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ABSTRACT
We present a time-dependent variational method to learn the mechanisms of equilibrium reactive processes and efficiently evaluate their
rates within a transition path ensemble. This approach builds off of the variational path sampling methodology by approximating the time-
dependent commitment probability within a neural network ansatz. The reaction mechanisms inferred through this approach are elucidated
by a novel decomposition of the rate in terms of the components of a stochastic path action conditioned on a transition. This decomposition
affords an ability to resolve the typical contribution of each reactive mode and their couplings to the rare event. The associated rate evaluation
is variational and systematically improvable through the development of a cumulant expansion. We demonstrate this method in both over-
and under-damped stochastic equations of motion, in low-dimensional model systems, and in the isomerization of a solvated alanine dipep-
tide. In all examples, we find that we can obtain quantitatively accurate estimates of the rates of the reactive events with minimal trajectory
statistics and gain unique insights into transitions through the analysis of their commitment probability.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0150278

I. INTRODUCTION

In complex systems, understanding the mechanism of a transi-
tion between long-lived metastable states is hampered by the general
collective nature of dynamics and the difficulty in observing these
rare but important events.1 While methods such as transition path
sampling2 exist to harvest rare events computationally, their distilla-
tion into mechanistic descriptions is cumbersome, and the conver-
sion of that description into quantitative statements of their rate is
challenging.3,4 Here, we present a method that uses a neural-network
ansatz with a variational optimization procedure to compute the
time-dependent commitment probability from a reactive trajectory
ensemble. The method involves learning a unique policy in the
form of an optimal external control force, which reweights a reac-
tive conditioned path ensemble to an unconditioned ensemble that
reacts autonomously. The optimal force is simply related to the
commitment probability5,6 and serves as an ideal descriptor of the
reaction. The reweighting principle developed within the framework
of variational path sampling7 is expressed in terms of the stochas-
tic action, which allows us to decompose the rate into additive

contributions from different degrees of freedom, including collective
coordinates that describe molecular transitions. This decomposition
provides a means of identifying relevant order parameters without
making a priori assumptions. The combination of the mechanistic
insight afforded by an interpretable representation of the reaction
and the validation through a variational evaluation of the rate pro-
vides a robust method for distilling features of equilibrium transition
path ensembles.

The investigation of reactive events requires access to
timescales that are considerably longer than the local relaxation time
of the system. The canonical approach to investigate these processes
has leveraged physically intuitive low-rank descriptions of the sys-
tem to infer mechanistic insights and bridge the timescales through
reactive flux calculations or importance sampling.8–12 The notion
of an ideal reaction coordinate capable of providing a complete
description of the reactive event dates back to the work of Onsager13

and was formalized within the context of chemical physics as the
committor—a map between the phase space position of a system and
the likelihood of it reacting.3,14–16 Learning this high-dimensional
function has attracted interest from a diversity of fields, and
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significant advances have been made through methods that employ
importance sampling and machine learning.16–35 Some notable
approaches have leveraged the confinement of the transition region
to compute it using string methods,16,17,36 coarse-grained the
phase-space to approximate it through diffusion maps,19,28,37,38

and parameterized neural-networks by either fitting the commit-
tor directly18,21,34 or solving the variational form of the steady-
state backward Kolmogorov equation22 by combining it with
importance sampling methods.23–25 While the learning proce-
dures applied previously have been successful in fitting high-
dimensional representations of the reaction coordinate or com-
mittors, their nonlinearity has largely resulted in a difficulty in
interpreting the relative importance of physically distinct descrip-
tors and converting those descriptors into a robust measure of
the rate. Earlier developments of methods based on likelihood
maximization18,39,40 have offered linear ways to make this analysis
tractable to complex processes.41–45 However, these approaches have
overwhelmingly relied on physical intuition to express likelihood
functions.44

The method that we present builds off of variational path
sampling6,7,46–48 that has provided an alternative approach for sam-
pling rare events. These methods and related ones employ ideas from
stochastic optimal control49–52 and are most useful in investigating
nonequilibrium steady states as they do not invoke detailed balance.
Of particular interest is a recent method6 that has detailed how to
express a low-rank ansatz for an optimal control force to drive rare
events and estimate their rates. Our work exploits the fact that the
optimization of this control force, or policy, is related to the time-
dependent committor. We find that in equilibrium systems, where
path sampling methods afford a way to generate a reference reactive
trajectory ensemble, the optimization of this committor becomes
straightforward and allows for the use of a neural-network (NN)
ansatz to solve the time-dependent backward Kolmogorov equa-
tion,53 providing a time-dependent and probabilistic representation
of the reaction. While the method computes a nonlinear function,
the form of the optimized loss is given by the difference in stochas-
tic actions that quantifies the distance between a conditioned and a
reference trajectory ensemble. For systems in which we saturate the
variational bound, this quantity is unique and linearly decompos-
able on a per-coordinate basis and can be understood as a measure
of the importance of each coordinate to conditioning a trajectory to
be reactive. This metric is purely based on the intrinsic mechanism
of the reaction and can be extended to collective coordinates, allow-
ing us to identify the relevant reaction descriptors without making a
priori assumptions.

This paper is organized as follows. First, we review the vari-
ational path sampling formalism to discuss the theory behind this
method. Next, we validate this method by applying it to a couple of
low-dimensional systems where numerically exact results are possi-
ble. We probe the sensitivity of this method to limited statistics and
the applicability to systems integrated with underdamped equations
of motion. Then, we illustrate how the per-coordinate stochastic
action encodes the relevance of a coordinate to the reaction. Finally,
we apply this method to study the isomerization of alanine dipeptide
in implicit and explicit solvent. In both of these cases, we show how
the method can be used to infer a mechanistic picture of the reaction
and identify important reaction descriptors among a redundant set
of internal coordinates.

II. VARIATIONAL PATH SAMPLING FORMALISM
For simplicity, we consider a system evolving under an

overdamped Langevin equation of the form

γiṙi(t) = Fi(rN) + ηi(t), (1)

where ṙi is the rate of change of ith particle’s position at time t
in d dimensions, γi is the friction coefficient, and ηi(t) denotes
a Gaussian random force with mean ⟨ηi(t)⟩ = 0 and variance
⟨ηi(t)⊗ ηj(t

′)⟩ = 2γikBTδij1dδ(t − t′), where ⊗ denotes the cross-
product operator, 1d is an identity-matrix of size d × d, and kBT is
Boltzmann’s constant times the temperature. The conservative force
Fi(rN) = −∇iV(rN) is given by the gradient of the potential V(rN),
with rN being the full N-particle configuration. We are interested in
investigating reactive events, so we consider potentials that exhibit
metastability.

We consider transitions between two metastable states, A
and B, which, in general, are collections of configurations defined
through the indicator functions hA[rN(t)] and hB[rN(t)], where

hX[rN(t)] =
⎧⎪⎪⎨⎪⎪⎩

1, rN(t) ∈ X,

0, rN(t) ∉ X,
(2)

for X = {A, B}. For the rest of this paper, indicator functions are
going to be written down simply as functions of time in favor of
brevity. The rate for transitioning A→ B can be defined by the time
derivative of the side–side correlation function,9

k = d
dt
⟨hA(0)hB(t)⟩
⟨hA⟩

= d
dt
⟨hB∣A(t)⟩, (3)

where ⟨⋅ ⋅ ⋅⟩ denotes an average computed over a stationary distri-
bution and hB∣A is the conditional probability of starting in A and
ending in B at t. Provided a separation of timescales between the
local relaxation time within a state, τmol, and 1/k, the rate is given by
the path integral

ktf = ∫ D[X]hB∣A(tf )P[X], (4)

where when t f is in the range τmol < t f ≪ 1/k, the probability to
transition grows linearly with time. The path integral sums over all
trajectories X = {rN(0), . . . , rN(t f )}, or the timeseries of the state of
the system evolved for time t f , weighted by the likelihood of observ-
ing a trajectory P[X]. This path integral is a trajectory partition
function associated with reactive paths54 and equal to the transition
probability between A and B in time t f .

