
Neural	Processing	of	Natural	Sounds	
 
Authors: Frédéric E. Theunissen and Julie E. Elie.  
Department of Psychology and Helen Wills Neuroscience Institute. UC Berkeley. 
e-mails: theunissen@berkeley.edu and julie.elie@berkeley.edu 
 

TOC	Summary	
	
Natural	 sounds	 have	 unique	 statistical	 structure	 that	 makes	 them	 perceptually	 salient.	 The	
auditory	system	is	finely	tuned	to	this	natural	structure.		Selective	neurons	found	at	the	higher	
levels	of	the	auditory	system	respond	selectively	to	vocalizations	used	in	communication.	

On-line	Summary	
	

1. Natural	sounds	include	animal	vocalizations,	environmental	sounds	such	as	wind,	water	
and	fire	noises	and	non-vocal	sounds	made	by	animals	and	humans	for	communication.		These	
natural	sounds	have	characteristic	statistical	properties	 that	make	them	perceptually	salient	
and	that	drive	auditory	neurons	in	optimal	regimes	for	information	transmission.	
	
2. Recent	 advances	 in	 statistics	 and	 computer	 sciences	have	allowed	neuro-physiologists	

to	 extract	 the	 stimulus-response	 function	 of	 complex	 auditory	 neurons	 from	 responses	 to	
natural	sounds.	 	These	studies	have	shown	a	hierarchical	processing	that	 leads	to	the	neural	
detection	of	progressively	more	complex	natural	sound	 features	and	have	demonstrated	the	
importance	of	the	acoustical	and	behavioral	contexts	for	the	neural	responses.		
	
3. High-level	auditory	neurons	have	shown	to	be	exquisitely	selective	for	conspecific	calls.		

This	fine	selectivity	could	play	an	important	role	for	species	recognition,	for	vocal	learning	in	
songbirds	and,	 in	the	case	of	the	bats,	 for	the	processing	of	the	sounds	used	in	echolocation.		
Research	 that	 investigates	 how	 communication	 sounds	 are	 categorized	 into	 behaviorally	
meaningful	groups	(e.g.	call	types	in	animals,	words	in	human	speech)	remains	in	its	infancy.		
	
4. Animals	 and	 humans	 also	 excel	 at	 separating	 communication	 sounds	 from	 each	 other	

and	 from	 background	 noise.	 	 Neurons	 that	 detect	 communication	 calls	 in	 noise	 have	 been	
found	but	the	neural	computations	involved	in	sound	source	separation	and	natural	auditory	
scene	analysis	remain	overall	poorly	understood.		Thus,	future	auditory	research	will	have	to	
focus	not	only	on	how	natural	sounds	are	processed	by	 the	auditory	system	but	also	on	 the	
computations	that	allow	for	this	processing	to	occur	in	natural	listening	situations.		
	
5. The	complexity	of	the	computations	needed	in	the	natural	hearing	task	might	require	a	

high-dimensional	 representation	 provided	 by	 ensemble	 of	 neurons	 and	 the	 use	 of	 natural	
sounds	might	be	the	best	solution	for	understanding	the	ensemble	neural	code.	
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Preface		
We might be forced to listen to a high frequency tone at our audiologist’s office or we might 

enjoy falling asleep with a white-noise machine but the sounds that really matter to us are the voices 
of our companions or music from our favorite radio station; the auditory system has evolved to 
process behaviorally relevant natural sounds. Research has shown not only that our brain is optimized 
for natural hearing tasks but also that using natural sounds to probe the auditory system is the best 
way to understand the neural computations that allow us to comprehend speech or appreciate music. 
 

Introduction	
 Until the late 1990s auditory neuroscientists could be divided into two camps. In one camp, 
following the tradition of the great physicist and sensory physiologist Hermann von Helmholtz[1], 
classical auditory neurophysiologists used simple synthetic sounds such as pure tones (sound wave 
generated by a perfect sinusoidal oscillator) to probe the nature of neural responses in the auditory 
systems. Indeed, just as the Helmholtz resonator separated multi-tone sounds into its frequency 
components, the principal role of the auditory portion of the inner ear, the cochlea, is to decompose 
the sound waveform into separate frequency bands[2]. Thus, it is not surprising to learn that auditory 
neurons responses, at least at the lower levels of the auditory system, have been described and 
understood in terms of their responses to pure tones of a given frequency (e.g. [3])(Figure 1, upper 
row). In that classical approach, the frequency tuning curve of auditory neurons takes on a central role 
and more complex responses are described in terms of specific deviations from the linear summation 
rule, otherwise known as non-linear responses or contextual effects (reviewed in [4]).  
 

In the second camp, following the tradition of the great ethologist Konrad Lorentz, auditory 
neuroethologists studied how natural sound stimuli that lead to specific behaviors are represented in 
the auditory system. One of the key findings from the neuroethologists camp was the discovery of 
neurons that responded very strongly to natural and behaviorally significant sounds but not 
necessarily to their simpler components[5-7] (Figure 1, bottom row). In other words, the stimulus-
response function describing the neural tuning in these neurons is dominated by the non-linear or 
contextual effects and not by the frequency tuning curve[8]. Moreover, it appeared that the 
appropriate “auditory context” to probe the neural system was the natural one. Note that these two 
“camps” were not antagonistic and we use this term to stress the differences in the two 
approaches and the contrasting shortcomings of each. There was however relatively little 
discussion between researchers in each “camp”. 

Each of these approaches has distinct merit from a methodological viewpoint. The 
reductionist approach of classical auditory physiologists allows a systematic parameterization of 
sound stimuli and therefore a clear method for synthesizing stimuli to explore specific mechanistic 
hypotheses. However, the relevance of results obtained from sounds that an animal rarely hears could 
always be questioned. Thus, conclusions about the implications of the results for processing 
behaviorally relevant complex sounds could be criticized as being post-hoc explanations that lack the 
strength of experimental predictions. In contrast, the behavioral relevance of the neuroethological 
approach was clearly less problematic and results showing that behaviorally relevant stimuli yield the 
largest neural responses [7](or the most informative [9,10]) gave support for evolutionary arguments 
and ultimate explanations; in other words, that the auditory system evolved to optimally process the 
sounds that matter the most for the survival of the species. However, the lack of a reductionist 
methodology in the neuroethologists’ approach limited the exploration of underlying mechanisms. 

