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Change on Agriculture
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Abstract

The ultimate impact of climate change on human systems will depend on
the natural resilience of ecosystems on which societies rely as well as adap-
tation measures taken by agents, individually and collectively. No sector
of the economy is more reliant on climate than agriculture. Evidence from
the American settlement process suggests that societies can successfully
adapt to new climatic environments. Whether and how much agriculture
will manage to adapt to a changing climate remains an open question in
the empirical economics literature, however. This paper reviews the exis-
ting evidence onweather and/or climate impacts on agricultural outcomes
from the economics literature, with a focus on methodological questions.
Some key econometric issues associated with climate impact measurement
are discussed. We also outline important questions that have not been
adequately addressed and suggest directions for future research.
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1 Introduction
The United Nations’ Intergovernmental Panel on Climate Change (IPCC), in its fifth
assessment report, states that the most serious impacts of climate change will affect
industries like agriculture (Pachauri et al., 2014). Climate change will impact food
supply, making it even more challenging to meet increasing food demand caused by
population growth, income growth, and urbanization. It has become a priority for
researchers to understand towhat extent climate change affects agriculture aswell as its
distributional impacts, in order to inform policy on climate mitigation and adaptation.

A large body of work in the scientific literature has sought to model the effect of
climate change on agriculture using laboratory or field experiments and agronomic
models. Experiments, to the extent that they can carefully mimic future conditions,
provide a reliable measure of how these conditions will affect narrowly defined sys-
tems, such as a single crop. Agronomic models link complex natural soil and weather
processes to crop yields and are usually calibrated to experimental data. Despite their
accuracy in reflecting crops’ biological responses to changes in environmental factors,
these methods generally fail to capture human behavior in the real-world agricultural
system.

Over the past 25 years, economists have developed new approaches, with the help
of rich observational data, to infer climate impacts on agriculture while accounting
for the behavioral response of humans. Cross-sectional and panel regression analysis
are the most commonly used methods in this literature. The former seeks to corre-
late cross-sectional differences in climate to agricultural outcomes and thus implicitly
accounts for long-run adaptation to climate change, however it falls short on causal
identification due to the likely presence of omitted variables. The latter features a
cleaner identification strategy but may only partially capture long-run adaptive be-
havior. In addition to these two revealed-preference approaches, another important
strand of literature has used multi-market equilibrium models in a partial or general
equilibrium context. The first goal of this paper is to synthesize the evidence from
these different approaches with an emphasis on the existing evidence on adaptation
and adaptability of agriculture.

The panel approach is arguably the most promising method to provide causal evi-
dence. We thus focus on important methodological issues that arise in the context of
estimating climate change impacts from panel data. Given the importance of adapta-
tion, we examine work that addresses the issue of long-run responses in the context
of the panel approach. We also point to some overlooked econometric issues in the
linear fixed effects model. First, we examine potential multicollinearity that can arise
in the context of regressions with temperature and precipitation bins. We also discuss
the econometric results on the bias of linear fixed effects estimation in the presence
of response heterogeneity. Finally, given the high-frequency nature of the weather
variables relative to yield and other agricultural outcomes, researchers are faced with
a unique model selection problem in assessing climate change impacts. We present
the cross-validation approach that has been used to address it and review some key
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results pertaining to its validity from the statistics literature.
The paper is organized as follows. Section 2 reviews the evidence on climate

change impacts on agriculture based on the cross-sectional and panel approaches as
well as market equilibrium models. Section 3 examines the literature on the panel
approach and its ability to capture or estimate long-run adaptive responses. Section
4 presents econometric issues in the linear fixed effects model commonly overlooked
in the climate change literature. Finally, Section 5 concludes and points to important
directions for future research.

2 Estimates of Climate Impacts on Agriculture

2.1 Cross-Sectional Approach on Farmland Values and Revenues

Mendelsohn et al. (1994) are the first to implement a revealed-preference approach
relying on observational data to estimate climate change impacts on agriculture. They
exploit cross-sectional variation across US counties by regressing farmland values
on climate variables and soil-quality and socioeconomic variables. This Ricardian
approachposits that in a competitive landmarket, climate-contingent farmprofitability
should be reflected in land values. The method implicitly captures adaptive behavior,
especially crop-switching. Though ground-breaking, this approach has been criticized
for omitting the role of irrigation, among other things (Cline, 1996; Darwin, 1999;
Schlenker et al., 2005).

Restricting the analysis to rain-fed regions, Schlenker et al. (2006) re-examine cli-
mate change impacts on US farmland values. Warming is estimated to decrease farm-
land values by 27-69% by the end of the century. Farmland values in irrigated areas
have been found to be less sensitive to changes in local precipitation (Mendelsohn
and Dinar, 2003), and the evidence shows that water availability is capitalized into
farmland values (Schlenker et al., 2007; Buck et al., 2014).

In a recent review, Mendelsohn and Massetti (2017) report that the Ricardian ap-
proach has been applied in 46 countries in Africa, America, Asia, and Europe (e.g.,
Kurukulasuriya et al., 2008; Seo and Mendelsohn, 2008a,c; Wang et al., 2009; Van Pas-
sel et al., 2017).1 They summarize that under global average temperature increases of
2◦C and precipitation increases of 7%, Ricardian results predict a decline in net farm
revenue of 8-12%. The Ricardian approach has also found that climate change impacts
vary by region, with some winners and some losers. Warming benefits agriculture in
cold regions but harms agriculture in warm regions, and overall more precipitation is
beneficial everywhere except where it is already too wet for agriculture.

2.2 Panel Approach on Farm Profits and Crop Yields

The Ricardian approach is a practical tool for predicting climate change impacts on
economic welfare, but the results cannot be disaggregated into impacts for specific

1Some of these studies are based on survey data on farm-level net revenues.
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crops or types of livestock. Its overall reliability has also been challenged due to weak
causal identification. In addition to the well-discussed omitted-variable concerns,
the potential endogeneity of land-use decisions likely confounds the identification of
marginal effects (Timmins, 2006).

