig. repetitive disturbances over a wide frequency range ([0-100Hz]) and
non-repetitive disturbances at 18.32Hz and 50Hz are introduced. Note that in real hard-
ware, the non-repetitive disturbance at 18.32Hz is caused by the force ripple of the linear
magnetic motor. The disturbance with a frequency of 50Hz is an external signal that we
introduced to the system. The design of Qp and Qg are the same as in simulation.

Figure shows the spectra of the position errors in the first and second iterations
using different algorithms: the standard ILC, ILC with DOB, and selective ILC with
DOB. We can see that most of the repetitive disturbances have been effectively atten-
uated via ILC in all three approaches. Comparing the performance between ILC and
ILC with DOB, we can see that the introduction of DOB can help effectively attenuate
the disturbances whose frequencies are within the bandwidth of Qp, no matter being
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Figure 10.16: The spectra of the position errors in the first and second trials in experiments

repetitive or not. For the non-repetitive disturbances beyond the bandwidth of Qp, the
performance of ILC with DOB is degraded due to the amplification effect, as shown in
the zoomed-in view on the right of Fig. The proposed selective ILC with DOB,
on the contrary, can effectively reduce such amplification and preserve the achievable
performance.

Figure gives the 2-norms of the position errors along iterations using two dif-
ferent ILC algorithms: ILC with DOB (blue curve) and selective ILC with DOB (red
curve). We can see that starting from the same initial performance (first trial), the pro-
posed selective ILC with DOB can achieve on average smaller position errors, reducing
the 2-norms from 8.787 x 107°m? to 3.0135 x 107>m? . Compared to the one without
selective learning, the performance converges faster and more robustly, i.e., the 2-norms
of the position errors do not fluctuate from iteration to iteration.

10.7 Chapter Summary

In this chapter, a new ILC scheme with robust performance in the presence of non-
repetitive disturbances was proposed. By integrating a DOB and a time-varying Q filter
in ILC, the proposed algorithm can not only maximally preserve its repetitive-error-
rejection ability, but also provide enhanced attenuation to non-repetitive disturbances at



CHAPTER 10. SELECTIVE ITERATIVE LEARNING CONTROL 173

x 10° 2-norm of the position errors in iterations
2.5 L L L L L L L L L
—— W/ selective learning
—©6— W/0 selective learning
2L
8.787E-5
(2] ~ Q 2 @
o
c v 9
2 \/3.0135e-05
E 4]
c . . . .
& - Starting from the 2th iteration, the maximum error
has been reduced by 46.54%.
-0.5- 4
05 L. r r r r r r r r r Il
2 4 6 8 10 12 14 16 18 20
lterations
0 a 3 N a 3 a - v,
0 2 4 6 8 10 12 14 16 18 20

lterations

Figure 10.17: The 2-norms of the position errors along iterations in experiments

low frequencies. The selective learning characteristic of the time-varying Q filter avoids
undesired amplification of the error caused by non-repetitive periodic disturbances. Sim-
ulation and experiment results on a wafer scanner testbed system were provided. The
results showed that compared to traditional ILC approaches, the proposed selective ILC
can effectiveness improve the robustness of the learning performance in the presence of
non-repetitive disturbances.
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Chapter 11

Adaptive Iterative Learning Control

As discussed in Chapter 10} disturbances and dynamic uncertainties are hardly repet-
itive in practice. In most systems, both iteration-varying (i.e., non-repetitive) and iteration-
invariant (i.e., repetitive) disturbances exist. Iteration-varying disturbances can be cate-
gorized into two types: Type I - external state-independent disturbances (most external
vibrations belong to this type), and Type II - internal state-dependent disturbances. Joint
friction force in robot manipulators is a typical example of such state-dependent distur-
bances. The selective ILC algorithm presented in Chapter [10| focuses on addressing the
Type I disturbances, and in this chapter, we will present an adaptive iterative learning
control (ILC) strategy to handle the second type. In particular, we use a planar robot
manipulator as an application example, and focus on the compensation of unknown but
iteration-varying friction forces in joints.