One of the recent advances in auditory sciences has been in the merging of these two camps. 
This merging has been facilitated both by advances in computational approaches used for both sound 



and neural data analyses and by advances in experimental techniques. We will review these recent 
developments. In a first section, we will summarize what we have learned from the statistical 
analyses of natural sounds. Describing these statistics is important not only to define what is unique 
about natural sounds but also because this knowledge is needed to analyze the neural responses to 
these sounds and to determine whether or not the auditory system has evolved to process such sounds 
in an optimal fashion. In the second section, we will then explain how the use of more recent machine 
learning techniques has allowed researchers to take into account this statistical structure when 
estimating neural tuning functions from responses to natural sounds. The third section will focus on 
the processing of communication calls, the vocalizations emitted by animals in the context of 
information exchange, that are particularly well represented in the auditory system. In the last section, 
we will review how progress in experimental methods has also allowed researchers to study hearing 
processes in more natural listening conditions.  Our review will not cover the extensive body of 
research that specializes in human speech processing and its neural correlate except when general 
principles are considered and clear parallels can be made.  

Statistics	of	Natural	Sounds.		
What is a natural sound?  The question is particularly relevant given the increased prevalence 

of anthropomorphic noise in our daily environments that was absent during much of evolution.  
Natural sounds can be defined as 1) environmental sounds not generated by human made machines, 
such as the sounds of footsteps, wind, fire and rain, 2) all animal vocalizations, including human 
speech, and 3) other sounds generated for communication by animals, such as stridulation in 
crickets[11], buttress drumming by chimpanzees[12] and instrumental music in humans. We will first 
investigate the properties of isolated sounds and then briefly touch on the statistics of sound mixtures. 

Perceptually	relevant	physical	characteristics	of	isolated	natural	sounds	follow	a	power	law.		
Although natural sounds defined in this broad sense have heterogeneous properties they share 

structure that can be quantified by ensemble statistical analyses (Figure 2). More specifically, it has 
been observed that the frequency spectra of certain fluctuating physical characteristics of natural 
sounds follow a 1/f or, more generally, a power law relationship. In other words, some physical 
characteristic of natural sounds (ϕ ) varies as the power of the frequency (f) such as ϕ( f ) =α f −κ  
with � and � positive constants. It should be clearly noted that this relationship does not hold for 
the sound spectrum itself but, instead, for slower varying structure such as loudness, measured in the 
temporal envelope of the sound (Fig. 2, Temporal Envelope Spectrum), or in time varying pitch 
(“height” of the sound) profiles [13-15]. The power law relationship also holds for the power 
spectrum of the log of the sound spectrum [15]. This transformation of the sound waveform, called 
the cepstrum [16], is used to extract spectral structures in the sounds, structures in frequency domain, 
such as speech formants. Moreover, it has been shown that the frequencies of temporal and spectral 
modulations in the spectrogram, known as the Modulation Power Spectrum (Fig 2), exhibits specific 
dependencies beyond those expected from the time-frequency trade-off [17]; natural sounds and 
vocalizations in particular have higher power at joint low temporal and high spectral modulations 
frequencies than expected from the product of the marginals: the average power for the same 
temporal modulation (averaged over all spectral modulation frequencies) multiplied by the average 
power for the same spectral modulation (averaged over all temporal modulation frequencies) [15]. In 
other words, many animal vocalizations are dominated by relatively slow sounds with fine harmonic 
structure.  



Physical,	behavioural	and	neural	implications	of	the	power	law	structure.	
What are the physical, behavioural and neural implications of this naturally occurring 

acoustical structure?  First, in terms of physical properties, the power law relationship for time 
varying signals implies that natural sounds have correlations over multiple time scales including very 
long ones, as reflected by the large energies at low frequencies. In this sense, natural sounds are 
clearly different from signals that are completely random or uncorrelated, such as white noise signals 
with flat sound and temporal envelope power spectra, or, at the other end of this spectrum of 
correlations, signals dominated by a single correlation time, such as those created by a perfect 
oscillator (e.g. a sound with sinusoidally varying amplitude as in some car alarms). It has also been 
argued that neither white-noise (a random signal with equal power at all frequencies) nor a pure sine 
wave can qualify as complex and, thus, information rich or perceptually sophisticated[13,18]. Second, 
in terms of behaviour, it is interesting to note that the fluctuating physical sound characteristics that 
show the power law characteristics in natural sounds are those that are directly linked to perceptual 
attributes. Whereas we are unable to perceive the details of the sound pressure waveform, the time 
varying amplitude yields a percept of intensity fluctuations, rhythm and timbre; the time varying pitch 
profile carries the melody in a musical phrase; and the spectral envelope contains critical information 
for other timbral qualities of sound including speech formants (the high-energy frequency bands in 
voiced human speech that code the identity of vowels and other phonological information) [19]. Finally, 
these observed natural statistical structures have implications in terms of neural coding. For example, 
sound stimuli that have such natural statistics elicit higher information rates measured in auditory 
neurons relative to matched synthetic sounds which otherwise lack some of the natural 
statistics[9,10,20]. Interestingly, the spatial and temporal luminance contrast in natural visual scenes 
also obey power law relations that have also been related to complexity but that are primarily the 
result of scale invariance [21,22]. This power law relation (1/f) implies that visual scenes have 
stronger correlations at low spatial and temporal frequencies than at higher frequencies.  It has also 
been shown that early processing in the visual system can reverse this relationship by attenuating low 
frequencies and boosting high frequencies effectively removing the correlations present in the 
stimulus images[23]. Such decorrelation is useful to maximize information transmission through a 
bottleneck such as the optic nerve. Although the physical causes of the power-law relationship 
observed in natural images and in natural sounds are unrelated, it is highly probable that similar 
neural efficiency principles apply in both sensory systems.  And indeed, a similar decorrelation has 
been observed in the inferior colliculus where the gain of auditory neurons emphasizes higher 
temporal and spectral modulation effectively counterbalancing the 1/ f relationship observed in the 
modulation power spectrum (and not the sound spectrum) of natural sounds[24].   At higher levels of 
the auditory processing stream, it has been shown that the population of neurons have a maximum 
gain at intermediate modulation frequencies, in a region that is particularly useful for distinguishing 
among different natural sounds[25].  

