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A B S T R A C T

Background: The peptide VLL-28, identified in the sequence of an archaeal protein, the transcription factor Stf76
from Sulfolobus islandicus, was previously identified and characterized as an antimicrobial peptide, possessing a
broad-spectrum antibacterial activity.
Methods: Through a combined approach of NMR and Circular Dichroism spectroscopy, Dynamic Light
Scattering, confocal microscopy and cell viability assays, the interaction of VLL-28 with the membranes of both
parental and malignant cell lines has been characterized and peptide mechanism of action has been studied.
Results: It is here demonstrated that VLL-28 selectively exerts cytotoxic activity against murine and human
tumor cells. By means of structural methodologies, VLL-28 interaction with the membranes has been proven and
the binding residues have been identified. Confocal microscopy data show that VLL-28 is internalized only into
tumor cells. Finally, it is shown that cell death is mainly caused by a time-dependent activation of apoptotic
pathways.
Conclusions: VLL-28, deriving from the archaeal kingdom, is here found to be endowed with selective cytotoxic
activity towards both murine and human cancer cells and consequently can be classified as an ACP.
General significance: VLL-28 represents the first ACP identified in an archaeal microorganism, exerting a trans-
kingdom activity.

1. Introduction

Antimicrobial peptides (AMPs) are short peptides endowed with
direct and broad-spectrum antimicrobial activity and represent essen-
tial components of the innate immune system of higher eukaryotes,
being the first line of defense against microbial invasions [1,2]. In

addition to a direct antimicrobial action, AMPs show a wide panel of
biological activities including anti-inflammatory, anti-viral, chemoat-
tractive and pro-angiogenic activity [1,3–6]. AMPs are very hetero-
geneous in length, amino-acid composition, secondary structure and
mechanism of action; however, the majority of them shows a peculiar
abundance of cationic and hydrophobic residues. These AMPs, also
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called Host Defence Peptides (HDPs) [7], kill bacterial cells through a
specific mechanism i.e. targeting bacterial membranes [2,6,8]: the net
positive charge drives the adsorption of the peptide onto the surface of
bacterial membranes which are richer in anionic lipids than eukaryotic
membranes, hence the hydrophobic residues mediate the insertion of
the peptide into the membrane. The accumulation of peptide molecules
in the membrane causes the alteration of its structure/permeability,
accompanied by a severe impairment of the membrane functions that
eventually lead to the death of bacterial cells, often by cell lysis [2,6,8].
Since eukaryotic plasma membranes show an asymmetric distribution
of negatively charged phospholipids, generally present only in the inner
leaflet of the membrane, HDPs are not able to effectively adsorb to
eukaryotic cells. The presence of cholesterol further prevents the in-
sertion into and the perturbation of the eukaryotic membranes. None-
theless, it is worth mentioning that at high concentration several HDPs
become toxic also for eukaryotic cells.

Intriguingly, several AMPs endowed with anti-cancer activity [9]
are defined as “anti-cancer peptides” (ACPs), because they show a much
stronger toxicity for cancer cells than that towards normal cells. This
differential toxicity has been attributed to the fact that transformation
of eukaryotic cells is often associated to alterations of the membrane
composition [10], such as: i) loss of the asymmetric distribution of
phospholipids with exposure of phosphatidylserine on the outer leaflet,
ii) increased production of anionic lipids (e.g. sulfated lipids), sialic
acid containing glycolipids and glycoproteins, and sometimes iii) de-
creased production of cholesterol. Altogether these events lead to an
augmented negative charge at the external surface of tumor cells that,
in turn, would favor the binding of ACPs. However, differently from
bacterial killing mechanisms, the death of tumor cells is not necessarily
due to accumulation of the peptide into the membrane followed by
their lysis. Indeed, in several cases it has been demonstrated that ACPs
are internalized and the cell death occurs upon the interaction with one
or more intracellular targets, such as mitochondria, DNA, cytoplasmic
and nuclear proteins (e.g. HSP70 [11] and DNA polymerase β [12],
respectively). Moreover, it is worth noting that these ACPs usually in-
duce apoptosis rather than necrosis [9].

Due to the severe side effects of conventional chemotherapeutic
agents and the ability of some tumor cells to develop the multidrug
resistant phenotype, ACPs have attracted considerable attention.
Indeed, these peptides could help to develop a new generation of anti-
cancer drugs with a mechanism of action well distinguished from those
of conventional chemotherapeutic agents.

As not all the HDPs are ACPs and the killing mechanism seems to
differ for each ACP and tumor cell line, the rationale development of
new antitumor agents based on CAMPs/ACPs requires further in-
vestigations. In particular, the identification and characterization of
new ACPs could help to better define the requirements for a strong and
selective antitumor activity.

