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Abstract

Eosinophils and their secretory mediators play an important role in the pathogenesis of infectious 

and inflammatory disorders. Although eosinophils are largely evolutionally conserved, their 

physiologic functions are not well understood. Given the availability of new eosinophil-targeted 

depletion therapies, there has been a renewed interest in understanding eosinophil biology as these 

strategies may result in secondary disorders when applied over long periods of time. Recent data 

suggest that eosinophils are not only involved in immunological effector functions, but also carry 

out tissue protective and immunoregulatory functions that actively contribute to the maintenance 

of homeostasis. Prolonged eosinophil depletion may therefore result in the development of 

secondary disorders. Here, we review recent literature pointing to important roles for eosinophils 

in promoting immune defense, antibody production, activation of adipose tissue, and tissue 

remodeling and fibrosis. We also reflect on patient data from clinical trials that feature anti-

eosinophil therapeutics.
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Eosinophils, neutrophils and basophils are subpopulations of granulocytes. Eosinophils were 

named by Paul Ehrlich in 1879 since these cells can be stained by the acidophilic dye eosin 

(1). Eosinophils are present in all vertebrates, including zebrafish (2) and various species of 

reptiles (3), suggesting important physiologic functions which, however, remain largely 

unclear. A comprehensive understanding of eosinophil function is urgently needed since the 

Correspondence: Prof. Hans-Uwe Simon, Institute of Pharmacology, Inselspital, INO-F, CH-3010 Bern, Switzerland. 
hus@pki.unibe.ch. 

HHS Public Access
Author manuscript
Int Arch Allergy Immunol. Author manuscript; available in PMC 2021 January 01.

Published in final edited form as:
Int Arch Allergy Immunol. 2020 ; 181(1): 11–23. doi:10.1159/000504847.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



development of novel targeted anti-eosinophil therapies that result in dramatic eosinopenia 

together with clearance of eosinophils from tissues. Specifically, benralizumab, a therapeutic 

antibody directed against the IL-5 receptor alpha chain, eradicates eosinophils not only from 

blood but also from tissues (4). An earlier evaluation concluded that there were no adverse 

consequences resulting from anti-eosinophil therapy (5). However, we do not yet understand 

the consequences of eosinophil depletion and will need to determine whether patients who 

are fully devoid of eosinophils over a long period of time would be at risk for developing 

secondary disorders.

What is known is that eosinophils develop in the bone marrow from myeloid precursors. For 

the differentiation of eosinophils in response to allergic provocation, the cytokine, IL-5 has 

been established as the critical mediator (6). Interestingly, IL-5 also induces counter-

regulatory mechanisms inhibiting eosinophil differentiation. For instance, IL-5 induces 

expression of the small G protein RhoH in immature eosinophils which ultimately reduces 

the rate of differentiation (7). Other cytokines promoting eosinophil differentiation include 

IL-3 and GM-CSF (8). Lineage commitment is controlled by an interplay of transcription 

factors that include GATA-1, GATA-2, PU.1, c/EBP-alpha (9) and XBP-1, a factor identified 

in granulocyte-macrophage (GMP) and eosinophil progenitors (EoP) that specifically 

promotes eosinophil maturation in mice (10).

Eosinophils are released into the circulation upon terminal differentiation and are recruited 

into tissues in response to chemokines, notably those of the eotaxin family (11,12). 

Eosinophils are present for only a few hours in the blood (13) but can survive in tissues for 

several weeks (14). Indeed, delayed apoptosis contributes to increased numbers of 

eosinophils in somatic tissues (15). The number of eosinophils further increases under 

pathological conditions such as allergic or infectious/helminthic parasitic diseases. Blood 

hyper-eosinophilia is defined as more than 1500 eosinophils per mm3 (13). Primary 

eosinophilic diseases are caused by genetic changes which affect the eosinophil lineage, 

while secondary eosinophilic diseases are caused by increased expression of one or more 

eosinophil hematopoietins (16). Elevated levels of IL-3 and/or IL-5 are observed most often 

in eosinophilia associated with allergic responses and asthma (17). By contrast, elevated 

GM-CSF levels more typically indicate the presence of a malignancy (18).

