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Executive control (EC) generally refers to the regulation of mental activity. It plays a crucial
role in complex cognition, and EC skills predict high-level abilities including language
processing, memory, and problem solving, as well as practically relevant outcomes such
as scholastic achievement. EC develops relatively late in ontogeny, and many sub-groups of
developmental populations demonstrate an exaggeratedly poor ability to control cognition
even alongside the normal protracted growth of EC skills. Given the value of EC to human
performance, researchers have sought means to improve it through targeted training;
indeed, accumulating evidence suggests that regulatory processes are malleable through
experience and practice. Nonetheless, there is a need to understand both whether specific
populations might particularly benefit from training, and what cortical mechanisms engage
during performance of the tasks used in the training protocols. This contribution has two
parts: in Part I, we review EC development and intervention work in select populations.
Although promising, the mixed results in this early field make it difficult to draw strong
conclusions.To guide future studies, in Part II, we discuss training studies that have included
a neuroimaging component – a relatively new enterprise that also has not yet yielded a
consistent pattern of results post-training, preventing broad conclusions. We therefore
suggest that recent developments in neuroimaging (e.g., multivariate and connectivity
approaches) may be useful to advance our understanding of the neural mechanisms
underlying the malleability of EC and brain plasticity. In conjunction with behavioral data,
these methods may further inform our understanding of the brain–behavior relationship
and the extent to which EC is dynamic and malleable, guiding the development of future,
targeted interventions to promote executive functioning in both healthy and atypical
populations.
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INTRODUCTION: THE IMPORTANCE OF EXECUTIVE CONTROL
Most of the time, people’s rich experiences enable them to navi-
gate the world using a set of habitual (or well-learned) behaviors.
Situations sometimes arise, however, that necessitate on-the-fly
changes to these routines. For example, an unexpected road clo-
sure can require a shift in the usual route one takes to work. In
this and similar circumstances, people must deploy executive con-
trol (EC) to countermand dominant thoughts and behaviors in
favor of irregular actions. In general, EC refers to the guided reg-
ulation of thought and action to match internal or task-relevant
goals, particularly in novel situations. Importantly though, EC
is not a unitary process but refers to a constellation of separable
components that collectively work to guide goal-directed behav-
ior (Norman and Shallice, 1986; Botvinick et al., 2001; Miller and
Cohen, 2001). Some components – appearing in different theoret-
ical frameworks under a variety of guises – include a control system
to manipulate information within short-term memory (Baddeley
and Hitch, 1974), and overlapping but separable processes such

as self-regulation and -awareness, task-switching, updating, and
response inhibition (Miyake, 2000; Barkley, 2001; Friedman and
Miyake, 2004). It is thought that these components can operate
over a wide variety of domains including working memory (WM)
and language processing (Smith and Jonides, 1999; Novick et al.,
2005; Thompson-Schill et al., 2005; Badre and Wagner, 2007). In
this review, we refer to EC in a broad sense to include atten-
tional control, cognitive control, and self-regulatory behavior
(Jonides et al., 1998; Miller and Cohen, 2001; Thompson-Schill
et al., 2005).

Although researchers generally agree that the neurobiologi-
cal systems underlying EC involve the prefrontal cortex (PFC),
the precise manner in which regions within the PFC support
cognitive components of EC is still debated (Figure 1). Lat-
eral regions of PFC may become engaged under multiple EC
demands in a variety of tasks (Thompson-Schill et al., 1997;
Duncan and Owen, 2000; Jonides et al., 2008). The anterior cin-
gulate cortex (ACC), a medial frontal region, is thought to be
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FIGURE 1 | A wide network of brain regions is recruited during EC

processes. The panels above show medial (left) and lateral (right) views of the
left hemisphere. Regions in the EC network include dorsolateral prefrontal
cortex (DLPFC: brown), ventrolateral prefrontal cortex (VLPFC: orange),

anterior cingulate cortex (ACC: blue), posterior parietal cortex (PPC: purple),
and medial temporal lobe structures (MTL: yellow). There is extensive
cross-talk between these regions and with other regions sub-serving
perceptual, motor, and affective/emotional functions.

involved in conflict monitoring, detecting situations that may be
incompatible with current task goals or demands (e.g., Botvinick
et al., 2001), which then signal adjustments in behavior to lat-
eral PFC regions (Kerns et al., 2004). Altogether, these cortical
regions receive multiple inputs from and project outputs to virtu-
ally all perceptual and motor cortical areas, affective/emotional
networks, and subcortical structures. These connections pro-
vide an ideal infrastructure for integrating multiple sources of
information and guiding subsequent thoughts and actions in a
top-down fashion (e.g., Amso and Casey, 2006). We should note
here: neural regions that support EC processes are not neces-
sarily restricted to PFC. The capacity to focus attention may
be constrained by parietal as well as frontal mechanisms, with
increased executive demands modulating activity in posterior
parietal (PPC) and dorsolateral frontal cortices (e.g., Wager and
Smith, 2003). Additionally, medial temporal lobe (MTL) struc-
tures may be recruited in task-specific situations that require
the establishment of novel relations (Ranganath and Blumenfeld,
2005).

A traditional assumption has been that while EC and other ele-
ments of higher cognition develop rapidly through childhood and
adolescence, they remain relatively fixed throughout adulthood.
However, recent evidence has challenged this assumption: first,
EC processes may follow a non-linear developmental trajectory,
in which the maturation of these abilities is subject to changes in
brain morphology (Taylor et al., 2013). These processes – driven in
part by both heritable and environmental factors – may in fact be
subject to experience-dependent plasticity throughout the lifes-
pan (Gray and Thompson, 2004; Bialystok et al., 2006; Neville
et al., 2013; Rebok et al., 2014). In particular, interest has grown
in lab-based interventions targeting EC components with the aim
of also improving performance on other tasks that rely on similar
processes (Morrison and Chein, 2010; Jaeggi et al., 2011; Hussey
and Novick, 2012).

The importance of intervention work targeting EC is under-
scored by the accumulating evidence that EC operates across
other cognitive domains, including WM (e.g, Smith and Jonides,
1999). In particular, WM abilities predict a wide range of practical

outcomes that are important in everyday life, including read-
ing comprehension and mathematical skills (de Jonge and de
Jong, 1996; Passolunghi and Siegel, 2001; Gathercole et al., 2006),
planning and problem solving (Shah and Miyake, 1999), lan-
guage processing (Novick et al., 2005), self-regulatory behavior
(Hofmann et al., 2012), and scholastic achievement (Duncan
et al., 2007; Alloway and Alloway, 2010). Further, deficits in EC
and WM abilities are prevalent in a host of clinical syndromes
and psychopathologies including attention deficit hyperactivity
disorder (ADHD; Shah et al., 2012), depression (Christopher
and MacDonald, 2005), and addiction (Khurana et al., 2013);
it is also among the core domains susceptible to age-related
decline (Braver and West, 2007). In sum, EC is relevant to
common assessments of achievement, is sensitive to develop-
mental changes, and many populations suffer from deficits in
EC. Given the importance of these abilities to daily life, there
has been growing research interest in training paradigms tar-
geting EC abilities with the aim of boosting the improvement
(and forestalling the decline) of other complex cognitive skills
that rely on EC. Despite the growing literature, there is still
a need to understand for whom and at what stages of devel-
opment EC interventions work best, and also to understand
better the cortical mechanisms that underlie training and transfer
effects.

