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Abstract

We show that Gabor �lter representations of facial images give

quantitatively indistinguishable results for classi�cation of facial

expressions as local PCA representations, in contrast to other re-

cent work. We then show that a linear discriminant analysis per-

formed on the Gabor �lter representation automatically locates the

important regions corresponding to the facial actions involved in

portraying emotion. Finally, we introduce a cognitively plausible

method of \peeking" at an (unlabeled) test set to improve gener-

alization.

1 Background

Facial expression research has a long history in the psychological literature, but rig-

orous, systematic study of facial movement and its relationship to a�ective state was

revolutionized by the development of the Facial Action Coding System (FACS) (Ek-

man and Friesen, 1978). See Ekman and Rosenberg (1997) for a recent collection

of important papers in research with FACS. As an outgrowth of this research, Ek-

man and Friesen also proposed a quanti�cation of some of the ways in which six

basic emotions (happiness, sadness, fear, anger, surprise, and disgust), are proto-

typically conveyed. They validated 110 photographs of 14 FACS experts portraying

these prototypical expressions and published them as the Pictures of Facial A�ect

(POFA) (Ekman and Friesen, 1976).

In this paper, we focus on machine classi�cation of prototypical facial expressions

from static images. In computer vision, several successful projects have used dy-

namic image sequences to analyze facial action (Cohn et al., 1999; Essa and Pent-

land, 1997; Bartlett, 1998; Yacoob and Davis, 1996). Though facial action is in-

herently dynamic and the dynamics are crucial for understanding the relationships

between a�ect and expression, the static photographs in POFA are used extensively

in perceptual experiments, partly because our perception of prototypical expressions

of emotion may provide clues about how we infer emotion from our perception of

people's faces. Also, the fact that naive human subjects show a high degree of

agreement on emotional classi�cation of POFA faces suggests that they have im-

plicitly learned the static signals of facial actions that best allow them to interpret

photographs. Our primary interest in computerized facial expression recognition,



then, is to produce a computational model that is capable explaining human perfor-

mance in psychological experiments using these same stimuli (Padgett et al., 1996;

Padgett and Cottrell, 1998). We propose that perception of emotional expressions

in naive humans (people not trained in FACS) is a direct consequence of the pro-

cess of associating emotional labels with facial displays through experience, and

that with biologically plausible representations of stimuli, our neural network-based

expression classi�ers will necessarily pick up on the same static signals humans do.

In this paper we further explore features useful for expression recognition in static

images. Padgett and Cottrell (1997) found that local, untuned features perform

best on the same dataset we use here.

1

They compared three representations based

on principal component analysis (PCA): eigenfaces, eigenfeatures, and the principal

component eigenvectors of patches randomly selected from the dataset (this method

is often called \local" PCA). The latter were found to produce the best results

| 75% correct using an \online mode" and 86% correct using a \batch mode"

(explained in Section 3.1) when aligned with the same (hand-chosen) regions used

for eigenfeatures.

Since then, Bartlett (1998) has explored the use of several representations for classi-

�cation of single facial actions in images where a \neutral" face has been subtracted,

thus boosting the changes due to facial movement. Using a Gabor �lter-based rep-

resentation, she obtained 95.5% accuracy (indistinguishable from human expert

accuracy) on a dataset comprised of 20 faces performing 12 facial actions. Using

her own implementation of a local PCA approach only yields 73% accuracy (in the

discussion, we will attribute this performance gap to the use of very small image

patches). Bartlett's task was easier than classi�cation of static emotional expres-

sions because 1) many possible combinations of facial actions can produce a display

that a human will reliably call, for example, \fear;" 2) multiple simultaneous facial

actions are likely to produce coarticulation e�ects that would introduce noise to a

single-action classi�er; and 3) the classi�er does not have the luxury of subtracting

a neutral mask (and neither do humans performing the task!).

In this paper, we explore two representations, Gabor �lters and local PCA, as a ba-

sis for static expression classi�cation and use Fischer's Linear Discriminant (FLD)

to analyze the contribution of the representations' components to classi�cation per-

formance. We also introduce a technique for boosting performance by exposing

the entire (unlabeled) test set to our classi�er prior to classi�cation. In perceptual

experiments with human subjects, this could correspond to familiarizing subjects

with the stimuli before testing them. We �nd that knowing the distribution of the

test stimuli in advance typically boosts classi�cation accuracy by about 9%.

2 Data and face representations

2.1 Image data

We use Ekman and Friesen's (1976) Pictures of Facial A�ect (POFA) for evaluat-

ing static expression classi�cation techniques because the face images are reliably

identi�ed as expressing the intended emotion by human subjects (at least 70% agree-

ment), and they are commonly used as stimuli in psychological experiments. We

digitized the 110 POFA slides by scanning them at 520x800 pixels and performing

a histogram equalization. We aligned the eyes and mouths to the same location in

each image by rotation, scale, and translation then cropped o� the background in

1

The di�erences are that we use all 14 of the POFA actors and that the images are

more accurately aligned, less cropped, and higher resolution.