Eosinophils have been detected in all vertebrate species and are largely conserved from the 

perspective of morphology and general function. Notably, human and mouse eosinophils are 

distributed to similar sites throughout the body, maintain parallel (albeit not identical) 

developmental patterns and display largely conserved responses to Th2 cytokine provocation 

(19). However, it is important to recognize that mouse and human eosinophils have unique 

features, with distinct cell surface receptors and granule components, as well as different 

propensities to degranulate in response to specific stimuli (20,21). The eoCre mouse strain 

has facilitated introduction of human proteins into the mouse eosinophil lineage and may 

thus help to address this issue (22).

Owing to the availability of new experimental mouse models and to the novel, specific 

therapeutics that have been approved for human use, there has been significant recent 

progress in understanding the function of eosinophils in health and disease. Regarding the 
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cellular characteristics of eosinophils, there are several excellent review articles available 

(20,23). In this review article we will summarize new findings regarding eosinophil function 

with a particular focus on their health promoting functions and their dysfunction in 

individual disease states.

Eosinophil degranulation and eosinophil extracellular trap formation

The release of the content of granules into the extracellular space by activated eosinophils is 

termed piecemeal degranulation (24) which reflects the observation that usually only a small 

amount of the granule content is released and that eosinophils remain viable in this process 

(Figure 1). Activated eosinophils develop cytoplasmic secretory vesicles (sombrero vesicles) 

and remain viable and fully responsive to subsequent stimuli, even if re-stimulated with the 

same ligands (25). The process of exocytosis is observed less frequently as compared to 

piecemeal degranulation. Some activated eosinophils may undergo cytolysis (Figure 1), a 

non-apoptotic form of eosinophil death which is observed in vivo (26,27). Cytolysis of 

eosinophils results in the release of intact granules in the extracellular space (28). The 

mechanism of eosinophil cytolysis involves components of the necroptotic pathway, 

including receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase-like 

(MLKL) (29). The extracellular deposition of eosinophil granule proteins in tissues as a sign 

of piecemeal degranulation under in vivo conditions can be detected by 

immunohistochemical and immunofluorescence techniques. Such investigations 

demonstrated that eosinophil granule proteins are long-lived and even detectable after 

eosinophils have been removed in the process of resolution of inflammation (30).

As eosinophil granule proteins can remain in tissues over weeks in the absence of severe 

damage, one can speculate that such proteins are somehow of limited toxicity. However, the 

granule proteins of eosinophils are cationic, released at high local concentrations from 

eosinophil cytoplasmic granules, and have been demonstrated to be highly toxic to both 

pathogens and neighboring cells. It remains unclear how eosinophils can maintain control of 

the effects so that they themselves do not disintegrate from within. In case of major basic 

protein (MBP), toxicity is regulated by functional aggregation and crystallization (31); 

likewise, human ECP and EDN are complexed in granules with zinc (32).

Primary human eosinophil granules contain Charcot-Leyden crystal protein (CLC, also 

known as galectin 10). In tissues characterized by eosinophilic infiltration, CLC crystals are 

often found in the extracellular space suggesting the release from activated or cytolytic 

eosinophils (33). CLC crystals stimulate Th2 immune responses, while a soluble CLC 

mutant form was inert (34). An anti-CLC antibody against epitopes of the CLC 

crystallization interface dissolved CLC crystals in mucous derived from an asthma patient 

and reversed CLC-driven inflammation in a humanized experimental mouse model of 

asthma (34). These data suggest that CLC / galectin 10 may be a new drug target in asthma.

Granule proteins can also be attached to DNA released from activated eosinophils. Such 

extracellular structures have been designated as eosinophil extracellular traps (EETs) (35). 

EETs are a part of the innate immune response and can be seen in multiple infectious, 

allergic, and autoimmune eosinophilic diseases. Interestingly, the DNA within the EETs 
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appears to have its origin in the mitochondria of eosinophils, which had released fragments 

of their mitochondrial DNA, but remained viable, exhibiting no evidence of a reduced life 

span. EET formation does not require cell death and its molecular mechanism is distinct 

from that of eosinophil cytolysis (29,35). Multiple eosinophil activation mechanisms can 

lead to EET formation (Figure 1), whereby toll-like, cytokine, chemokine, and adhesion 

receptors can all initiate transmembrane signal transduction processes leading to the 

formation of EETs (35,36). One of the key signaling events required for DNA release is the 

activation of the NADPH oxidase (35,37). EETs are present in allergic, autoimmune and 

infectious eosinophilic diseases (35,38–42).