11.1 Introduction

To deal with the non-repetitive disturbances of Type II, an adaptive ILC (AILC) ap-
proach was first proposed by [63]. Based on Lyapunov theory, AILC naturally fits in sit-
uations where the unknown disturbances are not only iteration-varying, but also state-
dependent. The key idea of AILC, as discussed in [102] and [139], is to introduce an
adaptive signal which iteratively identifies and compensates for the unknown distur-
bances and uncertain system parameters. Commonly, it requires the parameters to be
constant within one iteration such as in [29], [45] and [95].

As discussed above, joint friction forces in robot manipulators, are state-dependent
and time-varying disturbances. Hence, to achieve good tracking performance, we pro-
pose a novel AILC to compensate for the joint friction forces. Compared to previous
formulations (e.g., [29]), we have proposed a new adaptation law based on the work
in [94], which can significantly improve, not only the accuracy of parameter estimates,
but also the tracking performance in joint space. Theoretical analysis and proof of error
convergence are provided, along with simulation and experimental verification. Perfor-
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mance comparisons between a traditional AILC design in [29] and our proposed AILC
are also provided, demonstrating that our proposed approach can achieve better track-
ing performance with improved parameter estimates when nonlinear joint friction forces
exist in robot manipulators.

11.2 Problem Statement

11.2.1 Dynamic Model of Manipulators

In general, the dynamic model of an n-DOF robot manipulator can be expressed as
M(q)d+C(q,4)q+G(q,q)+d=u (11.1)

where q,q,§ € R"™ denote the vectors of positions, velocities, and accelerations of all
joints, respectively. M(q) € R™ " is the mass inertia matrix, C(q,q) € R™ " is the
centripetal Coriolis force matrix, and G(q,q) € R" is the gravitational and friction force
vector on the system. Uncertainty in the dynamic model may result in uncertainty of
any of these three terms. d € R" is the repetitive disturbance exerted on the system
and u € R" is the input torque. In and throughout this chapter, all vectors and
matrices are time dependent, but the time variable t is omitted for brevity.

In planar manipulators, such as the one used in this work, there is no gravitational
force and the term G(q,q) in can be reduced to G(q) = Fg(q) € R™, representing
the friction force vector on all n joints. While many different friction models are appli-
cable, we use the Stribeck model since it can best characterize the stiction phenomenon
observed in our experiments with the robot manipulators. According to the model in
[11], the Stribeck friction force on each joint can be individually expressed as

~(e P i i

Fer (di) = V2e(Fprk, — Fe e s4

) +fiqs, (11.2)

Vst; Veoul;

where i = 1,2,--- ,n. Fy;y, and F¢, represent, respectively, the breakaway friction force
and the Coulomb friction force. f; is the viscous friction coefficient. vgi, and vy, are
thresholds for the Stribeck velocity and the Coulomb velocity, respectively.

11.2.2 Friction Compensation via Standard ILC
Update Law in Standard ILC
In traditional ILC algorithms, the control input is iteratively updated as:
Wil = Q*w +L*¢], (11.3)

where superscript j denotes the iteration index, and € is the tracking error at j-th iter-
ation defined as e=qq—q’ with qq and g’ representing, respectively, the desired joint
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trajectory and the actual joint trajectory at j-th iteration. L* represents the learning fil-
ter/matrix that varies depending on the specific control algorithm and Q* represents a
generic Q-filter/matrix that aims to improve the robustness of the learning process. For
instance, in PD-type ILC, L* is a gain matrix, and Q* is typically a low-pass filter to
prevent high-frequency measurement noises from deteriorating learning performance.

Insufficient Friction Compensation via Standard ILC

To demonstrate the limitations of Standard ILC, we applied a PD-type ILC on a sim-
ulated planar 1-DOF manipulator subject to Stribeck friction. The tracking performance
in joint space and the friction forces over 10 iterations are shown in Fig. We can
see that standard ILC fails to effectively compensate for significant changes in friction
between iterations. Particularly at later iterations, the non-smoothness of the frictional
force become more significant, resulting in a degradation in ILC performance.
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Figure 11.1: Joint error and friction forces over ten iterations