Variational path sampling uses the path partition function
representation of the rate together with a dynamical reweighting
approach55 to extract reactive paths effectively,46 evaluate rates accu-
rately,6 and, we show here, provide detailed mechanistic information
concerning the rare event. Variational path sampling does this by
considering the system as before, but under the action of an addi-
tional time-dependent drift λi(rN , t), which enters the equation of
motion as

γiṙi = Fi(rN) + λi(rN , t) + ηi(t), (5)

where the conservative force, noise, and friction are the same as the
reference system without λi(rN , t). For this driven system, the rate
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kλ between the same two metastable states A and B is given by an
analogous relation as in the reference system,

kλtf = ∫ D[X]hB∣A(t)Pλ[X], (6)

where Pλ[X] denotes the probability of observing a trajectory X inte-
grated using Eq. (5). By virtue of the Girsanov transformation, these
two rate expressions can be related to each other. Specifically, using
the Radon–Nikodym derivative to define the change in stochastic
action, ΔUλ[X] = ln Pλ[X]/P[X], the rate in the driven system can
be rewritten as56

ln kλtf = ln∫ D[X]P[X]hB∣A(tf )eΔUλ

= ln ktf + ln ⟨eΔUλ⟩
B∣A

, (7)

where we have employed ⟨⋅ ⋅ ⋅⟩B∣A = ⟨hB(t f )hA(0) ⋅ ⋅ ⋅⟩/⟨hA(0)⟩ as
a conditional average over a reference reactive ensemble to relate
the two rates. For the case of the overdamped Langevin equa-
tion, the change in stochastic action is given by a difference of
Onsager–Machlup actions,57

ΔUλ[X] = −
N

∑
i=1

1
4γikBT∫

tf

0
dt ∣λi∣2 − 2λi ⋅ γi(ṙi − Fi), (8)

where ∣ ⋅ ⋅ ⋅ ∣ denotes the norm of the vector and ⋅ denotes the dot
product operator. The discretized form of the OM action can be
simplified further by noting that the difference between the time
derivative of the positions and the conservative force is simply given
by the noises.

The relationship between rates in Eq. (7) is exact for any
time-dependent drift λi(rN , t). It is distinct from that employed
previously,6 which related the reference and driven rates to an expec-
tation value in the driven system. In variational path sampling, we
consider a class of λi(rN , t), which enforce the transition to occur
with probability 1. In such a case, provided access to a reactive path
ensemble in which to evaluate the expectation values, the rate in the
reference system can be obtained directly as an exponential average

ln ktf = − ln ⟨eΔUλ⟩
B∣A

(9)

= −⟨ΔUλ⟩B∣A −
∞

∑
n=2

1
n!
C (n)B∣A(ΔUλ) (10)

or a cumulant expansion, where C (n)B∣A(ΔUλ) denotes the nth cumu-
lant of ΔUλ averaged in the reactive ensemble. We will refer to these
different estimators as k(exp) for the exponential average and k(n) for
the cumulant expansion, where n will denote where the sum was
truncated.

Truncation of the cumulant expansion for n = 1 provides a
variational bound of the rate. This is seen by applying Jensen’s
inequality to Eq. (7),

ln ktf ≤ ln kλtf − ⟨ΔUλ⟩B∣A ⇒ ln ktf ≤ −⟨ΔUλ⟩B∣A, (11)

where we have used the conservation of probability ln kλt f ≤ 0 in
the second step to eliminate the rate of the driven process from
the inequality. Hence, the rate in the reference system is just the

Kullback–Leibler (KL) divergence between the driven and refer-
ence path ensembles or equivalently the mean change in action.
In equilibrium systems, this relation is similar to the variational
structure of transition state theory, which also provides an upper
bound to the rate.9 However, this expression is also closely related
to the reversible work theorem in equilibrium thermodynamics58 as
it relates the smallest change required to transform one ensemble to
another.59,60 In this case, the transformation is between an uncon-
ditioned path ensemble and a reactive path ensemble. Just as the
minimum amount of work done on a physical system is given by
its reversible limit, which reflects the way in which a system would
naturally transform, so too we find the minimum driving force to
ensure a reaction is related to the way in which a system would nat-
urally react.61 This is shown by noting that the force that saturates
this bound in Eq. (11) is the Doob force, denoted as λ∗(rN , t), and is
related to the solution of the backward Kolmogorov equation.5,6,62,63

For an overdamped Langevin dynamics,

∂tq(rN , t) = −
N

∑
i=1

Fi(rN)
γi

⋅ ∇iq(rN , t) − kBT
γi
∇2

i q(rN , t) (12)

with boundary conditions q(rN , t f ) = hB(t f ) and q(rN , 0) = hA(0).
The function that solves this expression, q(rN , t), is the time-
dependent committor function5,6 or the probability of reaching
state B at t f , given a position rN at time t. In the stationary limit,
where the separation of timescales prohibits multiple transitions,
q(rN , t) reduces to the time-independent committor function of
transition path theory.64,65 The explicit relation between the Doob
force λ∗(rN , t) and q(rN , t) is

λ∗(rN , t) = 2kBT∇ ln q(rN , t), (13)

where by construction this force makes all trajectories reactive and
the reactions occur as they would in the original system. This force
uniquely saturates the inequality in Eq. (11), thus providing a unique
description of the reaction in a complex system.6

This formalism allows us to compute both the time-dependent
committor q(rN , t) and the rate k from a reactive trajectory ensemble
by parameterizing the external force λ and optimizing it by maximiz-
ing the expectation value of the change in action averaged within the
reactive trajectory ensemble. In this work, we will consider param-
eterizing λ with both linear functional forms and a non-linear form
provided by a neural network. The optimization of either is done by
defining a loss function, Lλ, as

Lλ = ⟨
tf /Δt

∑
n=0

N

∑
i=1

Δt
4γikBT

(−∣λi(nΔt)∣2 + 2λi(nΔt) ⋅ ηi(nΔt))⟩
B∣A

, (14)

where the sum is over each particle that the noises act on and λi
is the component of the driving force on the degree of freedom
associated with the noise. This loss function is just the change in
stochastic action in the discretized form, so in optimizing λi, we are
simultaneously optimizing our estimate of the rate in the reference
system. This optimization occurs over nint iterations and requires
averages within the reactive trajectory ensemble, which we will gen-
erate with standard path sampling tools, such as transition path
sampling. Since this method requires the positions and the noises at
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each time step, the method of generation of transition path ensem-
ble requires some care. For complex systems where we use transition
path sampling, we store the random number seeds for each runs
and then save the new trajectories only when they are accepted by
rerunning them with the same seed. We find this method to be min-
imally slower than running standard transition path sampling. The
option to save and change the seeding is available in most molecular
dynamics simulation packages.

III. CHOICE OF ANSATZ AND CONVERGENCE
The accuracy of the rate estimate, and the mechanistic informa-

tion afforded by the evaluation of q(rN , t), depends on the fidelity
with which the function can be represented. This depends on the
ansatz used to expand it and, in particular, its expressibility. It also
depends on the ease by which the function is learned, as inevitably
the reactive path ensemble needed to train q(rN , t) will be com-
putationally expensive to generate. In this section, we consider the
relative merits of expanding the driving force in both linear and
nonlinear bases and assess their accuracy and data efficiency.

