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Abstract

Predictive Control for Motion Coordination of Connected and Automated Vehicles

by

Roya Fallah Firoozi

Doctor of Philosophy in Engineering – Mechanical Engineering

University of California, Berkeley

Professor Francesco Borrelli, Chair

Advances in vehicular communication technologies have the potential to facilitate autonomous
and cooperative driving in the near future. Connectivity technologies such as Vehicle-to-
Cloud (V2C) and Vehicle-to-Vehicle (V2V) communication enhance the vehicles’ awareness
and enable cooperation. Connected and Automated Vehicles (CAVs) are able to collabora-
tively plan and execute driving maneuvers by sharing their perceptual knowledge and future
plans.

This thesis presents motion planning algorithms, control strategies and estimation techniques
that incorporate the information received via connectivity technologies such as V2C and
V2V communication to improve the safety and performance of a single autonomous vehicle
or multiple coordinated autonomous vehicles.

Starting with a single vehicle case, the design of estimation, control and planning strategies
which utilize V2C connectivity are presented. It is shown the vehicle localization perfor-
mance is improved by exploiting prior knowledge of a road grade map built using V2C
communication. Also, the design of a hierarchical control system including high-level long-
term planner and low-level real-time control is presented that employs the traffic condition
and road grade data using V2C connectivity.

For the two-vehicle case, the design of a leader-follower coordination using V2V commu-
nication is proposed. A safe adaptive cruise control system is presented in which the ego
(follower) vehicle receives the predicted trajectory of the front (leader) vehicle. Safety is
achieved by designing a robust control invariant set. The set computation is suitable for
online applications and is less conservative compared to the state of the art.

For the case of multiple vehicles, the design of safe and efficient coordination algorithms
which benefit from V2V communication technologies is presented . The coordination strate-
gies are classified in the two categories of centralized and distributed. The proposed methods
are general and applicable to various multi-robot settings. By using the theory of Model Pre-
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dictive Control (MPC) and strong duality, provably safe algorithms are presented for collab-
orative navigation of multiple heterogeneous autonomous vehicles with different (arbitrary)
polytopic shapes and different dynamical models in tight environments. The optimization-
based centralized coordination strategies are presented for formation, reconfiguration and
autonomous navigation of CAVs, traveling on public roads. Using the proposed approach,
CAVs are able to form single or multi-lane platoons of various geometrical configurations.
They are able to reshape and adjust their configurations according to changes in the envi-
ronment.

In the last part of the thesis, a distributed coordination algorithm is presented that ex-
ploits the problem structure to decompose the large optimization problem into smaller local
sub-problems solved in parallel. Using this approach, the vehicles cooperate (while commu-
nicating their intentions to the neighbors) and compute collision-free paths in a distributed
way to navigate in tight environments in real-time.
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Chapter 1

Introduction

We are captivated by the promise that autonomous robots will soon be part of our daily
lives [38]. The automotive industry is investing billions in self-driving technologies [74],
maritime-transportation companies are already developing autonomous boats [50], and re-
tail companies are investing in autonomous warehouse robots [65]. These technologies have
the potential to reduce fatalities, to improve transportation efficiency, and to enhance the
overall quality of life [22]. On the other hand, recent advances in communication technologies
enhance the environmental perception of these robots and enable collaboration among them.
As the number of robots in use increase year by year, reliable cooperation and collaboration
among them is a necessity. They should be able to communicate and negotiate to navigate
in the environment and accomplish different tasks. Hence, it is crucial to design and de-
velop efficient and safe motion planning algorithms, control strategies as well as estimation
techniques that incorporate the information received via connectivity and communication
interfaces to further improve the safety and performance of autonomous systems.

Advances in vehicular communication technologies are expected to facilitate cooperative
driving in the future. Imagine a group of Connected and Automated Vehicles (CAVs) trav-
eling on a highway, as shown in Fig. 1.1 in a geometric formation pattern. They are able to
are able to collaboratively plan and execute driving maneuvers by sharing their perceptual
knowledge and future plans. For example, if an obstacle appears in a lane or when the traffic
is slow in one lane, using Vehicle-to-Vehicle (V2V) communication technology, the vehicles
can exchange information and cooperate to perform collaborative maneuvers and merge into
lanes with faster traffic, as shown in Fig. 1.2.

Figure 1.1: The right arrow shows direction of motion.
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Figure 1.2: Collaborative maneuver of multiple vehicles: The vehicles perform cooperative
lane-change and merge into a single lane and reconfigure to a new formation pattern.

These collaborative maneuvers are beneficial and can enhance transportation mobility,
safety, energy efficiency, comfort and emission reduction. However, in planning and execu-
tion of these types of collaborative maneuvers different challenges arise due to tight available
space, fast changing dynamic environment, limited computational resources for real-time
implementation and more. When a group of cooperative vehicles travel on highway in a
formation pattern, they maintain a close inter-vehicle distance. Therefore, both formation
geometry (longitudinal and lateral inter-vehicle spacing) and road geometry (lane width) re-
strict the motion of the vehicles within the platoon and result in creating a tight environment.
In addition, since the vehicles are traveling at highway speed, in a dynamic environment, the
design of planning algorithms must be well-suited for real-time implementation considering
hardware/software limitations. Furthermore, safety guarantees are crucial aspects of con-
trol design for these safety-critical systems in order to avoid collisions. In this work, these
challenges are addressed. The main focus is to leverage connectivity and communication
interfaces to further improve estimation techniques, motion planning algorithms and control
strategies for single and multiple autonomous vehicles.

The coordination task among multiple autonomous agents is defined as achieving a desired
formation or reaching a goal set, while avoiding collision with static and dynamic obstacles
in the environment. In a constrained optimization framework, the goal set is incorporated
in the cost function and collision avoidance relations are imposed as the constraints. Also,
dynamic models, states and inputs limitations are enforced as constraints, as well. In this
work, utilizing constrained optimization scheme, first a leader-follower coordination strategy
for two-vehicle coordination is introduced. Then a centralized coordination scheme for mul-
tiple robots is presented. Afterwards, a distributed coordination algorithm is proposed that
exploits the structure of the centralized problem to decompose the large optimization prob-
lem into smaller local sub-problems solved in parallel, which allows the robots to coordinate
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in real-time. The thesis chapters are summarized below.
Chapter 2, deals with a single vehicle connectivity to cloud. The performance of different

modules of autonomous driving including localization, planning and control is improved by
leveraging the information received using Vehicle-to-Cloud (V2C) technology. For example,
a vehicle connects to the Google Elevation API and builds an elevation map of a given route.
The vehicle then uses the map to estimate its position along the route by extracting road slope
as a localization feature and matching the inclination measurements with the map. Also,
for long-term planing, exploiting traffic condition and road geometry information received
via V2C, the vehicle optimizes its velocity trajectory, given the origin and destination of
the trip. Additionally, for real-time control, a predictive controller employs the same road
geometry data as preview information and finds the optimal control strategy accordingly.

Chapter 3, is devoted to leader-follower coordination design for two vehicles. The coor-
dination design is presented as a safe Adaptive Cruise Control system (ACC). ACC controls
the vehicle longitudinal dynamics. Using ACC, the ego (follower) vehicle automatically ad-
justs its acceleration and deceleration to maintain a proper minimum safe distance from the
vehicle ahead (leader). In the presented design, ACC controller exploits the information
obtained via V2C and V2V connectivity to improve performance and safety. In conventional
ACC, the desired inter-vehicle gap is specified as constant space gap, or time gap or time
headway policy. However, non of these approaches can guarantee safety. To guarantee safety
at all time, the theory of invariant sets is used. A numerical approach to compute a control
invariant set which makes use of the road grade preview and the future state trajectory of the
leading car, transmitted through V2V communication, is presented. This set is incorporated
as terminal constraint of the ACC controller to guarantee safety. Compared to the existing
literature, the presented design does not require reachability analysis using level-set method
[2] which is computationally expensive especially for nonlinear systems and therefore not
well-suited for real-time applications. Compared to [42], the presented design computes the
control invariant set for a vehicle nonlinear model and does not rely on a simplified linear
dynamic model. Compared to [70], the presented design does not consider bounds on pa-
rameters such as road slope parameter and instead the presented design obtains the value of
the road slope parameter using V2C, which leads to less conservative safe set and therefore
a closer inter-vehicle spacing.

Chapter 4, deals with centralized motion coordination of multiple robots, in particular
CAVs. An architecture for autonomous navigation of tight multi-lane platoons travelling
on public roads is presented. Using the proposed approach, CAVs are able to form single
or multi-lane platoons of various geometrical configurations. They are able to reshape and
adjust their configurations according to changes in the environment. However, since reconfig-
uration of multi-lane platoons requires planning in tight environment, the road structure and
the vehicles dimensions are modeled as exact sizes with no approximation or enlargement.
The vehicles are described as polytopic sets and the collision avoidance among them is mod-
eled as enforcing a minimum distance between the polytopes using strong duality theory. The
proposed architecture consists of two main components: an offline motion planner system
and an online hierarchical control system. The motion planner uses an optimization-based
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approach for cooperative formation and reconfiguration in tight spaces. A constrained opti-
mization scheme is used to plan smooth, dynamically feasible and collision-free trajectories
for all the vehicles within the platoon. This chapter addresses online computation limita-
tions by employing a family of maneuvers precomputed offline and stored on a look-up table
on the vehicles. The online hierarchical control system is composed of three levels: a traffic
operation system (TOS), a decision-maker, and a path-follower. The TOS determines the
desired platoon reconfiguration. The decision-maker checks the feasibility of the reconfigura-
tion plan based on real-time information about the surrounding traffic. The reconfiguration
maneuver is executed by a low-level path-following feedback controller in real-time. Com-
pared to the behavior-based planning [6], in which the desired formation is achieved using
a sequence of motion primitives, the proposed method does not require extensive tuning
efforts. Also compared to motion primitive approach, the proposed approach can provably
enforce the collision avoidance constraints. In addition, compared to behavior-based plan-
ning, the proposed approach does not require solving a mixed-integer program which can be
hard to formulate and analyze mathematically.

Chapter 5, is devoted to distributed motion coordination of multiple robots. The primal-
dual setting introduced in the previous chapter leads itself to decomposition and paralleliza-
tion. Starting from the centralized implementation of the NMPC problem, it is shown how
to exploit the problem structure to allow the robots to cooperate (while communicating
their intentions to the neighbors) and compute collision-free paths in a distributed way in
real time. This chapter presents a distributed method for multi-robot coordination based
on nonlinear model predictive control (NMPC) and dual decomposition. The presented ap-
proach allows the robots to coordinate in tight spaces (e.g., highway lanes, parking lots,
warehouses, canals, etc.) by using a polytopic description of each robot’s shape and for-
mulating the collision avoidance as a dual optimization problem. The proposed method
accommodates heterogeneous teams of robots (i.e., robots with different polytopic shapes
and dynamic models can be part of the same team) and can be used to avoid collisions
in n-dimensional spaces. By relying on an alternating optimization scheme, the proposed
design decouples the optimization of the robot states and of the collision-avoidance variables
to create real time coordination strategies. The proposed distributed coordination design
is compared with the centralized NMPC design to show the computational benefits of the
proposed distributed algorithm. Compared to [39], the proposed approach does not require
the solution of a MILP problem that can be computationally expensive to solve. In addition,
compared to [4, 16, 55] the presented approach does not require any linearization (which
could reduce the solution space of the problem) of the collision-avoidance constraints. Also
compared to [4], the presented approach does not require the use of motion primitives (the
robot dynamics are directly included in the NMPC formulation). Compared to [72], the
proposed strategy allows to specify a desired distance between the robots, instead of using
separating hyperplanes. Inspired by [80, 79], the method uses dual optimization to formulate
the collision avoidance constraints. Compared to [80, 79], however, the presented method
exploits the structure of the coordination problem to solve it in a distributed fashion.
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Chapter 2

Vehicle-to-Cloud Connectivity

2.1 Introduction

A single vehicle can leverage connectivity to cloud to enhance the performance of different
modules of autonomous driving including localization, planning and control. In this chapter,
the vehicle receives the traffic condition and road geometry information for a given route
through V2C connectivity. Then a performance-enhanced localization design is introduced
that exploits road geometry data. For example, the vehicle connects to the Google Elevation
API and build an elevation map of a given route. The vehicle can then use the map to
estimate its position along the route by extracting road slope as a localization feature and
matching the inclination measurements with the map. In addition a hierarchical control
system consisting of high-level planner and low-level control is designed that makes use of
V2C connectivity and employ the received information to improve its performance. Also,
for long-term planing, exploiting traffic condition and road geometry information received
via V2C, the vehicle optimizes its velocity trajectory, given the origin and destination of
the trip. Additionally, for real-time control, a predictive controller employs the same road
geometry data as preview information and find the optimal control strategy accordingly.

Localization in autonomous driving applications refers to determining the vehicle’s po-
sition and attitude. Navigation, motion planning and real-time control rely on accurate
localization. Inaccurate localization can be detrimental to performance and may lead to ac-
cidents. The Global Positioning System (GPS) is able to provide positioning with meter-level
accuracy in clear open sky, but since its accuracy suffers from degraded satellite availability
or multi-path error in city areas, a stand-alone GPS is not reliable. A common method to
overcome these limitations is using dead-reckoning techniques. GPS data and dead-reckoning
information extracted from vehicle’s on-board sensors can be fused to improve the position
estimate of the vehicle [14], [59]. Since dead-reckoning estimates the current position based
on a previously determined position, it is subject to significant cumulative error. In sparse
GPS environments like tunnels, underground passages or forested paths, using only dead-
reckoning may lead to large estimation errors. A solution to this problem is incorporating
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sensor data with a prior road map to correct the position estimates. Map-aided localization
approaches exploit road features including lane markings, traffic signs, curbs and buildings
to correlate the vehicle states to the prior road map.

Today’s self driving cars equipped with three-dimensional (3D) Light Detection and
Ranging (LIDAR) scanners are capable of localizing themselves with centimeter-level accu-
racy. High accuracy localization requires a high definition map of the environment. LIDAR
generates point clouds by illuminating laser pulses to the surroundings and measuring the
reflected results. In order to build a high-resolution map of the environment, a survey vehicle
is driven in the road and measurements of GPS, Inertial Measurement Unit (IMU), wheel
odometry and LIDAR data are integrated together. Once an a-priori map of the environ-
ment is generated, the vehicle can match the features extracted from LIDAR point clouds
with the features stored in the map to correct its position estimate in real-time [11], [75].
Since high-accuracy LIDAR is expensive, a cheaper way to do localization is to use LIDAR
for mapping and camera for localization. A survey vehicle equipped with LIDAR generates
a Point Cloud Map (PCL) of the road and autonomous cars can make use of just camera to
localize itself within the (3D) pre-built PCL [15].

Vision-based matching of road features to a pre-built map of the environment can aug-
ment localization performance [51]. However, these feature-based localization methods yield
accurate localization in feature-rich environments like urban areas. In rural and suburbans
areas, where density of features decreases dramatically, these approaches might not be reli-
able. A feature that is present in both urban and country roads is road grade. This chapter
proposes to make use of a road grade map as the a-priori map for localization. The proposed
localization method uses an Extended Kalman Filter (EKF) that combines data provided by
the on-board sensors dead-reckoning information with the grade map to accurately estimate
the vehicle’s longitudinal position. Although the application of the proposed approach is
restricted to hilly roads, it can correct dead-reckoning in extended GPS blackout or augment
IMU/GPS system where GPS signal is available. Also this method can be combined with
other techniques discussed above to improve the localization performance.

Applications that benefit from localization include planning and control systems that rely
on the route spatial data like road grade and curvature, speed limit, road optimal reference
velocity trajectory and distance to the next stop sign or traffic signal. The proposed localiza-
tion approach is validated on a control architecture comprised of two levels. At the high-level,
the vehicle velocity trajectory over a given route is optimized, by incorporating traffic flow
and road grade data into the problem. At the low-level, a Model Predictive controller (MPC)
follows the optimal reference velocity trajectory calculated by high-level planner. The simu-
lation results show how errors in position estimation affect energy consumption and confirm
the effectiveness of the presented approach.
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2.2 Overview

A map-aided vehicle localization method for GPS-denied environments is presented. This
approach exploits prior knowledge of the road grade map and vehicle on-board sensor mea-
surements to accurately estimate the longitudinal position of the vehicle. Real-time local-
ization is crucial to systems that utilize position-dependent information for planning and
control. The effectiveness of the localization method is validated on a hierarchical control
system. The higher level planner optimizes the vehicle velocity to minimize the energy con-
sumption for a given route by employing traffic condition and road grade data. The lower
level is a cruise control system that tracks the position-dependent optimal reference velocity.
Performance of the proposed localization algorithm is evaluated using both simulations and
experiments.

The rest of this chapter is structured as follows. Section 2.3 describes road grade map
generation and presents the localization approach using EKF formulation. Section 2.4 shows
simulation and experimental results for localization. Section 2.5 explains the hierarchical
control system. Section 2.6 illustrates the simulation results for control system and section
2.7 makes concluding remarks.

2.3 Localization

In case of temporary GPS loss, odometry sensors such as wheel speed encoder can be used
to estimate the change of position. However, this method is sensitive to errors due to
the integration of velocity measurements over time. To mitigate this cumulative error, the
proposed design fuses the sensor measurements from wheel speed encoders and accelerometer
with grade data extracted from a global road map using the EKF. This section describes
road grade map generation and process and measurement models that are included in the
EKF estimator.

Road Grade Map Generation

Roadway elevation data is crucial for many transportation applications. To generate a grade
map for the entire road, a high-precision Real Time Kinematic (RTK) GPS can be used to
measure latitude, longitude and altitude along the route. Also several APIs such as Google
Elevation API provide elevation data for all locations on earth surface. The elevation data
is queried for specified coordinates and the road elevation profile is obtained. This API
also provides the resolution of each elevation sample, defined as the maximum horizontal
distance between data points from which the elevation was interpolated. Digital Elevation
Models (DEMs) data throughout the earth’s surface has been provided by the NASA Shuttle
Radar Topographic Mission (SRTM). This elevation data in the United States is available in
National Elevation Dataset (NED), provided by the Geological Survey (USGS), at resolutions
between 1 arc-second (about 30 meters) and 1/9 arc-second (about 3 meters) depending on
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Figure 2.1: Point mass model of the vehicle traveling along a hilly road. The Z axis is the
altitude and the X axis is the horizontal distance.

the location. According to [76] that assessed the accuracy of road elevation data extracted
from Google Earth, root mean squared error (RMSE) and standard deviation of roadway
elevation error are 2.27 meters and 2.27 meters, respectively, even in the areas where USGS
NED provides 1/3 arc-second (about 10 meters) resolution. Thus, Google Elevation API
provides sufficient accuracy and resolution for generating road grade map.

Extended Kalman Filter (EKF)

The vehicle is modeled as a point mass moving along a path with velocity v, as seen in Figure
2.1. The system state at time t is

x(t) = [s(t) v(t)]T ,

where s(t) and v(t) are the vehicle position and velocity respectively. The process model is
a nonlinear function f of the state x and control input u. Process noise w is assumed to be
additive and normally distributed with zero mean and covariance of Q, w ∼ N (0, Q). The
measurement model is also a nonlinear function h that maps the state x to output y. The
measurement noise is assumed to be additive Gaussian noise with zero mean and covariance
of R, η ∼ N (0, R). EKF linearizes the nonlinear system about the current estimates.

ẋ = f(x, u) +Gw

y = h(x) + η.
(2.1)

Process model

The longitudinal kinematic model of the vehicle is defined as

ṡ = v

v̇ = a+ w,

where a is the longitudinal acceleration treated as a known input. The system is discretized
using Euler method with constant sampling time interval ∆t.
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s(t+ 1) = s(t) + v(t) ∆t

v(t+ 1) = v(t) + (a(t) + w(t)) ∆t.

Since ∆t is small, the second-order terms are neglected. The longitudinal acceleration a(t)
is derived from the acceleration measured by the vehicle accelerometer. When a vehicle is
moving on an inclined road, the longitudinal acceleration of the sensor is affected by gravity,

asensor(t) = a(t) + g sin(θ(t)), (2.2)

where asensor denotes acceleration measured by the accelerometer, g is gravitational acceler-
ation and θ is slope of the road. By substituting sin(θ) with a prior known grade map p(s),
longitudinal acceleration is calculated as

a(t) = asensor(t)− g p(s(t)).

Thus, the prediction model is

s(t+ 1) = s(t) + v(t) ∆t

v(t+ 1) = v(t) + (asensor(t)− g p(s(t)))∆t+ w(t) ∆t.
(2.3)

Measurement Model

The vehicle speed vm is measured by the wheel speed encoders and the inclination θ(t)
can be constructed by measurements of IMU accelerometer and wheel speed encoder. By
reformulating (2.2) the inclination θ(t) can be indirectly measured as

θm = sin−1

(
asensor − v̇

g

)
, (2.4)

where v̇ is the vehicle acceleration obtained by differentiating the longitudinal velocity mea-
sured from the wheel speed sensor. Measurement noises for both IMU and wheel encoder sen-
sors are assumed to be additive with Gaussian distributions ηv ∼ N (0, σ2

v) and ηθ ∼ N (0, σ2
θ).

The measurement covariance matrix is defined as R = diag(σ2
v , σ

2
θ). The measurement

model is
vm(t) = v(t) + ηv

θm(t) = sin−1(p(s(t))) + ηθ.
(2.5)

The equations (2.3) and (2.5) define the f and h functions in the general formulation (2.1),
respectively.
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Inertial Sensor Noise Filtering and Bias Removal

Since the acceleration signal measured by IMU is noisy, a low pass filter is used for noise
reduction. Also, inertial sensors are subject to bias drift. In the absence of input, the IMU
accelerometer reads non-zero output. This bias should be compensated, but the challenge is
that bias drifts over time due to temperature changes and other factors. Hence, bias drift
should be modeled mathematically and removed from the measurements. In this study it
is assumed that the bias drifts linearly as a function of time. Therefore, equation 2.4 is
reformulated as

θm = sin−1(
asensor − v̇

g
)− bt︸︷︷︸

bias

, (2.6)

where t is the time and b is the bias parameter. The bias parameter estimation is discussed
in more detail in the next section.