The purpose of this paper is to evaluate the current state of the
intervention field focusing on selected developmental populations
that demonstrate the potential for greater brain plasticity. Because
these populations typically demonstrate exaggeratedly poor abil-
ities to control cognition, they may be candidates who are most
amenable to receiving maximal transfer benefits. We will review
the current work on the neural correlates of training, and suggest
methodological directions that may inform a better understand-
ing of the neural mechanisms underlying EC performance. We
will outline the current literature on interventions targeting EC
(though we note that occasionally different terminology is used
to refer to these interventions, including attentional control, and
WM), placing a particular emphasis on at-risk populations (e.g.,
ADHD and low-socioeconomic status; low-SES) that demonstrate
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performance differences in these domains relative to healthy, adult
groups. Such variation suggests that these special groups might
be candidates for interventions that seek to improve EC abilities
through experience-based plasticity (i.e., an interaction of bio-
logical and environmental factors that results in structural and
functional changes in brain morphology, as well as concomitant
cognitive changes). Much of the current knowledge concerning
the malleability of EC comes from the growing body of litera-
ture demonstrating that EC can be trained in healthy populations
through extensive practice, and that improved performance over
the course of training can generalize to novel tasks that were
not part of the training regimen. Across a range of different EC
tasks, examples of observed transfer benefits include tasks tap-
ping fluid reasoning (Jaeggi et al., 2008), WM updating (Dahlin
et al., 2008), task switching (Karbach and Kray, 2009), visual search
(Kundu et al., 2013), and language processing (Novick et al., 2014).
Although there is little debate as to whether performance on EC
tasks can be improved, there is considerable debate around the
transferability to novel, untrained tasks (e.g., Redick et al., 2012;
Sprenger et al., 2013; Thompson et al., 2013). Transferability is
critical to adjudicating between whether EC skills per se are affected
during training versus whether people simply develop task-specific
strategies. One potential explanation for these mixed findings may
lie in individual differences in the training-transfer relationship,
as well as in the strength of the linking assumptions that tie train-
ing and transfer tasks together in terms of shared mechanisms
(Jaeggi et al., 2010, 2014). As such, a key assumption of the train-
ing literature is that these kinds of transfer benefits can occur
when there is cognitive and/or neural overlap between the pro-
cesses tapped in both training and transfer, irrespective of domain
(Dahlin et al., 2008). This overlap is termed process-specificity:
if a certain component of EC – e.g., updating– is targeted and
improved over the course of training, then transfer tasks that also
rely on updating processes should also be affected, even if the
task itself appears superficially different (say, in terms of stimuli
characteristics).

To inform our discussion, we reviewed the literature on EC
interventions in children and adults and then sorted the papers
by population (i.e., healthy versus at-risk children), and by mode
of outcome measure (behavioral and/or neural). For the selected
developmental populations, when necessary, we consulted reviews
on each separate topic, integrating relevant information from
those reviews into our own.

This paper is organized into two parts. In Part I, we discuss
the development and neurobiology of EC, followed by an exam-
ination of experiences that can affect the development of EC in
both negative (e.g., stress, low-SES) and positive (e.g., school-
ing, music education, martial arts) ways. We then review the
training literature involving “at-risk” groups, focusing particularly
on low-SES and ADHD, and the effectiveness of certain kinds of
EC interventions, guided by an understanding of the factors that
positively influence EC. This field is new, and consequently the
results are still inconclusive. Note that for the purpose of this
review, we will focus on select developmental groups, and we
will not review ongoing EC intervention work that targets older
adults or adults with psychopathologies, but rather, we refer the
readers to other recent reviews on those topics (Kueider et al., 2012;

Vinogradov et al., 2012; Wiers et al., 2013). In Part II, we briefly
review the neuroimaging intervention literature in healthy popu-
lations to guide future training studies involving populations that
are likely to demonstrate poor EC. The early state of this enter-
prise, however, suggests major inconsistencies: no clear picture
emerges in terms of brain activity changes and reorganization
post-training. This discrepancy renders it difficult to draw gen-
eralizable conclusions, but the field is emerging rapidly, requiring
evaluation of the current state of affairs. Moreover, neuroimaging
studies of clinical or at-risk groups in the context of intervention
research are likely to be even more complicated and problematic,
especially when considering atypical behavioral and neural pro-
files. We therefore suggest some candidate neuroimaging analyses
(i.e., connectivity and multivariate approaches) that emphasize
the ability to examine spatial and temporal patterns in terms of
network dynamics, which can reveal a delicate interplay across
brain regions and systems. Such methods have the potential to
be more informative relative to traditional univariate approaches
that test for pre/post activation differences within cortical patches
in isolation.

PART I
THE DEVELOPMENT OF EC AND ITS NEURAL SUBSTRATES
Executive control has long been associated with the PFC (Shi-
mamura, 2000; Miller and Cohen, 2001), which is among
the last cortical regions to fully develop: EC abilities undergo
protracted maturation over the course of childhood and ado-
lescence (Thompson-Schill et al., 2009). Moreover, the litera-
ture on neuroanatomical development across the whole brain
points to dynamic changes that occur postnatally and through-
out childhood, with initially undifferentiated regions becoming
increasingly functionally specialized (Oliver et al., 2000). This
development can occur at different rates: for instance, frontal
brain regions undergo change up to age 25, with some fron-
totemporal tracts not reaching maturity until age 28. Relatively
undifferentiated cortical regions co-occur with earlier (rather
than later) development, providing a period in which these
undifferentiated neural networks may cover larger areas of cor-
tex. As a result, earlier targeted training might lead to more
widespread transfer effects by taking advantage of this undif-
ferentiated stage of cortical development (Wass et al., 2012).
Although additional factors – including genetic and environmen-
tal predispositions as well as dynamic morphological changes
– lead to a complicated interplay of developmental compo-
nents to be taken into consideration (Scerif, 2010), a younger
population that may generally have greater brain plasticity and
thus, greater learning potential (e.g., Karmiloff-Smith, 1998;
Sonuga-Barke and Halperin, 2010). Primarily for this rea-
son, we focus on EC interventions in developmental popula-
tions.

Plasticity accompanies cortical maturation beginning at birth.
Humans are born with immature brains, and it has been well
established that brain maturation develops throughout childhood
and adolescence, with PFC developing last (Sowell et al., 2003;
Gogtay et al., 2004). Throughout postnatal development, the neo-
cortex matures through an initial rapid growth process of cell
proliferation and changes in synaptic density. During this period,
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the increase in synaptic connections accompanies dendritic and
axonal growth (i.e., fibers for communication that extend from
neurons) and myelination (i.e., insulation, thus boosting sig-
nal transmission) of the subcortical white matter (Huttenlocher
and Dabholkar, 1997). Synaptogenesis is then followed by prun-
ing, a synapse-elimination process that lasts well into the third
decade of life (Huttenlocher and Dabholkar, 1997; Petanjek et al.,
2011). Critically, these processes dynamically occur at differing
rates throughout the brain (Huttenlocher and Dabholkar, 1997).
Brain regions subserving sensory functions, such as vision and
hearing, develop first, followed by development of temporal and
parietal cortices – regions responsible for sensory associations.
Higher order cognition areas, such as prefrontal and lateral tem-
poral cortices, which serve to integrate information from primary
sensorimotor cortices and modulate other cognitive processes,
mature last (Casey et al., 2005b; Petanjek et al., 2011).