The	sound	spectrum	is	idiosyncratic	for	each	natural	sound	class.	
As mentioned above, natural sounds exhibit a power-law relationship in the spectrum of 

particular time-varying features of sounds such as intensity, and this relationship has physical, 
perceptual and neural implications.  This power-law relationship does not exist for the sound 
spectrum itself since each natural sound class has an idiosyncratic sound spectrum.  This does not 
mean, however, that auditory systems are not sensitive to particular shapes of the sound spectrum of 
behaviorally relevant sounds. On the contrary, frequency-tuning sensitivity has been shown to be one 
of the major factors ensuring the sender-receiver match.  The neuro-ethological basis of this matched 
frequency tuning has been particularly well documented in insects and anurans [26].  And, more 
strikingly perhaps, this frequency tuning adaptation has even been observed in the cochlea of owls 
[27] and bats [28] where the region of the cochlea that is mechanically tuned to frequencies that are 



particularly relevant for the animal is expanded in what has been called an auditory fovea. As we will 
discuss in more detail in the section of animal vocalizations, the adaptation of the auditory system to 
the specific structure of conspecific communication calls might be equal or maybe even greater than 
putative adaptations to more general natural sound statistics. 

Natural	sounds	statistics	and	the	frequency	tuning	of	mammalian	auditory	nerve	fibers.		
Looking beyond the matched-tuning found in auditory specialists such as bats and owls, could 

general natural sound statistics also explain the prototypical frequency tuning observed in the 
peripheral mammalian auditory system? Primarily as a result of its mechanical properties, the cochlea 
decomposes sounds into a set of signals centered at increasing frequencies by applying filters of 
different shapes: narrow band frequency filters for low frequencies and large band frequency filters 
for high frequencies [2]. Since the frequency power spectrum of specific natural sounds is 
idiosyncratic, a simple frequency matched-tuning or decorrelation argument cannot be used to 
provide an adaptive explanation for this relationship. Instead, however, an examination of both the 
temporal and spectral statistics of different classes of natural sounds can provide an explanation. In 
particular, environmental sounds and animal vocalizations make two well-defined groups of sounds 
with different statistical structure: animal vocalizations are dominated by sustained harmonic sounds 
while environmental sounds are dominated by transient sounds [29]. It has been argued that the shape 
of the mammalian auditory frequency filters measured at the level of the auditory nerve are optimal at 
representing the independent components of combinations of animal vocalizations and environmental 
sounds: the lower frequency narrow-band filters efficiently represent the relatively long but spectrally 
sharp animal vocalizations and the higher frequency broad-band filters efficiently represent the short 
but broad environmental sounds.  The human speech signal is particular in that it combines sounds 
from these two classes. One can thus postulate that the physical characteristics of human speech have 
evolved to be optimally represented at the auditory periphery (while clearly taking into account other 
constrains) [29].  

Statistics	of	sound	mixtures.		
Isolated sounds have interesting properties but our brains are more often exposed to complex 

auditory scenes. Sound mixtures, such as those created by a chorus of insects or a crowd in a loud 
restaurant, have also their own statistical signature: specifically, the structure that is present in the 
modulation power spectrum of isolated vocalizations is washed out in sound mixtures whereas the 
long-time average sound spectrum of isolated sound signals and their mixtures remain similar. Given 
that the modulation power spectra of background sounds differs from that of foreground sounds, a 
modulation filter bank  - a set of filters in the spectral and temporal amplitude modulations domain - 
tuned to these differences could be used to separate signal from noise resulting from sound mixtures 
and such mechanism might be in place in secondary auditory cortical areas [30]. Because the sound 
spectrum of mixtures and signal are similar, this task would be impossible with a simple frequency 
filter bank – a set of filters in the sound frequency domain.  Sound mixtures also appear to be 
processed separately from isolated sound signals: whereas the short time detail of isolated sound 
signals is perceived with high accuracy (allowing for example rather extreme rates of phoneme 
perception), sound mixtures are perceived and categorized in terms of their long-term statistical 
properties yielding percepts of sound “texture”, defined as the collective result of many similar 
acoustic events (e.g. rainstorms, insect swarms) [31]. 

 
 
In summary, natural sounds have characteristic statistical properties that can be measured at 

different levels. All natural sounds have particular slow physical properties such as loudness profiles 
that obey power law relationships. The sound spectrum does not obey this law but its shape is 



nevertheless an important property for the specialized processing of behaviorally relevant sounds. 
Natural sounds are easily categorized between animal vocalizations and environmental sounds based 
on differences in terms of relevant time-frequency scales. Sound mixtures lose the fine spectro-
temporal modulations seen in isolated natural sounds and are better characterized and perceived in 
terms of long-term statistical properties. Both the nature of our perception of sounds and neural 
responses in the auditory system are sensitive to these natural sound statistics.  

Stimulus-Response	Characterizations.	
 As explained above, natural sounds are clearly both relevant and efficient stimuli to drive 

auditory neurons. Moreover, using either theoretical arguments to model processing in the auditory 
periphery [29,32] or information theoretic measures of empirical data [9,10], the auditory system 
appears to have evolved for optimal processing of sounds with such statistical properties. These 
studies, however, shed little light on the actual underlying mechanisms when compared to the 
explanations provided by the characterization of neuronal stimulus-response functions: i.e.. the 
mathematical formulation that describes how single neurons or neuronal ensembles respond to any given 
stimulus.  

