
UC Irvine
ICS Technical Reports

Title
Toward coherence in learning to program

Permalink
https://escholarship.org/uc/item/50q6j9jn

Authors
Bork, Alfred
Pomicter, Nancy
Peck, Melissa
et al.

Publication Date
1984-07-26

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/50q6j9jn
https://escholarship.org/uc/item/50q6j9jn#author
https://escholarship.org
http://www.cdlib.org/

I

I

I

I

I

I

I

I

i

I

I

I

I

LIBRARY

University of Californ!
IRVINE

TOWARD COHERENCE IN LEARNING TO PROGRAM

Alfred

Nancy PoaicTt^r
Melissa Peck

Shawn Veloso

Technical Report 231

Department of Information and Computer Science
University of California

Irvine, CA 92717
(714) 355-6945

July 26, 1984

C- / ^L.

We see in the school systems in the United States and

elsewhere a tremendous current urge to teach programming at a

variety of levels. Sometimes this is done simply because of a

general belief that programming is "'good" for the students.

Sometimes it is done under the guise of increasing reasoning

capabilities, or problem solving capabilities, or creative

capabilities, or intelligence, although little empirical evidence

exists for any of these. Sometimes it is done under the guise of

"computer literacy", although many other things are often given

under that rubric, with no consensus as to what should be

included. Sometimes it is done for vocational reasons.

We do not discuss the question of whether prograonning

should be taught or at what grade level it should be taught. All

those are interesting issues, but they seem to be very difficult

issues to decide. Rather our question is, if programming is

taught, what should be the criteria that determine what happens.

We do not intend to restrict ourselves in any way whatsoever

to the currently available languages, systems, or approaches. We

would argue that most of these strategies are inadequate.

Professionals in computer science have given little thought to

how programming should be taught, if it is taught at all. Most of

the "advisors" in the school situation are not computer

scientists, and most computer scientists, except for

complaining about the teaching of inferior languages such as

BASIC, have had little to say about the situation.

Alfred Bork - 2 -

Given this background it is not too surprising that *he

existing progranuning courses in elementary and secondary rchools

have very little coherence. Often a variety of languages are

used, with no reason why any particular one should be useil except

that it exists. Very seldom are these courses based on good

modern structured programming philosophy and style.

The situation, however, is changing. More consideration as

to what should be happening is occurring. Thus the recent

interesting development of Boxer at MIT represents an attempt to

think through some of the problems associated with children

learning to program and to produce a superior environment.

We have also been engaged during the last few months in a

project of this kind. The purpose of this paper is to discuss

some of the philosophical considerations which should be taken

into account when developing material to teach programming in the

school system, and to outline the direction we are following.

CONSIDERATIONS IN LEARNING TO PROGRAM

The following considerations seem to us important in thinking

about how programming should be introduced and taught, with

particular emphasis on starting in early grades. As already

mentioned we are bypassing the more difficult issue as to whether

programming should be taught at all, and we are assuming the

decision has already been made that programming is to be an

integral part of the school curriculum relatively early

in the child's history.

I

Alfred Bork - 3 -

1) Rapid evolution of knowledge about computers. Any

program for teaching about programming must take into account that

computing is a very dynamic area, and that therefore hardware,

languages, approaches to learning languages, programming style,

and many other factors are in a very rapid state of evolution. We

should be paying close attention to this dynamic development, so

as to avoid teaching obsolete strategies to young children.

2) Good programming and problem-solving strategies. It is

important that from the earliest days students should be taught

according to sound stepwise refinement standards of programming

and problem solving. The materials that are developed should

consider this a primary issue.

3) Strongly motivational approaches. We want to encourage

students to be interested in the process of programming and to see

it as an exciting activity. Hence, whatever learning strategies are

employed need to carefully consider the motivational issues. This

means that they should not just be motivational for a few good

students in the program, but rather for all students.

Motivational concerns cannot be too highly stressed. Many

studies continually show that the most important variable in

education is time on task, so increasing time on task is important.

4) Curriculum materials are necessary. Most American

classes, most subject areas, from kindergarten through the

university, depend on the existence of textbooks or other

I
Alfred Bork - ^ -

curriculum material. While romantically we can think of students

and teachers proceeding entirely on their own, and this does

happen in a few situations, for the vast bulk of our programs we

need curriculum material.

In a new area such as programming, teachers will be

particularly dependent on the existence of good curriculum

material. Furthermore having such material will make it possible

for the programming course to be used at home or in public

libraries.

One thing that has been missing in much of the previous

development has been a focus on the learning material itself.

Indeed many past developments, such as Logo and Karel UlS. Robot

have developed the facility or language, the tool, and then only

in a secondary way given thought to how that tool was to be used

in classes. We can see some of the results of the lack of

curriculum material if we look at the wide discrepancy between the

potentials of Logo, and what is actually happening with Logo, in

most public schools.

