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Heart failure continues to be a common and deadly sequela of myocardial
infarction (MI). Despite strong evidence suggesting the importance of myo-
cardial mechanics in cardiac remodelling, many MI studies still rely on
two-dimensional analyses to estimate global left ventricular (LV) function.
Here, we integrated four-dimensional ultrasound with three-dimensional
strain mapping to longitudinally characterize LV mechanics within and
around infarcts in order to study the post-MI remodelling process. To induce
infarcts with varying severities, we separated 15 mice into three equal-sized
groups: (i) sham, (ii) 30min ischaemia–reperfusion, and (iii) permanent ligation
of the left coronary artery. Four-dimensional ultrasound from a high-frequency
small animal systemwas used tomonitor changes in LVgeometry, function and
strain over 28 days. We reconstructed three-dimensional myocardial strain
maps and showed that strain profiles at the infarct border followed a sigmoidal
behaviour.We also identified thatmicewithmild remodelling had significantly
higher strains in the infarcted myocardium than those with severe injury.
Finally, we developed a new approach to non-invasively estimate infarct size
from strain maps, which correlated well with histological results. Taken
together, thepresentedworkprovides a thoroughapproach toquantify regional
strain, an important component when assessing post-MI remodelling.
1. Introduction
Coronary artery disease remains the leading cause of death in the USA, with
over 1 million acute coronary events predicted to take place in 2019 [1]. Despite
recent advances in percutaneous coronary intervention technologies, which
have improved patient survival rates, heart failure continues to be a common
long-term complication of acute myocardial infarction (MI) with high morbidity
and mortality [2]. Cardiac remodelling post-MI encompasses a series of com-
plex molecular, structural and functional changes in the left ventricle, driven
by inflammatory, neurohormonal and mechanical factors [3,4]. Although the
short-term effects of remodelling are vital in repairing the damaged
myocardium, sustained imbalance between increased haemodynamic load,
compromised myocardial mechanics and impaired cardiac function feeds a
pathological response that results in left ventricular (LV) dilation and eventual
heart failure [3,4]. Specifically, changes in the mechanical microenvironment
regulate myofibroblast proliferation and subsequent collagenous scar formation
at the infarct border zone, providing the heart with the structural rigidity

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2019.0570&domain=pdf&date_stamp=2019-11-20
mailto:cgoergen@purdue.edu
https://doi.org/10.6084/m9.figshare.c.4723586
https://doi.org/10.6084/m9.figshare.c.4723586
http://orcid.org/
http://orcid.org/0000-0002-7756-1389
http://orcid.org/0000-0001-6933-8075
http://orcid.org/0000-0002-1033-8350
http://orcid.org/0000-0002-7237-6635
http://orcid.org/0000-0003-0746-1638
http://orcid.org/0000-0001-8883-7953


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20190570

2
necessary to minimize infarct expansion and prevent ventri-
cular rupture [4,5]. The developing myocardial scar,
although beneficial early in remodelling, reduces LV compli-
ance over time, directly inhibiting LV pumping function [6].
Taken together, the time course, mechanical properties and
size of the myocardial scar tissue are all critical components
that determine the fate of the remodelling left ventricle.

Despite strong evidence supporting the importance of
myocardial mechanics in remodelling post-MI [5–7], longitudi-
nal assessment of regional LV mechanics proves to be
challenging. The majority of in vivo infarction studies still rely
on two-dimensional (2D) image analyses to estimate the
global metrics of LV function such as ejection fraction and
global longitudinal strain [8–10]. These metrics, while valuable
in evaluating the overall impact of ischaemic injury on cardiac
health, do not capture regional differences in myocardial con-
tractility. Furthermore, strain measurements derived from 2D
images are sensitive to through-plane motion caused by LV
twisting during contraction [11]. Irrespective of these limit-
ations, 2D maps highlighting regional strain differences still
provide important spatial and temporal information regarding
changes in LV contractility throughout remodelling [12,13].

Recent developments in non-invasive four-dimensional
(4D) imaging techniques have made it possible for researchers
to reconstruct volumetric maps of patient- or mouse-specific
LV geometries throughout a cardiac cycle [14–16], opening
the possibility for three-dimensional (3D) strain mapping of
the heart. Indeed, several groups have quantified regional
differences in 3D strain in both healthy [17,18] and ischaemic
left ventricles [19–21], with results revealing significant
strain reductions within infarcted tissue. However, these
studies either evaluated strain at only sparse time points
[19,20] or relied on contrast agents to quantify strain in the
remodelling infarct [21]. The reported strain difference
between the infarcted and remote myocardium suggests the
presence of a strain gradient near infarct border zones that
may play an important role in infarct expansion.