Estimating	stimulus-response	function	using	synthetic	sounds.	
Traditionally, stimulus-response characterizations had been performed with synthetic sounds 

that would allow the systematic probing of the effect of a single acoustical parameter (e.g. frequency) 
on neural responses. System identification analysis, the functional description of any arbitrary input-
output system, also relied heavily on the use of synthetic sounds and primarily Gaussian white-
noise[33]. Noise-like stimuli allow not only an efficient exploration of a large set of possible sounds 
(e.g. all frequencies within the noise band) but also facilitate the estimation of a neuron’s stimulus-
response function; with white-noise, the average stimulus before each spike (the spike-triggered 
average or STA) yields the impulse response of the neuron or, when stimuli are represented in 
spectrographic form, the neuron’s spectro-temporal receptive field (STRF) [34,35]. For neurons that 
respond linearly to sound features as represented in a spectrogram, the STRF shows the spectro-
temporal pattern that would result in the highest firing rates. When the STRF is used as a model, the 
convolution (a mathematical operation akin to a running-time correlation) between the STRF and the 
sound spectrogram yields a predicted neural response. The STRF model can be generalized to model 
the response of any neuron by incorporating non-linear components, as we will describe in more 
detail below.  At lower levels of the auditory processing stream, where neurons are less sensitive to 
contextual effects, the white-noise approach can yield accurate estimations of the stimulus-response 
function [36-38]. In these cases, white-noise analyses are used to estimate the stimulus-response 
function and these functions in turn can explain selectivity for specific vocalizations or the efficient 
representation of natural sounds in general [29]. At higher levels of the auditory system, however, 
neural responses can be dominated by contextual effects [8,39,40]; although sound features that drive 
neurons might be present in white-noise, they might only elicit responses when they are presented in 
a natural acoustic context, for example, following silence, or following a sequence of other particular 
sounds or presented jointly with other specific sounds. In other words, neurons become tuned to more 
complex spectro-temporal patterns that are characteristic of natural sounds but that are poorly 
sampled in white noise. In those cases, stimulus-responses functions can only be estimated using the 
appropriate context: behaviorally relevant natural sounds.  

Methods	for	estimating	STRFs	using	natural	sounds.	
Fortunately, advances in regression techniques and machine learning have allowed the 

estimation of STRFs using natural sounds (Fig. 3). Great progress has been made on four critical 
issues. First, natural sound ensembles occupy a limited region of the entire space of possible sounds. 



One must therefore be aware that the shape of the estimated STRF will depend on the subset of 
sounds being sampled and is only valid for sounds sharing the same characteristics as the sampled 
one. In this case, this issue is simply solved by clearly describing the sampled subset in the space that 
is relevant for STRFs.  For example, if the STRFs are based on spectrograms, the phase and 
amplitude of the modulation spectrum (i.e. the spectrum of the spectrogram) will describe how the 
selected natural sounds sample the space [15].  In addition, when one compares STRFs estimated 
with two distinct sound ensembles (whether they are natural or synthetic), one needs to carefully 
estimate the STRFs by effectively only using sound features that are found with sufficient frequency 
in both sound subspaces [41]. Second, in natural sounds, the time-averaged energy of sound features 
(or equivalently the average intensity and frequency of occurrence) is not uniform through out the 
subset of sounds being sampled. For this reason, simple estimation techniques such as the STA, 
which is a straight averaging operation, will yield biased estimates of the STRF. This bias can be 
removed using the appropriate normalization techniques. These normalization techniques can be 
thought as a weighted average operation where sound features that are sampled more infrequently are 
given more weight to compensate for this under-sampling [42,43]. Third, again since natural sounds 
might only effectively span a small subset of possible sounds, one must carefully match the effective 
dimensionality of this sampling to the dimensionality of the sound representation. For example an 
STRF operating on the spectrographic representation of sounds might have 100 slices in time (eg. 100 
ms window with 1 ms sampling) and 100 slices in frequency (100 Hz bands between 0 Hz and 10 
KHz) for a total of 10,000 time-frequency “pixels”, the parameters of the STRF model (the h(τk,fj) on 
Fig. 3). Natural sounds might sample these 10,000 dimensions very sparsely yielding very poor 
estimates for all the 10,000 STRF parameters. This is a well known problem in statistics: if a model 
has too many parameters (here the number of time-frequency pixels of the STRF) compared to the 
number of observations (here the number of natural sounds and corresponding neural responses) then 
the model risks fitting not only the underlying relationship between the stimulus and the neural 
response but also random fluctuations of the particular data set. To prevent this phenomenon, known 
as overfitting, regularization techniques must be used [44]. Regularization adds constraints in the 
form of priors on the model parameters that effectively impose a penalty on model complexity. For 
example, Principal Component (PC) regression (or subspace regression) and ridge regression 
implement zero-mean Gaussian priors on the STRF coefficients with a variable variance. By setting a 
small variance on this prior, STRF parameters will be estimated to be very close to zero during model 
fitting procedure unless there is robust evidence that they contribute significantly to the prediction of 
the neural response. PC regression and ridge regression have also analytical solutions (solutions that 
can be found by solving a mathematical equation) that are computationally very efficient [43,45]. 
Regularization can also be implemented using other priors on STRF coefficients and iterative 
algorithms [44,46]. Fourth, the stimulus-response functions of high-level auditory neurons are often 
dominated by non-linearities that are not captured in the STRF, which, in its simplest form as a 
model, predicts neural responses from a linear combination of spectro-temporal features. Estimating 
the nature of the non-linearities is not only important to fully capture the computations performed by 
the system but is important as they might impact the estimation of the linear STRF with natural 
stimuli [47,48]. There are many approaches to this problem. Input non-linearities can be incorporated 
in the chosen representation for the sound stimuli. For example, sound representations can include 
known non-linearities such as adaptive mechanisms [49,50] or probabilistic expectations [51]. Output 
non-linearities such as those produced by a spiking threshold can be very efficiently modeled using 
the generalized linear framework [52] even in combination with input-nonlinearities [53]. Finally, 
dynamical second order or higher-order non-linearities have been estimated with techniques that yield 
multi-component STRFs [47,54-57].  