A. Linear function ansatz
We first consider the case of linear function approximations. A

linear functional for λ(rN , t) = 2kBT∇ ln q(rN , t) can generically be
expressed as its associated potential,

2kBT ln q(rN , t) =
nb

∑
i=1

cnφn(rN , t), (15)

where cn and φn(r
N , t) denote the nth coefficient and basis function

and nb denotes the total number of basis functions. This can be writ-
ten compactly as λ(rN , t) = ∇[c ⋅ Φ(rN , t)], where c is the nb length
vector of coefficients and Φ(rN , t) is the vector of basis functions.
For a linear functional expansion, the optimal set of coefficients c∗
has a closed form that can be computed by taking the derivative of
the loss function in Eq. (14) and setting it to 0. Computing the coef-
ficients reduces to solving a nb × nb set of linear equations, whose
solution is

c∗ = [⟨∫
tf

0
dt ∇Φ⊗∇Φ⟩

B∣A
]
−1

⟨∫
tf

0
dt η ⋅ ∇Φ⟩

B∣A
, (16)

where ⊗ denotes an outer product. For an orthonormal basis, the
optimal coefficients are simply related to the average noise-weighted
basis function,66 but, in general, the functions are not expected to be
orthonormal. Because of this simplicity in training, linear bases are
particularly efficient to employ. In cases where the reaction coordi-
nate can be described well by a limited set of coordinates or order
parameters, they can also be accurate.6,7,31,33,46

To understand the utility of a linear functional approximation,
we consider a particle evolving in a two-dimensional external poten-
tial with two reactive channels visualized in Fig. 1(a). The potential
V(x, y) is

V(x, y)/kBT = 2[6 + 4x4 − 6y2 + 3y4 + 10x2(y2 − 1)], (17)

where x and y are dimensionless coordinates and we have worked
in a reduced unit system determined by kBT = γx = γy = 1 and

FIG. 1. Functional ansatz testing. (a) Potential energy surface of the simple 2D
model where the spacing between lines denotes 2 kBT . (b) Convergence of the
loss function using the linear (LLB) ansatz and neural-net (LNN) ansatz. (c)
Convergence of the linear basis with basis set size. Error bars denote one standard
error computed from three-independent trials.

employed a first-order Euler integrator with a time step equal to
0.004 t∗ with t∗ = γx/kBT as our reduced time unit. We considered
transitions defined by indicator functions

hA(t) = Θ(−x(t) + 0.85), hB(t) = Θ(x(t) − 0.85), (18)

whereΘ denotes the Heaviside step function. A reactive path ensem-
ble was generated by running brute force trajectories in order to
sample 400 reactions, and the rate was evaluated by computing the
side–side correlation function. We found that t f /t∗ = 2 was a suf-
ficient observation time to be in the linear growth regime for the
transition probability with ln kt f = −6.1 ± 0.1.

The linear approximations used were localized Gaussian basis
functions of the form

φn(x, y, t) = e−ax(x−xn)
2

e−ay(y−yn)
2

e−at(t−tn)
2

, (19)

where the Gaussian centers {xn, yn, tn} were equally spaced on a
grid within the range of x = [−1.5, 1.3], y = [−1.6, 1.6], and t = [0, 2]
and Gaussian widths were chosen such that {ax = 1.4/(n1/3

b − 1),
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ay = 1.6/(n1/3
b − 1), at = 1/(n1/3

b − 1)}. The expansion coefficients,
c∗, were computed using Eq. (16) averaged over the path ensem-
ble consisting of the 400 reactive trajectories. The optimization was
done in one step nint = 1 by solving the linear equation in Eq. (16),
where we found the loss function immediately converged to the
brute force estimate of the rate for nb = 123, as shown in Fig. 1(b).
The dependence of the rate estimate with the size of the basis
is shown in Fig. 1(c), where the loss decays slowly, obtaining a
value of the rate statistically indistinguishable from the brute force
estimation of the rate for nb = 83. This slow decay could be miti-
gated somewhat with fine tuning the basis, but we do not explore
that here.

B. Neural network function ansatz
Since the form of the force is rapidly varying and nonlinear, sat-

uration of the inequality in Eq. (11) requires a large number of basis
functions. If we express the linear ansatz in the full configuration
space, the number of basis set coefficients grows exponentially with
the degrees of freedom, making it intractable to converge the loss
to the rate for complex systems. In order to circumvent the expo-
nential scaling of the number of basis sets with dimensionality of
the system, we consider employing a neural network (NN) ansatz
to compute the time-dependent committor, associated Doob force
through automatic differentiation, and evaluate the rate through
optimization. The input comprises the features selected for express-
ing the force and is connected to two hidden layers. For the two
hidden layers, the Swish activation function67 is used as its deriva-
tives are free from discontinuities, while also being exempt from
the weight decay problem.68 The penultimate layer only contains
a single unit, with a sigmoid activation function. The output of
this layer is the model’s estimate of the time-dependent committor,
q(rN , t). The final layer is a lambda layer, which simply computes
the log of the committor. The output of this layer represents the
many-body potential, ln q(rN , t), and the forces can be computed
by taking a derivative of the output with respect to the input coor-
dinates via autodifferentiation. While one can simply parameterize
the forces instead of the committor, this architecture automatically
enforces the conservativeness of the potential and offers a sim-
ple way to obtain the committor without the need to perform a
multidimensional integration.

For the NN ansatz for the same 2D system above, x, y, and
t were used as the input features and optimization was performed
using the RMSprop optimizer69 on 200 reactive trajectories. The
learning rate was chosen to be 0.001, and for each iteration, the
loss function and associated gradients were evaluated over half of
the trajectories drawn randomly from the ensemble. The training
curve plotted in Fig. 1(b) shows that the loss function plateaus
to ln kt f within nint = 20, indicating that this ansatz was success-
ful in learning the exact time-dependent committor quickly. While
the training required multiple iterations, the number of parameters
used to converge to the brute force rate was around 500 with-
out specific optimization, fewer than required in the naive linear
function approximation. The flexibility of the NN ansatz and the
relatively swift training suggest it as a viable means of approxi-
mating the time-dependent committor. As a consequence, in the
remainder of this article, we consider only the performance of the
NN ansatz.

C. Convergence with limited statistics
To illustrate the efficiency of this method, we tested the con-

vergence of the NN ansatz with the statistics used to compute the
rate and time dependent committor within the previously intro-
duced model two-dimensional potential. Specifically, we tested the
convergence of the NN ansatz with the number of reactive trajecto-
ries used in training, as well as the time lag between configurations
along a reactive trajectory. For both cases, we use two estimators, one
which probed how closely the restricted trajectory ensemble is to the
full trajectory ensemble and a second which indicated how well a
model trained on an approximated trajectory ensemble performs on
the original trajectory ensemble. All these estimators are based on
comparisons between the OM action and ln kt f , as the agreement
between the two signifies the success of the model in learning the
true committor. Hence, the difference between the two offers a nat-
ural metric to probe the error between the parameterized and true
committor. We denote the error from each of these approximate
estimates as ΔL.

For the first case, we vary the number of trajectories Nt used
for training the model. The model trained on this limited trajec-
tory ensemble, with force denoted by λNt , is then used to compute
the first cumulant for the original trajectory ensemble comprised
of the full 200 trajectories, ⟨ΔUλNt ⟩B∣A. This is compared to the first
cumulant obtained by training the model on the original trajectory
ensemble that provides an optimal estimate of the rate. The dif-
ference of these two values, plotted in Fig. 2(a), is an indicator of
how close the committor trained on the restricted ensemble is to
the actual committor. This plot shows that the estimator converges
quickly with Nt and suggests that about 50 trajectories are suffi-
cient to learn the time-dependent committor for this specific system.
Another way of probing how the restricted trajectory ensemble com-
pares to the original trajectory ensemble is to perform both training
and averaging in the restricted trajectory ensemble and compare that
estimate to the true rate. This difference between the actions aver-
aged in a restricted ensemble ⟨ΔUλNt ⟩B∣A,Nt , also shown in Fig. 2(a),
is observed to be negative for Nt = 10, indicating overfitting of the
model to the restricted trajectory ensemble. However, this error van-
ishes quickly and plateaus to 0 for Nt = 50. This is a reflection of the
transition path ensemble and the similarity of different reactive tra-
jectories. The error bars for all of these cases are obtained by training
five different models on Nt randomly selected trajectories from the
trajectory ensemble.