A thorough longitudinal study investigating changes in
the spatial distribution of 3D myocardial strain in a murine
model of acute MI has not yet been conducted. Here, we inte-
grated high-resolution 4D ultrasound imaging [14] with 3D
strain mapping [19] to monitor cardiac remodelling over 28
days. By employing two surgical mouse models to induce
ischaemic damage with varying severities, we identified
unique remodelling patterns that differed between ischae-
mia–reperfusion and permanent ligation models. By
expanding ultrasound strain studies to three dimensions,
we aim to provide further evidence that the mechanical be-
haviour of the left ventricle near infarct border zones
contributes to infarct expansion and ventricular remodelling.
2. Material and methods
2.1. Coronary artery ligation
We randomly assigned 15male, wild-type, C57BL/6J mice (age =
14 ± 1 weeks; weight = 27 ± 3 g; The Jackson Laboratory, Bar
Harbor, ME) into three surgical groups: (i) sham (n = 5), (ii) ischae-
mia–reperfusion (I/R; n = 5), and (iii) permanent ligation (PL; n =
5). For surgery, each mouse was anaesthetized with 1–3% isoflur-
ane and endotracheally intubated using a small-animal ventilator
(SomnoSuite, Kent Scientific, Torrington, CT). Pressure-controlled
ventilation supplied air to the lungs with a target inspiratory
pressure between 16 and 18 cm H2O and a peak end-expiratory
pressure between 3 and 5 cm H2O. We secured the mouse to a
heated surgical stage and coupled a rectal temperature probe to
a homeothermic control module to maintain body temperatures
between 36°C and 37°C (RightTemp, Kent Scientific, Torrington,
CT). We made a small incision in the third intercostal space of
the left thorax and retracted the ribs to expose the left ventricle.
The pericardium was dissected to visualize the left coronary
artery (LCA). In the sham-operated controls, an 8–0 nylon
suture was looped around the LCA without ligating the vessel.
In the I/R group, we used PE-10 tubing in combination with a
suture to temporarily ligate the LCA for 30 min before restoring
blood flow to the ischaemic myocardium (reperfusion) as
described previously [22]. In the PL group, the LCA was perma-
nently ligated to induce an infarct [22]. At the end of the
procedure, we sutured the incision site and recovered the
mouse. All surgical procedures were performed aseptically, and
buprenorphine (0.05 mg kg−1; intraperitoneal) was administered
as an analgesic. All procedures were approved by the Purdue
Animal Care and Use Committee.

2.2. Longitudinal ultrasound imaging
All ultrasound images were collected with a Vevo2100 small-
animal ultrasound system (FUJIFILM VisualSonics Inc., Toronto,
Canada) and a 40 MHz centre frequency linear array transducer
(22–55 MHz; MS550D). Ultrasound images of the left ventricle
were acquired at baseline and on days 1, 2, 3, 5, 7, 14, 21 and
28 post-surgery. Figure 1a summarizes the study design for the
presented work. We acquired 4D ultrasound data as described
previously [14]. Briefly, successive cardiac and respiratory-
gated 2D cine loops were obtained at 1000 Hz in the short axis
from the apex to the base of the heart by using a linearly trans-
lating 3D motor (step size = 0.2 mm; figure 1b). Respiratory
waveforms obtained during imaging were used to ensure that
ultrasound images were only acquired in between breaths to
minimize breathing motion artefacts. Sequential 2D images
were then spatially registered, temporally matched based on
their relative time in the cardiac cycle and resampled to isotropic
60 µm voxels in Matlab (MathWorks Inc., Natick, MA). Addition-
ally, we measured mitral valve inflow velocities from the
four-chamber view of the heart with pulsed-wave Doppler.

2.3. Ultrasound image analysis
2.3.1. Segmentation of left ventricular boundaries
Reconstructed 4D ultrasound data were matched spatially with a
custom Matlab script by using anatomical landmarks such as the
sternum, apex and heart valves. The reoriented 4D data were
then loaded into SimVascular for segmentation [23]. First, we cre-
ated a centreline path from the aortic valve to the apex of the left
ventricle and manually segmented the endocardial and epicar-
dial boundaries. Two-dimensional segmentations were created
at least every 1 mm apart, with smaller spacing for regions show-
ing significant changes in geometry. This process was performed
at both end-diastole and peak-systole. We also segmented sternal
shadowing artefacts to identify regions where strain could not be
reliably calculated. Finally, 3D surface models of the endocardial,
epicardial and sternal artefact boundaries at both end-diastole
and peak-systole were rendered with uniformmeshing (figure 1c)
and exported as STL files for further Matlab analysis.