2.4 Localization Results

To validate the effectiveness of the proposed localization approach, the algorithm is tested
with both simulations and experiments. Assuming that the GPS signal is lost, the localiza-
tion performance of the proposed method is compared with velocity integration. In simula-
tion, the road altitude map is assumed to be a polynomial function of position as depicted in
Figure 2.2a. Measured velocity and inclination signals are generated by assuming Gaussian
noise. Figure 2.2 shows the generated maps and signals. The absolute position error e is
defined as

e = ŝ− s,

where ŝ is the estimated position and s is the true position. In Table 2.1, root-mean-square
error (RMSE) values for ten runs of simulation are displayed and their average values are
calculated. As seen, the average RMSE using the EKF estimation approach is considerably
smaller than using velocity integration. Absolute error between the estimate from veloc-
ity integration and the ground truth increases over time while the absolute error between
Kalman estimate and ground truth is non-increasing and bounded, according to the simula-
tion results.

The performance of the algorithm has also been examined through an experiment. The
experiment was carried out in a hilly road located near University of California Berkeley.
The test vehicle is a Hyundai Genesis equipped with OTS (Oxford Technical Solutions)
RT2002 sensing system which is comprised of a high precision GPS and an IMU. RT2002
GPS without its base-station GPS receiver provides positioning with 0.6m Circular Error
Probable (CEP) accuracy. The car is driven on the road and the position and altitude data
measured by the RT2002 GPS system are collected to build a high-resolution road grade
map. The obtained map is compared with the map generated by Google elevation API in
Figure 2.3.
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Figure 2.2: Altitude and grade maps as well as velocity and inclination signals are generated
to be used by simulator.

Table 2.1: Simulation results: comparison of root-mean-square error

Position RMSE [m]
Iteration Velocity Integration EKF Estimate

1 1.04 0.12
2 1.20 0.19
3 0.50 0.16
4 0.64 0.12
5 0.96 0.12
6 0.70 0.09
7 0.74 0.20
8 0.87 0.14
9 0.83 0.16
10 0.81 0.14

Average 0.83 0.14
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Figure 2.3: Elevation and grade maps are generated using both GPS and Google Elevation
API for a hilly route located near UC Berkeley.

To measure the inclination, bias drift is modeled as a linear function of time and removed
from the measurement. To determine the mathematical model of the acceleration bias drift,
first the road slope profile for a segment of the road is computed using the equation (2.4) with
collected acceleration and velocity data. Then the computed slope profile θn is compared
against the slope profile obtained by Google Elevation API θGoogle. The difference between
the two profiles is equivalent to the bias term in the equation (2.6),

eslope(t) = θn(t)− θGoogle(t) ' bt.

The bias parameter b is estimated by fitting a linear function to the above slope error profile
eslope(t) using least squares. In this study, the high-precision RT2002 IMU is used to obtain
the acceleration measurements. However, by accurate modeling of the acceleration bias drift,
the vehicle’s on-board accelerometer can be used for acceleration measurement.

After generating the high-resolution grade map of the road, the position is estimated
using the proposed localization approach. Although GPS data is not used to estimate the
position, the data is still collected and used as the ground truth. Three experiments are run
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Table 2.2: Experiment results: comparison of root-mean-square error

Position RMSE [m]
Experiment Velocity Integration EKF Estimate

1 25.0 3.7
2 17.9 9.4
3 21.3 4.3

Average 21.4 5.8

Table 2.3: Experiment Results: Comparison of Drift Error of Final Position Estimate

Method Absolute Error [m] Error Percentage [%]

Velocity Integration 60.3 0.52
EKF estimate 2.4 0.02

and RMSE for both methods are calculated and reported in Table 2.2. As shown, the EKF
algorithm achieves significantly smaller RMSE than velocity integration.

Table 2.3 compares the drift error of the two methods for just the first experiment. As
seen, the estimated position calculated by velocity integration drifts over time. The absolute
error between the velocity integration estimated position and the ground truth at final point
is 30 times larger than EKF estimated position. The experiment results are in agreement
with simulation results and EKF estimates are relatively matched with the truth, whereas
position estimates calculated by integration of wheel speed diverge as time goes on.

2.5 Control System Architecture

In this section an example application of the proposed localization algorithm is described,
a hierarchical control system that exploits position-dependent information for planning and
control. The system architecture is shown in Figure 2.4. The goal is to plan an energy-
optimal velocity trajectory for a given route offline and to follow the obtained reference
trajectory in real-time. Both the offline and online formulations with the vehicle longitudinal
model are explained in the following sections.

Vehicle Model

The longitudinal motion of a vehicle moving on an inclined road can be modeled by the
following force balance in the longitudinal direction

mv̇ = Ftraction − Fbrake︸ ︷︷ ︸
u(t)

−Fairdrag − Frolling − Fgravity, (2.7)
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Figure 2.4: System Architecture: position-dependent data including reference velocity vref (s)
and road grade θ(s) are converted from spatial domain to time domain

where m is mass of the vehicle, v̇ is the longitudinal acceleration and Ftraction and Fbrake are
throttle and brake forces, respectively and Ftraction−Fbrake is the total force taken as control
input u(t). The aerodynamic drag is determined by vehicle speed v, air density ρ, air drag
coefficient Cd and frontal area Af .

Fairdrag =
1

2
ρCdAfv

2.

The rolling resistance is defined as

Frolling = mgCr cos(θ),

where g is gravitational force, Cr is rolling friction coefficient and θ is road slope. The gravity
force due to road grade can be expressed as

Fgravity = mg sin(θ).
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High-Level Planner: Dynamic Programming Formulation

Traffic condition and roadway grade have a significant impact on the vehicle’s energy con-
sumption and emission. For a given route with specified origin and destination, the energy-
optimal velocity trajectory along the route can be determined by employing information
about traffic condition and road grade. To find the optimal position-dependent velocity pro-
file, it is convenient to convert the optimization problem formulation from time domain to
spatial domain,

v̇ =
dv

dt
=
dv

ds

ds

dt
=
dv

ds
v.

Velocity (v) is a state variable and travelled distance (s) is the independent variable. The
vehicle longitudinal dynamics (2.7) in the spatial domain is

dv

ds
=

1

mv
(u(s)− Fairdrag − Frolling − Fgravity)︸ ︷︷ ︸

Ftotal

(2.8)

and after Euler discretization the dynamics is reformulated as

v(s+ 1) = v(s) +
∆s

mv(s)
Ftotal,

where Ftotal is the total longitudinal force. This formulation is singular when the velocity
is zero. To avoid the singularity, by assuming a constant acceleration over the integration
interval ds, the longitudinal dynamics 2.8 is discritized as

v(s+ 1) =
(
v(s)2 +

2∆s

m
Ftotal

) 1
2 , (2.9)

with trapezoid discretization instead of Euler method.
The goal is to minimize the total power consumption over the entire route within a

reasonable trip time interval. Therefore, the cost function is a trade-off between power
consumption and trip time. The first term of the cost function (2.10) penalizes the wheel
power consumption and the second term compensates deviation from maximum speed profile
to guarantee a short trip time. The objective

J(scur) =

sfinal∑
s=scur

(
v(s)up(s) + γ(v(s)− vmax(s))2

)
∆s (2.10)

is minimized, where scur and sfinal represent the current and final positions respectively. γ
is a weight factor, up(s) denotes acceleration force in longitudinal direction and vmax(s) is
velocity upper bounds at position s. Although u(s) can hold positive or negative values,
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up(s) in the cost function (2.10) refers to only positive inputs. The problem is formulated
as

min
u(s)

J =

sfinal∑
s=scur

(
v(s)up(s) + γ(v(s)− vmax(s))2

)
∆s

s.t. v(s+ 1) = f(v(s), u(s)),

vmin(s) ≤ v(s) ≤ vmax(s),

umin ≤ u(s) ≤ umax,

up(s) = u(s) if u(s) > 0

up(s) = 0 if u(s) ≤ 0

v(0) = 0,

v(sfinal) = 0,

(2.11)

where the objective (2.10) is minimized while satisfying the longitudinal dynamics (2.8),
denoted as f , as well as state and input constraints and boundary conditions. vmin(s)
and vmax(s) are velocity lower and upper bounds at position s and umin, umax are control
inputs lower and upper bounds, respectively. The velocities at the origin and destination are
assumed to be zero.

The nonlinear optimization problem (2.11) is solved by dynamic programming (DP)
with the solver from [67]. The state and input spaces are discretized according to their
corresponding upper and lower bounds. To incorporate the effect of traffic condition, the
velocity at each step is upper bounded according to the traffic flow data acquired for a
specific route. If data is not available, the road speed limit vmax(s) is used as upper bound.
Road slope information of the route is also included in the vehicle dynamic model (2.9).
Thus, the DP algorithm makes use of the road geometry data to find the optimal reference
velocity trajectory. Starting from destination, the DP proceeds backward and evaluates the
optimal cost-to-go function (2.10) at each node based on Bellman’s principle of optimality.
The backward sweep outputs a map of optimal cost and optimal policy over the state grid.
In the forward sweep, DP starts from the route origin and applies the obtained optimal
control policy to calculate the optimal velocity trajectory. The optimized velocity v(s) will
be set as the reference velocity vref (s) for the low-level controller.

Low-Level Controller: MPC Formulation

The low-level controller is a cruise control system that controls the longitudinal dynamics of
the vehicle to track the reference velocity generated by the high-level planner and minimize
the control effort in real time. To design the controller, a Model Predictive Control (MPC)
algorithm is implemented. The presented controller solves the constrained finite horizon
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optimization problem

min
u(.|t)

J =
t+N∑
k=t

||v(k|t)− vref ||

+ γ
t+N−1∑
k=t

||u(k|t)||+ p(v(t+N |t))

s.t. v(k + 1|t) = f(v(k|t), u(k|t)),
vmin ≤ v(k|t) ≤ vmax,

umin ≤ u(k|t) ≤ umax,

(2.12)

where N is the MPC horizon, v(k|t) and u(k|t) are the state variable and control input
at step k predicted at time t, respectively, γ is a weight factor, f represents the vehicle
longitudinal dynamics (2.7) and vref is the reference velocity trajectory obtained from the
high level planner. A terminal cost p is introduced as a constant large value.

The presented MPC controller extracts grade data from the provided road grade map.
It incorporates this prior knowledge to accurately predict the future longitudinal velocity of
the vehicle over the horizon and plan accordingly. Both grade and optimal reference velocity
are defined as position-dependent profiles for a specific route. In order to employ these data,
vehicle has to localize itself and estimate its position with respect to the map. Since the
presented MPC operates in the time domain and route information is available in the spatial
domain, these forecasts are projected in the time domain assuming constant velocity over
the horizon of MPC.

2.6 Control Results

High-level planner

An urban route near UC Berkeley (from UC Berkeley Etcheverry Hall to the Richmond
Field Station) is selected and traffic flow velocity as well as grade map are obtained through
the HERE API and Google Elevation API, respectively. The traffic flow velocity profile is
taken as the upper-bound for velocity. The lower-bound is taken as half of the upper bound.
The parameters of the longitudinal dynamic model are shown in Table 2.4. The controller
parameters are presented in Table 2.5. Figure 2.5 illustrates the traffic flow velocity profile
as well as the velocity profile obtained by trajectory planning optimization carried out via
DP. The grade map of the road is also illustrated. Table 2.6 presents energy consumption as
well as total trip time for traffic flow velocity profile and optimal velocity profile. As seen,
the energy consumption with the optimal velocity profile (for γ = 10) is 47.8% less than
with the traffic flow profile, while the trip time is 26.0% longer.
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Table 2.4: Model Parameters

m vehicle mass kg 1360
Af vehicle frontal surface m2 2.30
ρ air density kg/m3 1.225
Cd vehicle drag coefficient - 0.24
Cr vehicle roll coefficient - 0.01
Ts sampling time s 0.2

Table 2.5: Controller Parameters

vmin minimum velocity m/s traffic speed lower bound
vmax maximum velocity m/s traffic speed upper bound
umin minimum control input kN -3
umax maximum control input kN 3

Figure 2.5: Optimal velocity is bounded by traffic speed profile upper and lower bounds and
control policy is optimized based on road slope map.
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Table 2.6: DP Results: comparison of the two velocity profiles

Velocity Profile Energy Consumption Trip Time
[kWh] [min]

Traffic Flow 0.9 20.4
Optimal (γ = 10) 0.47 25.7
Optimal (γ = 0.1) 0.4 31.4

Improvement [%](γ = 10) 47.8 % -26.0 %
Improvement [%] (γ = 0.1) 55.5 % -53.9 %

Table 2.7: Energy Consumption Comparison

Position Energy Consumption [kWh]

True Position 0.20
60 meters ahead 0.23

0.5% error 15%

Low-Level Controller

The optimization problem (2.12) is formulated in YALMIP [45]. MPC parameters are the
same as DP parameters presented in Table 2.5 and the MPC horizon is selected as 5. Figure
2.6 shows the simulation results of the MPC controller in closed-loop with the vehicle longi-
tudinal dynamics model. As illustrated, the controller tracks the optimal reference velocity
calculated in previous section. At the same time it minimizes the control effort by employing
the road prior grade knowledge.

Now by assuming 0.5% of localization error based on the results in the table 2.3, after
about less than 12 km of traveling, the position estimate can be off by 60 meters. If the
controller extracts position-dependent data including optimal reference velocity and road
grade associated with incorrect position, the energy efficiency can significantly be affected
by this error. As an example, a portion of the road is selected shown in Figure 2.6 between
position 8500 m to 9500 m and assumed that the controller employs knowledge of 60 meters
ahead instead of its true position. Table 2.7 compares the energy consumption for both
cases. The results show that energy efficiency can be affected by about 15% in case of a
0.5% localization error.

2.7 Conclusion

A localization method is presented for autonomous driving in GPS-denied areas using a
prior grade map. According to the results when there is no GPS signal, vehicle can use its
own on-board sensors and a prior road grade map to localize itself relative to the map and
correct its position estimate. Furthermore, an energy-efficient control system is developed
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Figure 2.6: MPC controller tracks the optimal reference velocity trajectory obtained from
high-level planner and simultaneously minimizes the control input by incorporating road
grade data in its short-term planning.

by exploiting traffic information as well as road slope and speed limit data. It is verified
that errors in localization can significantly impact energy efficiency.
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Chapter 3

Leader-Follower Coordination

3.1 Introduction

Connected and automated vehicles will enhance mobility and safety by integrating au-
tonomous driving technologies with connectivity. On the other hand recent advances in
autonomous driving have accelerated the need for high performance and reliable Advanced
Driving Assistance Systems (ADAS) which guarantee safety and comfort in various driving
conditions. Connectivity enables ADAS to leverage Vehicle-to-Vehicle (V2V) and Vehicle-
to-Infrastructure (V2I) communication to further improve performance [31].

Adaptive cruise control (ACC) is a widely used ADAS module that controls the vehi-
cle longitudinal dynamics. ACC is triggered once a preceding vehicle is detected within a
certain distance range from the ego vehicle (follower). It automatically adjusts the vehicle
acceleration and deceleration to maintain a proper minimum safe distance from the vehicle
ahead (leader). ACC enhances mobility, improves safety and comfort, and reduces energy
consumption. The design of ACC based on Model Predictive Control (MPC) is common in
the literature. For example, in [48, 60, 19, 20, 69, 44], the authors present ACC design using
MPC based on one or more particular performance criteria including traffic flow, energy
efficiency and safety or comfort considerations.

Conventional adaptive cruise control systems operate in two modes: ACC and Cruise
Control (CC), depending on the presence or absence of the lead vehicle in detection range of
the ego vehicle. In ACC mode the objective is to maintain a safe distance from the lead car,
whereas in CC mode the objective is to track the reference velocity set by the driver or the
maximum speed limit of the road. In the literature, ACC and CC modes are also referred to
as distance tracking and velocity tracking modes, respectively. Discrete switching between
the modes may result in aggressive control action or repetitive mode change. In [63, 81],
the authors suggest more sophisticated rule-based switching strategies to prevent chattering
caused by switching. The presented controller is formulated and designed without employing
any switch in order to adapt the velocity and distance automatically and smoothly, if a lead
car is detected.
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In conventional ACC systems, the desired inter-vehicle gap can be specified as a constant
space or time gap between the vehicles. The desired gap also might be defined via a constant
time headway th policy which relates the inter-vehicle desired distance ∆sdes to the current
velocity v of the ego vehicle as ∆sdes = ∆s+ thv, where ∆s is the static gap or the distance
between the cars when they are at standstill and thv is the dynamic gap which changes with
velocity. In general these simple approaches do not guarantee safety. To guarantee safety
at all times, the theory of invariant sets can be used to compute the safe distance. In [2],
reachability analysis with level set method is proposed to compute the safe set for heavy
duty platooning. The authors of [42] use a kinematic model to describe the system as a
linear time-invariant (LTI) system and apply backward reachable set analysis to calculate
a polytopic control invariant set for ACC. In [70], a control invariant set is presented as
the safe set for platooning by considering the lower and upper bounds on the acceleration.
The aforementioned studies compute the control invariant set by bounding the unknown
parameters such as road slope or the front car’s motion. However, computing the control
invariant safe set by considering the lower and upper bounds on the unknown parameters
can lead to an overly conservative safe set and thus an undesirable large gap between the
vehicles. In the presented study, instead of bounding these parameters, the availability of
road grade preview from a high fidelity map and the availability of lead car’s future state
trajectory from a V2V communication device, are assumed. Employing these parameters
for computing the control invariant safe set, instead of their boundary values, yields a less
conservative safe set and consequently a closer inter-vehicle safe distance.

Road grade can considerably affect the ACC controller performance. The work in [44]
considers an ACC which takes into account road elevation data to improve energy efficiency.
In [49] real-time estimation of road grade and vehicle mass are utilized to improve comfort.
This study investigates how the ACC controller performance improves in terms of safety,
comfort, tracking accuracy and energy efficiency, by exploiting the road grade knowledge.

The contribution of this chapter can be summarized as follows:

• The design of an ACC controller is presented, which incorporates the road grade pre-
view information using a prior grade map of the road to predict the vehicles’ lon-
gitudinal dynamics. Furthermore, the presented controller is formulated to switch
automatically and smoothly between distance and velocity tracking.

• A numerical approach to compute a control invariant set which makes use of the road
grade preview and the future state trajectory of the leading car, transmitted through
V2V communication, is presented. This set is incorporated as terminal constraint of
the ACC controller to guarantee safety.

• It is demonstrated through two example scenarios that the presented approach is more
efficient compared to the controller that does not use grade preview.

The design of a safe Adaptive Cruise Control (ACC) is presented, which uses road grade
and lead vehicle motion preview. The ACC controller is designed by using a Model Pre-
dictive Control (MPC) framework to optimize comfort, safety, energy-efficiency and speed
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tracking accuracy. Safety is achieved by computing a robust invariant terminal set. This
chapter presents a novel approach to compute such set which is less conservative than exist-
ing methods. The presented controller ensures safe inter-vehicle spacing at all times despite
changes in the road grade and uncertainty in the predicted motion of the lead vehicle. Sim-
ulation results compare the presented controller with a controller that does not incorporate
prior grade knowledge on two scenarios including car-following and autonomous intersection
crossing. The results demonstrate the effectiveness of the presented control algorithm.

The rest of the chapter is structured as follows: Section 3.2 introduces some preliminaries
about vehicle model and road grade map generation. Section 3.3 describes the problem
statement and the MPC formulation. Section 3.4 explains the design of control invariant
set. Section 3.5 describes car-following and autonomous intersection passing scenarios as
two example applications of the proposed approach. Section 3.6 illustrates the simulation
results and finally Section 3.7 makes the concluding remarks.

3.2 Preliminaries

Vehicle Model

The vehicle is modeled as a point mass moving along a road. The system state at time t is

x(t) = [s(t) v(t)]T ,

where s(t) and v(t) are the vehicle position and velocity, respectively. The longitudinal
motion of the vehicle shown in Fig. 3.1 can be described by the following equations

ṡ = v

v̇ =
1

m
(Ft − Fb − Fa − Fr − Fg︸ ︷︷ ︸

Ftotal

), (3.1)

where Ft and Fb are traction and braking forces, respectively and Ftotal is the total longitu-
dinal force. The aerodynamic drag is determined by vehicle speed v, air density ρ, air drag
coefficient Cd and frontal area Af .

Fa =
1

2
ρCdAfv

2. (3.2)

The rolling resistance is defined as

Fr = mgCr cos θ, (3.3)

where g is gravitational force and Cr is rolling friction coefficient. The gravity force due to
road slope can be expressed as

Fg = mg sin θ. (3.4)
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Figure 3.1: The forces exerted in the direction of motion (longitudinal direction) on a vehicle
traveling on an inclined road are shown.

Table 3.1: Vehicle Model Parameters

m vehicle mass kg 2278
Af vehicle frontal surface m2 2.63
ρ air density kg/m3 1.206
Cd vehicle drag coefficient - 0.2791
Cr vehicle roll coefficient - 0.0089
∆t sampling time s 0.5

The system (3.1) is discretized using Euler method with constant sampling time interval ∆t.

s(t+ 1) = s(t) + v(t)∆t,

v(t+ 1) = v(t) +
∆t

m
Ftotal

(3.5)

The parameters of model (3.5) are then estimated by nonlinear least squares from data
collected on a test vehicle, at various speeds and accelerations. All the data are collected in
a proving ground on level roads with homogeneous surfaces, i.e. θ = 0 and Cr is constant
for the purpose of model identification. Fig. 3.2 shows the fit of the identified model to the
experimental data, while Table 3.1 summarizes the identified model parameters. Specifically,
7 datasets are used for a total duration of about 16 minutes; the predicted data in Fig. 3.2
are generated simulating model (3.5) with the identified parameters and the measured input
torque from the initial condition to the end of the dataset.
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Figure 3.2: Fit of the identified longitudinal dynamics model to the experimental data.