Recently, we have developed an in silico tool allowing to identify
HDP-like peptides hidden into the sequences of proteins not necessarily
involved in host defense [13]. Using this tool we have already identified
three new human HDPs [14–16]. Furthermore, we have demonstrated
that DNA binding proteins can be a convenient source of new HDP-like
peptides by identifying the first HDP from an archaeal protein, the
transcription factor Stf76 encoded by the hybrid plasmid-virus pSSVx
from Sulfolobus islandicus [17]. This archaeal HDP, named VLL-28 from
its sequence [16], has a broad-spectrum antibacterial activity and ex-
hibits selective leakage and fusogenic capability on vesicles with a lipid
composition similar to that of bacterial membranes. Moreover, we have
shown that VLL-28 retains the ability of the parental protein to bind
nucleic acids (both single and double strand DNA). Using a fluorescent
derivative, we have demonstrated that VLL-28 localizes not only on the
cell membrane but also in the cytoplasm of Escherichia coli, thus sug-
gesting that it could target both membranes and intracellular compo-
nents of bacterial cells.

Here we report for the first time the characterization of the

antitumor activity of VLL-28. By means of a multidisciplinary approach
including biochemical, cellular biology and spectroscopic techniques,
the action mechanism of VLL-28 has been elucidated. Intriguingly, it
has been proved to be an effective ACP able to selectively kill tumor
cells by inducing apoptosis.

2. Materials and methods

2.1. Peptide synthesis reagents

Polypropylene reaction vessels and sintered polyethylene frits were
supplied by Alltech Italia (Milan, Italy). NovaSyn TGR resin, 2-(1H-
benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate
(HBTU), cyano-hydroxyimino-acetic acid ethyl ester (Oxyma) and all
amino acids were purchased from Novabiochem-Merck (Nottingham,
U.K.). N,N′-diisopropylethylamine (DIPEA), piperidine, Kaiser test, tri-
fluoroacetic acid (TFA), scavengers, fluorescein isothiocyanate (FITC)
and N-methylmorpholine (NMM) were purchased from Sigma-Aldrich
(Milan, Italy). N,N-Dimethylformamide (DMF) was purchased from
CARLO ERBA Reagents (Milan, Italy). Acetonitrile (ACN), di-
chloromethane (DCM) and diethyl ether were purchased from VWR
International (Milan, Italy). All aqueous solutions were prepared by
using water obtained from a Milli-Q gradient A-10 system (Millipore,
18.2 MΩ·cm, organic carbon content ≥ 4 μg/L).

2.2. Peptide synthesis

VLL-28 and FITC-VLL-28 (VLL-28 derivative with an additional
glycine residue at the C-terminus as spacer and a lysin residue for FITC
labeling) peptides were manually synthesized using the fluor-
enylmethyloxycarbonyl (Fmoc) solid-phase strategy (0.2 mmol). The
syntheses were performed on NovaSyn TGR resin (loading 0.24 mmol/
g), using all standard amino acids. The Fmoc protecting group was
removed by treatment with 30% piperidine in DMF (3 × 10 min). The
amino acids in 10-fold excess were pre-activated with HBTU
(9.8 equiv)/Oxyma (9.8 equiv)/DIPEA (10 equiv) in DMF for 5 min and
then added to the resin suspended in DMF. The reaction was performed
for 1 h and the coupling efficiency was assessed by the Kaiser test. In
the case of FITC-VLL-28 peptide, once synthesis was completed, the
ivDde protecting group of Lys(ivDde) residue was selectively removed
by treatment of the peptidyl resin with a solution of 2% hydrazine in
DMF (20 × 3 min). FITC labeling was then performed with 2 equiv of
fluorescein isothiocyanate and 4 equiv of NMM in DMF for 5 h.

The peptides were finally cleaved off the resins by treatment with a
mixture of trifluoroacetic acid (TFA)/water/triisopropylsilane
(95:2.5:2.5 v/v/v) for 3 h at room temperature. The resins were fil-
tered, the crude peptides were precipitated with diethyl ether, dissolved
in H2O/ACN solution, and lyophilized. The products were purified by
preparative RP-HPLC on a Shimadzu system equipped with a
UV–visible detector SPD10A using a Phenomenex Jupiter Proteo
column (21.2 × 250 mm; 4 μm; 90 Å) and a linear gradient of H2O
(0.1% TFA)/ACN (0.1% TFA) from 10%–55% of ACN (0.1%TFA) in
15 min at a flow rate of 20 mL/min. The collected fractions containing
the peptides were lyophilized giving a final yield of about 35% of each
pure product. The identity and purity of the compounds were assessed
by the AGILENT Q-TOF LC/MS instrument equipped with a diode array
detector combined with a dual ESI source on a Agilent C18 column
(2.1 × 50 mm; 1.8 μm; 300 Å) at a flow rate of 200 μL/min and a linear
gradient of H2O (0.01% TFA)/ACN (0.01% TFA) from 5%–70% of ACN
(0.01% TFA) in 15 min.

2.3. Cell culture

Malignant SVT2 murine fibroblasts (BALBc 3T3 cells transformed by
SV40 virus), parental BALBc 3T3 murine cells, and HEK-293 human
embryonic kidney cells were cultured in Dulbecco's Modified Eagle's
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Medium (Sigma-Aldrich), supplemented with 10% fetal bovine serum
(HyClone), 2 mM L-glutamine and antibiotics, in a 5% CO2 humidified
atmosphere at 37 °C. HRCE (Human Renal Cortical Epithelial) cells
(Innoprot) were cultured in basal medium, supplemented with 2% fetal
bovine serum, epithelial cell growth supplement and antibiotics, all
from Innoprot, in a 5% CO2 humidified atmosphere at 37 °C [18].