2.3.2. Assessment of global cardiac function
The 3D surfacemodelswere converted to solid, volumetricmeshes
and spatially registered to the 4D ultrasound data. We calculated
end-diastolic volume (EDV) and peak-systolic volume (PSV) by
multiplying the number of voxels in the endocardial solid mesh
at the corresponding time point by the isotropic voxel dimensions
of the 4D data. These volumes were then used to evaluate global
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metrics of LV systolic function including stroke volume (SV), ejec-
tion fraction (EF) and cardiac output (CO), which were calculated
as follows (equations (2.1)–(2.3)):

SV ¼ EDV – PSV, ð2:1Þ

EF ¼ SV
EDV

� 100 ð2:2Þ
and CO ¼ SV � heart rate: ð2:3Þ

LV diastolic function was also assessed using transmitral
flow velocity waveforms obtained from pulsed-wave Doppler.
E- and A-wave peak velocities from five different cardiac cycles
were measured, and their corresponding averages were used to
calculate the E/A ratio. We used the E/A ratio to identify
whether blood flow into the left ventricle was primarily driven
by passive filling (pressure gradient caused by LV relaxation;
E-wave) or active filling (atrial contraction; A-wave).
2.3.3. Estimation of three-dimensional maximum principal
Green–Lagrange strain

We implemented a direct deformation estimation (DDE) algor-
ithm in Matlab to estimate the 3D deformation gradient tensor
as described previously (figure 1d; [19]). Briefly, we defined a rec-
tangular coordinate grid spaced 5 pixels apart on the 4D
ultrasound data. At each grid intersection, an 11 × 11 × 11 investi-
gation region was assigned. Using the image at end-diastole as a
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reference template, we iteratively optimized a warping function
that best mapped the affine transformation of this region from
the template image to a deformed image at the next time point.
The warping function was optimized by best matching voxel
intensities between the template and deformed image. The warp-
ing function was designed to be analogous to the 3D deformation
gradient tensor, F3D, such that we could directly estimate F3D
during voxel intensity mapping. This process was repeated until
F3D was determined at each grid intersection (i,j,k) across all
time points in the cardiac cycle. We then calculated the 3D
Green–Lagrange (GL) strain tensor, E3D, as shown in equation
(2.4), where I is the second-order identity tensor,

Eði,j,kÞ
3D ¼ 1

2
(Fði,j,kÞ

T

3D Fði,j,kÞ3D � I): ð2:4Þ

Finally, themaximumprincipal component of the 3DGL strain
tensor was calculated and superimposed onto the 4D ultrasound
data. Three-dimensional interpolation was performed to approxi-
mate strain values in regions between the coordinate grid points.

2.3.4. In vivo strain comparison with Vic2D
In one animal, we compared strain values calculated from the
3D-DDE technique with those measured from Vic2D, a commer-
cially available digital image correlation software that has been
previously used to quantify tissue strains from clinical images
[24,25]. Briefly, representative short-axis slices of the left ventricle
were obtained from the isotropic 4D data at baseline and on days
1, 7 and 28 post-PL of the LCA. Myocardial strains were evalu-
ated with Vic2D by manually selecting a region of interest
around the LV wall (ring geometry; 21 × 21 investigation
window, step = 1 pixel). The end-diastolic image was used as
the reference configuration. The top 10% of the maximum princi-
pal strains in the cardiac cycle were then averaged and compared
between the Vic2D and 3D-DDE methods along the anterior and
posterior walls of the left ventricle.

2.3.5. Bullseye mapping of myocardial strain
We created volumetric meshes of the myocardial wall by subtract-
ing the rendered endocardial volumes from the epicardial
volumes in order to visualize strain within the myocardium
(figure 1e). The mid-surface of the myocardium was obtained by
calculating the midpoints between paired endocardial and epicar-
dial boundary points located in a plane normal to the centreline of
the left ventricle. We defined paired endocardial and epicardial
boundary points as points aligned radially from the centreline of
the left ventricle. Myocardial strain values between paired endo-
cardial and epicardial boundary points were averaged together
to create a representative mean strain metric. The mid-surface of
the myocardium was then unwrapped to polar coordinates,
relative to the apex of the left ventricle, to represent the averaged
strain values as a bullseye map in accordance with the American
Heart Association’s 17-segment model (figure 1f, [26]).

2.3.6. Non-invasive estimation of infarct size
Two approaches to non-invasively estimate infarct size were per-
formed. First, we used myocardial wall thickness at peak-systole
as a criterion for determining infarct size. Wall thickness was cal-
culated by measuring the distance between paired endocardial
and epicardial boundary points along the left ventricle. Regions
with thickness values smaller than 0.5 mm were defined to be
infarcted as used by others [27]. We then quantified infarct size
as the percentage of the myocardium with systolic thickness
values below 0.5 mm. Infarct size was reported as a per cent of
LV size to take into account ventricular dilation. This infarct
sizing method was only applicable for mice with transmural
infarcts (PL) and not for subepicardial infarcts (I/R).