Non-invasive neuroimaging technologies have enabled
researchers to learn a great deal about the anatomical and func-
tional networks of the developing brain. Early work with positron
emission tomography (PET) imaging demonstrated that human
PFC metabolizes glucose at a slower rate than occipital, tem-
poral, and parietal cortices (Chugani and Phelps, 1986). There
also appears to be evidence for a “fine-tuning” of cortical struc-
tures as activation shifts from diffuse to focal recruitment as
children develop, with cortical gray matter loss (i.e., a sign
of cortical maturation) – occurring last (Brown et al., 2005).
Taken together, structural and functional evidence suggests that
prefrontal regions associated with integration and goal-directed
behaviors mature after regions responsible for primary sensory
functions (Casey et al., 2005a), with both progressive and regres-
sive processes (rather than simple linear patterns of change)
underlying changes in cognitive abilities (Brown et al., 2005; Amso
and Casey, 2006).

Cognitive training studies in children seek to take advantage
of this relatively undifferentiated brain state (cf. Wass et al., 2012)
to maximize possible transfer before pruning accompanies neural
specialization. These interventions can take many forms, including
mindfulness training, core or supplemental curricula (see Dia-
mond and Lee, 2011); here, we focus on cognitive interventions
that specifically target EC processes. For example, guided practice
can improve children’s performance on a dimensional card sorting
task, wherein children are given feedback when they perseverate
after a dimension switch (Brace et al., 2006). Additional studies
have used intervention paradigms in children to improve EC abil-
ities through training (Holmes et al., 2009; Thorell et al., 2009;
Jaeggi et al., 2011; Loosli et al., 2012). Still others have sought to
improve the symptoms associated with disorders such as develop-
mental dyscalculia (Kucian et al., 2011), reading abilities in at-risk
youth (Yamada et al., 2011), and dyslexia (Temple et al., 2003).
Such behavioral interventions seek to demonstrate improvement
on EC – that is, those skills that are critical for complex cognitive
functioning and scholastic achievement (Diamond and Lee, 2011).

Importantly, however, there are arguments for why the
costs associated with late PFC development (and consequently,
immature EC) may be overshadowed by learning benefits that
accompany this slow maturational progression. Specifically, an
underdeveloped frontal cortex (i.e., hypofrontality) might confer

ways for the developing child to increase uptake of bottom-
up regularities, which are important for creativity and language
learning tasks (Gleitman et al., 1984; Thompson-Schill et al.,
2009; Chrysikou et al., 2011). The general idea is that attend-
ing to top-down rules – while good for EC task performance –
may interfere with important learning and classification proce-
dures. For example, Ramscar and Yarlett (2007) demonstrated
that children are easily able to master learning how to plural-
ize irregular nouns (e.g., mouse → mice) rather than adopting
a pluralization dictated by the more frequent convention or
rule (e.g., mouse → mouses). This result points to the idea
that children maximize probabilistic input, which in this case
optimizes learning. In contrast, adults tend to monitor for
rules and alternative patterns using top-down strategies, which
may impair certain aspects of language learning that benefit
from bottom-up (data-driven) modes of thinking (Ramscar and
Yarlett, 2007). This age-related difference in learning may be
promoted by immature EC abilities driven by an underdevel-
oped PFC. In view of these trade-offs, we believe that future
interventions aimed at improving performance in developmental
groups must strongly consider whether, on balance, the potential
costs to learning will outweigh the potential benefits to perfor-
mance. We focus on select at-risk groups in this review (rather
than typically developing children) because the potential perfor-
mance benefits of EC interventions may outweigh the learning
costs.

In sum, these examples demonstrate that an immature PFC
bears negative consequences for cognitive performance in certain
tasks, but that it can also provide benefits for learning and creativ-
ity. In particular, hypofrontality may confer learning benefits at
the expense of performance costs, so interventions geared toward
young children should consider this trade-off. Thus, the argument
for accelerating maturation of EC networks that are mediated by
regions of prefrontal cortices through interventions may need to
be tempered with the evolutionary and developmental advantages
that immature frontal lobes may confer.

Such critical periods of development suggest that children may
be affected by both positive and negative factors during particular
time windows that could shape cognition and EC development
(Nelson, 2000; Knudsen, 2004). In the following sections, we
review some of these factors. We then review the training lit-
erature of some “at-risk” groups: as part of this research, the
training protocols consider the conditions that favorably affect EC
performance, in hopes of offsetting the negative consequences of
environmental and biological circumstances that compromise EC.

FACTORS THAT NEGATIVELY AFFECT EC DEVELOPMENT
Socioeconomic status (SES)
Environmental factors, including SES, can significantly affect
cognitive and brain development (Noble et al., 2007). SES is a com-
posite measure of economic and non-economic factors, including
material wealth, social prestige, and education. Educational advo-
cates have long discussed the negative implications of low-SES
backgrounds on cognition and, ultimately, on academic achieve-
ment (Sirin, 2005; Duncan and Sojourner, 2013). Thus, negative
environmental factors such as SES play a role in shaping candidate
neural pathways by which (negative) early life experiences might
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compromise academic achievement or increase the risk of mental
illness (Hackman and Farah, 2009; Hackman et al., 2010). Because
neurobiological systems may mediate these SES-cognition gradi-
ents, we focus here on research demonstrating a link between SES
and assessments of EC. For example, Noble et al. (2005a) found
that in kindergarteners differing in SES backgrounds, low-SES
children performed worse than middle-SES children on mea-
sures of language (mediated by the left perisylvian regions) and
EC (mediated by thePFC). The groups did not differ on other
cognitive measures, and the authors point to the delayed matura-
tion of the brain regions mediating these abilities as being more
susceptible to environmental factors such as SES. A subsequent
study of individual differences using a population of first-graders
demonstrated that SES explained 30% of the variance in language
performance (Noble et al., 2007). SES also explained 6% of the
variance in EC performance (despite the small values, they were
statistically significant in both cases).

While the role of SES has been examined in sociological and
epidemiological contexts, research is just now beginning to shed
light on its impact on neurobiological mechanisms. For example,
in 5-year-old children, SES predicts hemispheric asymmetry of
the inferior frontal gyrus – which is well known to support critical
EC functions – even after controlling for scores on a standardized
set of language and cognition tests, with left lateralization associ-
ated with higher SES (Raizada et al., 2008). Consistent with this
result, Sheridan et al. (2012) found that right medial frontal gyrus
(rMFG) activity was inversely related to accuracy in acquiring a
novel stimulus–response association (e.g., through a dimensional
change card sorting task). Finally, cortical thickness measures
vary differentially based on individual IQ levels. Not only might
prolonged cortical thickening reflect extended synaptogenesis in
individuals with high IQ, but this measure is also linked to
increased levels of environmental input (Brant et al., 2013).