2.4. Cytotoxicity assays

Cells were seeded in 96-well plates (100 μL per well) at a density of
5 × 103 per well (SVT2, HEK-293, and HRCE cells) or 2.5 × 103 per
well (BALBc 3T3 cells). VLL-28 peptide was added to the cells 24 h after
seeding for time- and dose-dependent cytotoxic assays. At the end of
incubation, cell viability was assessed by the MTT assay, as previously
described [19]. In brief, MTT reagent, dissolved in DMEM in the ab-
sence of phenol red (Sigma-Aldrich), was added to the cells (100 μL per
well) to a final concentration of 0.5 mg/mL. After a 4-h incubation at
37 °C, the culture medium was removed and the resulting formazan
salts were dissolved by adding isopropanol containing 0.1 N HCl
(100 μL per well). Absorbance values of blue formazan were de-
termined at 570 nm using an automatic plate reader (MicrobetaWallac
1420, Perkin Elmer). Cell survival was expressed as percentage of vi-
able cells in the presence of the peptide, with respect to control cells
grown in the absence of the peptide. In all of the experiments described
in this paper, controls were performed by supplementing the cell cul-
tures with identical volumes of peptide buffer for the same time span.
Obtained data represent the mean (± standard deviation) of at least 4
independent experiments, each one carried out with triplicate de-
terminations. Statistical analysis was performed using a Student's t-Test,
and significant differences were indicated as *(P < 0.05),
**(P < 0.01) or ***(P < 0.001).

2.5. Analysis of cell death

Cells were plated in 6-well plates (1 mL per well) at a density of
1 × 106 cells per well in complete medium for 24 h and then exposed to
20 μM VLL-28 for 6, 12 or 24 h to prepare cell lysates. Both untreated
and treated cells were scraped off in PBS, centrifuged at 1000 ×g for
10 min and resuspended in lysis buffer (1% NP-40 in PBS, pH 7.4)
containing protease inhibitors. After 30 min of incubation on ice, ly-
sates were centrifuged at 14,000 ×g for 30 min at 4 °C. Upon de-
termination of total protein concentration in the supernatant by the
Bradford assay, samples were analyzed by SDS-PAGE followed by
Western blotting using specific antibodies directed towards procaspase-
3 (Cell Signaling Technology) or p62 (Novus Biologicals) proteins. For
normalization to internal standard signals, antibodies against β-actin
(Sigma-Aldrich) were used. In parallel experiments, cells were treated
with puromycin (10 μg/mL) for 12 h or with rapamycin (20 μM) for
24 h, which were used as positive controls for apoptosis and autophagy
induction, respectively.

For morphological analyses, cells were seeded on glass coverslips in
24-well plates and grown to semi-confluency. Cells were then incubated
for 72 h with 20 μM VLL-28 peptide in complete medium, after which
cells were washed with PBS, fixed for 10 min at room temperature (RT)
with 4% paraformaldehyde in PBS and mounted in 50% glycerol in PBS.
Samples were then examined using a confocal laser-scanner microscope
Zeiss LSM 700. All images were taken under identical conditions.

2.6. Fluorescence studies

Fluorescence analyses were performed as previously described [20].
Briefly, cells were seeded on glass coverslips in 24-well plates, grown to
semi-confluency, and then incubated for 12 h with 20 μM FITC-labeled
VLL-28. Following incubation, cells were washed with PBS and then
fixed for 10 min at RT with 4% paraformaldehyde in PBS. Cell mem-
branes were labeled by incubating the cells with Wheat Germ

Agglutinin (WGA, 5 μg/mL) Alexa Fluor®594 Conjugate (ThermoFisher
Scientific) for 10 min at RT. Cells were then washed twice in PBS fol-
lowing the manufacturer's instructions. Confocal microscopy analyses
were performed with a confocal laser-scanner microscope Zeiss LSM
700.

2.7. Circular dichroism analyses

Far-UV CD spectra were recorded on a Jasco J-810 spectro-
polarimeter (JASCO Corp) equipped with a PTC-423S/15 Peltier tem-
perature controller in the wavelength interval of 198–260 nm.
Experiments were performed using a 20 μM VLL-28 solution (in PBS
pH 7.4) in a 0.1 cm path-length quartz cuvette as already reported in
Notomista et al. [16].

CD spectra in the presence of intact cells were registered using
8 × 105 BALBc 3T3 cells or SVT2 cells at different incubation times (0,
10, 30, 60 min and 24 h) in PBS buffer at 20 °C. The baseline was
corrected by subtracting the spectrum of the cells alone at the same
time of incubation [21–23].

2.8. Membrane preparation

Membranes used in NMR experiments were isolated from BALBc
3T3 or SVT2 cells and obtained as reported in Farina et al. [24]. In
details, cells were detached from the flask with trypsin and washed
twice with PBS. Then the cells were transferred into homogenization
buffer containing PBS and homogenized by means of a pellet pestle
(Sigma). Particulate matter was removed by centrifuging at 3500 rpm
for 15 min. The supernatant was then centrifuged at 28000 rpm for 1 h
at 4 °C. The pellet was washed and centrifuged at 28000 rpm for 30 min
at 4 °C. 180 μL of PBS plus 20 μL D2O were added to the pellet, and the
membrane was re-suspended by 20 passages through a 25 gauge needle.