Considering the time-varying nature of friction and its nonlinear dependence on sys-
tem states, it is difficult to compensate for this iteration-varying disturbance through
standard ILC. Hence, we need to introduce an additional control signal which can iden-
tify the parameters that can efficiently represent the friction model, and incorporate those
parameter estimates into the design of ILC. In the following section, a novel adaptive ILC
algorithm is proposed to acheive this.
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11.3 The Proposed Adaptive Iterative Learning Control

11.3.1 Control Law Design

The control input W in our proposed adaptive ILC consists of three components as
follows: . .
w=ul+u +u), (11.4)
where u} is the feedback input, u is the adaptive control input, and u] is the iterative
learning input.
The feedback control input is of PD-type, defined as

W =L(& +aé) £ L2, (11.5)
The matrix L and scalar a are pre-defined constants to stabilize the system.
The iterative control input is given by
W =ul 1 pLY, (11.6)
where 0 < 3 < 1is a constant, scalar learning gain selected based on the desired conver-
gence rate.
The above formulation of feedback input (11.5) and iterative input (11.6) share the
same formulation as in [102] and [29]. As for the adaptive control input 1}, we propose
a new control law to compensate for the time-varying friction forces as follows:

w=M(q")§4+C(q),d")44+6(q))a(M(q)e+C(q), ¢)e), (11.7)

where (*) denotes the estimate of a variable.

Again, for planar manipulators, we have G(qj)zf-‘ﬁ(qi). Note that in this work, we
focus on the scenarios where all the parameter uncertainties are associated with the
friction forces, i.e., the mass, inertia, and Coriolis matrices are assumed to be exactly
known. This allows us to rewrite into the linear form as in for the purposes
of the adaptation law:

ul =Y6, (11.8)

where Y/ and €’ represent the regression matrix and the estimated parameter vector of
all joints, respectively. Detailed definitions of Y’ and 6’ with the Stribeck friction model
are provided in Section 4.1.

11.3.2 Adaptation Law

To update the estimation of 6, the following update law is proposed, which operates
in both the time and iteration domain and is of the same form as in [29]:

time-domain update: o — —l"Yszj, (11.9a)
iteration-domain update: éjH(O) = éj(T). (11.9b)
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I' is a constant, positive-definite learning matrix, and T denotes the duration of an it-
eration. z; is defined in (11.5), i.e., zj=¢;+ae;. The time-domain update in is a
gradient-type update law as in [32]. The iteration-domain update in means the
initial parameter estimate of the next iteration is set as the final parameter estimate of the
previous iteration such that parameter estimates remains continuous across iterations.

11.3.3 Stability and convergence analysis

In this section, we will prove the stability and error convergence of the proposed
control scheme as given by (11.4)-(11.9). We introduce the following two assumptions:

¢ A1l: The iteratively repetitive disturbance input d in (1) is bounded for all t € [0, T];
o A2: The resetting condition holds, i.e., e (0) =¢é(0) =0;Vj.

Under these two assumptions, we have

T T
1) lim J e/dt = lim J edt =0,
2) lim @’ exists and is bounded,

j—o0
where 8 20— 8’ represents the error associated with a mismatch in parameter estimates
from their true values.
In order to prove the validity of this theorem, we first consider the application of all
control inputs to rearrange the dynamic model of our system. Combining (11.1) with
(11.4}[11.5,[11.8) results in the following,

M(q)d+C(q', 44/ +G (§)) +d=L2+Y§ 1. (11.10)
Notice then that
M(q")2 = M(q))gq + aM(q))¢) — M(q)d,
C(q, 47 =C(q’,d4’)qq +aC(q’,¢4')e —C(q’,4))q’,
Y0 =M(q)da+Clq’,4)qa + G(¢’) + a(M(q')e' +-C(q’, ¢')e)).