Figure 1: Example aligned images from Ekman and Friesen's (1976) Pictures of

Facial A�ect. They are images of \JJ" portraying Anger, Disgust, Neutral, Surprise,

Happiness (twice), Fear, and Sadness.

Figure 2: Kernels for feature extraction and image representation. (a) Gabor kernels

at 5 scales and orientations. (b) Top 15 local principal components derived from

random 64x64 patches in the aligned image dataset.

each image. Figure 1 shows a few of the aligned images.

2.2 Representation with Gabor �lter jets

In this representation, we utilize the responses of 2-D Gabor wavelet �lters (Daug-

man, 1985) as a basic feature. The Gabor �lter is a good model of simple cell

receptive �elds in cat striate cortex (Jones and Palmer, 1987), and it provides

an excellent basis for object recognition and face recognition (Lades et al., 1993;

Wiskott et al., 1997). We convolved each face image with �lters at the same �ve

scales and eight orientations (see Figure 2a) as Bartlett (1998), who showed that

this representation (as well as ICA) outperforms several others for classifying facial

identity and facial actions using a nearest neighbor classi�er.

After convolving a given image with the 40 �lters and taking the magnitude of their

complex-valued responses, we subsample the response in a 29x36 grid (Figure 3a),

resulting in a 41760-element vector. To speed training and improve classi�cation

generalization, we then perform a principal components analysis (PCA) on the

pattern set to reduce the dimensionality of the representation to 109 elements.

In order to establish a baseline for comparison of our techniques for improving

classi�cation accuracy, as in Bartlett (1998), we used a nearest neighbor classi�er

in which the chosen class of test pattern i is the class of the training pattern nearest

to it by a cosine similarity measure. For the 96 non-neutral faces in POFA and the

full 41760-element Gabor representation, the expected generalization (computed

using leave-one-out cross validation) of this simple classi�er is 74.0%.



(a) (b) (c) (d)

Figure 3: Image feature locations. (a) Gabor jet grid. (b) The seven regions for

local PCA used by Padgett and Cottrell (1997). (c) Full grid for local PCA. (d)

Local PCA regions chosen by linear discriminant analysis.

2.3 Representation with local PCA

We compare representations using the Gabor jet grid with representations using

projection of salient face regions onto the principal component eigenvectors of a

large set of patches selected from random locations in the image database. Using the

same method as Padgett and Cottrell (1997), we computed 40 principal components

(the most signi�cant 15 are shown in Figure 2b) and project either 1) the seven

regions used by Padgett and Cottrell (Figure 3b), or 2) regions on a grid as shown

in Figure 3c. Notice that the grid size is much more sparse than the Gabor grid; we

chose a grid spacing of 8 pixels for the Gabor representation and 32 pixels for the

local PCA representation so that the overlap between the kernels at neighboring

locations would be the same for the middle-scale Gabor �lter and the local PCA

patch sizes.

3 Classi�cation experiments

3.1 Ensemble networks and \batch mode" classi�cation

We use ensembles of standard backpropagation neural networks for classi�cation.

We train each individual network to produce the human responses to the faces pro-

vided with POFA using the images of 12 of the 14 actors in the database. The

images of a 13th individual are used as a holdout set for early stopping, and the

images of the 14th individual are used as a test set to evaluate the network's perfor-

mance. To avoid biasing the network's response to a particular choice of holdout set,

we actually train 13 networks, which we call a \
ock," each using actor i's images as

a holdout set and then for a given test individual, combine the responses of the 13-

network 
ock to produce an aggregate response. To get an accurate measurement

of how well the network is likely to generalize to new individuals not among the 14

we have available, we repeat this entire process with all 14 possible test sets. This

means evaluating expected classi�cation accuracy for the POFA database entails

training and analyzing 13� 14 = 182 networks.

There are many ways of combining the response vectors of multiple networks. In this

paper, we report on the accuracy of two methods. The �rst is fairly standard, but

the second is interesting in that it allows the network to \peek" at the other stimuli

in the test set before making a response. In online mode, we obtain the softmax o of

each individual network's output vector y: o
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the softmaxed outputs over the 13-network 
ock to obtain the aggregate response

to the given test pattern. In \batch mode", we compute each network's responses

to the entire test set then compute the mean and standard deviation of each output

unit over those test patterns. Then when required to produce a response for an

individual test item, we Z-scale each output unit rather than softmaxing them:
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and average the result over the 
ock.