2.9. NMR spectroscopy

All NMR experiments were carried out at 298 K using an Inova
600 MHz spectrometer (Varian Inc., Palo Alto, CA, USA), equipped with
a cryogenic probe optimized for 1H detection.

NMR samples were prepared as follows. For chemical shift assign-
ment and conformational analysis, 1 mg of VLL-28 was dissolved either
in 500 μL sodium phosphate 20 mM pH 7.0 with 10% v/v D2O or in
500 μL of the same buffer containing 25% (v/v) TFE (2,2,2-tri-
fluoroethanol-D3 99.5% isotopic purity, Sigma-Aldrich). One-dimen-
sional (1D) 1H spectra were acquired with a spectral width of
7191.66 Hz, relaxation delay 1.03 s, 7k data points for acquisition and
16k for transformation. Bi-dimensional (2D) [1H, 1H] total correlation
spectroscopy (TOCSY) [25], double quantum filtered correlated spec-
troscopy (COSY) [26] and nuclear Overhauser effect spectroscopy
(NOESY) [27] were acquired with 32 or 64 scans per t1 increment with
a spectral width of 7191.66 Hz along both t1 and t2, 2048 × 256 data
points in t2 and t1, respectively, and recycle delay 1.0 s. Water sup-
pression was achieved by means of Double Pulsed Field Gradient Spin
Echo (DPFGSE) sequence [28,29]. TOCSY experiments were recorded
using a DIPSI-2 mixing scheme of 70 ms with 7.7 kHz spin-lock field
strength. NOESY spectra were carried out with a mixing time of 250 ms.
Data were typically apodized with a square cosine window function and
zero filled to a matrix of size 4096 × 1024 before Fourier transforma-
tion and baseline correction.

According to the procedure recently reported [24] for interaction
studies of VLL-28 with intact cells and isolated membranes of BALBc
3T3 and SVT2 cell lines, pellet of 18 × 106 cells and membranes from
18 × 106 cells, obtained as reported above, were re-suspended in
150 μL of PBS buffer (pH 7.4) and 10% 2H2O, to obtain reference
spectra, or of VLL-8 (430 μM) in PBS buffer. STD spectra were acquired
with 10,000 scans with on-resonance irradiation at 0.2 ppm or 5.2 ppm
for saturation of membrane proteins or lipids resonances, respectively,
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and off-resonance irradiation at 30 ppm. A train of 40 Gaussian shaped
pulses of 50 ms with 1 ms delay between pulses were used, for a total
saturation time of 2 s. STD spectra were obtained by internal subtrac-
tion of saturated spectrum from off-resonance spectrum by phase cy-
cling. STD spectrum of the only peptide was also acquired and did not
show any signal. 2D [1H, 1H] TOCSY and NOESY spectra of VLL-28 in
presence of isolated membranes were also acquired, similarly to those
of the peptide alone.

All NMR data were processed with the software VNMRJ 1.1.D
(Varian Inc.). 1D spectra were analyzed using ACD/NMR Processor 12.0
[www.acdlabs.com]. 2D TOCSY, COSY and NOESY spectra for proton
chemical shift assignment were analyzed using Homoscope, a tool
available in CARA (Computer Aided Resonance Assignment) software.
Chemical shift assignments of VLL-28 in the absence of TFE are referred
to residual water proton signals, (4.75 ppm), whereas in 25% TFE to
residual TFE proton signals (3.88 ppm). Chemical shift deviations from
random coil values for Hα were calculated using the
ChemShiftDeviationsFile script available in CARA.

2.10. Zeta-potential measurements of bacterial and eukaryotic cells in the
presence of VLL-28

BL21 (DE3) E. coli cells were plated on Luria-Bertani agar overnight
at 37 °C. An isolated bacterial colony was used to inoculate Mueller
Hinton Broth (MHB; OXOID, Hampshire, UK), and the bacterial culture
was allowed to grow overnight at 37 °C. 100 μL of culture was used to
freshly inoculate 5 mL of MHB. The suspension was incubated at 37 °C
for ~2 h, until a final bacterial concentration of ~3× 108 colony
forming units per mL (CFU/mL) was reached (OD600nm ~ 0.1). Bacterial
suspensions were diluted using fresh MHB to 3× 107 CFU/mL for zeta-
potential studies. Afterwards, cells were centrifuged at 12,000 ×g for
5 min, and washed three times using 20 mM sodium phosphates buffer,
pH 7.4. The zeta-potential of bacterial cells was determined at 25 °C
from the mean of 3 measurements (50 runs each), in the absence and
presence of different VLL-28 concentrations (0–10 μM). Zeta-potential
values were obtained by phase analysis light scattering (PALS) in a
Zetasizer Nano ZS (Malvern Instruments, Malvern, UK), using dis-
posable zeta cells with gold electrodes. Values of viscosity and re-
fractive index were set to 0.8872 cP and 1.330, respectively.

Confluent BALBc 3T3 and SVT2 cells were washed with PBS buffer
followed by trypsinization. Zeta potential measurements of eukaryotic
cells were performed using the Diffusion Barrier Technique (Malvern,
Application Note). 4× 105 cells were dispensed into the disposable
zeta cells with gold electrodes in PBS with and without the peptide
(from 0 to 50 μM) and allowed to equilibrate for 30 min at 37 °C. One
measurement (~70 runs each) was performed with a constant voltage
of 40 V. The complete experiment was carried out at least two times
using independent cellular suspensions.