As an alternative, Deschênes andGreenstone (2007) propose to exploit presumably
random year-to-year fluctuations in weather to model the effect of climate change on
agricultural profits and cropyields, in the context of apanel approachwithfixed effects.
This approach controls non-parametrically for unobservable time-invariant factors
across regions, so it does a better job of addressing the omitted variable problem than
the Ricardian approach does. However, climate effects are identified using weather
fluctuations rather than climate differences, which has led many to argue that the
estimated effects can only capture limited adaptation. Appealing to the envelope
theorem, Hsiang (2016) and Blanc and Schlenker (2017) suggest that for relatively
small changes in climate, the panel method is a good predictor of the response to
climate, although it is based on weather variation rather than climate variation. This
is only true if the outcome variable is being optimized, however. In some studies
(e.g., Schlenker and Roberts, 2009), yield is the outcome variable, but farmers do not
typically maximize yields.

Deschênes and Greenstone’s latest results suggest that climate change will reduce
current annual agricultural profits by about 30% by the end of the century (Deschênes
and Greenstone, 2012). Note that the interpretation of farm profit effects as social wel-
fare effects would require output prices to remain constant, which the authors achieve
by including state-by-year fixed effects so that factors affecting farm profits uniformly
across a state (like crop prices) are implicitly held constant in estimation.2 However,
as pointed out by Fisher et al. (2012), an annual profit regression likely violates the
identification assumption in Deschênes and Greenstone (2007) because unobserved
commodity inventory decisions are correlated with weather and affect annual profits.
Perhaps due to this concern, studies following Deschênes and Greenstone (2007) have
mostly employed panel-data methods to estimate crop yield responses to year-to-year
weather fluctuations.

Empirical studies on measuring yield responses to weather fluctuations may be
categorized into two groups based on the data used. The first group applies panel
estimation on publicly available agricultural data. The observations in these data are
typically administrative units, like counties. Using county-level survey data, Schlenker

2To see why, consider a simple partial equilibrium model whereby a representative consumer has
quasilinear indirect utility function V(p ,Y) � v(p) + Y and aggregate farm profits are described by the
indirect profit function π(p , θ), where p is the price of the agricultural good, Y is income, and θ indexes
climate. Applying Roy’s identity and Hotelling’s lemma, Marshallian surplus in the agricultural market
is MS �

∫
+∞

pe −v′(p)dp +
∫ pe

0 πp(p , θ)dp, where pe is the equilibrium price. The marginal change in
Marshallian surplus caused by a change in climate dθ is therefore dMS �

[
v′(pe ) + πp(pe , θ)

]
dpe +

πθ(pe , θ)dθ � πθ(pe , θ)dθ, where dpe denotes the change in equilibrium price resulting from climate
change and the last equality follows from the fact that −v′(pe ) � πp(pe , θ). Therefore, the marginal
change in social welfare is given by the partial effect of climate on farm profits, holding output price
constant.
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and Roberts (2009) find nonlinear temperature effects on corn and soybean yields in
the United States, and predict yields to decline by 30-46% before the end of the century
even under the slowest warming scenario. Schlenker and Lobell (2010) find robust
negative impacts of climate change on crop yields across African countries based on
country-level statistics fromFAO. Chen et al. (2016) examine climate change impacts on
Chinese crops using county-level data and predict corn and soybean yield decreases
of 3-12% and 7-19%, respectively, by the end of the century. In France, Gammans
et al. (2017) predict end-of-the-century yield declines for winter wheat, winter barley,
and spring barley of 21%, 17%, and 34%, respectively. In a study of Japanese rice,
Kawasaki and Uchida (2016) find that crop quality decreases due to warming will
outweigh potential increases in yield, leading to lower revenue.

The second group of studies uses farm- or field-level records to provide micro-
level evidence of climate change impacts on crop yields. Welch et al. (2010) use panel
estimation at the farm level for rice in tropical/subtropical Asia and find that yields
will decrease in the coming decades because of warming. Tack et al. (2015) estimate
yield responses of winter wheat based on a panel of field-trial data in Kansas and
highlight the particular damaging effects of extreme low temperatures in the fall and
excessive high temperatures in the spring.

2.3 Market EquilibriumModels

The Ricardian and panel methods do not explicitly account for the interaction between
different markets and the feedback in prices when evaluating climate impacts. Market
equilibrium models have a unique advantage in addressing these issues.

Adams et al. (1990) predict climate change impacts on agriculture by synthesizing
information from climatemodels, crop-growthmodels, and a spatially explicit agricul-
tural sector model. Their agricultural sector model is a mathematical programming
model in which prices and quantities produced are determined endogenously in a
partial-equilibrium framework. This method has been applied under various contexts
(e.g., Adams et al., 1995; Alig et al., 1997; Adams et al., 1998; Yates and Strzepek, 1998;
Chang, 2002). In the most recent version of the model, Reilly et al. (2003) show that cli-
mate changewill increase global economicwelfare (the sumof consumer and producer
surpluses from agricultural commodities) by $3.2-12.2 billion by 2090, but that these
gains will be unevenly distributed. In particular, they find that US producers will lose
due to lower prices brought about by increased agricultural productivity. These effects
contrast with the recent econometric estimates discussed above, which suggest that US
agricultural productivity is likely to decline under climate change. While it is difficult
to identify the sources of these discrepancies, the consideration of CO2 fertilization and
potential changes in crop varieties, as well as the reliance on agronomic crop growth
models in Reilly et al. (2003) could explain their more optimistic predictions regarding
agricultural productivity and social welfare.

Beginning with Rosenzweig and Parry (1994), some studies have examined the
global impacts of climate change under a general-equilibrium framework, by linking
a set of national-level agricultural sector models with international trade (e.g., Parry
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et al., 1996, 1999; Fischer et al., 2002). Recent results document that climate change
is likely to decrease world crop yields by 9-22% by 2080, with significant regional
disparities and increased risk of hunger (Parry et al., 2004, 2005).