Road Grade Map Generation

Road topology data is a valuable source of information in autonomous driving applications.
On roads with up-down slopes, ADAS systems like ACC benefit from accurate prior-known
road grade. ACC can exploit the grade preview extracted from a map to ensure keeping a
safe distance from the lead vehicle. Different methods for generating a high-resolution grade
map of the road have been discussed in the previous work [28]. The road grade profile can be
obtained using a survey vehicle equipped with high-precision GPS system. An alternative
approach is using APIs like Google Elevation API. Google Elevation API provides elevation
data for all locations on earth surface. Elevation data can be queried for specific coordinates
to generate road elevation profile. In this study, Google Elevation API is utilized to generate
the road grade profile.

3.3 Problem definition and formulation

The goal is to design an ACC and CC controller with safety guarantees. The presented
ACC/CC controller is formulated as Model Predictive Control (MPC) which repeatedly
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solves the following constrained finite horizon nonlinear optimization problem:

minimize
Ut→t+N|t

J = Q

t+N−1∑
k=t

||v(k|t)− vref||2 (3.6a)

+Ru

t+N−1∑
k=t

||u(k|t)||2 (3.6b)

+R∆u

t+N−1∑
k=t

||∆u(k|t)||2 (3.6c)

+ P ||v(t+N |t)− vref||2 (3.6d)

subject to

x(k + 1|t) = f(x(k|t), u(k|t), θ(k|t)), (3.6e)

vmin ≤ v(k|t) ≤ vmax, (3.6f)

umin ≤ u(k|t) ≤ umax, (3.6g)

x(t|t) = x(t), (3.6h)

dsafe

(
slead(k|t)− s(k|t), v(k|t)

vlead(k|t), (θ(t|t), ..., θ(tstop|t)
)

(3.6i)

≤ slead(k|t)− s(k|t), (3.6j)

k = t, ..., t+N,

where x(k|t) = [s(k|t) v(k|t)]T and u(k|t) are the state and control input at step k predicted
at time t, respectively. The MPC horizon is N and Ut→t+N |t denotes the sequence of control
inputs {u(t|t), ..., u(t + N − 1|t)}. The multi-objective quadratic cost function J represents
the trade-off between minimizing reference tracking error (3.6a), control effort (3.6b) and
jerk (3.6c) and Q, Ru and R∆u are their corresponding weight factors, respectively. The
terminal cost (3.6d) is weighted by P . The state and input are constrained as (3.6f) and
(3.6g) to lie within their lower and upper bounds denoted as vmin, umin and vmax, umax,
respectively. The reference velocity vref is the desired velocity set for the ego vehicle by
cruise control. The vehicle longitudinal dynamics (3.5), denoted as f , introduce nonlinear
constraints, parameterized by the road grade θ. Since the road grade map is available
as position-dependent data, the controller has to convert it from spatial domain to time
domain to make use of the grade preview. To do so, the ego car’s velocity is assumed
to remain constant over the MPC horizon and grade data corresponding to the predicted
positions is extracted. The lead car’s velocity and position at step k predicted at time t are
denoted as vlead(k|t) and slead(k|t), respectively. The predicted future trajectory of the lead
car is transmitted through V2V communication. The safe distance between the two vehicles,
denoted as dsafe, is obtained by calculating the control invariant set, described in Section 3.4.
dsafe is a function of the position and velocity of the ego and lead vehicles, and of the road
grade from the current time t till tstop, which is the time at which the lead car comes to full
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stop if it exert its maximum braking force. The optimal solution of the problem (3.6) is

U∗(t) = {u∗(t|t), ..., u∗(t+N − 1|t)},

and the receding horizon control law is obtained by applying the first control input

uMPC(t) = u∗(t|t). (3.7)

The above formulation includes switching behavior from distance tracking (ACC) mode to
reference velocity tracking (CC) mode implicitly. In other words, there is no explicit term
for discrete switching between the two modes, but the controller is designed to operate in
ACC mode as long as the front vehicle is detected and automatically and smoothly adapts
the velocity to CC reference once there is no vehicle in the front.

The multi-objective cost J in problem (3.6) simultaneously fulfills multiple performance
criteria. To assess the performance of the controller a performance index is introduced for
each objective. The first term of the cost function (3.6a) denotes reference tracking error
and tracking performance index can be defined as

Tracking Performance Index =
T∑
t=0

|v(t)− vref|, (3.8)

where T is the total time of simulation or experiment, v(t) is the ego vehicle velocity at
time t obtained as the closed-loop state of system (3.5) controlled with uMPC described in
(3.7). The second term of the cost (3.6b) penalizes the control effort and presents energy
consumption criteria. The energy consumption performance index is introduced as

Energy Performance Index =
T∑
t=0

max(0, uMPC(t)), (3.9)

assuming no penalty for braking. The third term in the cost (3.6c) minimizes the change of
acceleration (jerk) which is a performance criteria for longitudinal ride comfort. The comfort
performance index is

Comfort Performance Index =
T∑
t=0

|uMPC(t+ 1)− uMPC(t)|. (3.10)

In both (3.9) and (3.10), uMPC(t) is the closed-loop control input described in (3.7).

3.4 Control Invariant Set

The adaptive cruise control is considered to be safe if the follower vehicle can avoid collisions
with the front vehicle regardless of the front vehicle action. Consider the combined model
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of the front and follower vehicles in Adaptive Cruise Control (ACC) problem, ṡl − ṡe
v̇e
v̇l

 =

 vl − ve
1
me

(
Ft,e − Fb,e − Fa,e − Fr,e − Fg,e

)
1
ml
Ftotal,lead

 (3.11)

Ft,e, Fb,e, Fa,e, Fr,e and Fg,e denote the ego vehicle tractive force, braking force, aerodynamic
drag force, rolling resistance force, and gravity force respectively defined in (3.2)-(3.4). me

and ml are the ego and lead vehicle masses, respectively. ve and se are the ego vehicle velocity
and position. vl and sl are the lead vehicle velocity and position. In this system, the ego
(follower) vehicle braking/tractive force is the control input and the lead (front) vehicle’s
total longitudinal force denoted as Ftotal,Lead is treated as disturbance to the system (3.11)
and described based on (3.1). The set of all admissible states for this system are defined as
follows:

X = {[sl − se ve vl ]T : (sl − se) > lmin, ve > 0, vl > 0}

where lmin is the minimum required distance between the mass center of the two vehicles.
The robust control invariant set C ⊆ X is defined as a set with the following property:

if x(t) ∈ C =⇒ ∃u(t) ∈ U such that

f(x(t), u(t), θ(t)) ∈ C,
∀Ftotal,Lead(t) ∈ Ftotal,Lead, , ∀t ∈ N+.

The set C is a function of the road slope θ(·) at time t until the time tstop at which the front
car comes to full stop after exerting the brake at time t. Therefore, C = C(θ(t), ..., θ(t+tstop)).
x(t) denotes the state of the system (3.11) at time t, U is the input feasible set (3.6g), f
represents the system dynamics (3.11). Ftotal,Lead is the set of all possible longitudinal forces
of the lead vehicle. Hence, the robust control invariant set C for the above ACC system
is such that for any maneuver of the front vehicle, there is a control signal that keeps the
system (3.11) within C for all future times [7].

A conservative estimation of the closed form of C for this problem is presented in [70] that
computes the control invariant set by finding the bounds on the road grade and calculating
the bounds on accelerations of the lead car. In this work a numerical method is employed
to compute the boundary of the safe set more accurately using the road slope preview and
future trajectory of the lead car. By using such preview information, the exact maneuver of
the front car is calculated by assuming it exerts maximum braking force at each time step,
using a two-step approach.

• In the first step, the equations of motion of the front vehicle are integrated using
forward Euler discretization, assuming the front vehicle applies its maximum braking
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force, Fmax
b,l ,

vl(k + 1) = vl(k) +
dt

ml

(
− Fmax

b,l −
1

2
ρCd,lAf,lv(k)2

−mlgCr,l cos
(
θ(sl(k)

)
−mlg sin

(
θ
(
sl(k)

)))
, (3.12a)

sl(k + 1) = sl(k) + dtvl(k) (3.12b)

where the initial condition for (3.12a) and (3.12b) is the current velocity and position
of the front vehicle. In (3.12a) the road grade depends on the position of the front
vehicle at each time instant. k is the integration interval. The integration stops when
the front vehicle reaches zero velocity, vl(k) = 0. Define the position when the front
vehicle reaches vl = 0 as sstopl = sl(k).

• In the second step, the equations of motion of the following vehicle are integrated
backwards in time, assuming that the following vehicle is also applying its maximum
braking force, Fmax

b,e , with the initial condition of ve(0) = 0 and se(0) = sstopl − lmin.
The integration continues till the velocity reaches its upper bound, ve(k) = vmax.

ve(k − 1) = ve(k)− dt

me

(
− Fmax

b,e −
1

2
ρCd,eAf,eve(k)2

−megCr,e cos
(
θ(se(k)

)
−meg sin

(
θ
(
se(k)

)))
(3.13a)

se(k − 1) = se(k)− dtve(k) (3.13b)

This method, although computationally more expensive compared to the closed form, takes
into account the exact road grade profile. The minimum safe distance at each step time of
the above integration is computed as follows,

dminsafe(k) = sl(0)− se(k). (3.14)

Forward and backward integration steps are illustrated in Fig. 3.3. Note (3.12b) and
(3.13b) require the backward and forward simulation of absolute vehicle positions. One can
rewrite the dynamics to highlight that only ∆s = sl−se is important, as expressed in (3.11).

Fig. 3.4 shows examples of the safe set boundary for various velocity values of the front
car. The safe set boundary is obtained by fitting a second-degree polynomial on data points
calculated using the above two-step approach. Sufficiently small integration interval increases
the data points and results in achieving higher fitting accuracy. The polynomial as the
function of ego vehicle velocity defines the required minimum safe distance which is imposed
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Figure 3.3: Safe set computation.
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Figure 3.4: The boundary of control invariant set for the ACC problem.

as safety constraint (3.6j) in the MPC formulation (3.6). Also Fig. 3.5 demonstrates the safe
time gap plot corresponding to the Fig. 3.4 safe distances. The time gap is computed for
the cases that ego and lead vehicles’ velocity are the same.

To guarantee feasibility of problem (3.6) at all times, persistent feasibility should be
proven by showing the existence of a feasible control sequence at all times when starting
from a feasible initial point. Assume that at time t0 a lead vehicle be in front of the follower
vehicle and the problem (3.6) be feasible. Let x(t) be the state of the system (3.1) in
closed-loop with the MPC controller (3.6) at t > t0. Since the problem is feasible at x(0),
there exist an optimal control sequence {u∗0, u∗1, ..., u∗N−1} at t0. Apply u∗0 and let the system
evolve to x(1). At x(1), apply umin at the end of the MPC horizon. The control sequence
{u∗1, u∗2, ..., umin}, since umin is input feasible and state feasible. In fact, from the construction
of the safe set, by applying umin at step N will guarantee that x(N + 1) will be at a safe
distance dsafe(N + 1). In conclusion, the closed-loop system is persistently feasible.

3.5 Example Application Scenarios

The application of an ACC controller that adapts the vehicle’s longitudinal velocity based
on the other vehicle’s states, communicated over V2V network, is not restricted to the
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Figure 3.5: Safe time gap corresponding to the safe minimum required distances reported at
Fig. 3.4.

car-following scenario. The same formulation of ACC can be extended further to other
applications like autonomous intersection crossing. In an uncontrolled intersection, two cars
that simultaneously approach an intersection at crossing directions, communicate with each
other and adapt their speed to avoid collision and pass the intersection safely and efficiently
[57]. A possible approach to coordinate the vehicles in an autonomous intersection is to
define a circle centered at the center of the intersection and with radius of the range of
communication R, as shown in Fig. 3.6(a). Once the cars enter this virtual circle, they
communicate with each other and assign the priority to each other based on their current
velocity. Priority assignment for autonomous intersection is not the focus of this work and
has been discussed in [57]. It is assumed to be known that which car is prioritized to pass
through the intersection first and play the role of the leader for the other car. The car with
lower priority is the one that runs the ACC controller and adapts its velocity and distance
to the intersection corresponding to the lead car. At each time step, the lead car in the
crossing direction is projected in front of the ego car, as shown in Fig. 3.6(b), as a virtual
car that the ego vehicle follows.

3.6 Simulation Results and Discussion

The optimization problem (3.6) is modeled using YALMIP [45] and solved using IPOPT.
The vehicle model and MPC parameters are presented in Table 3.1 and 3.2, respectively. To
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Figure 3.6: a) The radius of green circle around the intersection represents the range of V2V
communication. Since the red car has entered the circle sooner than the yellow one, the
red car is prioritized to pass the intersection. So the red car is the leader and the yellow
car is the follower. The yellow car has to adapt its speed according to the leader car speed
and pass through the intersection with second priority. b) The lead car (red) is projected at
each time step in front of the follower car (yellow) which has the second priority. Light red
rectangle shows the virtual car in front of the yellow car.

Table 3.2: MPC Controller Parameters

vmin minimum velocity m/s 0
vmax maximum velocity m/s 30
umin minimum control input kN -3
umax maximum control input kN 3
∆t sampling time s 0.2
Q tracking error cost weight - 10
R control effort cost weight - 1
R∆u jerk cost weight - 10
P terminal cost weight - 100
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conduct realistic simulations, a car is driven on roads with significant slope (located near
UC Berkeley) and collected latitude, longitude and velocity data. The grade maps of the
roads is generated by querying the Google Elevation API, and obtaining elevation data for
the collected latitudes and longitudes. The recorded velocity data of the car is considered as
the front car’s velocity in the simulations. The simulation tests are run with different real
roads grade profiles and the performance of the presented approach is assessed against the
baseline approach. The presented ACC considers the road grade preview in both planning
and safe set calculation, while the baseline controller does not include knowledge of grade.

Fig. 3.7 represents the results for a car-following scenario. The first graph compares the
velocity of the front and the ego car; the tracking accuracy with and without knowledge
of grade is essentially the same. The second graph depicts the relative distance between
the ego and front vehicles, with and without grade knowledge. The safe distance in the
graph represents the minimum required distance between the vehicles calculated by the
robust control invariant set. The relative distance obtained by the presented controller is
lower-bounded by the safe distance. However, the relative distance obtained by the baseline
controller (that has no knowledge of the road grade) is not safe, since the relative distance
violates the minimum required safe distance. The third graph represents the control input
uMPC. As seen, the control input obtained by the proposed controller is much smoother
compared to the baseline controller. The fourth graph depicts the road grade profile obtained
by Google Elevation API.

To assess the performance of both controllers quantitatively, the performance indexes
are introduced in Section 3.3. Table 3.3 compares, for various simulation runs, the energy
consumption, tracking and comfort performance indexes when the road grade preview is
either known or not known. The total cost, which is the sum of all performance indexes, is
also reported; the average total cost without grade knowledge is considerably higher than
with grade preview.

For the autonomous intersection scenario the results are similar to the car-following case,
and are not reported here for brevity. In this scenario, the road grade profiles for the leader
and follower cars are different; at each time step the vehicles’ distances to the center of
intersection are measured and their relative distance is calculated by projecting the lead car
in front of the follower car.

Both scenarios (car-following and autonomous intersection crossing) are set up in the
PreScan simulation environment. PreScan has an interface with MATLAB/Simulink and is
a suitable platform for developing ADAS systems as well as modeling V2V communication.
The road grade for both scenarios is modeled in PreScan environment with sinusoidally
varying profiles. The lead vehicle velocity is also generated as another sinusoidal profile.
The PreScan video for both scenarios is available online.1 In the car-following video the lead
car is moving with a sinusoidal velocity profile, until it applies full braking and comes to full
stop in the middle of the road. The follower car is able to maintain the safe distance and avoid
collision using the presented approach. This is a visualization that shows how the control

1https://www.youtube.com/watch?v=Qi9Lehtvqjc

https://www.youtube.com/watch?v=Qi9Lehtvqjc
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Figure 3.7: Car-following scenario: w/grade is the case that grade knowledge is available
to the controller (presented controller), wo/grade is the case that grade knowledge is not
available (baseline controller). The front car’s velocity and road grade profile are realistic
data.

algorithm is robust with respect to aggressive maneuvers of the lead car on roads with any
arbitrary grade profile. In the autonomous intersection video the vehicles communicate with
each other and after prioritization, the follower adapts its velocity based on the lead car’s
velocity and avoids collision by maintaining the safe distance calculated using the control
invariant set. Both vehicles pass the intersection safely for an arbitrary road grade profile
using the proposed approach.

As previously described, the presented controller is capable of automatically, safely and
smoothly switching between CC and ACC modes. Fig. 3.8 shows the results for this case.
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Figure 3.8: Automatic, smooth and safe switching between ACC and CC modes.

The front car’s velocity is obtained by collecting real driving data and the associated road
grade map is created using Google Elevation API. The cruise control speed is set to a constant
value. By comparing the velocity and distance plots, one can see that the ego car velocity
tracks the cruise control reference velocity when the front car is far, for example between the
time of 15 to 25. Afterwards, for example between the time 28 to 34, since the front car’s
velocity is less than the cruise control reference speed, and the distance between the cars is
closer, the ego car tracks the front cars’ velocity instead. The relative distance shown in the
second plot is also lower-bounded by the safe distance.
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3.7 Conclusion

A performance-enhanced ACC controller is designed that exploits preview information about
road grade as well as lead vehicle’s motion to predict the evolution of the system and plan
accordingly. To guarantee recursive feasibility of the closed-loop system, a less conserva-
tive robust control invariant set is computed with a numerical approach that calculates the
minimum required safe distance at each time step in accordance with the associated road
grade data and the lead car states. The presented controller is robust with respect to any
aggressive braking of the lead vehicle as well as any arbitrary road slope.

Simulations are conducted using realistic data of lead car’s velocity and road grade profile.
It is verified through simulation for two application scenarios that the presented controller
improves the performance in terms of comfort, safety and energy efficiency compared to the
baseline controller. In addition, it is showed that the presented ACC design is able to switch
between CC and ACC mode automatically, smoothly and safely.
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Chapter 4

Centralized Coordination

4.1 Introduction

Vehicular wireless communication systems including vehicle-to-vehicle (V2V), vehicle-to-
cloud (V2C) and vehicle to infrastructure (V2I) enhance cooperative driving by providing
a communication network for information exchange between the vehicles to coordinate and
plan conflict-free trajectories [31], [3]. Grouping multiple cooperative vehicles into single-
lane or multi-lane formation is referred to as platooning. Using communication technologies,
connected vehicles within the platoon can navigate in close proximity of each other, self-
organize themselves to form certain configurations, keep tight formations and transit from
one formation to another. Platooning improves traffic congestion, energy efficiency and
safety [1], [66]. It increases road traffic throughput by allowing small inter-vehicle distances.
Furthermore, moving with close spacing reduces aerodynamic drag and thus contributes to
energy efficiency.

Platooning in classical setting refers to a group of vehicles that form a road train in
a single lane [37], [64]. Single-lane platooning study and demonstrations date back to the
’80s [54], [35]. The main drawback of forming a single-lane platoon is that a long train-
like platoon may prevent other vehicles to change lane and consequently affect the traffic
flow and reduce the mobility. Also in case of presence of obstacles on the road it might
be impossible for a long platoon to find enough gap to change lane. Platoon formation in
multiple lanes incorporates the advantages of platooning described earlier and at the same
time is shape-reconfigurable and is able to facilitate lane change maneuvers as needed. In this
paper, a multi-lane platoon with small number of interconnected vehicles (three up to ten)
referred to as mini-platoon is considered. Adding another degree of freedom in multi-lane
platoon increases structure flexibility and can further improve mobility, the traffic network
throughput, energy efficiency and safety compared to single-lane platoon. For example, in
terms of energy efficiency, when there is slow traffic ahead in one lane, multi-lane platoon can
reconfigure its shape and perform opportunistic lane change to save the energy consumption
by avoiding braking and changing the lane to a faster lane [32]. In terms of safety, once an
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obstacle is detected in one lane, the multi-lane platoon can reconfigure and accommodate the
vehicles in the blocked lane to merge into another lane to avoid the obstacle and minimize
the risk of possible collision.

Although single-lane platooning (one-dimensional 1D) is well studied in the literature,
literature on multi-lane platoons (two-dimensional 2D) is limited and reviewed in the next
section. The focus of this chapter is to present a general architecture for autonomous navi-
gation of tight multi-lane platoons. The contributions are summarized as follows.

1. An architecture for autonomous navigation of multi-lane platoons on public roads is
presented. It comprises an offline motion-planning system and an online hierarchical
control system.

2. A set of formation patterns also referred to as single-lane and multi-lane platoon config-
urations is identified. The offline motion planner uses an optimization-based algorithm
to create various reconfiguration maneuvers that allow smooth transitioning from one
pre-identified configuration to another. The resulting reconfiguration maneuvers are
stored in a look-up table.

3. The online hierarchical control system is composed of three levels: a traffic operation
system (TOS), a decision-maker, and a path-follower. The top level TOS operates in
the cloud and determines the desired platoon reconfiguration by monitoring the traffic.
The middle-level decision-maker operates on the platoon leader vehicle. It makes use
of the following information:

• the desired reconfiguration from TOS, via V2C communication,

• the look-up table computed by motion-planner, pre-stored on the vehicles,

• and the shared future plans of the surrounding traffic (outside platoon) vehicles,
via V2V communication.

By incorporating all these information, the decision-maker checks whether the desired
reconfiguration planned by TOS is feasible or not. The feasible maneuvers are broad-
casted to all the vehicles within the platoon via V2V communication to be executed
by the low-level path-following feedback controller in real-time.