The	computations	in	the	auditory	processing	stream	revealed	by	the	STRFs.	
These methodological advances have allowed auditory neuroscientists to make significant 

progress in understanding the nature of the auditory computations that are found in the ascending 
processing stream of both birds [30,41,48,51,58-61] and mammals [38,62-65]. Selectivity for natural 
sounds is already present at the level of the inferior colliculus (IC) in the sense that IC STRFs show 
temporal spectral features that are found in behaviorally relevant sounds [38,41,66-68]. Then, novel 
type of STRFs appear at the level of the primary auditory cortex and one can understand these as 
models achieving selectivity for more complex and slower acoustical features compared to the 
simpler STRFs found in the IC and thalamus (principal relay of sensory inputs from the sensory 
periphery to the cortex) [59,62,63] (see also fig. 4). These changes in STRF go hand in hand with 
increased selectivity for natural sounds [9,20,25]. Contextual effects also become more important at 
the higher levels of the auditory system [40-42,48,51,69,70]; these contextual effects manifest 
themselves as changes in the selectivity for spectro-temporal features due to the presence of particular 
sounds “outside” a classically estimated STRF [48,71], changes due to expectations about stimulus 
statistics [51], changes in correlated properties measured in ensemble neurons [41] and changes due 
to learning and behavioral relevance [69,72]. Again, it is postulated or shown that these auditory 
contextual effects increase the efficiency of the neural representation for behaviorally relevant natural 
sounds either at the single [51,69,72] or population level [41,73]. Finally, researchers have begun to 
understand how complex stimulus-response function found at higher levels of the auditory processing 
could be used to achieve complex auditory tasks that go beyond “template-matching” between a 
STRF and an acoustical feature present in natural sounds. For example, the multi-scale time-
frequency modulation tuning of the auditory cortex can be used to separate bird song or speech from 
non-speech signals or noise [30,74,75].  

As an alternative to the estimation of linear and non-linear STRFs from responses to natural 
sounds, researchers have also used synthetic sounds designed to have particular natural statistics. 
Families of such synthetic natural-like sounds can then be used to isolate the specific natural feature 
that is particularly important for understanding behavioral or neural responses. This approach has 
been used, for example, to elucidate the natural sound features critical for phonotaxis in crickets [11], 
sound texture perception in humans [31,76] and selectivity for conspecific songs in songbirds [9,15]. 

In summary, analytical and computational advances have allowed auditory researchers to use 
natural sounds or synthetic natural-like sounds to estimate the stimulus-response functions of high-
level auditory neurons. In doing so, they were able not only to extract these functions for neurons that 
did not respond to white noise or other synthetic stimuli but they were also able to investigate 
auditory contextual effects and the nature of the computations that generated selective responses for 
natural sounds.  
 
Animal	Vocalizations. 

Animal vocalizations as a class of natural sounds have played and continue to play an 
important role in auditory neurosciences. Historically, the first use of natural sounds in auditory 
neuroscience came from neuro-ethologists who investigated how conspecific vocalizations or 
communication signals were selectively processed in the auditory system of auditory specialists. 
These investigations in model systems led to the discovery of cricket-song selective neurons and their 
contribution to the females’ phonotaxis behavior [77], of call selective neurons in frogs [78] and 
guinea pigs [79], of song selective neurons in songbirds [7,80-82], of neurons selective to the 
echolocation signal in bats [5], and of brain regions selective for conspecific calls in primates [83]. 
Selectivity for conspecific communication calls can be reflected not only in the mean rate of single 
neurons but also (and sometimes only) in time-varying responses [84,85] or ensemble responses 
[86,87]. Thus, the auditory system is not only selective to natural sounds in a broad sense but appears 



to also exhibit specialized circuitry for the sole purpose of detecting and processing conspecific 
communication calls. One of the striking results from this line of research has been the relatively high 
degree of selectivity that has been measured in these vocalization selective neurons [6,88]: systematic 
manipulations of bird song syllables and bat echolocation calls have shown that this selectivity is 
achieved by non-linear mechanisms that detect specific temporal or spectral combination of sound 
features that are uniquely present in specific conspecific vocalizations [5,6,89].  

Although such acute selectivity might be useful for auditory tasks that require high fidelity 
such as the processing of echolocation pulses or for guiding vocal commands in song learning, its 
utility for processing sounds in terms of their communicative value is more problematic. For example, 
both primates and songbirds produce alarm calls that need to be categorized correctly in order to 
guide the appropriate behavior. Such categorization requires invariant responses for all 
communication calls belonging to the same category as well as recognition of category boundaries 
[90]. Thus, auditory processing for communication purposes might require not only low-level feature 
detection processing but also categorization of higher-level structure. Such high-level categorization 
might involve hierarchical processing steps such as the representation of particular sound features 
(e.g. formant frequency) that are robust to variation in other physical parameters of the sound (e.g. 
azimuthal location) and such responses have been found in secondary mammalian and avian auditory 
areas [91,92]. In terms of higher-level categorization, research in starlings points to a role of the 
Caudio-Medial Nidopallium (NCM) for classifying behaviorally relevant classes of songs [93] and 
research in primates suggests that both the Superior Temporal Gyrus (STG) and the ventrolateral 
Prefontral Cortex (vPFC) could be involved in semantic discrimination [94-98]. Similar cortical areas 
have been shown in a large body of research to be critical for human speech processing [99]. But it is 
fair to state that our understanding of the neural mechanisms that generate such high-level 
categorization of sounds is still at its infancy. Songbirds who have a large repertoire of 
communication calls that are used in distinct behavioral contexts could also become a powerful 
animal model to study the neural computations involved in the categorization that is needed in order 
to extract meaning from variable communication sounds [100,101].  

