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Abstract

Understanding ligand binding kinetics and thermodynamics, which involves investigating the free, 

transient and final complex conformations, is important in fundamental studies and applications 

for chemical and biomedical systems. Examining the important but transient ligand–protein-bound 

conformations, in addition to experimentally determined structures, also provides a more accurate 

estimation for drug efficacy and selectivity. Moreover, obtaining the entire picture of the free 

energy landscape during ligand binding/unbinding processes is critical in understanding binding 

mechanisms. Here, we present a Binding Kinetics Toolkit (BKiT) that includes several utilities 

to analyze trajectories and compute a free energy and kinetics profile. BKiT uses principal 

component space to generate approximated unbinding or conformational transition coordinates 

for accurately describing and easily visualizing the molecular motions. We implemented a new 

partitioning approach to assign indexes along the approximated coordinates that can be used 

as milestones or microstates. The program can generate input files to run many short classical 

molecular dynamics simulations and uses milestoning theory to construct the free energy profile 

and estimate binding residence time. We first validated the method with a host–guest system, 

aspirin unbinding from β-cyclodextrin, and then applied the protocol to pyrazolourea compounds 

and cyclin-dependent kinase 8 and cyclin C complexes, a kinase system of pharmacological 

interest. Overall, our approaches yielded good agreement with published results and suggest 

ligand design strategies. The computed unbinding free energy landscape also provides a more 

complete picture of ligand–receptor binding barriers and stable local minima for deepening our 

understanding of molecular recognition. BKiT is easy to use and has extensible features for future 

expansion of utilities for post-analysis and calculations.
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Graphical Abstract

Introduction

Transient states during ligand–protein binding/unbinding not seen in experiments contribute 

to ligand–receptor binding kinetics and thermodynamics, inform screening and lead to 

optimizing potential drug candidates. Although experiments provide measurements for 

molecular binding such as binding free energy (ΔG) and association (kon) and dissociation 

(koff) rate constants and determine molecular structures, the dynamic nature is critical for 

protein function and molecular recognition. Molecular simulations bridge the gap and 

have become increasingly appealing because the results provide valuable insights into 

structural, dynamical, and mechanistic properties of molecular systems[1,2]. Computational 

methods also predict ligand–receptor binding free energy and assist in molecular design[3–

6]. Historically, studies of drug development and binding mechanisms have focused on 

equilibrium metrics such as binding affinity and the two end-point states, experimentally 

determined free and final bound structures. Investigation of transient states can help alter the 

drug’s residence time to achieve desired binding kinetics and provide insights in mechanistic 

studies[7–10].

All-atom molecular dynamics (MD) simulations in explicit or implicit solvents are 

widely used to examine molecular motions. However, ligand binding/unbinding processes 

usually need much longer than a microsecond (μs) time scale. Although use of special 

computer hardware may achieve μs-to-ms simulation lengths, such computer resources 

are inaccessible to most scientists[11,12]. Many unbinding processes and/or protein 

conformational changes take longer than seconds. Previous work utilized natural dynamics 

to generate unbinding pathways for systems that took minutes to dissociation [13,14]; 

however, it can require significant computation time. Therefore, statistical mechanics-based 

enhanced sampling techniques, such as metadynamics, weighted ensemble, accelerated MD, 

steered MD, Tau-MD, and scale-MD, have been used to access long-timescale events at less 

computational cost[15–26]. These methods are efficient; however, because of the modified 
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potential during simulations, additional analysis steps are needed to extract thermodynamic 

and kinetic properties.

For known binding/unbinding pathways or large-scale protein conformational changes, 

various techniques, including umbrella sampling[27–29] and milestoning[30–33], have been 

used to predict kinetic rates and free energy profiles. The Markov state model is widely 

used to estimate the transition rates between different identified states [34–36]. Milestoning 

theory permits the subdivision of transition space into smaller sections, with boundaries 

called milestones, and uses many short trajectories at different positions to obtain a more 

complete kinetic picture. Coordinates to present the states are needed, such as reaction 

coordinates, ligand unbinding coordinates and protein conformational states; ideally, the 

coordinates can capture various motions to accurately estimate the population of these 

intermediate states. Center-of-mass distance between two molecules is widely used to assign 

milestones or states to estimate ligand–protein residence time. However, capturing motions 

of conformational rearrangements for most realistic ligand–receptor systems is a challenge 

for the simplified coordinate. Therefore, post-analysis strategies using physics-based or 

machine learning have been developed to select the coordinates that more accurately 

describe the above motions for free energy and kinetics studies[37–44].