Rearranging these three equations, we can rewrite the input to the system in a different
form,

M(q)d' +C(q',¢')¢' +G(¢)) +d =Y —M(q')2 — C(q’,¢))2 +d. (11.11)

If we now define the following term ﬁ{ £d —u{ and equate the right-hand sides of

(11.10) and (11.11)), we arrive at the following,
M(q")Y +C(q),¢)7d + 12 = Y& +u. (11.12)
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The term ﬁ{ represents error due to the repetitive disturbance in the presence of an
iterative input. Assuming that d is bounded (A1), we can see that the goal of the iterative

input is to minimize ;.
The remainder of this proof comes in two parts. First, we show that both & and 2/
remain bounded in the time domain. Second, we will show that the bound on 0 will

either remain the same or decrease in each subsequent iteration and that fg 2" Zat will
converge to zero.
Boundedness of Error Signals

Errors in the time domain will be bounded if inputs to the system are bounded.
Proof. Consider, the following Lyapunov candidate function in the time domain,
C1 . o T AT s
Wi = EZ)TM(q])Z) n Ee’ r-1g'. (11.13)
Taking its time derivative results in (11.14). Here, note that M(q') £ MJ, and C(q),¢') £
C for brevity,
W =2 Mizl + %ijszj 48 11§
. e} . .. . 1 1.5 - 5T L
=2 (V0 +14) — Ol —12) + EZJTM]z] +6 19

1T i e Toaxi AT el Tl T s
= EZ]T(M) —20)2 +2'YVI0 +6 110 —2 1S +zJT11Jl

(11.14)

-T . .T~~ . . ~.
=2 12 +2 W) <[ZMI( —Amin (D121 + [} )

where || o || denotes the 2-norm of a vector and Anin(e) the minimum eigenvalue of a
matrix. We've taken advantage of the fact that M’ —2CJ is a skew symmetric matrix
(a general property of the robot manipulators, [81], to conclude that the term %ij(M —
L T~ ~iT 2.
2CH)2) = 0. Moreover, (2 Y1) +8’ T10) = 0 due to (11.9al).
Given this result, we can now establish the passivity of the system through the follow-
ing proof by contradiction: Assume 2(t) is not bounded, such that lim;_, [|Z/(t)[| = oo,

and that the time interval [0, T] is sufficiently long enough such that z/(T) is very large.
Then there exists a time,

ty 2 sup{t| 0 <t < Tand ||2)(t)] <

. . te T . » ty |
Hé’(tb)uzué%m—rj Y 2 (t)dt||<[|6 (0)[|[+Amax(T) sup (Amax(YJ))JO |12)(t) ]| d

0 tG[O,tb}
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Here, we assume |Iéj(0)||<oo. Since both ||z (tp)]| and IIQj(tb)II may be_large but finite

values, the function Wi (ty,) is also finite. Additionally, since 2] > %ﬂ'u vVt € [tp, T,
it is also the case that Wi(t) < 0, and accordingly Wi(t) < Wi(tp) < oo YVt € [ty, TI.

However, it is not possible that WI(t) be bounded and ||2/ (t)|| not be bounded, and this
creates a contradiction. As a result, ||z}|| must be bounded when IIﬁ{II is bounded.

Convergence in the Iteration Domain

We now analyze how i) changes as j increases, and prove the error 2/ converges as
j — oo.

Proof. Consider the following discrete-time Lyapunov candidate function,

V](t):J @' L) 8 (0818 (0)=Vi+Vi. (11.15)

=0
where Vi and V; equate to the first and second term of V/(t), respectively. We now define

the terms Aﬁ,{ = a{+1 —ﬁjl =(d —u,jl —BLZ)) — (d—u}) = —pLZ and AVI £ ViItl Vi,
We then compute the following differences,

T

. 4T . T .
AV = | @ LT - @ Lalde
JO
T . T 1 . . T 13
_ 3 ST LA L)) ) 1)
= O(Auﬁ—ul) L (At +1) —t; L ddr

T . T .
= | A L'Aw) +2A0) L)
JO

rT T . .. T .
=| B LY -2p(W +2 LD)dr
JO

. _iqT s T
AVL =p@"" ()r16""(0)—6" (0)r-16'(0))
From (11.13), it can seen that

T T ¥ T »
JO Wide =%Z5TM(qj)zj‘(T)+ 2@ mrem) -6 (0r 18 (0)
=22 (M@ + 28" Or 8" (0) -8 (0r'8'0)

because it is prescribed that 0t1(0) = 0/(T) and by (A2), the initiallerrors of each iterati.on
2)(0) = 0. When we substitute this result into our equation for AV% and add AV% +AV) =
AV). The following equation follows,

T
AV (TM(@)2 (T)-p(2-) | 2'Lelar. (11.16)
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Due to the form of AVJ, the value of VI will continue to decrease with each subse-
quent iteration. Since V! is positive, and V) is bounded below by zero, then it must
converge to some fixed value, lim;_,, V) < V1. Consequently, its terms i/ and @’ will
also approach zero as j — oo and converge to some fixed value. Additionally, since V)
must converge, then AV) must eventually equal zero. In order for this to occur, it must
be true that fg J'1Jddr=0asj — .