In the second approach, strain profiles were used to estimate
infarct size. We first plotted bullseye maps of principal 3D GL
strain throughout the cardiac cycle. The maximum strain values
at each spatial position were then extracted across all time
points to construct a representative bullseye map. This step was
implemented to account for dyssynchrony in LV contractile pat-
terns in mice with ischaemic injury. An initial estimate for
infarct centre was obtained from the centre of the wall-thinned
myocardium in the PL group. In the I/R group, which did not
exhibit significant wall thinning, we manually identified the
centre of low-strain regions to identify the infarct centre. Strain
profiles were then plotted radially from the infarct centre, and a
sigmoidal fit was implemented across every 30° region
(figure 2a,b). The location of the inflection point was determined
to be the boundary of the infarct zone, and the spatial strain gra-
dient at the infarct boundary was calculated from the slope of
the linear portion of the sigmoidal curve fit. In regions with sig-
nificant sternal artefacts where the inflection points could not be
identified, infarct boundaries were approximated by interpolating
adjacent infarct boundaries in polar coordinates (figure 2c). Infarct
size was then reported as an area percentage of the myocardium
that fell within the strain-estimated infarct boundary.

2.4. Histological analysis
2.4.1. Tissue preparation for staining
At the end of the study, we euthanized the mice and perfused
30 mM KCl solution to arrest the heart in diastole. Harvested
hearts were then sliced into three or four uniform segments in
the short axis and fixed in 4% paraformaldehyde for 7 days at
4°C before being sent for histology. Briefly, cardiac segments
were embedded in paraffin, thinly sectioned (5 µm) and stained
with haematoxylin–eosin (H&E) and Masson’s trichrome
(MTC). MTC stain was used to differentiate muscle fibres (red)
from collagen-rich scars (blue). We imaged stained tissues in
segments at 10×magnification with a Leica ICC50 W stereomicro-
scope (Leica Microsystems Inc., Buffalo Grove, IL) and quantified
collagen content and infarct size using IMAGEJ [28].

2.4.2. Collagen quantification and infarct sizing
We stitched adjacent cardiac images from a representative slice
using MOSAICJ [29] and removed image background from the ren-
dered image. MTC images were then separated into their red–
green–blue channels to isolate red pixels corresponding to
muscle fibres from blue pixels representative of collagen-rich
scars. Per cent collagen was then calculated as follows:

%collagen ¼ no. of blue pixels
total no: of pixels

� 100: ð2:5Þ

We calculated infarct size from MTC images using a midline
length approach [30]. The LV myocardial midline was traced in
IMAGEJ by identifying the midpoints between the endocardial
and epicardial boundaries. The midline circumference corre-
sponds to the total midline length. The midline infarct length
was measured as the midline arc length in regions where the col-
lagen scar encompassed more than 20% of the myocardial
thickness. This 20% threshold was used to represent infarct size
in left ventricles with subepicardial infarcts in the I/R group.
Infarct size (IS) was then calculated by dividing the sum of the
midline infarct lengths, linfarct, by the sum of the total midline
length, ltotal, from all cross-sectional slices of the left ventricle, n,

IS ¼ S
n
i¼1linfarct
S
n
i¼1ltotal

� 100: ð2:6Þ

2.5. Statistical analysis
All data were reported as mean ± standard deviation and tested
for normality using the Shapiro–Wilk test. We implemented a
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log transformation on non-normal and heteroscedastic data
before running statistical tests. A repeated measures analysis of
variance (ANOVA) with the post hoc Tukey’s test was performed
to study the effects of surgery on cardiac function at the different
time points. Similarly, we ran a two-way ANOVA with the post
hoc Tukey’s test to study the effects of spatial position and sur-
gery on both maximum principal 3D GL strain and collagen
content. Lastly, linear regression analyses comparing the different
methods of infarct sizing were conducted. All statistical analyses
were performed using GraphPad Prism v. 8.1.1 (GraphPad
Software, San Diego, CA) with p < 0.05 representing statistical
significance.
3. Results
3.1. Longitudinal assessment of cardiac function
Long-axis ultrasound images of the left ventricles from three
representative mice are presented at peak-systole in figure 3a,
highlighting geometrical differences between surgical
groups. A video of LV motion throughout the cardiac cycle
is provided in the electronic supplementary material, figure
S1. Figure 3a shows that LV geometry was preserved in the
sham group, while myocardial damage was evident in the
I/R and PL groups as early as day 1. Akinetic regions,
marked in dashed yellow lines, indicated that ischaemic
injury was primarily localized to the apex of these left ventri-
cles. A closer inspection revealed that mice in the PL group
experienced significant wall thinning and chamber dilation
by day 7 post-surgery. We did not observe this trend in
mice in the I/R group.