Another strand of literature relies on computational general-equilibrium (CGE)
models, especially GTAP, to simulate the impacts on global food supply of various
climate change scenarios (e.g., Iglesias and Rosenzweig, 2009; Hertel et al., 2010; Ciscar
et al., 2011; Schenker, 2013; Calzadilla et al., 2013). Calzadilla et al. (2013) predict
a 2.64% reduction in global agricultural production with welfare losses above $327
billion by 2050 under A1B warming scenario. Schenker (2013) highlight that the
spillover effect associated with trade will increase costs in regions under low exposure
to climate change.

Costinot et al. (2016) extend the general-equilibrium analysis by connecting micro-
level responses to macro-level outcomes. The paper builds a general-equilibrium
model of trade among 1.7 million fields covering 50 countries and 10 different crops.
By implementing counterfactual simulations, they show that evolving comparative
advantage under climate changewill guide production substitution and greatly reduce
the magnitudes of climate change impacts on crop production. Accounting for this
effect, the negative impact on agriculture amounts to a 0.26% reduction in global GDP.

2.4 Adaptability

Understanding the adaptability of agriculture to climate change has become a priority
in the economics literature since many studies indicate that climate change will nega-
tively affect agriculture. Fishman (2012) finds that irrigation can effectively mitigate
the sensitivity of rice yields to precipitation in India. Moore and Lobell (2014) jointly
estimate short-run and long-run response functions using subnational yield and profit
data in Europe, and find that adaptation potential would be high for maize, but low
for wheat and barley. In the United States, Schlenker and Roberts (2009) and Burke
and Emerick (2016) find no significant difference between short-run and long-run re-
sponses of corn and soybean yields to heat exposure, suggesting that limited historical
adaptation has occurred. In contrast, Ortiz-Bobea and Just (2013) find that earlier
planting by around twoweeks could reduce corn yield losses by 44%. In the context of
rice production in Japan, Kawasaki and Uchida (2016) provide evidence that delaying
planting dates canmore than offset the negative effects of climate change on crop yield,
crop quality, and revenue.

Another strand of literature measures agricultural adaptation based on micro-
level survey data. Hassan et al. (2008) survey adaptation strategies of African farms
and estimate how individual characteristics influence adaptation decisions. Di Falco
et al. (2011) and Huang et al. (2015) instrument self-reported adaptation decisions to
estimate benefits associated with crop productivity and profits, respectively. Taraz
(2017) shows that farmers in India have adjusted their irrigation investment and the
water-intensiveness tomedium-run variation in rainfall induced by different monsoon
regimes. Economists have also examined whether climatic information significantly
affects crop choices under a revealed-reference approach (e.g., Kurukulasuriya et al.,
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2007; Hassan et al., 2008; Seo and Mendelsohn, 2008b; Wang et al., 2010). The results
indicate both temperature and precipitation affect farmers’ crop-choice decisions, sug-
gesting that farmers will partly adapt by switching crops.

The effects of potential adaptation, including adjustments in planting time and
varieties, have also been discussed in simulations using market equilibrium models
(see Hertel and Lobell (2014) for a detailed review). International trade has also been
recognized as an important channel for mitigating climate impacts (Jones and Olken,
2010; Lybbert et al., 2014). A useful feature of CGE models is the ability to account
for trade effects when evaluating global climate impacts. However, results in Costinot
et al. (2016) show that, compared to induced within-country production substitution,
international trade plays an almost negligible role in reducing the overall impact of
climate change.

Technological improvements are crucial in enhancing agriculture’s adaptability to
climate change. As a proactive approach, Kaminski et al. (2012) develop a structural
econometric model to identify specific targets of research investment in agricultural
adaptation to climate change. Some studies have found evidence of improved adap-
tability through seed breeding. Incorporating field-trial data, Tack et al. (2016) find
improved heat-resistance of wheat can be achieved by adopting certain varieties, but
the heat-resistance may come at the price of a reduced average yield. Lusk et al. (2017)
document that a 17% increase in US corn yields from 1980 to 2015 can be attributed to
the adoption of genetically engineered (GE) corn, suggesting the potential critical role
of genetic engineering in mitigating climate change impacts on crop yields.

Some institutional obstacles to climate change adaptation have also been discussed
in the literature. For instance, crop insurance programs may have reduced farmers’
incentives to carry out costly adaptation (Annan and Schlenker, 2015). Historical insti-
tutional arrangements on groundwater use (e.g., California groundwater institutions)
can raise the cost of water relocation, disrupting a market method that could be used
to confront challenges associated with climate change (Libecap, 2011).

3 Accounting for Adaptation in Econometric Models
Fromat least themid-1990suntil very recently, economists seem tohavebeen convinced
that agriculturalists adapt to climate in the long run in an economically meaningful
way (Mendelsohn et al., 1994; Schlenker et al., 2005, 2006; Olmstead and Rhode, 2011).
Such conviction may be grounded in the observable fact that agricultural production
varies greatly across climates, both across and within countries. Indeed, agricultural
specialization could well be the most blatant sign of agricultural adaptation. For
a very long time, the empirical debate has thus been centered on whether certain
econometric approaches such as cross-sectional and panel approaches were well or ill-
suited to identifying impacts that implicitly allow for such climate adaptation, without
actually attempting to explicitlymeasure the extent of it.

Proponents of the Ricardian approach pioneered by Mendelsohn et al. (1994) have
argued that adaptation to climate matters and that estimates reflecting how outcomes
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respond to weather shocks, such as those obtainable from panel approaches, cannot
capture the response of economic systems to climate change (Mendelsohn and Mas-
setti, 2017). In the view of the Ricardian literature, the implicit accounting of long-run
adaptive behavior in cross-sectional comparisons trumps potential concerns related to
omitted variable bias. Even studies that rely on weather fluctuations and panel data to
identify causal effects have acknowledged the lack of adaptation accounting as a major
weakness of the panel approach with fixed effects (Deschênes and Greenstone, 2007;
Schlenker and Roberts, 2009; Deschênes and Greenstone, 2011; Roberts and Schlenker,
2011). This flaw implies a fundamental trade-off between the “clean identification” aff-
orded by the panel approach and the policy relevance of the identified effects (Hsiang,
2016).