It seems critical to us that the question of usage must

receive precedence at the very beginning of a project. We

emphasize that the problems with the current teaching of

programming in schools has to do with the inadequacy of current

curriculum material. Hence we recommend that a project which looks

new in this area must begin with consideration of how the students

are to learn the material in all possible environments in schools.

I

Alfred Bork - 5 -
t

homes, and elsewhere.

5) Coherent program. In most subjects in the schools there

is some continuity from grade to grade. If one looks, for

example, at arithematic from kindergarten through the

twelfth grade, there is a continuous progress, a curriculum that

has some plan and development associated with it. Teaching

programming does not have such a development at present. Indeed,

it often seems as if each teacher is beginning over, ignoring what

might have happened before. A continuous program beginning with

young children is as important here as in other academic areas.

6) Visual programming environments. Perhaps the main lesson

to be learned from the use of Logo, Karel the Robot, and

the early Computer Power material which includes quilting and

cartooning is that visual environments are often useful in beginning

programming. The young programmer can see immediately, with

interesting pictorial output, whether the program works or not.

The environments do not have to be as sparse as Logo's, where

one starts with a turtle in the middle of a clear screen. It is

possible to have a very rich background as a starting point which

may have some advantages with young kids. Attractive backgrounds

may also have motivational attributes.

It is not necessary to have a single type of background.

There may be a variety of different visual environments to work

in, and these may change in different parts of the instructional

material.

I

I

I

I

i

I

I

I

I

I

I

I

I

I

Alfred Bork - 6 -

7) Integrated computer environment. The student who is

learning to program will also be using the computer for other

important purposes, such as word processing. Even in learning to

. program, more than the programming language itself must be

involved. Editors and file-handling capabilities may be needed,

although they may be concealed from the student.

Many of the editors in use at the present time in programming

environments for young people are quite inadequate, with not very

much thought given to them. Peculiar control characters of

various kinds, for example, are needed. The notion of integrated

products has become popular in noneducational application areas.

Thus we have spreadsheets, word processors, and data-based

systems combined with graphics within single

products. This trend may be especially useful in education.

Particular thought needs to be given to how word processing

can be integrated into the same environment in which programming

occurs. It seems certain that word processing will be used more

II frequently in the school situation. Therefore, the student should
not consider word processing to be entirely separate from

m programming activiti^. Sons consideration is already being given
to the issue of trying to establish a imifom way of viewing the

computer, for example, in such developaffints as that of Boxer.

||[B) Use of modern oomputing tools. Avariety of modern
_ tools, used in programming environments at the advanced level, are

possibly useful with young people. For example, intelligent

I

Alfred Bork - 7 -

editors, editors that know something about the structure of the

programming language to eliminate the entering of Incorrect

syntactical structures, remove some of the burden of the syntax

from the student. Graphical exhibits of how

programs behave, showing changes in variables, are also useful.

Sophisticated systems of this kind have been developed for

intorductory programming, both in films (by Ron Paecker, at the

University of Toronto) and in the materials developed at Brown

University for the Introductory Programming Class.

A variety of other kinds of programming aids, such as

interpreters, style analyzers and similar material, should be very

useful also. The general consensus is that we should consider, in

developing any new programming facilities for the schools, the

full range of tools we already have available in computer science

for assisting with programming.

9) Do not emphasize grammatical details. Ore of the major

problems with much of the teaching of programming is the enormous

emphasis on grammatical details, at the expense of programming

style, problem solving, and other aspects of the computer.

10) One language or several? Many of the currioulums

currently in use in the schools seem to be based on the notion

that students need to see all kinds of languages. Indeed, in some

cases they seem to include every language available cn

whatever machine the school has, under the assumption that somehow

this is better for the student.

Alfred Bork - 8 -

We arsue that the multiple language situation is unwise,

unless the languages are very different, and therefore show very

different aspects of how the computer works. For example, one

could concaive of a programming environment which introduces

students to both Ada and Prolog, because they are very different

languages and demonstrate very different progranming techniques.

11) Unsuccessful current situations. Looking at the actual

teaching of programming within classes at the present time, it

seems to us that the situation is often a disaster. The problem

is that the teachers themselves have never programmed, and so have

little understanding of what programming is all about. They think

that a 10 or 15-line, linear, non-structured program is characteristic

of programming and they teach accordingly,

12) Marketing issues. The development of instructional

material for learning programming must also take into account how

that material is to be marketed. Marketing in a new area, such as

the use of computers in education, is generally fraught with

problems. Marketing needs to be studied just as carefully as any

other aspect of computer-based learning. We already have some

disasters. It seems particularly ironic that one of the better

pieces of curriculum material for teaching programming in the

schools, the Computer Power material from McGraw-Hill, has

been so pcorly marketed that hardly any schools know of its

existence. We frankly do not know the reasons for this.