Much exploration has been directed toward understanding the function of EETs. EETs 

capture and kill bacteria (Figure 2) (35) and fungi (43). They have also been found capable 

of playing an anti-bacterial role in experimental mouse models under in vivo conditions 

(35,44). Similar extracellular DNA traps are formed by neutrophils and designated 

neutrophil extracellular traps (NETs) (45,46). As with EETs, there is a controversy regarding 

the origin and mechanism of DNA release in neutrophils which has recently been reviewed 

elsewhere (47). NETs formed by viable neutrophils require an intact cytoskeleton (48) and 

mitochondria for glycolytic ATP production (49). Whether these intracellular mechanisms 

also hold true for eosinophils remain to be shown. Although autophagy can partially block 

eosinophil cytolysis (29), it appears that lack of autophagy does not affect EET formation 

(50).

Anti-pathogen activities of eosinophils

Eosinophil numbers are often elevated in the course of helminth infections. In conjunction 

with the observation that granule proteins such as MBP and ECP exhibit antiparasitic 

activities under in vitro conditions, the historic view had concluded that eosinophils 

represent important effector cells in helminth infections. However, the role of eosinophils in 

experimental mouse models of helminth infections often failed to show evidence for an anti-

parasitic role (51,52). In fact, there is evidence that parasites, at least in the case of 

Trichinella spiralis, recruit eosinophils to facilitate their own persistence (53). Likewise, 

human data collected in endemic countries have also led to the conclusion that ECP has no 

immediate impact on infection with S. mansoni (54). In contrast, more recent data support 

that eosinophils mediate immunity to filarial tissue helminth infection (55). Similarly, lack 

of eosinophils increased the severity of Litomosoides sigmodontis infection (56). It is not yet 

clear why the role of eosinophils in helminthic parasitic infections remains unsettled, but it 

appears that their function is largely dependent on the mouse strain and the pathogen 

employed (57). A better understanding of eosinophils as immunomodulatory leukocytes may 

ultimately help to resolve this complex issue (20,58).

Besides recent studies demonstrating anti-bacterial activities for eosinophils in the context of 

EET formation, earlier studies have highlighted the bactericidal properties of MBP and ECP 

in vitro. In vivo data seem to support a direct antibacterial role of eosinophils, as the 

adoptive transfer of eosinophils was sufficient to protect against bacterial septic shock 

(35,59). Moreover, it has recently been shown that eosinophils degranulate and form EETs 

in mice infected with Citrobacter rodentium, a model of Escherichia coli infection in 
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humans. In this model, the bacterial infections appeared to be controlled by eosinophils, 

while in the absence of eosinophils, mice suffer from severe bacterial infection and colitis 

(44). However, it should be noted that, even in these models, eosinophils may be activating 

other cells which then result in the indirect protection from bacterial pathogens.

Eosinophils may also exhibit antiviral activities. For instance, the granule protein eosinophil-

derived neurotoxin (EDN) has been shown to have antiviral activity in vitro (60). In 

experimental models, hyper-eosinophilic mice clear respiratory syncytial virus (RSV) more 

effectively than wild-type mice (61), and can prevent infection with the natural rodent 

pathogen, pneumonia virus of mice (PVM; (62)). This effect seems to be mediated by the 

release of eosinophil mediators which limit the infection of host epithelial cells (63). 

Similarly, in a guinea pig model, allergen-induced eosinophilia was associated with a 

decreased viral load during parainfluenza virus infection (64). Similar findings were 

observed in mice infected with Influenza A (65), although an antiviral activity does not 

occur in all contexts (66). Taken together, eosinophils, perhaps by the release of soluble 

mediators, mediate antiviral effects, but the mechanism needs to be explored and further 

clarified.