For the second case, we approximate the trajectory ensemble
by storing only every configuration after a timelag of dcΔt, where
Δt is the time step used to integrate the trajectory. The original
reactive trajectory ensemble comprises 200 trajectories with 500
discrete time steps, and the number of configurations used per tra-
jectory is obtained by dividing 500 by dc. We train the model in
this approximated trajectory ensemble and compute the same error
estimates. The first estimate compares the first cumulant averaged
in the original trajectory ensemble (dc = 1) with the model trained
on the approximated trajectory ensemble to the loss computed by
performing both averaging and training in the original trajectory
ensemble, ⟨ΔUλdc

⟩B∣A. In this case, this estimate probes how well the
NN ansatz is able to extrapolate the forces for time steps that it has
not been trained on. The difference plotted in Fig. 2(b) indicates
that this extrapolation fails quickly. The second estimate probes
the loss obtained by performing both averaging and training in the
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FIG. 2. Convergence of rate estimates with respect to the accuracy of the reactive
trajectory ensemble. (a) Error estimators for the loss function of the NN ansatz
as a function of the number of reactive trajectories Nt used for training. (b) Error
estimators for the loss function of the NN ansatz as a function of the number of
configurations used per trajectory. dc = 1 corresponds to the original ensemble,
where every configuration is used for training. Error bars denote one standard
error computed from five-independent trials.

approximated trajectory ensemble whose loss is ⟨ΔUλdc
⟩B∣A,dc . To get

this estimate, the variance in Eq. (14) had to be scaled by a factor
of d−1

c to account for the change in the effective time step Δt. This
difference plotted in Fig. 2(b) shows that this approximation only
works well for dc ≤ 5. The poor scaling with dc reflects the fact that
stochastic diffusions with different variances have no overlap in the
continuum limit.70

IV. RATE DECOMPOSITION AND FEATURE SELECTION
From an information theoretic point of view, the rate is

a ratio of a conditioned and unconditioned trajectory partition
function.2,54,71,72 Our optimization directly minimizes the KL-
divergence between a trajectory ensemble driven with force λ and
the undriven reactive trajectory ensemble. As the KL-divergence is
expressible by the change in stochastic action along a trajectory, it
involves a sum over all the degrees of freedom that the noises act on.
For a suboptimal force, the rate is given by the average of the expo-
nential of this quantity, coupling the noises from different degrees of
freedom. However, when the variational bound is saturated and the
rate is given by a simple mean, the accompanying change of action
is linearly decomposable. This decomposition provides mechanistic
insights and affords a means of optimizing the features that form the
representation of λ. We generally find a NN ansatz that can satu-
rate the bound in Eq. (11), which allows us in this section to explore
a variety of featurizations and their corresponding contributions to

the rate. Specifically, we consider networks with Cartesian and col-
lective coordinates, as well as those integrated with underdamped
equations of motion.

A. Cartesian coordinates
Using an NN ansatz allows us to compute the exact time-

dependent committor and associated Doob force. When Eq. (11)
is saturated, the rate is given by the first cumulant of the change
in action. This allows us to decompose the rate into independent
contributions,

ktf = exp [−
Nd

∑
i=1
⟨ΔU i

λ∗⟩B∣A], (20)

where

ΔU i
λ∗ = ∫

tf

0
dt
[λ∗i (t)]2
4γikBT

(21)

is the contribution to the rate per stochastic degree of freedom. The
change in action,ΔU i

λ∗ , is strictly positive, indicative of the transition
probability being less than 1, and results from functional minimiza-
tion of Eq. (14). The stochastic action for the Langevin equation
is a sum of Gaussian random variables for each degree of freedom
at each time slice, and a change in stochastic action is a differ-
ence of Gaussian random variables. Given this, and recognizing the
quadratic dependence on λ∗i (t) for the change in action, we observe
that λ∗i (t) is essentially fitting the bias in the Gaussian noises gen-
erated when conditioning the stochastic process to react. Therefore,
only degrees of freedom that require activation, or a rare sequence
of noises, will accumulate a significant change in stochastic action
or contribute significantly to the rate. Degrees of freedom that are
uncorrelated with the reaction will not contribute to the rate, as their
noises will remain unbiased.

To illustrate how this decomposition can be used to identify
the relevance of coordinates, we consider the same 2D system visu-
alized in Fig. 1(a) and perform a decomposition of the rate. The
two stochastic coordinates, x and y, are fed into the neural network
ansatz and optimized. The resultant distributions for the individ-
ual components of the stochastic action, P[ΔUα

λ∗], for α = {x, y},
defined as

P[ΔUα
λ∗] = ⟨δ(ΔUα

λ∗ − ΔUα
λ∗[X])⟩B∣A

are shown in Fig. 3(a). Neither of the two distributions show a
complete overlap with the distribution of the total rate, P[ΔUλ∗],
indicating that both x and y are important in describing the reac-
tion coordinate. However, P[ΔUx

λ∗] is shifted toward larger values,
and the expectation value of ⟨ΔUx

λ∗⟩B∣A is found to be larger than
⟨ΔUy

λ∗⟩B∣A, allowing us to quantitatively assert that the coordinate x
is more important to the reaction than y, as it encodes more informa-
tion of the conditioned path ensemble. However, y is still relevant,
in agreement with intuition from the geometry of the potential.

B. Collective coordinates
While the decomposition above can quantify the relevance of a

coordinate to a reactive event, they are expressed in the bare Carte-
sian coordinates that enter into the equation of motion. As such,
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FIG. 3. Decomposition of the rate into contributions from different degrees of free-
dom. (a) The distribution of the relative action for the two Cartesian coordinates x
and y. (b) The decomposition of the rate performed for the polar coordinates r and
θ using Eq. (19). Due to the orthogonality of the transformation, and the isotropic-
ity of the diffusivities, the coupling term is zero. The perfect overlap between ΔŨθθ

λ
and the total relative action identifies θ to be an excellent descriptor of the reaction
coordinate.

their utility is diminished in many-particle systems, which are trans-
lationally and rotationally invariant, and for which the number of
degrees of freedom is large. A canonical approach in the study of rare
events in complex systems is to employ collective coordinates, which
are nonlinear combinations of the original Cartesian coordinates
and may encode the expected symmetries of the system. In order
to extend the formalism into this regime, we consider the transfor-
mation between Cartesian and collective coordinates, r→ r̃, and its
subsequent impact on the rate decomposition. The Jacobian of the
transformation Jr(r̃) is

Jr(r̃) = [∇r r̃1 ⋅ ⋅ ⋅ ∇r r̃ñ],

which is a matrix of Nd × Ñ partial derivatives, where Ñ is the size of
the collective variable function space. Under this transformation, the
original forces λ(rN , t) and the transformed forces λ̃(r̃, t) are related
by

λ(rN , t) = JT
r (r̃) ⋅ λ̃(r̃, t), (22)

where the force acting on the original coordinate ri due to the force
λ̃ j , which depends on the collective coordinate r̃ j , is given by a
product of λ̃ j and the Jacobian element Jij. Inserting this into the
expression for the optimal stochastic action, in Eq. (20), we obtain

ΔUλ∗ =
Ñ

∑
j,k
ΔŨ jk

λ∗ (23)

with

ΔŨ jk
λ∗ = ∫

tf

0
dt
λ̃∗j λ̃∗k
4kBT

Γ−1
jk , (24)

where the initially linearly independent factors from each Cartesian
coordinate, indexed by i, are expressed as a pair of contributions
from the collective coordinates, indexed by j and k. From this form, it
is evident that the contribution to the rate incurred from the trans-
formed coordinates r̃ is not necessarily independent of each other
or bipartite.72 Zero coupling between r̃ j and r̃k is obtained when
the effective friction Γ−1

jk = ∑i=1 Ji jJik/γi = δ jk/γ, with γi = γ, a con-
dition that requires the friction weighted transformed coordinates
to be orthogonal.