4. The vehicles’ shapes are modeled as polytopic sets and the collision avoidance con-
straints among them are reformulated into a set of smooth constraints using strong
duality theory. These smooth constraints can be handled efficiently by standard non-
linear solvers. This approach allows navigation through tight spaces at highway speed.

5. Compared to existing literature, the three novel contributions discussed above address
real-time implementation, tight maneuvering and hard constraint satisfaction. Uncer-
tainty is not addressed in this work and is topic of ongoing research.
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4.2 Centralized Planning Overview

Advances in vehicular communication technologies are expected to facilitate cooperative
driving in the future. Connected and Automated Vehicles (CAVs) are able to collabora-
tively plan and execute driving maneuvers by sharing their perceptual knowledge and future
plans. In this paper, an architecture for autonomous navigation of tight multi-lane platoons
travelling on public roads is presented. Using the proposed approach, CAVs are able to form
single or multi-lane platoons of various geometrical configurations. They are able to reshape
and adjust their configurations according to changes in the environment. The proposed ar-
chitecture consists of two main components: an offline motion planner system and an online
hierarchical control system. The motion planner uses an optimization-based approach for co-
operative formation and reconfiguration in tight spaces. A constrained optimization scheme
is used to plan smooth, dynamically feasible and collision-free trajectories for all the vehicles
within the platoon. This chapter addresses online computation limitations by employing
a family of maneuvers precomputed offline and stored on a look-up table on the vehicles.
The online hierarchical control system is composed of three levels: a traffic operation system
(TOS), a decision-maker, and a path-follower. The TOS determines the desired platoon
reconfiguration. The decision-maker checks the feasibility of the reconfiguration plan based
on real-time information about the surrounding traffic. The reconfiguration maneuver is
executed by a low-level path-following feedback controller in real-time. The effectiveness of
the approach is demonstrated through simulations of three case studies: 1) formation recon-
figuration 2) obstacle avoidance, and 3) benchmarking against behavior-based planning in
which the desired formation is achieved using a sequence of motion primitives. Videos and
software can be found online here

4.3 Literature Review

Coordinated formation methods for multiple autonomous vehicles are well-studied in the lit-
erature and can be categorized in three main approaches: Leader-follower, virtual structure,
and behavior-based approach. In leader-follower approach the follower agents track the coor-
dinates of the leader [47], [18]. This method is effective for conventional single-lane train-like
platoon, but since the follower must follow the same reference trajectory as the leader, it is
not applicable to reconfigurable multi-lane platoons, in which the planned motions for the
vehicles are not the same. In virtual structure method, the formation is represented as a
virtual rigid structure. Each robot is considered as a node in the rigid structure [53]. The
main drawback of this method is that, the formation as a rigid structure is not flexible and
reshapable.

Behavior-based approaches include methodologies such as flocking and particle swarm
optimization algorithms, artificial potential fields, and sequence of motion primitives. Most
of the studies on flocking algorithms consider the agents as a group of particles that interact
with each other based on Reynolds heuristic rules of cohesion, separation and alignment
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[56]. Cohesion enforces the particles to stay together and separation penalizes the collision
between the particles. In artificial potential field method, potential fields are built so that
the robot is attracted by the goal region and repelled by the obstacle region. In formation
control, in addition to goal and obstacle potential fields, a swarm attractive field is introduced
to achieve the desired formation pattern. The potential-based planning does not impose hard
constraint on collision avoidance and cannot guarantee collision avoidance with constrained
control input. In addition, all these particle-based methods model the vehicles as particles
with radial gap among them and do not take the actual size of the vehicles into account.
Furthermore, the dynamic model is considered to be the particle’s dynamic with first, second
or third-order point-mass models, which are not the representation of the actual nonlinear
dynamics of the vehicles.

Another behavior-based method is to construct the formation maneuvers as sequences
of motion primitives [6]. Motion primitives are identified as various behaviors such as lane
change and obstacle avoidance. Among all the described formation approaches, this method
is more effective for multi-lane platooning, but its disadvantage is that it is difficult to
mathematically analyze and solve for sequence of motion primitives.

Combinations of the aforementioned approaches have also been studied. In [52], for
example, the authors use the Reynolds rules to define the potential forces between the
agents. Cohesion and separation are modeled as pairwise attractive and repulsive potential
forces between the particle, respectively and a multi-objective cost function is constructed to
satisfy all the rules simultaneously. In [43], the authors propose virtual leader approach with
attractive potential field to track a desired path and achieve a desired formation and repulsive
potential fields to avoid agents collisions. Also a Lyapunov function is constructed to prove
the closed-loop stability. In [36], the authors use a similar approach for flocking of multiple
non-holonomic vehicles and prove the convergence using LaSalle’s invariant principle.

4.4 Preliminaries

Vehicle Model

The vehicles set composing the platoon is defined as V . The number of vehicles are considered
to be Nv and each vehicle is identified through its index i ∈ V := {1, 2, ..., Nv}. The nonlinear
behavior of every vehicle i within the set is modeled by the vehicle kinematic bicycle model,
which is a common modeling approach in path planning. In this model, the ith vehicle state
vector is zi = [xi, yi, ψi, vi]>, where xi and yi represent longitudinal and lateral positions
of the vehicle, respectively, ψi is the heading angle and vi denotes the velocity at center
of gravity (C.G.) of the vehicle, as seen in Fig. 4.1. The control input vector is defined as
ui = [ai, δi]>, where ai is the acceleration and δi is the steering angle. The vehicle dynamics
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Figure 4.1: The kinematic bicycle model

is given as follows
ẋi = vi cos(ψi + βi),

ẏi = vi sin(ψi + βi),

ψ̇i =
vi cos βi

lif + lir
(tan δi),

v̇i = ai,

(4.1)

where βi = arctan
(

tan δi( lir
lif+lir

)
)

is the side slip angle, lif and lir are the distance from the

center of gravity to the front and rear axles, respectively. Superscript i denotes the ith
vehicle in the platoon. Using Euler discretization, the model (4.1) is discretized as follows

xi(t+ 1) = xi(t) + ∆t vi(t) cos(ψi(t) + βi(t)),

yi(t+ 1) = yi(t) + ∆t vi(t) sin(ψi(t) + βi(t)),

ψi(t+ 1) = ψi(t) + ∆t
vi(t) cos βi(t)

lif + lir
(tan δi(t)),

vi(t+ 1) = vi(t) + ∆t ai(t),

(4.2)

where ∆t is the sampling time.

Platoon Configuration

Various platoon formation patterns or configurations are considered in this work, including
one-lane (train-like) and multi-lane (rectangle, diamond, wedge shape, etc.), as shown in
Fig. 4.2. The platoon configuration C is parameterized as C(nv, l, p), where nv ∈ Z is the
maximum number of vehicles in each lane within the platoon, l ∈ {0, 1}nl is an indicator
vector that specifies which lanes are occupied, nl is the maximum number of lanes within
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the platoon. The jth element of l is defined as

l(j) =

{
0 if no vehicle is in jth lane

1 if at least one vehicle is in jth lane,

where j denotes the lane index. The parameter matrix p ∈ Rnl×nv represents the platoon
geometrical pattern specified as the relative distances between the vehicles. Every jth row
of matrix p is defined as p(j) = [dj,shift, dj1, ..., dj(nv−1)], where dj1, ..., dj(nv−1) denote the hor-
izontal inter-vehicle distances at jth lane as shown in Fig. 4.2(b) and dj,shift is the horizontal
shifting distance of the front-most vehicle at each lane with respect to the front end of the
reference vehicle. The right-most lane in direction of travel is the reference lane for jth lane,
as shown in Fig. 4.2(b) and the reference vehicle is the front-most vehicle at reference lane.
For the cars ahead of the reference vehicle, dj,shift is considered as negative. The values of
dj1, ..., dj(nv−1) and dj,shift are design parameters and might be chosen as different values for
each lane. For example, the platoon configuration in Fig. 4.2(b) is defined as

C = C(3, [1, 1, 1], p), p =

0 1 1
2 1 0
1 1 1

 ,
where d1,shift, d2,shift and d3,shift associated with 1st, 2nd and 3rd lanes are 0m, 2m and 1m,
respectively. Also d11, d12, d21, d31 and d32 are all 1m in this configuration. For trajectory
optimization purposes, it is convenient to convert the configuration C to position coordinates
(x, y)i of each vehicle i within the platoon. The function

g : C(nv, l, p)→ ((x, y)1, . . . , (x, y)Nv), (4.3)

gets the configuration C as input and outputs the position coordinates (x, y) for all the
vehicles. The origin O, as shown in Fig. 4.2, is defined as the position of the rear-most vehicle
at the right-most lane of the platoon configuration and all the coordinates are determined
with respect to that origin.

Simple Reference Generator Model

A simple integrator function is defined which is used in Section 4.5, to generate the reference
trajectories for each vehicle. The function h : R3 → RT , is defined as

h : (x(0), vmax, T )→ xRef = [x(0), x(1), ..., x(T )], (4.4)

which determines xRef for all the vehicles within the platoon. The trajectory is obtained by
x(t+ 1) = x(t) + vmax∆t, ∀t ∈ {0, 1, ..., T}, where x(t) is the vehicle longitudinal position
at time t, vmax is the maximum speed limit of the road, T is the final time of simulation and
∆t is the simulation sampling time.
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Figure 4.2: (a) Single-lane platoon: a train-like group of vehicles travelling at close distance
behind each other. (b) Multi-lane platoon in multiple lanes. Yellow arrow depicts horizontal
inter-vehicle distance at each lane and red arrow shows dj,shift at each lane. Each lane has
its own label and the right-most lane is the reference lane.

Platoon Reconfiguration

Transitioning from an initial configuration denoted as Ci to a final configuration denoted as
Cf is defined as platoon reconfiguration. An example of platoon reconfiguration is shown in
Fig. 4.3. The top snapshot shows a multi-lane platoon with initial configuration Ci that is
going forward at steady state (right-headed arrow shows the direction of motion). The middle
snapshot shows transition maneuvers Tr and the vehicles change their lanes. Whenever the
transition maneuver is completed, another configuration Cf , which in this example is single-
lane platoon, is achieved as shown in the bottom snapshot. A finite number of platoon
configurations are identified as known configurations. The configuration set C = {C1, C2, . . .}
captures all these pre-defined platoon configurations. The platoon reconfiguration scenarios
are restricted to transition between these pre-defined configurations.
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Figure 4.3: An example of reconfiguration from multi-lane platoon to single-lane platoon is
shown.

Remark 1 The traffic operation system (TOS) selects the desired platoon configurations
among all the pre-identified configurations within the set C, in such a way to improve traffic
mobility and to reduce traffic congestion. The vehicles communicate with this level via V2C
communication and receive Ci and Cf . The platoon might not always be initially in a pre-
identified Ci configuration, due to the changes in the surrounding traffic. Therefore, to initiate
the reconfiguration, the vehicles are first controlled to reach Ci configuration. After reaching
such a pre-defined configuration, the reconfiguration maneuver is initiated. Single-lane (1D)
platoon formation from an unknown configuration has been studied for a long time. One way
to reach the Ci is to first form a simple 1D platoon and initiate the reconfiguration from that
known simple platoon. Another way (recommended in this paper) is to control the vehicles to
reach Ci. Each vehicle individually plans and controls to reach its corresponding location and
when reaching the goal is not possible, due to the surrounding traffic condition, the vehicle
informs TOS that reaching to Ci is infeasible and then TOS re-plans the reconfiguration.

Surrounding Traffic

The vehicles set composing the surrounding traffic (the vehicles travelling close to the pla-
toon, but do not belong to the platoon) is defined as the set S = {1, ..., n}, where n is the
total number of the surrounding vehicles. Each vehicle is identified through its index q ∈ S.
These vehicles are in the communication range of the platoon and share their future planned
trajectories with the platoon leader. (The front-most vehicle in the reference lane within the
platoon, is chosen as platoon leader.)

Different traffic scenario examples are shown in Fig. 4.4. In these examples, the multi-
lane platoon (shown in red) can reconfigure to improve the traffic flow. In Fig. 4.4(a), a
three-lane platoon is moving in the lanes 2,3,4. Since the traffic is slow in the lanes 2 and
4, a possible reconfiguration is that platoon can merge into the lane 3 and reconfigure as



CHAPTER 4. CENTRALIZED COORDINATION 47

Figure 4.4: The vehicles within the platoon are shown in red and the surrounding traffic
(vehicles not in platoon) are shown with different colors. (a): The traffic is slow in the lanes
2 and 4. (b): The lane 4 is closed.

a single-lane platoon. In Fig. 4.4(b), the lane 4 is closed due to an accident, the platoon
vehicles in the lane 4 can merge between the platoon vehicles in the lane 3.

Notations

Common used notations along with their definitions are reported in the Table 4.1. The con-
figurations are denoted using C and the trajectories are denoted using τ . The superscription
i indicates ith vehicle.

4.5 Architecture

The proposed architecture for cooperative multi-vehicle systems consists of two main compo-
nents: an offline motion planning system and an online hierarchical control system. Fig. 4.5
shows the architecture. The inputs of motion planning system are various initial Ci and
final Cf configurations and the output of this system is a look-up table of precomputed safe
maneuvers for transition from Ci to Cf . The motion-planer uses an offline optimization-based
approach for cooperative formation and reconfiguration. The online hierarchical control sys-
tem is composed of three levels: traffic operating system, decision making and path following.
The traffic operating system (TOS) monitors the traffic and determines the desired initial
Ci and final Cf configurations of the platoon to improve traffic mobility and reduce road
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Notation Definition
C platoon configuration
Ci initial platoon configuration
Cf final platoon configuration
C the set of pre-defined/known configurations
Nv number of vehicles
S surrounding traffic vehicles (not in platoon)
V set of all the vehicles
i index of ith vehicle
Ni set of neighbor vehicles (within platoon) of ith vehicle
zi states of ith vehicle
ui inputs of ith vehicle
xi longitudinal position of ith vehicle
yi lateral position of ith vehicle
ψi heading angle of ith vehicle
vi velocity of ith vehicle

ziRef reference states of ith vehicle
P polytopic representation of the vehicle
T final simulation (maneuver) time
R rotation matrix
tr translation vector

A and b polytopic representation
len the vehicle length
w the vehicle width
dmin minimum safe distance
t time step
k horizon step
N horizon

λ, µ, s dual variables
τ trajectory

τ izRef
ith vehicle reference state trajectory

τ izTarget
ith vehicle target trajectory (look-up table)

τ qz shared planned trajectory of qth surrounding vehicle
ρ coefficient affecting the start of lane-change, ρ ∈ (0, 1)

Table 4.1: Common used notations
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congestion. The decision-maker receives the desired initial Ci and final Cf configurations
from TOS. Also it receives future planned trajectories from the surrounding traffic S. Based
on the given desired Ci and Cf and the surrounding traffic information, the decision-maker
selects a feasible transition maneuver from the look-up table to reconfigure the platoon from
Ci to Cf . Once the transition maneuver is selected by the decision-maker, the maneuver is
executed by the path-follower controller on each vehicle in real-time.

The following assumptions have been made:

(A1) The vehicles are fully autonomous and connected through vehicle-to-vehicle (V2V) and
vehicle-to-cloud (V2C) communications.

(A2) All the platoon configurations C are selected from a pre-identified set of configurations.

(A3) The desired initial Ci and final Cf configurations are available from the topmost level
of the architecture, which is the traffic operation system (TOS). The vehicles commu-
nicate with TOS via V2C communication.

(A4) Reconfiguration (transition maneuvers between initial Ci and final Cf configurations)
always starts from a known (predefined) initial configuration Ci. If the vehicles’ current
configuration is not identified as one of predefined configurations, the vehicles are
controlled to reach the point for which Ci is available.

(A5) The road is assumed to remain straight along the reconfiguration maneuver.

(A6) Uncertainty due to communication delay or model mismatch is not considered; perfect
knowledge of the states for all the vehicles is assumed.

Motion Planning

The motion planning is performed offline. For various identified initial Ci and final Cf pla-
toon configurations, the transition maneuvers to reconfigure the platoon from Ci to Cf are
computed by motion planner. These precomputed trajectories are stored in a look-up table
to be executed by online hierarchical control system. The motion planning system has a hi-
erarchical structure. At the high level, reference trajectories τ izRef

for each of the vehicles are
generated based on initial and final configuration. These trajectories can cause collisions,
which are resolved by a low level planner. At the low level, a trajectory optimization is
formulated as a finite time constrained optimal control (FTCOC) problem to plan smooth,
dynamically feasible and collision-free trajectories for all the vehicles in a centralized op-
timization problem. The motion planner incorporates the collision avoidance between the
vehicles as constraints of optimization problem and obtains longitudinal ai and lateral δi con-
trol inputs for all the vehicles.Solving a single FTCOC optimization for the entire maneuver
(until time T ) is computationally intractable due to the large number of decision variables.
Therefore, multiple FTCOC with a shorter horizon N is solved, in a receding horizon fashion
(N < T ).
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Figure 4.5: The architecture: (a) offline motion planning system. (b) online hierarchical
control system

High-Level Reference Generation

The reference state for ith vehicle is denoted as ziRef = [xiRef, y
i
Ref, ψ

i
Ref, v

i
Ref]. The reference

state trajectory, denoted as τ izRef
, is defined for the interval [0, 1, 2, . . . , T ], from the initial

time 0 until the final maneuver time T and τ izRef
= {ziRef(0), ziRef(1), ziRef(2), . . . , ziRef(T )}. and

is computed based on initial Ci and final Cf configurations of the platoon. First, the position
coordinate of all the vehicles are specified using g(Ci(nv, l, p)) = (x(0), y(0))i ∀i ∈ V , which
is previously defined in Section 4.4. Then, the longitudinal position reference trajectory τ ixRef

= {xiRef(0), . . . , xiRef(T )} is generated using the integrator model (4.4),

τ ixRef
= h(xi(0), vmax, T ), (4.5)

The lateral position reference trajectory τ iyRef
is the y coordinate of the road centerline

for each vehicle. For the first portion of simulation (0, . . . , ρT ), yiRef is obtained from ini-
tial configuration Ci and the rest ((ρT + 1), . . . , T ) is determined by final configuration Cf ,
g(Cf (nv, l, p)) = (xi(T ), yi(T )) ∀i ∈ V ,

{yiRef(0), . . . , yiRef(ρT )} = yi(0), (4.6)

{yiRef(ρT + 1), . . . , yiRef(T )} = yi(T ), (4.7)

the parameter ρ ∈ (0, 1) is a tuning parameter, which can be determined by a design engineer.
It is the coefficient that affects the start of the lane change. ψiRef is zero

τ iψRef
= {ψiRef(0), . . . , ψiRef(T )} = 0, (4.8)
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Figure 4.6: The generated reference trajectories are shown for the example scenario of
Fig. 4.3. The parameter ρ = 0.5 for the blue and red vehicles.

assuming the road remains straight along the maneuver and viRef is set as maximum speed
limit of the road or average traffic flow vmax.

τ ivRef
= {viRef(0), . . . , viRef(T )} = vmax. (4.9)

The reference trajectory τ izRef
for ith vehicle is defined using (4.5), (4.6), (4.8) and (4.9). The

generated trajectory is a naive initialization that might collide with obstacles. The low-level
planner ensures collision avoidance among the vehicles. Fig. 4.6 shows the generated reference
trajectories for the reconfiguration scenario example Fig. 4.3. The reference trajectories of
blue and red vehicles are not straight lines, since they change their lanes. In Fig. 4.6 ρ = 0.5
for both blue and red vehicles. Note that the parameter ρ determines when the lane change
starts. For example, ρ = 0.5 means the lane change is performed in the middle of the total
duration of maneuver. For pink and yellow vehicles, ρ can be any value in the interval (0, 1),
excluding the boundaries, since pink and yellow do not change lane.

Low-Level Collision Avoidance

multi-vehicle motion planning problem is formulated as a centralized optimization problem
that computes conflict-free trajectories for all the vehicles in the platoon simultaneously. The
proposed optimization scheme uses a receding horizon fashion. At each time step it solves
an optimization problem and obtains the control input based on dynamic model predictions
over a time horizon and applies the first control input solution. At the next time step, the
horizon is shifted forward and the procedure is repeated. The maneuvers are computed by
closed-loop simulation of optimization (4.10) with dynamic model (4.1).
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The objective function penalizes the deviation of each individual vehicle from the refer-
ence trajectory generated at the high level and the collision avoidance constraint is incor-
porated as hard constraint to guarantee safety. The optimization problem is formulated as
follows

min
ui(·|t)

NV∑
i=1

( t+N∑
k=t

||Qz(z
i(k|t)− ziRef(k|t))||22

+
t+N−1∑
k=t

||Qu(u
i(k|t))||22 + ||Q∆u(∆ui(k|t))||22

)
(4.10a)

subject to zi(k + 1|t) = f(zi(k|t),ui(k|t)), (4.10b)

zi(0|t) = zi(t), (4.10c)

zmin ≤ zi(k|t) ≤ zmax, (4.10d)

umin ≤ ui(k|t) ≤ umax, (4.10e)

∆umin ≤ ui(k|t)− ui(k − 1|t) ≤ ∆umax, (4.10f)

P(zi(k|t)) ∩ P(zj(k|t)) = ∅, i 6= j (4.10g)

for all i ∈ V , j ∈ Ni,

where ui(·|t) = {ui(t|t), ...,ui(t + N − 1|t)} denotes the sequence of control inputs over the
planning horizon N for ith vehicle. The optimal solution is U∗(t) = {u∗(t|t), ...,u∗(t+N −
1|t)}, and the receding horizon control law is obtained by applying the first control input
u∗(t|t).