Additionally, Stevens et al. (2009) have demonstrated that
SES differences can contribute to development of neural mecha-
nisms of selective attention by measuring event-related potentials
(ERPs), which provide an electrophysiological response to stim-
uli that is temporally precise. In particular, ERPs can provide an
index of selective attention by demonstrating an amplified neural
response in the N1 early negative component, which occurs in the
first 100 ms after stimulus presentation (Hillyard et al., 1973). In
one study, ERPs were measured while children were cued to selec-
tively attend to one sound source and ignore the other. Compared
to high-SES children, low-SES children showed reduced effects
of selective attention on neural processing, as seen in an altered
N1 response over bilateral frontal and central electrodes. Specif-
ically, children in the lower SES group had a larger amplitude
response to probes in the unattended channel relative to children
in the higher SES group, suggesting an impaired ability to sup-
press a response to distracting information (Stevens et al., 2009).
This parallels other ERP work suggesting that low-SES popula-
tions have difficulty inhibiting distracting information (D’Angiulli
et al., 2008); they also show an attenuated response to novel stimuli
relative to high-SES children (Kishiyama et al., 2009).

These findings demonstrate negative behavioral and neural
consequences of low SES on EC development, suggesting that this
population might be a prime candidate for EC remediation. We

return to this issue in the section entitled, “What Groups Might
Benefit from an EC Intervention?”

Early life stress
Early life stress (ELS) is the exposure to childhood events that
challenge a child’s emotional and physical well-being, exceed-
ing their ability to cope with the events (Gunnar and Quevedo,
2007; Pechtel and Pizzagalli, 2010). Some of these stressors can
include abuse, neglect, social deprivation, or household dysfunc-
tion (Brown et al., 2009). Further, although acute instances of
stress can activate the body’s stress response resources in a benefi-
cial manner, high and especially chronic levels of stress can perturb
typical brain development (Pechtel and Pizzagalli, 2010).

Neurobiological and neuroendocrine studies suggest that ELS
might interfere with typical brain development by accelerating
synaptic pruning and aberrantly increasing myelination (Teicher
et al., 2006; Paus et al., 2008), although magnetic resonance (MR)
neuroimaging techniques do not currently have the resolution
to test this empirically (Gogtay and Thompson, 2010). How-
ever, studies largely support negative impacts of ELS on cognitive
function, which are accompanied by decreased intracranial vol-
ume, reduced cross-hemisphere integration, and a smaller corpus
callosum (Schiffer et al., 1995; Teicher et al., 2004; Noble et al.,
2005b). In line with these findings, microstructural integrity of
the corpus callosum may be reduced after ELS exposure (Paul
et al., 2008).

In addition to showing effects of ELS on memory (Carrion
et al., 2001; Karl et al., 2006) and affective function (Dillon et al.,
2009), ELS also impacts EC (Colvert et al., 2008; Bos, 2009; Pol-
lak et al., 2010). Mueller et al. (2010) conducted an functional
magnetic resonance imaging (fMRI) study in which adolescents
exposed to ELS performed a variant of the go/no-go task involving
“go” and “change” trials. Relative to controls, ELS adolescents had
longer response times on “change” trials that were accompanied
by increased activity in the inferior frontal cortex and striatum.
One possible explanation for this group difference is that these
frontal regions might be more active to compensate for reduced
inhibitory capacity, which has also been observed in women with
ELS histories (Navalta et al., 2006).

ELS is correlated with low SES, and both negative factors can
spur the development of psychopathologies, including anxiety and
attention deficit hyperactivity disorder (Heim and Nemeroff,2001;
Lupien et al., 2009) – two clinical syndromes that we discuss in the
section entitled, “What Groups Might Benefit from an EC Inter-
vention?” Generally, this work suggests that ELS and low SES can
result in altered prefrontal function, with negative consequences
for various cognitive domains, including those subserving EC.
Current neuroimaging approaches such as interregional connec-
tivity network analyses might yield a better understanding of the
effects of SES and ELS on neurobiology by painting a broader
picture of whole brain dynamics. We return to this issue in more
depth later in Part II.

FACTORS THAT POSITIVELY AFFECT EC DEVELOPMENT
Thus far, we have reviewed the ontogeny of EC abilities and
the impact that negative factors can have on EC development.
However, there is evidence from experiments showing that broad
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training – outside the lab – can positively affect EC development.
These naturalistic interventions can take the form of aerobic exer-
cise and games (Davis et al., 2011), music training (Rauscher et al.,
1997; Budde et al., 2008), being raised in a bilingual environment
(Calvo and Bialystok, 2014), and yoga (Manjunath and Telles,
2001), providing some evidence for EC improvements, particu-
larly when EC demands are the greatest. Social pretend play, in
which children must inhibit acting out of character and flexi-
bly adjust as their friends improvise, improved performance on
child versions of the dot-probe and flanker tasks (Diamond et al.,
2007).

These various forms of training each have EC components
that are central to the tasks – for example, children in mar-
tial arts training, including taekwondo, begin each session by
directing attention toward themselves (Diamond and Lee, 2011).
They monitor, evaluate, and adapt their thoughts and actions,
and this practice can lead to increased concentration (Konzak
and Boudreau, 1984) and cultivation of mental capacity (Seitz
et al., 1990). Lakes and Hoyt (2004) observed children after a
3-month taekwondo intervention, finding that they were more
able to focus attention and efforts on the task at hand, and
they also improved on an intellectually challenging mathematics
task. By engaging in naturalistic forms of training that incorpo-
rate EC components, these interventions – might generalize to
improvement on other tasks that also involve shared EC abili-
ties. Moreover, the experience of the classroom itself might boost
EC abilities beyond natural development. For example, Burrage
et al. (2008) demonstrated that early schooling has a significant
impact on EC abilities in a group of pre-kindergarten and kinder-
garten children when compared to children at the same age who
did not attend school, even when assessing these abilities before
schooling began and when controlling for factors such as SES and
race.

In view of these findings, various kinds of interventions might
be especially useful for children with poorer EC abilities, in
that they may enjoy more benefits from an intervention (Dia-
mond, 2012). Given the association between EC abilities and
numerous cognitive skills, academic outcomes, and clinical psy-
chopathologies, targeted EC interventions during childhood may
be particularly useful (keeping in mind the caveats outlined ear-
lier related to top-down/bottom-up trade-offs). To this end, we
now review specific at-risk groups that could profit from an EC
intervention. Although numerous factors might result in an educa-
tional achievement gap for these populations, timely educational
interventions may be able to minimize or even close this gap by
positively impacting EC development.

WHAT GROUPS MIGHT BENEFIT FROM AN EC INTERVENTION?
Low SES
The susceptibility of prefrontal cortices to experiential and envi-
ronmental factors such as SES and life stress described earlier
raises the question of whether these cortical networks are subject
to improvement through intervention, as such negative experi-
ences can range widely in scope. In other words, the differences
observed in brain and behavioral function in low- relative to
high-SES children is experience-dependent, where experience is
defined by real-life economic and social circumstances. Here,

laboratory-developed interventions might be able to create new
experiences for low-SES children to mitigate the gaps outlined
above.