3. Results and discussion

3.1. Selective antitumor action of VLL-28 peptide

To assess whether VLL-28 was endowed with anti-cancer activity,
cytotoxicity assays were performed on malignant SVT2 mouse fibro-
blasts and parental non-malignant BALBc 3T3 mouse fibroblasts.
Interestingly, these studies have shown that the peptide VLL-28 exerts a
dose- and time-dependent inhibition of viability on malignant SVT2
murine fibroblasts (see Fig. 1a). Conversely, the peptide was found to
be inactive towards the non-malignant line of BALBc 3T3 fibroblasts
(Fig. 1b). This evidence was also confirmed by morphological analyses
through light microscopy, where a severe alteration of cell morphology
with the presence of cell debris was observed only in the case of SVT2
cancer cells, with an IC50 value of 10 μM at 72 h (Fig. S1). Remarkably,
this peptide was also found to be effective and selective against human
tumor cell lines, as demonstrated by MTT assays performed on

transformed HEK-293 cells (with an IC50 value of 10 μM at 72 h) and
human primary renal cortical epithelial (HRCE) cells (Fig. S2). In
agreement with these results, it has been previously reported that other
AMPs, which are toxic for bacteria but not for normal mammalian cells,
are instead cytotoxic for cancer cells [30].

3.2. Internalization of VLL-28 peptide

Most AMPs and ACPs share a common membranolytic mechanism
of action that results first either in the selective disruption or permea-
tion of the cancer cell membrane and then in the swelling of mi-
tochondria. Nonetheless, a non-membranolytic mechanism of action is
increasingly recognized as an alternative ACPs mechanism [31]. To test
whether the selective antitumor activity of VLL-28 was associated to a
membranolytic mechanism and/or to its internalization, we performed
experiments by using the peptide labeled with fluorescein iso-
thiocyanate (FITC). To this purpose, SVT2 and BALBc 3T3 cells were
incubated for 12 h with 20 μM FITC-labeled VLL-28, since this con-
centration of peptide turned out to be the most effective in terms of
cytotoxicity. As shown in Fig. 2a, in the case of SVT2 cells, VLL-28
fluorescent signal appears to be mostly intracellular already after 12 h
of incubation, thus indicating that the peptide is internalized into the
target cancer cells. On the other hand, the peptide (green) mainly co-
localizes with WGA (red) at the plasma membrane in BALBc 3T3 cells
(as indicated by arrows in Fig. 2b). The lack of VLL-28 internalization
into these latter cells is consistent with the absence of cytotoxicity
emerged from viability tests (Fig. 1b). Fluorescent staining was found to
be specific, as no fluorescent signals were observed in the absence of
FITC-labeled peptide (data not shown). Since the internalization has
been observed at a time point preceding the cell death (48–72 h), the
molecular target of VLL-28 might be a not yet identified intracellular
component.

3.3. VLL-28 CD analyses in the presence of intact eukaryotic cells

Since differences in the plasma membrane composition between
normal and cancer cells are supposed to contribute to the selective
permeability and toxicity of ACPs towards the latter, we resolved to
examine if the presence of the two different cell lines affects differently
the secondary structure of VLL-28. Interestingly, VLL-28 CD spectra
registered in the presence of either BALBc 3T3 or SVT2 whole cells
revealed a different behavior (Fig. 3). In particular, in the presence of
BALBc 3T3 cells, VLL-28 seems to gradually get structured over time
until a prevalence of helical structure is observed upon 1 h incubation
(Fig. 3a). Indeed, the spectrum shows two minima, at 208 and 222 nm,
typical of helical structure, in agreement with CD data obtained in the
presence of n-dodecyl-phosphatidylcholine (DPC), a well-known eu-
karyotic membrane mimetic agents [16]. Differently, in the presence of
SVT2 intact cells, a drop in the CD signal is observed suggesting a fast
internalization process of VLL-28, occurring already after 10 min
(Fig. 3b), as confirmed by confocal microscopy data (Fig. 2).

3.4. NMR conformational analysis of VLL-28

In order to gain insight into the mechanism of action of VLL-28 and
provide information on the basis of the different behaviors of VLL-28
with regard to the two studied cell lines, a NMR conformational ana-
lysis of the peptide in the absence and in the presence of TFE, a well-
known structuring solvent, has been initially carried out (Figs. S3 and
S4). According with what previously observed by CD analysis [16],
VLL-28 does not adopt a well-defined conformation in phosphate neu-
tral solution, as indicated by sharp and low-dispersed resonances in
both the amide/aromatic and the aliphatic regions (Fig. S3a). Upon
addition of TFE (25% v/v), amide, aromatic and aliphatic proton re-
sonances resulted significantly more dispersed (Fig. S3b). In particular,
the tryptophan side chain HN, clearly distinguishable at 10.14 ppm in
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the absence of TFE (Fig. S3a, left), exhibits up-field shift at 9.94 ppm
upon addition of TFE (Fig. S3b, left), possibly induced by an aromatic-
aromatic long-range interaction. Moreover, 2D [1H, 1H] NOESY spec-
trum of VLL-28 peptide contains a consistent higher number of cross-
peaks with respect of that recorded in the absence of TFE, indicating a
more structured conformation (Fig. S4). Almost complete assignment of
proton resonances of VLL-28 has been achieved in 25% TFE by using a
combination of TOCSY and NOESY spectra, according to the standard
procedures (Table S1).