Immunoregulatory roles of eosinophils

Eosinophils produce and release functional cytokines and chemokines. For instance, 

eosinophils can produce IL-4 (67) and IL-13 (68) which trigger Th2 differentiation (69), B 

cell activation (68) and maintain alternatively activated macrophages (70). In addition, the 

recruitment of Th2 cells is supported by producing CC-chemokine ligand 17 (CCL17) and 

CCL22 (71). It should be noted, however, that eosinophils can also produce IFN-γ which 

promotes Th1 responses (72). On the other hand, eosinophils have recently been shown to 

restrict Th1 responses against intestinal commensals and in response to experimental H. 
pylori infection, suggesting that they actively contribute to the maintenance of intestinal 

homeostasis (44). In addition, eosinophils were required for the maintenance of intestinal 

IgA+ plasma cells and normal microbiota composition in a mechanism possibly involving 

TGF-β (73). Eosinophils also produce APRIL and IL-6, which sustain long-lived plasma 

cells in the bone marrow (73). They can also produce and release large amounts of IL-8 (74), 

GM-CSF (75) and IL-10 (76), suggesting that they might be able to attract neutrophils, to 

autostimulate themselves in an autocrine/paracrine manner, and to suppress immune 

responses. Cytokine expression by eosinophils under in vivo conditions varies substantially 

and may be disease-and microenvironment-dependent (77).

Eosinophils can interact with several cell types and release a broad range of soluble 

mediators in addition to cytokines. For instance, the release of cationic granule proteins 

stimulates dendritic cells (78), mast cells (79), neutrophils (80) and nerve cells (81). Granule 

proteins can also damage epithelial cells (31) which may release Damage-Associated 

Molecular Patterns (DAMPs), hence maintaining the inflammatory state. Eosinophils have 

also been described as antigen-presenting cells (82), although the in vivo functional 

relevance of this observation has been questioned (83). Recent findings also suggest a role 

for eosinophils in regulating adipose tissue (70), which is now considered as a tertiary 

lymphoid organ (84). Eosinophils have been described as located in proximity to mast cells 
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under in vivo conditions (85). In vitro data suggest that eosinophils and mast cells signal 

each with reciprocal surface receptor interactions and with the release of soluble factors 

(Figure 3) (86).

Eosinophils along with other structural and immune cells are an abundant source of 

inducible nitric oxide synthase (iNOS) (87). By the oxidation of L‐arginine to L‐citrulline, 

iNOS synthesizes nitric oxide (NO), an important signaling molecule, neurotransmitter, host 

defense, and immune regulator (88). iNOS-derived NO can kill bacteria and has anti-viral 

effects, but it can also cause severe tissue damage and modulate the function of immune 

cells by nitration or nitrosylation of key signaling pathway molecules. For instance, in the 

presence of iNOS, S-nitrosylation of cysteine residues results in de-oligomerisation of the 

immunoprotective surfactant protein D (SP-D) and loss of its anti-inflammatory function. 

Specifically, S-nitrosylated SP-D was no longer able to suppress extracellular DNA trap 

formation by eosinophils in vitro and in a model of severe eosinophilic airway inflammation 

in mice in vivo (89). NO was shown to alter tyrosine residues in transcription factors thereby 

suppressing its own production and the polarization of M1 macrophages as well as Th1 and 

Th17 cells, providing a negative feedback and skewing inflammation (90). Indeed, high 

levels of iNOS-derived NO are strongly associated with Th2-high airway inflammation in 

asthma. Accordingly, fractional exhaled nitric oxide (FeNO >50 ppb) in the breath of adult 

patients with asthma, together with peripheral blood eosinophilia, is used as a noninvasive, 

predictive biomarker identifying those suitable for targeted anti-eosinophil treatment (91).

Adipose tissue activation by eosinophils

It has been demonstrated that eosinophils are components of adipose tissue infiltrates where 

they promote glucose homeostasis and regulate energy expenditure (70). Mice lacking 

eosinophils display exaggerated weight gain and glucose intolerance when fed a high calorie 

diet (70). In contrast, hyper-eosinophilic mice show protection from diet-induced obesity 

and improved glucose tolerance (70). Group 2 innate lymphoid cells (ILC2s), by releasing 

IL-5, to promote eosinophil accumulation in adipose tissue (92). Eotaxin-1 is produced by 

adipocytes which actively recruit eosinophils to adipose tissue (93). Interestingly, a 

fibroblast growth factor 21 analogue, which can stimulate eotaxin-1 secretion, has been 

reported to reduce triglycerides and body weight in an early clinical study (93). The 

mechanism by which eosinophils regulate the metabolism of adipose tissue may involve the 

recruitment and longevity of alternatively activated M2 macrophages (Figure 4) (94).