In a broad family-based intervention, Neville et al. (2013)
developed “Parents and Children Making Connections - High-
lighting Attention,” or PCMC-A – a program that combines
training sessions for parents with concurrent attention training
exercises for children. These exercises are designed to improve reg-
ulation of attention and emotion states. Over the course of 8 weeks,
low-SES preschoolers who were enrolled in Head Start completed
either the PCMC-A program, an active control training program
that focused on child classroom training, or remained in Head
Start alone (i.e., no supplemental training). After the intervention,
PCMC-A children demonstrated improvements of measures of
non-verbal IQ, receptive language, and pre-literary skills; further-
more, their parents reported reduced stress levels. Before training,
the groups did not show differences in ERP signatures of early
attentional modulation to either attended or unattended stim-
uli, suggesting an inability to shift attention toward either sound
source. However, after the intervention, only the ERP signatures of
the PCMC-A group demonstrated improved selective attentional
processing as a function of the intervention. Along with another
study demonstrating that low-SES children may profit from tar-
geted EC interventions (Goldin et al., 2014), these early results
hold promise for using interventions to target at-risk children and
may serve as precursors to subsequent behavioral effects.

Other types of targeted interventions may be able to counter-
act the negative consequences of environmental factors such as
SES on distinct cognitive processes. In one study by Mackey et al.
(2011), low-SES children trained for 8 weeks on either reason-
ing or speed processing using a battery of commercially available
games. After training, reasoning-trained children completed more
matrix reasoning problems, and speed-trained children improved
significantly on a measure of cognitive speed that requires rapidly
translating digits into symbols. Finally, although the reasoning-
trained group also showed improved measures of spatial WM span,
these gains did not appear to be related to reasoning gains. Taken
together, the results suggest that both cognitive processes – reason-
ing and speed – are separately modifiable by targeted interventions,
and that these improvements are seen in a special low-SES popu-
lation that may need the intervention more than others in order
to reduce the achievement gap (Mackey et al., 2011). Although the
neural correlates of these interventions have not yet been tested,
one possibility is that the interventions may alter the rate of white
matter maturation, wherein the degree of white matter develop-
ment influences processing speed, which might in turn support
improved reasoning ability (Ferrer et al., 2013).

In sum, behavioral work is beginning to shed light on how both
broad and targeted interventions can positively impact EC abilities
in low-SES populations, but more work will be necessary to better
understand the neurobiological changes underlying improved EC
as well as the time-course for these changes. We will again return
to these ideas in Part II.

Attention deficit hyperactivity disorder (ADHD)
We have described some research showing that children – a
population with late-developing EC abilities, partially due to
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immature neural “hardware” – might benefit from EC interven-
tions that specifically target these abilities, yielding improvement
on untrained tasks (at least in the lab). Intervention work may
also benefit other groups who demonstrate poor EC skills relative
to adults and their non-clinical counterparts, for example, certain
clinical populations that are prevalent in a child population (e.g.,
ADHD). Similar to low-SES groups and in contrast to healthy pop-
ulations, the impaired EC abilities in this clinical syndrome might
make these children prime candidates for EC remediation. For this
reason, we turn now to work that has examined this possibility in
ADHD.

ADHD affects 3–10% of children in the United States (e.g.,
Merikangas et al., 2010) and is defined by inattention, impul-
sivity, and hyperactivity with broad deficits in EC (Barkley,
1997). ADHD, linked to impaired function of the frontal lobes
(Castellanos and Proal, 2012), can negatively impact educational
achievement, job success, and social well-being (Kessler et al.,
2006; Loe and Feldman, 2007). The prevalence and impact of
ADHD in children has led researchers to implement cognitive
interventions to help this population. For example, an early study
used an adaptive (i.e., adjusting for difficulty as the participant’s
performance improved) and intense (i.e., repeated several times
a week for at least 5 weeks) intervention in ADHD children.
In addition to improving on the trained WM task, participants
significantly improved on an untrained WM task, as well as
on Raven’s Progressive Matrices (RPM), a non-verbal complex
reasoning task (Klingberg et al., 2002). Using Cogmed training,
one study demonstrated that across measures of WM, inhibitory
control, and complex reasoning, ADHD children who trained
on Cogmed outperformed those children completing a control
training program (Klingberg et al., 2005). There are also indi-
cations that WM training may alter academic performance in
these populations (Green et al., 2012), and some of these effects
can persist for months after the end of training, suggesting
that long-term changes are possible with short, intense training
periods.

Despite the initial promising effects of the Cogmed WM train-
ing program, more recent studies using Cogmed in children with
ADHD have been mixed (Chacko et al., 2013). For example, two
studies showed improvements to neuropsychological outcomes
and parent-rated ADHD symptoms relative to both wait-list con-
trol and placebo treatment conditions (Klingberg et al., 2005; Beck
et al., 2010). However, a third study did find improvements to
behavioral observation during an academic task but no improve-
ments in parent-rated ADHD symptoms (Green et al., 2012). A
fourth study using an active-control group found no group dif-
ferences between the training and control groups (Gray et al.,
2012). Other approaches have used forms of computerized atten-
tion training: training on sustained, selective, alternating, and
divided attention using visual and auditory stimuli (Shalev et al.,
2007). In a separate study, relative to a no-contact control group,
the researchers found small to moderate improvements on EC
measures of inhibition, planning, comprehension and memory
of verbal instructions, and cognitive flexibility. However, these
small effects were also accompanied by several transfer measures
that did not reveal any significant effects at all, and the evaluators
were not blind to each participant’s assigned condition (Tamm

et al., 2013). Some of these behavioral study limitations and dis-
crepancies may be attributed to the lack of alignment between
treatment outcomes and the model of therapeutic benefit, a lack
of theory-driven overlap between the training regimen and out-
come measures (e.g., in terms of cognitive mechanisms tapped; see
Dahlin et al., 2008), the equivalence of the control conditions, and
examining the individual differences in treatment response (Shah
et al., 2012).

In a pair of studies that combined behavioral WM training with
neuroimaging in order to uncover neural changes in the ADHD
population after an intervention, Hoekzema et al. (2010, 2011)
observed functional and structural changes after training ADHD
children on tasks tapping WM, cognitive flexibility, attention,
planning, and problem solving. Functionally, during inhibition,
researchers observed increased activation in orbitofrontal cortex,
superior frontal cortex, middle frontal gyrus, and inferior frontal
cortex. Performance during attention tasks was associated with
increased cerebellar activity (Hoekzema et al., 2010). Structurally,
the researchers observed volumetric gray matter increases in bilat-
eral middle frontal cortex and right inferior–posterior cerebellum
after training compared to controls. Furthermore, the extent of
gray matter volume increase in cerebellum was associated with
attentional performance. Interestingly, the regions demonstrating
training-related changes are some of the same regions that are
typically characterized by volume reduction in ADHD patients.
If these regions subserve ADHD behavior, then cognitive train-
ing might counteract some of the neuroanatomical reductions
associated with the disorder and its symptoms (Hoekzema et al.,
2011), with cognitive training playing a functionally restorative
role that ultimately leads to compensatory increased gray matter
volume.