As an illustration of the decomposition under a change of coor-
dinates, we consider the same 2D system as before, but rather than
parameterizing λi on x and y, we transform into polar coordinates
(x, y)→ (r, θ), where r = x2 + y2 and tan θ = y/x. We quantify the
contributions to the rate from the polar coordinates by training
the NN ansatz on the polar coordinates. The partials are prepared
ahead of time and are passed into the loss function along with the
noises. The relative action distributions in the transformed coordi-
nates P[ΔŨα,α′

λ∗ ] for α,α′ = {r, θ} computed using Eq. (24) are shown
in Fig. 3(b). Since polar coordinates are orthogonal and γx = γy, the

coupling termΔŨα,α′

λ∗ = 0 for α ≠ α′. We observe that the distribution
corresponding to the coordinate θ almost perfectly overlaps with the
total action distribution, indicating that θ is an excellent descriptor
of the reaction coordinate. The distribution for r is centered around
0 and narrow, illustrating that it is unbiased by conditioning on a
reaction and thus contributes little to the rate. This decomposition of
the rate in collective coordinates provides a simple metric to identify
the relevance of physically meaningful descriptors to a reactive pro-
cess, without making any a priori assumptions about the reaction.
The form of this metric is purely based on the physical mechanism
of the reaction, as it quantifies how conditioning a trajectory ensem-
ble to be reactive shifts the noise distributions per-coordinate. This
decomposition allows us to do hypothesis testing for the relevance
of collective coordinates. By studying the size of their contribution,
we can discover the coordinates that gate the rare event and those
that are uncorrelated with barrier crossing. This hypothesis test-
ing requires the saturation of the variational bound, which if not
achieved points to the lack of relevant features in the NN ansatz.

C. Importance of velocity
In a general molecular system, motion is not overdamped, and

as a consequence, the full phase space spanned by both configu-
rational coordinates and their conjugate velocities are required to
specify a reactive trajectory. In order to understand the importance
of including velocity degrees of freedom in a parameterization of λ,
we consider formally when it can be neglected. For concreteness, we
consider an underdamped Langevin equation of the form

mv̇i = −γvi + Fi(rN) + ηi, ṙi = vi, (25)

where vi is the velocity of particle i and the rest of the quantities
are defined in the same way as in Eq. (1). For simplicity, we take
the mass, m, and friction γ to be independent of particle index,
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though generalizations are straightforward. We start by noting that
the backward Kolmogorov equation takes the form

∂tq = −∑
i=1

vi ⋅ ∇ri q −
γvi

m
⋅ ∇vi q +

Fi

m
⋅ ∇vi q +

2γkBT
m2 ∇

2
vi q, (26)

which when solved with the same boundary conditions as Eq. (12)
yields the time-dependent committor function q(rN , vN , t) whose
arguments we suppress above for ease of notation. Since the noise
acts only on the velocities, the Doob force is given by the gradi-
ent of the committor with respect to the velocities rather than the
positions,

λ∗i (rN , vN , t) = 2γkBT
m
∇vi ln q(rN , vN , t). (27)

Thus, naively, it would seem that parameterizing a velocity depen-
dence is crucial whenever an underdamped equation is used. How-
ever, in the limit that γ−1 → 0, we find that the velocity dependence
can be safely ignored.

This can be understood via application of perturbation theory,
where q(rN , vN , t) is expanded in orders of γ−1.36,73,74 To first order,
q(rN , vN , t) becomes

q(rN , vN , t) = q0(rN , t) + mv
γ
⋅ ∇rq0(rN , t) +O(γ−2), (28)

where q0 is independent of the velocity. Substituting the approx-
imated form of q into the underdamped backward Kolmogorov
equation, we find

∂tq ≈ −∑
i=1

Fi

γ
⋅ ∇ri q0 −

mv2
i

γ
∇2

ri q0 +O(γ−2), (29)

which when averaged over the Maxwell–Boltzmann distribution
yields

∂tq = −
N

∑
i=1

Fi(rN)
γ
⋅ ∇ri q0 −

kBT
γ
∇2

ri q0 +O(γ−2), (30)

which to first order in 1/γ is identical to Eq. (12), the overdamped
backward Kolmogorov equation, with q(rN , vN , t) ≈ q0(r

N , t). As a
consequence, the committor in the overdamped limit becomes a
function solely of rN and the Doob force is given by a gradient with
respect to position. In Appendix A, we show that to O(γ−2), this
approximation also saturates the variational inequality for the rate
expression.

In order to gain intuition for when the higher-order terms in
Eq. (28) become negligible, we consider the reaction of a particle in
a simple double well potential of the form

V(x)/kBT = 1
64
(x − 4)2(x + 4)2, (31)

where x is a dimensionless coordinate and we take kBT = m = 1,
which determines a dimensionless time unit t∗ =

√
m/kBT. We

considered transitions between states defined by the indicator
functions

hA(t) = Θ(−x(t) + 3.6), hB(t) = Θ(x(t) − 3.6) (32)

and obtain 400 reactive trajectories each of length t f /t∗ = 5 using a
time step of 0.01 t∗ using a first-order integrator. We studied this
system over a range of γ/γ∗ between 0.1 and 1 with γ∗ = m/t∗.
We trained a NN ansatz only on the positions and time and com-
pared the optimized value of the loss function to the brute-force
rates evaluated from a direct mean first passage time calculation.
Figure 4(a) shows the difference between the two estimates, along
with the brute-force rate as a function of γ/γ∗. The reactive rates
show Kramers’ turnover10 at γ/γ∗ ≈ 0.3, and the optimized loss is
consistently off by a factor of 1.5 for γ/γ∗ < 0.3. After the turnover,
the error in the rate estimate decreases monotonically, until it com-
pletely vanishes for γ/γ∗ = 1. It is surprising that this relatively small
friction is already consistent with the overdamped limit.

To further understand the importance of velocity in the time-
dependent committor, we trained a model to optimize for the
velocity-dependent committor for γ/γ∗ = 0.1 and γ/γ∗ = 1. For
both of these cases, the optimized value of the loss was within a

FIG. 4. Computation of the committor for reactive processes that are integrated
using the underdamped equations of motion. (a) The reaction rate and the error
estimate in the loss function for optimizing the velocity-independent committor,
Lx , as a function of the friction coefficient γ. (b) and (c) The optimized position
and velocity dependent committor of the reaction between the metastable well
depicted by the potential energy surface V(x) in red for friction coefficients γ = 1.0
and γ = 0.1, respectively. For (b) and (c), the dotted-dashed, solid, and dashed
lines denote slices of the committors at a constant velocity of v = −1, 0, and 1,
respectively.
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standard error of the true rate. The plot of the optimized commit-
tor evaluated at time t = t f /2 as a function of velocity and position
is shown in Figs. 4(b) and 4(c). The functional dependence on time
is not strong away from t = 0 and t = t f . For γ/γ∗ = 1.0, q(x, v, t)
weakly depends on v, with the dependence being captured by a lin-
ear shift along x to an otherwise simple sigmodal dependence on
x. This is precisely the dependence expected from the expansion in
Eq. (28). However, for γ/γ∗ = 0.1, the committor is strongly sensi-
tive to the velocity. For v = 0, the large x behavior of q(x, v, t) slowly
converges to 1, reflecting the potential for the particle even at large
values of x to fail to react. For negative velocities, the inflection point
of q(x, v, t) is shifted to positive values of x, consistent with cor-
responding values of the potential that are low enough below the
barrier that the particle is trapped. Correspondingly, for positive
velocities, q(x, v, t) is shifted to negative values of x, reflecting the
high likelihood of reacting even for positions not quite to the top of
the barrier. This behavior is not reproducible by scaling a spatially
dependent committor by a simple constant. Hence, featurization of
the velocity or expansion of the committor to higher orders in γ−1

is required to accurately encode the time-dependent committor for
this low-friction regime.