Recent work suggests that increasing eosinophils numbers with IL-5 did not improve 

glucose tolerance or reduce the body weight of obese mice (95). This surprising negative 

finding stands in contrast to earlier work, in which eosinophil numbers were increased by 

overexpression of IL-5 in T cells (70). The reasons for this discrepancy remain unclear but 

may be simply that mice need longer time periods of high IL-5 levels or that levels of 

eosinophils achieved were not high enough after IL-5 application. Alternatively, several 

groups have shown that IL-5 overexpression elicits just one of many outcomes, and that 

other eosinophil phenotypes may result depending on which cytokines contributed to 

differentiation and activation (96,97). Nevertheless, it can be concluded that a simple 

increase in eosinophil numbers in adipose tissue does not automatically improve its 
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metabolic functions. It seems that the nature and quality of the eosinophils infiltrating into 

the tissue is a crucial issue and that further research focused on gene expression, signaling 

networks and mediator release is needed to clarify these points.

Wound healing and remodeling mediated by eosinophils

When DAMPs are released from damaged cells, eosinophils are activated through their 

pattern-recognition receptors (PRRs). PRRs are surface molecules that can recognize 

pathogens and/or host-derived damage signals (98). For instance, the binding to high 

mobility group box – 1 (HMGB1), a necrosis signaling molecule, by the receptor for 

advanced glycation end products (RAGE) expressed on eosinophils can mediate the 

chemotactic migration of eosinophils and their response to areas of tissue injury or necrosis 

(99). Moreover, eosinophils were rapidly recruited following skeletal muscle injury and were 

required for the proliferation of muscle resident fibro/adipocyte progenitors (FAPs) through 

the secretion of IL-4 (100). Eosinophils further promote healing by acting on the vasculature 

and elevating epithelial cell proliferation (101). For this reason, eosinophils release 

cytokines such as vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) 

and transforming growth factor-β1 (TGF-β1) (58) as well as osteopontin (101).

However, the healing effect mediated by eosinophils is often exaggerated. A fibrogenic 

process is often observed in chronic inflammatory eosinophilic diseases such as bronchial 

asthma (102) and eosinophilic esophagitis (103). A recent study suggested that eosinophil-

regulated s100a8 and s100a9 participates in tissue healing in an experimental colonic 

inflammation model (104).

Eosinophil subpopulations

Functional distinctions have been drawn between eosinophils recruited from circulation in 

response to tissue pathology (allergic, parasitic, neoplastic, immune) and those that maintain 

residence and are present in tissues at homeostasis. Eosinophils are prominent among the 

resident cells of the small intestine, and distinct populations of eosinophils have been 

identified in the mouse lung (105,106). Similar to T cells, B cells, innate lymphoid cells, and 

dendritic cells, a primary classification system that defines eosinophil subpopulations on the 

basis of surface antigen expression, tissue localization, contents and function, has recently 

been presented (107).

It is clear that eosinophils from different sources and unique microenvironments differ in 

their expression of surface receptors and cytokines (107–109). For instance, mouse 

eosinophils exhibited a pro-inflammatory gene expression signature that was lost upon 

initiation of the repair phase (104). In human subjects, the intestinal mucosa of patients with 

eosinophil esophagitis included both CD25 positive and negative eosinophils (110). 

Furthermore, in eosinophilic skin diseases, populations of eosinophils expressing unique 

subsets of cytokines were detected (77). Among normal blood donors, the cytokine content 

varied significantly and in particular the concentrations of the dual-function cytokine IL-16 

(111). These data suggest that eosinophils are by nature heterogeneous and that different 
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eosinophil subpopulations exist in vivo. These findings may thus have an impact on the 

outcome and efficacy of eosinophil-targeted therapy.