The ontogeny of selective neural responses for vocalizations has also been studied 
extensively. Although many animal communication calls are innate or have innate characteristics, 
neural selectivity in the perceptual system for innate calls could arise during development simply as a 
result of experience and repeated exposure. Moreover vocalizations show learning components both 
in production, as is the case for song in songbirds [102], and in perception, as it is the case for the 
interpretation of alarm calls in primates [103],  the interpretation of pup calls in mothers versus virgin 
mice [104], the discrimination of familiar versus unfamiliar contact calls in zebra finches [105], the 
recognition of individual songs in starlings [106]. Not surprisingly, selective neural responses for 
natural sounds have been shown to have strong developmental and environmental components; this is 
true both for lower level selectivity such as that found in primary auditory cortical areas [73,107-109] 
as well as for the higher-level selectivity found in sensori-motor areas of songbirds [110-112]. 
Experience during development can also affect perceptual boundaries and their putative neural 
correlates [113] . 

In summary, on one hand, the initial study of the neural representation of conspecific 
vocalizations in the auditory system has played a crucial role for advancing our understanding of the 
nature of the non-linear neural responses that are found in the higher auditory areas and for 
establishing the need to use behaviorally relevant sounds to decipher these computations. On the 
other hand, research on the nature of invariant representations for vocalization classes and on the link 
between sound and the perception of meaning is still in its infancy and research in this area could 
further advance our understanding of the neural mechanisms involved in human speech processing. 
For example, categorization of sounds for lexical retrieval or for voice recognition requires a 
combination of filtering (to ignore irrelevant features) and grouping (to allow for variation in the 



coding features) that only more complex and non-linear STRFs could achieve. Finally, it is clear that 
selectivity for natural sound features and vocalizations have both innate and learned components and 
the relative importance of each factor is an active area of research.  

 
Towards	Natural	Hearing	

 Most of the neurophysiology research described above relied on the passive playback of 
isolated sounds in animals that were either anesthetized or restrained. But natural hearing often 
involves attention and action on the part of the sender and receiver, such as in bat echolocation [114], 
the interpretation of alarm calls originating from different individual [115], or communication 
between mates in bonding behaviors [116]. Moreover, natural hearing also involves the processing of 
complex auditory scenes. Until recently, the natural sounds that have been analyzed or used in 
laboratory experiments have been mostly free of natural noise or natural degradations. In the real 
world, communication signals are most often perceived in unfavorable listening conditions with noise 
background, distortions due to propagation and echoes [117] and, superposition from other potential 
acoustical signals [118]. Vocal communication and auditory perception is also affected by the social 
context, such as in the audience effect [119] or by internal states, such as stress levels. These social 
and emotional cues can also be mediated by other sensory modalities. 

Advances in chronic neural recording techniques have allowed researchers to begin to 
examine neural processing in these more natural scenarios. Researchers have shown how responses in 
primary auditory cortex are influenced both by expectations of natural structure in the sound and 
behavioral relevance, both of which might involve top down modulations [72]. Chronic recordings in 
awake and vocalizing animals have also been used to obtain neural recordings in auditory areas to the 
animal’s own vocalizations. Such experiments have been performed in bats [120,121], primates [122] 
and birds [123]. The experiments in bats were crucial to understand how the pulse-echo pair was 
processed by the auditory system and constitute landmark experiments in that field. In primates and 
birds, these awake-recordings gave us unique insights on how self-vocalizations are processed for 
self-monitoring and, in birds, potentially for guiding vocal learning. However, neural recordings in 
both sender and receivers in the midst of vocal communication bouts such as antiphonal calling in 
marmosets [124] or duets in social songbirds [116,125] have not yet been performed. Such 
experiments could be performed in the near future and are needed to advance our understanding of 
the computations performed in the auditory system for extracting the information content of 
communication calls.  

The auditory processing of communication sounds in noisy backgrounds or in complex 
auditory scenes is also an active research area [126]. For example, noise invariant neurons, that is 
neurons which response to a given stimulus is not influenced by the presence of background noise , 
have been described in the secondary auditory areas of songbirds [30,127] and in primary auditory 
areas in humans [128]. Noise-invariance has also been shown to emerge in the auditory processing 
stream as a result of adaptive mechanisms for particular stimulus statistics [129]. Similarly, responses 
in human auditory cortex use a gain control to emphasize the temporal modulations characteristic of 
speech. Neurophysiological studies in primates [130,131] and birds [132] have also begun to unravel 
how multiple auditory streams could be represented in the auditory system.  

In summary, auditory neuroscientists have mostly focused their attention to understanding the 
computations needed to passively recognize and categorize natural sounds and much more research is 
needed to understand how acoustical signals are processed in active communications and in natural 
soundscapes. Neurophysiological research in this area is in its infancy but, given the increase in our 
knowledge achieved from classic playback experiments and the technical advances in chronic 
recordings, natural hearing research is poised to make giant leaps in the near future. 

 



Conclusion	
The use of natural sounds (and in particular conspecific sounds) has had a long tradition in 

neuroethological research and the findings in these model systems have inspired the more recent 
development of analytical techniques for both sound analysis and neural data analysis.  These 
developments have allowed auditory neuroscientists to use natural sound stimuli to describe and 
understand in much greater detail the neural responses of higher-level auditory neurons in both 
specialists such as crickets, bats and songbirds and in generalists such as guinea pigs, cats, ferrets and 
non-human primates. Sounds with natural statistics appear to be optimally represented at multiple 
levels of the auditory system and stimulation with natural sounds facilitated the characterizations of 
stimulus-response function for neurons that respond poorly to white noise or other simple synthetic 
sounds. Thus, for the systematic characterization of stimulus-response function, the need to use 
simple synthetic sounds is not longer required and should even be discouraged.  On the other hand, 
complex synthetic sounds that preserve particular natural statistics and that are designed to 
systematically investigate the importance of natural statistics provide an additional and powerful 
insight. Auditory neuroscientists have also been able to begin to relate auditory representations to 
specific computations needed for recognizing and categorizing behaviorally relevant sounds, such as 
communication calls. 