13) Additional research. We very much need some careful

research in the teaching of programming. These issues can only be

•Alfred Bork - 9 -

settled by careful research don;; on a larger scale than anything

currently available.

LEARNING INTRODUCTORY PROGRAMMING BASED ON THESE CONSIDERATIONS

The topics Just presented give a clear view as to many of the

features that one would expect introductory sessions in

programming, particularly for primary school, to have. We are

developing a learning environment based on these considerations.

While this environment is still in its early stages it is possible

to give some description of its operation. Further details should

be available for the conference. We should be able to run on

line demonstrations then.

1) The language and associated facilities. Two sets of

material are considered. First there is the language and

programming environment in which students program. It should

^^grow" with the user; it should, at each stage, understand
I

the user's capabilities and knowledge of the language; and it

should proceed accordingly. Particularly it should know what

learning modules (to be described) this student has been

through, and what progress has been made in each module.

As indicated the learning environment will ultimately include

intelligent editors which know something of the syntax of the

capabilities provided.

Our plan is to base this language and facility on the syntax

of Ada. Initial modules contain simplified constructs designed

Alfred Bork - 10 -

for beginners. Later modules progress to more powerful Ada

constructs. A clear progression is possible throughout the

student's career. (We are considering developing a parallel

set of material involvii^ a language such as Prolog at a

later date.)

The language capability has many of the desirable

features of Logo. ^¥e assume initially a simple visual

environment to be described in connection with the learning

material. We also assume an interpretative capability and

the same type of automatic storage of student-developed procedures

that is available in Logo. The facilities avoid control

characters. It presents a highly friendly user interface even

when using the language with no learning module.

2) Learning modules currently planned. The following

learning modules are in various stages. Several of them have been

designed, and some coding has taken place. Some of the latter

ones have only been outlined. A further report on progress will

be made at the conference.

In the first module we introduce and allow the user to

play with two commands—MOVE and TURN. Neither one of the

commands contain any arguments. Thus they are simpler than

Logo commands. They do not, in this module, draw; rather

they move a creature (of interesting visual perspective) around

the screen. The two commands are introduced by simply letting the

Alfred Bork - 11 -

students play with them, with the computer watching over their

shoulder to see how they are used.

The major difference in this introductory module from most

introductions to Logo is that the material is self-contained,

and that the creature moves around in interesting visual

environments containing various objects. The creature can

bump into the objects, and this is reported. Graphic

artists are working with us in designing various environments.

A second module allows the user to use the Move and Turn

commands with a specific task. The computer ""'watches" to

see if the student can carry out the tasks, and to determine

whether additional help is needed. This module serves as an

alternate starting module since it is capable of providing

all the instruction needed about the commands if necessary. A

variety of tasks are provided in this module and assigned to

students randomly. Different visual environments are involved

in these tasks to increase student interest.

The next module is concerned with the fundamental ideas

of problem solving within environments already introduced. The

notion stressed will be breaking a sizable task into smaller

tasks. The tasks involve moving the creature around a

rich environment. Emphasis is NOT on writing the procedures

necessary, but on defining the sub-tasks. Thus little in the

way of actual coding or grammatical details associated with the

m;

Alfred Bork _ 12 -

language appear in this module. We believe that it is

critical that students understand these issues in a language-

independent form early. If students dc not begin with a top-

down point of view they may have difficulties mastering it later.

Development of such tactics cannot be left to chance or to the

possible motivations of an excellent teacher. Rather we want to

make certain everyone, even those working at home alone, develop

structured problem-solving strategies at an early stage.

In the next module, which immediately follows the one Just

described, the user constructs a main program to implement the

task given in the previous module. Procedures in the main program

correspond directly to the sub-tasks defined by the student.

An intelligent editor will help with many of the details as the

user is brought to view the main program as the mechanism for

breaking up a large problem into smaller problems. Again all of

the problems involve the visual environments and moving the

creature around in those environments.

Subsequent modules introduce important programming

concepts. We introduce loops using the most primitive Ada

looping structure. The advantage of this structure is that it

shows the exit explicitly. Issues as to where the testing occurs

are not raised to confuse the early programmer. When we present a

grammatical concept we present only enough of what is needed

at a particular stage in the learning orocess, rather than trying

to get people to understand ^'everything" about the concept at that

I

Alfred Bork - 13 -

stage. IF-THEN-ELSE statements are also approached in the

same way and are used initially in connection with bumping

into the objects in the environment.

These directions are only an early attempt. We expect to be

refining some of these as we use the material with students. We

want to develop a programming environment which will work with and

without teachers, in schools and in homes, and in public places

such as libraries.