Depletion of eosinophils by anti-eosinophil therapies

In recent years, several therapies targeting human eosinophils have been developed. Three 

humanized monoclonal antibodies that target the IL-5 / IL-5 receptor axis are currently 

available for the treatment of eosinophilic asthma, a sub-phenotype of asthma that is 

diagnosed by elevated levels of eosinophils in bronchial biopsies and/or sputum despite 

appropriate steroid therapy (112,113) (Figure 5). Two antibodies against IL-5, mepolizumab 

and reslizumab, were approved for add-on treatment of patients with severe eosinophilic 

asthma (114). Both antibodies reduced blood eosinophil numbers (115,116) most likely 

through reduced eosinophil differentiation in the bone marrow and showed significant 

reductions in the annualized exacerbation rate and symptomatology compared with placebo 

(114). Another therapeutic recently introduced is benralizumab, which is a humanized 

monoclonal antibody directed against IL-5 receptor alpha chain. This antibody rapidly 

depletes eosinophils and basophils via antibody-dependent cell-mediated cytotoxicity (117). 

Administration of benralizumab to individuals with eosinophilic asthma reduces asthma 

exacerbation rates as well as improves lung function (118). Currently, multiple other clinical 

trials are being performed. For instance, targeting eosinophils might also be useful in 

chronic obstructive pulmonary disease (COPD) (114), Churg-Strauss syndrome (119), 

chronic eosinophilic rhinosinusitis (116), and hyper-eosinophilic syndromes (120,121).

Although all three antibodies demonstrated a strong safety profile, long-term studies are 

needed to evaluate the consequences of long-term eosinophil depletion. While mepolizumab 

had no apparent impact on physiological infiltration of eosinophils in the intestine (122), 

such studies have not yet been performed with reslizumab or benralizumab. This is of 

concern, as a recent study performed in patients with hyper-eosinophilic syndromes 

suggested that benralizumab therapy resulted in complete depletion eosinophils from tissues 

(121). It is unclear whether elimination of eosinophils to this unprecedented degree lead to 

alterations in antibody production, metabolism, immune responses against pathogens or 

tissue repair. Furthermore, in addition to the IL-5 – IL-5 receptor axis, there are multiple 

other ways to target eosinophils (123). Just recently, dupilumab, an antibody that targets the 

IL-4 receptor alpha subunit and thus blocks signaling from both IL-4 and IL-13 has been 

approved for add-on maintenance therapy in patients with moderate-to-severe eosinophilic 

asthma (124).

As a final note, several recent studies indicate that strategies developed to deplete 

eosinophils may have even broader impact on human health. Specifically, IL-5 expression 

has been associated with migration and invasion of muscle-invasive bladder cancer cells 

(125,126) and antibody targeting of the interleukin-5 receptor alpha has been identified as a 

potential therapeutic strategy (127).
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Unmet needs

Despite being present in all vertebrates, the physiological role of eosinophils is still unclear. 

Distinct eosinophil subgroups possibly exert different functions and as such, the 

identification of functional subgroups and specific markers is obviously an urgent research 

objective. Application of proteomics, transcriptomics, and metabolomics to eosinophil 

biology may help to promote further advances in this field. Likewise, single cell RNA 

sequencing may contribute to the definition of eosinophil subpopulations under appropriate 

in vivo conditions.

Outstanding issues relating to eosinophilic diseases include the role of eosinophils in 

promoting versus ameliorating disease, ie., pathogenesis versus immunomodulation and 

tissue regeneration. The identification of predictors for the efficacy of anti-eosinophil 

treatments is therefore a key objective and might further result in the identification of new 

functional eosinophil subsets as well as new categories of eosinophil-associated clinical 

disorders. Finally, the question of severe adverse effects resulting from long-term and 

extensive eosinophil depletion needs to be addressed in a definitive fashion.
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Figure 1. Mediator release from eosinophils: degranulation, extracellular traps, and cytolysis
Schematic representation of functional responses leading to release of secretory mediators. 