Superscript i denotes the ith vehicle, NV is the total number of vehicles in the platoon,
zi(k|t) and ui(k|t) are the state variable and control input of ith vehicle at step k predicted
at time t, respectively. The above problem is a multi-objective optimization in which, the
first term penalizes deviation of the states z from the reference state zRef, the second term
penalizes control input effort u and the third term penalizes the input rate (change of control
input in two consecutive time steps) ∆u. The weight factors Qz, Qu and Q∆u are positive
semidefinite matrices. The function f(·) in (4.10b) represents the vehicle kinematic bicycle
model (4.2), which is discretized using Euler discretization. The reference trajectory obtained
from the high level planner is denoted as ziRef and zmin and zmax are the state limits and umin

and umax are the input limits. The input rate is lower bounded by ∆umin and upper bounded
by ∆umax. Therefore, (4.10f) avoids heavy braking/acceleration as well as aggressive steering
and enhances energy efficiency and comfort. P(zi(k|t)) represents ith vehicle polytope as
the road area occupied by the vehicle and P(zj(k|t)) represents the other vehicle polytopes
as moving obstacles for ith vehicle. The set of neighbors Ni is the set of all the vehicles
within the platoon except ith vehicle and is defined as Ni = V \ i. In order to guarantee
collision avoidance, the vehicles are modeled as polytopic sets that not only each set has
empty intersection with all the other sets, but also each set keeps a minimum distance from
the other sets. The collision avoidance between the ith vehicle and all the other vehicles
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Figure 4.7: The occupied road region is modeled as a polytopic set that undergoes affine
transformations.

(neighbors) is formulated in (4.10g), where P(zj) are the polytopic sets that represent all
neighbor vehicles. The remainder of this section is devoted to detailed description and
reformulation of the constraint (4.10g). The approach presented in [77] is used and applied
to multi-lane platoon in the next section. The underlying technical reasoning is similar and
repeated here for the sake of completeness. The computed trajectories from closed simulation
of optimization (4.10) with dynamic model (4.1) are stored in a look-up table and will be
executed in real-time by a path-follower which is a feedback controller.

Representation of the Road Area Occupied by the Vehicle

As discussed platooning is maintaining close inter-vehicular distance within a group of vehi-
cles. In tight platooning, both road geometry (lane width) and platoon geometry (longitu-
dinal and lateral inter-vehicle spacing) restrict the motion of the vehicles within the platoon
and results in creating a tight environment. To allow navigation at tight spaces, it is essential
to model the road structure and the vehicles dimensions as exact sizes with no approximation
or enlargement. The vehicle pose or the corresponding road region occupied by the vehicle
is defined by a two-dimensional convex polytope P , as seen in Fig. 4.7. The initial pose of
the vehicle is represented as Po. As the vehicle travels along the road, Po undergoes affine
transformations including rotation and translation. Hence P(z(k)) = R(z(k))Po + tr(z(k)),
where z(k) represents the vehicle state at kth time step, P(z(k)) is the vehicle occupied
region as a function of the state z(k), and dimensions including length h and width w and
is defined as a set of linear inequalities. R : Rnz → Rn×n is an orthogonal rotation matrix
and tr : Rnz → Rn is the translation vector. nz is the dimension of z and n is two, since
the transformation is occurring in two-dimensional space R2. The rotation matrix R(·) is a
function of the vehicle heading angle ψ(k) and the translation vector tr(·) is a function of
the longitudinal x(k) and lateral y(k) positions of the vehicle. So the transformed polytope
is defined as P(z(k)) = {[px, py]> ∈ R2|A(z(k))[px, py]

> ≤ b(z(k))}, where px and py are
the coordinates of points in two-dimensional space which are representation of the polytope.
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The matrix A(z(k)) and the vector b(z(k)) are defined as

A(z(k)) =

[
R(ψ(k))>

−R(ψ(k))>

]
,

b(z(k)) = [len/2, w/2, len/2, w/2]>

+ A(z(k))[x(k), y(k)]>,

(4.11)

where R(ψ(k)) =

[
cos(ψ(k)) − sin(ψ(k))
sin(ψ(k)) cos(ψ(k))

]
. The length and width of the vehicle are denoted

as len and w , respectively, as shown in Fig. 4.7. For coordination of multiple vehicles, each
vehicle’s occupied area is modeled as a time-varying polytope and at each time step, re-
planning is performed such that no intersection occurs between the polytopic sets.

Collision Avoidance Reformulation

The distance between two polytopic sets P1 and P2 is defined as

dist(P1,P2) = min
x,y
‖x− y‖2 |A1x ≤ b1,A2y ≤ b2, (4.12)

where P1 and P2 are described as A1x ≤ b1 and A2y ≤ b2, respectively. The two sets
do not intersect if dist(P1,P2) > 0. However, for autonomous driving applications, since the
vehicles must keep a minimum safe distance dmin from each other and from the obstacles, the
distance between their polytopic sets should be larger than a predefined minimum distance,
dist(P1,P2) ≥ dmin.

In the motion planning optimization problem (4.10), the collision avoidance is imposed
as constraint. However, the collision avoidance formulated in (4.12) is itself an optimization
problem. Hence, an optimization problem has to be solved as the constraint of another
optimization problem. To deal with this issue, as explained in [77], the dual problem can
be solved instead of the primal problem (4.12), based on strong duality theory. The dual
problem is expressed as maxλ, µ,s{−b>1 λ − b>2 µ : A>1 λ + s = 0,A>2 µ − s = 0, ‖s‖ ≤
1,λ � 0, µ � 0}, where λ, µ and s are dual variables. The optimal value of the
dual problem is the distance between the two polytopes P1 and P2 and is constrained to
be larger than minimum distance. Hence the constraint on dual problem optimal value
is equivalent to the following feasibility problem {∃λ � 0, µ � 0, s : −b>1 λ − b>2 µ ≥
dmin,A

>
1 λ+ s = 0,A>2 µ− s = 0, ‖s‖ ≤ 1}. This reformulation can be substituted instead of

collision avoidance constraint (4.10g) in the motion planning optimization problem (4.10).
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Therefore, problem (4.10) can be rewritten as

min
ui(·|t), λij(·|t),
µij(·|t), sij(·|t)

(4.10a)

subject to (4.10b), (4.10c), (4.10d), (4.10e),(
− bi(z

i(k|t))>λij(k|t)
− bj(z

j(k|t))> µij(k|t)
)
≥ dmin,

Ai(z
i(k|t))>λij(k|t) + sij(k|t) = 0,

Aj(z
j(k|t))> µij(k|t)− sij(k|t) = 0,

‖sij(k|t)‖ ≤ 1,−λij(k|t) ≤ 0,

− µij(k|t) ≤ 0, for all i ∈ V , j ∈ Ni,

(4.13)

where Ai and bi are functions of zi(k|t) and represent the polytopic set of ith vehicle at step k
predicted at time t. Similarly Aj and bj denote the polytopic set of jth vehicle which belongs
to neighbor set Ni. The dual variables λij, µij and sij are coupled through the collision
avoidance constraint among vehicle i and vehicle j. λij(·|t), µij(·|t) and sij(·|t) represent the
sequence of dual variables over the optimization horizon N . So λij(·|t) = {λij(t|t), ...,λij(t+
N |t)}, µij(·|t) = {µij(t|t), ..., µij(t+N |t)} and {sij(·|t) = {sij(t|t), ..., sij(t+N |t)}.

One main advantage of the proposed planning method is that the required minimum
distance between the vehicles dmin, which can be chosen as a design parameter, is always
enforced during the lane change maneuvers. In theory, the trajectories can be obtained for
zero dmin, which means the polytopic sets (cars) can move on each other boundaries. In
practice, dmin should be determined based on the quantification of uncertainty of physical
models and stochastic measurement errors, which is one future extension of this work.

The optimal solution of (4.13) is U∗(t) = {u∗(t|t), ...,u∗(t+N−1|t)}, and the first control
input u∗(t|t) is applied to the vehicle nonlinear dynamic model (4.2). Then, the initial
condition is updated with the current states and the optimization (4.13) is solved again. By
running forward simulations of system (4.2) in closed loop with u∗(t|t) from the initial time
0 to the final maneuver time T , one can obtain collision-free closed-loop trajectories. Such
closed-loop trajectories are represented by the state τ izTarget

trajectories. These trajectories
are stored in a look-up table. The output of the motion planning system is this look-up table
that captures different configurations and possible reconfigurations/transition maneuvers
among them. Table 4.2 shows the structure of the look-up table. In the look-up table a set
of trajectories are associated with (Ci,Cf ) pair.

Note that for a specified pair of (Ci,Cf ), once the high-level reference trajectory is com-
puted, there is one optimal reconfiguration maneuver (the solution of optimization (4.13))
that transforms Ci to Cf . However, the high-level reference trajectory computed by (4.6) and
(4.7) is parameterized by ρ ∈ (0, 1) and different choices of ρ result in different reference tra-
jectories and consequently various reconfiguration maneuvers. In practice, several different
values of ρ can be chosen, for example ρ = {0.1, 0.2, 0.3,0.4, 0.5, 0.6,0.7, 0.8, 0.9} and the look-
up table can be computed with these ρ values. So the family of reconfiguration maneuvers
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Table 4.2: Look-up table structure (Parameterized by ρ).

Reconfiguration Trajectories ∀i ∈ V

(Ci, Cf )
τ izTarget

(ρi)

ρi ∈ (0, 1)

Table 4.3: Look-up table structure (for specified ρ values).

Reconfiguration Index Trajectories ∀i ∈ V

(Ci, Cf )

1 τ izTarget
(ρi = 0.1)

2 τ izTarget
(ρi = 0.2)

...
...

M τ izTarget
(ρi = 0.9)

from Ci to Cf is computed for these specified ρ values. The number of reconfiguration trajec-
tories for a specific (Ci,Cf ) pair is restricted to M numbers due to limited memory storage.
The look-up table for specified ρ values is shown in Table 4.3. The nonlinear optimization
(4.13) is not persistently feasible. The infeasible solutions are discarded and not included in
the look-up table. Note that the motion-planner avoids collisions among the vehicles within
the platoon (i ∈ V). However, collision avoidance with surrounding traffic (vehicles outside
the platoon), should be considered by decision-maker, as explained in Section 4.5.

Traffic Operation System

The traffic operation system (TOS) is the topmost level of online hierarchical control system
and operates in the cloud. TOS determines the desired initial Ci and final Cf configurations
based on the road traffic information. This level selects the desired platoon configurations
among all the pre-identified configurations within the set C, in such a way to improve traffic
mobility and to reduce traffic congestion. The vehicles communicate with this level via
V2C communication and receive Ci and Cf . Determining the optimal desired configuration
can be done with rule-based method and its discussion is out of the scope of this paper.
Therefore, in this paper, based on assumption (A3), it is assumed that the initial Ci and
final Cf configurations are already determined by TOS and are given to the vehicles.

Decision-Making

The decision-making system runs on an individual vehicle in the platoon. The front-most
vehicle in the reference lane, is chosen as platoon leader on which the decision-maker operates.
The decision-maker receives three types of information: 1) the desired initial Ci and final
Cf configurations from the TOS obtained via cloud; 2) look-up table computed by motion-
planner pre-stored on the vehicle; 3) the surrounding (outside of platoon) vehicles real-time
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Figure 4.8: The red vehicles are within the platoon i ∈ V and the rest of vehicles with different
colors are the surrounding traffic (outside platoon) vehicles q ∈ S. The outside platoon
vehicles share their future planned trajectories τ qz, with the platoon leader (decision-maker)
via V2V communication. The dotted lines illustrate the planned trajectories of surrounding
traffic vehicles.

information obtained via V2V communication. This information includes the vehicles current
states and future plans over the horizon that is equal or longer than the reconfiguration
maneuver duration T . The decision-maker makes use of this information to check whether
the desired reconfiguration maneuver planned by TOS is feasible or not.

Based on assumption (A1), all the vehicles are assumed to be autonomous and equipped
with V2V communication, so the surrounding vehicles (outside of platoon) can communicate
with decision-maker and share their future planned trajectories with it, as shown in Fig. 4.8.
The surrounding traffic vehicles are defined as the set S and their future planned trajectories
are denoted as τ qz. Superscript q is index of the outside platoon vehicle. Decision-maker is
responsible to ensure the planned desired reconfiguration from Ci to Cf is collision-free with
respect to outside platoon traffic. To do a collision check between the platoon vehicles i ∈ V
and surrounding traffic (outside platoon vehicles) q ∈ S, their trajectories must be compared.
Therefore, platoon reconfiguration trajectories τ izTarget and the surrounding vehicles (not in
platoon) future planned trajectories τ qz should be checked for collision at each time instant
t. The positions x(t), y(t) and heading ψ(t) are included in these trajectories. In addition
the shared information of the surrounding vehicles include the vehicles dimensions including
length len and width w.

Given two trajectories τ 1
z = {z1(0), . . . , z1(T )} and τ 2

z = {z2(0), . . . , z2(T )} associated
with vehicles 1 and 2, respectively, the vehicles polytopic representations (4.11) at each time
instant can be used to check whether the vehicles collide or not. The Algorithm 1 explains
the collision-check procedure. Step 4○ computes the polytopic representation of the vehi-
cle 1, A1(t), b1(t) and the polytopic representation of the vehicle 2, A2(t), b2(t), for all
the time steps t ∈ 0, 1, . . . , T in parallel. To do so, the algorithm uses (4.11). Since τ 1

z

includes the information z1(t) = [x1(t), y1(t), ψ1(t), v1(t)], by substituting x1(t), y1(t), ψ1(t)
and by including the vehicle dimensions, length len1 and width w1 in (4.11), the polytopic
representation A1(t), b1(t) can be computed. The same procedure is repeated to find A2(t),
b2(t). Step 5○ uses (4.12) to compute the distance, dist(t) between the two polytopic repre-
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sentations (vehicles). When the distance is less than an acceptable safe minimum distance
dmin, the collision has occurred and the algorithm outputs true collision flag, otherwise it
outputs false collision flag. Note that the problem (4.12) is a simple convex problem which
is computationally cheap and suitable for real-time implementation.

Algorithm 1 Collision Check Algorithm

1: Inputs: τ 1
z, τ

2
z, and vehicles dimensions: len1, w1 and len2, w2

2: Output: collision flag (τ 1
z and τ 2

z collide if flag=True, and τ 1
z and τ 2

z do not collide
if flag=False.)

3: for all t ∈ {0, 1, . . . , T} do in parallel
4: compute A1(t), b1(t) and A2(t), b2(t), the polytopic representation of vehicle 1 and vehicle

2, by using equation (4.11).
5: compute the distance dist(t) between the two vehicles (polytopes), by solving problem

(4.12).
6: if dist(t) ≥ dmin then
7: collision flag = False
8: else
9: collision flag = True, and go to step 12

10: end if
11: end for
12: return collision flag

The Algorithm 2 explains the decision making process. At step 3○, the decision-maker
queries the pre-stored look-up table to get the family of trajectories associated with the pair
(Ci, Cf ). Step 5○ uses Algorithm 1 to check the collision between the selected platoon recon-
figuration maneuver τ zTarget

and the future planned trajectories τ qz shared by surrounding
(not in platoon) vehicles. The search over the family of trajectories in the look-up table
is continued until finding a feasible platoon reconfiguration maneuver which has no conflict
with the surrounding (not in platoon) vehicles. If the search finishes and no conflict-free
reconfiguration maneuver is found, the decision-maker informs TOS that the current recon-
figuration plan is infeasible. So, the plan is canceled and the vehicles will move forward with
the current configuration. The decision-maker waits for the TOS to plan a new reconfigu-
ration for the future time. If a feasible maneuver is found, it will be broadcasted through
V2V network to all the vehicles and each vehicle executes its own trajectory in real-time via
low-level path-following controller.

Path-Following

The path-following controller on each vehicle i executes ith vehicle corresponding maneuver
and operates in real time. The desired maneuver (communicated by decision-maker) is
represented by the state trajectory τ zTarget

= {zTarget(0), . . ., zTarget(T )}. The path-follower



CHAPTER 4. CENTRALIZED COORDINATION 59

Algorithm 2 Decision-Making Algorithm

1: Inputs: Ci, Cf , look-up table, τ qz ∀q ∈ S.
2: Output: τ zTarget(j) or infeasible flag.
3: query the look-up table to find the family of trajectories τ zTarget associated with the pair (Ci, Cf ).
4: for j = 1 to M do
5: check the collision between τ zTarget(j) and τ qz by running the Algorithm 1.
6: if collision flag = False then
7: return τ zTarget(j)
8: end if
9: end for

10: return infeasible flag

is designed using model predictive control (MPC) as follows

min
u(·|t)

( t+N∑
k=t

||Qpf
z (z(k|t)− zTarget(k|t))||22

+
t+N−1∑
k=t

(
||Qpf

u2(u(k|t))||22

+ ||Qpf
∆u(∆u(k|t))||22

))
subject to z(k + 1|t) = f(z(k|t),u(k|t)), (4.14a)

z(0|t) = z(t), (4.14b)

zmin ≤ z(k|t) ≤ zmax, (4.14c)

umin ≤ u(k|t) ≤ umax, (4.14d)

∆umin ≤ u(k|t)− u(k − 1|t) ≤ ∆umax, (4.14e)

where the notations are similar to the notations in problem (4.10). The superscript i is
removed, because each car independently runs the path-following controller. The first term
of the objective penalizes the state deviation from the target state trajectory τ zTarget

, the
second and third terms penalize control input effort and input rate, respectively. The weight
factors, Qpf

z , Qpf
u1, Qpf

u2 and Qpf
∆u are super-scripted by pf to be distinguished from the weight

factors in problem (4.10). These weight factors should be tuned to achieve high tracking
performance. The constraints (4.14a)-(4.14e) are the same as the constraints (4.10b)-(4.10f)
in problem (4.10).

Configuration Design Heuristics

The two main factors that should be considered in configuration design are 1) inter-vehicle
longitudinal spacing in one lane d and 2) the shifting distance in two adjacent lanes dshift.
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Figure 4.9: (a) The configuration without shifting distance in adjacent lanes. (b) The
configuration with shifting distance.

The small inter-vehicle longitudinal gap reduces air drag, contributes to energy saving and
improves traffic throughput, as discussed earlier. In addition, the small gap prevents the
surrounding traffic (outside platoon vehicles) to cut-in between the platoon vehicles. On the
other hand the longitudinal spacing should be large enough to ensure safety and robustness
to uncertainties. Furthermore, a shifting distance between two adjacent lane facilitates lane-
change maneuvers. Fig. 4.9(a) shows a platoon configuration with no shifting distance in
adjacent lanes. Fig. 4.9(b) shows a configuration with shifting distance in adjacent lanes.
The platoon configuration (b) is more flexible for reconfiguration compared to the platoon
configuration (a). Choosing the optimal values of d and dshift should be done using experi-
mental data and is another extension of this work.

4.6 Formation as Sequence of Motion Primitives

An alternative approach for the proposed optimization-based motion planning is behavior-
based planning. In this section, a behavior-based planning using sequence of motion prim-
itives [6] is reviewed. This behavior-based approach is used to benchmark the proposed
optimization-based planning against. As described in Section 4.3, among all the existing
methods, the behavior-based approach which uses a sequence of motion primitives is more
suitable for formation of multi-lane platoons. In robotics applications, a complex dynamical
task is achieved by synthesizing a sequence of motion primitives. In a similar way, achieving
the desired platoon formation requires that a sequence of motion primitives to be performed
by each single vehicle in the platoon. This method is considered as a baseline and the pro-
posed optimization-based motion planning approach is compared with this behavior-based
method using a simple example scenario in Section 4.7 and the advantages of the proposed
approach are discussed.

For each motion primitive a number of parameters have to chosen. The examples of
parameterized motion primitives for a single car in multi-lane formation are

• slow down: parameterized by desired speed and desired deceleration),

• cruise control (CC): parameterized by desired speed

• lane change: parameterized by lane index, desired acceleration or deceleration),
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• adaptive cruise control (ACC): parameterized by the front’s car velocity and the desired
inter-vehicle distance.

Planning sequence of motion primitives for each vehicle in the platoon to achieve a cer-
tain formation is hard to formulate and analyze mathematically. In this method, the system
of vehicles is modeled as a hybrid system with various motion primitives as discrete modes
and the transition maneuvers between them as continuous dynamics. To plan a sequence of
motion primitives a mixed-integer program (MIP) has to be solved, where different types of
motion primitives are integer decision variables and the vehicles’ states are the continuous
decision variables. However, MIPs are in general difficult to solve. An alternative common
approach is to obtain the sequence of motion primitives according to a rule-based approach
and then execute each motion primitives using the individual controllers for each primitives.
Since the study of behavior-based approach is not the focus of this paper, the problem is
simplified and the sequence of motion primitives for each vehicle are assumed to be already
determined based on some rules. Given the sequence of primitives, the controllers are de-
signed to execute them. All the controllers are designed, using MPC scheme such that the
reference tracking cost is minimized while respecting vehicle dynamics and input and state
limits. To keep the brevity of the paper, the controllers’ mathematical formulations are not
discussed here, but detailed description can be found in the authors’ previous works. For
example, an MPC cruise controller (CC) discussed in [26] is designed to execute following
a desired velocity. Also, an adaptive cruise control (ACC) is designed to maintain a proper
distance from the front car and follow the front car’s velocity, using the MPC formulation
described in [25]. ”Lane change” is achieved by changing the center of lanes as reference. In
Section 4.7, these controllers are used to execute the given motion primitives for a simple
example scenario for multi-vehicle formation.

4.7 Numerical Results

Three simulation scenarios are conducted to verify the effectiveness of the proposed motion
planning algorithm. The simulations are conducted in MATLAB, the optimization problem
is modeled using YALMIP and the nonlinear optimization is solved using IPOPT. The
results are reported for three cases: a) platoon formation and re-configuration, b) obstacle
avoidance, and c) comparison with behavior-based approach. The vehicle dimensions are
chosen as 4.5m length and 1.8m width. The road width is chosen as 3.7m, which is the
highway lane width standard at the United States. The control input limits are chosen as
realistic physical limits of actual passenger vehicle. The acceleration input lower and upper
bounds are chosen as −4m/s2 and 4m/s2, respectively and its change is limited to −1m/s2

and 1m/s2. The steering input lower and upper bounds are chosen as −0.3rad and 0.3rad
and its change is limited to 0.2rad/s. At each iteration the optimization problem (4.13) is
solved and the first control input is applied to the vehicle kinematic model (4.1) for all the
vehicles. Then the horizon is shifted and same procedure is repeated for the next step. For
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all the three scenarios the simulation results are presented as top view snapshots, as well as
a series of state and action plots. The vehicles colors of the snapshots and plots are matched.
The video for formation reconfiguration and obstacle avoidance scenarios is available online
at this link https://github.com/RoyaFiroozi/Centralized-Planning.