To conclude, although promising, EC intervention work tar-
geting ADHD is still in its early stages and the findings are
still too varied to warrant strong conclusions about positive
effects. Some of the current behavioral and neurobiological
limitations for this line of research might be addressed by
broadening the scope and procedures of the training, as well
as by embracing an interdisciplinary approach that can bet-
ter conceptualize and enhance cognitive training in ADHD as
a possible therapeutic target (Rutledge et al., 2012). This work
may also generally benefit from novel neuroimaging techniques
that can more comprehensively assess spatial and temporal brain
changes that yield (and inform an interpretation of) behavioral
improvements.

PART II
In Part I of this review, we discussed how EC ontogeny and negative
factors impacting its development might be mitigated by interven-
tions that target EC abilities, and we described several populations
who might be good candidates to focus training efforts because
of the educational, economic, and social implications of poor
EC. However, we do not yet have a clear understanding of the
neurobiological changes that induce behavioral improvements
following an EC intervention. Indeed, in some cases, we also
lack a clear understanding of the cognitive mechanisms that are
trained during a regimen and are common to the outcome mea-
sures to effect transfer. The behavioral work that we described
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previously raises particular questions about the spatial profile and
time-course of the neurobiological changes. In other words, it
remains untested what brain systems underlie transfer effects in
special groups because the neuroimaging component of EC inter-
ventions in these populations is in a relative phase of infancy.
Such research is critical to conduct to (a) validate behavioral
effects (e.g., by examining common brain-behavior changes post-
intervention) and (b) use as a precursor to behavioral effects
that have not emerged. Namely, can structural and/or func-
tional brain activity patterns predict who within a special group
is likely to benefit from training? The answer to this ques-
tion could shed light on some of the mixed findings reviewed
earlier.

In theory, meanwhile, studies of EC interventions in healthy
populations could inform which neurobiological (and cogni-
tive) mechanisms should be targeted in special groups in hopes
of maximizing transfer success. Given some inconclusive find-
ings reviewed in Part I, the time is ripe to consider this issue.
It is widely accepted that for routine practice with a train-
ing task to confer transfer benefits to an (unpracticed) out-
come measure, some underlying cognitive and neural processes
must be shared across both tasks (Dahlin et al., 2008). For
example, Dahlin et al. (2008) demonstrated that after 5 weeks
of memory-updating training, behavioral improvements trans-
ferred to a WM 3-back updating task but not to a Stroop
task. Critically, both the updating task and the WM task
engaged the striatum, whereas the Stroop task—a prefrontal
conflict resolution task—did not. These results provide evi-
dence that shared neural substrates underlie process-specificity:
the idea that transfer can occur when both training and trans-
fer tasks recruit overlapping processing and neurobiological
components.

We discussed earlier that EC comprises multiple components
and is not, rather, a unitary construct (Friedman and Miyake,
2004). In view of this, it may be unsurprising that in stud-
ies of healthy adults, many EC interventions do not result in
widespread transfer (Morrison and Chein, 2010; Hindin and
Zelinski, 2012; Redick et al., 2012; Melby-Lervåg and Hulme,
2013; Sprenger et al., 2013; Thompson et al., 2013), perhaps due
to a weak link between the components tapped during training
and those tapped in the outcome task(s) (Jaeggi et al., 2010). A
similar argument could plausibly explain some of the unreliable
results described earlier in special groups. A process-specificity
framework however might afford some traction in the future, par-
ticularly in special groups, to better understand the mixed results
outlined in Part I. Although not the focus of those studies, the
use of neuroimaging methods to evaluate common neurobiolog-
ical structures and cognitive procedures could inform what range
of processes are affected in clinical groups and thus what ought
to be the focus of training. Moreover, because the neural mech-
anisms underlying a complex set of behavioral changes in these
select groups is so poorly understood, a process-specific approach
could also help to generate testable predictions by providing a
candidate set of neural networks on which to focus analyses.
This suggestion follows the tradition of lesion-deficit analyses
in neuropsychological groups (e.g., aphasics), where mapping
specific symptoms associated with a complex syndrome (rather

than an entire syndrome itself) onto specific brain structures has
been a more fruitful approach (e.g., Dronkers, 1996; Robinson
et al., 2005), as attempts to localize multifaceted disorders in the
brain has yielded little consistency. Rather, the various symptoms
associated with a complex syndrome typically reveal an intricate
network of involved regions, and process-specific contributions
to a network could provide insight into which parts of a net-
work might change depending on what the target is of a particular
intervention.

Non-invasive brain imaging is a valuable method for examin-
ing the neural mechanisms that underlie the observed behavioral
changes in EC resulting from intervention. By shedding light on
some of the cortical mechanisms involved in the training and
transfer tasks (see Figure 1), it provides potential explanations
for the brain-behavior relations that give rise to transfer bene-
fits. It might also provide information on why transfer does not
occur in some circumstances. In what follows, we review some
research that has investigated brain activity changes in healthy
groups in the context of EC intervention. To preview, although
there are intriguing and interpretable trends within any given
study, there is a fair amount of inconsistency in the findings
across studies, thereby preventing a clear and uniform descrip-
tion of what happens neurobiologically following intervention.
This result is somewhat problematic for a broad understand-
ing of process-specificity, as it might apply to EC interventions
for the special groups outlined in Part I. We suggest that one
issue is that most studies of this sort focus analyses on brain
changes in isolation, rather than on dynamic changes in a
networked system of brain regions acting in concert. This lim-
itation makes the current state of the science difficult to forge
obvious paths for proceeding with special groups. We there-
fore conclude with some ideas about other analysis techniques
that are designed to evaluate brain-network dynamics that could
ultimately bypass current limitations and offer a better, more com-
prehensive understanding of the advantages and constraints of EC
intervention.

NEUROIMAGING OF INTERVENTION WORK IN HEALTHY POPULATIONS
Neural changes that accompany behavioral results following train-
ing can take a number of forms; we focus here on functional
rather than structural changes (Kelly et al., 2006; Buschkuehl et al.,
2012). Using fMRI, some researchers have hypothesized that train-
ing should increase neural activation magnitude, because this
direction of the effect is thought to reflect neural strengthening fol-
lowing practice (i.e., better behavior = more neural recruitment).
Some studies have indeed reported increases in the functional acti-
vation of brain regions recruited during training (Temple et al.,
2003; Shaywitz et al., 2004; Stevens et al., 2008; Hoekzema et al.,
2010; Jolles and Crone, 2012). For example, Olesen et al. (2004)
found WM-related activity increases in the middle frontal gyrus
and parietal cortex after 5 weeks of WM training, replicating
some of these results at the single-subject level (Westerberg and
Klingberg, 2007). Another study trained young adults on for-
wards and backwards object span for 6 weeks, which resulted in
increased activation in default-mode regions during the forward
condition, accompanied by increased activation in the striatum
and left ventrolateral PFC in the backward condition (Jolles et al.,
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2011). Finally, Buschkuehl et al. (2014) found increased perfusion
in frontal and occipital regions as a function of a short (one-week)
intervention. These activation increases might be attributed to
an increase in the size of training-related cortical representations
over time, or to a strengthened neural response from brain areas
already active pre-training (Pascual-Leone et al., 2005; Kelly et al.,
2006).