To assess the secondary structure of VLL-28 in 25% TFE, analyses of
the Hα chemical shift deviations from random coil values (ΔδHα) and of
the NOE patterns were performed. Interestingly, two regions encom-
passing residues V37-R48 and V50-S59 showed large negative deviations
(ΔδHα < −0.1 ppm), suggesting that the peptide mostly assumes a
helical conformation, which is lost in the last C-terminal amino acids.
(Fig. 4a). Accordingly, HN-HN NOEs, together with Hαi-HNi + 3 and Hαi-
Hβi + 3 NOEs, were observed starting from residues V37 to S59 only in
the presence of TFE (Fig. 4b and c), further confirming the helical

structure of that region in TFE.

3.5. STD NMR interaction studies of VLL-28 with tumor and normal cell
membranes and definition of its binding epitopes

To identify binding residues of VLL-28 saturation transfer difference
(STD) NMR binding experiments of the peptide in the presence of intact
SVT2 and BALBc 3T3 cells [32], as well as of their isolated membranes,
were performed. Unfortunately, 1H NMR VLL-28 proton resonances
vanish in the presence of each of the two cell lines, thus hampering a
detailed molecular analysis of the VLL-28 interaction with the cellular
membranes (data not shown).

Very recently, we described the use of native cell membranes to
overcome peptide cell internalization issues in “on-cell” NMR binding
experiments [24]. This approach provides a significant improvement of
NMR peptide spectra with respect to those acquired by using intact
cells. Particularly, in the presence of isolated membranes, the 1H NMR
signals of the peptide are sharper and better resolved, the STD signals
appear significantly stronger, and background signals of the cellular
components result much weaker in both the 1H and the STD spectra
[24]. On the basis of the biochemical evidences of peptide inter-
nalization (see above), we carried out STD NMR experiments of the
VLL-28 peptide in the presence of isolated membranes.

Interestingly, 1H NMR peptide signals resulted well visible in the
presence of both SVT2 and BALBc 3T3 cell membranes as in the sole
buffer (Fig. S5), thus allowing to perform STD NMR binding studies. In
particular, we evaluated the binding capability of VLL-28 to the two
different components of the cell membrane, proteins and lipids, ac-
quiring STD spectra at two different saturation frequencies, i.e. one to
selectively saturate proteins (0.2 ppm) and another one to saturate li-
pids (5.2 ppm) [33]. Remarkably, the 1H STD spectra showed that VLL-
28 receives a detectable saturation transfer in the presence of cell
membranes only when lipids are saturated (Fig. 5). This effect, which is
negligible in the absence of cell membranes (Fig. 5b), provides a direct
observation of the binding of VLL-28 to the lipid component of the cell
membranes. This finding is in agreement with previous results showing
that the peptide is able to interact with lipids mimicking bacterial
membranes [16]. It is worth of note that differences in the STD spectra
were observed for BALBc 3T3 and SVT2 cell membranes (Fig. 5). In
particular, a higher number of STD signals, with stronger intensities,
was observed in the presence of BALBc 3T3 cell membranes compared
with those of SVT2 (Fig. 6a). In particular, all the binding residues of
VLL-28 to the SVT2 cell membranes are in common with that of the
BALBc 3T3 cell membranes. Specifically, VLL28 residues involved in
both BALBc 3T3 and SVT2 interaction are G49, Y52 and W55 (Fig. 6b,
highlighted in magenta). Moreover, one or both of the two threonine
residues, T41 and T43, appear involved in the VLL-28 interaction with
both cell lines. On the other hand, Q47, V50, I51 and F58, together with
the acetyl N-terminal, show protons that are saturated only in the

Fig. 1. Effects of the peptide VLL-28 on the SVT2 (a) and BALBc 3T3 (b) cell viability. MTT assays were performed on cells treated with increasing amounts of the peptide (5, 10 and
20 μM) for different time spans (24, 48 and 72 h). The viability of cell samples was expressed as the percentage of MTT reduction with respect to control cells, tested under the same
conditions but in the absence of the peptide. Data represent the mean (± standard deviation, SD) of at least 4 independent experiments, each one carried out with triplicate de-
terminations. *P < 0.05, **P < 0.01, or ***P < 0.001 were obtained for control versus treated samples in the case of SVT2 cells treated with VLL-28 peptide for 48 and 72 h.

Fig. 2. Internalization of VLL-28 peptide in SVT2 (a) and BALBc 3T3 (b) cells. Cells were
cultured on coverslips, incubated for 12 h with 20 μM VLL-28 peptide (green) and stained
with WGA (5 μg/mL, Alexa Fluor®594 Conjugate). Cells were analyzed by confocal mi-
croscopy.
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presence of BALBc 3T3 membranes (Fig. 6b, highlighted in red). Fur-
thermore, strong STD effects were observed for side-chains of arginine
and lysine residues. However, due to the spectral overlap and to the
presence of a high number of basic residues in the peptide sequence
they could not identified unambiguously. Moreover, methyl of leucine
(L) and valine (V) localized in the N-terminal region, seem to be in-
volved as well.