Here, we introduce a Binding Kinetics Toolkit (BKiT) developed to post-analyze simulation 

trajectories and accurately compute the free energy profile and kinetics properties for given 

trajectories by using milestoning theory. The toolkit includes newly developed strategies to 

approximate coordinates for ligand–receptor unbinding or conformational transitions using 

principal component analysis (PCA) and numerical analysis such as interpolation. The top 

few principal component (PC) modes extract major motions from data in trajectories, and 

the projection of the dataset into the PC space creates a PC plot for easily visualizing 

the molecular motions. In addition to providing approximated unbinding or conformational 

transition coordinates, we implemented a new partitioning approach to assign indexes along 

the approximated coordinates in the PC plot. The indexes can be used as milestones or 

microstates for further investigation. Users can easily select projected points on the PC 

plot to examine the molecular system of interest. Using the indexes as milestones, BKiT 

generates input files to run many short 100-ps classical MD (cMD) and uses milestoning 

theory to construct the free energy profile and estimate binding residence time.

We demonstrate the construction of the free energy landscape and residence time estimation 

for two systems: a chemical host–guest system, aspirin and β-cyclodextrin (β-CD), and 

a protein system that is also a promising cancer drug target, cyclin-dependent kinase 8 

(CDK8) and cyclin C (CycC) and two pyrazolourea (PL) ligands: a known ligand, PL1, and 

our designed ligand, PL1-OH [8]. Cyclodextrins (CDs) are a class of cyclic oligosaccharide 

compounds and have various applications as chemical hosts or carriers[45,46]. CDK8/CycC 

plays a key role in regulating transcription activities[47–49]. As typical kinases, CDK8 

has an ATP binding site and an activation loop with a DMG (Asp-Met-Gly) motif. The 

pyrazolourea ligands are considered type-II ligands because the compounds bind to CDK8–

CycC with DMG-out loop conformations. Results produced with BKiT agree with existing 

findings and illustrate the molecular motions and conformations that lead to local free 

energy minima of barriers. We also demonstrate how to use the transient conformations 
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revealed in the free energy profile to modify compounds to achieve desired binding kinetic 

behavior.

Methods

The source code of BKiT is written in Python, and the current implementation is the Python 

version, available in GitHub. It uses popular libraries such as numpy, scikit-learn, scipy and 

pytraj[50], a python implementation of cpptraj[51]. The toolkit is of general applicability 

and can be used to examine changes of molecular conformations, but here we focus on the 

ligand–receptor binding landscape. The protocol and utilities are detailed in the following 

paragraphs, and the main approaches are summarized below (Fig. 1):

1. Obtaining a trajectory (or trajectories) describing the event under investigation, 

for example, the association/dissociation of ligand–protein complexes. Notably, 

BKiT does not perform sampling to obtain the trajectories, and usually an 

enhanced sampling technique is needed because the binding/unbinding processes 

can comprise several rare events.

2. Analyzing the given trajectories to generate an approximated binding/unbinding 

path in the 3D or 2D PC projection space (PC plot). The program can estimate 

the mean path and perform smoothing and interpolation of the path. Users can 

select frames of the trajectories in the PC plot to visualize the conformations.

3. Assigning unbinding coordinates in the PC plot by using disks with 3D 

projection or using lines with 2D projection in the PC plot. The disks or lines 

serve as coordinate indexes based on the approximated unbinding path in the 

PC plot. BKiT can also further optimize the unbinding indexes for assigning 

milestones or microstates for further kinetics and thermodynamics studies.

4. Generating input files using frames of the given trajectories or other user-

selected conformations as an initial structure to run many cMD simulations.

5. Analyzing results from item 4 for transitions between the microstates 

(milestones) to compute the transition kernel, flux, free energy profile and 

residence time.

Trajectory generation via molecular simulations.