In contrast, other researchers have hypothesized that training
should result in decreases in neural activation magnitude (Qin
et al., 2004; Haier et al., 2009; Kucian et al., 2011), which could
be attributed to increased neural efficiency that develops over the
course of the intervention period (Kelly et al., 2006; Neubauer
and Fink, 2009; Nyberg et al., 2009). Using an adaptive WM
intervention with the n-back task, Schneiders et al. (2011) found
that after training, participants showed decreased activation in
the right superior middle frontal gyrus and posterior parietal
regions. Another study scanned participants three times over the
course of 4 weeks while they practiced the n-back task: although
the researchers initially observed increased activity in the intra-
parietal sulcus and superior parietal lobe midway through their
training protocol, these same regions demonstrated decreased
activation at the end of their training protocol (Hempel et al.,
2004).

Other researchers have suggested that training can result
in neural re-distribution, namely, a combination of activation
increases and decreases. For example, Dahlin et al. (2008) found
increased activity in the striatum after participants trained for
5 weeks on an updating task, which was accompanied by acti-
vation decreases in frontal and parietal regions. In the same
paper described earlier, Olesen et al. (2004) conducted a second
experiment in which they trained young adults on visuospa-
tial WM tasks for 3 weeks. After training, they found increased
activation in frontal and parietal regions, as well as the basal
ganglia and thalamus; this effect was accompanied by activa-
tion decreases in the anterior cingulate, post-central gyrus, and
inferior frontal sulcus. In all of these studies, the decreased
activation in regions that mediate attentional control might
reflect a shift from sustained attention required to perform a
novel task toward more automated processing. The increased
activation might reflect increased neural strengthening follow-
ing practice (akin to Hebbian learning principles of neuronal
firing).

These mixed results make it difficult to draw definitive con-
clusions about the impact of training on brain function and call
for neuroimaging techniques that can effectively assess dynamic
neural changes over time. However, one hypothesis to explain
the variation above is that training time (or task proficiency) may
drive the neural changes observed after training. Specifically, short
periods of training may increase neural activation—reflecting
increased effort in learning and adapting to task demands—
whereas progressively expert task proficiency in carrying out a
particular cognitive function may result in decreased activation
(reflecting increased neural efficiency). Emerging techniques in
neuroimaging (e.g., network analyses) are attractive methods for
testing this hypothesis because changes in network functions may
be able to reveal a dynamic interplay among regions that underlie
plasticity.

CURRENT AND FUTURE DIRECTIONS
Connectivity analyses
Localization studies—like those described in the previous
section—are useful in revealing the spatial profile of isolated brain
activity of particular regions but may not yield the most compre-
hensive or consistent picture of neural dynamics. Moreover, it is
clear that brain regions form networks for communication rather
than act exclusively. Connectivity analyses assess these network
dynamics, and functional connectivity analyses test the correlation
of brain activity across regions that are cooperatively recruited by
some mental procedure. Specifically, interregional connectivity
data reveal the extent to which activity in one brain area co-
varies with activation in other brain areas. This analysis approach
can be particularly informative because it paints a broader pic-
ture of neural dynamics—at the network level, and beyond that
of activity magnitude changes—that can be altered by an inter-
vention. Another benefit is that regional co-variation can yield
insight into both process-specificity (brain areas that co-engage
during a particular cognitive function) and domain-generality
(brain areas that may co-engage with a specific cognitive pro-
cedure during some epoch but with another procedure during
another epoch, influenced by task demands; see Federenko and
Thompson-Schill, 2014). Therefore, network approaches might
provide insight into the variable nature of the functional findings
described above. For instance, functional connectivity analyses
permit researchers to address these questions: What regions of
the network change over time, and how do they change? What
regions remain activation-stable despite other parts of the net-
work showing activation-variance following intervention? At what
point does the initial “ramp up” (reflected by activation increases)
that corresponds to the effort associated with the novelty of a
training-task procedure become less effortful, more efficient, and
automatic (reflected by activation decreases)? Does such “ramp
down” occur alongside behavioral improvements on the train-
ing task as well as transfer measures? Does it occur together
with ramp-up elsewhere in the network, assuming that multi-
ple cognitive procedures are tapped during training? Figure 2
sketches some hypothetical outcomes of a connectivity approach
to training.

Further, the connectivity approach allows researchers to
consider intrinsic brain activity at rest in addition to task-
related activity, and any differences in resting state connec-
tivity after the intervention could suggest generalized effects
beyond that of training task performance. Connectivity anal-
yses can additionally converge with task-related analyses to
provide meaningful information about neural changes after
interventions (Buschkuehl et al., 2014). Such dynamic inter-
play among regions could reveal important insights into
brain plasticity, which localization approaches might inherently
miss.

A few studies have demonstrated increased functional con-
nectivity following training. After a period of intensive reason-
ing training (i.e., an Law School Admission Test preparation
course), Mackey et al. (2013) found that students who had
completed the course showed strengthened fronto-parietal and
parietal-striatal connections. Moreover, left rostro-lateral PFC
had increased resting-state functional connectivity with parietal
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FIGURE 2 | A hypothetical network trajectory for changes in brain

activation as a function of training, whereT1 indicates pretest andT2

indicates posttest. (A) T2 taken during time period 1 (lightest gray) will
observe an increase in activation that could reflect neural strengthening;
(B) T2 taken during time period 2 (dark gray) will also observe an increase in
activation that is actually tied to a trending decrease in activation; (C) T2
taken during time period 3 (darkest gray) will observe a decrease in
activation that could reflect increased neural efficiency. Panels (A–C)

consider a single cognitive process, but important information about
network connectivity and co-variation could emerge by considering multiple
cognitive processes in concert with one another. (D) Multiple cognitive
processes with different time-course trajectories may demonstrate a more
complex pattern of network changes that are best detected through
approaches that can assess changes in cognitive processes in addition to
their relational co-variation and connectivity. Finally, note that these
outcomes do not preclude the potential benefit of multiple interim
assessment scans throughout training (which, while informative, may not
always be feasible for logistical and financial reasons).

regions (both within the left hemisphere and between hemi-
spheres). Increased functional connectivity in terms of efficiency
(i.e., the extent to which a region connects with other regions)
and degree value (i.e., the number of connections that a region
has to other network regions) has also been linked to medita-
tion training (Xue et al., 2011). Specifically, the left ACC – a
key regional node in the self-regulatory network whose func-
tion may serve cognitive as well as socio-emotional purposes
(Kelly et al., 2008)—demonstrated increased connectivity after
a period of integrative body-mind (or meditation-type) train-
ing. Finally, after training participants on an adaptive verbal
processing speed task, Takeuchi and colleagues (Takeuchi et al.,
2011) observed increased functional connectivity between the left
perisylvian area and regions extending to the lingual and cal-
carine cortex. This increased connectivity might reflect increased
verbal information transfer between the regions, and was cor-
related with behavioral improvements on the processing speed
task.