These findings reflected longitudinal changes in global car-
diac function (figure 3b–g). Although all cardiac parameters
remained unaffected in the sham group over the course of 28
days, we identified detrimental changes in LV function in the
I/R and PL groups. The left ventricles of mice in the PL
group progressively dilated post-surgery until they reached
EDVs close to triple those of the sham group at day 28
(EDVSham = 53 ± 2 µl versus EDVPL = 151 ± 39 µl, p < 0.01).
Interestingly, minimal dilation was observed in the I/R
group when compared with the sham group (EDVI/R = 68 ±
8 µl, p = 0.02). Reductions in LV contractile function due to
ischaemic injury were detected from day 1 as increases in
PSVs that either remained stable in the I/R group or increased
proportionally to LV dilation in the PL group (PSVSham = 18 ±
2 µl versus PSVI/R = 34 ± 9 µl, p < 0.01; versus PSVPL = 119 ±
46 µl, p < 0.01). These resulted in immediate and significant
decreases in EFs that remained depressed throughout the
study (EFSham = 66 ± 3% versus EFI/R = 50 ± 7%, p < 0.01;
versus EFPL = 23 ± 12%, p < 0.01). Surprisingly, we noticed tran-
sient reductions in SV and CO 7 days post-surgery before both
returned to baseline values. In addition to compromised systo-
lic function, we also observed significant diastolic dysfunction
in the PL group that was not seen in the I/R group (E/ASham =
1.5 ± 0.3 versus E/AI/R = 1.3 ± 0.2, p = 0.59; versus E/APL = 0.5
± 0.4, p = 0.04). Taken together, these results revealed that
mice exposed to I/R injuries exhibited smaller degrees of LV
remodelling than those subjected to permanent LCA ligation.

3.2. Spatial distribution of three-dimensional
myocardial strain

Longitudinal changes in peak-systolic LV geometries and
endocardial wall strains from three representative mice are
shown in figure 4. Maximum principal 3D GL strain (EI) of
the endocardial wall was visualized along the anterior and
posterior walls of the left ventricle to highlight regional
differences in strain, with yellow and blue regions corre-
sponding to areas of high and low strains, respectively.
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significant reductions in LV contractile function post-surgery, but significant dilation and diastolic dysfunction were only consistently measured in the PL group. Taken
together, mice in the PL group experienced greater degrees of cardiac remodelling than those in the I/R group. Data are shown as mean ± standard deviation (*p <
0.05). I/R, ischaemia–reperfusion; PL, permanent ligation. Blue asterisks, PL versus sham; red asterisks, I/R versus sham; purple asterisks, PL versus I/R. Scale bar:
1 mm. (Online version in colour.)
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Bullseye plots mapping the peak myocardial strain profiles of
the unwrapped LV surface are shown in figure 5, with video
representations of day 28 left ventricles portrayed throughout
the cardiac cycle in electronic supplementary material, figure
S2. Sternal shadowing artefacts, commonly found near the
base of the LV and marked as dashed black lines, artificially
lowered strain values in these regions and were excluded
from our analysis. Taken together, figures 4 and 5 illustrate
that regions of low strain near the LV apex remained localized
in the I/R group but continued to expand proportionally to
chamber dilation in the PL group. Furthermore, LV wall thin-
ning was only observed in the PL group, and wall-thinned
boundaries continued to expand throughout remodelling,
approaching infarct boundaries estimated from the strain
profile inflection points.
Representative day 28 long-axis ultrasound images, 3D sur-
face strains and bullseye strain maps of the remodelled left
ventricles for all mice in the I/R and PL groups are included
as electronic supplementary material, figures S3 and S4. Day
28 strains along the entire thickness of the LVwall are also pro-
vided for one representative mouse in each surgical group in
electronic supplementary material, figure S5. These sup-
plemental figures highlight substantial heterogeneity in LV
remodelling across mice both within and between groups.
However, clear patterns are present, and we noticed that
most mice exhibited asymmetrical infarcts skewed towards
the anterior wall. Lastly, a comparison of maximum principal
strain values between the 3D-DDE and Vic2Dmethods is sum-
marized in electronic supplementary material, figure S6 for a
representative left ventricle with an asymmetrical anterior
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infarct. Although both techniques successfully captured strain
reductions along the infarcted anterior wall when compared
with the contractile posterior wall, the 3D-DDE algorithm
more appropriately tracked changes in LV boundaries
throughout a representative heartbeat, as strain values
returned to 0 at the end of the cardiac cycle.

Interestingly, we identified significant differences in maxi-
mum principal 3D GL strain values within the infarcted
myocardium between mice in the I/R and PL groups.
Strain profiles averaged across all five mice in each surgical
group are shown in figure 6a–e. Throughout the 28 days fol-
lowing surgery, we consistently observed a sigmoidal strain
profile at the interface between infarcted and remote myocar-
dium. We also detected significantly higher strain values
within the infarcted myocardium of mice in the I/R group
than in those in the PL group (day 28: EInfarct,I/R = 0.22 ±
0.10 versus EInfarct,PL = 0.09 ± 0.03, p = 0.01), while sham-oper-
ated mice maintained healthy strain values in the LV apex
(EApex,Sham = 0.40 ± 0.03). Conversely, no differences in strain
were seen in the remote myocardium between the three
groups (EBase,Sham = 0.41 ± 0.03 versus ERemote,I/R = 0.42 ± 0.02,
p= 0.97; versus ERemote,PL = 0.40 ± 0.02, p= 0.95). We observed
no differences in the spatial strain gradient at the infarct bound-
ary between the I/R and PL groups across all time points
(figure 6f ).