Solely studying endpoints such as the free and final bound complexes of both a ligand and a 

receptor is usually not sufficient to characterize the binding/unbinding free energy landscape 

and investigate binding kinetics. Atomistic detailed ligand unbinding or binding pathways 

need to be sampled first (Fig. 1(i)). Because ligand unbinding usually encounters large 

energy barriers during dissociation, researchers typically apply enhanced sampling methods 

such as accelerated MD or steered MD to generate the ligand unbinding trajectories. BKiT 

does not provide the sampling tools to sample ligand unbinding or long time-scale protein 

motions, and any given trajectory or trajectories with a reasonable physical pathway can be 

examined by the program.
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Analyzing a dataset from given trajectories to generate a visually observable unbinding 
path.

BKiT processes a trajectory with an event of interest by performing PCA and using the 

eigenvectors of the first 2 or 3 PC modes to represent the approximated unbinding path 

(the solid lines in Fig. 1(ii)). BKiT allows various atom selections for PCA. For example, 

users can select heavy atoms of the ligand and receptor, or only Cα of proteins to perform 

PC analysis. PCA is a mathematical approach that can extract the major motions from the 

given trajectory[37,38]. The equation PCi(X(j)) = RT(X(j) − X ) is used to project frames 

from the given trajectory onto the PCi space, where i indicates a PC mode, ranging from 

1 to 3 in the current package; RT is the eigenvector for PC1, PC2 or PC3; and X(j) and X
are the Cartesian coordinates of the selected atoms at frame j and the average over the 

trajectory, respectively. Using the PC plot reduces high-dimensional ligand–protein motions 

(3N-6 degrees of freedom where N is number of atoms) to a few dimensions for plotting the 

coordinates to the PC plot for further investigation. As illustrated in Fig. 1(ii), each frame of 

the given trajectory is shown as a dot in the 3D PC plot. As a result, the molecular motions 

along a trajectory can be visualized in the constructed PC plot, and users can select dots on 

the PC plot to observe the conformations of those frames.

Because a smooth approximated unbinding path is required for assigning indexes (i.e., 

milestones) for binding kinetics calculations, we applied interpolation to smooth the 

approximated unbinding path and ensure equal distance between the disk centers. BKiT 

provides two different approaches to generate the approximated unbinding coordinates, 

which can accurately represent molecular motions during the event of interest. The first 

method is based on a rolling average in the PC plot. This strategy assumes that the 

dots represent smooth molecular movements during ligand unbinding. However, during 

a simulation, a ligand may slightly unbind away from a bound conformation and move 

back multiple times. Therefore, we developed the second method, which uses a mean path 

as a reference and re-evaluates every point using local neighborhood average with the 

K-dimensional tree (k-d tree) algorithm for fast neighbor search. However, both approaches 

cannot guarantee a smooth unbinding path, as illustrated in Fig. S1, Fig. S2. Thus, an 

additional path-smoothening steps are applied as described in SI.

Notably, before PC analysis, a proper structural alignment must be performed to eliminate 

molecular translation/rotation during simulations by using a user-defined selection (i.e., Cα
of proteins and heavy atoms of ligands) and a reference frame, preferably the first frame of 

the trajectory. This paper considers all 3 PC modes in the examples, tests, and constructed 

free energy profile.

Assigning unbinding indexes.

Once an approximated unbinding path is built, BKiT inserts disks (3D) or lines (2D) on the 

PC plot to represent unbinding coordinates. Here we focus on the 3D PC plot. Disks are 

inserted at the positions of the smoothed path, with each disk called an index. In most cases, 

the index starts from the bound states to ligand unbound conformations. Normal vectors, Ai, 
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to a disk i surface are gradually optimized over a few thousand iterations to avoid overlaps 

between the neighboring disks:

Ai
t + 1 = Ai

t(1 − α) + α
2 Ai + 1

t + Ai − 1
t

where superscript t denotes iteration steps, and α is a learning rate that controls the 

optimization speed of disk orientations Fig. S3. By default, α is set to a small value, 0.01, to 

ensure gradual convergence.

Depending on the molecular system, users can assign the radius of the disk and the space 

between two adjacent disks (indexes). The default for a ligand–protein system is set to both 

10 eigenvalue units (eu) for the disk radius and their space apart, and users can assign 

different disk radii and intervals when needed. The disk radius and interval do not need to be 

the same throughout the unbinding path. For example, one may use an 8-eu interval to place 

disks when a ligand locates near the crystal structure bound form and a 10-eu interval for the 

rest. For smaller host–guest systems, smaller disks (i.e., 2 eu) are sufficient.