Platoon Re-Configuration

In this scenario the platoon formation is alternating between two different configurations,
as seen in Fig. 4.10. The platoon of four vehicles is moving in a two-dimensional configu-
ration. The vehicles are moving in three different lanes and the platoon reshape into one-
dimensional configuration and all the vehicles merge into one lane. The initial configuration
is Ci(2, [1, 1, 1], pi), with

Pi =

 0 5.5
6 0
−4.5 0

 .
The final configuration is Cf (4, [0, 1, 0], pf ), with

pf =

 0 0 0 0
0 0.3 0.3 0.3
0 0 0 0

 .
The initial longitudinal coordinates for all the four vehicles are[

x1(0) x2(0) x3(0) x4(0)
]

=
[

10.5 4.5 0.5 15
]
,

and the initial lateral coordinates are[
y1(0) y2(0) y3(0) y4(0)

]
=
[

1.85 5.55 1.85 9.25
]
.

dmin is chosen as 0.3 m, the horizon N is 5, sampling time ∆t is 0.2s, simulation time T is
120, ρ is 0.25 and vmax is 20m/s. Fig. 4.10 represents the vehicles’ states and actions. The
plots show the transient behavior between the two modes or configurations. The longitudinal
and lateral coordinates x and y, as well as heading angle ψ and velocity v for all the vehicles
are shown in different colors which are matched with the colors in Fig. 4.10. The control
actions a and δ are also illustrated for all the vehicles. As seen the platoon reaches its steady
state at final configuration after about 25 seconds.

Obstacle Avoidance

In obstacle avoidance scenario multiple vehicles are traveling together in a multi-lane platoon
formation and once an obstacle is detected in the left Lane, the TOS selects reconfigura-
tion to a single-lane configuration in the right lane. The vehicles in the other lane make
enough gap to facilitate safe and smooth lane changing and merging for the vehicles in

https://github.com/RoyaFiroozi/Centralized-Planning
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Figure 4.10: Top: Platoon reshapes from multi-lane configuration into single-lane configu-
ration. Four vehicles moving in three different lanes merge in one lane. Step (1) shows four
vehicles moving to the right in three different lanes at steady state. Steps (2) to (5) show
the merging maneuver and finally step (6) demonstrates single-lane platoon configuration as
another steady state of the platoon. Bottom: The vehicles’ states and actions in a merging
maneuver are presented. The colors of all the plots are matched with the color of the vehicles
in top view snapshots.
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(a)

(b)

Figure 4.11: (a) A static obstacle (black object) is detected in the red vehicle lane, the yellow
and blue vehicles make gap for the red to merge into their lane. Vehicles are travelling in 2D
configuration are flexible and are able to reshape in case of presence of obstacle in one lane.
(b) The plots correspond to the snapshots and represents the vehicles’ states and actions
during the simulation. As seen, the steady state is achieved and 1D configuration is formed.

the lane with obstacle. Fig. 4.11a shows the top view snapshots for obstacle avoidance
simulation. The red vehicle has to change lane because a static obstacle (black object)
has been detected on its lane. The yellow and blue vehicles make gap for the red vehi-
cle to merge into their lane. The obstacle is modeled as a polytopic set and the obsta-
cle avoidance constraints are introduced. The initial longitudinal coordinates for all the
three vehicles are [x1(0), x2(0), x3(0)] = [10.5, 4.5, 0.5] and the initial lateral coordinates are
[y1(0), y2(0), y3(0)] = [1.85, 5.55, 1.85]. dmin is chosen as 0.2m, the horizon N is 8, sampling
time ∆t is 0.1s, simulation time T is 100, ρ is 0.25 and vmax is 10m/s. The vehicles’ states
and actions are shown for in Fig. 4.11b. As seen, the steady state is achieved and 1D platoon
is formed after about 10 seconds.
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Comparison with Behavior-Based Approach

To compare the proposed approach with the behavior-based approach discussed in Sec-
tion 4.6, a simple example scenario is considered. Two vehicles, which are moving together
in the same lane, make enough gap for the third vehicle to allow it to merge into their lane.
This simple scenario is chosen to be able to determine the sequence of motion primitives for
each vehicle intuitively without any mathematical analysis. However, sequence of motion
primitives should be obtained using mathematical analysis such as MIP for more complicated
scenarios. The simulation results for behavior-based approach is shown in Fig. 4.12a. The
sequence of motion primitives for this simulation are:

1. Red car follows a constant desired velocity (CC).

2. Yellow car slows down.

3. Blue car performs lane-change.

4. Blue car follows the red car (ACC).

5. Yellow car follows the blue car (ACC).

As seen in Fig. 4.12a, at step (1), the cars are moving to the right in two-dimensional
platoon and the yellow car slows down to make a proper gap to allow the blue car to merge
into the lane, while the red car is moving with constant speed. Step (2) shows the lane
change of the blue car. Step (3) illustrates the reconfiguration of one-dimensional platoon.
In this simulation, the collision avoidance constraints among the cars are not imposed, so
the blue car changes its lane only after a large enough gap is created between the red
and yellow cars. Even for this simple scenario obtaining maneuvers with larger velocity
and closer inter-vehicle distance was impossible after running extensive simulations. The
same scenario is replicated with optimization-based planning. The same initial conditions
and parameters are used for both methods. The initial longitudinal coordinates for the
three vehicles are [x1(0), x2(0), x3(0)] = [6, 12, 0.5] and the initial lateral coordinates are
[y1(0), y2(0), y3(0)] = [1.85, 5.55, 5.55]. dmin is chosen as 0.2m, the horizon N is 8, the
simulation sampling time ∆t is 0.1s, simulation time T is 150, ρ is 0.25 and vmax is 10.5m/s.
The resulting maneuvers obtained by motion primitive and optimization-based approaches
are presented in Fig. 4.12b and Fig. 4.12c, respectively. As seen in Fig. 4.12b, the x plot, the
yellow car longitudinal position is far behind the other two. Also in v plot, the yellow car
reduces its speed dramatically and the blue car is changing its speed. However in Fig. 4.12c,
that shows the obtained trajectories using optimization-based approach the cars maintain
a tight inter vehicle distance as seen in the x plot and the velocities and accelerations are
changing smoothly.

In addition, for this example, despite extensive tuning efforts, it was not possible to
obtain trajectories at highway speed and tight inter-vehicle distance, using motion primitive
approach. The reason is that this approach requires proper tuning of many parameters and
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(a)

(b)

(c)

Figure 4.12: (a) Formation using sequence of motion primitives is demonstrated. At step
(1), the cars are moving to the right in two-dimensional formation and the yellow car starts
slowing down to make enough gap for the blue car to merge, while the red car doesn’t change
its speed. At step (2), the blue car changes lane to merge the platoon. At step (3) blue
follows the red car and yellow follows the blue car and 1D platoon is formed. (b) Planning
using sequence of motion primitives (c) Optimization-based planning.
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Figure 4.13: The trajectories obtained by optimization-based approach with highway speed
and tight inter-vehicle distance are shown.

Table 4.4: Computation time in seconds for various sampling rates

Sampling Rate (Hz) Average (s) Max. (s)
50 0.30 0.9
100 0.42 1.91
200 1.04 5.24

switches as discussed earlier. However, the optimization-based approach yields trajectories
with highway speed 30m/s and tight inter-vehicle distance 0.2m. The results are shown in
Fig. 4.13. In summary, the motion primitive approach does not provably enforce the collision
avoidance constraints. Furthermore, to design tight mini platoons at highway speed, the
proposed optimization-based approach is simplified compared to motion primitives approach
in which extensive tuning is required for all the switches and all the possible parameters.

Path Following

In this section, the MPC path-follower controller (4.14) is simulated in closed loop with
dynamic model (4.1). The results are shown for a lane-change maneuver selected from the
look-up table. The lane-change maneuver is planned by the motion-planner and path-follower
follows the pre-computed motion. The results are reported in Fig. 4.14 for various sampling
rates including 50Hz, 100Hz and 200Hz. The top plot shows the path in xy plane. The
target trajectory (obtained by motion-planner) is shown with red dashed line. The gray, blue
and pink plots are the results of path-follower controller with different sampling rates. The
second plot shows the velocity tracking, in which the red dashed line is the target trajectory
obtained by motion planner. The third and forth plots are acceleration and steering angle,
respectively, which are obtained by the MPC path-follower. The results show that path
tracking and velocity tracking performance are not affected by changing the sampling rate.
However, 4.4 compares the average and maximum of the computation time for different
sampling rates. As seen, the average of computation time is reduced for lower sampling rate.

In addition, six different simulations have been run (with sampling rate of 50 Hz) and
the average and maximum of computation time of the controller is reported (in seconds) at
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Figure 4.14: The closed-loop simulation of MPC path-following controller is shown for various
sampling times.

Table 4.5. These results are reported by running the simulation on a Surface Book laptop
with Intel(R) Core(TM) i7-6600U CPU @2.81 GHz and 16.0GB RAM in MATLAB. The
total average of the computation time of the MPC controller is 0.32(s) and the maximum
is 0.61(s). Note that these values can be reduced dramatically (an order of magnitude) if
the controller’s dynamic model (4.14a) is linearized around the given target trajectory. The
linearized version of (4.14) can be solved in real-time.

4.8 Conclusion

An architecture for autonomous navigation of multi-lane platoons on public roads is pre-
sented. The architecture is composed of an offline motion-planning system and an online
hierarchical control system, which consists of TOS, decision-maker and path-follower. The
motion-planner avoids collisions among the vehicles within the platoon, but does not con-
sider the collisions with surrounding vehicles outside the platoon. However, decision-maker
checks the possible collisions between the planned reconfiguration maneuver and the future
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Table 4.5: Computation time in seconds for sampling rate of 50Hz

Run # Average (s) Max. (s)
1 0.31 0.71
2 0.21 0.55
3 0.45 0.68
4 0.28 0.52
5 0.33 0.61
6 0.35 0.59

Total Avg. 0.32 0.61

planned trajectories of the surrounding vehicles shared via V2V communication. Once a fea-
sible reconfiguration maneuver is selected by the decision-maker, it will be executed by the
path-follower controller in real time. The simulation results demonstrate that a platoon of
vehicles can form geometrically flexible and reconfigurable shapes in tight environment while
moving at highway speed. It is shown that in the case of sudden change in the environment,
like appearing an obstacle or slow traffic in one lane, the multi-lane platoon of vehicles can
perform collaborative maneuvers and change their configuration to merge into faster lanes.
The presented approach is compared with behavior-based planning, in which the formation
and reconfiguration is achieved by a sequence of motion primitives. The results show that to
design tight maneuvers for mini-platoons at highway speed the presented optimization-based
method is simplified compared to the motion primitive approach, which requires extensive
tuning for the switches and parameters. The future work will be robustification of the plan-
ning scheme by handling the uncertainty caused by model mismatch, sensor measurements
and communication delays and using closed-loop policies instead of open-loop ones.
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Chapter 5

Distributed Coordination

5.1 INTRODUCTION

This chapter focuses on distributed coordination between multiple robots, especially in tight
environments (e.g., highway lanes, parking lots, warehouses, canals, etc.), where the robots
have reduced maneuver space. The centralized coordination scheme introduced in the pre-
vious chapter solves a large optimization to simultaneously optimize the actions for all the
robots. However, the centralized coordination is computationally intensive and not suitable
for real-time implementations. In this chapter, starting from the centralized coordination
problem, it is shown how to exploit the dual structure of the problem to split the optimization
into smaller sub-problems well-suited for online applications.

To ensure safe navigation of connected and autonomous robots, robots have to closely
interact with their neighbors to avoid collisions and reach their goal. They have to efficiently
generate a safe coordination strategy. In particular, this chapter is focused on efficient, safe
and coordinated multi-robot trajectory planning (the interested reader can refer to [78] for
an overview of the state of the art)

Contributions

A nonlinear model predictive control (NMPC) to plan collision-free trajectories to coordi-
nate the robots. A polytopic representation of the individual robot is used and the collision
avoidance problem as the problem of finding the minimum distance between two polytopes is
formulated. To incorporate this collision avoidance strategy in the NMPC formulation, the
proposed method relies on duality theory [80]. The minimum distance collision-avoidance
constraints between each pair of robots is reformulated as a feasibility test (with associ-
ated collision-avoidance variables) that can be included within the constraints of the NMPC
problem. Solving the NMPC problem in a centralized way (Fig. 5.1.a) is computationally in-
tensive, so a distributed algorithm is introduced to solve the NMPC problem in a distributed
way (Fig. 5.1.b), which is computationally efficient compared to centralized formulation and
is suitable for real time applications.



CHAPTER 5. DISTRIBUTED COORDINATION 71

Coordinator Robot i

Robot j

Robot k

Robot i Robot j

Robot k

Centralized Coordination Local NMPC Local Collision-Avoidance

(a) (b)

Figure 5.1: Centralized design (a) vs. the proposed distributed design (b) for multi-robot
coordination.

In order to split the centralized problem into distributed sub-problems, the centralized
formulation must be separable. Although the dynamic models of the robots are decoupled,
but the collision avoidance constraints are coupled among them. To break the coupling,
an alternating optimization approach is used to decompose the centralized problem as lo-
cal minimization problems performed by alternating between two different optimizations
(Fig. 5.1.b): (i) a collision avoidance optimization (red boxes in Fig. 5.1.b) that computes
the predicted collision-avoidance variables, given the latest predicted intention of each pair
of robots, and (ii) local NMPC optimizations (grey boxes in Fig. 5.1.b) that update the
robot states, given the latest predicted collision-avoidance variables. The advantage of this
decomposition is that each collision avoidance optimization solves efficiently (in millisec-
onds) convex problems of fixed dimension and the local NMPC problems have always a fixed
number of decision variables (the local robot states), compared to the centralized problem.
Also the error caused by relying on open-loop predicted trajectories of neighbor robots is
quantified in distributed approach. It is shown that this error is bounded (and small) and
a strategy is proposed to account for this error in the local NMPC problem formulation.
Finally, the proposed method is validated for the autonomous navigation of a platoon of
connected vehicles on a highway setting comparing its performance with a centralized im-
plementation. In platooning both road geometry and platoon geometry restrict the motion
of the vehicles within the platoon. Hence, the vehicles must coordinate in a tight environ-
ment. To allow navigation at tight spaces, the proposed approach models the road structure
and the vehicles dimensions, as exact sizes with no approximation or enlargement. Also the
results are demonstrated for a coordination scenario of a heterogeneous team of robots with
different polytopic shapes.
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Related Work

Classical methods for multi-robot coordination either use reactive strategies (such as poten-
tial fields [61, 68, 30], dynamic window [29], and velocity obstacles [24, 71]), assume a priority
order [13], or rely on a scheduling [10] for the robots. These methods, however, do not explic-
itly consider the interaction among the robots. Learning-based methods [5, 12, 33, 41, 17]
and constrained-optimization approaches can be used to take these interactions into account.
This work fits in this last category and relies on tools from control and optimization to model
the interactions among the robots to avoid collisions. Distributed constrained-optimization
designs have been proposed for example in [39, 72, 4, 16, 55, 23]. The authors in [39] present
a decentralized model predictive control (MPC) formulation for multi-robot coordination
that relies on invariant-set theory and mix-integer linear programming (MILP). The authors
in [72] propose a distributed MPC design for formation control using the alternating di-
rection method of multipliers (ADMM) and separating hyperplanes for collision avoidance.
The authors in [4] use a potential cost function and collision-avoidance constraints to formu-
late a distributed MPC problem, in which the collision avoidance constraints can be either
linearized or formulated using integer variables. In addition, the authors rely on motion
primitives to account for robot kinematic and dynamic constraints. The authors in [16, 55]
present distributed MPC approaches that rely on ADMM to decompose the (linearized) co-
ordination problem. The authors in [23] propose a distributed nonlinear MPC formulation
with non-convex collision avoidance constraints.

Compared to [39], the proposed approach does not require the solution of a MILP
problem that can be computationally expensive to solve. In addition, compared to [4, 16,
55] the proposed method does not require any linearization (which could reduce the solution
space of the problem) of the collision-avoidance constraints. Also compared to [4], the
proposed approach does not require the use of motion primitives (the robot dynamics are
directly included in the NMPC formulation). Compared to [72], the proposed strategy allows
to specify a desired distance between the robots, instead of using separating hyperplanes.
Inspired by [80, 79], the proposed method uses dual optimization to formulate the collision
avoidance constraints. Compared to [80, 79], however, the proposed method exploits the
structure of the coordination problem to solve it in a distributed fashion.

5.2 PRELIMINARIES

The needed definitions and notations are provided below.
Robots and Neighbor Robots: The set of M cooperative robots is defined as V := {1, 2, ...,M}.
Each robot is identified through its index i ∈ V . Throughout this paper, the superscript i
denotes the ith robot. The neighbor set of robot i is denoted as Ni and represents all the
robots that are in the communication range of Robot i.
Polytopic Description of Robot Pose: Robot pose or the region occupied by the robot can be
described as a convex set defined by a polytope P . Polytopes are described as the intersection
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Figure 5.2: Each robot is represented as a polytopic set.

Figure 5.3: The polytopic set that represents the robot undergoes rotation and translation.

of a set of half-spaces and are defined as a set of linear inequalities. The initial pose of the
robot is represented as Po, depicted in Fig. 5.2. As the robot travels, Po undergoes affine
transformations including rotation and translation shown in Fig. 5.3. Hence P = RPo + tr,
where R : Rnz → Rn×n is an orthogonal rotation matrix, tr : Rnz → Rn is the translation
vector, nz is the dimension of the robot state z, and n is dimension of the space which is 2
for 2D- and 3 for 3D planning.

Static and Dynamic Obstacles: S = {1, ..., nS} is the set of nS static obstacles. Or is the
r-th static obstacle, r ∈ S. Each static obstacle is modeled as a polytopic set. The collision
avoidance between robot i and static obstacle r is defined as P i ∩ Or = ∅. Ni is the set of
dynamic obstacles for robot i. To avoid collision between Robots i and j, the intersection of
their polytopic sets must be empty, P i ∩ Pj = ∅.
MPC Scheme: MPC is useful for online local motion planing in uncertain and dynamic
environment because it is able to re-plan according to the new available information. MPC
relies on the receding-horizon principle. At each time step it solves a constrained optimization
problem and obtains a sequence of optimal control inputs that minimize a desired cost
function J , while considering dynamic, state, and input constraints, over a fixed time horizon.
Then, the controller applies, in closed-loop, the first control-input solution. At the next time
step, the procedure is repeated. Throughout this work, (·|t) indicates the values along the
entire planning horizon N , predicted based on the measurements at time t. For example
z(·|t) represents the entire state trajectory along the horizon [z(1), z(2), ..., z(N)] predicted
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at time t. The bar notation (̄·) represents constant known values.
MPC Cost Function J : The MPC cost is J :=

∑
i∈V J

i, where J i is the local objectives
of each robot. Each J i can be designed according to the local-robot planning and control
objectives. For example, the local costs can be specified to reach a goal set or to reduce the
deviation from a global reference path (which is not collision-free) computed using high-level
planning methods (e.g., A* or RRT*) as proposed in [58, 62, 9, 27] for single-robot local
motion planning.

5.3 CENTRALIZED COORDINATION

The multi-robot coordination can be considered as a motion-planning problem and formu-
lated as a centralized MPC optimization problem that computes collision-free trajectories
for all the robots, simultaneously. The optimization problem is formulated in the NMPC
framework as follows

min
ui(·|t)

M∑
i=1

J i(zi,ui) (5.1a)

subject to zi(k + 1|t) = f(zi(k|t),ui(k|t)), (5.1b)

zi(0|t) = zi(t), (5.1c)

zi(k|t) ∈ Z, ui(k|t) ∈ U , (5.1d)

P(zi(k|t)) ∩ Or = ∅, r ∈ S, (5.1e)

P(zi(k|t)) ∩ P(zj(k|t)) = ∅, i 6= j (5.1f)

∀i ∈ V , j ∈ Ni, and k ∈ {1, 2, .., N}.

In the formulation above, ui(·|t) = [ui(k|t), ..., ui(k+N−1|t)] denotes the sequence of control
inputs over the MPC planning horizon N for ith robot. zi(k|t) and ui(k|t) variables of ith
robot at step k are predicted at time t. The function f(·) in (5.1b) represents the nonlinear
(dynamic or kinematic) model of the robot, which is discretized using Euler discretization. Z,
U are the state and input feasible sets, respectively. These sets represent state and actuator
limitations. Constraints (5.1f) represent the collision-avoidance constraints between the ith
robot and all the neighboring robots within the communication radius. This representation
is time-varying and is a function of the robot state at each time step. The remainder of
this section details the derivation of constraints (5.1e) and (5.1f). Note that the centralized
NMPC problem (5.1), might get infeasible. However, persistent feasibility of (5.1) can be
guaranteed by computing the reachable set. The focus of this chapter is to reformulate the
centralized problem (5.1) into a distributed one, but the techniques to guarantee persistent
feasibility can be incorporated into the proposed approach.
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Collision Avoidance Reformulation

Consider two polytopic sets P1 and P2. The distance between these sets is given by the
following primal problem

dist(P1,P2) = min
x,y
{‖x− y‖2|A1x ≤ b1,A2y ≤ b2}, (5.2)

where P1 = {x ∈ Rn|A1x ≤ b1} and P2 = {y ∈ Rn|A2y ≤ b2}. The two sets do not
intersect if dist(P1,P2) > 0. For motion-planning applications, however, the robots must
keep a minimum safe distance dmin from each other and from the obstacles. Hence, the
distance between their polytopic sets should be larger than a predefined minimum distance,
dist(P1,P2) ≥ dmin.