In response physiologic stimuli, eosinophils respond by assembling NADPH oxidase and 

releasing reactive oxygen species (ROS). Depending on the source, strength and duration of 

the initial stimulus, eosinophils can degranulate, generate extracellular traps, or undergo 

cytolysis. Degranulation most typically occurs via by piecemeal degranulation or exocytosis 

of mediators from the cytoplasmic granules as shown. Eosinophils can also form 

extracellular traps (EETs), which consist of a mitochondrial (mt)DNA scaffold and cationic 

granule proteins. Cell activation above a certain threshold can lead to a non-apoptotic form 

of cell death, designated as cytolysis. During cytolysis cells form large vacuoles. The 

vacuoles, plasma and nuclear membranes ultimately disintegrate, leading to release of the 

nuclear DNA as a virtual “cloud”. Release of extracellular clusters of cell-free granules are 

typically observed as a result of cytolysis.
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Figure 2. Eosinophil extracellular traps (EETs) entrap and kill bacteria
Confocal microscopy. E. coli triggers release of mtDNA and cationic granule proteins from 

mouse eosinophils. Mouse eosinophils seeded on glass coverslips were primed with GM-

CSF for 20 min and subsequently co-cultured with GFP-labelled E. coli (ratio of 1:10) for 

15 min. In the final 5 min of the stimulation period, cells were labelled with 5 μM MitoSOX 

Red to stain the extracellular DNA. Cells were then fixed with 4% paraformaldehyde and the 

nucleus stained with 1 μM Hoechst 33342. The image was acquired by LSM 700 (Carl Zeiss 

Micro Imaging, Jena, Germany) using an 63x /1.40 Oil DIC objective. Bars, 10 μm.
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Figure 3. Eosinophil - mast cell interactions
Schematic representation of interactions between eosinophils and mast cells. Eosinophils 

release pre-formed mediators including stem cell factor (SCF), nerve growth factor (NGF), 

and leukotrienes C4 and E4 (LTC4/E4); these mediators elicit a functional response through 

activation of specific receptors on mast cells, including c-KIT receptor (CD117), 

tropomyosin-receptor kinase A (Trak A), and leukotriene receptors (LTC4R and LTE4R). 

Mast cell degranulation promoted by allergens via cross-linking of high-affinity 

immunoglobulin E receptors (FcεRI) results in release of histamine that can acts on 

eosinophils through the histamine receptor 4 (HR4). Activated mast cells also regulate 

eosinophil function via the activation of cytokine receptors, leukotriene receptors (LTB4R 

and LTC4R), prostaglandin D2 (PGD2) receptor (CRTH2), chemokine receptors (CXCRs) 

and other G-protein coupled receptors (GPCRs). Mast cells and eosinophils also maintain 

inhibitory immunoreceptor tyrosine-based inhibition motif (ITIM)-bearing receptors (IRs) 

and Siglecs, both of which serve to downregulate immune responses (128).
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Figure 4. Eosinophils regulate the metabolism of adipose tissue
Schematic representation of the potential role of eosinophils in adipocyte metabolism. The 

current view is that IL-33 from resident mesenchyme-derived stromal cells in white adipose 

tissue activates resident type 2 innate lymphoid cell (ILC2) to produce IL-5 (129); this 

cytokine mediator activates eosinophils, which facilitates both chemoattraction and 

prolonged survival. Activated eosinophils release IL-4, which, together with ILC2, 

contribute IL-13 and convert tissue resident macrophages to alternatively activated 

macrophages (AAMs) capable of producing and releasing the norepinephrine required for 

adipose browning (130), although the parts of the pathway linking AAMs and 

norepinephrine to the browning process have recently been questioned (131). Other data 

suggest that eosinophils may also interact with adipocytes directly by releasing unknown 

eosinokines (noted in the figure with “?” inferring soluble factors from eosinophils that 

initiate the browning process). In addition, adipocytes can release meteorin-like peptide 

(METRNL), an immunoregulatory cytokine from muscle and adipose that stimulates 

eosinophils to secrete IL-4 (132) which initiates the process as above.
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Figure 5. Anti-eosinophil monoclonal antibodies: targeting the IL-5-IL5R-alpha axis
Mepolizumab and reslizumab are humanized monoclonal antibodies that target and 

neutralize circulating IL-5. Both have been approved for clinical use for add-on maintenance 

treatment of adults with severe eosinophilic asthma. Benralizumab, an antibody in use for 

similar indications, is directed against the α-chain of the IL-5 receptor (IL-5R) and induces 

antibody-mediated cellular cytotoxicity (ADCC) in eosinophils, depleting eosinophils both 

in blood and tissues.
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