Guided by the PC plot, generating input files for selected frames of the given trajectories 
to perform MD simulations.

BKiT allows users to visualize and select dots on the PC plot (Fig. 1(iii and iv)), which are 

frames of the given trajectory, for further investigation. The program generates input files 

for running cMD using the Amber program. However, users can easily modify the open 

source package to run other simulations to accommodate their needs. Our example here is 

computing a binding free energy profile and kinetics; therefore, our examples used BKiT to 

generate numerous short cMD runs. Multiple replicas using different random number seeds 

can be assigned for each initial structure for each cMD run. For example, users can select 

explicit dots from the PC plot, dots near a disk/line, dots between indexes, or frames resaved 

from the given trajectories for cMD runs. Users can perform various post-analyses for the 

new simulation results or use our utility to process the data to construct a free energy profile 

and estimate binding residence time.

Analyzing short MD runs to construct a free energy profile and investigate dissociation 
kinetics.

BKiT provides utilities to analyze many short MD runs and apply the adaptive milestoning 

theory to construct the transition kernel. Frames of the cMD runs are projected with the 

same eigenvectors used to construct the PC plot. Because of the vast number of frames 

(~0.5 Tb data), this operation is usually the bottleneck of the post-analysis. Thus, users are 

encouraged to perform projections in chunks by using the provided script (MD2PCA.py), 

and the process can be completed within 5 min by using a multi-core CPU processor. Each 

frame of the cMD run is again represented as a dot on the PC plot, and an ID is assigned 

to each dot based on the frame number saved from a trajectory. Notably, BKiT can analyze 

many short MD trajectories to construct the transition kernel, and the initial structures for 

MD do not need to be exactly located on a milestone.
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To describe the position of the newly generated dots (frames of MD runs) in the PC plot, 

a dot (frame) is counted as in an index space i if it lies between the disks (indexes) i and 

i + 1. If a dot is outside the space between any two disks, it does not belong to any index 

space. If the next frame moves from index space i to i + 1, it crosses index i + 1. Similarly, 

when the next frame moves from index space i to i − 1, it crosses index i. The first time that 

a frame hits an index, for example, index i, it is termed an initial point. A molecular system 

may cross the same index multiple times before hitting an adjacent index; then a transition is 

counted and the lifetime τi is recorded. BKiT tracks the movements of each short trajectory 

to record the transitions on each index (milestone). The number of the transitions in index 

i per unit time is defined as flux and denoted as qi. The transition kernel is a matrix that 

contains probabilities of a transition between milestones i and j denoted as Kij. It can be 

directly calculated by counting transitions between the indexes (milestones):

Kij ≃ nij
ni

In this, ni is the number of trajectories initiated at milestone i, and counting these trajectories 

that end up at index j are denoted as nij.

Currently, BKiT offers two methods for calculating the stationary flux. The first method 

iteratively updates flux values by taking a weighted average between fluxes flowing through 

neighboring indexes until the flux in all indexes (milestones) converge to the stationary 

value[30,52].

qi
n + 1 = qi − 1

n Ki − 1, i + qi + 1
n Ki + 1, i

∑1
N qi

n

Convergence is achieved when an overall flux change between the consecutive iterations is 

less than the allowed error, ∑i = 1
N qit + 1 − qi

t ⩽ ε. The second method solves the eigenvalues 

of the transition kernel. Eigenvectors corresponding to the highest eigenvalue, 1, represent 

the stationary flux. Results of these two methods are in a good agreement, as demonstrated 

in Fig. S4 and S5. By multiplying the stationary flux to the average lifetime τi of the 

transition, we get the population and calculate the free energy per unbinding index by 

using Fi = kBT log qi τi . The overall mean first passage time (or residence time) for a ligand 

crossing index f can be estimated by MFPTf = ∑1
f qi τi/qf [30]. Note that an absorbing 

boundary was applied here for the transition matrix when computing q.

System Setup.