Lastly, if we consider the relationship between z) and e/, we can establish the transfer

function ;((3 = SJ%G under (A2). Henge, as long as a > 0, it is guaranteed that /=0 leads
to =0, which further indicates that ¢ = 0. O

11.4 Simulation

11.4.1 Manipulator Configuration

We study by simulating an application of the proposed adaptive ILC algorithm to
a 3-DOF planar manipulator with joint friction, as shown in Fig. [[1.2(a). Due to the
difficulty of directly identifying all unknown parameters, we first identify v, and veoy,
offline. Hence, the unknown friction force for each joint i can be represented as

Feri(qi, Gi) = Y36,
0; = [V2e(Fyrii — Fei) Fei fil T 2 [big by bisl”,

A - qi 2 .

Y, = [Jie v tanh(E
Vst c

o ) gil.

Note that Y; is the i-th row of the regression matrix Y. For the system of interest, the

vector & becomes a vertical concatenation of éll, 8’ , ég:, and Y/ becomes a matrix, the rows
of which are Y}, Y),Y}. The sampling time is 1ms.

11.4.2 Simulation Results

The desired joint trajectories for the manipulator are shown in Fig. [I1.2(b). These are
typical trajectories for the extension and retraction operations of a silicon wafer handling
robot to carry wafers to desired locations. Five iterations of the proposed AILC are
run and position errors are shown in Fig. demonstrating the effectiveness of the
proposed adaptive ILC scheme.

We compare the proposed approach with the one in [29] (noted as “baseline”), with
results shown in Fig. The proposed algorithm can achieve much better tracking
performance than the baseline AILC. Moreover, the torque inputs in Fig. show that
the adaptive input component contributes less to the overall control effort of the baseline
AILC than in the proposed AILC.
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Figure 11.2: The planar manipulator and desired trajectories in simulation

The performance improvement of the proposed AILC in Fig. is a result of the
adaptive input design. We can see in that the proposed adaptive input accounts
for model discrepancies by producing a model-based feedforward input and a feed-
back compensation signal based on model estimates and tracking error. As the error
decreases, the adaptive input gradually reduces to a model-based feedforward control
signal. In contrast, the baseline adaptive input in also accounts for model discrep-
ancies, but in contrast, its control effort will approach zero as model estimates improve
and error decreases.

11.5 Experiments on a Wafer Handling Robot
Manipulator

11.5.1 Experimental Setup

We utilize a 5-DOF Silicon Wafer Handling robot for experimentation. The joints are
configured as shown in Fig. Joint 1 refers to the base rotation joint, Joint 2 refers to
the translation joint in z direction, and Joints 3, 4 and 5 refer to the remaining rotation
joints. Each joint can be controlled independently. Among all five joints, Joint 1 has
the largest moment of inertia, and Joint 5 suffers from static friction most significantly.
These properties make the control of these two joints challenging. Hence, we focused
our experiment on Joints 1 and 5. The desired trajectories of these two joints are shown

in Fig. [T1.6(b).



CHAPTER 11. ADAPTIVE ITERATIVE LEARNING CONTROL 183

—@— First [teration
—p— Final Iteration
10F |----- Intermediate Iterations

Joint 1 (deg)

Joint 2 (deg)

Joint 3 (deg)

0 2 4 6 8 10 12 14 16

Time (s)

Figure 11.3: Position errors of the proposed AILC scheme over five iterations

For both joints, we test both the baseline and proposed AILC approaches. 23 iter-
ations and 13 iterations of the both algorithms were conducted on Joint 1 and Joint 5,
respectively. The number of iterations was set such that neither algorithm showed any
significant performance improvement after that many iterations.