Problem (5.2) is itself an optimization problem that cannot directly be used in Problem
(5.1), because that would an optimization problem as the constraint of another optimization
problem. To deal with this issue, one can rely on strong-duality theory. Building on [80],
the dual problem can be solved instead of the primal problem (5.2). The dual problem is
expressed as follows:

dist(P1,P2) := max
λ12,λ21, s

− b>1 λ12 − b>2 λ21

s.t. A>1 λ12 + s = 0, A>2 λ21 − s = 0,

||s||2 ≤ 1,−λ12 ≤ 0, −λ21 ≤ 0,

(5.3)

where λ12, λ21 and s are dual variables (the derivation of (5.3) from (5.2) is provided in
the Appendix). The optimal value of the dual problem is the distance between P1 and
P2 and is constrained to be larger than a desired minimum distance. Consequently, based
on this insight the dual problem can be reformulated as the following feasibility problem:
{∃λ12 � 0,λ21 � 0, s : −b>1 λ12 − b>2 λ21 ≥ dmin,A

>
1 λ12 + s = 0,A>2 λ21 − s = 0, ‖s‖2 ≤ 1}.

This reformulation can be substituted to the collision-avoidance constraint (5.1f) in Problem
(5.1). A similar reformulation can be derived for static obstacles (5.1e). Therefore, problem
(5.1) can be rewritten as

min
ui(·|t), λij(·|t),
λji(·|t), sij(·|t)

M∑
i=1

J i(zi,ui)

subject to (5.1b), (5.1c),(5.1d),(
− bi(zi(k|t))>λij(k|t)
− bj(zj(k|t))>λji(k|t)

)
≥ dmin, (5.4a)

Ai(zi(k|t))>λij(k|t)+sij(k|t)=0, (5.4b)

Aj(zj(k|t))>λji(k|t)−sij(k|t)=0, (5.4c)

λij(k|t),λji(k|t) ≥ 0, ‖sij(k|t)‖2 ≤ 1,

∀i∈ V , j ∈ Ni, and k ∈ {1, 2, .., N},
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where Ai and bi are functions of zi(k|t) and represent the polytopic set of ith vehicle at
step k predicted at time t. Similarly Aj and bj denote the polytopic set of jth robot
which belongs to neighbor set Ni. The dual variables λij, λji and sij are coupled through
the collision avoidance constraint between robot i and robot j. For space limitation the
static obstacle avoidance constraint (5.1e) is removed in the above formulation and only
the collision avoidance among robots are formulated. However, it can be added using dual
reformulation. Note that the dual variable sij is equivalent to the variable s in (5.3). The
new variable sij is introduced in (5.4) to distinguish for example, s12 from s13, but s12 is
identical to s21 according to (5.3). Therefore, the variables sij, sji and s are all identical
vectors (sij = sji = s ∈ Rn) with dimension of n that is the dimension of the space which is
2 for 2D- and 3 for 3D planning. The geometric interpretation of the vector s is discussed
in the next section.

Remark 2 The required minimum distance between the robots dmin, which can be chosen as
a design parameter. In practice, dmin should be determined based on the quantification of
uncertainty of physical models and stochastic measurement errors.

5.4 DISTRIBUTED COORDINATION

Problem (5.4) simultaneously optimizes over all the robots’ states zi and the collision avoid-
ance variables λij,λji, sij (for all i = 1, ...,M , j 6= i), that is, the number of variables to
optimize is proportional to the number of robots. This is computationally expensive when
M is large, making the centralized formulation not scalable with the number of robots. The
goal is to remove the need of a central coordinator and make the problem scalable with the
number of robots (allowing the robots to coordinate and locally solve smaller sub-problems
in parallel).

By looking at the structure of Problem (5.4), one can notice that the collision avoidance
constraints (5.4a)-(5.4c) create a coupling among the robots. In addition, Constraint (5.4a)
creates a nonlinear coupling between the state variables zi,zj and the collision avoidance
variables λij,λji. To break-up these couplings and devise the proposed distributed algo-
rithm, one can rely on the dual structure originally used to formulate Problem 5.4 and on
the ability of MPC to generate predictions. In particular, the key idea is to solve Prob-
lem (5.4) by using an alternating optimization scheme, in which the central coordinator is
replaced by two independent optimizations that perform alternating optimization of the dual
variables (associated with the collision avoidance constraints) and of primal state variables,
respectively, as Algorithm 3 details.

In Algorithm 3, first the dual variables over the NMPC horizon are initialized, then the
first optimization step (NMPC optimization) optimizes the state variables zi,zj over the
horizon, while keeping the dual variables λij,λji, sij fixed. The second optimization step
(CA optimization) optimizes the dual variable while keeping the state variables fixed. These
two optimizations are detailed below.
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NMPC optimization

At time t, each robot i independently computes its own state zi trajectory, given the dual
variables over the horizon [λij(1), . . . , [λij(N)], [λji(1), . . . , λji(N)] and [sij(1), . . . , sij(N)].
For each robot i ∈ V , j ∈ Ni, the NMPC optimization is given by:

min
ui(·|t)

J i(zi,ui)

subject to (5.1b), (5.1c), (5.1d),(
− bi(zi(k|t))>λ̄ij(k|t)
− b̄j(z̄j(k|t))>λ̄ji(k|t)

)
≥ dmin, (5.5a)

Ai(zi(k|t))>λ̄ij(k|t) + s̄ij(k|t) = 0, (5.5b)

for all k ∈ {1, 2, .., N},

where the bar notation (̄·) represents constant known values and Ai, bi are the polytopic
representation of the ith robot and are functions of zi. The optimized trajectory is then
shared with the collision avoidance optimization (shifted in time according to step 5○ of
Algorithm 3 to account for the 1-step delay in the calculation of the collision-avoidance
strategies). Problem (5.5) can be solved in parallel by each robot. In this optimization, the
collision-avoidance variables λij,λji, sij are considered as known values along the planning
horizon. Note that compared to the centralized formulation, the only decision variable to
optimize in the NMPC optimization is the ith robot state zi (i.e., the number of decision
variables in the local problem formulations is constant).

Collision Avoidance (CA) optimization

Each robot pair of i, j ∈ N , i 6= j, computes the collision avoidance variables λij,λji, sij.
The CA optimization is given by

max
λij(·|t),
λji(·|t),
sij(·|t)

−b̄i(z̄i(k|t))>λij(k|t)−b̄j(z̄j(k|t))>λji(k|t)

subject to Āi(z̄i(k|t))>λij(k|t) + sij(k|t) = 0, (5.6a)

Āj(z̄j(k|t))>λji(k|t)− sij(k|t) = 0, (5.6b)(
− b̄i(z̄i(k|t))>λij(k|t)
−b̄j(z̄j(k|t))>λji(k|t)

)
≥ dmin,

‖sij(k|t)‖2 ≤ 1,−λij(k|t) ≤ 0, (5.6c)

−λji(k|t)≤0, for all i∈V , j∈Ni,
for all k ∈ {1, 2, .., N}.

Each robot solves Problem (5.6) in parallel. This optimization assumes the state trajectories
of the robots zi to be fixed (obtained by the NMPC optimization and from the neighboring
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Figure 5.4: In NMPC optimization, the dual variables are kept fixed and in CA optimization,
the primal variables are kept fixed.

Figure 5.5: The robots independently solves their own NMPC optimization in parallel. The
CA optimization is solved in parallel for each pair of robots.

robots according to step 7○ of Algorithm 3). This problem can be solved efficiently (in the
order of milliseconds). The proposed scheme is shown in Fig. 5.4 and Fig. 5.5.

Algorithm 3 is an alternating optimization scheme with the NMPC optimization (5.5)
and the CA optimization (5.6). On one hand this alternating optimization scheme allows us
to improve computation time of coordination strategy. On the other hand, due to this opti-
mization scheme, the distributed NMPC (5.5) returns less tight trajectories (larger margins
in the coordination) compared to the centralized NMPC (5.4). Solving CA optimization and
substituting its solution in the NMPC optimization further restricts the constraints (5.5a)-
(5.5b), since the dual variables are kept fixed (i.e., the NMPC optimizer has less degree of
freedom in the computation of the local trajectories). In contrast, in the centralized NMPC
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Algorithm 3 Distributed Coordination Algorithm

1: Initialize [sij(1), ...,sij(N)], [λij(1), ...,λij(N)], [λji(1), ...,λji(N)], ∀i, j ∈ N and i 6= j.
2: for t = 0, 1, ...,∞ do
3: for all Robot i, i ∈ V do in parallel
4: Solve Problem (5.5)
5: Compute the shifted state [zi(2), ..., zi(N), zi(N)].
6: Compute the associated polytopic sets: [Ai(2), ...,Ai(N), Ai(N)], [bi(2),..., bi(N),

bi(N)].
7: Communicate to Robot j (∀j ∈ Ni) the polytopic sets.
8: Solve Problem (5.6) for each j ∈ Ni
9: Apply uiMPC to move forward.

10: end for
11: end for

(5.4), the equivalent constraints (5.4a)-(5.4c) can be interpreted as the relaxed version of
the constraints (5.5a)-(5.5b), since the dual variables are decision variables of the centralized
problem.

Geometric Interpretation of Primal and Dual Variables

The dual variables have an interesting geometric interpretation. All these geometric mean-
ings are obtained from the Karush–Kuhn–Tucker (KKT) conditions for problem (5.2). As
the authors in [21] presented the following theorem can be proved from the KKT conditions.

Theorem 1 The dual problem (5.3) representing the distance between two convex polytopes
A1x � b1 and A2y � b2, can be interpreted geometrically as two parallel supporting hy-
perplanes with normal vector ‖s∗‖ = 1, and affine terms −b1λ

∗
12 > 0 and b2λ

∗
21 < 0. The

difference between affine terms as expressed in the dual objective represents the distance
between two polytopes.

As seen in Fig. 5.6, the top plots show the geometric representation of the primal formulation
(5.2) in which the optimal solutions are x∗ and y∗ and the distance is defined as the classical
Euclidean distance ‖x∗ − y∗‖2 between the two sets. The bottom plots show the equivalent
dual formulation (5.3) in which the optimal solutions are s∗, λ∗12 and λ∗21 and the same
distance between the two polytopic sets is defined as −b1

>λ∗12 − b2
>λ∗21. As Fig. 5.6(e)

depicts, the separating hyperplane between the two polytopic sets is always perpendicular to
the minimum distance. Therefore s∗, which is the normal vector of the separating hyperplane,
is always parallel to the minimum distance. The normal vector s∗ plays the role of the
consensus variable between the robots. As discussed earlier, the vector s∗ is shared between
each pair of robots according to (5.3), so sij = sji. Furthermore, in Fig. 5.6(f), the green
lines show the two supporting hyperplanes which are parallel to the separating hyperplane.
The hyperplane s∗>x = −b>1 λ

∗
12 supports the set x or (P1) at the point x∗. Similarly the
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Figure 5.6: Top: Primal (a) minimum distance (b) polytope representation (c) optimal
solutions. Bottom: Dual: (d) minimum distance (e) separating hyperplane (f) supporting
hyperplanes.

hyperplane s∗>y = b>2 λ
∗
21 supports the set y or (P2) at the point y∗. On the other hand,

the primal (5.2) and dual (5.3) problems are convex and the Slater’s condition is satisfied, so
the strong duality holds [8]. Therefore, finding the shortest distance between two polytopic
sets (primal problem (5.2)) is equivalent to finding the maximal separation, which is the
maximum distance between a pair of parallel hyperplanes that supports the two sets (dual
problem (5.3)) as shown in Fig. 5.6(f). The derivation of the KKT conditions upon which
the geometric interpretations are obtained are provided in the Appendix (C).

5.5 NUMERICAL RESULTS FOR AUTONOMOUS

DRIVING APPLICATION

In this section the centralized and distributed approaches are compared in terms of compu-
tation time (and cost) as the number of robots increase. It will be demonstrated that the
proposed approach scales well with the number of robots. Section 5.5 describes the simula-
tion setup. Sections 5.5 and 5.5 presents two different simulation scenarios, that are, a) a
platoon formation and re-configuration and b) a heterogeneous team of robots with different
polytopic shapes, respectively.
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Simulation Setup

The proposed design is tested on a quad-core CPU Intel Core i7-7700HQ @ 2.80 GHz in
MATLAB using the MATLAB Parallel Computing Toolbox to simulate the individual robots
and communication exchanges among the robots. The optimization problems are modeled
in YALMIP [46]. The Problems (5.4), (5.5) are solved using IPOPT [73], a state-of-the-
art interior-point solver for non-convex optimization, and the Problem (5.6) is solved using
Gurobi [34], an efficient quadratic programming solver. For all the scenarios the simulation
results are presented as top view snapshots, as well as a series of state and action plots. The
robots colors of the snapshots and plots are matched.

Platoon Formation

In this scenario, autonomous and connected vehicles merge into a platoon (train-like for-
mation) and maintain a close inter-vehicular distance within the group. In platooning on
public roads, both road geometry (lane width) and platoon geometry (longitudinal and lat-
eral inter-vehicle spacing) restrict the motion of the vehicles within the platoon. Hence, the
vehicles must coordinate in a tight environment. To allow navigation at tight spaces, it is
essential to model the road structure and the vehicles dimensions, including length h and
width w, as exact sizes with no approximation or enlargement.

Relevant NMPC Quantities

Each vehicle i is modeled within the platoon by using a nonlinear kinematic bicycle model
[40] (a common modeling approach in path planning) described by the following equations
(the superscript i is omitted when it is clear from the context):

ẋ = v cos(ψ + β), ẏ = v sin(ψ + β),

ψ̇ =
v cos β

lf + lr
(tan δ), v̇ = a,

(5.7)

where the ith vehicle state vector is z = [x, y, ψ, v]> (x, y, ψ, and v are the longitudinal
position, the lateral position, the heading angle, and the velocity, respectively), the control
input vector is u = [a, δ]> (a and δ are the acceleration and the steering angle, respectively),
β := arctan

(
tan δ( lr

lf+lr
)
)

is the side slip angle, and lf , lr are the distance from the center of

gravity to the front and rear axles, respectively. Using Euler discretization, the model (5.7)
is discretized with sampling time ∆t as

x(t+ 1) = x(t) + ∆t v(t) cos(ψ(t) + β(t)),

y(t+ 1) = y(t) + ∆t v(t) sin(ψ(t) + β(t)),

ψ(t+ 1) = ψ(t) + ∆t
v(t) cos β(t)

lf + lr
(tan δ(t)),

v(t+ 1) = v(t) + ∆t a(t).

(5.8)
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The local costs are defined as

J(z,u) =
t+N∑
k=t

‖(z(k|t)− zRef(k|t))‖2
Qz

+
t+N−1∑
k=t

(‖(u(k|t))||2Qu
+ ‖(∆u(k|t))‖2

Q∆u
), (5.9)

where ∆u penalizes changes in the input rate. Qz � 0, Qu, Q∆u � 0 are weighting matrices,
zRef is the reference trajectory generated by a high-level planner (and it is not obstacle-
free). The ith vehicle dimensions are chosen as length h = 4.5m and width w = 1.8m. The
road width is chosen as 3.7m (i.e., the standard highway-lane width in the United States).
The speed is lower bounded by zero. The acceleration of each vehicle is bounded within
± 4m/s2 and its rate change is bounded within ± 1m/s2. The steering input is bounded
within ± 0.3rad and its change within ±0.2rad/s. The corresponding road region occupied
by the ith vehicle is defined by a two-dimensional convex polytope P . For each vehicle, the
transformed polytope is defined as P(z(t)) = {p ∈ R2|A(z(t))p ≤ b(z(t))}, where A(z(t))
and b(z(t)) are defined as

A(z(t)) =

[
R(z(t))>

−R(z(t))>

]
, R(z(t)) =

[
cos(ψ(t)) − sin(ψ(t))
sin(ψ(t)) cos(ψ(t))

]
, (5.10)

b(z(t)) = [h/2, w/2, h/2, w/2]> + A(z(t))[x(t), y(t)]>, (5.11)

where [x(t), y(t)]> is the center of gravity of the vehicle.

Platoon Formation Results

In this scenario, as seen in Fig. 5.7a, the vehicles are initially traveling in three different lanes
and need to merge in one lane to form a train-like platoon, while maintaining the safe dis-
tance dmin = 0.5m from each other at all times (i.e., during the lane change maneuvers and
afterwards). The formation scenario is tested for different configurations and initial condi-
tions. Fig. 5.7b shows an example with four vehicles. The initial longitudinal coordinates for
all the four vehicles are [x1(0), x2(0), x3(0), x4(0)] = [11.5, 5.5, 0.5, 20] and the initial lateral
coordinates are [y1(0), y2(0), y3(0), y4(0)] = [1.85, 5.55, 1.85, 9.25]. The planning horizon N
is 0.75s, the sampling time ∆t is 0.05s, and vRef is 15m/s. Fig. 5.7b represents the vehicles’
states and actions. The longitudinal and lateral coordinates x and y, as well as heading
angle ψ and velocity v for all the vehicles are shown in different colors which are matched
with the colors in Fig. 5.7a.

The control actions a and δ are also illustrated for all the vehicles. The acceleration and
velocity plots highlights the collaborative behavior between the vehicles. In contrast to reac-
tive approaches, such as velocity obstacles, the speed of each vehicle is not assumed constant
and varies based on the interactions with the neighbors. For example, as seen in the acceler-
ation plot, the blue vehicle brakes and the magenta vehicle accelerates to make enough gap
for other vehicles to merge into the lane. This behavior is obtained by the solving the opti-
mization problem and is not enforced explicitly. This collaborative behavior is fundamental
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Centralized Distributed
NMPC CA

Num. of Vehicles Avg. Max. Avg. Max. Avg. Max.

2 1.3851 2.7482
0.1457 0.3621 0.0022 0.0024
0.1102 0.3313 0.0021 0.0022

Total Avg. = 0.1301

3 2.7680 4.6817

0.1848 0.3933 0.0025 0.0028
0.1206 0.3169 0.0024 0.0026
0.1416 0.3470 0.0022 0.0023

Total Avg. = 0.1514

4 12.8331 28.7763

0.1919 0.4211 0.0030 0.0024
0.1125 0.2602 0.0027 0.0029
0.1842 0.3497 0.0024 0.0025
0.2041 0.4195 0.0025 0.0023

Total Avg. = 0.1757

Table 5.1: Computation time (in second) for both centralized and distributed approaches
are reported for two, three and four numbers of coordinated vehicles.

to keep the desired minimum distance and form the platoon. Ellipsoidal representations of
the vehicles would have required a larger minimum distance (to fit each vehicle the axes of
each ellipses would have been 6.36m and 2.54m, respectively, leading to a minimum distance,
in the longitudinal direction for example, equal to (2(6.36 − 4.5)m> dmin) leading to more
conservative behaviors. Similar considerations hold for implementations based on potential
fields. A potential field can be always included in the NMPC problem formulation to enforce
clearance with respect to the other vehicles, but it would lead to more conservative behav-
iors (e.g., larger minimum distance between the vehicles) and additional tuning parameters.
In Fig. 5.7a(a), in addition to snapshots, the separating hyperplanes between pink/green,
green/red and red/blue pairs are shown and the normal of these separating hyperplanes are
denoted as spg, sgr and srb, respectively.

To evaluate the performance in terms of computation time of Algorithm 3, the formation
of two, three and four vehicles in highway are simulated (varying the initial configuration
of the vehicles to test the robustness of the tuning). The average and maximum compu-
tation time in second is compared for each step along the trajectory with the centralized
implementation. Table 5.1 shows the results. While both centralized and distributed ap-
proaches ensure safe robot coordination, the maximum and average of computation time for
centralized approach increases dramatically by adding a vehicle (>> N), compromising the
safety of the approach in real-time applications (i.e., delays in the calculation of the planning
strategy can lead to collisions). The distributed approach outperforms the centralized design
by more than 2 orders of magnitude (by looking at the worst case scenario with 4 vehicles)
and the computation time is reasonable for online implementation (<< N).
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(a) Simulation snapshots with the separating hyperplanes between the vehicles.

(b) The state and input vehicles trajectories.

Figure 5.7: Four vehicles merge into a platoon in the center lane.
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Centralized Distributed
Num. of Vehicles Sum of Costs Sum of Costs

2 0.0443
1.8957
1.6845

Total Avg. = 1.7901

3 0.0985

6.0267
0.0000
5.6856

Total Avg. = 3.9041

4 0.0321

6.8064
0.0000
12.1444
10.3252

Total Avg. = 7.3190

Table 5.2: The total cost (sum of the closed-loop costs for the entire maneuver) is reported
for centralized and distributed approaches for two, three and four numbers of coordinated
vehicles.

Figure 5.8: Polytopic Shapes

Heterogeneous Robots Reconfiguration and Tight Collision
Avoidance

A team of robots with different polytopic shapes is considered as seen in Fig. 5.8. The robots
are initially in a circular formation. A goal region is assigned to each robot. The robots
should plan their motion based on the shared information communicated from other robots
to reach their goals while avoiding collision with each other.
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Relevant Problem Parameters

Each robot i is modeled by a nonlinear kinematic unicycle model which is similar to the
previously described model (5.7)

ẋ = v cos(ψ),

ẏ = v sin(ψ),

ψ̇ = δ,

(5.12)

where the ith robot state vector is z = [x, y, ψ]> and the control input vector is u = [v, δ]>

(the notations are the same as model (5.7). Using Euler discretization, the model (5.12) is
discretized with sampling time ∆t as

x(t+ 1) = x(t) + ∆t v(t) cos(ψ(t)),

y(t+ 1) = y(t) + ∆t v(t) sin(ψ(t)),

ψ(t+ 1) = ψ(t) + ∆t δ(t),

(5.13)

The local costs are defined as

J(z,u) =
t+N∑
k=t

‖(z(k|t)− zGoal)‖2
Qz

+
t+N−1∑
k=t

(‖(u(k|t))||2Qu
+ ‖(∆u(k|t))‖2

Q∆u
), (5.14)

where ∆u penalizes changes in the input rate. Qz � 0, Qu, Q∆u � 0 are weighting matrices,
zGoal is the goal location that robot should reach.