β-CD and aspirin complex conformations were taken from a published trajectory, and our 

short cMD runs used the same MD setting as those in the paper[53]. Amber general 

force field (GAFF)[54] and q4MD-CD[55] force field were used for aspirin and β-CD, 

respectively. Short cMD runs for CDK8–CycC–PL complexes were the same as the existing 

work [8] which used Amber14SB[56] force field and GAFF for the protein and compounds, 
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respectively. All 100ps short cMD runs used TIP3P [57] water model and the Amber 

package [58] in 298K, and a frame was saved every 100 fs. In β-CD and aspirin system, 

all frames were aligned to a reference frame using the heavy atoms of β-CD, and PCA 

projection was performed by selecting all O1, C1 and C2 atoms from β-CD and all heavy 

atoms of aspirin. In CDK8–CycC–PL complexes, the frames were aligned to a reference 

frame using the Cα of CDK8, and PCA projection was performed by selecting Cα of CDK8–

CycC and all heavy atoms of PL compounds.

Error analysis.

When constructing the transition matrix, one needs many short cMD runs. BKiT counts 

numerous transitions and computes the average lifetime τi and its standard deviation στ,i of 

each transition. Based on error propagation rule[61], standard deviation of free energy at 

unbinding index i can be derived:

σF , i = kBT στ, i
τi

Furthermore, standard deviation of the mean first passage time MFPT that start at milestone 

b and terminate at milestone f is estimated using the form:

σMFPT = ∑i = b
f qiστ, i

2
qf

Results and Discussion

First, we use one unbinding event obtained from a long timescale cMD trajectory, guest 

aspirin dissociated from β-CD (Fig. 2a), to describe and benchmark the computational 

strategy. In the second part of the Results section, we outline the results for an existing and a 

designed ligand unbinding to the CDK8–CycC complex (Fig. 2b).

β-CD and aspirin complex.

We used guest aspirin unbinding from β-CD as our first example; the 

experimental measurement of ΔGexp( − 3.7 ± 0 kcal/mol), kexp_on 7.2 ± 0.04 × 108 1/sM  and 

kexp_off 1.3 ± 0.03 × 106 1/s  and computation results for ΔGcomp( − 4.11 ± 0.05 kcal/mol), 

kcomp_on 3.2 ± 0.3 × 109 1/sM  and kcomp_off 3.1 ± 0.9 × 106 1/s  are both available [53,59]. β-CD 

has 7 glucopyranose units (D-glucose), which results in a hydrophobic cavity. The host 

has asymmetrically wide and narrow rims with hydrophilic hydroxyl groups. We took one 

unbinding event from a 6-μs cMD trajectory from an existing publication, reporting a total 

of 17 binding/unbinding events [53]. In this event, aspirin dissociated from a narrow rim, 

and we selected a brief period of time, 0.43 ns, when aspirin was ready to dissociate from 

the bound conformation until it barely left β-CD (Fig. 2a). The first 3 PC modes covered 

83.4% of the overall motion. BKiT built the approximated unbinding path with the k-d tree 

algorithm, as detailed in Fig. 1(ii). Using the interval 0.8 eu, a total of 62 2-eu radius disks 
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were inserted in the approximated unbinding path. Disk orientations were optimized over 

8000 iterations to result in the final indexes (milestones) shown in Fig. 1(iii,iv). To set up 

multiple short cMD runs, we resaved the 0.43-ns trajectory every 0.1 ps, for a total of 430 

initial structures for MD. We used 20 replicates with different random number seeds, and 

each run was set to 100 ps with a frame saved every 100 fs.

Using BKiT to analyze the short MD runs, we computed an aspirin-unbinding free energy 

landscape and residence time (Fig. 3). The free energy landscape reveals multiple local free 

energy minima and barriers and estimates the binding free energy of the bound complex of 