V. APPLICATION TO ALANINE DIPEPTIDE
To examine the efficacy of this method for a complex molec-

ular system, we investigate the isomerization of alanine dipeptide.
Alanine dipeptide has two metastable conformations. It can tran-
sition between these two states via the rotation of the Ramachan-
dran angles ϕ and ψ. A multitude of path sampling methods have
focused on this model due to the collective nature of this transi-
tion in the gas phase and in solution. While the transition can be
tracked using ϕ and ψ, they serve only as order parameters and
are not sufficient in describing the complete reaction coordinate
or committor.14,18 Significant advancements in methods to param-
eterize the time-independent committor have been made by resolv-
ing this model along physically motivated, predetermined order
parameters.21,23,28,75–81 As we show, choosing among a large num-
ber of internal coordinates without consideration of their correlation
or coupling risks neglecting important aspects of the transition
path ensemble. This is because internal coordinates do not form an
orthogonal set of coordinates, and collective motions such as the
rotations of a single dihedral angle can be coupled with the motions
of angles and other dihedrals. Below, we first consider isomerization
of alanine dipeptide in implicit solvent and then in explicit solution.
For both, we parameterize ln q(rN , t) using the NN ansatz.

A. Isomerization in implicit solvent
In implicit solvent, we consider isomerization of alanine dipep-

tide between C7eq and C7ax conformations, as visualized in the inset
of Fig. 5. To investigate this reaction, we first generated a reactive
trajectory ensemble. Simulations were performed in OpenMM,82

and the AMBER ff14SB forcefield83 was used for parameterizing
dipeptide interactions. A Langevin thermostat with the leap-frog dis-
cretization was used as the integrator.84 The time step was chosen to
be 1 fs, γ was set to 10 ps−1, and the transition path length t f was set

FIG. 5. Convergence of the loss function for isomerization in implicit solvent along
with a representative snapshot of the two metastable conformations C7ax (left)
and C7eq (right). The black solid line denotes the true rate, ln kt f , with the shading
denoting one standard error.

as 1 ps. The indicator functions identifying the metastable wells C7ax
and C7eq were defined using the Ramachandran angle ϕ,

hA(t) = Θ(ϕ(t) − π/4), hB(t) = Θ(−ϕ(t) + π/4), (33)

and the first trajectory was generated by running forward and back-
ward simulations from the top of the saddle point along the dihedral
ϕ = 0. Transition path sampling2 was used to obtain a reactive tra-
jectory ensemble, and the shooting from the top method85 was used
to generate new trajectories. This method offers a way to decrease
correlations between the trajectories and increase the acceptance
rate for new trajectories by performing shooting moves within a
restricted region near the saddle point, which for this case was
chosen as −π/6 ≤ ϕ ≤ π/6. A total of 1000 trial trajectories were
generated, and the acceptance rate was ∼0.4. Every fifth trajectory
in the ensemble was saved and used for analysis for a total of 200
trajectories. For the choice of reaction descriptors, we used all the
internal coordinates that did not involve the hydrogen atoms. This
set consists of 9 bonds, 11 angles, and 12 dihedrals, the latter two
of which contain nine total redundant coordinates. These internal
coordinates along with the Jacobians are computed for the 200 saved
trajectories and saved to be used for training.

We use the underdamped approximation discussed in Eq. (28),
which exempts us from including the velocities as a part of the fea-
ture set. The loss function is modified accordingly for the action of
the Langevin leap-frog integrator86 implemented in OpenMM, as
shown in Appendix B. The RMSProp optimizer with a learning rate
of 0.001 was used to train the model, and training was performed
for 8000 steps. A 90–10 training validation split was used for opti-
mization, and the splits were randomized every 100 epochs. Figure 5
shows the value of the training set loss, along with the reaction rate
obtained by computing the mean first passage time of 400 reac-
tive trajectories generated independently. The loss function plateaus
around the 4000th step, with the value being within one standard
error of the true rate.

To gain mechanistic insights into the reaction, we performed
the decomposition of the relative action in terms of the inter-
nal coordinates. Following Eq. (24), we computed the ⟨Ũ jk

λ∗⟩B∣A
matrix and visualize it in Fig. 6(a). The angles and dihedrals are
represented using the letters a and d, respectively, and the num-
bers in the subscripts are defined in Appendix C. We observe
that the matrix of contributions to the rate is sparse, with only a
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FIG. 6. Decomposition of the rate of isomerization of alanine dipeptide in implicit
solvent. (a) ΔŨ jk

λ computed using Eq. (21) as a function of internal coordinates.
(b) Decomposition of the rate in terms of contributions from internal degrees of
freedom, computed by summing up the rows of the matrix in (a).

few select coordinates and their couplings obtaining a significant
value. The contributions from the distances have been removed
from the plot as their combined value was calculated to be sta-
tistically indistinguishable from zero. The effective decoupling of
the bond vibrations from the angles and dihedrals provides evi-
dence that the NN-based ansatz is not overfitting redundant features
from the limited input dataset, consistent with physical intuition for
stiff bonds.

We also observe a strong coupling among the dihedrals and
the angles. Internal coordinates do not form an orthogonal set of
coordinates, and the off-diagonal terms in the matrix indicate that
the reaction is mediated by the coupling between these internal
degrees of freedom. Moreover, the change in action is delocalized
between sets of internal coordinates that have been ignored in previ-
ous studies. We note that the off-diagonal elements of the matrix
are negative, while the diagonal terms are positive. This prevents
us breaking down the rate in terms of additive contributions from
different degrees of freedom. However, the matrix is symmetric, so

we can sum over the rows of the matrix and define the contribution
from a single collective coordinate j as

ΔŪ j
λ∗ =

Ñ

∑
k
ΔŨ jk

λ∗ , (34)

where ΔŨ jk
λ∗ is defined the same way as in Eq. (24). The reason for

using this measure is based on the sum rule for the OM action along
transformed coordinates, which from using the calculus of variation
follows

λ̃∗j
Ñ

∑
k
λ̃∗k Γ

−1
jk = λ̃∗j

Nd

∑
i

Jijηi, (35)

which is distinct from the case of Cartesian coordinates, where the
relation is given by [λ∗i ]2 = λ∗i ηi. This difference reflects the fact that
the noises along pairs of transformed coordinates are not necessarily
independent of each other and cannot be assumed to follow bipartite
dynamics.72 Summing over the rows of the matrix can be understood
as a marginalization of the OM action over all the coupled coordi-
nates. Plotted in Fig. 6(b), this decomposition is found to be positive
for almost all the internal coordinates except for two. These negative
values are within the standard error. This allows us to extract the
leading contributors to the C7ax → C7eq reaction. We observe that
the Ramachandran angle ϕ (d4) is found to incur the largest contri-
bution. This is a remarkable result as no a priori information of the
reaction coordinate was passed into the model for training. While
the indicator functions that were used to define the boundaries of
the metastable wells were defined using ϕ, the optimization scheme
itself did not require any description of the indicator functions. Yet,
this method automatically finds the Ramachandran angle ϕ to con-
tribute the most to isomerization, out of 32 internal coordinates, 9
of which are redundant.