The baseline adaptive input in and is given by
wp =Me(q)da +Ce(q’, ¢')da + Ge(d)) + a(M(q)e + C(¢))e))  (1117)

where M.(q/) = M(q)) —M(qa) , Cc(q’,4') = C(q, ) —C(q}, 4}), and G.(¢;) = G(¢') —
G(q)).

11.5.2 Experimental Results

Fig. gives the position errors in the final iteration and the performance improve-
ments over iterations by using the two AILC schemes. Compared to the baseline, the
proposed AILC algorithm results in small performance improvements in Joint 1 but sig-
nificant improvements in Joint 5, as shown in Fig. a). The friction forces in both
cases can be better compensated.
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Figure 11.4: Comparison result in position errors (final iteration)

As a compact metric of performance, we define the following cost associated with
tracking error,

ty '

] = J Z'Zdr. (11.18)
0

This metric is a direct result of (11.15) and (11.16)), and can be expected converge to zero

as j — oo. Fig. [I1.7(b) shows the evolution of | along iterations using the baseline and

proposed AILC. We can see that the proposed algorithm leads to great improvements in

all iterations of Joint 5 and later iterations of Joint 1.

11.6 Chapter Summary

In this chapter, we addressed the fundamental limitation of standard ILC with adap-
tation. A new, adaptive iterative learning control algorithm was proposed to identify an
unknown disturbance model and compensate for it. Proof of error convergence, simu-
lation and experimental studies with the proposed and a baseline AILC were provided
with application to robot manipulators subjected to iteration-varying joint friction forces.
The results showed that the proposed algorithm performed better than the baseline in
terms of reducing tracking performance over iterations while maintaining the same pa-
rameter adaptation scheme.
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Figure 11.5: Torque inputs in the 5th iteration (feedback u, iterative u{, and adaptive ul)

The proposed approach can be widely applied to autonomous systems subject to
iteration-varying friction models. Moreover, estimation of unknown parameters can be
extended to include those associated with mass inertia M(q) and Coriolis C(q, ) terms.
By introducing a novel, adaptive input component, Type II non-repetitive disturbances
can be better addressed using the proposed approach.

Together with Chapter we have enhanced the performance of traditional ILC
with selective learning and adaptability which can handle both external and internal
unknown iteration-varying disturbances. Combined with the adaptive feedback con-
troller design in Chapter [0} we have established a two-degree-of-freedom controller de-
sign framework to assure that the high-level behaviors can be reliably executed in the
presence of a variety of disturbances and uncertainties.
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Chapter 12
Final Words

We are embracing an era of mixed autonomy. Autonomous systems, such as intel-
ligent robots and driverless vehicles, are expected to enter the social space occupied by
humans and intensively interact with them to enable a more efficient society. Compared
to traditional automated systems that work in isolated environments with fixed and de-
tailed tasks, autonomous systems need to actively explore efficient ways to achieve more
diverse and abstract tasks in a more dynamic environment. Their behavior should be
intelligent and of high performance in the presence of uncertainties coming from not
only non-intelligent factors such as external vibrations and model uncertainties but also
the intelligent behavior of humans which is naturally probabilistic, hierarchical, causal
but irrational, socially compliant and time-varying.

This dissertation has focused on the design of such intelligent and high-performance
behavior for autonomous systems. It consists of the following two parts: Part I on high-
level hybrid human-machine behavior design towards seamless and safe interaction with
human, and Part II on low-level individual machine behavior design to support accurate and
reliable execution of the high-level commands. We have leveraged advanced techniques
and concepts from control, optimization, learning and cognitive science in both parts.