ΔG = ∼ − 4 kcal/mol with residence time 56 ns. As compared with ΔGcomp = − 4.11 kcal/mol, 
the approximated binding free energy is reasonable, considering that aspirin bound to the 

narrow rim. Notably, the primary (wide rim) and secondary (narrow rim) cavities of β-CD 

are not identical, and existing studies showed that guests bind preferentially to the primary 

cavity of β-CD because of stronger attractions provided by this cavity. At the first local 

barrier shown in Figure 3A, aspirin is bound directly in the middle of cyclodextrin’s narrow 

rim. The cavity of cyclodextrin began to slightly distort, resulting in more intermolecular 

attractions between the hydrophilic tips and aspirin. The increased intermolecular contacts 

brought down the energy of the system to the global minima (Fig. 3B). As the system 

approached the next barrier (Fig. 3C), the tips of cyclodextrin moved outward, similar to 

the first barrier. Aspirin continued drifting to one side of the cavity and started to associate 

with a single glucopyranose unit of cyclodextrin (Fig. 3D). As the local interactions were 

strengthened, aspirin slid toward the rim, thus resulting in another local free energy barrier 

(Fig. 3E). Aspirin then began to escape the tips of the rim and diffused outward toward the 

solvent (Fig. 3F).

Because the calculations rely on accurately counting the transitions between the unbinding 

indexes (milestones), we examined the simulation lengths of the short cMD runs and points 

for counting the initial-point distribution (IPD) to validate the suggested simulation length 

and our strategies for counting conformational transitions to build the transition kernel 

Kij. Unlike exact milestoning theory, in which researchers need to perform restrained MD 

simulations to obtain initial points on a milestone i for short MD runs, we used frames 

from a given trajectory for short cMD. We did not terminate a cMD run when a molecular 

system moved to an adjacent milestone i + 1 or i − 1. Figure 4 shows that running 20 

replicas of 80-ps and 100-ps short MD runs resulted in asymptotic potential of mean force 

(PMF), which suggests that running 80 ps with 20 replicas is sufficient to converge the free 

energy calculation. We also checked the IPD for 4 energy barriers, which usually have less 

sampling as compared with local energy minima. The population of initial points in a barrier 

index (milestone) satisfies statistical ensemble distribution (Fig. 5), which demonstrates 

that our “on-the-fly” strategy is an efficient strategy to provide IPD, with no need to run 

additional restrained MD on an index to generate the initial conformations. The population is 

converged after running 80-ps MD runs using 20 replicas, although the 100-ps runs provided 

more initial points on a milestone (numbers in parentheses in Fig. 5).
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CDK8–CycC interactions with pyrazolourea ligands.

Our second model system is a real case study of pharmaceutical interest, protein kinase 

CDK8–CycC (Fig. 2c). We applied BKiT to a known tight binder pyrazolourea ligand PL1 

(ΔGexp = − 10.7 ± 0.07 kcal/mol and residence time = 1944 min) and our designed ligand 

PL1-OH that was predicted to increase both binding affinity and residence time. We 

investigated published PL1 and PL1-OH unbinding trajectories from CDK8–CycC by using 

metadynamics [8]. We used the Cartesian coordinates of Cα and ligand heavy atoms for PC 

analysis. The first 3 PC modes covered 81.5% and 88.5% of the overall motions for PL1 

and PL1-OH, respectively. BKiT built the approximated unbinding path with the k-d tree 

algorithm, as detailed in Fig. S1 and S2. For protein systems, we used a 10-eu radius disk 

to present each index along the approximated unbinding path in the PC plot. Using the 4-eu 

interval on the smoothed unbinding path, a total of 84 and 96 disks were inserted to present 

the unbinding indexes of PL1 and PL1-OH, respectively. Disk orientations were optimized 

over 4000 iterations to bring the final indexes (milestones) shown in Fig. S3. To start 

multiple short cMD runs, we took one in every 10 frames from the provided metadynamics 

trajectories to obtain 500 and 650 frames for the PL1–CDK8–CycC and PL1-OH–CDK8–

CycC complexes as initial structures for cMD, respectively. Each initial structure was set 

to run 100-ps cMD with 20 replicas, and a frame was saved every 100 fs. Fig. S4 and S5 

showed that using a total of 10,000 and 13,000 100-ps short cMD runs for both protein 

systems was sufficient to generate a converged ligand unbinding free energy landscape.