Recent econometric work on US crop yields may have put the question of whether
climate adaptation actually happens in agriculture at the center of the empirical debate.
Studies by Schlenker andRoberts (2009), Schlenker et al. (2013), andBurke andEmerick
(2016) all suggest that US crop yields respond similarly to changes in heat exposure in
the short and long run, signaling little climate adaptation. If farmers do not respond
to climate change in a way that is meaningfully different from how they respond to
weather shocks, then using weather fluctuations to identify climate impacts could
be perfectly justified. Of course, whether climate adaptation is present remains an
empirical question, the answer to which may well be context-specific.

3.1 The nonlinear panel approach

A group of recent studies has emphasized that whenever weather variables enter non-
linearly in a panel model with fixed effects, e.g., in a quadratic fashion, cross-sectional
variation in climate participates in coefficient identification (e.g., Auffhammer and
Schlenker, 2014). Based on this observation, researchers have suggested that impact
estimates derived from nonlinear panel models with fixed effects at least partially
capture long-run adaptation to climate (McIntosh and Schlenker, 2006; Lobell et al.,
2011; Burke et al., 2015; Schlenker, 2017; Blanc and Schlenker, 2017). Yet the extent to
which such estimates should be thought of as inclusive of long-run adaptation remains
unclear.

Whether and how much damage estimates obtained from nonlinear panel data
reflect the underlying long-run adaptation potential is, of course, critical to their re-
levance for climate policy. One legitimate fear is that overly pessimistic short-run
estimates in a context where significant adaptation potential exists might steer policy
makers into making suboptimal policy choices or misdirecting public funding aimed
at addressing the impacts of climate change.

Mérel and Gammans (2017) derive an analytical expression for the bias of the
nonlinear panel estimator (relative to the underlying long-run response of interest) in
the context of the quadratic specification in weather variables discussed in McIntosh
and Schlenker (2006). The data-generating process (DGP) explicitly allows for both
long-run adaptation to climate and short-run responses to weather, however the es-
timating equation only relates the economic outcome to weather, as in most existing

8



panel studies. The authors first show that in addition to the actual extent of long-run
adaptation undertaken by agents, skewness in the historical weather data conditional
on location is an essential driver of the bias in the myopic estimates obtained from the
panel model relative to the underlying long-run values. This skewness can actually
cause bias in either direction.

Mérel and Gammans (2017) then show that in the absence of skewness, the myopic
panel coefficient estimates can be written as a convex combination of the underlying
short-run and long-run coefficients. The decomposition reveals that the estimates re-
flect long-run valueswhenever the cross-sectional variation in climate “dominates” the
location-specific weather fluctuations. Said differently, panel estimates of the weather-
outcome quadratic relationship can be thought of as a weighted average of short- and
long-run responses, with the weight on the long-run parameters increasing with the
share of the overall weather variation attributable to cross-sectional differences. In
large countries like the United States where locational variation in climate dominates
short-run weather fluctuations, existing panel estimates should thus be considered as
already reflecting a significant share of the historical climate adaptation. Calculations
for quadratic models indicate that panel coefficient estimates obtained from county-
level weather data across the years 1950–2015 are heavily weighted towards long-run
parameter values, namely 98% for average spring-summer temperature and 67% for
precipitation.

3.2 The long-differences approach

While cross-sectional differences in climate represent, in the eyes of many, a useful
source of climate variation in empirical studies, estimates of climate impacts that rely
exclusively upon them are potentially subject to omitted variables bias. In this context,
the presence of historical climate trends represents a promising–although relatively
untapped–alternative source of climate variation.

Burke and Emerick (2016) exploit this variation by estimating the effect of heat on
US crop yields in a long-differences linear regression framework. In order to better
understand how the long-differences approach may capture long-run adaptation, let
δS denote the short-run response of yield toweather shocks and δL denote the long-run
response of yield to climate. Suppose that yield is given by the following DGP:

yit � δSw∗it + δLc∗it + αi + uit (1)

where c∗it and w∗it denote climate and weather shocks, respectively, which might not
be observed separately.3 Instead, realized weather xit � c∗it + w∗it is observed. Burke
and Emerick (2016) propose to compare the fixed effects (FE) estimator with the long-
differences (LD) estimator of a regression of yield on realized weather in order to test
for the presence of long-run adaptation, i.e. δS , δL.

The linear FE model is given by the following:

yit � βFExit + αi + uit . (2)

3This DGP is also used by Burke and Emerick (2016) to justify their estimation framework.
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Assume that E[uit |xit , αi] � 0 and let E[c∗it |xit , αi] � ρc xit and E[w∗it |xit , αi] � ρw xit .
Then,

E[yit |xit , αi] �δSE[w∗it |xit , αi] + δLE[c∗it |xit , αi] + αi

�(δSρw + δLρc)xit + αi . (3)

It follows that the marginal effect ∂E[yit |xit , αi]/∂xit � δSρw + δLρc � βFE, the pro-
bability limit of the FE estimator. If we assume ρw � 1 − ρc ,4 then βFE is a weighted
average of δS and δL.5

The LD estimator, on the other hand, is the OLS estimator of the following model:

ȳiτ2 − ȳiτ1 � βLD(x̄iτ2 − x̄iτ1) + ūiτ2 − ūiτ1 (4)

where for a variable zit , z̄iτ1 �
∑τ1+s

t�τ1
zit/s and z̄iτ2 �

∑τ2+s
t�τ2

zit/s, for τ2 > τ1 + s. If
E[x̄iτ2 − x̄iτ1] � E[c̄iτ2 − c̄iτ1], i.e., E[w̄iτ2] � E[w̄iτ1], then βLD only uses variation in
climate and not transitory weather shocks, i.e., βLD � δL. However, the identification
of βLD relies on long-runwithin-variation in climate.6 In the absence of such variation,
δL is not identified.7

Under the above assumptions, the difference between βFE and βLD is indeed related
to the difference between δS and δL. If δS � δL, i.e., there is no adaptation, then
βFE � βLD . However, suppose that δS and δL are both strictly positive and δL > δS, as
illustrated in the following diagram,

0 δS (1 − ρc)δS + ρcδL︸                 ︷︷                 ︸
βFE

δL︸︷︷︸
βLD

then the difference between βFE and βLD will depend on ρc , which is the proportion
of climate variability out of total weather variability. The larger ρc , the closer βFE and
βLD will be, even if δS and δL are different from each other. Hence, the power of the
test based on the difference between the FE and LD estimators may be compromised
in finite samples, and a non-rejection of such a test has to be interpreted with caution.
Moreover, even in large samples, the difference between βFE and βLD will not reflect
the true adaptation potential. Intuitively, if climate trends are present, then these
trends will participate in the identifying weather variation used in the FE model,
which implies that the FE estimator will be “contaminated” by adaptation and will
not purely reflect the short-run response. Although the LD estimator will still provide
an unbiased estimate of the long-run effect, inference regarding the actual extent of
adaptation and its economic significance is compromised.

4This holds if c∗it and w∗it are jointly normal and independent.
5This decomposition is conceptually distinct from that derived in Section 3.1, which uses a quadratic

specification.
6In practice, models include at least state-level time trends, so the variation used for estimation is

residual variation. This type of variation may be small in practice.
7In this case, if E[w̄iτ2 ] , E[w̄iτ1 ], then the long-differences transformation is simply a different

transformation that removes αi and allows us to estimate δS consistently.
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4 Challenges with the Panel Approach
Asmentioned above, the FEmodel is themost widely usedmethod to estimate climate
change impacts using panel data. Though practitioners tend to choose models that are
linear in the parameters, a flexible specification of the regressors is typically used. Let
i denote a county, t denote a year, and s a state or province, the relationship between
an outcome yit and a function of the weather variables, which are observed at a higher
frequency (e.g., daily), is estimated by the following, for i � 1, . . . , n and t � 1, . . . , T

yit � X′itβ + z′itγ + αi + λt + γs f (t) + εit (5)

where Xit is a k × 1 vector of functions of the underlying weather variables, Xit �

g({With}Hh�1). For instance, if we observe temperature, Tith , and precipitation, Pith , for
each day h in year t, thenWith � (Tith , Pith)′. Supposewe include average temperature,
T̄it , and precipitation, P̄it , as well as their squares, thenXit � (T̄it , T̄2

it , P̄it , P̄2
it)′.8 Other

popular choices are temperature and precipitation bins as well as degree days and
total precipitation. The above model is flexible in its accommodation of nonlinearities
in weather variables, however it is linear in time-invariant and time-varying unobser-
vables, typically referred to as “fixed effects.” It assumes away response heterogeneity
across cross-sectional units, i.e., β is not allowed to vary across states and counties. In
this section, we discuss econometric issues that may arise in this empirical setting.

4.1 Multicollinearity in Binned Regressions

The recent statistical yield literature has emphasized the role of extreme temperature
on crop yields (Schlenker and Roberts, 2009; Tack et al., 2015). When estimating the
historical relationship between weather and yield, it is therefore essential that the
included right-hand-side weather variables capture, in someway or another, exposure
to extreme temperatures. Using average daily temperature would likely mask such
exposure as, for instance, exposure to extreme heat during hot summer days may
be concealed through averaging with exposure to cooler night temperatures. Given
that crops may respond dramatically to exposure to hot temperatures (e.g., in excess
of 30°C), it is evident that models based on average daily temperatures will often
fail to account for the negative effects of extreme heat on crop yields. The standard
solution, in the absence of hourly temperature data, is to infer from daily minimum
and maximum temperature data the within-day distribution of temperature, using a
sine or linear interpolation (Schlenker and Roberts, 2009; Burke and Emerick, 2016;
Gammans et al., 2017).

At the same time, the literature has uncovered nonlinear, and often non-monotonic
relationships between crop yields and temperature (Schlenker and Roberts, 2009),
confirming agronomic knowledge about plant growth processes (Hertel and Lobell,
2014) and suggesting the need for flexible models capable of capturing such nonli-
near effects. One popular specification consists of “binning” cumulative temperature

8T̄it �
∑H

h�1 Tith/H and P̄it �
∑H

h�1 Pith/H.
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exposure across the growing season within relatively narrow temperature intervals
and allowing for flexible effects of exposure to each temperature bin on crop yield
(Schlenker and Roberts, 2009; Chen et al., 2016; Gammans et al., 2017; Schauberger
et al., 2017). In the least restrictive specification, exposure to each temperature bin is
allowed to have an effect on yield independent of that of adjacent bins.

An issue that has been overlooked in the literature is the effect of interpolating
within-day exposure from daily data on regressor multicollinearity in the flexible bin-
ned regression framework. Because the within-day interpolation fits a continuous
curve between the minimum and maximum temperatures of consecutive days, expo-
sures to adjacent temperatures (i.e., times spent at adjacent temperatures across the
season) are systematically correlated in the interpolated data. This partially “con-
structed” multicollinearity typically results in very unstable relationships between
temperature exposure and yield whenever temperature bins specified in the regres-
sion are narrow, so one solution may be to consider wider bins. At the same time, if
temperature intervals are too large, critical non-linearities or non-monotonicities may
go undetected by the model, and thus warming impact estimates may suffer from
severe misspecification bias.

[Figure 1 about here.]