This decomposition reveals other leading contributors to the
reaction and highlights other order parameters that are activated.
The C–N–Cα–Cβ (d3) and Cβ–Cα–C–N (d8) torsions are found
to be the next two leading contributors, suggesting that rotation
of the Ramchandran angle ϕ is strongly coupled to the orienta-
tion of the alkyl bond. Some other important internal coordinates
that are selected by this method include the O–C–N angle (a3), the
C–O–C–N improper torsion (d11), and the Cβ–Cα–C–O (d7) tor-
sion. These internal coordinates also emphasize the importance of
the relative orientation of the O–C bond and the methyl-bond. Our
final observation is that the contribution from other Ramachandran
angle ψ (d6) is found to be effectively zero. This is another signifi-
cant result as ψ has long been used as the second-order parameter to
explore the isomerization of alanine dipeptide due to the topology
of the free energy surface. As this has been mentioned previously,14

future studies should consider coarse-graining along other dihedral
angles for performing committor analysis of this reaction.

B. Isomerization in explicit solvent
Finally, to demonstrate the ability to tackle very high-

dimensional systems, we explore the conformational isomerization
of alanine dipeptide in explicit solvent. As the potential energy
landscape along the Ramachandran angles is modified due to sol-
vent interactions,14,87 we consider the isomerization between the C5
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and αL states, visualized in Fig. 7. The equations of motion and
forcefields for the peptide are the same as in the implicit solvent
study, and the TIP3P forcefield88 is used for parameterizing the
water molecules. Lorentz–Berthelot mixing rules are used for the
peptide–water interactions. A periodic box of volume 27 nm3 is used
with 862 water molecules, and the Ewald summation is used for
computing the long ranged interactions. The basin definitions for αL
and C5 are the same as those of the C7ax and C7eq states, respectively.
The same method as before is used for obtaining a reactive trajec-
tory ensemble, with an ensemble of 200 reactive trajectories used for
learning the time-dependent committor.

For this reaction, we restrict the input feature to only param-
eterize the internal coordinates of the peptide. Noting that bond
vibrations are decoupled from rotations of the dihedrals and that
water interactions are mediated through hydrogen bonds, our input
feature set comprises all the 36 angles and 45 dihedrals and con-
tains 42 redundancies. While the solvent degrees of freedom can be
parameterized using symmetry functions,89–91 our goal is to illus-
trate how our method can leverage a quantitative insight into the
reaction mechanism even when it does not have access to the full
phase space.

Optimization of the NN ansatz is performed using the
RMSProp optimizer for 2500 steps, and the results are shown in
Fig. 7(b). The loss function plateaus to a value of two higher than
ln kt f , which was computed through the evaluation of the first mean
passage time from 400 independently run trajectories. This discrep-
ancy between the first cumulant and the true rate is expected, as the
feature set excludes the relevant solvent degrees of freedom. Regard-
less, we are able to obtain the correct rate from this method by
computing the second cumulant and exponential average, the form
of which is given in Eq. (9). Both these estimators are plotted and
are observed to converge to the rate computed independently. The
agreement between the exponential estimator and second cumulant

FIG. 7. Investigation of the conformational isomerization of alanine dipeptide in
explicit solvent. (a) Representative snapshot of the two metastable conformations,
αL (left) and β (right). (b) Value of the loss function along with the two rate estima-
tors k(2) and k(exp) during training. The rate can be leveraged by the two estimators,
even though the loss function does not converge to ln kt f . The black solid line
denotes the true rate, ln kt f , with the shading denoting one standard error.

is only expected when the loss function is perturbatively close to the
true value; otherwise, the additional cumulants would be needed.
Note that even in the case where the Doob force is not fully optimal,
driven trajectories are almost surely reactive.

Since the variational bound is not saturated, the sum given in
Eq. (20) does not equal the rate. This means that the description of
the time-dependent committor is not exact. However, because we
are perturbatively close, we can still use the method to extract the
relative importance of degrees of freedom as before. First, we per-
form the same decomposition as Eq. (34). While not visualized, the
ΔŨ jk

λ matrix is found to be less sparse for the reaction in solvent due
to the renormalization of the solvent effects into the peptide degrees
of freedom. To gain a quantitative insight, we sum of the rows of the
ΔŨ jk

λ matrix as before and plot the contributions from the 20 leading
features. Plotted in Fig. 8(a), this decomposition shows that the rota-
tions of angles involving hydrogen atoms become more important
than the internal rotations of the peptide dihedrals. Most of the lead-
ing contributors are angles that involve one or two hydrogen atoms,
reemphasizing the effect of solvent in mediating this reaction. This
is in accord with the findings of previous papers on the isomeriza-
tion of solvated alanine dipeptide.18,21,92,93 However, what is striking
is that no single mode is dominant, with no internal coordinate
accounting for more than 5% of the rate.

To confirm the role of the hydrogen atoms, we plot the decom-
positions in terms of the individual atoms in Fig. 8(b) using the
action expressed in the bare coordinates. The plot reveals that the
methyl carbon contributes the most to the rate, followed by the
acetyl carbonyl oxygen atom. However, the combined importance

FIG. 8. Decomposition of the rate of isomerization of alanine dipeptide in explicit
solvent. (a) Decomposition of the rate in terms of contributions from the top twenty
internal degrees of freedom, computed using Eq. (34). (b) Decomposition of the
rate in terms of contributions from all atoms, computed using Eq. (20). The atom
indices are labeled in the snapshot of the peptide in Appendix C.
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of the hydrogens far outweighs both. This finding also illumi-
nates why the addition of solvent transforms the reactive mech-
anism. Both these atoms strongly interact with water molecules
via hydrophilic and hydrophobic effects that are mediated through
hydrogen-bonding and volume exclusion, respectively.18,21,92,93 We
find that this method is able to provide a rate estimate and quantify
the renormalized contributions from different degrees of freedom
even when it does not have access to the full phase space. This feature
can be particularly useful for more complex systems, where a com-
plete description of the system is not tractable due to computational
or memory bottlenecks.

VI. CONCLUSION
We have detailed a novel method that can be used to evaluate

the time-dependent committor and the rate from a reactive trajec-
tory ensemble. The method employs an ansatz for parameterizing
a many-body potential that is related to the time-dependent com-
mittor and can be optimized by variationally solving the backward
Kolmogorov equation, as expressed through a trajectory reweight-
ing theory used within variational path sampling. For reactive
processes in equilibrium, where the cost of obtaining a reactive tra-
jectory ensemble is independent of the rarity of the reaction, this
method provides a simple procedure to compute the rate and distill
mechanistic information.

Combining this optimization scheme with a neural network
ansatz for the time-dependent committor allows us to saturate the
variational rate bound and gives us a complete description of the
transition path ensemble. We have described how to decompose the
rate in terms of additive contributions from different degrees of free-
dom. This procedure of quantifying contributions can be applied to
collective coordinates and order parameters that are used for char-
acterizing reactions of complex molecular systems. We illustrate this
decomposition by investigating the reaction of Brownian particles
in simple potentials in underdamped and overdamped regimes. We
have shown how to apply this procedure to conformational changes
in solution, leveraging insightful information about the reactive
event even when the full phase space is not provided as training data.
In cases where the variational bound is not saturated, the rate can
still be computed using other estimators. This decomposition could
lend insights into the design of models to accurately recover kinetic
information.94

The formalism employed casts the time-dependent committor
as an optimal control force naturally making this model genera-
tive. Specifically, when the variational bound is saturated, a time-
dependent control force is produced that generates reactive trajec-
tories in an unbiased manner. While not used as such here, this
procedure can be employed to glean higher-order statistics of the
reactions over and above the rate.6 When the variational bound is
not saturated, the control force can still be applied to generate unbi-
ased transition path statistics through ensemble reweighting.55 One
could envision an iterative procedure in cases where path sampling
is difficult, for example, in cases of long diffusive trajectories, where
initial control forces are gradually optimized through alternative
cycles of training and reactive ensemble generation.