The unbinding free energy profile in Figure 6 suggested that additional intermolecular 

attractions may be achieved by adding a functional group in the alkane chain between two 

nitrogen atoms (Fig. 2b). Therefore, a hydroxyl group was added to PL1. Our prediction 

shown in Figure 7 suggested that PL1-OH and CDK8–CycC formed more stable bound 

conformations and prolonged the bound states, resulting in ~70 times longer residence time 

than with PL1. More specifically, a local free energy barrier (Fig. 7C) was the result of 

hydrogen bond breaking between E66 and PL1-OH. As PL1-OH continuously moved away 

from the binding pocket, the length of a hydrogen bond between E66 and PL1-OH increased 

from 1.88 Å at index #55 to 2.04 Å at index #56. However, E66 remained near the same 

places, leading to a locally rugged energy landscape before proceeding to the next free 

energy barrier in Figure 7D.

For both systems, we examined free energy convergence with different simulation lengths 

(Fig. S4 and S5), which showed good convergence after longer than 80-ps simulation 

length cMD. IPD of selected indexes were checked to ensure that the distribution satisfied 

statistical ensembles (Fig. S6 and S7). Although the absolute binding free energy of PL-1 

is ~ −7 kcal/mol (Fig. 6), which is higher than the experimental value, the predicted ΔG 

shows ~ 3 kcal/mol stronger binding affinity for the designed compound PL1-OH. It is 

worth mentioning that the calculation focused on the transient bound CDK8–CycC–PL 

conformations and we did not perform sufficient sampling to capture surface diffusion of 

both PL compounds. However, these bound forms are the main determinants for relative 

binding free energy between compounds of interest. In addition, although we assigned 

many milestones, we used Cα and equal interval to assign indexes (milestones). As a result, 

some fluctuations contributed to unbinding free energy barriers are ignored, which results 
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in errors. The calculations may be further improved by considering side-chains rotations 

which are critical in intermolecular interactions and incorporating machine learning to 

capture ignored motions and energy barriers. The calculation provides another approach to 

investigate transient barriers and minima as a computer-aided guidance for drug design that 

can alter drug binding affinity and kinetics.

Conclusions

We present a new toolkit, BKiT, that offers robust utilities for post-analyzing simulation 

trajectories using a reduced dimensionality PC plot, guiding researchers to select frames 

of interest for further investigation, and for computing the free energy landscape and 

ligand binding residence time using milestoning theory. BKiT aligns a given trajectory or 

trajectories to a reference frame, performs PC analysis, and uses the eigenvectors of the first 

2 or 3 PC modes to project frames of the trajectory to a PC plot. Researchers can examine 

molecular motions on the 2D or 3D PC plot and select frames in the python based BKiT 

interface for additional analysis. The approaches also include assigning an approximated 

unbinding path and creating ligand unbinding indexes in the PC plot. The indexes can serve 

as milestones or microstates for using theories that connect multiple MD runs to extract 

kinetic information. In the current setting, BKiT applies milestoning theory to construct a 

free energy landscape along the indexes and estimate binding residence time. BKiT assists 

in preparing MD simulations and analyzes many short MD runs to count transitions between 

indexes (milestones). We used one event of aspirin unbinding from β-CD to benchmark 

our approaches, which showed good agreement in computed ΔG and residence time with 

results from cMD runs. The computed unbinding free energy landscape also provides a 

more complete picture of host–guest binding barriers and stable local minima to deepen our 

understanding of molecular recognition. Using CDK8–CycC–ligand complexes as examples, 

we computed free energy landscape using 3D PC plots. Similar to use of 2D PC plot[8], 

the free energy profile again revealed key interactions to keep the ligand PL1 in a bound 

conformation and reiterated our previously suggested design strategies for creating PL1-OH. 

The analysis yielded good results that PL1-OH could enhance binding affinity and residence 

time. The python library exploited in the program is easy to use and has extensible features 

for future expansion of more utilities for post-analysis and calculations. With its efficiency, 

BKiT is well suited for studying protein–drug binding systems for structure-based drug 

design.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data and Software Availability

All software is open-source and is made available on GitHub, which can be accessed 

from our group website: http://chemcha-gpu0.ucr.edu/software/ and a method toolbox 

KBbox[60]: https://kbbox.h-its.org/toolbox/tools/data-analysis-tools/bkit/. The BKiT page 

of the site also contains a helpful user manual, installation tips, example input files, and bash 

scripts to streamline the system setup: http://chemcha-gpu0.ucr.edu/bkit/
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Fig. 1. 
Graphical summary of the utilities offered in BKiT using the β-cyclodextrin (β-CD) and 

aspirin complex as an example. i) A trajectory of aspirin dissociation from β-CD. The thick 

line is a cartoon representation of aspirin unbinding with three distinct positions: bound in 

the middle of the cavity (purple), near the rim (light green) and diffusing to solvent (yellow). 