3.3. Histological analysis of collagen content and
infarct size

Representative histology images of mouse left ventricles
stained with MTC revealed varying distributions of collagen-
rich, fibrotic (blue) tissues between surgical groups (figure 7a,
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b). The absence of fibrosis within the myocardium of sham-
operated mice demonstrated that sham surgeries contributed
little to no myocardial damage. Significant scarring, however,
was observed in both the I/R andPL groups (per cent collagen:
shamApex = 3 ± 2% versus I/RApex = 15 ± 8%, p < 0.01; versus
PLApex = 38 ± 17%, p < 0.01). While mice in the PL group devel-
oped transmural infarcts, as shown by the presence of collagen
spanning the entire thickness of the myocardium, mice in the
I/R group interestingly only developed subepicardial scarring.
We also noticed an increase in interstitial collagen percentage
towards the infarcted apex (per cent collagen: basePL = 7 ± 3%
versus mid-papillaryPL = 23 ± 6%, p < 0.01; versus apexPL =
38 ± 17%, p < 0.01). Finally,we compared infarct sizes estimated
from 3D strain maps with those calculated from histology and
discovered a strong correlation between the two approaches
(figure 7c; R2 = 0.93, p < 0.01).

3.4. Correlation of infarct size
Correlation plots comparing infarct sizes estimated from
three different approaches are summarized in figure 8a–c.
Although we found a strong positive correlation between
all methods (R2 > 0.80, p < 0.05), infarct sizes evaluated from
histological staining at day 28 were better correlated with
strain-estimated infarct sizes (R2 = 0.95) than those measured
from wall thinning (R2 = 0.83). Similarly, a stronger negative
correlation between strain-estimated infarct size and EF
(R2 = 0.69; figure 8d ) was observed, while infarct size
approximated from wall-thinned regions exhibited only mod-
erate correlation with EF (R2 = 0.41; figure 8e). Interestingly,
we identified significant differences in measured infarct size
between the strain-estimated and wall-thinned approaches
between days 1 and 3 post-surgery ( p < 0.05) which appeared
to converge throughout cardiac remodelling (figure 8f ).
4. Discussion
Wehave demonstrated in twomousemodels ofMI thatDDE, in
conjunction with 4D ultrasound, provides regional in vivo esti-
mates of 3D myocardial strain. Unlike 2D techniques, regional
strain mapping not only helps explain the observed decrease
inglobalLV functionpost-injury, but also reveals the importance
of strain profiles in driving infarct expansion. Specifically, mice
exhibiting higher strain values within infarcted tissue experi-
enced smaller degrees of LV remodelling. Furthermore, our
initialmyocardial 3Dmaximumprincipal strainmapspredicted
final infarct size four weeks after ischaemic injury. Taken
together, these strain data help characterize the role that
mechanical strain plays in LV remodelling post-infarction.

4.1. Advantages of direct three-dimensional strain
estimation

A significant advantage of the 3D-DDE technique is its ability
to capture regional strain differences along the entire thick-
ness of the myocardium (electronic supplementary material,
figure S5). Most preclinical [8,10,13] and clinical [11,17] ultra-
sound studies to date rely on commercially available
ultrasound software packages to estimate 2D myocardial
strain (ε) as the change in length of a segment, ΔL, divided
by its original length, L0,

1 ¼ L� L0
L0

¼ DL
L0

: ð4:1Þ

The observed change in length, in either the circumferential,
longitudinal or radial direction, is measured by tracking the
endocardial and epicardial LV boundaries throughout the
entire cardiac cycle using speckle-tracking algorithms. Since a
simple change in length is used to approximate strain within
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large subregions, this approach cannot resolve regional strain
differences within the myocardium. This linear approximation
also does not consider the nonlinear components of strain and
is only appropriate when estimating small deformations less
than 5% [31]. This is not the case in many soft tissues, such as
the heart,where largedeformations are observed in vivo. Finally,
as the heart undergoes twisting during systolic contraction, 2D
techniques are negatively impacted by through-plane motion
[11]. By directly estimating the 3D deformation gradient tensor
from small image subregions within 4D ultrasound data, these
issues can be mitigated.

Another advantage of the presented technique lies in its
ability to yield reproducible measures of 3D strain. Unlike
existing techniques, which often rely on displacement regu-
larization prior to strain estimation, the DDE method
estimates the 3D deformation gradient tensor directly
during voxel intensity mapping as reported previously [19].
This results in a noise-insensitive algorithm that provides a
more accurate and precise strain-field estimation when com-
pared with displacement-based methods, as supported by
in silico validation [19]. We demonstrate the reproducibility
of our 3D strain measurements in electronic supplementary
material, figure S7, which highlights similarities in the bulls-
eye strain maps of all 15 healthy mice imaged at baseline. In
all cases, we found high strain values ranging between 0.40
and 0.45 throughout the LV myocardium, except in regions
with prominent sternal artefacts. This suggests that, across
animals, we are consistently obtaining reproducible values
of strain. Additionally, the fact that we observed (i) a consist-
ent sigmoidal behaviour between the infarct and remote
regions with similar strain values in these regions (figure 6)
and (ii) reported a consistent strain-estimated infarct size
for each animal at the same location (figures 5 and 8f )
throughout disease progression further demonstrates the
reproducibility of the technique. Taken together, these data
suggest that, if sternal artefacts are minimized or avoided
during image acquisition, 3D myocardial strain in remodelling
left ventricles can be reliably quantified.