Figure 1 illustrates this point using temperature exposure data from 88 French
departments during the months March–July, the warm season for cereal crops like
wheat and barley. The weather data covers the period 1950-2016.9 The figure depicts
the assumed underlying relationship between temperature exposure and yield as a
piecewise linear function. Log yield increases with exposure to moderate to warm
temperatures but decreases with exposure to temperatures above 28°C. A data set of
department-level crop yields is generated by adding an i.i.d disturbance term to the
central yield implied by this non-monotonic relationship.10

A set of binned regression models is then estimated using ordinary least squa-
res, with the size of the bins increasing from 1°C to 8°C. Results are represented in
panels 1(a)–1(d), where the boxes indicate the 95% confidence interval around bin
estimates. It is clear that for the smaller bins, adjacent estimates fluctuate quite a
bit from the underlying parameter values, with very large confidence intervals. Alt-
hough the underlying temperature-yield relationship only exhibits non-monotonicity

9The department-level weather data are constructed from the gridded dataset E-OBS version 14.0,
made available by the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the
data providers in the ECA&D project (Haylock et al., 2008).

10Specifically, log yield in department i and year t is constructed as ln yit �
∑36

h�0 g(h+0.5)φit (h)+ εit ,

where g(h) �


0 if h ≤ 8°C
0.0005h − 0.004 if 8 ≤ h ≤ 28°C
0.43 − 0.015h otherwise

, φit (h) is the time in days spent between tempera-

tures h and h + 1, and εit ∼ N(0, 0.4). Although the literature has insisted on accounting for spatial
correlation in real data (Auffhammer et al., 2013), our point here is about multicollinearity, therefore we
assume independence across space and time in the data generating process and the regression frame-
work. Figure 1 plots the relationship g(h), which is interpreted as the percentage change in yield caused
by replacing one day of exposure below 0°C by one day at a given temperature.

12

http://ensembles-eu.metoffice.com


at h � 28°C, the estimated relationship with 1°C bins is very unstable and showsmany
non-monotonicities, particularly at higher temperature bins where exposure is scarce.
For instance, there is a large upward jump in the marginal exposure effect between
the bins 35–36°C and the bin above 36°C, that does not vanish when increasing the
bin size to 2°C. The problem for the econometrician is that it is unclear whether such
non-linearities reflect true underlying effects or are simply caused by multicollinearity
in the exposure data.

In order to confirm that multicollinearity is indeed driving the apparent instability
of the estimates, we re-shuffle the temperature exposure data, namely, we randomly
permute adjacent bin exposures within 10°C intervals, where the permutation rule
varies across departments and years. We then re-construct the yield data based on
the underlying data generating process (DGP) and re-estimate the model using OLS.11
The results appear in panel 1(e) for the 1°C bins and clearly show that the estimated
relationship is both smoother and more precisely estimated.

[Figure 2 about here.]

These simulations suggest a trade-off between the size of the bins and the precision
and reliability of the estimates. Large bins may fail to capture underlying changes
in the weather-yield relationship, which may cause (or aggravate) misspecification
bias. Estimates obtained from regressions with narrower bins will typically suffer
from multicollinearity, and therefore nonlinearities arising from such models should
be interpreted with caution and in light of available agronomic knowledge. If the
underlying temperature-yield relationship is “too nonlinear,” it will be difficult to
distinguish between legitimate non-linearities and mere artifacts from the weather
data construction in a binned regression framework.

In addition, estimates obtained from regressions with narrow bins will be more
imprecise, and so will the climate change impacts calculated from them. Figure 2
depicts the distribution of climate change impacts implied by the above regressions
when considering a uniformwarming by +4°C. Thewarming is assumed to be uniform
in space and time (within the growing season), so that exposure to a given bin h under
the new climate can be deduced from exposure to the bin h − 4 under the reference
climate. Impacts are calculated for 1,000 draws of the disturbances. Figure 2 shows that
with the simple underlying relationship assumed here, and with a uniform warming,
binning with larger intervals does not accentuate misspecification bias and results in
more precise estimates.

4.2 Response Heterogeneity

In climate change impact studies, heterogeneous responses at the regional, state or
county levels can be of particular interest. In this section, we present the potential
bias of the linear FE estimator in the presence of response heterogeneity. To facilitate

11The disturbances are taken from the same distribution as in the initial simulation.
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presentation, we consider a simple model with a scalar regressor, say annual mean
temperature, that exhibits response heterogeneity,

yit � βi xit + αi + uit . (6)

Note that by replacing y and x with their residuals after projecting out zit , λt and
γs f (t), the results discussed below can be extended to the more general model in Eqn
(5).

There are several results in the econometrics literature that establish the poten-
tial inconsistency of linear FE estimators in the presence of response heterogeneity
(Chernozhukov et al. (2013, Theorem 1), Gibbons et al. (2017, Proposition 1)). In order
to understand the key insight behind these results, it is important to first define the
average marginal effect of x on y, which is given by

E[βi] � lim
n→∞

1
n

n∑
i�1

βi , (7)

where we assume that we have a random sample of cross-sectional units from the
population, and hence would give each unit the same weight.12 A consistent estimator
of E[βi] can be obtained by the plug-in method, specifically

β̂SA �
1
n

n∑
i�1

β̂i (8)

where β̂i �
∑T

t�1(xit − x̄i)(yit − ȳi)/
∑T

t�1(xit − x̄i)2 is the coefficient from an OLS
regression for each unit i.13

The linear FE estimator, on the other hand, is anOLS estimator on thewithin-group
transformation of the linear FE model given by the following,

yit − ȳi � βFE(xit − x̄i) + uit − ūi . (9)

A simple manipulation of the linear FE estimator quickly illustrates that it is a variance
weighted average of the estimators of the unit-specific slope coefficients, β̂i ,

β̂FE �

∑n
i�1

∑T
t�1(xit − x̄i)(yit − ȳi)∑n

i�1
∑T

t�1(xit − x̄i)2
�

n∑
i�1

∑T
t�1(xit − x̄i)2∑n

i�1
∑T

t�1(xit − x̄i)2︸                    ︷︷                    ︸
variance weight

∑T
t�1(xit − x̄i)(yit − ȳi)∑T

t�1(xit − x̄i)2︸                        ︷︷                        ︸
β̂i

.