Overall, these data indicate that the interaction of VLL-28 with cell
membranes is mediated by the N-terminal and the central regions (V37-
F58) (Fig. 6), which interestingly correspond to the portions of the

peptide that assume helical conformation in presence of TFE. Specifi-
cally, the binding to both the cell membranes seems to be mainly
mediated by aromatic and basic residues, as could be expected for
peptide-lipid interactions.

Different STD intensities of the peptide induced by the interaction
with BALBc 3T3 and SVT2 cell membranes are likely ascribed to a
different interaction mechanism between the peptide and the two
membranes. In particular, stronger STD effects observed in the presence
of non-tumor BALBc 3T3 membranes indicates that a fast-exchange
equilibrium between the free form and a well-recognized bound

Fig. 3. Far UV VLL-28 CD spectra (black) recorded in the presence of a) BALBc 3T3 cells and b) SVT2 cells at 0 (blue), 10 (green), 30 (orange), 60 (red) min and 24 h (magenta) of
incubation.

Fig. 4. (a) Chemical shift deviation from random coil values of Hα backbone atoms (ΔΗα) plotted as a function of residue number. Two segments with helical conformation encompassing
residues V37-R58, V50-S59, as suggested from the ΔΗαs, are indicated above the plot. (b) and (c) Expansions of the HN-HN correlation region of the 2D [1H, 1H] NOESY spectra of VLL-28
in phosphate buffer pH 7.0 at 298 K in the absence and presence of TFE 25%, respectively. HNi-HNi + 1 cross-peaks, observed only in (C), are labeled.
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conformation occurs. Since fast-exchange regime is observed with
lower affinity interaction, this could explain the inability of VLL-28 to
penetrate these cell membranes. Differently, the reduced STD effects,
observed in the presence of SVT2 membranes, can be ascribed to a
stronger interaction with the cell membranes possibly being the first
step of an internalization process.

3.6. Effect of VLL-28 on zeta-potential of cell membranes

Zeta potential of cell membranes has been used as a possible marker
for the assessment of membrane damage and could be suitable to study
the permeabilizing property of the VLL-28 peptide [34]. Zeta potential
analyses were performed on E. coli, BALBc 3T3 and SVT2 cells. The

measured zeta potential in our experimental conditions for the cells in
the absence of any peptide is −43.93 mV for E. coli (Fig. S6),
−6.91 mV for BALBc 3T3 and −11.2 mV for SVT2 cells, respectively,
indicating that their surfaces are all negatively charged and, as already
known, that the surface of the bacterial membranes is more negatively
charged than mammalian cells [35,36]. This is due to both lipid com-
position and negatively charged cell surface macromolecules, as de-
scribed also for other systems [9]. Furthermore, Z-potential measure-
ments clearly demonstrated that the surface of SVT2 has a more
negative charge than BALBc 3T3 cells. The addition of VLL-28 caused
an increase of Z-potential values towards neutralization indicating that
the peptide is interacting with the surface of all the cells tested (Fig. 7a
and b and S6). Given the role of electrostatic interactions in driving the

Fig. 5. Reference 1H (a) and (STD)-NMR spectra of VLL-28
in the absence (b) and in the presence of SVT2 (C) and
BALBc 3T3 (D) cell membranes.

Fig. 6. (a) Bar graphs of STD signal intensities (ISTD) for the
VLL-28 HN/aromatic and aliphatic protons receiving sa-
turation transfer in the presence of BALBc 3T3 (red bars)
and SVT2 (blue bars) cell membranes. In the x-axis label,
HNbb = not assigned backbone amide protons, R = R44/
R48/R53/R61/R64; K = K54/K64; Y = Y52/Y63; L = L38/L39/
L45; T = T41/T43. (b) The VLL-28 sequence is reported.
VLL-28 residues showing STD effect in the presence of the
both cell membranes are highlighted in magenta, whereas
those affected only in the presence of BALBc 3T3 in red.
Asterisks indicate that, due to overlapped proton re-
sonances, one or both the threonine are possibly involved in
the interaction with BALBc 3 T3 and SVT2 cell membranes.
Residues that are not involved in the binding or that could
not be identified unambiguously are indicated in black.
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AMPs initial adsorption onto the extracellular surface, it is reasonable
to question if VLL-28, as ACP, exerts the same kind of action. In ac-
cordance with the general mechanism of action of AMPs, VLL-28 fully
neutralizes E. coli cell's surface potential to exert its antimicrobial action
(Fig. S6). Differently, on eukaryotic cells, VLL-28 is able to increase the
Z-potential but never reaching full neutralization even at con-
centrations ≥ 20 μM thus indicating that total surface neutralization is
not necessary to elicit its anticancer action [37].