4.2. Three-dimensional strain map reveals myocardial
tissue heterogeneity

Through our 3D approach, we can identify regional vari-
ations in strain values and profiles that compare well to
previously published results. Many 2D ultrasound studies
have reported significant decreases in global myocardial
strains in mice subjected to infarction, with the remote myo-
cardium exhibiting significantly higher strains than the
infarcted tissue [8,10,12]. In the radial direction, where the
largest deformation is observed [32], strain values range
between 25% and 40% in the healthy myocardium but drop
to less than 15% within the infarct [8,10]. Our 3D strain
results are consistent with these findings (figure 6a–e). Fur-
thermore, a short-axis comparison of maximum principal
strains between the presented 3D-DDE technique and
Vic2D yielded similar ranges of strain values (electronic
supplementary material, figure S6).

Although LV kinematics in the remote and infarct zones
have been widely studied, the interface between these regions
remains to be fully characterized as previous work has only
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described intermediate strain values in this vulnerable border
zone [12,13]. Unsurprisingly, given the original ultrasound
data, heterogeneity in border zone strain patterns can be ident-
ified in the reconstructed 3D strain maps (figures 4 and 5;
electronic supplementary material, figures S2–S5). These
strain patterns are correlated with complex, non-uniform
deposition of collagen along the LV wall, clearly visualized
from histological staining of the mid-papillary level of the
left ventricle in the PL group (figure 7a). Indeed, collagen
fibre orientations are remarkably heterogeneous in the healing
myocardial scar and likely influence themechanical properties
of the infarct border zone [33,34]. Taken together, capturing
strain heterogeneity within the infarct border zone early in
remodelling may provide important insights into the role of
strain in infarct expansion and LV remodelling.

4.3. Correlation between strain profiles and left
ventricular remodelling severity

Strain profiles near infarct border zones exhibit a unique sig-
moidal behaviour (figure 6a–e), probably caused by a spatial
decrease in collagen content away from the infarct (figure 7a,
b). Interestingly, throughout the 28 days post-infarction, we
found significantly higher strain values within the infarcted
myocardium of mice in the I/R group than in those in the PL
group (figure 6b–e). A sustained increase in strain within the
infarct zone may suggest either a higher percentage of viable
cardiomyocytes or an improved scar contractile function
attributed to the mechanoregulation of myofibroblast
activity [5,35]. Within the damaged myocardium, these
elevated strains may be a unique characteristic of small
infarcts, but further investigation is necessary to determine
their role on infarct expansion during early remodelling.
Indeed, we measured significant improvements in both sys-
tolic and diastolic LV functions (figure 3b–g) as well as
significantly smaller final infarct sizes (figure 7c) in the I/R
group than in PL group. Although direct regional strain com-
parisons between mice subjected to I/R and PL surgeries
have yet to be conducted within a single study, our results
closely match findings from existing ultrasound studies,
which report a significant increase in infarct size and
worse remodelling outcomes with prolonged ischaemic
durations [36,37].
4.4. Strain profiles provide early estimates of infarct size
A key discovery from this study is the propensity for wall-
thinned myocardial regions at early stages to expand towards
the strain-estimated infarct boundaries (figures 5 and 8f ).
Wall thinning is generally accepted to be the final product
of infarct healing; although the majority of wall thinning in
murine models occurs within the first week, this gradual pro-
cess may continue to take place up to a month post-infarction
[6,38]. Additionally, wall thinning is often used to monitor
infarct expansion in vivo [6], is primarily responsible for LV
rupture [38] and directly impacts both systolic and diastolic
function [5]. Thus, the ability to predict early the extent of
wall thinning non-invasively may provide critical insights
into LV remodelling and progression to heart failure.
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Our data suggest that the damaged area with compro-
mised 3D maximum principal strain values is predictive of
final infarct size as early as day 1. As the strain-estimated
infarct size in the PL group remained unchanged throughout
ventricular remodelling, rapid expansion of wall-thinned
regions was prevalent within the first week before conver-
ging with the strain-estimated infarct border (figure 8f ).
Other previous work similarly reported that changes in 2D
myocardial principal strain also precede LV wall thinning
in a genetic mouse model of dilated cardiomyopathy [39].
A potential explanation for this observation may be related
to the creation of a stiff provisional matrix in the ischaemic
region early in remodelling, which facilitates the gradual for-
mation of collagen-rich scars. As non-viable cardiomyocytes
are resorbed, a provisional granulation tissue rich in fibrin,
laminin and glycosaminoglycans is quickly formed to pro-
vide the left ventricle with temporary structural support [6].
In the presence of a stiff extracellular matrix (ECM), trans-
forming growth factor beta (TGF-β) is released from the
latent-associated peptide complex as a result of increased
mechanical resistance to cell tension [40]. TGF-β then pro-
motes the differentiation of cardiac fibroblasts to
myofibroblasts, which gradually replace the provisional
structure with collagen-rich infarct tissue [6,40]. Thus, the
presence of necrotic cardiomyocytes and a stiff provisional
structure are likely detected as an immediate decrease in
strain values 1 day after infarction (figures 4 and 5). As
these regions eventually become collagen-rich scars, a process
that take several days or weeks to fully develop, the initial
changes in myocardial ECM may explain why early strain-
estimated infarct size remains unchanged throughout disease
progression and is predictive of final infarct size (figure 8f ).