12When we have county-level data, other weights, such as acreage shares or population proportions,
may be more appropriate. The weighted average would yield a definition similar to βATE in Gibbons
et al. (2017). We also assume that we can identify βi for all units i in the population, this implicitly
assumes that var(xit − x̄i) > 0 for all i. If this assumption does not hold, one can look at the average
marginal effect of the identified units, i.e. E[βi |var(xit − x̄i) > 0]. Chernozhukov et al. (2013) refer to this
object of interest as the “identified effect.”

13This equation is only estimable if we have within-unit variability in the weather,
∑T

t�1(xit − x̄i)2 > 0.
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Suppose our cross-sectional units were counties, the above shows that the coefficient
estimates for counties that experience proportionately greater inter-annual variability
in temperature are given higher weight in the FE estimator.14 This can lead to a
downward bias in the estimates of the average effect of temperature on the outcome
in practice, if we expect counties that experience higher variability to take measures
to adapt and hence be less sensitive to temperature changes. In general, however, the
sign and magnitude of the bias will depend on the empirical setting.

We illustrate this problem with a simulation design, where the outcome follows a
random coefficient model and xit follows a first-order auto-regressive process, given
by the following, for i � 1, . . . , n, t � 1, . . . , T,

yit � βi xit + αi + uit , where βi � 0.5α3
i ,

xit � 0.5xi ,t−1 + εit , xi0
i.i.d.∼ N(a1 , 0.5) + N(a2 , 0.5)

αi
i.i.d.∼ N(X̄i , std(Xi)),where std(Xi) �

√√√ T∑
t�1
(Xit − X̄i)2/T

εit
i.i.d.∼ N(0, 1), uit

i.i.d.∼ N(0, 1). (10)

Figure 3 presents the simulation distribution of the FE estimator, β̂FE, and the sample
average estimator, β̂SA. The simulation design provides numerical evidence that the
bias of the linear FE estimator can be upward, downward or small. It also gives an
example where the sampling variability of β̂FE is larger than that of β̂SA.

[Figure 3 about here.]

The simulation design illustrates that in the presence of response heterogeneity, practi-
tioners should use a consistent estimator of the average marginal effect in the spirit of
β̂SA or the weighted FE estimator proposed in Gibbons et al. (2017).

4.3 Model Selection

As pointed out in the discussion of Eqn (5), one of the key choices empirical resear-
chers make in the climate change literature is the summary statistics of daily weather
variables that constitute the regressorsXit in the linear FEmodel. This is a clear model
selection choice that empirical researchers make, yet few discuss this choice explicitly.
Schlenker and Roberts (2009) use Monte Carlo cross-validation (MCCV) to illustrate
that a particular model minimizes mean squared out-of-sample prediction error re-
lative to other models. Other papers such as Gammans et al. (2017) follow a similar
procedure. There are several variants of cross-validation. For a recent review of the
statistical literature, see Arlot and Celisse (2010). The MCCV procedure used in the
aforementioned papers selects among several models,M1 ,M2 , . . . ,M` , as follows,

14It is worth noting that if the effect of temperature on the outcome is homogeneous across counties,
the variance weighting is “efficient” since higher variability imply greater precision. However, when
response is heterogeneous across counties, this weighting can lead to inconsistent estimation.
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1. Repeat steps (a)-(c) for b � 1, 2, . . . , B:

(a) Randomly re-sample years into a training and testing sample of size Tc and Tv ,
respectively, where Tc/T ' 0.85,

(b) Using the training data set, estimate the parameters of eachmodel M̂b
1 , . . . , M̂b

` ,

(c) Estimate the out-of-sample prediction error, ε̂ j,b
it , for each i , t observation in the

bth testing sample for each model j, using the estimates M̂b
j , and construct

Γ̂
j
b ,nT �

1
nTv

n∑
i�1

Tv∑
t�1
(ε̂ j,b

it )
2 (11)

2. Choose the model that minimizes the average mean-squared error across all Monte
Carlo testing samples,

Γ̄
j
nT �

1
B

B∑
b�1
Γ̂

j
b ,nT (12)

among modelsM j for j � 1, . . . , `.

The desirable properties of amodel selection procedure, such asMCCV, are asymp-
totic optimality and/or consistent model selection. Asymptotic optimality or loss
efficiency ensures that as sample size grows, the procedure in question chooses the
model with the smallest mean squared error. Consistent model selection ensures that
if a number of correct models are under consideration, the most parsimonious among
them is chosenwith probability approaching 1 as sample size grows. This is important
for out-of-sample performance, since it is well-known that in-sample fit is inversely
related to out-of-sample fit. For linear regressionmodelswith independent and identi-
cally distributed (i.i.d.) data, Shao (1993) explains why leave-one-out cross-validation
(LOOCV) has a tendency to over-fit. Furthermore, for MCCV to deliver consistent mo-
del selection, the condition Tv/T → 1 has to hold as T →∞, i.e. with larger samples,
proportionately larger test samples should be chosen. For instance, this condition is
satisfied for the training sample size Tc ' T3/4. If T � 50, this condition would yield a
training sample that is only 38% of the total sample, whereas the testing sample would
equal 62% of the total sample size. These results only hold under the assumption
that the correct model is finite-dimensional. Shao (1997) points out that MCCV with
Tv/T ∈ (0, 1), such as the version of MCCV used in the aforementioned papers, is a
compromise between LOOCV and MCCV with Tv/T → 1, and hence will perform
worse than MCCV with Tv/T → 1 if the correct model is finite-dimensional.15

Another concern with the MCCV implementation in the climate change literature
is that formal results on the validity of MCCV are based on re-sampling i.i.d. ob-
servations. This assumption ensures that the estimators obtained from the training

15Note that LOOCV is consistent if the correct model is infinite-dimensional (Shao, 1997).