The sampling time is 0.05s, minimum allowable distance dmin is 10cm, the velocity input
is bounded within ± 4m/s and its rate change is bounded within ± 0.5m/s. The rate change
of steering input is bounded within ± 0.5rad/s. The ith robot shape is defined by a two-
dimensional convex polytope centered at the origin PO = {p ∈ R2|AO p ≤ bO}. As the
robot moves, the polytopic shape undergoes rotation and translation. The transformed
polytope is defined as P(z(t)) = {p ∈ R2|A(z(t))p ≤ b(z(t))}, where A(z(t)) and b(z(t))

are defined as A(z(t)) = AOR(z(t))>, R(z(t)) =

[
cos(ψ(t)) − sin(ψ(t))
sin(ψ(t)) cos(ψ(t))

]
, b(z(t)) = bO

+A(z(t))[x(t), y(t)]>, where [x(t), y(t)]> is the center of gravity of the vehicle.

Heterogeneous Robots Reconfiguration Results

Six robots with different polytopic shapes are considered as shown in Fig. 5.11 (a). A square
(light blue), a hexagon (red), an irregular pentagon (dark blue), a hexagon (green), a triangle
(pink), a pentagon (black) are representation of the robots and are located on a circle. The
goal assigned to each robot is the other end of the diameter of the circle (i.e., each robot
needs to swap its position with the one of the robot on the opposite side of the circle).
For example in Fig. 5.11 (a), the goal for the red robot is the location of pink robot on
the circle. So the pairs on the same diameter swap their locations. The pairs red/pink,
dark blue/black and green/light blue swap, respectively, as shown in Fig. 5.9. The Fig. 5.9
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Figure 5.9: Trajectories of all the robots in x-y plane.

shows the position of each robot along the simulation in x-y plane. The Fig. 5.10 shows
the control input trajectories and the Fig. 5.11 shows the snapshots of the simulation. The
initial formation of robots is shown in snapshot (a), then (b)-(e) snapshots shown how they
resolve the conflict among each other and (f) shows the final configuration, in which the
pairs have swapped their locations. As seen, the robots reduce their speed to avoid collisions
at the center of the circle. The open-loop predicted trajectories are shown with small circles
for each robot.

Remark 3 Note that the proposed coordination strategy is a local one and the performance
can be affected by choosing different tuning parameters. For example, choosing a short plan-
ning horizon (which would help reduce the computation time even further) can cause deadlock
situations, which can be preventable by increasing the horizon length. In addition, the pro-
posed design requires communication among the robots and can tolerate delays up to the
prediction horizon of the local NMPC formulations. If the delay is exceeded, fallback strate-
gies are required (e.g., rely on local perception to understand the intentions of the neighboring
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Figure 5.10: Control input trajectories of the six robots.

Figure 5.11: Snapshots of the reconfiguration of a team of 6 heterogeneous robots with
different polytopic shapes are shown. The predicted open-loop trajectories are shown with
small dots.



CHAPTER 5. DISTRIBUTED COORDINATION 89

robots or detect possible faults). These strategies, however, are outside the scope of this work.

5.6 Prediction Error Bound

This section focuses on the discrepancy between distributed and centralized approaches
caused by trajectory prediction error. In the centralized approach (5.1), since the coordi-
nator chooses the optimal action for all the robots simultaneously, the approach does not
rely on the open-loop trajectories of the neighbor robots (no communication is involved).
However, in the distributed problem (5.5), each robot optimizes its own action based on the
communicated information about the predicted (open-loop) trajectories of other robots. In
this section, the trajectory prediction error is quantified and an upper bound on this error
is established. To help the discussion, a simple simulation scenario is considered and all the
results are presented for this scenario. In this scenario two cars, namely, car i and car j, are
moving in the same direction using two different lanes when car i decides to overtake and
merge into car j’s lane, as shown in Fig. 5.12, (for more details on the model and formulation
refer to Sec. 5.5).

Consider the open-loop trajectory of robot i predicted by robot i as

τ ipi(t) =
[

zi(0|t), zi(1|t), . . . , zi(N |t)
]

and the shifted and augmented open-loop trajectory of robot i predicted by robot j as

τ̄ ipj(t− 1) =
[

z̄i(1|t− 1), z̄i(2|t− 1), . . . , z̄i(N |t− 1), z̄i(N |t− 1),
]

(the trajectory is shifted one step forward in time and augmented with the same last value).
The subscript pi means predicted by robot i and similarly pj means predicted by robot
j. Also τ jpj(t) represents trajectory of robot j predicted by j at current time step t and
τ̄ ipj(t − 1) denotes the trajectory of robot i predicted by robot j at the previous time step
t− 1.

The prediction error at each time step t, epredict(t) is defined as

epredict(t) = ‖distpi(t)− distpj(t)‖2, (5.15)

where distpi is the distance between robot i and robot j predicted by robot i (distance from
the point of view of robot i) and, similarly, distpj is the distance between robot i and robot
j predicted by robot j (distance from the point of view of robot j). The predicted distances
are equivalent to

distpi(t) ' ‖τ ipi(t)− τ̄ jpi(t− 1)‖2,

distpj(t) ' ‖τ jpj(t)− τ̄ ipj(t− 1)‖2,
(5.16)

and by substituting (5.16) in (5.15), the predicted error is equivalent to

epredict(t) ' ‖
(
‖τ ipi(t)− τ̄ jpi(t− 1)‖2 − ‖τ jpj(t)− τ̄ ipj(t− 1)‖2

)
‖2. (5.17)
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Since the cars are rigid bodies (modeled as polytopic sets) and not just point masses, the
exact minimum distance between the two polytopic sets is considered and distpi and distpj
are defined using the notion of distance between the sets. As discussed earlier, the distance
between the two polytopic sets i and j is defined as −bi

>
λij − bj

>
λji. However this value

is different from the view of robot i and robot j, in distributed approach (distpi 6= distpj).
According to distance constraint (5.5a), the distances from point of view of robot i and j
can be written as

distpi(t) = −bi(t)>λ̄ij(t− 1)− b̄j(t− 1)>λ̄ji(t− 1), (5.18)

distpj(t) = −b̄i(t− 1)>λ̄ij(t− 1)− bj(t)>λ̄ji(t− 1) (5.19)

By substituting (5.18) and (5.19) in (5.15), the prediction error epredict can be computed.
After this quantification, an upper-bound on the prediction error is established. Note that
in the centralized approach, the prediction error epredict is zero since no communication is
involved (the approach does not rely on the open-loop trajectory predictions of other robots)
and distpi = distpj.

Theorem 2 Let the minimum distance between robot i and j from the perspective of robot i
and j be defined according to (5.18) and (5.19), respectively. By using Algorithm 1 to solve
Problem (5.5), the prediction error is bounded, that is,

epredict(t) = ‖distpi(t)− distpj(t)‖2

≤ ci||bi(zi(t))− b̄i(z̄i(t− 1))||2
+ cj||bj(zj(t))− b̄j(z̄j(t− 1))||2,

(5.20)

where ci and cj are constant scalars. For vehicle applications with rectangular polytopic
shapes ci and cj are equal to one. For general polytopic shapes

ci =
√

2‖(AO
i>)†‖F =

√√√√2
r∑
i=1

σ2
i ,

where σi is the ith singular value of the matrix and r is its rank. Similarly, cj has the same

definition associated with matrix (Aj>
O )†.

Proof 1 See Appendix.

To clarify the meaning of this time-varying upper-bound (right-hand side of (5.20)), the
overtaking scenario in Fig. 5.12 is simulated and the minimum distances between the cars at
each time step along the simulation is shown in Fig. 5.13 top plot. As seen in the top plot,
distpi, the distance predicted by car i (light blue line) is different from distpj, the distance
predicted by car j (pink line). The true distance is the actual distance between the cars
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Figure 5.12: Overtaking maneuver: the top arrow indicates direction of motion.

(gray line). This difference in predicted distances is the prediction error which is bounded
according to (5.20). The bottom plot in Fig. 5.13, shows that for overtaking scenario the
prediction error epredict (blue line) is bounded by the computed proposed upper bound (right-
hand side of (5.20)) (red line). This upper bound means the prediction error in computing
the distance between two cars is bounded by the deviation of the bi and bj vectors, between
two iterations of the distributed algorithm. The distance in dual formulation is proportional
to bi and bj, which are right-hand side of polytopic set representation, as shown Fig. 5.6.
The error is bounded and it is small, since the vector b does not change dramatically between
two problem iterations.

In the remainder of this section, the following questions are addressed:

1. How tight is this bound compared to a trivial upper bound (computed from boundaries
of the feasible set)?

2. For a given acceptable error on the states, how one can rewrite the upper-bound as
a function of acceptable error on the states and enforce it as a constraint in NMPC
problem (5.5)?

3. How can one normalize the upper-bound values?

1) To study how tight the upper-bound (5.20) is, it is compared with a trivial upper-
bound. The trivial upper-bound is defined by maximizing the right-hand-side of (5.20).
This maximization is done by substituting maximum boundary values of the feasible set Z
in (5.18) and (5.19). The results for the same overtaking simulation is shown in Fig. 5.14.
The top plot shows that prediction error is bounded by the proposed upper-bound. The
bottom plot shows that the proposed upper-bound is considerably tighter than the trivial
upper-bound.

2) For a given acceptable error on the states, a threshold for the upper-bound can be
defined and the upper-bound (5.20) can be included in the NMPC formulation (5.5) to bound
the prediction error in the distributed problem. For this application, the states are x,y and
ψ. The maximum error on x, y and ψ are denoted as ex, ey and eψ, respectively and defined
as

ex = |x(t)− x̄(t− 1)|
ey = |y(t)− ȳ(t− 1)|
eψ = |ψ(t)− ψ̄(t− 1)|

(5.21)



CHAPTER 5. DISTRIBUTED COORDINATION 92

D
is

ta
n
c
e
 (

m
)

Time (s)

Figure 5.13: Top In distributed approach, the distance between robot i and robot j from
the view of both robots is not the same. Bottom The proposed upper-bound of (5.20)
is illustrated in red for the overtaking simulation and the prediction error on distance is
bounded by the proposed upper-bound.

Corollary 2.1 Given the acceptable error values on the states ex, ey and eψ, let ex, ey and
eψ be defined as (5.21), one can compute αmin ≥ 0, such that the following holds for all t ≥ 0:

||bi(zi(t))− b̄i(z̄i(t− 1))||2 ≤ αmin(t). (5.22)

Then by enforcing (5.22) as a constraint in the NMPC problem (5.5), if the problem (5.5) is
feasible, the prediction error for each state will not violate the acceptable specified error.
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Figure 5.14: The trivial upper-bound is compared versus the proposed upper-bound on
distance error.

Proof 2 The equation (5.20) is quantified based on acceptable error in the following

||bi(zi(t))− b̄i(z̄i(t− 1))||2

=||A(ψ(t))

[
x(t)
y(t)

]
−A(ψ̄(t− 1))

[
x̄(t− 1)
ȳ(t− 1)

]
||2

=||A(ψ̄(t− 1)± eψ)

[
x̄(t− 1)± ex
ȳ(t− 1)± ey

]
−A(ψ̄(t− 1))

[
x̄(t− 1)
ȳ(t− 1)

]
||2 = α(t).

(5.23)

The right-hand side of (5.23) is minimized (all the values are known but different combi-
nations of signs must be considered to find the minimum α(t)), then the upper-bound is
compared with the threshold value αmin(t)

By specifying the acceptable error and minimizing the right-hand side of (5.23), the value of
αmin(t) can be calculated and (5.22) can be imposed as a constraint in the NMPC problem
(5.5) to ensure the solution never violates acceptable error values on the prediction error.

5.7 CONCLUSIONS

A distributed algorithm for multi-robot coordination in tight spaces is introduced using
nonlinear MPC and strong duality theory. The collision avoidance constraints are formulated
in dual formulation and dual decomposition is used to split the large centralized optimization
problem into smaller sub-problems. The proposed distributed approach consists of NMPC
optimization and collision avoidance optimization and the algorithm iterate between theses
two optimizations in an alternating optimization scheme.
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The effectiveness of the algorithm is shown for coordination of connected and automated
vehicles on public roads through platoon merging. It is shown the distributed approach
outperforms the centralized design by more than 2 orders of magnitude. The results show
that the distributed algorithm is computationally efficient for online implementation and is
scalable to larger networks of robots. In addition, it is shown that the method is generalizable
to heterogeneous team of robots with different polytopic shapes. It is shown that compared
to a centralized design, the proposed decomposition introduces a local prediction error that
could lead to more conservative local trajectories. Nevertheless, it is proved that this error
is bounded and can be accounted for in the local NMPC problems.

As part of the future work, testing with real hardware (e.g., drones and ground ve-
hicles) and in more complex scenarios (e.g., urban driving) can be performed. From the
algorithm-design perspective, strategies to deal with real sensor data, communication de-
lays, and random faults can be investigated.
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Appendix A

Proof of Theorem I

Proof 3 Proof of Theorem 1
For robot i and robot j, since sij represents the consensus variable between the two robots
(normal of a separating hyperplane between the robots), therefore sij = sji, in CA optimiza-
tion (5.6). Also, based on (5.6a) and (5.6b) constraints in CA optimization (5.6), we have

λij = −(Āi(z̄i)>)†sij, (A.1)

λji = (Āj(z̄j)>)†sij, (A.2)

where A† is (A>A)−1A>.
The minimum distance distpi from the view of robot i, is computed by substituting (A.1)

and (A.2) into (5.5a)

distpi =

(
bi(zi(t))>(Āi(z̄i(t− 1))>)† − b̄j(z̄j(t− 1))>(Āj(z̄j(t− 1))>)†

)
s̄ij. (A.3)

Similarly, from the view of robot j, by substituting (A.1) and (A.2) into (5.5a) we have

distpj =

(
b̄i(z̄i(t− 1))>(Āi(z̄i(t− 1))>)† − bj(zj(t))>(Āj(z̄j(t− 1))>)†

)
s̄ij. (A.4)

The difference of (A.3) and (A.4)) is the prediction error epredict,

epredict(t) = ||
(

bi(zi(t))>(Āi(z̄i(t− 1))>)†

− b̄j(z̄j(t− 1))>(Āj(z̄j(t− 1))>)†

− b̄i(z̄i(t− 1))>(Āi(z̄i(t− 1))>)†

+ bj(zj(t))>(Āj(z̄j(t− 1))>)†
)

s̄ij||2.

(A.5)
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On the other hand,

||(A>)†||F =

√√√√ r∑
i=1

σ2
i ,

where r is the matrix rank. For the application of vehicles (which all the polytopes are
rectangle or square) The matrix A(z) is defined as

A(z) =

[
R(z)>

−R(z)>

]
,

its norm remains constant as z changes. Performing Singular Value Decomposition (SVD)
on the rotation matrix R(z), returns identity matrix and singular values are independent from
z values. With the same analogy, SVD on (A(z)>)† always results in the same decomposition
with no regards to z values, (A>)† = UΣV >, where the matrix Σ is

Σ =

[√
2

2
0

0
√

2
2

]
. (A.6)

Therefore,

||(A(z)>)†||F =

√√√√ r∑
i=1

σ2
i =

√(√
2

2

)2

+

(√
2

2

)2

= 1. (A.7)

By rearranging the terms, using triangular inequality, Cauchy-Schwarz inequality and based
on the constraint ||sij||2 ≤ 1 and ||(A(z)>)†||F = 1 obtained from (A.7) we have

epredict

= ||
((

bi(zi(t))− b̄i(z̄i(t− 1))
)>

(Āi(z̄i(t− 1))>)†

+
(
bj(zj(t))− b̄j(z̄j(t− 1))

)>
(Āj(z̄j(t− 1))>)†

)
s̄ij||2

≤ ||
((

bi(zi(t))− b̄i(z̄i(t− 1))
)>

(Āi(z̄i(t− 1))>)†

+
(
bj(zj(t))− b̄j(z̄j(t− 1))

)>
(Āj(z̄j(t− 1))>)†

)
||2 ||s̄ij||2

≤ ||bi(zi(t))− b̄i(z̄i(t− 1))||2 ||(Āi(z̄i(t− 1))>)†||F
+ ||bj(zj(t))− b̄j(z̄j(t− 1))||2 ||(Āj(z̄j(t− 1))>)†||F
≤ ||bi(zi(t))− b̄i(z̄i(t− 1))||2
+ ||bj(zj(t))− b̄j(z̄j(t− 1))||2

(A.8)
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For the cases with general polytopic shapes we have

||(Āi(z̄i(t− 1))>)†||F = ||Ai
O R(zi(t− 1))>‖F

≤ ‖Ai
O‖F ‖R(zi(t− 1))>‖F,

(A.9)

where Ai
O is the polytopic representation at the origin. The SVD decomposition for rotation

matrix is independent of z, and ||R||F =
√

2. On the other hand, the constant matrix Ai
O is

not a function of time and

‖(AO
i>)†‖F =

√√√√ r1∑
i=1

σ2
i .

so

||(Āi(z̄i(t− 1))>)†||F ≤

√√√√2

r1∑
i=1

σ2
i . (A.10)

With the same analogy

||(Āj(z̄j(t− 1))>)†||F ≤

√√√√2

r2∑
i=1

σ2
i . (A.11)

By setting

ci =

√√√√2

r1∑
i=1

σ2
i

and

cj =

√√√√2

r2∑
i=1

σ2
i

and substituting in (A.8), we have

epredict

≤ ci||bi(zi(t))− b̄i(z̄i(t− 1))||2
+ cj||bj(zj(t))− b̄j(z̄j(t− 1))||2.

(A.12)

This is the formulation for general polytopic shapes, for special case of rectangular shapes
like vehicles according to (A.7), ci = cj = 1.
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Appendix B

Derivation of Dual Formulation from
Primal

To derive the dual formulation(5.3) from primal (4.12), the Lagrangian is formed. The
equivalent form of (4.12) is

min
x,y,w
‖w‖2

s.t. A1x � b1, A2y � b2, x− y = w
(B.1)

By forming the Lagrangian dual of (B.1) we have

g(λ12,λ21, s) = inf
x,y,w

(
‖w‖2 + λ>12(A1x− b1)+

λ>21(A2y − b2) + s>(x− y −w)
)

s.t. λ12,λ21 � 0.

(B.2)

By rearranging the terms in (B.2), we have

g(λ12,λ21, s) =inf
w

(‖w‖2 − s>w)

+inf
x

(
(A>1 λ12 + s)>x− λ>12b1

)
+inf

y

(
(A>2 λ21 − s)>y − λ>21b2

)
s.t. λ12,λ21 � 0.

(B.3)

We can reformulate (B.3) using the definition of conjugate function. The conjugate function
is defined as f ∗(s) = sup

x∈domf
(s>x− f(x)). Also we use the fact the inf f(x) = − sup(−f(x)).

So we have
inf
x

(f(x)− s>x) = −sup
x

(−f(x) + s>x) = −f ∗(x). (B.4)

Therefore the first term of right-hand side of (B.3) can be written as

inf
w

(‖w‖2 − s>w) = −f ∗(s) = −‖w‖∗. (B.5)
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The conjugate of ‖w‖ is

f ∗(s) =

{
0 ‖s‖∗ ≤ 1

∞ otherwise
(B.6)

The derivation of (B.6) (derivation for conjugate of ‖ · ‖) is proven at [8]. The second term
in the right-hand side of (B.3) is

inf
x

(
(A>1 λ12 + s)>x− λ>12b1

)
=

{
−b>1 λ12 A>1 λ12 + s = 0

−∞ otherwise

(B.7)

and similarly the third term is

inf
y

(
(A>2 λ21 − s)>y − λ>21b2

)
=

{
−b>2 λ21 A>2 λ21 − s = 0

−∞ otherwise

(B.8)

By substituting (B.5), (B.7) and (B.8), in (B.3), the formulation (5.3) is obtained.
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Appendix C

KKT Conditions for Geometric
Interpretations

The dual variables have interesting geometric interpretation. All these geometric meanings
are obtained from the Karush-Kuhn-Tucker (KKT) conditions for problem (5.2). The dual
problem expressed in (5.3)

A1 =


a11

a12
...

a1m1

 , A2 =


a21

a22
...

a2m2

 ,
b>1 =

[
b11 b12 . . . b1m1

]
,

b>2 =
[
b21 b22 . . . b2m2

]
,

λ>12 =
[
λ121 λ122 . . . λ12m1

]
,

λ>21 =
[
λ211 λ212 . . . λ21m2

]
.

Since the primal primal problem is a convex function, the KKT condition is necessary
and sufficient for the points to be primal and dual optimal. Other than feasibility of primal
and dual problem, there is complementary slackness

λ12i(a1ix− b1i) = 0, i ∈ {1, 2, . . . ,m1}, (C.1)

λ21i(a2iy − b2i) = 0, i ∈ {1, 2, . . . ,m2}, (C.2)

By expanding (C.1) and (C.2) we will have

x>a1
>
i λ12i = b1iλ12i, i ∈ {1, 2, . . . ,m1}, (C.3)

y>a2
>
i λ21i = b2iλ21i, i ∈ {1, 2, . . . ,m2} (C.4)
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where a1i and a2i are row vectors of A1 and A2, respectively. The other KKT condition is
stationarity condition which is base on the primal problem in (B.1)

A>1 λ12 + s = 0, (C.5)

A>2 λ21 − s = 0, (C.6)
w

‖w‖
− s = 0. (C.7)

As seen, (C.5) and (C.6) reflect the equality constrains of the dual problem (5.3). Combining
all together, at optimum we have

s>x = −b>1 λ12 > 0

s>y = +b>2 λ21 < 0