 These past successes will facilitate the design and interpretation of even more naturalistic 
experiments. In the near future, we see five areas of promising scientific explorations: non-linear 
computations for invariant representation of communication calls, neurophysiological research in 
humans, auditory scene analysis, social and multi-modal effects, and investigations of the ensemble 
neural code. First, neural recordings in animals that actively communicate with other animals will 
permit both the natural investigation of robust neural representation for call types and a direct 
assessment of the relationship between sound and meaning. Second, advances in both invasive 
[133,134] and non-invasive [135] neurophysiological recordings in humans will further allow 
researchers to make links between animal work and human work.  Given the wealth of knowledge in 
speech and music processing in humans, these links will greatly help with the challenge of 
understanding the sound to meaning transformations occurring in the auditory system.  Third, it is 
still unclear how the auditory system detects, recognizes and classifies behaviorally relevant signals 
with degraded signals and multiple sound sources; neural recordings not only with natural sounds but 
in the natural environment (i.e. in the field) could be performed to study how naturally propagated 
and corrupted signals are represented.  This line of research, however, will also require the statistical 
characterization of natural auditory scenes, which is a particularly challenging problem.  Fourth, we 
know that communication behavior and auditory perception depends on the social and emotional 
context and that the physiology of the auditory system can be significantly modulated by hormones 
[136]. But how the neural code for natural sounds is affected by naturalistic stimuli from other 
modalities such as vision or self-motion [137] or by modulatory effects from brain systems involved 
in emotional or stress responses remains in large part unexplored. Finally, although 
neurophysiologists are now regularly recording the simultaneous activity of many neurons, the role of 
correlated activity in the ensemble neural code is still unknown [138].  One apparently 
insurmountable difficulty for studying the ensemble neural code is the explosion in the 
dimensionality of the problem as a result of combinatorial effects: the number of potential neural 
activity patterns across neurons becomes so large that investigating the potential role of such patterns 
becomes impossible. For example, if a single neuron can reliably represent information with 10 
different patterns, the code from two such neurons could represent 100 patterns, the code from three 
neurons 1000 patterns, and so forth.  For these combinatorial ensemble patterns to carry unique 
information about the stimulus (i.e. information beyond the one obtained from the individual 
responses), the response in one neuron must be correlated with the response in another neuron.  A 



recent statistical analysis of neural patterns recorded in visual system under natural stimulation 
showed that ensemble neural responses are indeed correlated but very sparse [139].  In other words, 
natural scenes appeared to be represented with very few response patterns from all possible 
combinations that could be possible. These experiments and analyses suggest that using natural 
stimuli might be the only way out for resolving this dimensionality curse. Although this position 
might be extreme, given the important role that natural sounds have already played in understanding 
the auditory system and that questions in natural hearing will require further investigations with 
natural sounds, auditory neuroscientists might also be well placed to elucidate the nature of ensemble 
neural code in sensory systems.  
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Figure 1. Historical Approaches to Auditory Neurosciences.  Both the classical analytical 
approach (top row) and the neuroethological approach (bottom row) are based on analyz-
ing neural responses (right panels) to sounds (middle panels) produced by particular sound 
sources (left panels).  In the classical analytical approach, the sound sources are synthesizers 
or computers (symbolized by a man-made tuning fork), the sounds are often pure tones 
(the sine waves shown in the middle) and neural responses are often described as a func-
tion of frequency such as in the frequency tuning curve of a neuron (right panel). The 
frequency tuning curve shows the minimum sound level of pure tones needed to elicit 
threshold responses. Here we show the tuning curve of a narrow-tuned neuron from the 
avian inferior colliculus, the MLd (data re-plotted from [3]). This particular neuron is tuned 
to detect a frequency of 3kHz and the response threshold increases sharply either side of 
this frequency (hence ‘narrow tuned’). The bottom row illustrates the neuroethological 
approach. Here, the sound sources are often animals vocalizing or generating sounds by 
other means for communication.  These natural sounds are complex signals that are best 
represented in a time-frequency plot such as the spectrogram of a bird song shown in the 
middle panel. Responses to these complex sounds are compared to those obtained in 
response to synthetic sounds, such as pure tones (tones), compound tones (combination of 
pure tones), white noise or manipulated versions of the species vocalization. The neural 
data shown in the right bottom graph are from single neurons in the avian primary auditory 
areas (data re-plotted from [82]). The average spike rates of these neurons, represented 
here as a z-score (the deviation from the rate obtained in absence of sound stimulus in units 
of the standard deviation), show that the natural sound, here Conspecific song, is the stimu-
lus type that best excites the neurons.



(a) Sound Waveform (b) Temporal Envelope
of the sound

Absolute value +
Low pass filtering Power Spectrum

10−2 10−1 100 101
−60

−50

−40

−30

−20

−10

Frequency of the amplitude modulation (Hz)

Po
w

er
 (d

B)

(c) Temporal Envelope Spectrum

Power Spectrum

2 4 6
−70

−65

−60

−55

−50

(d) Sound Spectrum

Time (s)

Fr
eq

ue
nc

y 
(k

H
z)

0 1 2
0

1

2

3

4

5

(e) Sound Spectrogram

Time-Frequency
Representation

logarithmic value + 
2D Spectrum

(f ) Modulation Power  Spectrum

Temporal Mod.  (Hz)Sp
ec

tr
al

 M
od

. (
cy

cl
es

/H
z)

Sound Frequency (kHz)

Am
pl

itu
de

 (d
B)