As the method is based on ensembles of trajectories and path
reweighting, there is no formal restriction to equilibrium systems.
Indeed, variational path sampling has been initially applied to

systems whose dynamics break detailed balance. As such, the pro-
cedures developed here for NN-based function approximations and
rate decompositions transfer over directly to rare transitions in
nonequilibrium steady-states. However, traditional path sampling
techniques that render the generation of a path ensemble simple
in equilibrium are not typically as effective away from equilibrium.
For those systems, one would have to consider using path sampling
methods that do not invoke detailed balance.95–97 The iterative pro-
cedure alluded to above is likely a robust means of extending this
methodology to study phase transitions in active matter and driven
assembly.
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APPENDIX A: SATURATION OF VARIATIONAL BOUND

In Sec. IV C, we detailed how the time-dependent committor
can be approximated for a formally underdamped system evolv-
ing in an overdamped regime. Here, we demonstrate that the
approximate form of the time-dependent committor saturates the
variational rate bound up to order O(γ−2). Using the approxima-
tion q(rN , vN , t) = q0(rN , t) +mv ⋅ ∇rq0(rN , t)/γ +O(γ−2), we con-
sider the log transform, Q = ln q, which to equivalent order in
perturbation theory is

Q(rN , vN , t) ≈ ln(q0 +
mv
γ
⋅ ∇rq0 +O(γ−2))

= ln q0 +
mv
γ
⋅ ∇r ln q0 +O(γ−2), (A1)
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where we will use Q0 = ln q0. For an underdamped equation of
motion the relative action, ΔUλ is given by

ΔUλ[X] = −
N

∑
i=1

1
4γkBT∫

tf

0
dt [λ2

i − 2λi ⋅ (mv̇i + γvi − Fi(rN))]

(A2)

just as in the overdamped case. Substituting the underdamped Doob
force,

λ∗i =
2γkBT

m
∇vi Q(rN , vN , t), (A3)

into ΔUλ[X], we find

ΔUλ∗ =
N

∑
i
∫

tf

0
dt[v̇i ⋅ ∇vi Q +

γ
m

vi ⋅ ∇vi Q

− Fi

m
⋅ ∇vi Q −

γkBT
m2 (∇vi Q)2]. (A4)

The first term can be resolved using Ito’s lemma,

Q̇ = ∂tQ +
N

∑
i

v̇i ⋅ ∇vi Q + vi ⋅ ∇ri Q +
γkBT
m2 ∇

2
vi Q. (A5)

Substituting this back to the relative action, we get

ΔUλ∗ = −∫
tf

0
dt

N

∑
i
[γkBT

m2 (∇vi Q)2 + vi ⋅ ∇ri Q

+ γkBT
m2 ∇

2
vi Q −

γ
m

vi ⋅ ∇vi Q +
Fi

m
⋅ ∇vi Q] − Q̇ + ∂tQ. (A6)

Finally, using the perturbative approximation of Q in Eq. (A1) and
substituting the approximated form of the backward Kolmogorov
equation in Eq. (28) yield

ΔUλ∗ = −∫
tf

0
dt

N

∑
i
[kBT
γ
(∇ri Q0)2 + mv2

i

γ
∇2

ri Q0 +
Fi

γ
∇ri Q0]

− Q̇ + ∂tQ

= ∫
tf

0
dt Q̇ = − ln q. (A7)

Hence, ΔUλ∗ quantifies the transition probability between the
states A and B over time t f when averaged over an initial distribution
in A.

APPENDIX B: RELATIVE ACTION FOR LANGEVIN
LEAP-FROG INTEGRATOR

The equations of motion for the Langevin leap-frog integrator
are given by82,86

vi[t + Δt/2] = αvi[t − Δt/2] + 1 − α
γmi

Fi[t] + ηi[t]

ri[t + Δt] = ri[t] + vi[t + Δt/2]Δt,
(B1)

where the definitions of vi, ri, and Fi are the same as in Eq. (24),
mi is the mass of particle i, γ is friction coefficient, Δt is the time
step, and α = exp [−γΔt]. The noise ηi is a Gaussian random
variable with mean ⟨ηi(t)⟩ = 0 and variance ⟨ηi(t)⊗ ηj(t

′)⟩ = kBT
(1 − α2)m−1

i δij1δ(t − t′). For this discretization, the relative
stochastic action is

ΔUλ =
tf /Δt

∑
n

N

∑
i

(1 − α)λi
2[nΔt]

2(1 + α)miγ2kBT
− λi[nΔt]ηi[nΔt]

γkBT(1 + α) , (B2)

which is the same general form as in the overdamped case.

APPENDIX C: INTERNAL COORDINATES FOR ALANINE
DIPEPTIDE

In the studies on alanine dipeptide, we parameterized our NN
ansatz for the time-dependent committor based on a set of inter-
nal coordinates. In Tables I and II, we define each of the angles and
dihedrals referred to in the main text based on the atom numbering
(Fig. 9).

Table I. Contribution to rate in implicit solvent.

Label Type Description Contribution

d4 Dihedral 4-6-8-14 0.416
d3 Dihedral 4-6-8-10 0.160
d8 Dihedral 10-8-14-16 0.079
a3 Angle 5-4-6 0.048
d11 Dihedral 1-6-4-5 0.043
d7 Dihedral 10-8-14-15 0.042
a1 Angle 1-4-5 0.025
a8 Angle 8-14-15 0.023
a10 Angle 15-14-16 0.022
a11 Angle 14-16-18 0.021
a9 Angle 8-14-16 0.021
a6 Angle 6-8-14 0.019
a2 Angle 1-4-6 0.018
d12 Dihedral 8-16-14-15 0.014
a4 Angle 4-6-8 0.011
a7 Angle 10-8-14 0.009
d9 Dihedral 8-14-16-18 0.004
d10 Dihedral 15-14-16-18 0.002
a5 Angle 6-8-10 0.002
d2 Dihedral 5-4-6-8 0.001
d1 Dihedral 1-4-6-8 −0.009
d6 Dihedral 6-8-14-16 −0.010
d5 Dihedral 6-8-14-15 −0.012
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FIG. 9. Atom indices for alanine dipeptide.

TABLE II. Contribution to rate in explicit solvent.

Label Type Description Contribution

a13 Angle 0-1-3 0.035
a41 Angle 17-16-18 0.035
d4 Dihedral 4-6-8-14 0.034
a23 Angle 7-6-8 0.032
a33 Angle 11-10-12 0.032
a12 Angle 0-1-2 0.031
a15 Angle 2-1-3 0.030
a34 Angle 11-10-13 0.029
d21 Dihedral 5-4-6-7 0.026
a47 Angle 20-18-21 0.025
d7 Dihedral 10-8-14-15 0.024
d3 Dihedral 4-6-8-10 0.023
d11 Dihedral 1-6-4-5 0.023
a27 Angle 9-8-10 0.021
d23 Dihedral 4-6-8-9 0.019
a35 Angle 12-10-13 0.018
a44 Angle 16-18-21 0.017
d33 Dihedral 9-8-10-12 0.015
a42 Angle 16-18-19 0.015
d17 Dihedral 3-1-4-5 0.015
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