3.7. Cell death pathway activated by cell treatment with VLL-28

To elucidate cell death pathways selectively activated by cell
treatment with VLL-28, we performed western blot analyses by using
antibodies specifically recognizing pro-caspase 3 and p62 proteins. The
activation of procaspase-3 to caspase-3 is a key event in the apoptotic
execution phase, since caspase-3 is considered the most important
among executioner caspases and is activated by any of the initiator
caspases (caspase-8, caspase-9, or caspase-10) [38]. p62, instead, is
generally used as a marker to study the autophagic flux, since it accu-
mulates when autophagy is inhibited, whereas p62 decreased levels can
be observed when autophagy is induced [39].

To get insight into cell death pathway induced by VLL-28, western
blot analyses were performed on SVT2 cells in comparison with BALBc
3T3 (Fig. 8a–d). In SVT2 cells it was found a significant increase of p62
levels upon 6 h treatment with 20 μM VLL-28 (Fig. 8a, d), indicative of

a stress leading to cell death with a consequent block of autophagy flux
[40]. Accordingly, procaspase-3 levels appear lower than in control
cells upon 6 and 12 h treatment (Fig. 8a, b), indicating a significant
(about 30%) activation of procaspase-3 to caspase-3 associated to
apoptosis induction. This activation appears even stronger (about 50%)
after 24 h of treatment (Fig. 8a, b), and is associated to a significant
decrease of p62 levels (Fig. 8a, d), in agreement with a time-dependent
activation of apoptotic cell pathway.

In the case of non-malignant BALBc 3T3 cells, instead, no significant
effects on procaspase-3 levels were observed upon cell treatment with
20 μM VLL-28 peptide at different time intervals (6, 12 and 24 h)
(Fig. 8b, c), in agreement with the results reported above. This indicates
that these cells are not susceptible to VLL-28 peptide toxic effects.
Moreover, no significant effects were observed also when p62 levels
were analyzed, except for 72 h treatment, where a slight increase of p62
levels was observed (Fig. 8b, d). Since no effects on cell viability were
detected by MTT assays, this might be indicative of a slight cell per-
turbation counteracted by autophagy activation.

Hence, experimental data revealed that VLL-28 exerts its action
through a time-dependent activation of apoptotic cell pathways as de-
monstrated by the maturation of procaspase-3 to the caspase-3 [41].
This is in agreement with data reported in the literature indicating that
several potential ACPs are able to induce apoptosis in human cancer
cell lines of different origin, such as breast, uterine cervix, liver and
prostate [9]. Apoptosis induction, with some degree of selectivity

Fig. 7. a) VLL-28 effect on the Z-potential of BALBc 3T3
cells. b) VLL-28 effect on the Z-potential of SVT2 cells. At
4 × 105 cells/mL cells were incubated and stabilized for
30 min with different peptide concentrations and the po-
tential was measured at 37 °C. Data represent the mean
(± standard deviation, SD) of 2 independent experiments.

Fig. 8. Analysis of cell death pathway activated by the treatment with 20 μM VLL-28 peptide of SVT2 (a) and BALBc 3T3 (c) cells. Lane 1, cell lysate of untreated cells; lane 2, lysate of
cells treated with rapamycin; lane 3, lysate of cells treated with puromycin; lane 4, lysate of cells treated with the peptide for 6 h; lane 5, lysate of cells treated with the peptide for 12 h;
lane 6, lysate of cells treated with the peptide for 24 h. Western blots were performed by using antibodies directed towards procaspase-3, p62, and endogenous β-actin used as an internal
standard (a, c). Densitometric analyses of protein bands specifically recognized by anti-procaspase-3 and anti-p62 antibodies are reported in b and d, respectively, where data represent
the mean (± standard deviation, SD) of 3 independent experiments. *P < 0.05, **P < 0.01, or ***P < 0.001 were obtained for control versus treated samples.
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towards cancer cells, has been described also in the case of ACPs ef-
fective on metastatic tumor cells or on cancer endothelial cells [9].
Since metastases are the main cause of conventional therapy failure,
peptides able to specifically interfere with the process of metastases
formation by stimulating apoptosis induction in neoplastic cells re-
present valuable resources in cancer treatment [9]. These observations
associated to the strong and selective toxic effects exerted by VLL-28
peptide towards cancer cells open interesting perspective to future
applications of this peptide.

4. Concluding remarks

The cytotoxic activities of several AMPs turn this group of molecules
into an amazing pool of new templates for anticancer drug development
[42]. Accordingly, VLL-28, previously identified as an AMP [16], is
here found to be endowed also with selective cytotoxic activity towards
both murine and human cancer cells, thus pointing to VLL-28 as a po-
tential chemotherapeutic agent. Microorganisms belonging to the ar-
chaeal kingdom have been so far considered as source of biotechnolo-
gically relevant enzymes and proteins [43–51], but there are no reports
regarding potential ACPs isolated from this kingdom. This paper re-
presents the first evidence that archaeal microorganisms could bear also
an unexplored repertoire of such kind of molecules exerting a trans-
kingdom action. Given the intrinsic stability to physical and chemical
agents of Stf76, the parental source of VLL-28, it is foreseen that VLL-28
might be a promising “lead compound” for future development of novel
drugs, upon chemical modifications, i.e. D-amino acids, an all-hydro-
carbon bridge, and/or modified amide bounds to further increase its
stability to proteases [22].

Transparency document

The http://dx.doi.org/10.1016/j.bbagen.2017.06.009 associated
with this article can be found, in online version.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbagen.2017.06.009.
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