This simple technique increases accuracy signi�cantly by allowing the classi�er to

take the distribution of responses to the test set into account before producing a

�nal response on the given test item. This and similar approaches will be useful for

modeling experimental situations in which a subject is familiarized with some or all

of the test data before the actual testing in some task begins.

The results of the classi�cation experiments with Gabor �lter and local PCA rep-

resentations are summarized in section 4.

3.2 Examining representations with LDA

We used Fischer's Linear Discriminant to analyze the usefulness of the components

of the local PCA and Gabor representations. We had also planned to use the dis-

criminant analysis for feature selection, since it had improved performance in a pilot

study using the lower resolution images from Padgett and Cottrell (1997), but as

shown in Table 1, feature region selection does not improve performance. Appar-

ently the networks are easily able to learn which components of the representation

are most diagnostic for expression. But the analysis itself is extremely interesting

so we report the results here. We used a subset of the faces (leaving out the �rst

two individuals \A" and \C") to determine the usefulness of each Gabor jet scale

and position for expression classi�cation. Figure 4 shows the relative diagnosticity

of each Gabor jet �lter location and scale for each of the 6 expressions the networks

were required to classify. The size of each dot corresponds to the relative diagnos-

ticity. The most diagnostic regions generally fall in the lower spatial frequencies

(higher � values) around features predicted by FACS analysis. We performed the

same analysis on the local PCA grid representation; these are shown in Figure 5.

Finally, we used the diagnosticity to de�ne new representations using a subset of the

most suitable regions for feature extraction. For the Gabor representation, we chose

the best 50% �lter locations and scales for each of the six expressions and used the

union of those regions as a �nal representation. For the local PCA representation,

we chose the best four regions for each expression, took their union, and added

any regions necessary to acheive symmetry. The 34 local PCA regions chosen by

this technique are displayed in Figure 3d. (The regions are drawn as circles for

visualization but the regions actually used are squares.)

4 Classi�cation results summary

For each of the four representations, we trained classi�ers using a variety of input

pattern sizes from 5 to 1360 and recorded the expected generalization for each

representation, input size, and ensemble combination method. Due to lack of space,

we cannot include graphs of how accuracy changes with input pattern size, but

merely summarize performance with the best accuracy for each method over all

pattern sizes, shown in Table 1.



Method Online mode Batch mode

Padgett and Cottrell (1997) 75% 86%

Nearest neighbor Gabor 74.0% |

Seven region local PCA 85.2% � 0.7 94.5% � 0.7

LDA-selected local PCA 85.6% � 0.8 94.8% � 0.4

Full Grid Gabor 85.2% � 0.7 92.3% � 0.8

LDA-selected Gabor 86.7% � 1.0 92.4% � 0.8

Table 1: Best POFA expression classi�cation results using four representations in an

ensemble network compared to a nearest neighbor baseline and previous results with

the same database by Padgett and Cottrell (1997). �x denotes a 95% con�dence

interval on the mean obtained with multiple runs with di�erent initial random

weights.

5 Discussion

First, we have examined the ability of Gabor jet representations and local PCA rep-

resentations to support emotional expression recognition in static images. Though

facial motion provides crucial cues about a�ective states to human observers, hu-

mans can also reliably interpret expressions in static photos, and in both of the

representations, the most diagnostic elements are those that are localized over re-

gions of motion during real-time portrayal of expressions.

In contrast to the results of Bartlett's (1998) experiments in classifying single facial

actions in neutral-masked images, which showed that Gabor jets signi�cantly out-

performed local PCA, we found that the two representations performed equally well.

Candidate explanations include di�erences in the stimuli (static displays including

multiple facial actions vs. neutral-masked displays containing only a single facial

action), type of classi�er (nearest neighbor vs. ensemble of nonlinear networks),

and a big di�erence in image patch size (15x15 in Bartlett's work vs. 64x64 in ours,

for approximately the same image resolution). We attribute the discrepancy to the

di�erence in kernel size | the discriminant analysis shows that the most diagnostic

Gabor features are in the lower spatial frequency ranges (larger �'s in Figure 4).

Larger local PCA patches would be necessary to encode information at those larger

spatial scales.

We do not yet have a way to choose one representation over the other at this

point. The Gabor representation has slightly better theoretical motivation and it

its recognition performance is conveniently robust to dimensionality reduction with

PCA. On the other hand, our classi�ers tend to be more stable as we vary the

number of projections in the local PCA representation, whereas there is typically

a narrow \sweet spot" in classi�cation performance when we combine PCA and

Gabor jets. In future work we will explore these representational issues further and

apply the improved classi�ers to modeling human data in perceptual experiments.
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Figure 4: Diagnosticity of Gabor �lter locations for expression.
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Figure 5: Diagnosticity of local PCA �lter locations for expression.