Other studies have seen a combination of increases and
decreases in connectivity after an intervention (cf. Figure 2).
For example, in the same study by Jolles et al. (2011) that found
increased activation in the striatum and PFC after 6 weeks of
verbal WM training, the researchers also observed increased
functional connectivity between the rMFG and other regions
of a fronto-parietal network, including bilateral superior frontal

gyrus, paracingulate gyrus, and ACC. Further, the degree
of increased functional connectivity positively correlated with
behavioral performance increases. These connectivity increases
were accompanied by decreased functional connectivity between
the medial PFC and the right posterior middle temporal gyrus.
One potential explanation for these effects could be that the
connectivity between these regions reflects both reactive task
engagement as well as expectation about co-activation in the
future (Körding and Wolpert, 2006; Bar, 2007; Raichle, 2010). In
a second study, Takeuchi and colleagues (Takeuchi et al., 2013)
administered 4 weeks of an adaptive WM training task, find-
ing that WM-trained participants showed increased functional
connectivity between mPFC and the precuneus (both regions
that are part of the default mode network, or DMN), as well as
decreased connectivity between mPFC and right posterior pari-
etal cortex and right lateral PFC (nodes of the executive attention
system, or EAS). The authors argue that these results reflect
a shift from the EAS network (activated during task engage-
ment) toward the more automated DMN, which tends to be
activated in a task-independent manner (Chein and Schneider,
2005).

In sum, studies that examine connectivity changes – and
more generally, analyses that consider network activation and co-
variation – may be able to clarify some of the field’s mixed results
by providing a broader picture of the neural dynamics that accom-
pany behavioral training and transfer. They may be able to do this
because they can assess connectivity measures that account for
changes in spatial activation, time-course differences, and network
and regional communication and co-activation. In particular, they
could shed light on the idea that with practice, EC processes will
become more automatic over time, requiring fewer cognitive and
neural resources (Chein and Schneider, 2005). For example, one
could test this prediction by examining the extent to which con-
nectivity changes in regions that subserve EC components (even
if activity decreases) after an intervention, and whether the degree
of these changes can be predictive of behavioral performance
after training as well. Within a process-specificity framework, one
might further predict connectivity changes that are dependent on
both training duration and the extent of overlap across cogni-
tive processes (i.e., the shift in distance between distinct cognitive
processes – see Figure 2D).

Multi-voxel pattern analyses
Activation increases and decreases—such as those described
previously—are usually based on general linear modeling (GLM)
analyses of neuroimaging data. Each volumetric unit of the imaged
brain (usually termed a “voxel”) carries a time-series of informa-
tion, with approximately 40,000 data-points (i.e., one for each
voxel in the brain) collected every few seconds over the course of
an experiment. In fMRI, the GLM approach—which is the stan-
dard in the field—involves analyzing the information from these
voxels to separate stimulus-induced signals from noise. However,
this modeling approach comes with a set of assumptions that,
when considering neurobiological mechanisms more naturalisti-
cally, may become limitations (for a comprehensive review, see
Monti, 2011). Specifically, GLM approaches assume that the activ-
ity in each voxel of the brain occurs independently from every
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other voxel in the brain. While the assumption is more likely to be
true for voxels that are located far apart from one other, its validity
is somewhat more limited when considering two voxels that sit
near or adjacent to one another. In these cases, the GLM approach
may not fully capture spatially distributed information that goes
beyond meaningful signal in individual voxels.

Thus, analysis approaches that consider meaningful patterns
of activation, rather than a set of independently activated vox-
els, might yield informative results with important implications.
This kind of “pattern-analysis” approach, often termed multi voxel
pattern analysis (MVPA), considers patterns of activation rather
than individual voxels, and therefore carries the additional benefit
of not having to rely solely on voxel-by-voxel activation. More-
over, the high spatial frequency information detected by MVPA
is conducive to performing within-subject analyses. That is, tra-
ditional GLM analyses necessarily average activity across subjects’
brains (which vary wildly in terms of size, morphology, and loca-
tion of particular regions), and patterns in one individual may
not generalize to others. An MVPA approach, in contrast, affords
greater sensitivity toward detecting neural patterns, and thus has
the potential to identify information about brain activation pat-
terns within individual subjects and cater to individual differences
in these activation patterns. MVPA has primarily been applied
in the long-term memory and visual domains. For example, it
has been used to predict recall of object categories (Polyn et al.,
2005), demonstrate distributed neural representations of objects
(Haxby et al., 2001), decode brain states during near-threshold
fear detection (Pessoa and Padmala, 2006), distinguish between
lexical and syntactic neural information (Fedorenko et al., 2012),
and link behavioral and neural measures of conceptual similarity
(Weber et al., 2009). To our knowledge, MVPA has not yet been
applied to the neuroimaging of EC training studies, but might
reveal subject-specific brain states that are predictive of behavioral
changes following an intervention.

For example, the degree of similarity between brain activa-
tion patterns before and after training may predict the extent of
observed behavioral improvement on the training tasks; addition-
ally, similarity between these training patterns and brain patterns
associated with outcome measures might be indicative of transfer
success (or at least, a precursor to it). Both of these measures could
ground MVPA findings within a process-specificity framework by
providing a concrete measure of similarity between training and
transfer brain activation patterns. Further, by being able to cater
to single subjects and account for individual differences that may
be masked through a group-level analysis, it may uncover neu-
ral mechanisms underlying some of the individual differences in
behavioral training and transfer. Thus, its analytic appeal might
make it an attractive analysis candidate for future intervention
work.

CONCLUSION AND CLOSING REMARKS
In this review, we have discussed several examples of populations
for which training EC might serve as a useful intervention strategy,
as well as how emerging neuroimaging techniques might inform
the mixed results from these groups.

Though much work has been devoted to the behavioral transfer
effects of training, some information on the neural transfer effects

of training in healthy adults is beginning to emerge. The neu-
roimaging intervention work in healthy populations, as a result,
may be able to inform future work on post-intervention neural
changes in select developmental and at-risk populations, although
this field is relatively young and thus faces challenges. Further, we
have suggested some possible neuroimaging analysis techniques –
namely, connectivity of neural networks and multivariate pattern
analysis – that might provide additional guidance by examin-
ing brain states as well as intra- and inter-regional connectivity
patterns before and after training.

We have discussed a few selected groups whose relatively poor
EC skills make them prime candidates for EC intervention, but
the current results from that work are mixed. A process-specific
account – not usually the focus of intervention work in these
populations – could be informative in both better understand-
ing when transfer does and does not occur, and helping to guide
future neuroimaging work in this field. Emerging neuroimag-
ing approaches – namely, connectivity and MVPA analyses –
may also be able to paint a more comprehensive picture of the
undoubtedly complex neural profiles in these groups (and their
potential plasticity). Finally, additional research on the basic sci-
ence mechanisms underlying EC training could have important
social, educational, and economic implications as it works to guide
and inform future training paradigms targeted toward specific
populations.
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