Our comparison of day 28 infarct sizes calculated from
three different approaches revealed that gold standard his-
tology infarct size is best correlated with strain-estimated
infarct size (figure 8a–c). Furthermore, we observed a better
correlation with EF for the strain-estimated infarct size than
with the wall-thinned approach (R2 = 0.69 versus R2 = 0.41).
These findings indicate that 3D principal strain profiles can
be used to accurately predict final infarct size in rodents and
may have similar utility in humans. This discovery is impact-
ful because it presents a novel non-invasive method of
estimating infarct size without the use of contrast agents or
tissue collection. Previously, infarct size can only be reliably
estimated using late-gadolinium-enhanced magnetic reson-
ance imaging (MRI) [21] or ex vivo histological staining [30].
4.5. Limitations
One major limitation of this study is the impact of image
quality on strain estimation. Since the 3D-DDE algorithm is
a direct image-based approach, shadowing artefacts can
affect the measured strain values. As mentioned previously,
sternal shadowing artefacts commonly found near the base
of the left ventricle resulted in underestimation of strains.
Although we addressed this problem by removing these
regions from our final strain analysis, care during data acqui-
sition to minimize shadowing artefacts is needed. Another
limitation is the computational time needed for the strain
analysis. Owing to the large number of investigation regions
and need to spatially resolve small differences between time
points, the strain analysis requires 2–3 h to complete per data-
set. It is important, however, to note that a trade-off exists
between processing times and the desired spatial resolution
of the analysed strain. In other words, if less refined strain
maps are needed, the computational costs could be reduced
dramatically. Lastly, surgical inductions of myocardial ischae-
mia in mice are not true reflections of the gradual series of
events leading up to a heart attack in humans. Mice experi-
ence smaller increases in collagen content post-MI [38] and
undergo substantially faster infarct healing than typically
observed in patients [6], which may lead to species differ-
ences in the LV remodelling process. Beyond mice,
however, similar strain mapping and profiling techniques
could be applied to 4D ultrasound data acquired from
other rodents, large animals and humans.

Although the present study focused on characterizing
changes in 3D maximum principal strain, it is important to
note that other metrics including the second and third princi-
pal strains, as well as principal strain direction, may provide
additional insights into the remodelling process. A previous
study using tagged MRI of the porcine left ventricle
showed significant reductions in all three components of
principal strains post-infarction [41]. Regional differences in
principal strain directions were also detected; notably, maxi-
mum principal strain angles rotated away from the radial
direction within the infarcted myocardium and its surround-
ing region. Future work will be needed to fully characterize
the relationship between infarct expansion, principal strain
directionality and other components of the 3D strain tensor.
5. Conclusion
In summary, we have demonstrated a novel and robust
approach to non-invasively quantify 3D myocardial strain.
By integrating 4D ultrasound with a 3D-DDE technique, we
expanded existing 2D ultrasound strain studies to three-
dimensions to better characterize the role of myocardial
mechanics in disease progression. To the best of our knowl-
edge, this study is the first demonstration of the use of 4D
ultrasound to quantify 3D strain in order to characterize
regional differences, instead of global changes, between two
murine models with different infarct severities. By recon-
structing 3D strain maps of the left ventricles, we were able
to capture strain heterogeneity and characterize the sigmoidal
strain profile at infarct border zones. We discovered that mice
undergoing mild LV remodelling had significantly higher
strain values within the infarcted tissue than those with
severe remodelling, suggesting that a more contractile infarct
scar may be a unique characteristic of small infarcts. Finally,
we described a new method to non-invasively estimate and
predict final infarct size, without the use of contrast agents,
at an acute phase based on 3D strain maps. Taken together,
the findings presented in this study highlight the importance
of 3D strain when studying how the mechanical behaviour of
the left ventricle near infarct border zones contributes to post-
infarction remodelling. Future work will be needed to inves-
tigate if the presented technique can be used to better
characterize the role of 3D strains in infarct expansion, infarct
extension and cases of multiple infarcts.
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