In Part I, based on a game-theoretic formulation for human-robot interaction, we have
represented human behavior via their rewards to optimize (Chapter 2) and discussed
three different aspects on the rewards design regarding, respectively, the integration of
social compliance into rewards (Chapter 3), the hierarchical structural design and learn-
ing in rewards (Chapter 4), and the alternative reward measure based on Cumulative
Prospect Theory to describe the irrationality of human behavior (Chapter 5). With such
an efficient representation of human behavior, Chapters 6-8 addressed the generation of
robotic behavior via the MPC framework in the presence of uncertainties and computa-
tion constraints. In Chapter 6, human-like perception behavior, i.e. inferring information
from surrounding agents to reduce one’s own perception uncertainties, was enabled to
tackle perception uncertainties in motion planning. In Chapter 7, an interactive motion
planning considering time-varying game policies of human was proposed. Via online
estimation of potential game policies that the human might execute, the autonomous
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systems can generate policy-adaptive behavior to enable smooth interactions. Chapter
8 focused on the efficiency of the behavior generation by leveraging the strength from
both optimization and imitation learning. A hierarchical structure with a learning-based
long-term policy layer and an optimization based short-term execution layer were com-
bined to enable efficient and safe maneuvers of the robotic systems. In Part II, to assure
accurate and reliable execution of the high-level commands, attenuation of external vi-
brations, particularly the high-frequency ones, has been addressed in Chapter 9. Chap-
ters 10-11 focused on the elimination of repetitive disturbances and model uncertainties
via iterative learning control in the presence of non-repetitive components. Selective and
adaptive iterative learning control algorithms have been developed and verified.

12.1 Open challenges to explore

The work in this dissertation contributes as one step toward safe and efficient mixed
autonomy. There are still many directions that the work can be extended in the future to
enable seamless human-robot interaction. We list below some of the major directions.

A unified human behavior model to cover diverse properties

In this dissertation, we have addressed the design of rewards to capture some prop-
erties of human behavior such as social compliance, hierarchy, irrationality and time-
varyingness. For each of the properties, there are more factors to consider. For instance,
how do we systematically capture the difference between single-human behavior and
group behavior? How do we extend the hierarchy structure to more layers? And how
to summarize and distinguish different categories of individual behavior? Beyond that,
there are many more important properties yet to be described and to be considered.
For example, due to the computation limit of our brains, human is bounded rational in
terms of finding optimal solutions, and autonomous systems need to be aware of that.
Human behavior is also emotional. Depending on the mood, human can choose com-
pletely different actions given the same scenario. A unified and efficient framework for
reward design and learning in the presence of those properties is yet to be explored in
the future.

The ability of life-long learning

Building a human-like autonomous system is the dream of humanity. One of the key
features of human as intelligent agents is their life-long learning ability. For instance,
human drivers learn basic knowledge for driving during training phase, but they con-
sistently improve their driving skills as they observe more and drive more. As robotic
system designers, it is practically not feasible for us to enumerate all possible scenarios
and design the best policies for the systems. Hence, autonomous systems should be able
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to automatically improve and learn. Such life-long learning ability can be summarized
into two levels: 1) the ability to identify unsatisfactory performance and to automat-
ically improve that via policy adjustment or knowledge update, and 2) the ability to
understand new scenarios, develop new skills, and handle new uncertainties based on
previous experience and currently available knowledge. Learning algorithms such as
meta-learning is yet to be developed to better support such life-long learning ability.

Closed-loop system evaluation

Autonomous systems heavily rely on learning or data-driven approaches in both
modeling the environment (including human behavior and other influential factors) and
generating their own policies. Different from traditional model-based control design
which is deterministic, learning-based approaches are mostly probabilistic. Stability
analysis techniques for traditional control design are no longer effective under such cir-
cumstance and new methodologies are necessary evaluation tools. For instance, for em-
pirical evaluation, we need to construct realistic simulators for autonomous systems in
which the simulated scenarios match those in real applications and the other intelligent
agents behave like human. We also need to establish a set of metrics to quantify their
performance. For theoretic evaluation, as most of the autonomous systems are mod-
ularized, and each module generates uncertainties, we need to model the propagation
of uncertainties from high-level /upstream modules to low-level /downstream modules,
and to the closed-loop performance of the human-robot interactive systems.

12.2 Conclusion

As more and more automated systems become autonomous, we are embracing a soci-
ety with intensive human-robot interaction. Advanced techniques from various scientific
tields such as control, optimization, learning and cognitive science may be synergized to
conquer more open challenges and eventually achieve safe and efficient mixed autonomy
in our society.
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