ii) All frames of the dissociation trajectory are projected into a 3D principal component (PC) 

plot, where each dot presents a frame. Continuous change in color from violet to yellow 

represents unbinding. A smoothed unbinding path is shown as a black line. iii) Optimized 

disks (indexes) are placed along the smoothed path shown in ii). iv) Projections of two 

100-ps molecular dynamics (MD) trajectories are shown in blue curves, with start points 

marked as stars. Different indexes are labeled using a different color, and BKiT counts 

the transitions between two adjacent indexes. v) Illustration of a transition kernel and free 

energy plot (potential mean force [PMF]) where the calculated mean first passage times for 

major barriers are reported.
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Fig. 2. 
Molecular structures used in this study. a) β-CD and aspirin bound complex. b) Chemical 

structure of ligands pyrazolourea 1 (PL1), PL1-OH and aspirin. c) A complex structure 

of the proteins cyclin-dependent kinase 8 (CDK8; cyan), cyclin C (CycC; orange) and 

PL1 (green). Regions with significant motions during ligand unbinding are presented with 

different colors. Yellow: αC helices, β1, β2, and β8 sheets, and residues 146–148. Red: 

activation loop. Unbinding path is shown with a transparent arrow.
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Fig. 3. 
Free energy profile (PMF) of β-CD and aspirin with molecular structures. Structures 

depicted from left to right (A-F) show dissociation and conformational changes associated 

with the labeled local free energy minimum or barrier marked with stars for clarity. 

Structures for microstates C, D and E are superimposed for better visual comparison 

between different conformations.
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Fig. 4. 
PMF profile of unbinding β-CD and aspirin complex using a 100-ps MD run with 20 

replicates of each initial structure. Free energy results are calculated using a series of 

different simulation lengths (20, 40, 60, 80, 100 ps) for the β-CD and aspirin dissociation. 

Circles and lines represent iterative and eigenvalue methods, respectively, to compute the 

stationary flux. Local barriers increase when MD runs are shorter than 60 ns because of 

insufficient transition counts.
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Fig. 5. 
Examination of initial point distributions (IPD) for β-CD and aspirin complex. IPDs of each 

index marked with a star were plotted using the Euclidean distances between the center of 

the disk (index) and all points that hit the disk. Distributions were reported from 20-, 40-, 

60-, 80- and 100-ps MD runs, and convergence was achieved after running longer than 80-ps 

MD simulations. The total number of initial points on the disks is shown in parentheses. 

The overall first passage time for aspirin passing major barriers along the PMF profile is 

reported.
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Fig. 6. 
Free energy profile (PMF) for PL1 unbinding from CDK8–CycC. Local barriers are labeled 

with reported overall first passage time of PL1 at barrier A = 1 ns, B = 138 ns, C = 4 μs and 

D = 13 μs. Snapshots for each labeled energy barrier illustrate key residue interactions with 

PL1.
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Fig. 7. 
Free energy profile (PMF) for PL1-OH unbinding from CDK8–CycC. Local barriers are 

labeled with reported overall first passage time of PL1-OH at barrier A = 9 ns, B = 118 ns, 
C = 38 μs and D = 1 ms. Snapshots for each labeled energy barrier illustrate key residue 

interactions with PL1-OH.

Ruzmetov et al. Page 22

J Phys Chem A. Author manuscript; available in PMC 2023 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Graphical Abstract
	Introduction
	Methods
	Trajectory generation via molecular simulations.
	Analyzing a dataset from given trajectories to generate a visually observable unbinding path.
	Assigning unbinding indexes.
	Guided by the PC plot, generating input files for selected frames of the given trajectories to perform MD simulations.
	Analyzing short MD runs to construct a free energy profile and investigate dissociation kinetics.
	System Setup.
	Error analysis.

	Results and Discussion
	β-CD and aspirin complex.
	CDK8–CycC interactions with pyrazolourea ligands.

	Conclusions
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.