Figure 2. Natural Sound Statistics. Various statistical measurements can be obtained from distinct physical char-
acteristics of sounds. This figure illustrates some of these measurements for zebra finch song and highlights the 
measures (text in green) that reveal common characteristics of natural sounds and those (text in red) that are 
specific to each sound class. The sound spectrum (d) is the power of the sound pressure waveform (a) as a function 
of frequency. This basic spectrum (i.e. obtained without any transformations) shows unique shapes depending on 
species and call types. Power-frequency curves of natural sounds (sounds spectra) do not obey universal relation-
ships that would be characteristic of all natural sounds. On the other hand (green text), the temporal envelope 
spectrum (c) obtained by calculating the power spectrum of the temporal envelope (b) obeys a 1/f   (f=frequency) 
relationship (solid line) that is characteristic of all natural sounds [13]: natural sounds are dominated by low 
frequencies of amplitude modulation. The sound spectrogram (e) is a more intuitive representation obtained by 
decomposing the sound into time and frequency bins: at each given time point (x-axis) the sound is represented 
in terms of the amplitude of its frequency components (y-axis). Just as for the basic spectrum, measures on the 
spectrogram are unique for each natural sound but, the modulation power spectrum (f ) obtained from a 2-d spec-
tral analysis of the logarithmic values of the sound spectrogram (e) shows a coarse shape that is characteristic of 
all animal vocalizations[15].
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Figure 3. Stimulus-Response Characterization.  The stimulus-response function of auditory neurons can be estimated 
using natural sounds and advanced techniques in regression and machine learning.  The neural response, r(t) is modeled 
as a multi-step transformation of the sound stimulus s(t) yielding a predicted neural response  . The three steps of this 
neural model include a pre-processing step, a filtering step and an output non-linearity. The parameters of the three 
steps are first estimated using a data set of sound stimuli and their corresponding known neural responses, and then the 
model can be used to predict the neural responses to new sound stimuli (‘sound waveform’ in the figure). In the pre-pro-
cessing step, the sound pressure waveform is transformed into a new representation, such as the spectrogram where the 
amplitude a is expressed as a function of time ti and frequency fj (shown here as an example in the “preprocessing” 
column; a(ti, fj)), a cochleogram (not shown) which models the filtering and processing occurring at the level of the 
cochlear nuclei (brainstem nuclei that receive inputs from the cochleae) [49] or higher level processing such as those 
based on probabilistic expectations (not shown) [51]. The next step involves the estimation of a linear filter (h(τk,, fj) 
here). Because the new sound representation obtained in the pre-processing step can have many dimensions, regular-
ization regression techniques must be used when estimating the filter to prevent overfitting [43,44,46].  When a time-fre-
quency representation of sound is used, the linear filter h(τk,, fj) obtained is called the spectro-temporal receptive field 
(STRF, shown here). When the x-axis of the STRF is set up to indicate increasing delay τk from the beginning of a stimulus 
(shown here), then the STRF represents the neural response obtained to a theoretical impulse stimulus, so called impulse 
function; when the x-axis is set up to indicate the time preceding a spike, equivalent to a vertical reflection of the previ-
ous matrix, then the STRF represents the spectro-temporal features that drive most the neuron (shown in Fig.4).  More 
advanced methods can yield multi-component linear filters (not shown) [55]. In the last step the output of the linear filter 
u(ti) is transformed into the predicted response using a static non-linearity g().  Generalized linear models can be used to 
estimate simultaneously the STRF and this non-linear output function for different noise distributions [52].
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Figure 4. STRFs at Different Levels of the Auditory System. In 
each region of the auditory system, one finds multiple types of 
STRFs and in each region some of these types efficiently extract 
spectro-temporal features of natural sounds. Each row in the 
figure shows two illustrative STRFs, (shown in pseudocolour in 
the figure, where red represents the most intense response, and 
blue the lowest response) found at different levels of the avian 
auditory system: the inferior colliculus (also known as MLd), the 
auditory thalamus (also known as nucleus Ovoidalis) and the 
avian auditory cortex (also known as Field L). Note that for each 
STRF, the x-axis is the time preceding the response and that there-
fore the sound features that excite the neuron are read from left 
to right while the impulse function is read from right to left. As 
one follows the auditory processing stream, neurons become 
tuned to slower and more complex features. (a) In the IC some 
neurons show STRFs with a brief (narrow in time) and large 
frequency band of inhibition (blue) followed by a brief and large 
frequency band of excitation (red), such fast broad-band neurons 
will effectively detect the onset of song syllables and encode the 
temporal rhythm of song.  (b) The narrow-band neuron shown of 
the right is also selective to the onset of sound but at a particular 

frequency, around 2.5kHz.  The auditory neurons in the thalamus (c-d) exhibit greater latencies than IC neurons: 
they respond 10-15 milliseconds after the peak energy in the STRF (shown red arrows) while IC neurons responses 
have latencies around 5-10 ms. Auditory thalamic neurons (c-d) also show greater sensitivity to slower features. 
The narrow band STRF shown on the right panel (d) is more complex than the one found in IC (b) with frequency 
tuning that goes down with time (brown arrow). This neuron is sensitive to down-sweeps that are common in 
zebra finch song syllables. Much slower and more complex STRF appear at the level of the auditory cortex (e-f ).  
The broad-band neuron shown here (e) not only decodes spectral shape at the coarse scale that is useful to repre-
sent structures such as formants but is also sensitive to a combination of low frequency sounds (< 3 kHz) followed 
by high frequency sounds (> 3 kHz).  The narrow-band neuron (f ) illustrated here shows a sharp excitatory region 
that is flanked by two inhibitory regions.  Such narrow-band neurons are exquisitely tuned to notes of a particular 
pitch either as pure tones or as harmonic complexes.  In the avian auditory system, STRFs that combine excitatory 
and inhibitory regions at the same time point (as shown in these two examples) appear only at the level of the 
cortex.   Additional avian STRF types and examples can be found in [51,58,59].  Examples in the mammalian audi-
tory system can be found in [24,62-64]. 