16



sample are independent of the observations in the testing sample. This is important to
formally justify cross-validation. In the case of dependent data, its properties are not
formally established (Arlot and Celisse, 2010), even though cross-validation tends to
performwell in simulations despite the presence of dependence. Re-sampling years in
the panel data context deviates substantially from the i.i.d. assumption since the “fixed
effects” of the cross-sectional units introduce very strong correlation between the data
in the training and testing samples. Finally, once a model selection choice is made,
classical inference methods are no longer valid. Future work is required to obtain
formally justified procedures for model selection that are robust to data dependence
and deliver valid post-selection inference.

5 Conclusion and Directions for Future Research
History has taught us that even with a fairly stable climate, the globe has experienced
devastating food crises and famines due to adverse weather events. Climate scientists
nowpredict that inmost foodproducing regions of theworld, the future climatewill be
different from thepast. Could increased climate variability result inmoreperiodic food
crises and, if so, what are the implications for feeding a growing population and what
are the likely policy responses? This paper reviews the findings of climate impacts on
agriculture, and discusses some methodological issues in empirically measuring the
effects of climate change, including climate adaptation potential.

A comprehensive assessment of the state of current scientific knowledge regarding
the impact of climate change on world agriculture would require reviewing literatures
beyond economics. But what has the economic literature taught us on the topic to
date? First, although studies are still lacking for many developing countries, most
econometric estimates of crop yield impacts are negative. Given that developing
countries tend to be located in hot regions that are predicted to get hotter, one can
speculate that global crop productivity will decline under warming. Second, when
put into the context of economywide GDP, these losses are predicted to be small, -
0.34% of world GDP according to the study by Costinot et al. (2016), although this
small average effect could mask large negative effects for some countries. Third,
climate adaptation could mean that these effects will even be smaller in the long run,
if agents and/or institutions can effectively respond to changes in climate. This is
perhaps the area of research that is in most need of development, including from
a methodological standpoint. From an identification perspective, using times-series
variation in climate, in the spirit of Burke and Emerick (2016), might represent themost
convincing framework for relating climate to outcomes (such as profits) or behavior
(such as crop choice) that include long-run adaptation.

Let us also point out some other directions for future research. The use of degree-
days variables is a critical development in the literature as they better characterize the
differential effects of heat accumulated over the growing season. This development
has also motivated a series of innovations on flexible specifications to model potential
nonlinear effects in the response relationship. Despite some work in this area (e.g.,
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Welch et al., 2010; Ortiz-Bobea and Just, 2013; Tack et al., 2015), the effects that are
specific to different stages have not received much attention. Given the seasonal hete-
rogeneity in climate change, future work should further address the stage-specificity
in measuring climate impacts on agriculture.

Blanc and Schlenker (2017) make an important observation that pollution is corre-
lated with weather shocks. Recent studies find that air pollution, specifically surface
ozone, negatively affects crop yields (Boone et al., 2013; McGrath et al., 2015; Carter
et al., 2017). This raises a potential omitted variable problem in identifying climate
impacts on crop yields when only including weather and climatic variables as regres-
sors. Future research should take this concern into account and carefully evaluate the
potential bias caused by omitted variables, such as pollution.

Many discussions in this review, as well as in the literature, have focused on
farmland values, revenues, and crop yields. But it is also important to document
climate impacts on other aspects of agriculture. Kawasaki and Uchida (2016) point out
the impacts of climate change on crop quality can bemore negative than on crop yields.
Lee and Sumner (2015) uncovermoderate acreage responses to changes in local climate
in Yolo County, California. Examining corn and soybeans in Brazil, Cohn et al. (2016)
suggest that climate change impacts on crop acreage and cropping frequencies can be
potentially larger than on crop yields. The consequences of climate policy on land
use, including the induced shift between cropland and grassland, and implications
for the livestock sector, have also been discussed (Golub et al., 2013; Fezzi et al., 2015).
Given livestock’s importance in global agriculture, it is surprising how little attention
economists have devoted to understanding climate change impacts on this sector.

More frequent extreme weather events clearly pose a challenge to food security. In
fact, such events have greater potential to disrupt the global food equation than does a
slow warming trend. It is important to recognize that past food crises have generated
policy responses that made the situationworse (Timmer, 2010). For instance, hoarding
and export embargoes occurred during the 2007-08 food crisis (Carter et al., 2011).
More research is hence needed to understand the impacts of extreme weather events
and their policy implications.
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Figure 1 Effect of bin size on estimates of temperature effects

Notes: Green piecewise linear curve represents the underlying relationship. Estimates of
temperature exposure effects obtained from specifications with: (a) 1°C bins, (b) 2°C bins, (c)
4°C bins, (d) 8°C bins, (e) 1°C bins from re-shuffled exposure data. Histograms at the bottom
of each panel represent the mean exposure in the underlying weather data. Gray bands
represent 95% confidence intervals around point estimates.
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Figure 2 Effect of bin size on calculated warming impacts

Notes: True impact represented by the dashed red line. Mean calculated impact represented
by the solid black line. Histogram shows the distribution of calculated impacts across 1,000
draws of the disturbances. Impacts are obtained from specifications with: (a) 1°C bins, (b)
2°C bins, (c) 4°C bins, (d) 8°C bins.
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Figure 3 Simulation distribution of β̂FE vs. β̂SA
Notes: The simulation distribution of β̂FE (β̂SA) is in red (blue) for n � 500, T � 5 and 1, 000 simulation replications.
The vertical lines denote the mean of the distribution in question. The simulation design is given in Equation (10).
In (a), Xi0 is generated using a1 � −6, a2 � 2, in (b) a1 � −2, a2 � 6, and in (c) a1 � −4, a2 � 4.
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